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SPECIES BOUNDARIES WITHIN THE ACROPORA HUMILIS 

SPECIES GROUP (CNIDARIA; SCLERACTINIA): A MORPHOLOGICAL 

AND MOLECULAR INTERPRETATION OF EVOLUTION*

 

ABSTRACT 

Species boundaries remain unresolved in many scleractinian corals. In this study, we 

examine evolutionary boundaries of species in the Acropora humilis species group. 

Five morphologically discrete units are recognized using principal components and 

hierarchical cluster analyses of quantitative and qualitative characters respectively. 

Maximum parsimony and likelihood analyses of partial 28S rDNA sequences suggest 

that these morphological units diverged to form two evolutionarily distinct lineages, 

with A. humilis and A. gemmifera in one lineage and A. digitifera and two 

morphological types of A. monticulosa in the other. Low levels of sequence divergence 

but distinct morphologies of A. humilis and A. gemmifera within the former lineage 

suggest recent divergence or ongoing hybridization between these species. 

Substantially higher levels of divergence within and between A. digitifera and A. 

monticulosa suggest a more ancient divergence between these species, with sequence 

types being shared through occasional introgression without disrupting morphological 

boundaries. These results suggest that morphology has evolved more rapidly than the 

28S rDNA marker, and demonstrate the utility of using morphological and molecular 

characters as complementary tools for interpreting species boundaries in corals. 

 

INTRODUCTION 

Species are the basic units of measurement of biodiversity and therefore their accurate 

definition is critical to understanding evolutionary processes and ecological dynamics. 

Yet, despite the importance of species in studies of living systems, their definition and 

formation have long represented one of the most elusive subjects in evolutionary 

biology (Palumbi 1994). In scleractinian corals, a number of issues impede our 

understanding of the extent to which currently defined species represent evolutionary 

entities. Species of corals are traditionally described using morphological characters 
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(e.g. Wells 1956; Veron and Wallace 1984; Wallace 1999), with morphological 

discontinuities being used to determine the boundaries between species (Wallace and 

Willis 1994). However, morphological discontinuities between currently defined 

species of corals are often not clear. An inherent factor contributing to this lack of 

resolution is morphological plasticity (Lang 1984), due to environmental influences 

such as light and energy regimes as well as space availability (e.g. Veron and Pichon 

1976; Willis 1985; Budd et al. 1994; Muko et al. 2000). Therefore, distinguishing 

between morphological plasticity and genetic variation, including the recognition of 

possible sibling species, is essential for accurate definition of species of corals 

(Knowlton and Jackson 1994). 

 

Molecular techniques greatly enhance our understanding of the evolutionary 

relationships between morphologically defined species. Indeed, during the past decade, 

electrophoretic and DNA sequence data have already provided substantial insight into 

these issues. Species boundaries within the genus Porites from the Atlantic and eastern 

Pacific, were unable to be resolved using morphological characters (Brakel 1977; 

Jameson 1997) but were resolved using electrophoretic data (Weil 1992). Two species 

of Montipora, previously synonymized as a single species, were distinguished on the 

basis of morphological and breeding criteria and have also been shown to be 

electrophoretically distinct (Stobart and Benzie 1994; Stobart 2000). Substantial 

morphological variability exists within the genus Montastraea (e.g. Foster 1985; Weil 

and Knowlton 1994). However, whether this variation represents separate species or 

morphotypes within a single polymorphic species continues to be debated (Lopez et al. 

1999; Medina et al. 1999). Near or complete concordance of morphological and genetic 

characters has been demonstrated between species within the genera Porites, 

Goniastrea and between two species of Acropora (A. palifera and A. cuneata) (Ayre et 

al. 1991; Budd et al. 1994; Garthwaite et al. 1994; Babcock and Miller 1997; Hunter et 

al. 1997). In contrast, genetic exchange appears to be ongoing between morphological 

species of Platygyra (Miller and Benzie 1997). Genetic overlap has also been 

demonstrated between some species within the genera Acropora and Madracis, while 

other species within these genera are genetically distinct for the same molecular marker 

(van Oppen et al. 2000; Diekmann et al. 2001). 
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In corals, hybridization during multi-species mass spawning events has been proposed 

as the means by which common gene pools are maintained between species of corals 

(Miller and Benzie 1997; Hatta et al. 1999; Diekmann et al. 2001; van Oppen et al. 

2001), and has been demonstrated to be possible under laboratory conditions (e.g. 

Willis et al. 1997). Based on this evidence, with additional support from karyotypic 

data, a reticulate evolutionary hypothesis has been proposed for scleractinian corals 

(Veron 1995; Kenyon 1997). Conversely, genetic overlap between species may merely 

be due to incomplete lineage sorting of ancestral genotypes, due to slow rates of 

molecular evolution in corals (Knowlton 2001). 

 

Tracing the evolutionary history of scleractinian corals is clearly a very complex task 

but one fundamental to defining species boundaries within the Scleractinia. This is 

particularly true for the genus Acropora, the largest extant genus of scleractinian corals 

(Veron and Wallace 1984; Wallace 1999), with recently proposed phylogenies based on 

morphological characters (Wallace 1999) and molecular sequence data (van Oppen et 

al. 2001) suggesting conflicting patterns of evolution. Fossil records indicate that the 

high diversity of this genus appears to be the result of relatively recent and rapid 

speciation in the Indo-Pacific during and since the Miocene (Wallace 1999). 

Consequently, unresolved morphological and genetic boundaries between currently 

described species, and the ability of some species to interbreed under laboratory 

conditions (Wallace and Willis 1994; Willis et al. 1997), could indicate that many 

species of Acropora are still in the process of diverging. 

 

In this paper, we examine the evolutionary relationships between species within the A. 

humilis species group in American Samoa, using morphological and molecular data. 

The purpose of the morphological analyses is to define morphological groupings of 

corals, with the aim of determining whether morphological entities can be recognized 

within currently described species, or alternatively whether currently described species 

merge to form larger overlapping morphological entities. The morphological entities 

defined in this study were then analyzed using partial sequences of the 28S ribosomal 

DNA unit. Finally, we propose evolutionary relationships for the morphological 

entities, based on the combined results of the morphological and molecular data. 
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METHODS

Sampling

Field work was carried out in American Samoa in January 1999. Samples were

collected from seven sites on the islands of Tutuila, Ofu and Olosega (Fig. 1).

Putative morphs, distinguished using field-recognizable and gross skeletal characters,

were used as the sampling units in this study. Seven morphs were recognized from the

A. humilis species group in American Samoa. Five colonies of each putative morph

were sampled, except two rare forms for which only two and four colonies were

sampled. All sites were exposed to very exposed. Each site was searched for morphs of

the A. humilis species group, from a depth of approximately 20 m up to the reef flat.

Fig. 1 Maps of Tutuila and Ofu-Olosega, American Samoa: indicated sampling sites and 

numbers correspond with Table 3. The islands of Ofu and Olosega are approximately 

100 km east of Tutuila. 
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Samples for morphological and molecular analyses were collected from each colony 

sampled. All samples were used in the morphological analyses and representative 

samples for each putative morph were used in the molecular analysis. Samples were 

collected using the following protocol. First, the colony was photographed in profile to 

record colony appearance and the distance between branches for morphological 

analysis (see below). Colour of colonies and polyps, whether polyps were extended, 

overall colony appearance and any other distinguishing features were recorded. Five 

branches (the largest branches in the colony that did not have additional secondary 

branches developed) were collected for morphological analysis. Lastly, branch samples 

were collected for molecular analysis. Molecular samples for each colony were 

preserved in 95% (v/w) high-grade ethanol. The morphological branch samples were 

secured within labeled nylon bags and bleached in a sodium hypochlorite solution to 

remove all tissue, then rinsed in fresh water and dried. All morphological samples and 

corresponding molecular samples used in this study are deposited at the Museum of 

Tropical Queensland, Townsville, Australia (registration numbers G55587–G55617). 

 

Morphological Analyses

Analyses of morphometric and descriptive characters were used as complementary 

techniques to define morphological units within and between the morphs recognized in 

the field surveys. The morphometric analysis quantified characters as continuous 

variables and was therefore less subjective than the descriptive analysis. In contrast, the 

descriptive analysis allowed characters to be included which could not readily be 

quantified, particularly colony growth form, radial corallite shape, and coenosteal 

structure. 

 

Morphometric characters 

Characters used for the morphometric analysis (Table 1 and Fig. 2) were adapted 

from a previous study (Wallace et al. 1991). Character 1 (distance between branches) 

was measured from photos of live colonies, using Image Tool 2.00 (Wilcox et al. 1995-

96). Characters 2–14 were measured directly from skeletal branch samples, using 

Vernier calipers for branch dimensions (characters 2–5) and a microscope and ocular 

graticule for corallite dimensions (characters 8–14). Characters 6 and 7 were measured 

by counting the number of corallites intersecting a 3 cm transect around the branch. 

Diameters and lengths of radial corallites were measured from mature corallites,  
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Table 1 Morphometric characters measured in this study 
No. Character Code Description 

1 Branch spacing brdist Distance to the five nearest branches 

2 Basal branch diameter diambase Diameter at base of branch 

3 Mid branch diameter diammid Diameter at mid-point of branch length 

4 Branch tip diameter diamtip Diameter 5 mm from tip of branch 

5 Branch length brlength Distance from tip to base of branch 

6 Radial crowding radcor Average number of regular radial corallites / 3 transects 

7 No. of subimmersed radials subimm Average number of subimmersed radial corallites / 3 transects 

8 Diameter of axial calice axcal Average distance between inner walls of axial corallite, measured as 

perpendicular diameters 

9 Axial wall thickness axwall Width of axial wall 

10 Septal length axsepta Average length of primary septa (usually 6) in axial corallite 

11 Profile length rcprolen Maximum distance from base to outer edge of corallite 

12 Corallite diameter rcordiam Maximum diameter of corallite from inner to outer wall 

13 Calice diameter rcaldiam Maximum diameter of calice from inner to outer wall 

14 Outer wall thickness rcwall Thickness of outer wall of radial corallite 

 

 

defined as the largest radial corallites on the branch that did not have smaller corallites 

budding from their surface. 

 

Morphometric characters were analyzed using principal components analysis (PCA). 

PCA is an exploratory tool, in which no a priori assumptions are made. PCA was 

therefore used to explore morphological distance, both within and between morphs. 

Characters 2–10 were measured from five branches. Characters 11–14 were measured 

for five radial corallites on each of five branches. The average value for each character 

for each coral colony was used in the analysis. The data matrix was standardized as a 

correlation matrix, to equally weight the branch and corallite measurements. Analysis 

was carried out in SPSS 9.0, using the factor analysis option. 

 

Descriptive characters

Characters used for the descriptive analysis are listed in Table 2 and were adapted 

from a previous study (Wallace 1999). The same colonies and branch samples used in 

the morphometric analysis were used in this analysis. Characters 1 and 2 were coded 

from photos and field notes. Characters 3–20 were coded directly from the skeletal 

branch samples. The descriptive characters were analyzed using hierarchical cluster  

 6



2

3

4

5

a b

dc

8

9

axial calice

wall

primary septum
(10)

11

radial calice

br
an

ch
 s

ur
fa

ce 13
12

br
an

ch
 s

ur
fa

ce

radial calice

wall

14

Fig. 2 Diagrammatic branch and corallite dimensions measured in the morphometric 

analysis: a single branch; b upper view of axial corallite; c profile view of radial 

corallite; and d upper view of radial corallite. Numbers correspond with characters 2–5  

and 8–14 listed in Table 1. Characters 1, 6 and 7 are described in Table 1 and in the 

‘Methods’ section. 

 

 

analysis. As in the morphometric analysis, no prior assumptions were made about the 

relationships between colonies. Analysis was carried out using NTSYSpc 2.10d (Rohlf 

1986-2000), using the sequential agglomerative hierarchical nested (SAHN) cluster 

analysis option. The clustering method used was the Unweighted Pair-Group Method 

using Arithmetic Averages (UPGMA). 
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Table 2 Descriptive morphological characters used in this study 
No
. 

Character Code States Coding 

1 Colony outline determ Determinate from a focused origin 0 
   Indeterminate 1 
2 Predominant outline growth Arborescent/divergent 0 
   Corymbose 1 
   Digitate 2 
3 Branch structure axvsrad Axial dominated 0 
   Axials ≅ radials 1 
4 Coenosteum coentype Same on and between radial corallites 0 
   Different on and between radial corallites 1 
5 Coenosteum on radial corallites radcoen Costate or reticulo-costate 0 
   Open spinules 1 
6 Coenosteum between radial corallites axcoen Reticulo-costate 0 
   Reticulate 1 
   Open spinules 2 
7 Spinule shape spinules Single pointed, fine 0 
   Blunt, irregular, sturdy pointed 1 
   Elaborate 2 
8 Radial corallite sizes rcsize One size or graded, with occasional, scattered 

small radials 
0 

   Two distinct sizes 1 
   Variable 2 
9 Radial corallite inner wall rcinwall Developed 0 
   Not developed 1 
   Reduced 2 
10 Radial corallite shape rcshape Tubo-nariform 0 
   Dimidiate 1 
   Lipped 2 
   Tubular 3 
11 Radial corallite openings rcopen Oval  0 
   Rounded 1 
12 Axial corallite diameter axdiam Large, > 3.0 mm 0 
   Medium, 2.8-3.0 mm 1 
   Small, < 2.8 mm 2 
13 Radial corallites relsize Large 0 
   Medium 1 
   Small 2 
14 Maximum branch thickness brthick > 25 mm 0 
   20-25 mm 1 
   15-20 mm 2 
   < 15 mm 3 
15 Branch taper (tip=3 mm below 

branch tip ) 
taper Broad conical (base > twice tip) 0 

   Conical (base broader than tip) 1 
   Terete (no to slight taper) 2 
16 Maximum branch length brlength ≥ 80 mm 0 
   ≥ 70 mm 1 
   ≥ 60 mm 2 
   ≥ 50 mm 3 
   ≥ 40 mm 4 
   ≥ 30 mm 5 
17 Radial crowding crowding Radials do not touch 0 
   Some radials touch 1 
   Radials crowded, touching 2 
18 No. axial corallite synapticular rings axrings 2 0 
   3–4 1 
   > 4 2 
19 Skeletal porosity porosity Radial walls porous 0 
   Radial walls not porous 1 
20 No. radial corallite synapticular rings rcrings 2–3 0 
   > 3 1 
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Molecular Analysis

The 28S nuclear large subunit rDNA (domains 1 and 2) was used for the molecular 

analysis. DNA was extracted from branch fragments of approximately 3–4 g wet 

weight, based on protocols described by Chen et al. (2000) and Chen and Yu (2000). 

Branch fragments were ground to a fine powder in liquid nitrogen and mixed with an 

equal volume of DNA extraction buffer (5M NaCl, 0.5M EDTA, pH 8.0, 2%SDS), to 

which 100 µg/ml of proteinase K was added. The solution was incubated overnight in a 

water bath at 50 °C. DNA was extracted using phenol/chloroform and precipitated in 

absolute ethanol. Following precipitation, the genomic DNA was dried, resuspended in 

TE buffer and stored at –20 °C. The target segments, domains 1 and 2 from 28S rDNA, 

were amplified using the primers 5S: 5’-GCCGACCCGCTGAATTCAAGCATAT-3’ 

and B35: 5’-CCAGAGTTTCCTCTGGCTTCACCCTATT-3’ (developed by Chen et 

al. 2000). The amplification reaction used 100–200 ng of DNA template and BRL Taq 

polymerase in a 50 µl reaction, in the presence of the buffer supplied with the enzyme 

(as per manufacturer’s instructions). PCR was performed in a PC-960G gradient 

thermal cycler using the following thermal cycles: 1 cycle at 95 °C (4 min); 30 cycles 

at 94 °C (30 sec), 50 °C (1 min), 72 °C (2 min); 1 cycle at 72 °C (10 min); 1 cycle at 25 

°C (30 sec). PCR products were electrophoresed in a 0.8% agarose (FMC Bioproduct) 

gel in 1x TAE buffer to assess the yield. PCR products were cloned using the ligation 

kit, pGEM T easy (Promega) and DH5α competent cells (BRL), under the conditions 

recommended by the manufacturers. Bacterial colonies containing the vector were 

picked with a sterile toothpick and cultured for 6–12 hours in a 4 ml LB nutrient 

solution and purified using a plasmid DNA mini-prep kit (Viogene). Nucleotide 

sequences were generated for pairs of complementary strands on an ABI 377 Genetic 

Analyzer using the ABI Big-dye Ready Reaction kit following standard cycle 

sequencing protocol. The sequences were submitted to GenBank under accession 

numbers AY139650–AY139681. 

 

Sequences were initially aligned using ClustalX (Thompson et al. 1997) and then 

optimised manually within variable regions. The distance matrix comparing the pair 

wise differences was calculated in PAUP* 4.0b10 (Swofford 2002), as were the 

maximum parsimony and maximum likelihood analyses. Maximum parsimony was run 

using the heuristic search option, with 10 random additions of sequences to search for 
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the most parsimonious trees. Bootstrapping with 1,000 pseudoreplicates determined the 

robustness of clades, with branches supported by <50% collapsed. Analyses were run 

with gaps excluded from the analysis, as well as treating gaps as a fifth character. The 

most appropriate evolutionary model for the maximum likelihood analysis was selected 

using Modeltest (Posada and Crandall 1998). Maximum likelihood analysis was run 

using the heuristic search option, with 10 random additions of sequences. 

Bootstrapping with 500 pseudoreplicates determined the robustness of clades, with 

branches supported by <50% collapsed. 

 

Acropora palifera, of the subgenus Isopora, was used as the outgroup. This species was 

selected as an appropriate outgroup taxon because the two subgenera (Isopora and 

Acropora) are thought to have diverged early in the history of the genus, and the A. 

humilis species group occupies a basal position within the morphological phylogeny of 

the genus Acropora (Wallace 1999). The A. palifera sample used was collected by  

C. C. Wallace in September 1999 in the Togian Islands, central Sulawesi, Indonesia 

(Museum of Tropical Queensland registration number G55715). 

 

RESULTS 

Morphological Analyses

The seven morphs recognized during field surveys (Fig. 3) clustered as five 

morphological units (Figs. 4 and 5). These morphological units correspond with the 

species A. humilis (Dana 1846), A. gemmifera (Brook 1892), A. digitifera (Dana 1846), 

and two forms (branching and digitate) of A. monticulosa (Brüggemann 1879). 

Characters describing each morph are summarized in Table 3. In both the quantitative 

and qualitative morphological analyses, all morphs except A. humilis formed discrete, 

non-overlapping units corresponding with the putative groupings (Figs. 4 and 5). 

The A. humilis morph comprises the remaining three undifferentiated putative 

groupings (A. humilis 1, A. humilis 2 and A. humilis 3). All morphs, except the two 

forms of A. monticulosa, were generally common at each of the seven sites surveyed. 

All colonies of the branching form of A. monticulosa were sampled at site 1 and both 

colonies of the digitate form of A. monticulosa at site 7 (Fig. 1). Data matrices used in 

the morphometric and descriptive analyses are available as electronic supplementary 

material (appendices I and II respectively). 
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Fig. 3 Branch skeletons of each putative morph. Museum of Tropical Queensland 

registration numbers are listed in brackets after the name of each morph: a “A. humilis 

1” (G55591); b “A. humilis 2” (G55593); c “A. humilis 3” (G55599); d “branching A. 

monticulosa” (G55617); e “digitate A. monticulosa” (G55612); f A. digitifera 

(G55602); g A. gemmifera (G55607). 
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Fig. 4 PCA scatterplot of morphometric characters for principal components (PC) 1 

and 2. Each data point in the PCA plot represents a single colony. Codes for each data 

point are indicated by codes for each morph as follows: H1 “A. humilis 1”; H2 “A. 

humilis 2”; H3 “A. humilis 3”; bM “branching A. monticulosa”; dM “digitate A. 

monticulosa”; D A. digitifera; G A. gemmifera. Envelopes highlighting the clusters of 

each morph were drawn by eye. Length and direction of vectors indicate the relative 

effect of each character on distribution of morphs within the plot. Numbers for each 

vector correspond with character codes in Table 1 and letters indicate vector type: b 

branch character; a axial character; r radial character. Two colonies of H3 and two 

colonies of dM almost overlay each other; one colony of H3 lies almost at the origin. 
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Morphometric characters

The relationships between the five morphs revealed by PCA of the morphometric 

characters are presented in Fig. 4, with each data point representing a single colony. 

Colonies of each of the five morphs (A. humilis, A. gemmifera, A. digitifera, 

“branching A. monticulosa and “digitate A. monticulosa”) formed discrete clusters. The 

morphometric characters quantified branch, axial corallite, and radial corallite 

dimensions. Characters quantifying radial corallites (size and spacing) were most useful 

for separating the five morphs. The three axial corallite characters were highly 

correlated, as were the five characters that quantified branch dimensions. The analysis 

therefore indicates that A. digitifera colonies were characterized by relatively crowded, 

small radial corallites and thin, short branches. The morph “branching A. monticulosa” 

was characterized by a high proportion of subimmersed radial corallites, which were 

oval rather than elongate in cross section. The three putative morphs of A. humilis were 

all strongly characterized by the axial characters and radial corallite wall thickness and 

width, with the radials tending to be widely spaced. The morphs “digitate A. 

monticulosa” and A. gemmifera were not strongly influenced by any particular 

characters. The short branches and relatively small, thin walled axials were the most  
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Table 3 Descriptions of morphs recognized from the Acropora humilis species group in American Samoa in this study. Characters are described relative to the other 

morphs in this table. Characters that are most important for distinguishing morphs are highlighted in bold. The distinctive features of the three putative morphs of A. 

humilis are noted. Sites sampled correspond with sites in Fig. 1. 
 Habitat Growth Form Branches Axial Corallites Radial Corallites Colony Colour Sites Sampled 

A. humilis 

 

Exposed slopes, just 

subtidal to >20m 

A. humilis 1: 

shallower more 

exposed slopes 

Digitate to corymbose 

A. humilis 3: 

approaching caespito-

corymbose due to more 

secondary branching 

Terete and long 

A. humilis 1: shorter 

branches 

A. humilis 2: longer 

branches 

Large to very 

large 

One size, large, nariform 

to tubo-nariform, not 

crowded 

Brown with pale brown, white or 

green branch tips, polyps are white, 

green or sometimes pale brown and 

may be partly extended during the day 

A. humilis 1: 4, 6, 7 

A. humilis 2: 4, 6 

A. humilis 3: 1, 4, 5 

A. gemmifera 

 

Exposed slopes, just 

subtidal to >10m 

Digitate to corymbose Conical and 

medium length 

Medium Two sizes, large: tubular 

with dimidiate 

openings; small: 

subimmersed,  

crowded 

Brown with paler to white or 

sometimes blue branch tips, polyps 

brown or white and may be partly 

extended during the day 

2, 3, 4 

“branching 

A. monticulosa” 

 

Shallow, semi-

exposed reef tops to 

~4m 

Divergent arborescent 

branching, proximal 

parts of branches dead 

Tapering at branch 

tips, variable length 

Small Mixed sizes, small, 

elongate, cylindrical 

tubes interspersed with 

scattered subimmersed 

corallites, crowded 

Brown with a yellow or green tinge all 

over, sometimes slightly paler at 

branch tips, polyps are the same 

colour as the surrounding corallites 

1 

“digitate 

A. monticulosa” 

 

Shallow, wave 

exposed crests to 

~4m 

Digitate Terete, short, 

evenly sized, 

regularly spaced 

Small One size, small, 

nariform, crowded 

Pale to dark brown sometimes with 

paler blue or paler brown branch tips, 

polyps dark brown and maybe partly 

extended during the day 

7 

A. digitifera 

 

shallow, wave 

exposed crests to 

~4m 

Digitate Terete, short, 

evenly sized, 

regularly spaced 

Small Mixed sizes, small, 

interspersed with 

scattered subimmersed 

corallites, lipped, 

crowded 

Pale to dark brown sometimes with 

paler blue or paler brown branch tips, 

polyps dark brown and maybe partly 

extended during the day 

1, 3 
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distinctive characters for the “digitate A. monticulosa” colonies and the high proportion 

of subimmersed radial corallites was the most distinctive character for colonies of A. 

gemmifera. 

 

Descriptive characters

Qualitative analysis of the morphological characters showed the same separation of 

morphs as the morphometric analysis, with colonies of each of the five morphs (A. 

humilis, A. gemmifera, A. digitifera, “branching A. monticulosa” and “digitate A. 

monticulosa”) clustering as distinct groups. The relationships within and between the 

morphs, based on UPGMA analysis of the descriptive characters, are shown in Fig. 5. 

A high cophenetic correlation of 0.96 calculated for this dendrogram indicates that the 

pattern of clustering is a true representation of the original data set. Analysis of the 

descriptive characters, using both single and complete linkage methods (calculated 

separately and as a strict consensus tree) grouped colonies in a similar pattern to the 

UPGMA analysis, differing only in branch lengths and the ordering of colonies within 

the A. humilis cluster. 

 

As also demonstrated in the morphometric analysis, the two morphs of A. monticulosa 

clearly have very distinct morphologies. Colonies of “branching A. monticulosa” 

showed the greatest dissimilarity to all other morphs within the A. humilis species 

group, while colonies of “digitate A. monticulosa” shared most morphological 

characters with A. digitifera and A. gemmifera. Within the A. humilis cluster, “A. 

humilis 1” colonies formed a subcluster, while “A. humilis 2” and “A. humilis 3” 

colonies were not differentiated. Colonies of the putative morph “A. humilis 1” all had 

short branches and a different coenosteal structure compared with “A. humilis 2” and 

“A. humilis 3”, while all other characters were shared between these three putative 

morphs. 

 

Molecular Analysis

The major findings in this analysis, based on the sequences examined, were that the 

morphs A. digitifera, “branching A. monticulosa”, and probably “digitate A. 

monticulosa” were distinct from the morphs A. humilis and A. gemmifera. Variability 

between sequences of the former three morphs was substantially greater than between 

the latter two morphs. Cloned sequences from domains 1 and 2 of the 5’ end of 28S 
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rDNA were obtained from colonies of the seven putative morphs. In total, 32 clones 

from 15 coral colonies were sequenced. Sequence divergence ranged from 0–14.8% 

between morphs of the A. humilis species group, compared with 22.3–30.8% when 

compared with the A. palifera outgroup sequences. Nucleotide composition was similar 

for all clones, with an average GC (Guanine-Cytosine) content of 62.57%. GC content 

was slightly lower in clones isolated from morphs of the A. humilis species group 

(61.15–63.53%) compared with the two A. palifera outgroup sequences (64.98%). 

 

The aligned sequences consisted of 907 positions, with individual sequences ranging in 

length from 782–851 bp. Within the aligned sequences, 635 positions were constant, 37 

variable characters were not parsimony informative, and 235 (25.9%) were parsimony 

informative. 

 

Maximum parsimony (MP) and maximum likelihood (ML) analyses grouped the 

sequences into four strongly supported clades. Sequences from A. digitifera and the two 

morphs of A. monticulosa were substantially more divergent than those from A. humilis 

or A. gemmifera. The phylogenetic tree from the MP analysis (Fig. 6, 50% majority-

rule consensus tree based on 885,920 trees) formed two branches grouping clades I, II 

and III separately from clade IV. There were only low levels of divergence, indicating 

high levels of similarity between sequences within each of the four clades. Clade I 

grouped all but one sequence from A. digitifera (seven sequences from two colonies) 

with the other sequence from a third colony grouping with “branching A. monticulosa” 

in clade III. Sequences from “digitate A. monticulosa” grouped in clades I and II, 

indicating that this morph shares sequence types with both A. digitifera and “branching 

A. monticulosa”. Sequences from two colonies of “branching A. monticulosa” grouped 

in clades II and III, indicating that there were two distinct types present within each 

colony of this morph. The remaining clade IV contained all sequences from the A. 

humilis and A. gemmifera morphs in addition to one sequence from the digitate morph 

of A. monticulosa. This latter sequence from “digitate A. monticulosa” appears to be an  
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Fig. 6 Maximum parsimony consensus tree (50% majority-rule) of the partial 28S 

sequences (domains 1 and 2). Numbers above branches indicate percent bootstrap 

support; branches with <50% support have been collapsed. Tree length: 481; CI: 0.696; 

RI: 0.850; HI: 0.304. Vertical bars at right of tree indicate the 4 major clades (I–IV). 

Codes for each morph are the same as listed in Fig. 4. Numbers after the hyphen 

identify different coral colonies within each putative morph. Scale bar indicates 

number of nucleotide substitutions along branches. 
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erroneous sequence for two reasons. First, this sequence is almost identical to one of 

the A. humilis sequences. Second, the sequences cloned from the A. humilis and A. 

gemmifera morphs have very low levels of divergence and are otherwise very distinct 

from all sequences cloned from the other morphs (Fig. 6). Negative controls were 

consistently clear in all PCR reactions and so the source of error is most likely to have 

occurred during cloning. It is possible that this sequence is a cloning artifact, although 

contamination may also be the source. 

 

The four clades were identical in composition when gaps were excluded from the 

analysis or treated as a fifth character in the MP analysis. Treating gaps as a fifth 

character produced a tree with two differences to that in Fig. 6. A shorter branch 

connected the ingroup and outgroup sequences and bootstrap support increased for the 

branch grouping clades I and II from 56 to 91%. Analysis of the sequences using ML 

also produced four clades identical in composition to the MP analysis, with 70, 96, 99 

and 100% bootstrap support for clades I–IV, respectively. The structure of the ML tree 

differed in that the four clades formed a polytomy (compared with the grouping of 

clades I–III as a single branch in the MP analysis) with a longer branch length 

separating the ingroup from the outgroup sequences. The GTR + G + I model (G = 

0.5612 and I = 0.3768) was selected for the maximum likelihood analysis. 

 

DISCUSSION 

Synthesis of Morphological and Molecular Findings

The seven putative morphs recognized in this study, within the A. humilis species group 

in American Samoa, clustered as five morphological units (Figs. 4 and 5). These 

morphological units correspond with the species A. humilis, A. gemmifera, A. digitifera, 

and 2 forms (digitate and branching) of A. monticulosa. Cloned sequences of the 28S 

nuclear rDNA unit from each of these morphs formed four strongly supported clades 

(Fig. 6). All sequences from A. humilis and A. gemmifera grouped in a single clade 

with little further differentiation. Sequences from A. digitifera and the two morphs of A. 

monticulosa grouped in the other three clades with sequences from pairs of each of 

these three morphs in each clade, indicating high levels of sequence variation within 

and between these three morphs. Based on the partial 28S rDNA sequences cloned in 

this study, we propose that the morphs A. humilis and A. gemmifera are evolutionarily 

distinct from A. digitifera and A. monticulosa. The distinct morphologies but low levels 
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of sequence divergence between A. humilis and A. gemmifera suggest recent divergence 

between these morphs. In contrast, sequence types appear to be shared through 

occasional introgression while maintaining the distinct morphologies of the three 

morphs, A. digitifera, “digitate A. monticulosa”, and “branching A. monticulosa”. 

 

Divergence between clades

All sequences cloned from colonies of the morphs A. humilis and A. gemmifera 

grouped in a single clade with complete bootstrap support (Fig. 6, clade IV) in both 

maximum parsimony and likelihood analyses. Based on these analyses, these morphs 

appear to be an evolutionary lineage that is distinct from A. digitifera and A. 

monticulosa. To confirm this proposal, additional sequences from colonies of “digitate 

A. monticulosa” are necessary to verify that the anomalous sequence for this morph in 

clade IV is erroneous. Alternatively, additional sequences will reveal the mechanisms 

of introgression operating between this and the other morphs examined in this study. 

The other three clades (Fig. 6, clades I, II and III), comprising sequences from A. 

digitifera and A. monticulosa, form a single branch with weak bootstrap support in the 

parsimony analysis and a polytomy with clade IV in the likelihood analysis. This 

indicates that each of these clades are also distinct, but probably share greater affinity 

with each other than with clade IV. 

 

Divergence within clades

The extremely low level of sequence divergence between A. humilis and A. gemmifera 

in clade IV (Fig. 6) can be interpreted by the fact that either these morphs diverged 

too recently for these lineages to be assorted or they have not diverged and 

interbreeding between these two morphs is ongoing. The species A. humilis and A. 

gemmifera are often very similar morphologically at many locations within their 

distribution range, to the extent that the two species may be difficult to distinguish 

(Wallace 1999). However, in American Samoa the morphs representing these two 

species were morphologically distinct, with no overlap or merging of morphological 

characters (Table 3, Figs. 4 and 5), suggesting that recent divergence seems most 

plausible. Analysis of a maternally inherited mitochondrial marker is now underway, 

which will provide additional evidence on whether or not the low level of sequence 

divergence reported in this study represents recent common ancestry between these 
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now morphologically distinct morphs. Breeding trials are also being conducted to test 

the potential for these species to interbreed. 

 

The partial 28S sequences cloned from A. digitifera and both forms of A. monticulosa 

were highly divergent, due to distinct sequence types being found within and between 

these morphs. The high to complete bootstrap support for clades I, II and III indicate 

that distinct sequence types are present in different colonies of A. digitifera, the A. 

monticulosa morphs and even in single colonies of each of the A. monticulosa morphs 

(Fig. 6). The high levels of sequence variation within and shared sequence types 

between these morphs were surprising because the three morphs were morphologically 

distinct, and colonies within each of these morphs were indistinguishable as live 

colonies and in skeletal samples (personal observation; Figs. 4 and 5). It therefore 

appears that these three morphs share a common ancestral lineage, in which lineage 

sorting is incomplete, and that gene flow may still be occurring between the three 

morphs through occasional hybridization and backcrossing. The high levels of 

divergence in these morphs may also be due to common ancestry with species not 

examined in this study, possibly those that share the monophyletic clade with A. 

digitifera in the phylogeny proposed by Wallace (1999) for the genus Acropora. More 

sequences are necessary from the same colonies and additional colonies of these 

morphs in order to confirm these proposals. 

 

The grouping of sequences from “branching A. monticulosa” and “digitate A. 

monticulosa” in different clades is significant, given that these two morphs fall within 

the limits of a single species according to the current taxonomic description of A. 

monticulosa (Wallace 1999). Although these two morphs belong to the same taxonomic 

species, they were distinct morphologically, having different growth forms, differently 

shaped radial corallites and coenosteal structure (Figs. 4 and 5), as well as different 

colours of live colonies (Table 3). Despite the distinct morphological groupings of the 

A. digitifera and two A. monticulosa morphs (Figs. 4 and 5), the digitate form of A. 

monticulosa also shared apparent affinities with the A. digitifera colonies, having a 

similar growth form and colour of live colonies. Based on these morphological 

affinities and the shared sequence types, we tentatively propose that the morph “digitate 

A. monticulosa” may have been derived from A. digitifera and “branching A. 

monticulosa”, and that the two A. monticulosa morphs represent sibling species. 
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Evolutionary Implications 

The large subunit 28S nuclear rDNA gene is usually used in phylogenetic studies to 

examine the evolutionary relationships at higher taxonomic levels than species because 

of its relatively slow rate of evolution (Hillis and Dixon 1991). For example, it has been 

used to examine phylogenetic relationships between taxa within the Phylum Cnidaria 

(Odorico and Miller 1997a), Class Anthozoa (Chen et al. 1995), and Order Scleractinia 

(Veron et al. 1996; Romano and Cairns 2000). In contrast, more rapidly evolving 

markers, such as ITS-1, ITS-2, and the 5.8S gene of the nuclear ribosomal DNA unit, 

the mtDNA putative control region, Pax-C and the mini-collagen gene have been used 

to study species boundaries within the genus Acropora (Odorico and Miller 1997b; 

Hatta et al. 1999; van Oppen et al. 2000; van Oppen et al. 2001). These studies all 

conclude that the lack of resolution found between many species of Acropora using 

these markers indicates that this genus is evolving in a reticulate rather than a divergent 

pattern. It seems likely, however, based on the molecular evidence in these papers and 

the morphological and molecular evidence in this paper, that complex evolutionary 

relationships exist between species within the genus Acropora, with boundaries 

between species currently at various stages of formation. 

 

In this study, we demonstrate that domains 1 and 2 of the 28S nuclear rDNA unit 

contain important information for interpreting the evolutionary relationships between A. 

digitifera, the A. monticulosa morphs and the A. humilis–A. gemmifera lineage, while 

more rapidly evolving markers are likely to be most useful for interpreting evolutionary 

relationships between more recently diverged species such as A. humilis and A. 

gemmifera. Additional sequences are necessary to fully utilise the potential of this 28S 

marker and provide a more comprehensive analysis of the evolutionary relationships 

between species examined in this study as well as their relationship with other species 

in the genus Acropora. To achieve this, additional sequences are needed from the 

individuals and morphs examined in this project, particularly the A. digitifera and A. 

monticulosa morphs, as well as other species of the genus Acropora occuring in 

American Samoa. These additional sequences will reveal the number of sequence types 

within individual colonies and individual morphs as well as the levels of divergence 

and evolutionary affinities between morphs. The 28S marker is also likely to be useful 
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for examining evolutionary relationships between these species over a broader 

biogeographic area because of its slow rate of evolution. 

 

The existence of recognizably discrete groups of organisms, as seen in this study, 

“argues against the idea that species are simply peaks in a continuum of variation” 

(Vogler 2001).This view is reiterated for corals by Wallace and Willis (1994), who 

state that the apparent morphological consistency of many species across a broad 

geographic range supports the validity of species as real taxonomic entities. The 

presence of the five discrete morphs of the A. humilis species group in American 

Samoa, based on morphological characters, supports this view. Shared DNA sequences 

between currently described species, previously interpreted as evidence for reticulate 

evolution in corals (Odorico and Miller 1997b; Hatta et al. 1999; van Oppen et al. 

2000; Diekmann et al. 2001; van Oppen et al. 2001), are equally likely to represent 

common ancestry and be evidence of either recent or ancient divergence. Substantial 

genetic overlap may exist between sister or other closely related species because only 

one or a small number of genes may cause speciation, with large regions of the genome 

remaining unchanged until the process of speciation is complete (Mayr 1963; Wu 

2001). 

 

Hybridization has been proposed by advocates of reticulate evolution as the mechanism 

preventing species of corals from diverging as discrete evolutionary lineages (Veron 

1995; Odorico and Miller 1997b; Hatta et al. 1999; van Oppen et al. 2000; Diekmann et 

al. 2001; van Oppen et al. 2001). The opportunity for hybridization in corals appears to 

be considerable because fertilization in many species occurs externally during 

interspecific mass spawning events, in which gametes are mixed as they are released 

and aggregate at the water surface. However, it is equally plausible that hybridization in 

corals may retard but not prevent the final stages of divergence. If the latter is true, a 

major implication is that the time since speciation is likely to be underestimated in 

molecular phylogenetic analyses because genetic characters may have been shared 

through occasional interbreeding. Hybridization, leading to polyploidy, has also been 

proposed as a direct mechanism of rapid, sympatric speciation in the genus Acropora 

(Kenyon 1997) as is well known in angiosperms [reviewed by Arnold (1997)]. 

Therefore, as well as maintaining shared gene pools between recently diverged species, 

hybridization may also be a sudden means of divergent evolution. Further research is 
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necessary to determine the extent to which hybridization occurs under natural 

circumstances and its role in the evolutionary history of corals. 

 

The results presented in this paper demonstrate the importance of interpreting 

morphological and molecular characters in complementary analyses to resolve species 

boundaries in corals (Willis 1990; Stobart 2000), with analysis of morphological 

characters providing additional information not revealed in the phylogeny of the 

sequence data. This conflicts with the findings of van Oppen (2001) that morphology 

has little predictive value in defining distinct evolutionary units. Concordance of the 

morphological and molecular data for A. humilis, grouping the three putative morphs as 

a single unit, strengthens support for colonies of these putative groupings belonging to 

a single species, despite the morphological variation recognized in field surveys. The 

recognition of two morphs within A. monticulosa, which may represent two sibling 

species, also demonstrates the utility of examining corals at the intraspecific level for 

tracing evolutionary relationships between species. 

 

To enable further resolution of the evolutionary relationships of morphologically 

defined species of corals, it will be necessary to examine fossil and extant morphs 

across broad biogeographic ranges as well as trace their ancestry both directly in fossil 

lineages and indirectly using increasingly sophisticated molecular tools. Augmenting 

morphological and molecular studies with interspecific breeding experiments will also 

provide valuable insights into the current reproductive potential of individual morphs. 

Clearly, as demonstrated in this study, to resolve species boundaries and the 

evolutionary relationships of species in corals, it is important to work at the 

intraspecific level. This will enable possible sibling and intermediate species, as well as 

evolutionarily discrete species, to be recognized. 
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