Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia

Hancock, Penelope A., White, Vanessa L., Callahan, Ashley G., Godfray, Charles H.J., Hoffmann, Ary A., and Ritchie, Scott A. (2016) Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia. Journal of Applied Ecology, 53. pp. 785-793.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (479kB) | Preview
View at Publisher Website: http://dx.doi.org/10.1111/1365-2664.1262...
 
5
15


Abstract

1. Field release of endosymbiotic Wolbachia bacteria into wild Aedes aegypti mosquito populations is a promising strategy for biocontrol of dengue. This strategy requires successful Wolbachia invasion through the mosquito vector population. Natural variation in mosquito fitness due to density-dependent competition for limited food resources may influence Wolbachia invasion. We know little about these effects, largely because our understanding of density-dependent dynamics in mosquito populations is limited.

2. We developed an empirical model of A. aegypti–Wolbachia dynamics where food resources available to the developing larvae are limited. We assessed the extent of density-dependent regulation in our A. aegypti population using a Bayesian statistical model that estimates the temporal variation in mosquito fitness components. We monitored the spread of Wolbachia and assessed the effect of the bacteria on larval fitness components.

3. We demonstrate that mosquito population growth is regulated by strong larval density-dependent variation in mosquito fitness components. Wolbachia spread was slowed by this heterogeneity in mosquito fitness, which reduces the capacity of the bacteria to invade. However, we found no evidence that Wolbachia affects larval fitness components.

4. Synthesis and applications. We demonstrate that the extent and form of density-dependent dynamics in the host population can have a major influence on Wolbachia invasion. These findings help explain slow Wolbachia invasion rates and indicate that the success of field release strategies for dengue control can depend on attaining high Wolbachia frequencies in the mosquito population.

Item ID: 47574
Item Type: Article (Refereed Research - C1)
Keywords: Bayesian statistical model, biocontrol, demography, dengue, density dependence, fitness, invasion, population dynamics, vector-borne, Wolbachia
Additional Information:

© 2016 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

ISSN: 1365-2664
Funders: Marie Curie International Outgoing Fellowship (MCIOF)
Projects and Grants: MCIOF #326551-WOLBACHIA-MOD
Date Deposited: 07 Mar 2017 04:46
FoR Codes: 11 MEDICAL AND HEALTH SCIENCES > 1117 Public Health and Health Services > 111799 Public Health and Health Services not elsewhere classified @ 100%
SEO Codes: 92 HEALTH > 9204 Public Health (excl. Specific Population Health) > 920404 Disease Distribution and Transmission (incl. Surveillance and Response) @ 100%
Downloads: Total: 15
Last 12 Months: 6
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page