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A Hybrid CMOS-memristor Neuromorphic Synapse
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Philip H.W. Leong, Senior Member, IEEE

Abstract—Although data processing technology continues to
advance at an astonishing rate, computers with brain-like pro-
cessing capabilities still elude us. It is envisioned that such
computers may be achieved by the fusion of neuroscience and
nano-electronics to realize a brain-inspired platform. This paper
proposes a high-performance nano-scale Complementary Metal
Oxide Semiconductor (CMOS)-memristive circuit, which mimics
a number of essential learning properties of biological synapses.
The proposed synaptic circuit that is composed of memristors and
CMOS transistors, alters its memristance in response to timing
differences among its pre- and post-synaptic action potentials,
giving rise to a family of Spike Timing Dependent Plasticity
(STDP). The presented design advances preceding memristive
synapse designs with regards to the ability to replicate essential
behaviours characterised in a number of electrophysiological
experiments performed in the animal brain, which involve higher
order spike interactions. Furthermore, the proposed hybrid
device CMOS area is estimated as 600 µm2 in a 0.35 µm
process—this represents a factor of ten reduction in area with
respect to prior CMOS art. The new design is integrated
with silicon neurons in a crossbar array structure amenable to
large-scale neuromorphic architectures and may pave the way
for future neuromorphic systems with spike timing-dependent
learning features. These systems are emerging for deployment in
various applications ranging from basic neuroscience research,
to pattern recognition, to Brain-Machine-Interfaces.

Index Terms—Neuromorphic, Synaptic Plasticity, Learning,
Memristor, Crossbar, STDP, Triplet, Quadruplet.

I. INTRODUCTION

MEMRISTORS, due to their special features including
non-volatility, nanoscale dimensions, low power con-

sumption, and the ability to be programmed while operat-
ing [1], have attracted attention for implementing an in-situ
architecture [2], [3], [4]. These emerging nanoscale devices
can implement and mimic the synaptic plasticity character-
istics of well-known learning algorithms such as pair-based
STDP and Spike Rate-Dependent Plasticity (SRDP) [5], [6],
[7], [8]. Attempts have also been made to mimic experimental
outcomes of higher order spike-based synaptic plasticity rules
such as the suppressive STDP rule of Froemke and Dan [9] or
Local Correlation Plasticity (LCP) rules to reproduce higher
order synaptic plasticity in memristors [10], [11]. In order
to advance our understanding of the fundamental properties
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of synapses and their role in large-scale learning, there is
still a need to implement a versatile memristive synapse
that is capable of faithfully reproducing a larger regime
of experimental data that takes into account conventional
STDP [12], frequency-dependent STDP [13], triplet [14], [15]
and quadruplet [15], [16] plasticity experiments. In a recent
study, Wei et al. replicated the outcome of a variety of synaptic
plasticity experiments including STDP, frequency-dependent
STDP, triplet, and quadruplet spike interactions, using a TiO2

memristor [17].
This paper proposes a new hybrid CMOS-memristive circuit

that aims to emulate all the aforementioned experimental data,
with minimal errors close to those reported in a phenomeno-
logical model of Triplet STDP (TSTDP) rule presented in [15].
Similar to many previous studies that devised memristive
synaptic devices/circuits with STDP, SRDP, or other synaptic
properties, our aim is a circuit that implements the TSTDP
learning algorithm of [15]. To the best of our knowledge,
this has not been previously achieved using memristors. The
proposed TSTDP memristive circuit advances the synaptic ca-
pabilities of previous designs to be more biologically realistic,
and promotes our understanding of synaptic alteration mech-
anisms, believed to play a key role in learning and memory.
Furthermore, the proposed design significantly decreases the
silicon real estate required for implementing and utilizing a
variety of learning rules.

Spiking neural networks with memristive synapses incorpo-
rating the proposed compact and biologically plausible triplet
learning circuits, will be an important contribution to the
neuroscience research, where a more faithful synaptic plas-
ticity rule, compared to traditional STDP, can be implemented
and simulated in a large-scale network. An interesting feature
of memristive synapses that distinguishes them from their
traditional pure Complementary Metal Oxide Semiconductor
(CMOS) counterparts is the feasibility of arranging them in a
dense crossbar structure [1] integrated with CMOS circuitry.
We also show how the proposed CMOS-memristive circuit can
be used in this fashion, to facilitate large-scale integration.

In order to promote reproducible research, Matlab and
Cadence files to generate the experimental data and reproduce
the results in this paper are made publicly available through
Github.1

II. MEMRISTIVE SYNAPSE WITH SPIKE TIMING
DEPENDENT PLASTICITY (STDP)

Spike Timing Dependent Plasticity (STDP) is a well-
known synaptic plasticity rule that modifies the synaptic
weight according to the exact timing relationship of pre-

1https://github.com/MostafaRahimiAzghadi/MemristiveSynapse
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Fig. 1. Synaptic weight changes, at the time of each spike, as a function of
the timing difference between pre- and post-synaptic spikes, their temporal
order, and their synaptic amplitude parameters, i.e. A+ and A−. Here, the
potentiation time constant (τ+), is assumed smaller than depression time
constant (τ−), hence for the same ∆ts between pre and post spikes, different
weight changes are induced, even if A+ = A−. Here, ‘o’ denotes the
exponentially decaying potentiation potential, while ‘r’ represents depression
potential.

and post-synaptic spikes and brings about Long Term Po-
tentiation (LTP) or Long Term Depression (LTD) [15]. In
some electrophysiological experiments performed in cultured
hippocampal neurons in 1998, the hypothesized dependence of
the synaptic efficacy to the spike timing was experimentally
confirmed [12]. Consequently, computational neuroscientists
developed a model to approximate the findings of the exper-
iment [18]. This model is today known as pair-based STDP
(PSTDP) and is usually represented as

∆w =

{
∆w+ = A+e

(−∆t
τ+

) if ∆t > 0

∆w− = −A−e
( ∆t
τ−

) if ∆t ≤ 0,
(1)

where ∆t = tpost − tpre is the timing difference between a
single pair of pre- and post-synaptic spikes. As demonstrated
in Fig. 1, the amount of potentiation/depression will be deter-
mined as a function of the timing difference between pre- and
post-synaptic spikes, their temporal order, and their relevant
amplitude parameters (A+ and A−).

Since the report of the first memristor, various attempts
have been made to devise artificial memristive synapses with
PSTDP characteristics [19], [6], [20], [21]. In almost all of
these implementations, the programmable non-volatile mem-
ristance (resistance or conductance) of the device is considered
to play the role of the synaptic weight, and voltage spikes
are applied to the two terminals of the memristor to alter
its memristance. However, the device physics, models and
attributes, spike shape, and the method spike applied to elicit
memristance changes differ [22], [23]. In this paper, we have
utilized similar spikes and memristive device model to [20],
to develop a new synaptic circuit for higher order timing- and
rate-based synaptic plasticity. We discuss the utilized model
and the approach we have taken to implement our new device
in the following.

A. Memristor model

For this paper we have chosen a simple voltage/flux driven
memristor model such as the one proposed in [21], and utilized
in [20]. The I-V characteristics of this memristor, which is

claimed to be physically implemented in [19] can be written
as:

iMR = g(w, vMR)vMR (2)

dw

dt
= f(w, vMR), (3)

where iMR and vMR are the current passing through and the
voltage across the device, w denotes a memristor physical
state variable, and g represents the nonlinear conductance of
the device. According to [21], this memristor is voltage/flux
driven, because its structural parameter depends on vMR.
Considering this model for a memristive device, one should
define the function f , so that account for the memristive
behaviour observed in physically implemented devices. Here
we utilize a simple function similar to the one employed
in [20]. This function is written as

f(vMR) =

{
I0sign(vMR)[e

|vMR|
v0 − e

vth
v0 ] if |vMR| > vth

0 otherwise,
(4)

where I0 and vo are some physical parameters of the device
and vth is its threshold, beyond which the conductance of
the device changes exponentially. This behavioural model of
a memristive device can be illustrated as shown in Fig. 2(a).
Note to the two thresholds and the exponential growth of the
conductance. These are the features that we exploit to devise
a memristive synapse with STDP.

Fig. 2(b-c) demonstrate the current-voltage and resistance
characteristics of the utilized device, which is simulated us-
ing the memristor macromodel used in this paper and was
presented in [20]. This macromodel depicts a thresholding be-
haviour similar to a commercially available ion-based physical
memristor [24] with a current-voltage characteristic as shown
in Fig. 2(d).

III. MEMRISTIVE SYNAPSE WITH TRIPLET STDP

In 2002, Froemke and Dan presented a modified STDP
rule, that takes into account a suppressive mechanism among
spikes. This mechanism was hypothesized to account for non-
linearities observed in triplet STDP experiments, where the
PSTDP failed [9]. In 2006, triplet STDP rule was proposed
by Pfister and Gerstner [15] to account for a larger set
of higher order STDP experimental data. Recently Cai et
al. [10], have developed a synaptic circuit, utilizing memristors
with adaptive threshold, to implement the suppressive STDP
rule of Froemke-Dan [9]. They have shown that using their
proposed memristive synapse, the triplet STDP behaviour of
the suppressive STDP model can be reproduced. However,
they did not explore the strength of their developed synapse
in reproducing other synaptic plasticity experimental data,
such as quadruplet and pairing frequency experiments. In this
paper, we focus on implementing the triplet rule of Pfister and
Gerstner using memristors.

A. Triplet STDP

The triplet rule extends the conventional form of STDP rule
(shown in Eq. 1) and introduces extra potentiation/depression
contributions for both pre- and post-synaptic spikes. In the
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Fig. 2. (a) The symbol represents a polarized memristor and the graph demonstrates a non-linear function (Eq. 4), according to which the state variable of
the memristor changes, which leads to alterations in its conductance according to Eq. 2 and 3. (b) Current-Voltage characteristic of the utilized memristor.
(c) Dependence of memristor time varying resistance with respect to memristor voltage. Both (b) and (c) are simulated in Cadence using the macro-model
proposed in [20]. (d) Thresholding and compliance behaviour of a commercially available ion-based physical memristor, which has similar features to our
simulated memristor. Image is extracted from the user manual of neuro-bit device [24].

triplet model, the post spike, in addition to its exponentially
decaying pairing depression potential, r1, shown in Fig. 3,
triggers an extra potentiation potential, o2, for interaction with
upcoming post spike(s). Similarly, the pre spike also gives rise
to an extra depression potential, r2, to interact with next pre
spikes, besides its usual pairing potentiation potential trace,
o1. These extra triplet potentials that are shown in Fig. 3,
may differ in time constants and amplitudes, compared to
conventional STDP potentials. As shown in Fig. 3, at the time
of the first pre spike, tpre1, a depression happens due to the
previous post spike that has left a depression trace, r1. Next,
at the time of the second post spike, tpos2, two potentiations
take place. The first is due to the pre-post pairing, and the
potentiation trace, o1, that the first pre spike left. The second
potentiation though, is a result of a triplet interaction (post-pre-
post) among the first and second post and the first pre spikes.
This potentiation depends on the two potentiation traces, one
left by the first pre spike, o1, and the second one triggered by
the second post spike, o2. This second trace is the differential
point to the standard STDP rule, as it introduces interactions
among spikes of the same pre or post neuron, and may lead
to extra potentiation/depression. This triplet STDP interaction
can be represented as

∆w(t) =

{
A+

1 o1(t) +A+
2 o1(t)o2(t− ε) if t = tpost

−A−
1 r1(t)−A−

2 r1(t)r2(t− ε) if t = tpre,
(5)

where o1 and o2 are potentiation potentials triggered by pre
and post spikes, respectively. In addition, r1 and r2 are
depression potentials elicited by the arrival of post and pre
spikes, respectively. Parameters A+

1 , A+
2 , A−

1 and A−
2 are

constant amplitude parameters that determine the contribution
strength of each spike in potentiation/depression. Here, ε is a
small positive constant which ensures that the weight update
uses the correct values occurring just before the pre- or post-
synaptic spike of interest.

Similar to the pair-based STDP, the triplet rule can also be
mathematically represented as

∆w =

 A+
1 e

(
−∆t1
τ+

)
+A+

2 e
(
−∆t1
τ+

)
e

(
−∆t2
τy

) if t = tpost

−A−
1 e

(
∆t1
τ−

) −A−
2 e

(
∆t1
τ−

)
e(
−∆t3
τx

) if t = tpre,
(6)
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Fig. 3. Synaptic weight changes, at the time of each spike, as a function of
the timing difference between pre- and post-synaptic spikes, their temporal
order, and their synaptic amplitude parameters, i.e. A+

1 , A−
1 , A+

2 and A−
2 .

where ∆t1 = tpost(n)−tpre(m), ∆t2 = tpost(n)−tpost(n−1)−ε
and ∆t3 = tpre(m) − tpre(m−1) − ε, are the time differences
between combinations of pre- and post-synaptic spikes, and
τ−, τ+, τx and τy are time constants relating to the potentia-
tion/depression potentials of r1, o1, r2, and o2, respectively.

Pfister and Gerstner [15] have shown that the full TSTDP
rule of Eq. 6 can be simplified, without the performance of the
model in reproducing the experiments being compromised, to
a minimal rule that does not include a triplet depression term,
r2. Therefore, the triplet rule of Eq. 6 will be minimized to a
minimal TSTDP rule as

∆w =

 A+
1 e

(
−∆t1
τ+

)
+A+

2 e
(
−∆t1
τ+

)
e

(
−∆t2
τy

) if t = tpost

−A−
1 e

(
∆t1
τ−

) if t = tpre,
(7)

Note that in all the results presented in this paper, the minimal
triplet STDP is used.

B. Relating memristor model to triplet STDP

For implementing the triplet STDP rule, we used the com-
bination of two memristors and by applying the superposition
principle, we can sum the weight changes of all spike inter-
actions applied to these two memristors, to obtain the final
weight change. Hence, considering Eq. 7, let us assume that
memristance (synaptic weight) changes as follows

dw

dt
= f(w,∆vpair(t)) + f(w,∆vtriplet(t)), (8)
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where
∆vpair(t) = vpost − vpre, (9)

in response to a pre-post or post-pre pair of spikes, is applied
to the two terminals of the first memristor shown in Fig. 4(a),
and

∆vtriplet(t) = vtriplet(pot)
(t)− vtriplet(dep)

(t), (10)

where

vtriplet(pot)
(t) = [vpost(n−1)

(t− ε) · vpre(m)
(t)]+, (11)

vtriplet(dep)
(t) = [vpre(m−1)

(t− ε) · vpos(n)
(t)]+, (12)

are respectively responses to post-pre-post and pre-post-pre
spike combinations, applied to the two terminals of the second
memristor. Here, [x]+ is a rectifier function represented as

[x]+ =

{
x if x > 0
0 otherwise. (13)

If the minimal TSTDP rule is considered, i.e. vtriplet(dep)
= 0,

Eq. 10 is simplified to

∆vtriplet(t) = vtriplet(pot)
(t). (14)

If we integrate Eq. 8, we can find the weight changes across
memristors for various set of pre- and post-synaptic voltages
(spikes) applied to the memristors as follows

∆w(∆t1,∆t2) =

∫
∆t1

f(∆vpair(t))dt+

∫
∆t2

f(∆vtriplet(t))dt.

(15)
Considering Eq. 15, in a post-pre-post triplet case of spikes,
the integration will be

∆w(∆t1,∆t2) =

tpre∫
tpost1

f(∆vpair(t))dt

+

tpost2∫
tpre

f(∆vpair(t))dt

+

t(post2−ε)∫
tpost1

f(∆vtriplet(t))dt. (16)

The three parts of Eq. 16 are demonstrated in Fig. 4(b),
where the first integral is over a period of 5 ms between
post1-pre, which resulted in a decrease in memristance of the
first memristor in Fig. 4(a), i.e. a synaptic depression, which
is demonstrated as a negative value in orange in the fourth
graph. The second integration is over a period of 15 ms, i.e.
between the pre and post2 spikes and resulted in a positive
value, shown in green in the fourth graph, representing an
increase in the memristance of the first memristor. These two
negative and positive values are in relation to the pair-based
STDP model. However, according to the minimal triplet STDP,
formulated in Eq. 7, the post1-post2 spikes in the presence of a
pre spike can result in potentiation. This potentiation shown in
the bottom graph of Fig. 4(b)), is demonstrated as an increase
in the memristance of the second memristor in Fig. 4(a), and

Fig. 4. (a) The proposed bi-memristor hybrid synapse. This synapse is
composed of two memristors and a multiplier/rectifier circuit shown as a
crossed square. (b) The three top graphs demonstrate the spikes voltages
applied to the two terminals of the memristors, for a post-pre-post triplet with
-5 ms and 15 ms delays among spikes. The fourth graph demonstrates the
voltage changes across the first memristor, and the areas beyond the memristor
threshold, which can lead to increase/decrease in the memristance. In addition,
the bottom graph demonstrates an increase in the memristance of the second
memristor, which is in result of the rectified multiplication of the triplet trace
of the posts and the potentiation trace of the pre (see second term of the first
equation in Eq. 5). (c) The sum of predicted memristance changes over the
two memristors, in result of a post-pre-post spike triplet, with various timings
among the spikes is shown along with the data measured in experiments
presented in [16]. The utilized STDP parameters for the result shown in this
figure are as follows: τ+ = 16.8 ms and τ− = 33.7 ms are set similar to the
method used in [15]. A+

1 = 1.04, A−
1 = 0.51, A+

2 = 3.39, τy = 198 ms,
and v0 = 2.08 are optimized, and |vth| = 1.04.

is in result of an integration over the post1-post2 spikes period
as shown in Eq. 16. Note that, due to the lack of a second pre
spike in this triplet, the second term of the second equation,
in the equation array shown in Eq. 6 is zero, and therefore, no
further depression will be elicited. This is also the case when
a minimal TSTDP model is considered.

In order to verify the functionality of the proposed triplet
memristive device, it was used to replicate an experimental
data set generated using post-pre-post triplet spikes in [16].
Fig. 4(c) demonstrates a very close match between the mem-
ristance changes obtained using the proposed device, and those
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measured in the triplet experiments [15], [16]. This match was
obtained by optimizing the STDP and memristive parameters
to reach the least error.

IV. EXPERIMENTAL RESULTS

So far we only considered synaptic weight changes for one
pair or triplet of spikes using the proposed CMOS-memristive
synapse. However, an extensive set of simulations should be
carried out for reproducing the outcomes of a variety of
essential experimental data, which has been the subject of
research in both neuromorphic [25], [26] and computational
neuroscience research [27]. In this section, we report our find-
ings and demonstrate the limitations of the PSTDP memristive
synapse of [20] in reproducing a number of experiments. We
then show how our proposed synapse can closely replicate the
outcomes of a number of previous experiments, using a single
set of STDP parameters.

A. Experimental protocols

Certain standard experimental protocols are predominantly
followed in the area of electrophysiological experiments to
study synaptic plasticity [9], [12], [13], [16]. The same
protocols should therefore be employed while verifying the
performance of the devised computational models [9], [14],
[15] or neuromorphic devices [10], [25], [28] in approxi-
mating/replicating the experimental data observed in biolog-
ical synapses. Here we have followed similar protocols to
those deployed in synaptic plasticity experiments to examine
the functionality and performance of our proposed CMOS-
memristive synapse, and to compare it with its conventional
STDP counterparts. The utilized protocols are Pair-based
STDP, frequency-dependent STDP, triplet-based STDP, extra
triplet STDP, and quadruplet, which are defined in our previous
studies [25] and in the TSTDP modelling paper [15].

B. Data fitting approach and experimental scenarios

In order to test the efficacy of a synaptic model/device,
one can define an error function that represents the differ-
ence among the weight changes predicted by a candidate
model/device, and those measured in electrophisiological ex-
periments. A suitable error function, is the Normalised Mean
Square Error (NMSE) function proposed and utilised in [15],

NMSE =
1

p

p∑
i=1

(
∆wiexp −∆wimodel

σi

)2

, (17)

where ∆wiexp, ∆wimodel and σi are the mean weight change
obtained from biological experiments, the weight change ob-
tained from the model or circuit under consideration, and
the standard error mean of ∆wiexp for a given data point i,
respectively. Here, p represents the number of data points in
the data set under consideration.

In all experiments performed in this paper, we utilized the
MATLAB built-in fminsearch, an unconstrained non-linear
minimization function, to minimize the NMSE for the synaptic
device under consideration. For instance, for the proposed bi-
memristor hybrid synapse, in Fig. 4, five parameters including

four of the triplet STDP rule embedded in the spike shapes
(A+

1 , A−
1 , A+

2 , τy) and one relating to the memristor f
function, v0, were optimized. We present results obtained from
various experiments, in which these parameters along with
some other parameters are optimized to reach the best NMSE
in different scenarios.

Two different scenarios can be considered to verify the
functionality and performance of pair-based and triplet-based
memristive circuits in reproducing the outcomes of experi-
ments using the aforementioned protocols. Under first sce-
nario, similar to the experiments in [15], PSTDP time con-
stants, i.e. τ+ and τ− are kept fixed and equal to 16.8 ms and
33.7 ms respectively, while other parameters are optimized.
Under scenario two, these parameters are optimized along
with other parameters to study the effect of higher parameter
flexibility on synaptic plasticity.

C. Frequency-dependent pairing (visual cortex) experiments

Under the first scenario, pair-based STDP fails to mimic
experimental data, where synaptic weight changes are exam-
ined against the frequency of pairs of spikes, ρ. The optimum
NMSE is achieved using the pair-based memristive synapse
presented in [20] is 8.19. The resulting weight prediction is
shown in Fig. 5(a), which interestingly is similar to the weight
changes predicted by the PSTDP computational model shown
in Eq. 1, as reported in [15]. Scenario two results in a lower
NMSE of 1.69 and an improved match to the experimental
data (see Fig. 5(b)). However, the optimization results in a
very long potentiation time constant, τ+= 110 ms, and a very
short depression constant of almost 1 ms. These time constants
lead to only potentiation when the repetition frequency is high
enough, i.e. ρ > 10 Hz, for the spikes to overlap. Hence, we
can conclude that the pair-based memristive STDP synapse
is not capable of reproducing the outcome of frequency-
dependent pairing experiments. This is in agreement with
presented results in [15]. On the other hand, further simu-
lations suggest that regardless of the optimization of time
constants, the proposed hybrid circuit can closely approximate
the behaviour observed in the experiments. These behaviours,
which resulted in NMSE = 0.45 for the first scenario, and
NMSE = 0.34 for the second one, are shown in Fig. 5(c) and
(d), respectively.

D. Pair, triplet, and quadruplet (hippocampal) experiments

In the triplet-based STDP study by Pfister and Gerstner [15],
one set of parameters and the minimal version of the triplet
STDP model were utilized, to minimize the NMSE for a set of
experimental data composed of 13 data points, including pairs
(2 data points), triplets (8 data points), and quadruplets (3 data
points). These data points and their respective error bars, which
are shown in black in our figures, represents experimental data
obtained from hippocampal culture as reported in [16].

Our performed experiments using the PSTDP memristive
synapse of [20] show that this circuit fails to account for
the hippocampal culture data set under both scenarios. The
results for scenario two, are shown in Fig. 6. As expected the
PSTDP memristive synapse with optimized parameters can
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Fig. 5. (a) Pair-based STDP memristive synapse of [20] fails to mimic
experimental data of [13], under scenario 1. (b) Similar to (a), only for scenario
2. (c-d) The proposed triplet-based STDP memristive synapse successfully
mimics experimental data, under scenario 1 shown in (c) and scenario 2
presented in (d). Here ρ represents the frequency of spike pairs with time
differences of 10 ms and -10 ms.

successfully replicate the STDP learning window. However,
in the case of quadruplet experiment (Fig. 6(c)), the PSTDP
memristive synapse shows similar behaviour to the failure of
PSTDP model as presented in [15]. Beside these, the PSTDP
memristive synapse clearly lacks the ability to distinguish
between the pre-post-pre and post-pre-post experiments as
shown in Fig. 6(c)-(d). This is simply due to the accumulative
nature of the PSTDP rule and its memristive synapse, which
sum the effect of post-pre and pre-post spike pairs in a post-
pre-post triplet, and similarly aggregate the effect of pre-
post and post-pre pairs in a pre-post-pre triplet. Therefore,
no difference between the two triplets is expected as both
of them consist of a pre-post along with a post-pre spike
pair. However, the experimental data, demonstrated in black,
suggests significant difference between the two triplets. Fur-
thermore, our simulations also demonstrate that the pair-based
memristive STDP synapse, using scenario 1, i.e. with fixed τ+
and τ− and while only the other four parameters are optimized,
cannot reach an NMSE smaller than 12.25, and clearly lacks
the ability to mimic the experimental data.

In contrast to the PSTDP device, our minimal TSTDP mem-
ristive synapse shows a very close match to the experimental
data, and achieves a very low NMSE of 0.87 under scenario
2. This is much lower than the PSTDP memristive synapse,
where we reached an NMSE of 7.42 under same scenario.
Experimental results using the triplet synapse demonstrated in
Fig. 7(c–d) show how well this synaptic circuit distinguishes
between two different cases of triplet data. The memristive
synapse, results in strong potentiation in case of post-pre-
post triplet (Fig. 7(d)) as expected. This is due to the triplet
potentiation interaction, which is absent in case of pre-post-pre
triplet (Fig. 7(c)). Fig. 7(a) also demonstrates the conventional
STDP learning window generated by our TSTDP circuit,
which closely matches the two targeted PSTDP experimental
data. Finally, in case of quadruplet experiments (Fig. 7(b)),

Fig. 6. (a) Pair-based STDP memristive synapse of [20] reproduces the STDP
learning window, while it fails to generate (b) quadruplet data, and cannot
distinguish between (c) pre-post-pre, and (d) post-pre-post triplet.

the proposed synapse closely fits the data points and follows
similar behaviour to the data obtained using the minimal
triplet computational model of Pfister and Gerstner [15].
Additionally, in case of scenario 1, i.e. when the pair time
constants τ+ and τ− are kept fixed, an NMSE of 3.61 was
reached using our proposed triplet circuit, which is much lower
than the NMSE = 12.25, and NMSE = 7.42, obtained using
the pair-based device.

Table I summarises NMSEs and their respective optimized
parameters for all the experiments and scenarios mentioned
in previous subsections. In all cases, the triplet memristive
circuit results in a better NMSE compared to its pair-based
counterpart of [20].

E. Triplet experiments of Froemke-Dan [9]

Apart from the triplet experiments performed in previous
subsection, where only pre-post-pre and post-pre-post triplets
were considered, one may investigate the effect of other
combinations of three spikes. This is the experiment, reported
in [9], where six different combinations of spike triplets
are studied (see Fig. 8(a)). Interestingly, our proposed triplet
device, is capable of reproducing a close approximation of the
data from the suppressive STDP model of Froemke-Dan [9],
for these extra triplet experiments. Fig. 8(b) demonstrates
the outcome of extra triplet experiments using the proposed
triplet memristive circuit, under the first (Fig. 8(b1-b2)), and
second (Fig. 8(b3-b4)) scenarios. In the first scenario, the
optimized parameters for the triplet case of hippocampal
culture experiments [15] were used, where the best NMSE
achieved was 3.61 (see Table I). Part (b1) in Fig. 8 depicts
the variety of combinations of 2 post and 1 pre spikes, their
time differences, ∆t1 = tpost1− tpre, ∆t2 = tpost2− tpre, and
their resulting weight modification, ∆w, shown as a colorbar.
Part (b2) demonstrates the weight changes achieved using the
same set of parameters in the triplet circuit, when 2 pre and
1 post spikes are combined, as shown in the figure.
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TABLE I
OPTIMIZED PARAMETERS AND NMSES FOR ALL EXPERIMENTS

Scenario Exp STDP τ+ (ms) τ− (ms) A+
1 A−1 τy (ms) A+

2 vth 1/v0 NMSE

1
Visual pair 16.8 33.7 0.12 0.076 NA NA 0.025 0.1 8.19

triplet 16.8 33.7 0.042 0.027 135 6.85 0.005 0.68 0.45

Hippo pair 16.8 33.7 0.14 0.059 NA NA 0.098 0.15 12.25
triplet 16.8 33.7 0.085 0.54 120 4.76 0.036 0.2 3.61

2
Visual pair 110 0.9 0.018 0.32 NA NA 0.024 1.07 1.69

triplet 24 27 0.075 0.51 156 4.64 0.027 0.35 0.345

Hippo pair 27 20 0.06 0.061 NA NA 0.054 0.92 7.42
triplet 19 16 0.035 0.036 43 2.03 0.024 1.35 0.87

Fig. 7. (a) Proposed triplet-based STDP memristive synapse reproduces the
STDP learning window. (b) The proposed TSTDP device predicts similar
weight changes to the data presented in [15] for quadruplet protocol. Note
that there is no experimental data available around 0 ms. (c)-(d) The proposed
synapse, correctly distinguishes between (c) pre-post-pre triplet case, and (d)
post-pre-post triplet case.

In order to further test the performance of the proposed
triplet memristive circuit, we utilized the optimized parameters
in case of scenario 2, where the achieved minimal NMSE
was 0.87. Figure 8(b3-b4) presents the strength of the triplet
circuit in closely approximating the outcome of the triplet
experiments as shown in [9].

Although using different scenarios and optimized parameter
sets, both parts (b1-b2) and (b3-b4) in Fig. 8 present similar
potentiation/depression characteristics for triplet spike combi-
nations. Both these parts correctly mimic the weight changes
as observed in the triplet experiments reported in [9], except
for the post-pre-post triplet case. The reason for this difference
has been explained in [15].

It is worth noting that, for obtaining the results demonstrated
in Fig. 8, the same parameters that were utilized for reproduc-
ing the hippocampal experiments are applied. For instance,
the results shown in Fig. 8(b) are obtained using the same
parameters, using which Fig. 7 weight changes were attained.
This feature further testifies to the strength of the proposed
triplet device, which can reproduce the outcome of quadruplet,
pairing and various triplet experiments including those that
have not been explored in [15].

V. THE HYBRID SYNAPSE IN CROSSBAR ARRAY

In the structures presented in Fig. 4, only one instance of
the proposed bi-memristor hybrid synapse is demonstrated,
without considering the inclusion of such a synapse in a
crossbar array structure. In order to utilize the proposed circuit
in crossbar arrays and employ it for simultaneous learning and
computation, the structure must be slightly modified.

Figure 9(a) shows a pre-synaptic neuron connected through
a bi-memristor hybrid synapse to a post-synaptic neuron. Here,
a modified CMOS neuron circuit compared to that of [20] has
been utilized. The difference between this new CMOS neuron
and those utilized in the implementation of PSTDP learning is
that, not only does this neuron generate post spikes to interact
with pre spikes, it also produces other post spikes, i.e. post1
spk, required for triplet learning. These spikes as shown in
Eq. 11 should be multiplied by the spikes coming from afferent
pre-synaptic neuron, and then the result should be rectified and
applied to the triplet memristor (Rtrip) as shown in Fig. 9(a).

This figure also shows two switches across the triplet mem-
ristor. These switches, controlled by a signal from the post-
synaptic neuron, ensure the correct integration and learning
in the memristive synapses. When integrating spikes from the
pre-synaptic neuron, the switches are closed as shown in the
figure, and therefore apply the pre spikes to the left sides of
both memristors at the junction. On the post-synaptic (right)
side of the memristors, a reference voltage is generated by
the neuron, that shows no post-synaptic activity and at the
same time, ensures no change in the memristive weights. This
operation can be interpreted as a weight read phase, where
the pre spikes are integrated into post neurons and excite
it proportional to the strength of their respective memristive
synapses.

On the other hand, when the post-synaptic neuron, in result
of the integrations, fires a spike, the switches turn to the
second position and the learning phase starts. The weights
of memristive synapses are then changed due to the existence
of overlapping pre- and post-synaptic spikes and the timing
differences between them. In this case, due to a possible
overlap of a pre-synaptic spike and a triplet post-synaptic
spike, the weight of the second memristor can be modified.
Note that, in this figure, the minimal version of the TSTDP rule
is implemented, i.e. the triplet depression interactions from
pre-synaptic neuron are neglected. This results in having the
left side of the memristor connected to ground during learning,
as shown in the figure.
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Fig. 8. (a1-a2) Experimental triplet data of [9] for six different spike triplet combinations. (a3-a4) A suppressive PSTDP model proposed by Froemke and
Dan approximate the experimental data. (b1-b4) The proposed triplet-based STDP memristive synapse mimics the weight modifications data and suppressive
PSTDP model of [9]. (b1-b2) show weight changes produced using the optimized parameters for the triplet case of hippocampus experiments under scenario
1, i.e. when NMSE = 3.61 (see Table I). (b3-b4) similar to (b1-b2), except that the parameters used for generating the weight changes are those utilized
to reach an NMSE of 0.87, i.e. the triplet case of hippocampus experiments under scenario 2 (see Table I). The contrast between weight changes in the
post-pre-post case is due to the difference between the suppressive PSTDP model of [9] and the TSTDP model of [15] that is implemented in this paper.
In (a), the colorbar shows normalized weight changes obtained from the experiments. However, the colorbar in (b) demonstrates the exact values for weight
changes obtained using the proposed circuit.

The circuit structure shown in Fig. 9(a), which includes
a multiplier/rectifier circuit and a number of switches, was
simulated in Cadence Spectre. The multiplier is a CMOS
Gilbert cell that along with a comparator and two pass gates
perform the required multiplication/rectification. In addition,
four other pass gates were used to properly control the weight
read and learning (weigh change) phases. The utilized memris-
tor is the one employed in the experiments performed in [20].
Results using the implemented hybrid circuit are demonstrated
in Fig. 9(b).

The proposed structure demonstrated in Fig. 9(a) is scalable.
Figure 10 depicts a 3-by-3 crossbar array that incorporates
CMOS neurons and CMOS-memristor synapses. This figure
suggests that the proposed TSTDP bi-memristor synapses,
analogous to their former single memristor PSTDP coun-
terparts [20], can be integrated with CMOS neurons and
implement large scale neural arrays.

In the neural array presented in Fig. 10, each post-synaptic
neuron is driven by three pre-synaptic neurons connected to it
through three bi-memristor hybrid synapses. Here, the second
pre-synaptic neuron is assumed silent, hence it is replaced
by a voltage source of the value of the post-synaptic neuron
spiking threshold, VREF. The other two pre-synaptic neurons
generate regular spike trains with various inter spike intervals.
In addition, memristors in the three rows of the array are given
various initial weights, which results in difference in spiking
activities of their respective post-synaptic neurons.

Cadence simulation results that demonstrate changes in

synaptic weights across all memristors in the 3-by-3 cross-
bar array of Fig. 10 are shown in Fig. 11. In this figure,
the first row depicts weight changes corresponding to the
synapses in the first column of the array, i.e. related to the first
pre-synaptic neuron. The second row shows that no change
takes place on the memristive synapses in the second column.
This is due to the fact that the pre-synaptic neuron associated
with this column is silent and produces no spike. The third
row manifests weight changes occurring across the synapses
driven by the third pre-synaptic neuron. Here, various weight
change profiles are due to different initial weights set on the
synapses, and because of the different timings among post-
synaptic spikes generated by the post neuron in each row. As
expected, only potentiation occurs for the triplet memristors,
while both potentiation and depression are observed on pair
memristors of each hybrid synapse, due to various pre-post or
post-pre spike combinations.

VI. DISCUSSION AND CONCLUSION

Implementing area efficient, low-power, and large-scale
neural-inspired learning architectures can be facilitated using
memristors [23], [29]. Nanoscale dimensions, intrinsic non-
volatility, and ultra low power consumption [30] combine to
make memristors perfect candidates to implement synapses in
neuromorphic architectures. The learning performance of these
architectures is strongly governed by the plasticity mechanisms
their synapses implement [31], [32]. Therefore, careful con-
sideration must be taken when synaptic plasticity mechanism
of the targeted neural platform is being chosen.
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Fig. 9. Circuit structure and Cadence simulation results for a pre-post neuron combination. (a) A pre-synaptic neuron connected through a bi-memristor
hybrid synapse to a post-synaptic neuron, which produces two spikes (post and post1) with different properties. In the synapse structure, the multiplier-rectifier
circuit is shown by a square box containing a cross. This circuit along with the switching circuitry needed for triplet interaction are also shown here. (b)
Circuit simulation results generated using Cadence Specter for a train of pre-synaptic spikes. The post-synaptic neuron produces spikes depending on when
the pre-synaptic spikes have been integrated adequately to pass its threshold VREF. Here similar pre- and post-synaptic spike shapes to those utilized in [20]
have been used. The start of each pre or post-synaptic spike is composed of a pulse of the width of 1 ms, while the tail of the spikes have different lengths as
follows: pre spike tail = 80 ms, post spike tail = 130 ms, and post1 spike tail = 700 ms. In order to account for the ε parameter of Eq. 7, post1 was delayed
by 1 ms.

In terms of synaptic mechanisms, many studies have ex-
plored the implementation of the simple yet naive pair-based
STDP rule using memristive devices [19], [5], [6], [20], [21],
[22]. Only a few studies report implementations of other more
powerful synaptic plasticity mechanisms such as suppressive
STDP [10]. These mechanisms that have advanced synaptic
plasticity (learning) abilities compared to the PSTDP rule,
can improve the performance of the developed neuromorphic
architectures in learning and computation. In order to reach
higher learning capabilities in future neural architectures,
this paper proposes a novel CMOS-memristive design for
a higher order STDP rule, namely triplet STDP, which has
advantages over its previous CMOS [25], [33], [34] as well
as memristive [5], [6], [10], [20], [22] counterparts and
significantly improves learning capabilities of neuromorphic
synapses. The proposed synaptic circuit is composed of two
memristors along with several CMOS transistors to account for
the non-linearities of the triplet rule proposed by Pfister and

Gerstner [15]. Although this hybrid CMOS-memristive circuit,
compared to its memristive PSTDP counterparts [6], [20],
has higher complexity in terms of implementation, it offers
significantly improved learning performance. This higher per-
formance is achieved by adding a second (triplet) memristor,
as well as a CMOS multiplier/rectifier circuit.

Many previous CMOS STDP synapse circuits occupy a
large silicon area, even if the synaptic weight storage is not
considered. This could be improved by using a memristive
design such as the proposed circuit in this paper. For in-
stance, the presented PSTDP synapse in [33] occupies an
area of 145 × 31 µm2 in a 0.8 µm CMOS process, and
the PSTDP weight update design proposed in [34] takes up
131.3×139.7 µm2 in a 0.6 µm CMOS process. In addition, a
previous TSTDP circuit implemented by our group has an area
of 165 × 60 µm2 in a 0.35 µm CMOS process, from which
over 75 percent is occupied by five large capacitors [35]. Note
that these areas are only related to the weight update circuitries
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and do not include the permanent weight storage devices such
as memory cells and required data converters, that are not
needed in a memristive synapse design. The proposed design
that includes a simple CMOS Gilbert multiplier, a comparator
(for rectification) and six pass gates occupies ≈ 600 µm2 in
a 0.35 µm CMOS process, improving area by a factor of
10, while implementing a more powerful synaptic plasticity
algorithm.

Note that, presented results in Table I are obtained using
ideal behavioural models of multiplier/rectifier and switches.
However, the results shown in Figures 9 and 11 are generated
using non-ideal CMOS circuitry, which have limitations in
the range of inputs/outputs and cannot be deployed for all
the optimized values of pre- and post-synaptic spikes shown
in Table I. To address this issue, one can either scale down
the optimized amplitude values to the power rails of the
multiplier/rectifier circuit, or trade off with a higher error.

To further verify the proposed circuit, it was simulated in the
presence of noise with the bandwidth in the range of 100 Hz
to 1 KHz. Results demonstrate good stability in the synaptic
plasticity of the circuit in the presence of noise. In addition,
simulations were performed to measure power consumption
of the proposed hybrid synaptic circuit when responding to
trains of pre- and post-synaptic spikes for 5 seconds. The
average power consumption for the CMOS circuit (shown
in 9(a)) is 310 µW. This could be further optimised as power
consumption was not a design goal of this work.

As part of our experiments, we also investigated the effect
of spike fusion mechanism presented in [10] on the synaptic
plasticity ability of our proposed circuit, as well as the previ-
ous PSTDP circuit of [20]. These investigations demonstrate
positive effect, i.e. reducing NMSEs, of the spike fusion in the
performance of the PSTDP device of [20], while confirming
proper functionality and low NMSEs of the proposed TSTDP
device using fused spikes for almost all experiments. For
instance, note that in the circuit simulations demonstrated in

Figures 9 and 11, the post1 spikes are fused, i.e. start over
once the next post1 spikes arrive.

When operating a memristor one must ensure to a maximum
current (compliance) is not exceeded, because a high current
can destroy the device. To address this issue in the proposed
hybrid device, each synaptic memristor should have an NMOS
in series. The gate of the NMOS should be set to maximum
(so the NMOS is a closed switch) when reading the device
memristance, i.e. when only pre-synaptic spikes are available.
On the other hand, the gate should be set to a given voltage
when the synaptic weight change, i.e. write phase, is taking
place. This voltage is chosen to limit the current to the desired
compliance. The voltage can be conveniently provided row-
wise together with the post-synaptic pulse, similar to the
approach adopted in [36].

In addition to studies that merely propose devices to mimic
the plasticity of biological synapses [19], [6], [7], [17], some
previous studies have utilized memristive synaptic circuits
along with CMOS neurons in engineering applications such
as extracting visual features [2] and pattern recognition [37].
The majority of these applications employ memristive devices
with pair-based STDP learning capability. However, the use
of other more complex, yet more powerful learning rules such
as TSTDP, are yet to be explored. The TSTDP rule that is
the subject of our study is shown to not only inherit all the
properties of PSTDP, but also applicable to more complex
tasks such as direction and speed selectivity [27], which may
improve the image and pattern classification abilities of the
previously developed STDP circuits. This is an open question
for future research.

All the above mentioned experiments and verifications con-
firm that our bi-memristor hybrid synapse surpasses available
CMOS and memristive synaptic devices and circuits in terms
of area and synaptic plasticity strength, and hence can improve
the learning capabilities of large-scale neuromorphic systems
for learning and computation.
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