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ABSTRACT
Extreme rainfall in Queensland during December 2010 and January 2011 resulted in catastrophic flood-
ing, causing loss of life, extensive property damage and major disruption of economic activity. Official 
medium-term rainfall forecasts failed to warn of the impending heavy rainfall. Since the flooding, the 
Australian Bureau of Meteorology has changed its method of forecast from an empirical statistical 
scheme to the application of a general circulation model (GCM), the Predictive Ocean and Atmospheric 
Model for Australia (POAMA). Our previous studies demonstrated that more skilful monthly rainfall 
forecasts can be achieved using artificial neural networks (ANNs). This study extends those previous 
investigations focussing on the capacity of the forecast methodology to differentiate between extreme 
rainfall events and more average conditions, up to one year in advance. Sites within two geographical 
regions of Queensland are examined: (i) coastal Queensland using rainfall observations from Bingera, 
Plane Creek and Victoria Mill; (ii) a region of south-east Queensland, using rainfall observations from 
54 weather stations, extending approximately 300 km northward along the Queensland coast, from the 
Gold Coast to Bundaberg, and approximately 200 km inland. For both regions, the capacity to differ-
entiate between average conditions and impending extreme rainfall events up to one year in advance 
is demonstrated.
Keywords: artificial neural network, flood, forecast, rainfall, Queensland.

1 INTRODUCTION
Prolonged rainfall over large areas of Queensland led to flooding of historic proportions in 
December 2010, extending into January 2011 [1, 2]. Thirty-three people died in those floods, 
and more than 78 per cent of the state (an area bigger than France and Germany combined) 
was declared a disaster zone, with over 2.5 million people affected [1]. Some 29,000 homes 
and businesses suffered some form of inundation. The Queensland Reconstruction Authority 
estimated that the cost of flooding events to be in excess of A$5 billion. The scale of the dis-
aster led to the establishment, in January 2011, of the Commission of Inquiry into the 
Queensland floods of 2010/2011 [1].

In January 2011 Brisbane, the state capital of Queensland, experienced its second highest 
flood in over 100 years. Major flooding occurred throughout most of the Brisbane River 
catchment, with an estimated 18,000 properties inundated in metropolitan Brisbane, Ipswich 
and elsewhere in the Brisbane River Valley [2].

This event has been termed a “dam release flood” [2], suggesting that the sudden release 
of water from the Wivenhoe Dam was a principal cause of flooding. The decision to suddenly 
release water resulted because the capacity of the Wivenhoe dam did not allow for the extreme 
rainfall event, and the official medium-term rainfall forecasts available were inadequate.

The official rainfall forecasts issued by the Australian Bureau of Meteorology (BOM) did 
not provide sufficiently accurate rainfall forecasts at the regional or localised levels, or with 
sufficient lead times. The BOM forecasts are only provided to the public in the form of prob-
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abilities relative to the median, and do not differentiate between anticipated rainfall slightly 
above the median and extreme rainfall events such as occurred in January 2011 [3]. Until 
May 2013, official forecasts were based on a statistical scheme using an El Niño Southern 
Oscillation (ENSO) index as the primary predictor. The BOM switched to the use of the 
 Predictive Atmospheric Model for Australia (POAMA), a general circulation model (GCM), 
in June 2013 [4, 5]. GCMs, however, do not generally perform well at forecasting rainfall, 
despite substantial efforts to enhance skill over three decades [6, 7].

Artificial neural networks (ANNs), a form of machine learning, provide an alternative 
technique for medium-term rainfall forecasting both in Australia [8–10], and in other regions 
of the world [11–13]. Our previously reported investigations applied neural networks to indi-
vidual sites within Queensland with long rainfall records to generate forecasts of monthly 
rainfall with lead times up to 12 months [8–10]. A recent study [14] focussing on the sites of 
Harrisville and Gatton in south-east Queensland clearly demonstrated that superior monthly 
rainfall forecasts can be generated using the ANN approach when compared to results gener-
ated by POAMA. Forecasts generated using the ANN approach were consistently more 
skilful than climatology, as shown by lower root means square error (RMSE) and mean abso-
lute error (MAE) values. In contrast, forecasts from POAMA generally had skill levels only 
about equivalent to climatology (the long term average).

The present study extends our previous investigations [14], focussing on the capacity of 
the ANN methodology to differentiate extreme rainfall events from more average conditions. 
Two regions of Queensland were considered: (i) the coastal region of Queensland extending 
from Mossman in the far north of the state, through central Queensland, to Maryborough in 
the south; (ii) the south-eastern region of Queensland, where 54 individual sites were used to 
generate regional isohyet maps, illustrating the capacity of the methodology to distinguish 
between extreme and more average rainfall conditions.

2 DATA AND METHODS
The first region of Queensland considered in this study is the coastal strip extending from 
Mossman in the far north to Maryborough in the south, a distance of about 1500 km, as 
shown in Fig. 1. The second region is an area of south-east Queensland enclosed by longi-
tudes 151.0°E and 153.5°E, and latitudes 24.4°S and 28.5°S, as shown in Fig. 2. This region 
extends about 300 km southwards along the Queensland Coast from Bundaberg to the Gold 
Coast. This region extended inland from the coast to include the towns of Dalby, Inglewood 
and Mundubbera, a distance of about 200 km. The region considered is therefore approxi-
mately the same area as a single grid forecast area used by POAMA (250 km × 250 km) [5].

The skill of a rainfall forecast using any statistical model, including ANNs, will depend on 
the quality and relevance of the data input provided to the model, with a longer time series 
generally giving superior forecasts. Our previously reported studies [14] focussed on Gatton 
and Harrisville have reported monthly rainfall forecasts using neural networks. These inves-
tigations have demonstrated that using combinations of inputs including both climate indices, 
and also local variables such as maximum and minimum temperatures [14] produces the best 
forecasts.

Monthly rainfall data were obtained from the Australian BOM’s Climate Data Online for 
8 sites of coastal Queensland and the 54 locations in south-east Queensland shown in Fig. 2. 
These sites were chosen on the basis of their geographic spread in the regions under consid-
eration, and also the quality of data, that is the desirability of long data series with few 
missing values.
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Variations in rainfall in many parts of the world are associated with large-scale climate 
phenomena which can be described by climate indices. ENSO, a Pacific Ocean phenomena 
can be measured by both the Southern Oscillation Index (SOI) and a combination of four 
different Niño values (Niño 4, Niño 3.4, Niño 3, Niño 1.2). The Inter-decadal Pacific 
 Oscillation (IPO) also measures pressure and temperature changes in the Pacific Ocean. The 
Indian Ocean Dipole measured by the Dipole Mode Index (DMI), is a measure of pressure 
and temperature changes in the Indian Ocean.

All four Niño indices were used in this study with values sourced from the Royal 
 Netherlands Meteorological Institute Climate Explorer – a web application that is part of the 
World Meteorological Organisation and European Climate Assessment and Dataset project. 
Pressure differences are typically represented by the SOI, calculated as the difference between 
Tahiti and Darwin, with values for this study obtained from the BOM website. A sixth  Climate 
Index, the IPO, was also used as input with values sourced directly from Chris Folland at the 
UK Met Office.

All of the above climate indices with local rainfall and temperatures were inputted into 
Neurosolutions Infinity software and used to build ANN models. Each attribute was lagged up 
to 12 months. The data were divided into training (75%), evaluation (15%) and test sets (10%). 

Figure1: Locations of rainfall observation sites for coastal Queensland, and Brisbane, the 
capital of Queensland.
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There is no established way to determine in advance which ANN model configuration will 
perform best for a specific problem. Some pre-selection of inputs can be undertaken, for 
example by examination of linear correlations between each input and the target output. How-
ever, as ANN models can accommodate non-linear relationships this procedure is not 
necessarily advantageous, and may eliminate useful inputs. The Infinity program is highly 
automated, sequentially testing hundreds of candidate neural network model configurations, 
and thousands of combinations of inputs, to select the optimised output. The Infinity program 
uses a pre-set formula incorporating RMSE, MAE and correlation coefficient (r) to evaluate 
the accuracy for each neural network model and a corresponding set of selected inputs tested. 
Based on this formula, the program determines which ANN model and set of inputs is optimal.

The present investigation used the same neural network methods previously described for 
Gatton and Harrisville [14], applied to the individual stations in the two regions under consid-
eration. Each of these selected stations had rainfall record extending back until at least 1920.

Figure 2: Rainfall observation sites in south-east Queensland.
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Two approaches have previously been investigated for neural network optimization of 
monthly rainfall forecasting in Queensland [14]. With the first approach, designated as “all-
month optimization”, data for all 12 months of the year were included as input and optimised 
together, as in our previous studies [8–10]. With the second approach, designated as “single 
month optimisation”, forecasts corresponding to each calendar month were performed indi-
vidually [14]. The monthly rainfall forecast skill using the two approaches was previously 
compared for each month for two of the sites used in the present study, Gatton and Harris-
ville. For months with the heaviest rainfall, January and December the skill level was 
significantly higher, as shown with lower Mean absolute Error and Root Mean Square Errors. 
The single-month optimization method was therefore applied to sites used in the present 
investigation for sites in coastal Queensland for each month of the year and to generate 
December forecasts in south-east Queensland.

For the coastal Queensland study, monthly rainfall forecasts were generated for each 
month of the year at lead times of 3 months and 12 months for the sites of Bingera, Plane 
Creek and Victoria Mill. The results were plotted as a time series over ten years for a test 
period November 2004 to September 2014. This enabled comparisons of observed and fore-
cast rainfall during periods of extreme rainfall events with periods of average, or below 
average rainfall.

In order to measure the relative reduction of the error of the forecasts over a climatology-
based forecast an RMSE skill score can be calculated according to eqn (1):

 SS = (RMSE_Climatol. – RMSE_model)/RMSE_Climatol. × 100% (1)

If a skill score SS is positive, then the RMSE of the forecast is smaller than the RMSE of the 
corresponding climatology forecast, and therefore the ANN forecasts provide better accuracy 
than simply using the long-term mean monthly rainfall. Conversely a negative skill score 
indicates a forecast accuracy below climatology. Therefore a skill score of 0% is equivalent 
to climatology, whereas a score of 100% represents a perfect forecast, equivalent to the 
observed value. Negative scores represent skill levels below climatology. Equation (1) is 
analogous to an equation used in studies where a skill score has been calculated for forecasts 
based on POAMA [5, 15].

For the coastal Queensland study, skill scores were generated for the locations of Bingera, 
Plane Creek and Victoria Mill at 3 months and 12 months lead time.

For the south-east Queensland study, monthly rainfall forecasts for December were 
obtained for each of the 54 stations with a lead time of 12 months. The forecast results were 
examined in detail for the selected years of 2005 and 2010, representing examples of aver-
age and extremely high December rainfall respectively across the region. The results were 
displayed using both regional rainfall isohyets and also bar charts representing observed and 
forecast rainfall amounts at each site, using TeraPlot software. This enables visual compari-
sons to be made between observed and forecast rainfall for each year, and also between years.

3 RESULTS AND DISCUSSION

3.1 Coastal Queensland region

Figure 1 shows the locations of 8 sites in coastal Queensland where long rainfall records are 
available. Rainfall patterns in this region are characterised by high variability in annual rain-
fall, as illustrated in Fig. 3. Large variations in rainfall are also observed throughout the year, 
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with heavy rainfall in the summer months and low rainfall during the winter, as illustrated in 
Fig. 4 for Plane Creek.

Table 1 shows forecast skill scores calculated using eqn (1) at lead times of 3 months and 
12 months for three of the locations of coastal Queensland region. A skill score of 0% is 
equivalent to climatology, while 100% represents a perfect forecast. Skill scores for the same 
region generated using POAMA fall in the range between –20% to 20% [5] averaging about 
the same level as climatology (0%) at long lead times. The skill score in Table 1 shows all 
values above 25%, ranging up to 84%. Clearly the skill of the methodology using ANNs to 
forecast monthly rainfall is superior to that demonstrated by a GCM [5].

Figure 5a and b shows comparisons of observed and forecast monthly rainfall with a three 
month lead time for Bingera over a test period of about 10 years. Figure 5a and b shows a 
similar comparison for Plane Creek with a lead time of 12 months. These figures illustrate the 
superior forecast methodology using the single-month optimisation as opposed to all-month 
optimisation [14], illustrated with higher coincidence between observed and forecast lines in 
Figs 5b and 6b compared to Figs 5a and 6a respectively. These results clearly show that the 
neural network forecast methodology is capable of differentiating between extreme rainfall 
events that typically occur during the summer periods that have average, or below average, 
monthly rainfall.

Figure 3: Variation in annual rainfall at locations in coastal Queensland.

Figure 4: Variation in monthly rainfall at Plane Creek.
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Table 1:  Skill scores for Bingera, Plane Creek and Victoria Mill at 3 and 12 months lead 
times.

Skill score (%)

Month Lead 3 months Lead 12 months

Bingera
Plane 
Creek

Victoria 
Mill Bingera

Plane 
Creek

Victoria 
Mill

January 79 34 28 68 47 81

February 78 34 48 64 87 87
March 51 42 79 57 31 79
April 77 45 38 44 73 71
May 50 82 40 67 57 58
June 77 57 78 27 43 59
July 65 68 38 53 54 48
August 40 50 57 74 57 74
September 67 52 25 22 23 48
October 26 47 84 42 92 59
November 78 61 38 25 74 70
December 41 50 53 31 39 74

Figure 5:  Observed monthly rainfall for Bingera and forecast monthly rainfall at 3 months 
lead time for test period November 2004 to September 2014. A: all-month ANN 
optimization; B: single-month ANN optimization.
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3.2 South-east Queensland region

Figure 2 shows the locations of 54 sites in south-east Queensland where long rainfall records 
are available. Rainfall patterns in this region are characterised by alternating extended peri-
ods of comparative drought followed by flooding rains. This high variability in rainfall is 
generally reflected in wide variations in monthly rainfall. For example, this is illustrated in 
Fig. 7 for the town of Gympie, where observed December rainfall is shown for the period 

Figure 6:  Observed monthly rainfall for Plane Creek and forecast monthly rainfall at 12 
months lead time for test period November 2005 to September 2014. A: all-month 
ANN optimization; B: single-month ANN optimization.

Figure 7: December monthly rainfall for Gympie between 1870 and 2014.
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from 1870 and 2014. The lowest recorded December rainfall for Gympie was 1.7 mm in 
1919, and the highest 584.5 mm in 1926, with a mean value of 137.4 mm. It is important to 
develop forecasting systems with long lead times that can differentiate between extreme rain-
fall events and more average rainfall for a particular selected month, for example to give 
adequate warning of impending flood conditions.

Figures 8 and 9 show results for observed and forecast rainfall respectively, for the period 
of very heavy rainfall in December 2010, at 12 months lead time. These results are presented 

Figure 8:  Observed rainfall (mm) for December 2010 for the south east Queensland region. 
A: bar chart for individual sites; and B: isohyet map with 50 mm interval spacing.
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as A: bar charts with rainfall values for individual sites represented by a single coloured bar; 
and also B: regional isohyet maps derived from the bar charts using TeraPlot software. Visual 
inspection of Figs 8 and 9 shows that the heaviest rainfall is concentrated along the coast, 
with a maximum observed and forecast values above 600 mm. For both observed and forecast 
rainfall, the highest rainfalls were concentrated around the locations of Mapleton and Maleny. 

Figure 9:  Forecast rainfall (mm) for December 2010 for the south east Queensland region. 
A: bar chart for individual sites; and B: isohyet map with 50 mm interval spacing.
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Moving inland from the coast, levels of observed and forecast rainfall decreased 350 mm or 
less.

Figure 10 shows comparisons between observed and forecast monthly rainfall for each of 
the 54 individual sites considered for December 2010. Over this region, the difference 
between observed and forecast monthly rainfall values ranged between 1% and 40% with a 
mean of 18.7%.

Figures 11 and 12 show results for observed and forecast monthly rainfall respectively, 
for December 2005, again at 12 months lead time, representing a period of average rainfall 
for the region. Visual inspection of these figures shows that heavier rainfall is again con-
centrated along the coast, but with a maximum observed and forecast values in the 
200–300 mm range. Inland, both forecast and observed values are typically in the 
50–100 mm range.

Comparison between Figs. 9 and 11 show the significant difference between observed 
rainfall across the region when considering a period of extremely heavy rainfall and a period 
of more average rainfall. Across the 54 stations considered the rainfall increased by a factor 
of 4.8 on average when comparing 2010 and 2005. Comparison of Figs. 9 and 12 shows that 
this difference is also successfully reflected in the forecast, with the corresponding factor 
calculated as 3.7. The neural network forecasts tend to somewhat underestimate the quantita-
tive amount of rainfall during the period of extremely heavy precipitation. Nevertheless, this 
forecast method does provide a warning of very heavy rainfall one year in advance and 
 provides rainfall at the localised level across the region.

Figure 10:  Observed (blue) and forecast (red) monthly rainfall for December 2010 for 54 
sites in south-east Queensland.
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Figure 11:  Observed rainfall (mm) for December 2010 for the south east Queensland region. 
A: bar chart for individual sites; and B: isohyet map with 50 mm interval spacing.

The isohyet maps also enable the generation of forecasts for locations within the geo-
graphic region where there are either no weather stations, or the historical records are too 
short to provide adequate data to train a neural network. This approach could thus be used to 
provide total rainfall estimates over specific catchment areas, providing important informa-
tion for dam and water storage operations.

Since January 2010, official forecasts have been based on general circulation models 
rather than statistical models. However, GCMs generate rainfall forecasts at relatively coarse 
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spatial scales, in the order of a few hundred kilometres and are unable to resolve the effects 
of sub-grid scale features such as topography and land use [16]. These outputs cannot be 
directly used in catchment scale studies, which require hydroclimatic data at fine spatial 
resolutions [17]. The scale mismatch between the GCM outputs and the hydroclimatic 
required at the catchment level is a major obstacle in climate studies of hydrology and 
water resources [17]. As a solution to the scale mismatch between the GCM’s outputs and the 
information required at the catchment scale, downscaling techniques have been developed 
[16, 17]. However, results from using this approach applied to catchments in eastern  Australia 
[15] demonstrate little improvement over climatology, a major limitation being the low level 
of skill in the monthly rainfall forecasts from the general circulation model at the course grid 
scale [5].

Figure 12:  Forecast rainfall (mm) for December 2005 for the south east Queensland region. 
A: bar chart for individual sites; and B: isohyet map with 50 mm interval spacing.
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This study provides a methodology where forecast results from a large number of indi-
vidual stations are combined in an upscaling process to provide a high level of accuracy for 
a catchment or regional areas. The approach should enable rainfall forecasts that provide 
sufficient information to avoid the scenario of the catastrophic Wivenhoe dam release flood-
ing in January 2011.

4 CONCLUSION
Previously reported studies using ANNs to forecast monthly rainfall in Queensland [14], 
presented the results for individual sites with long rainfall records. The present study extends 
this approach to present monthly rainfall forecasts over extended geographical regions along 
coastal Queensland, and also in south-east Queensland, with up to 12 months lead time. In 
both regions the ANN approach enables a clear differentiation between extreme rainfall 
events and more average conditions. This is illustrated with reference to extreme rainfall 
events such as occurred in December 2010, and more average rainfall such as occurred in 
December 2005 in south-east Queensland. Forecast skill using the ANN methodology is sig-
nificantly better than reported for monthly rainfall forecasts at long lead times using a general 
circulation model. Skill scores fall in the range 25% to 80% are achievable using ANN meth-
odology. In contrast, skill levels are reported between –20% and 20% for a GCM, and are 
generally only about equivalent to climatology. The lack of adequate official forecast capacity 
prior to the extreme rainfall in December lead to poor decisions regarding operations of the 
Wivenhoe Dam and exacerbated the destruction caused through inadequate storage capacity 
being available to accommodate extreme rainfall. This scenario could potentially have been 
significantly mitigated if better forecasting methodology had been applied at that time.
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