Multi-relay communications in the presence of phase noise and carrier frequency offsets

Salim, Omar H., Nasir, Ali A., Mehrpouyan, Hani, and Xiang, Wei (2017) Multi-relay communications in the presence of phase noise and carrier frequency offsets. IEEE Transactions on Communications, 65 (1). pp. 79-94.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1109/TCOMM.2016.262...
 
20
2


Abstract

Impairments such as time varying phase noise (PHN) and carrier frequency offset (CFO) result in loss of synchronization and poor performance of multi-relay communication systems. Joint estimation of these impairments is necessary in order to correctly decode the received signal at the destination. In this paper, we address spectrally efficient multi-relay transmission scenarios where all the relays simultaneously communicate with the destination. We propose an iterative pilot-aided algorithm based on the expectation conditional maximization for joint estimation of multipath channels, Wiener PHNs, and CFOs in decode-and-forward-based multi-relay orthogonal frequency division multiplexing systems. Next, a new expression of the hybrid Cramér-Rao lower bound (HCRB) for the multi-parameter estimation problem is derived. Finally, an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking is employed. Numerical results show that the proposed estimator outperforms existing algorithms and its mean square error performance is close to the derived HCRB at different signal-to-noise ratios for different PHN variances. In addition, the combined estimation algorithm and the iterative receiver can significantly improve average bit-error rate (BER) performance compared with existing algorithms. In addition, the BER performance of the proposed system is close to the ideal case of perfect channel impulse responses, PHNs, and CFOs estimation.

Item ID: 47399
Item Type: Article (Research - C1)
ISSN: 1558-0857
Date Deposited: 20 Mar 2017 23:34
FoR Codes: 40 ENGINEERING > 4006 Communications engineering > 400608 Wireless communication systems and technologies (incl. microwave and millimetrewave) @ 100%
SEO Codes: 89 INFORMATION AND COMMUNICATION SERVICES > 8999 Other Information and Communication Services > 899999 Information and Communication Services not elsewhere classified @ 100%
Downloads: Total: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page