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This paper presents a set of fractional Boussinesq equations (fBEs) for groundwater flow in confined and
unconfined aquifers and demonstrates the application of one of the fBEs for groundwater discharges
known as recession curves. The fBEs are formulated with two-term distributed fractional orders in time
and symmetrical fractional derivatives (SFD) in space applicable to both confined and unconfined aqui-
fers. The SFD in theory consists of the forward fractional derivative (FFD) and the backward fractional
derivative (BFD). The FFD represents the forward movement of water along the direction of mainstream
flow while the BFD accounts for the backward motion of water in the direction opposite to the main-
stream flow. The backward flow at the pore level can be referred to as the micro-scale backwater effect.
The analogue of the backwater effect on a micro-scale using the BFD coincides with the wandering pro-
cesses based on the continuous-time random walk (CTRW) theory which results in the fractional govern-
ing equation. With the analytical solutions of the fBE for given initial and boundary conditions of the first
type for a finite depth, a set of formulae for groundwater recession has been derived using approximate
solutions of the fBE. The examples of the applications of the recession curves are graphically illustrated
and the effects of the orders of fractional derivatives on the geometry of the flow curves examined.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction where
Groundwater is a vital resource for many sectors and human
consumption in the society around theworld. Its management, pro-
tection and assessment require quantitative knowledge of the flow
in aquifers. The quantification of groundwater flow has been a
major issue for hydrologists, engineers and appliedmathematicians
for more than a century, and the methods for its quantification are
among the most important issues in groundwater hydrology.

The first step towards quantifying water flow in porous media
was achieved by Darcy (1856), and complete mathematical formu-
lation in the form of partial differential equations (PDEs) was pre-
sented and analysed by Boussinesq (1904). Numerous papers and
books have been published since these important pioneering mile-
stones, and extensive research is continuing which is evidenced by
continuous publications in various forms.

One form of the Boussinesq equation (BE) of groundwater flow
in an aquifer in two dimensions was given by Boussinesq (1904, p.
22) as
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h is the hydraulic head of the aquifer with a dimension ½L�;
K is the saturated hydraulic conductivity of the aquifer, ½L=T�;
/ is either the effective porosity in unconfined aquifers or the
storativity coefficient in confined aquifers, which are dimen-
sionless (see Table 1 for details);
x and y are the space variables in two directions, ½L� and
t is the time, ½T�.

Eq. (1) applies to both confined and unconfined aquifers but
with a key difference being the distinction between the parameters
and their definitions for the two types of aquifers, which are sum-
marised by Bras (1990, p. 296–299) in Table 1.

According to Bear (1972), Boussinesq (1904) was the first to
present an exact solution of Eq. (1) for analysing groundwater flow.
For more than a century, the BE and its simplifications have formed
the basis for analysing groundwater flow. In one dimension with
the slope gradient of the aquifer base included, the BE is written
as (Werner, 1957)
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wherex is the gradient of the aquifer on an impervious base. Eq. (2)
can be written as follows to accommodate the variability of the sat-
urated hydraulic conductivity,
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Table 1
The specification of the parameters for unconfined and confined aquifers.

Unconfined aquifer Confined aquifer

Definitions Effective porosity Storativity coefficient
/ / ¼ ne

Kh0
/ ¼ S

T

Notes ne is the effective porosity in;
h0 is the hydraulic head in the
saturated zone around which
Eq. (1) is linearised

S is the storativity coefficient
or specific storage coefficient;
T is the transmissivity which
is now equal to Kb, where b is
the thickness of the confined
aquifer
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Clearly, Eq. (3) is a consequence of the conservation of mass
given by
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where q is the mass flux through a cross section, B, given by
(Werner, 1957)
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In addition to the application and continual analysis of the BE
(Bear, 1972; Barenblatt et al., 2000; Abdellaoui et al., 2015;
Telyakovskiy et al., 2016), over the past twenty years or so various
forms of the fractional Boussinesq equation (fBE) have been pre-
sented based on the fractional calculus. Some of the forms are
given by He (1998), Atangana and his colleagues (Atangana and
Bildik, 2013; Atangana, 2014; Atangana and Vermeulen, 2014;
Alkahtani and Atangana, 2016; Atangana, 2016; Atangana and
Alkahtani, 2016; Atangana and Baleanu, 2016; Djida et al., 2016),
Mehdinejadiani et al. (2013) and Zhuang et al. (2014) who have
demonstrated the application of fractional partial differential
equations (fPDEs) to groundwater problems. These developments
on water flow complement the applications of fractional calculus
on solute movement in groundwater by Benson (1998) and many
subsequent investigators, particularly he and his colleagues such
as Benson et al. (2000a, 2000b), Schumer et al. (2003a, 2003b)
and others as reviewed by Berkowitz et al. (2006), Zhang et al.
(2009) and Benson et al. (2013).

In this paper, we present a two-term distributed-order time-
space fBE which can be simplified into different forms, and solu-
tions following a recent satisfactory application of a similar fPDE
to groundwater flow in a radial coordinate for well hydraulics
(Su et al., 2015). The fBE by definition incorporates the fractional
derivatives in time and two components of fractional derivatives
in space. The two components of fractional derivatives in space
explain forward motion of flow and the backwater effect by the
backward fractional derivative.

2. The fractional Boussinesq equation of groundwater flow and
its connection with the continuous-time random walk theory

2.1. A brief background

The conception of fractional calculus was initiated more than
320 years ago (Podlubny, 1999), but its development and applica-
tions do not parallel those for integer calculus. In spite of this dis-
parity, some concepts and methods developed for fractional
calculus have found significant applications such as the fractional
partial differential equations (fPDE) and their association with
stochastics and fluid mechanics etc. Such examples include the
application of the continuous-time random walk (CTRW) theory
(Montroll and Weiss, 1965) to derive the governing equations for
flow and transport in porous media without resorting to the tradi-
tional method of mass conservation (Gorenflo and Mainardi,
1998a, 1998b, 2005, 2009; Zaslavsky, 2002; Uchaikin and Saenko,
2003; Gorenflo et al., 2007). A very important feature of the fPDE
so derived is related to the transport exponent (Zaslavsky, 2002),
which defines the pattern of flow and transport by the two param-
eters in the CTRW model, and is also related to the parameters
which defines the fractal space-time structures (Zaslavsky, 2002,
p. 507).

The CTRW is a further development from the concept of the ran-
dom walk, which was first mathematically illustrated by Crofton
(1865) in terms of the random flight as an alternative term, and
later used by Pearson (1905). The phenomenon described by the
CTRW concept is anomalous, which is a generalisation of the trans-
port processes with the classic diffusion as a special case (Gorenflo
et al., 2007). The CTRW theory for transport is understood in the
framework of the classical renewal theory (Cox, 1967), and was
successfully applied to model solute movement in porous media
more than 50 years ago since Saffman (1959). In recent years the
CTRW theory is being more widely applied to model flow and
transport in different geological formations such as aquifers and
soils (Berkowitz and Scher, 1995; Benson, 1998; Benson et al.,
2000b; Gorenflo and Mainardi, 2001, 2005, 2009; Berkowitz
et al., 2002; Dentz and Berkowitz, 2003; Schumer et al., 2003a;
Berkowitz et al., 2006; Benson et al., 2013; Dentz et al., 2015).

For detailed discussions and reviews of the connection between
the CTRW and the fPDEs, the reader is referred to Uchaikin and
Saenko (2003), Gorenflo et al. (2007), and Gorenflo and Mainardi
(2012). Here we briefly re-state this connection for the benefit of
the readers in groundwater hydrology.

The CTRW provides a framework for transport phenomena
which consists of a sequence of two states of independently iden-
tically distributed (iid) processes: one state stands for the iid pos-
itive waiting times denoted by T1; T2; T3; . . ., each having the same
probability density function (pdf), /ðtÞ; t > 0, and the second state
is the sequence of the iid random jumps denoted by X1;X2;X3; . . . in
a real domain, R, each having the same pdf wðxÞ; x 2 R. The proba-
bility density of the particle or water parcel movement in the
media is pðx; tÞ, which is represented by the series (Gorenflo
et al., 2007),

pðx; tÞ ¼ WðtÞdðxÞ þ
X1
n¼1

vnðtÞwnðxÞ ð6Þ

where
WðtÞ is the survival function given by

WðtÞ ¼
Z 1

t
/ðt0Þdt0 ð7Þ

with vnðtÞ andwnðxÞ as the repeated convolutions in time and space,
respectively, given by vnðtÞ ¼ ðW � /�nÞðtÞ, and wnðxÞ ¼ ðw�nÞðtÞ.
With Eq. (6), it is shown (Gorenflo et al., 2007; Gorenflo and
Mainardi, 2012) that the expression
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is equivalent to
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which is the Laplace-Fourier transform of the following time–space
fractional partial differential equation (fPDE)
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where
j and s are the Fourier and Laplace transform variables,
respectively;
b is the order of the temporal fractional derivative and
k the order of the spatial fractional derivative.

The above fact implies that the CTRW model in the Laplace-
Fourier domain is equivalent to the fPDE in the time domain, thus
establishing the connection between the CTRW and the fPDE in
two disciplines. The CTRW model is characterised by the long-
time limit of a CTRW with power-law jumps, PðX > xÞ � x�b and
power-law waiting times, PðJ > tÞ � t�k (Meerschaert, 2012) with
PðX > xÞ and PðJ > tÞ as the conditional probabilities for jumps
andwaiting times, respectively. Equation (10) can also bewritten as

tD
b
�uðx; tÞ ¼ xD

k
-uðx; tÞ; uðx; 0Þ ¼ dðxÞ ð11Þ

where the left hand side of Eq. (11) is the Caputo fractional deriva-
tive with respect to time while the right hand side is the Riesz-Feller
potential (which defines the fractional derivatives) with respect to
space, and - is the skewness. It should be noted that the Riesz-
Feller fractional derivative becomes the Liouville fractional deriva-
tive for - ¼ �k with the positive sign for the forward fractional
derivative (FFD) and the negative sign for the backward fractional
derivative (BFD) (Ortigueira and Trujillo, 2012, p. 5155–5156). In
the following section and Appendix A the FFD and BFD are detailed.

The above brief review shows the direct link between the CTRW
model and the fPDE for the same transport process. Water flow in
unsaturated soils is successfully described using the CTRW theory
(Su, 2014), and the flow in saturated media should have similar
properties with the saturation in the media as a special case. Given
that solute movement in porous media has been successfully mod-
elled using the CTRW theory (Meerschaert et al., 2002;
Meerschaert, 2012), water flow that entrains solute movement in
the media can be consistently interpreted using the CTRW concept.
It is this fundamental connection and earlier successful analysis
which prompt the author to extend the approach using the CTRW
theory to saturated flow in aquifers which leads to the fBE.
2.2. The fractional Boussinesq equations and their classifications

The conventional flux or discharge, q, per unit width, has been
modified in the literature to accommodate the fractional concept
(He, 1998; Voller, 2011). Instead of a fractional gradient, here we
use the fractional derivation of the flux, which can be regarded
as the compact form given by Wheatcraft and Meerschaert (2008)
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with q given by Eq. (5) and the parameter / denoting the rest of
terms in the expression given by Wheatcraft and Meerschaert
(2008). The fractional flux has two features as Wheatcraft and
Meerschaert (2008) explain, which include the scale-invariant
property that eliminates the scale effects on parameters. Replacing
the rate of change in time with the fractional derivative in Eq. (12)
and combining it with Eq. (5) result in
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Eq. (13) applies to both confined and unconfined aquifers, sim-
ilar to Eq. (1), with the only difference being the parameters
defined for the two different types of aquifers (see Table 1). Eq.
(13) is a nonlinear fPDE due to the term Kh which has very inter-
esting properties compared to its linear counterpart. In hydrologi-
cal applications, Eq. (13) can be simplified using the transmissivity,
which is a specific term defined differently for unconfined and con-
fined aquifers (see Table 1).

Eq. (13) is also applicable to both homogeneous and heteroge-
neous aquifers depending on whether the hydraulic conductivity,
K , is a constant or function. In practice, its simplifications are pre-
ferred to make their applications easier. In the following cases sim-
plifications are achieved for homogeneous aquifers with K being a
constant and for heterogeneous aquifers using the transmissivity
or weighted mean for K.

It should be noted that the expansion of the term @g

@xg Kh @h
@x

� �
in

Eq. (13) cannot be simply performed using the Leibniz chain rule
for integer calculus, and requires a more complex Leibniz chain
rule which is a finite series of the product of the integer and frac-
tional derivatives of the two terms, Kh and @h

@x (Podlubny, 1999, p.
91–97).

2.2.1. A simplified fractional Boussinesq equation for homogeneous
aquifers

For homogeneous aquifers with K being a constant, Eq. (13)
simplifies as
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Eq. (14) applies to both confined and unconfined aquifers. With
constant K Eq. (14) is still a nonlinear fPDE.

2.2.2. A simplified fractional Boussinesq equation for heterogeneous
confined aquifers

For heterogeneous confined aquifers, K is a function of the
depth, z, i.e., KðzÞ, and there are two methods in practice for its
determination. One method is the weighted mean hydraulic con-
ductivity for confined aquifers, Kc , recommended to replace the
conventional hydraulic conductivity, K , for a heterogeneous con-
fined aquifer (Bear, 1972, p. 214) in Eq. (13)

Kc ¼ 1
b

Z b

0
KðzÞdz ð15Þ

with b being the thickness of the aquifer. Then the weighted trans-
missivity for confined aquifers, Tc , is

Tc ¼ Kch ð16Þ
Another method for the simplification is the use of the mean

transmissivity (Bras, 1990, p. 298)

Tc ¼
Z z2

z1

KðzÞdz ð17Þ

where z1 and z2 are the heights of the aquifer at two points of inter-
est, respectively. Then Eq. (13) for heterogeneous confined aquifers
is written as
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with k ¼ gþ 1. Eq. (18) is a linear fPDE which is different from the
nonlinear Eq. (14), and many published reports are available which
document analytical solutions of linear fPDEs either through a frac-
tional differential equation (fDE) following the Laplace transform of
Eq. (18) (Podlubny, 1999) or its present form (Baleanu et al., 2014).

2.2.3. A simplified fractional Boussinesq equation for heterogeneous
unconfined aquifers

For heterogeneous unconfined aquifers, the mean transmissiv-
ity is given by (Bras, 1990, p. 298)

Tu ¼
Z h

z1

KðzÞdz ð19Þ
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where the upper integral limit is the free surface of the aquifer
rather than a fixed height, and the weighted mean hydraulic con-
ductivity for a heterogeneous unconfined aquifer, Ku, is given by
(Bear, 1972, p. 376)

Ku ¼ 1
h

Z h

0
KðzÞdz ð20Þ

when the lower limit z1 is set to zero as the reference datum, which
can also apply to Eq. (19).

With Eqs. (19) and (20) for the weighted means, Eq. (13) for
heterogeneous unconfined aquifers is now written, with
k ¼ gþ 1, as
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which has an identical structure with Eq. (18) for heterogeneous
confined aquifers but the parameters represent different concepts.

The above analyses indicate that for homogeneous aquifers, the
same governing equation applies. For heterogeneous aquifers the
simplified governing equations (Eqs. (18) and (21)) look identical
in structure but the two weighted parameters, T and K , are deter-
mined slightly differently with the differences being the upper
limit of the integral and the denominator for weighting the
integral.

The fractional orders in the above equations, b, k and g, are not
necessarily fractions or constants, they can also be functions of
time, space and/or h or other parameters. When they are functions,
the orders are called variable orders of fractional differentiation
(Samko, 1995; Lorenzo and Hartley, 2002). According to
Odzijewicz et al. (2013) the concept of variable orders of fractional
calculus was initiated by Samko in 1995. In this paper, we only
consider aquifers with b, k and g being fractions.

In the following section, we first discuss ‘‘the backwater effect”
at a micro-scale which is represented by the backward space frac-
tional derivative, and related issues.

3. The distributed-order fractional Boussinesq equations, and
forward and backward fractional derivatives in the framework
of CTRW

3.1. The distributed-order fractional Boussinesq equations

At a large spatial scale, the backwater effect in hydraulics is well
known. This phenomenon can be extended to flow at a micro-scale
with the backward fractional derivatives in space representing the
micro-scale backwater effect. Bochner (1949) introduced the back-
ward and forward fractional linear operators and Saichev and
Zaslavsky (1997) described ‘‘wandering processes” using the terms
‘‘symmetric fractional derivatives” (SFDs) to take into account the
backwater effect in particle motion. By definition, the fractional
derivatives incorporate those two components – backward and for-
ward fractional derivatives when the symmetric case is considered
(Gorenflo and Mainardi, 2001; Umarov and Gorenflo, 2005).

At temporal scales, the flow of fluid through different sizes of
pores can be represented by multi-term fractional time derivatives
which can account for flow in fractal porous media. The multi-term
time fractional derivatives (Jiang et al., 2012, p. 1119) used here
take the following form instead of the time fractional derivatives
on the left-hand side of the fPDEs,

PðDtÞhðx; tÞ ¼ Db
t þ

Xs
i¼1

aiD
bi
t

 !
hðx; tÞ ð22Þ

where Db
t and Dbi

t are Caputo fractional derivatives with
0 6 bs < . . .b1 < b 6 1 as fractional orders of the time-fractional dif-
fusion equation or 0 6 bs < . . .b1 < b 6 2 as fractional orders of the
time-fractional wave equation with i ¼ 1;2; . . .n. In fact,
0 6 bs < . . .b1 < b 6 2 is more generic when the multi-term frac-
tional diffusion-wave equation is used. ai (i ¼ 1;2; . . . s) are the coef-
ficients of the time-fractional derivatives which account for the
proportional contributions from each fractional time derivative to
the sum of the fractional derivatives.

Combining Eq. (22) with Eq. (13) with Eqs. (A3) and (A4) for the
SFD using Saichev and Zaslavsky’s notation yields
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for a homogeneous aquifer, and
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for a heterogeneous aquifer when KðzÞ varies with the depth.
Eqs. (23) and (24) are the distributed-order fractional Boussi-

nesq equations (fBEs) incorporating the SFDs. It should be noted
here that Eqs. (23) and (24) are extensions to Eqs. (14) and (13),
respectively, by including multi-term time fractional derivatives,

and @kh
@jxjk for both the forward and backward fractional components

accounting for the forward and backward fractional components if
the particle or water parcel motion is regarded as a wandering pro-
cess (Saichev and Zaslavsky, 1997). Saichev and Zaslavsky (1997),
Gorenflo and Mainardi (1998a, 1998b), Benson et al. (2000b),
Mainardi et al. (2001) and Umarov and Gorenflo (2005) detailed
the SFD and their properties, and Umarov and Gorenflo (2005)
show their connections with the fractional derivatives.

The multi-term definition is an ideal way to model flow and
particle motion in fractal media which has an unlimited level of
micro-structures, a key characteristic of fractal media. Examples
of its applications include the widely-used two-term mobile-
immobile model of solute transport (Schumer et al., 2003b), water
flow in soils (Su, 2012, 2014, 2017), and well hydraulics (Su et al.,
2015). The backward fractional derivatives explain ‘‘the backwater
effect” when water parcels bounce backward during the motion in
the CTRW model. This is an extension of the macro-scale backwa-
ter effect in hydraulics to explain anomalous motion of particles or
water parcels at a pore-scale.

As stated earlier the fractional derivatives incorporate the back-
ward and forward components (Gorenflo and Mainardi, 2001;
Umarov and Gorenflo, 2005), then the wandering processes charac-
terised by Eqs. (23) and (24) can be simply written, respectively, as
follows by dropping the jxj sign and using x instead (see also expla-
nations in Appendix A of this paper),
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for a homogeneous aquifer, and
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for a heterogeneous aquifer.
The mathematical representation of the physical process is cer-

tainly more accurate when more terms are used in the temporal
fractional derivatives. However, the challenge with the large num-
ber of fractional terms in the formulation is the increasing diffi-
culty of evaluating the parameters bi. To be consistent with the
widely-used mobile-immobile model of water flow and solute
transport in porous media (saturated and unsaturated), and its ini-
tial success in the extension using the fractional approach
(Schumer et al., 2003b; Su et al., 2015), in this paper we only retain
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two terms in / Db
t þ
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hðx; tÞ. With the two-term formula-

tion, we adapt our terminology for groundwater flow (Su et al.,
2015) to modify Eqs. (25) and (26) as
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for a homogeneous aquifer, and
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for a heterogeneous aquifer. In Eqs. (27) and (28), b1 and b2 are the
relative effective porosities in immobile and mobile zones, respec-
tively; /im, /m and / are the effective porosities in the immobile
and mobile zones, and total porosity, respectively, and b2 > b1 with
b2 for large pores and b1 for small pores.

Parallel to Eqs. (18) and (21) that are identical in structure but
with two differently weighted parameters, T and K , for confined
and unconfined aquifers, respectively, by dropping the subscripts
denoting the confined and unconfined aquifers, the two-term fBE
in Eq. (28) for heterogeneous aquifers (confined and unconfined)
can be simplified as

b2
@b2h
@tb2

þ b1
@b1h
@tb1

¼ T
@kh
@xk

�xK
@gh
@xg

ð29Þ

with k ¼ gþ 1, and T and K determined using Eqs. (15)–(17) for
confined aquifers and Eqs. (19) and (20) for unconfined aquifers,
respectively.

When there is no differentiation between mobile and immobile
zones in soils, i.e., b1 ¼ 0 as b1 þ b2 ¼ 1, and b1 ¼ 0, and by writing
b2 ¼ b, Eqs. (14) and (13) are recovered from Eqs. (27) and (28),
respectively.

The applications of symmetric fractional derivatives in mod-
elling solute movement are given by Meerschaert et al. (1999),
Benson et al. (2000a) and Schumer et al. (2003a). Zhang et al.
(2009) and Benson et al. (2013) provide extensive reviews and
analyses of the SFD-based models and have tested some of them
using data from the field. The analyses by Zhang et al. (2009) and
Benson et al. (2013) are mainly for solute transport which also pro-
vide an indirect picture of water flow in porous media as solute
movement is coupled to water flow.

Zaslavsky (2002, p. 489–511) analysed the SFD-based fPDE in
great detail and showed that the orders of fractional derivatives
in the time-space fPDE are also related to the exponents for the
two probability density functions in the CTRW theory, and ‘‘the
critical exponents that characterise the fractal structures of
space-time” (Zaslavsky, 2002, p. 507), who also demonstrated the
derivation of the SFD-based fPDEs and their applications.

3.2. Dimensions of the parameters in the fractional Boussinesq
equations

Once the new fPDEs are derived, the next important step is to
ensure that the dimensions or units of the parameters in the new
fPDEs make sense. For simple fractional models such as the frac-
tional diffusion equation with one-term fractional derivatives in
time and space, fractional dimensions can be easily defined. For
more complicated fractional models such as Eqs. (27) and (28)
and subsequent models in this paper, new definitions are needed
for each parameter in the fPDEs so that the dimensions of the fPDE
are physically meaningful.

In defining dimensions of the fractional diffusion coefficient in a
time-fractional diffusion equation, Kilbas et al. (2006, p. 464) sug-
gested that a new parameter be added to the ordinary diffusion
coefficient parameter so that the dimension of the conventional
parameter is retained while ensuring a correct dimension in the
time-fractional diffusion equation. In their approach, the new frac-
tional diffusion coefficient is given by

Ca ¼ K0s1�a ð30Þ
where

a is the order of the time-fractional diffusion equation;
K0 is the classic diffusion coefficient with the dimension ½L2=T�,
and
s is the new time constant parameter which accommodates the
new dimensions.

Following Kilbas et al. (2006) we modify the four parameters in
Eq. (29) as follows:

bi ¼ /im

/
s1�b1
1 ð31Þ

bm ¼ /m

/
s1�b2
2 ð32Þ

Tf ¼ Ts2�k
t ð33Þ

Kf ¼ Ks1�gk ð34Þ
where s1, s2, st and sk are parameters for dimension corrections,
and b1, b2, /im, /m and / are defined in Eqs. (27) and (28).

With these modifications to the parameters, Eq. (29) can be
updated as

bm
@b2h
@tb2

þ bi
@b1h
@tb1

¼ Tf
@kh
@xk

�xKf
@gh
@xg

ð35Þ

With these modifications, Eq. (35) retains the conventional
dimensions if the fractional parameters are absent such as the case
for b1 ¼ 1, b2 ¼ 1, k ¼ 2 and g ¼ 1. The dimensions of Eq. (28)
applicable to heterogeneous media are slightly different with those
in Eqs. (31)–(34) which should consider the functional form KðzÞ.

Another simple way of correcting the dimensions is to use a rel-
ative quantity such as the normalised or reduced hydraulic head
(Su et al., 2015) and relative moisture ratio (Su, 2014) which avoid
the complication of the dimensions. Due to the possible inconsis-
tency between the dimensions of the fPDE and its solutions in dif-
ferent forms, particularly approximate solutions, it is strongly
suggested that the dimensions of the parameters in the final solu-
tions be verified to ensure their physical relevance.

4. Solutions of fPDEs for hydraulic heads in aquifers subject to
the boundary conditions of the first kind

4.1. Exact solutions

Here we present solutions of Eq. (35) for heterogeneous aquifers
(confined and unconfined with the two weighted parameters
determined for each aquifer). The solutions presented here are sub-
ject to the following initial condition (IC) and boundary conditions
(BCs),

hðx; tÞ ¼ hðx;0Þ; t ¼ 0; 0 < x < L ð36Þ

hðx; tÞ ¼ hð0; tÞ; t P 0; x ¼ 0 ð37Þ

hðx; tÞ ¼ hðL; tÞ; t P 0; x ¼ L ð38Þ
The hydraulic heads at the start of the reference location, x ¼ 0

and at the aquifer outlet, x ¼ L, are hð0; tÞ and hðL; tÞ, respectively.
For water flow in the aquifer with two levels of pores, the large-
small (or mobile-immobile) porosity model is a reasonable choice.
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In this case, the solutions of Jiang et al. (2012, Eq. (44)) are modi-
fied to accommodate this situation

hðx; tÞ ¼ ½hðL; tÞ � hð0; tÞ�x
L

þ hð0; tÞ þ
X1
n¼1

cn1ð0Þu0ðtÞ

� sin
np
L

x
� 	

ð39Þ

where

cn1ð0Þ ¼ 2
L

Z L

0

hðx;0Þ � hð0; 0Þ
� ½hðL;0Þ�hð0;0Þ�x

L

" #
sin

npx
L

� 	
dx ð40Þ

with n = 1,2,.... and

u0ðtÞ ¼ 1� kntb2G
n
lðtÞ ð41Þ

where Gn
lðtÞ is the two-variable Mittag-Leffler function (2MLF)

given by the following expression (Bhalekar and Daftardar-Gejji,
2013, Eq. (1.9))

Gn
lðtÞ ¼ Eðb2�b1 ;b2Þ;1þb2 � bi

bm
tb2�b1 ;�kntb2

� �

¼
X1
j¼0

Xj

i¼0

j

i

� � � bi
bm

tb2�b1
� 	i

ð�kntb2 Þj�i

C½ð1þ b2Þ þ ðb2 � b1Þiþ b2ðj� iÞ�

ð42Þ

where

j

i

� �
¼

j!
i!ðj�iÞ! for 0 6 i 6 j

0 for 0 6 j < i

(
ð43Þ

is the binomial coefficient (Bronshtein and Semendyayev, 1979),
and

kn ¼ 1
bm

½Tf k
k
n �xKf k

g
n�; n ¼ 1;2; :::: ð44Þ

with

kn ¼ np
L

; n ¼ 1;2; :::: ð45Þ

The 2MLF is a special form of the multinomial Mittag-Leffler
function (MMLF) (Hadid and Luchko, 1996; Luchko and Gorenflo,
1999; Luchko, 2011). For more details of the MMLF, the reader is
referred to Saxena et al. (2011) and Li et al. (2015).

4.2. Particular solutions for hydraulic heads with known values for the
IC and BCs

The solution presented by Jiang et al. (2012) can be completed
by specifying particular values for the IC and BCs, hð0;0Þ, hðx;0Þ
and hðL;0Þ. To complete the integral in Eq. (40), let us specify that
the initial hydraulic head, hðx;0Þ, and the values at the two bound-
aries, hð0;0Þ and hðL;0Þ, are constant, then we rewrite Eq. (40) as

cn1ð0Þ ¼ 2
L

Z L

0
ða1 þ a2xÞ sin np

L
x

� 	
dx ð46Þ

with

a1 ¼ hðx;0Þ � hð0;0Þ ð47Þ
and

a2 ¼ � ½hðL;0Þ � hð0;0Þ�
L

ð48Þ

Eq. (46) can be integrated (Gradshteyn and Ryzhik, 1994, p. 227,
Eq. (1)), combined with the upper boundary condition which
determines the constant of integration to be zero, to yield

cn1ð0Þ ¼ 2
np

a2L
np

sin
npx
L

� 	
� ða1 þ a2xÞ cos npx

L

� 	� �
ð49Þ
With Eq. (49), the solution given by Eq. (39) can now be finally
written

hðx; tÞ ¼ hð0; tÞ þ ½hðL; tÞ � hð0; tÞ�x
L

þ
X1
n¼1

2 sin npx
L

� �
np

a2L sin npx
L

� �
np

� ða1 þ a2xÞ cos npx
L

� 	� �
GnðtÞ

ð50Þ
with

GnðtÞ ¼ 1� kntb2Eðb1 ;b2Þ;1þb2 � bi

bm
tb1 ;�kntb2

� �� �
ð51Þ

It is clear from Eq. (50) that the hydraulic head at the lower
boundary at x ¼ L is given by hðx; tÞ ¼ hðL; tÞ. For t ¼ 0, Eq. (50)
yields the initial water level in different locations as follows

hðx;0Þ ¼ hð0;0Þ þ ½hðL; tÞ � hð0;0Þ�x
L

þ
X1
n¼1

2
np

sin
npx
L

� 	 a2L
np

sin
npx
L

� 	
� ða1 þ a2xÞ cos npx

L

� 	� �

ð52Þ
4.3. Approximate solutions of hydraulic heads in an aquifer

For practical application, the solutions in Eq. (50) can be
approximated by retaining only limited terms. One approximation
is made for n ¼ 1, which yields

hðx; tÞ ¼ hð0; tÞ þ ½hðL; tÞ � hð0; tÞ�x
L

þ 1
p

a2L
p

1� cos
2px
L

� �� �
� ða1 þ a2xÞ sin 2px

L

� �
 �
G1ðtÞ

ð53Þ
where G1(t) is given by Eq. (51) with n ¼ 1 and

k1 ¼ 1
bm

Tf k
k
1 �xKf k

g
1

� 
 ð54Þ

In the above solutions, the 2MLF can also be approximated by
retaining limited terms. Retaining only two leading terms in the
2MLF in Eq. (42) with j ¼ 0;1 and i ¼ 0;1 results in

Eðb2�b1 ;b2Þ;1þb2 � bi

bm
tb2�b1 ;�k1tb2

� �

¼ 1
C½1þ b2�

þ bit�b1

k1bmC½1þ b2 � b1�
� k1tb2

C½1þ 2b2�

� bitb2�b1

bmC½1þ 2b2 � b1�
ð55Þ

then the approximate solution of Eq. (53) becomes

hðx; tÞ ¼ hð0; tÞ þ a0xþ
a2L
p 1� cos 2px

L

� �� 

�ða1 þ a2xÞ sin 2px

L

� �
( )

ð1� FtÞ
p

ð56Þ

where

a0 ¼ ½hðL; tÞ � hð0; tÞ�
L

ð57Þ

and

Ft ¼ k1tb2
1

C½1þb2 � þ
bit

�b1

k1bmC½1þb2�b1 �

� k1t
b2

C½1þ2b2 � �
bit

b2�b1

bmC½1þ2b2�b1 �

0
@

1
A ð58Þ

At x ¼ 0, Eq. (56) becomes hð0; tÞ, and at x ¼ L, it becomes
hðx; tÞ ¼ hðL; tÞ for cos 2px

L

� � ¼ 1 and sin 2px
L

� � ¼ 0.
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Fig. 1. The effects of the orders of the fractional derivatives, b2 and b1, on the
recession curves illustration by Eq. (64). (A) Fixed b1 with variable b2 indicating the
facilitating role of b2 in large pores. (B) Fixed b2 with variable b1 indicating the
trapping role of b1 in small pores.
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Eq. (56) can be used to determine the dynamics of the aquifer
given the initial and boundary values of hðx; tÞ, namely, a0, a1 and
a2 in Eqs. (57), (47) and (48), respectively.

Ft in Eq. (58) should be dimensionless so that the dimension of
the hydraulic head hðx; tÞ in Eq. (56) is ½L�, which requires that k1
has the dimension of ½T�b2 � and also bi

bm
to have dimensions of

Tb1�b2 which changes the definitions of bi and bm to embrace
dimensions as stated earlier. Due to the infinite terms in the orig-
inal multi-term solutions, the dimensions of other parameters such
as k2, k3 and ki also change.

5. Equations of groundwater discharge from aquifers

The above solutions are applicable to both confined and uncon-
fined aquifers with the weighted transmissivity and hydraulic con-
ductivity being defined and determined for each aquifer. Here we
consider the application of the solutions as an example.

Here we use the simplified solution in Eq. (56) and the dis-
charge given by Eq. (5) to derive recession curves. Differentiating
Eq. (56) with respect to x and combining the result with Eq. (5)
yields the discharge of the aquifer per unit width, q,

q ¼ Kf hðL; tÞ½x� nt þ 2n0ð1� FtÞ� ð59Þ
where

nt ¼
½hðL; tÞ � hð0; tÞ�

L
ð60Þ

is the average gradient of the aquifer at any time with Ft in Eq. (58),
and

n0 ¼ ½hðL;0Þ � hð0;0Þ�
L

¼ �a2 ð61Þ

is the average gradient of the aquifer at the initial time.
The unit discharge, q, has a unit of L2=T such as m2/h. The total

discharge from an aquifer is

Q ¼ qw ð62Þ
where w is the width of the aquifer.

In the following situations, Eq. (59) can be further simplified.

5.1. Case 1: The aquifer on a horizontal base

For an aquifer on a horizontal base, x ¼ 0, Eq. (59) becomes

q ¼ Kf hðL; tÞ½2n0ð1� FtÞ � nt� ð63Þ
If the two gradients in Eqs. (60) and (61) are equal, i.e., n0 ¼ nt ,

or approximately equal, n0 � nt , then we can assign both as n, and
Eq. (63) becomes

q ¼ Kf hðL; tÞnð1� 2FtÞ ð64Þ
In the above expressions, Ft is given by Eq. (58).

5.2. Case 2: The initial discharge

In Eq. (59), for t ¼ 0, Ft ¼ 0, one arrives at

q ¼ Kf hðL; tÞðxþ 2n0 � ntÞ ð65Þ
which means that the initial discharge of the aquifer from the lower
end depends on the slope gradient, x, and the gradients of the
aquifer.

For an aquifer on a horizontal base, i.e., x ¼ 0, Eq. (65) becomes

q ¼ Kf hðL; tÞð2n0 � ntÞ ð66Þ
Also if n0 ¼ nt or n0 � nt , and we assign both as n, Eq. (66)

becomes
q ¼ Kf hðL; tÞn ð67Þ
which is a simple statement that the discharge from the end of the
aquifer is a product of the hydraulic conductivity, the hydraulic
head, and the hydraulic gradient, and is precisely a result of the def-
inition of the discharge in Eq. (5). The above simplifications are also
a verification of all the derivations based on fractional calculus.

As an example, we use Eq. (64) to demonstrate its applications
when the aquifer is on a horizontal base with x ¼ 0. A graphical
illustration of Eq. (64) is shown in Fig. 1. The parameters used
in Fig. 1 are hypothetical for illustration only, which are
Kf hðL; tÞn0 ¼ 1:0; bi ¼ 0:2, bm ¼ 0:8, and k1 ¼ 0:01.

The illustration in Fig. 1 implies that the increase in the large
porosity represented by an increased bm facilitates the groundwa-
ter drainage while the increase in the small porosity slows down
the drainage due to the decreasing large pores. This fact is intuitive
and realistic.

6. Conclusion and discussions

In this paper, a set of two-term distributed-order time-space
symmetrical fractional Boussinesq equations (fBEs) for groundwa-
ter flow have been presented, which are applicable to both con-
fined and unconfined aquifers. A simplified fBE is presented and
solutions given by modifying generic solutions given by Jiang
et al. (2012). The fBEs are formulated based on the symmetrical
fractional derivatives (SFD) in space for both diffusion and advec-
tion which explain random wandering processes (Saichev and
Zaslavsky, 1997).

The SFD consists of the forward fractional derivative (FFD) and
the backward fractional derivative (BFD). The FFD is understood as
flow in the direction of the diffusion and advection consistent with
the traditional definitions. The BFD, however, can be interpreted as
the micro-scale backwater effect. The continuous-time random
walk (CTRW) theory with symmetrical fractional derivatives pro-
vides an alternative for deriving the fundamental equation govern-
ing the flow without resorting to the traditional method of the
conservation of mass.

In the fBE, two-term fractional derivatives in time are used to
model flow in large and small pores to be consistent with the
well-known mobile-immobile (or large-small pore) model. By
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modifying the solutions in Jiang et al. (2012), analytical solutions of
the fBE are presented with known heads at both boundaries, and
the solutions are presented in completed algebraic forms with sim-
plified solutions given. Based on the solutions, a set of simplified
formulae for groundwater discharge for different cases are pre-
sented. These formulae are very simple and easy to use for estimat-
ing groundwater recession and for evaluating the parameters in
the fBE such as the parameters in Ft . Some of the formulae for
groundwater recession curves have also been illustrated.

As discussed in Eq. (A15) and (A16) in Appendix A, the sign for

SFDs @kh
@jxjk and Dk

0h are identical, then Dk
0h ¼ @kh

@xk is used throughout

the text as the synonyms of the symmetric fractional derivatives.
For the fBEs presented for a heterogeneous aquifer, either a

weighted average transmissivity, T , or the nonlinear fBEs can be
used. While the average transmissivity is widely used, we draw
particular attention to the fact that, for a specific form of the
hydraulic conductivity, KðzÞ ¼ 1

kCð1þ kÞz1�k, Voller (2011, p. 260–
261) shows that the integer PDE of the form @

@z ðKðzÞ @h
@zÞ ¼ 0 yields

an identical result for the wetting front derived using a fractional
model under the same boundary conditions. This fact implies that
the fPDE itself is equivalent to the classic PDE with a space-
dependent conductivity. In this regard, the use of an average trans-
missivity is not necessary because the fPDE itself accounts for spa-
tial variability or the non-local effect if the hydraulic conductivity
takes the form of KðzÞ ¼ 1

kC½1þ k�z1�k, where C½1þ k� is the gamma
function.

For physical meanings of the fractional integration and frac-
tional derivatives, the reader is referred to Podlubny (2002) and
Heymans and Podlubny (2006). An important property of the
explanations by Podlubny (2002) is that fractional integration,
which defines the fractional derivatives, is history-dependent
which is ideally represented in the CTRW concept.

In the literature, anomalous diffusion is extensively investi-
gated in physics and mathematics, and solute transport in aquifers
have also been extensively studied, but the specialisation of fPDE
models for fluid flow in aquifers has only been attempted recently
(see Su et al., 2015 for a brief review). A set of fBEs in this paper is a
further extension to our earlier investigation which shows that the
two-term distributed-order fPDE is capable of capturing water flow
in both large and small pores which has been qualitatively inter-
preted without a parameter to quantify it (Bouwer, 1989). To this
end the methods presented earlier (Su et al., 2015) and this paper
reinforce our understanding of water flow in aquifers at a more
detailed level. We expect that more solutions of the fBEs subject
to different conditions will provide new insights into how water
flows in fractal media.

The fBEs presented here are applicable to both confined and
unconfined aquifers. We should note that many published reports
on the application of fractional models in solute transport in aqui-
fers do not consider the distinction between confined and uncon-
fined aquifers.
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Appendix A. Appendix A

In the CTRW theory, particles (or water parcels) can move in
both forward and backward directions during their motion. Their
movements in the two directions can be represented by backward
and forward space fractional derivatives (Saichev and Zaslavsky,
1997).

For homogeneous and heterogeneous aquifers, Eqs. (27) and
(28) are, respectively, written with the fractional differential oper-

ator, L̂ðxÞ,

b2
@b2h
@tb2

þ b1
@b1h
@tb1

¼ L̂hðxÞh ðA1Þ

and

b2
@b2h
@tb2

þ b1
@b1h
@tb1

¼ L̂iðxÞh ðA2Þ

where

L̂hðxÞh ¼ K
@g

@jxjg h
@h
@jxj

� �
�xK

@gh
@jxjg ðA3Þ

is for a homogeneous aquifer, and

L̂iðxÞh ¼ @g

@jxjg KðzÞh @h
@jxj

� �
�x

@g

@jxjg ½KðzÞh� ðA4Þ

is for a heterogeneous aquifer with @kh
@jxjk and @gh

@jxjg being Riesz space

fractional derivatives (RSFD). For a homogeneous aquifer which
has a transmissivity, T , the RSFD is defined as (Saichev and
Zaslavsky, 1997),

L̂hðxÞh ¼ Dþ @kh
@xk

þ D� @kh

@ð�xÞk

� Vþ @gh
@xg

� V� @gh
@ð�xÞg

ðA5Þ

Dþ ¼ Tþ

/
ðA6Þ

D� ¼ T�

/
ðA7Þ

Vþ ¼ �xKþ

/
ðA8Þ

V� ¼ �xK�

/
ðA9Þ

For an inhomogeneous aquifer which has a transmissivity, T ,
the above formulations apply except for T to be replaced by T .

The forward motion is represented by the forward fractional

derivatives, Dþ @kh
@xk and Vþ @gh

@xg , while the backward motion by the

backward fractional derivative, D� @kh
@ð�xÞk and V� @gh

@ð�xÞg. These terms

with different parameters, Dþ, D�, Vþ and V� manifest the flow
mechanics and anistrophic properties of the media.

For a simplified situation when the media is isotropic where
Dþ ¼ D� ¼ Dk, and Vþ ¼ V� ¼ Vg, Saichev and Zaslavsky (1997)
defined the fractional diffusion coefficient, D,

D ¼ �2Dk cos
pk
2

� �
ðA10Þ

which can be extended to the fractional convection velocity, V ,

V ¼ �2Vg cos
pg
2

� 	
ðA11Þ

then the symmetric fractional derivatives (SFDs) are defined as

@kh

@jxjk ¼ � 1
2 cos pk

2

� � @kh
@xk

þ @kh

@j � xjk
 !

ðA12Þ
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and

@gh
@jxjg ¼ � 1

2 cos pg
2

� � @gh
@xg

þ @gh
@j � xjg

� �
ðA13Þ

Further discussions of the symmetric fractional calculus are also
provided by Saichev and Zaslavsky (1997), Gorenflo and Mainardi
(1998a, 1998b), Mainardi et al. (2001) and Umarov and Gorenflo

(2005). Two of important properties of SFDs are that @kh
@jxjk – 0 is

defined for x > 0 and @kh
@jxjk ¼ 0 for x < 0, and on the contrary,

@kh
@j�xjk – 0 is defined for x < 0 and @kh

@j�xjk ¼ 0 for x > 0 (Saichev and

Zaslavsky, 1997, p. 762). To be consistent with the notations used
by Saichev and Zaslavsky (1997, p. 762), @h

@jxj is also retained when

the derivative is an integer.
Umarov and Gorenflo (2005, p. 79) show that the pseudo-

differential operator for fractional derivatives are identical to the
fractional power of the Laplace operator,

Dk
0 ¼ �ð�DÞk=2 ðA14Þ
For one-dimensional fractional derivatives of the known func-

tion h, the operator in Eq. (A14) is written as

Dk
0h ¼ � � @2

@x2

 !k=2

h ðA15Þ

For a finite domain ½0; L;0; T� with the homogeneous boundary
conditions hð0; tÞ ¼ hðL; tÞ ¼ 0, Jiang et al. (2012, Eq. (9)) show that
the following equality holds in one dimension

� � @2

@x2

 !k=2

h ¼ �ckð0Dk
xhþ xD

k
LhÞ ¼

@kh

@jxjk ðA16Þ

where 0D
k
xh and xD

k
Lh are the left-sided and right-sided fractional

derivatives, respectively, and

ck ¼ 1
2 cos kp

2

� � ; k– 1 ðA17Þ

Comparing Eq. (A15) and (A16) shows that the sign for SFDs @kh
@jxjk

and Dk
0h are identical, then Dk

0h ¼ @kh
@xk and Dg

0h ¼ @gh
@xg is used through-

out the text as the synonyms of the symmetric fractional
derivatives.

In Eqs. (A10) and (A11), the dimensions of D and V depend on
the value of k and g. Their dimensions in exact solutions should
remain the same as in the main model equations. However, due
to approximations, their dimensions could change depending on
how the approximations are made.
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