
L

D

a

b

c

d

a

A
A

K
A
L
I
R
P
T

1

o
s
T
fi
t
a
t

m
d
f
t
f
o
c

L
T

h
0

Vaccine 33 (2015) 7496–7505

Contents lists available at ScienceDirect

Vaccine

j o ur na l ho me  page: www.elsev ier .com/ locate /vacc ine

arge  screen  approaches  to  identify  novel  malaria  vaccine  candidates�

.  Huw  Daviesa,  Patrick  Duffyb,  Jean-Luc  Bodmerc, Philip  L.  Felgnera,  Denise  L.  Dooland,∗

University of California, Irvine, CA, USA
National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
Genocea Biosciences, Inc., Cambridge, MA,  USA
QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia

 r  t  i  c  l e  i  n  f  o

rticle history:
vailable online 1 October 2015

eywords:
ntigen discovery
arge-scale screen

a  b  s  t  r  a  c  t

Until  recently,  malaria  vaccine  development  efforts  have  focused  almost  exclusively  on a handful  of  well
characterized  Plasmodium  falciparum  antigens.  Despite  dedicated  work  by  many  researchers  on  different
continents  spanning  more  than  half a century,  a  successful  malaria  vaccine  remains  elusive.  Sequencing
of  the  P. falciparum  genome  has  revealed  more  than  five  thousand  genes,  providing  the  foundation  for
systematic  approaches  to  discover  candidate  vaccine  antigens.  We  are  taking  advantage  of  this  wealth
mmunomics
everse vaccinology
rotein microarrays

 cell antigens

of information  to discover  new  antigens  that  may  be  more  effective  vaccine  targets.  Herein,  we  describe
different  approaches  to large-scale  screening  of  the  P.  falciparum  genome  to identify  targets  of  either
antibody  responses  or T cell responses  using  human  specimens  collected  in Controlled  Human  Malaria
Infections  (CHMI)  or  under  conditions  of natural  exposure  in  the field.  These  genome,  proteome  and

roach
transcriptome  based  app
vaccine.

. Introduction

The Plasmodium falciparum genome project began in 1997 with
ptimism that it would lead to a better understanding of the para-
ite, better disease treatments, and an effective malaria vaccine.
he first complete annotated genome sequence was published
ve years later in 2002 [1], followed by the proteome [2,3] and
ranscriptome [4,5]. These datasets have become important tools
dvancing the field of malaria research with specific application for
he development of vaccines, drugs and diagnostics.

Prior to the genome sequencing era, only a few dozen Plas-
odium proteins had been identified. Therefore malaria vaccine

evelopment had been largely empirical, evaluating different plat-

orms and formulations that might improve protective efficacy of
he few known antigens. Those efforts were largely unsuccess-
ul [6]. The advent of the “genomic era” following the sequencing
f the genome of Haemophilus influenza in 1995 [7] and asso-
iated technological advances has resulted in the availability of
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es  offer enormous  potential  for  the development  of  an  efficacious  malaria
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large-scale datasets of genomic, proteomic and transcriptomic
information which have enabled a switch in focus from vac-
cine platforms to vaccine antigens. Conceptual changes driven
by more refined consideration of the specific target profile have
also occurred (http://www.who.int/immunization/topics/malaria/
vaccine roadmap/en/). Because the parasite has several develop-
mental stages with a dynamically changing transcriptome and
proteome, each discovery effort must be tailored to the purpose
of a specific vaccine. For example, a vaccine might seek to induce
antibodies against the surface proteins of infected erythrocytes, or
antibodies against the invasion proteins of blood stage merozoites,
or T cell responses against proteins expressed by intrahepatic
parasites. Likewise, there has been increasing recognition that an
effective vaccine will probably need to be multivalent, directed
against multiple antigens which may  be expressed in different
stages of the parasite life cycle.

One of the biggest hurdles in the development of an effective
vaccine against complex microorganisms that encode thousands of
proteins, such as the Plasmodium spp. parasite, is the identification
of the subset of key antigens that can be induce a protec-
tive immune response. Advances in high throughput sequencing

during the last decade have made possible “reverse vaccino-
logy” [8], which takes advantage of genome sequence data, and
applies bioinformatics to predict immunogenic vaccine antigen
candidates. Annotated proteomic features associated with anti-
genicity and vaccine efficacy, such as extracellular location, outer

tp://creativecommons.org/licenses/by/4.0/).



ccine 3

m
b
w
H
i
t
t
B
t
o
a
p

n
b
t
o
t
s
r
r

2
v

r
o
v
r
f
t
i
c
p
s
d
t
a
i
a
s

i
b
d
z
i
m
c
p
i

a
z
c
C
v
a

H
h
N
S

D.H. Davies et al. / Va

embrane proteins, signal peptides, and B- and T-cell epitopes can
e computationally predicted based on the amino acid sequence
ith a consequent reduction in the number of candidate antigens.
owever, although such antigen prediction can lower the prior-

ty of some potential candidates, it tends to produce large lists
hat require additional labor intensive and time consuming labora-
ory investigations to further narrow down the vaccine candidates.
ioinformatic approaches may  also fail to identify bone fide antigens
hat would otherwise appear promising using empirical meth-
ds. Additional efficient, high throughput screening approaches
re needed that can be accomplished on a whole genome scale to
rovide more empirical data to inform antigen selection.

A refinement of reverse vaccinology is the discipline of immu-
omics which integrates genomics and immunology by using
iological samples from humans or animals with immunity to the
arget pathogen to identify the subset of pathogen-derived proteins
r their epitopes that are recognized by the host immune sys-
em [9,10]. A critical component of these proteome-wide immune
creening assays is the use of clinically relevant selection crite-
ia, such as induction of antibodies of a specific subclass or T cell
esponses characterized by Th1 (or Th2) cytokines.

. Human models establishing the feasibility of a malaria
accine

A highly effective malaria vaccine would be a valuable tool to
educe the disease burden and is considered a critical component
f global eradication [11]. Optimism that an efficacious malaria
accine can be developed derives from two independent lines of
esearch. In the first instance, individuals living in areas where P.
alciparum is endemic and are repeatedly exposed to the parasite
hroughout childhood and adolescence develop naturally acquired
mmunity (NAI)1 which decreases the incidence and severity of
linical malaria episodes and prevalence and density of blood stage
arasitemia but does not prevent infection [12,13]. Moreover, pas-
ive transfer of immunoglobulin from individuals with NAI can
ecrease peripheral parasitemia and resolve clinical symptoms in
he recipient [14,15]. This suggests that antibody responses against
ntigens expressed in the blood-stage of the parasite life cycle are
mportant targets of NAI. Thus, profiling the antibody responses
ssociated with NAI and comparing to the profiles of age-matched
usceptible cases could inform vaccine antigen discovery.

The second line of evidence comes from studies showing that
mmunization with Plasmodium sporozoites that are attenuated
y radiation such that they can invade the hepatocyte but cannot
evelop beyond late liver stages (Radiation-Attenuated Sporo-
oites, RAS) can induce sterilizing immunity against challenge with
nfectious sporozoites in mice and humans [16–19]. Studies in

urine models indicate that T cell responses (especially CD8+ T
ells) directed against antigens expressed in the liver stage of the
arasite life cycle are the critical mediators of this sporozoite-

nduced immunity [19–22].
An alternative sporozoite vaccine modality to that described

bove is experimental immunization by mosquito bite with sporo-
oites from Plasmodium infected mosquitoes with concurrent

hloroquine administration (ChemoProphylaxis and Sporozoites,
PS-immunization; also known as infection–treatment–
accination, ITV) [23–25]. The RAS and CPS immunization regimens
re thought to induce a broad repertoire of T cell specificities,

1 Abbreviations: ATLAS, Antigen Lead Acquisition System; CHMI, Controlled
uman Malaria Infection; CPS, ChemoProphylaxis and Sporozoites; Hb,
emoglobin; IE, infected erythrocytes; ITV, infection–treatment–vaccination;
AI, naturally acquired immunity; NSR, not-so-random; RAS, Radiation-Attenuated
porozoites.
3 (2015) 7496–7505 7497

recognizing multiple antigens expressed by the Plasmodium spp.
parasite during hepatic development [26]. There is evidence that
the breadth of response is evolving during the course of immu-
nization [27]. A better understanding of the breadth of the cellular
immune response against Plasmodium is therefore central to the
development of an effective prophylactic vaccine against malaria.

3. Full- and partial-proteome immune-profiling of
Plasmodium infections in humans

The human vaccine models described above present a unique
opportunity to characterize the molecular determinants under-
pinning the strong immunity they induce. In the case of RAS or
CPS regimens, for example, the measure of anamnestic (or recall)
responses of T cells from immunized subjects against a panel of
P. falciparum antigens and their correlation to clinical outcome is
possible. For these kinds of differential screenings, the ideal situ-
ation is presented when the rate of sterilizing immunity to CHMI
is less than 100% (a common outcome), so that decoy responses,
immunodominant and/or pre-existing responses can be identified
and discounted from future consideration. The main challenges
in performing these types of full proteome screens for Plasmo-
dium spp. derive from the size and complexity of their genomes.
The genome of P. falciparum contains about 5300 genes [1]. Many
proteins are encoded by complex multi-exons genes sometimes
several kilobases in length and contain long stretches of repeti-
tive sequences, a consequence of the organism’s low GC content.
Consequently, cloning and expression of antigenic targets from
Plasmodium spp. parasites is particularly difficult and efforts to
express Plasmodium proteins on a large scale using conventional
expression systems have been largely unsuccessful [28–31]. Even
at the individual level, expression of full-length proteins has been
challenging. For instance, the leading RTS,S vaccine comprises only
a fragment of CSP and successful expression of the entire pro-
tein in amounts compatible with the development of a full-length
CSP vaccine has only recently been achieved in a combinatorial
Pseudomonas fluorescens expression system [32]. Despite these lim-
itations, expression libraries containing a significant fraction of the
P. falciparum proteome have been successfully built and screened
for the identification of antibody responses [33–35] (see below).

4. Antibody-based proteomic studies to antigen discovery

To inform antibody-based antigen discovery, we and others
have been developing proteome-wide approaches that are cost-
effective, rapid, and independent of predictive algorithms, with the
aim of reducing the laboratory time and cost associated with vac-
cine and serodiagnostic antigen discovery. In particular, a rapid
high throughput approach to efficiently clone and express each
individual gene in the entire microorganism’s genome using an
E. coli cell-free transcription/translation expression system was
developed at Antigen Discovery, Inc. and the University of California
at Irvine [36,37]. The proteome is interrogated with sera from
infected and vaccinated individuals to identify immunoreactive
vaccine antigen candidates associated with protection. Similarly,
antibody response profiles in disease cases and healthy controls can
be compared to identify antigens with the most accurate predictive
diagnostic value.

This protein microarray platform was originally developed using
malaria and vaccinia virus (∼220 genes) as the model pathogen

[36]. Since then the National Institutes for Health (NIH), the
National Institute for Allergy and Infectious Diseases (NIAD) and
the Bill and Melinda Gates Foundation (BMGF) have provided sup-
port for antigen discovery against more than 30 human pathogens
including M.  tuberculosis [38], P. falciparum [33,34,39], P. vivax, B.
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elitensis [40], C. trachomatis [41], F. tularensis [42,43], B. pseudo-
allei [44,45], C. burnetii [46–48], B. burgdorferi [49], Salmonella

nterica typhi, R. prowazekii,  R. rickettsii, O. tsutsugamushi,  B. hense-
ae [37], L. interrogans, T. gondii [50], C. albicans [51], Schistosoma

ansoni [52], Schistosoma japonicum [52], and viruses including
accinia [36,53–55], monkeypox, Herpes 1 & 2, Varicella zoster, HPV
56], HIV, Dengue, influenza, West Nile and Chikungunya. In total,
e have cloned more than 60,000 genes from infectious microor-

anisms, printed the encoded proteins on 25,000 microarrays and
robed the arrays with 12,000 serum specimens determining dis-
ase associated antibody profiles in people infected with each
gent. The individual proteins printed on these arrays capture anti-
odies present in serum from infected individuals and the amount
f captured antibody can be quantified using fluorescent secondary
ntibodies. In this way, a comprehensive profile of antibodies that
esult after infection or exposure can be determined that is charac-
eristic of the type of infection and the stage of disease [49,54,55].

This unbiased systems biology approach offers a powerful
eans of identifying vaccine antigens, surrogate biomarkers asso-

iated with protection, and serodiagnostic antigens of pathogen
xposure. Arrays can be produced and probed in large numbers
>100 serum specimens/day) while consuming small quantities of
ndividual sera (∼2 �l of sera/patient). This permits assessing the
epertoire of antibodies created in response to infection or vacci-
ation from large collections of individual patient sera, and can be
sed to perform large-scale sero-epidemiological, longitudinal and
ero-surveillance analyses not possible with other technologies.
mmunoglobulin isotypes and IgG subtypes can be independently
etermined. Moreover, microarrays offer the potential to express
ll proteins of an infectious agent and may  allow for identification
f novel antigens, otherwise undetectable by methods like 2-D gels
hat are highly biased by microbial protein expression patterns.

When we began investigating this approach more than 10 years
go, there was a lack of empirical data to answer basic ques-
ions about differences in breadth, intensity, kinetics, and longevity
f immune responses induced by antigens derived from differ-
nt infectious agents. Questions such as: what percentage of the
ntire microorganism proteome is recognized by the immune sys-
em? Are there differences in antibody reactivity profiles between
ndividuals? Do different host species exposed to the same agent
iffer in reactivity profiles? Can antibody profiles predict disease
tage? Are there characteristic antibody profiles that distinguish
ram negative and gram positive bacteria, from responses induced
y eukaryotic parasites? Can antigenicity be predicted based on
he amino acid sequence alone? Today some generalizations about
ntigen recognition can be made, supported by rapidly expanding
mpirical data sets.

.1. Protein microarray studies of naturally acquired immunity

Several published malaria proteome microarray studies have
een aimed at understanding the phenomenon of NAI to malaria.

 seminal paper by Crompton et al. [34] showed that natu-
ally exposed individuals from Mali produce antibodies against
undreds of P. falciparum antigens. Both children and adults have
ore reactivity after the high transmission season, and adults have
ore reactivity than children. When adolescent children who sur-

ived the malaria season without experiencing symptoms were
ompared with age-matched children who had a malaria episode,
9 antigens were identified that were associated with protec-
ion from clinical malaria [34]. Interestingly, Ab reactivity against

everal conventional lead vaccine candidates (CSP, LSA-3, MSP-1,
SP-2, and AMA-1) did not discriminate between protected and

usceptible children. Similar observations from a low-transmission
etting of the Peruvian Amazon showed a limited set of P. falcipa-
um protein antigens associated with the development of naturally
3 (2015) 7496–7505

acquired clinical immunity [57]. Overall this approach is leading
the discovery of many novel candidate vaccine antigens.

The high throughput nature of the microarray platform (requir-
ing ∼2 �l of serum) lends itself to sero-epidemiological surveys.
One conclusion from worldwide epidemiological studies using pro-
tein microarray serology is that the breadth and intensity of the
antibody response is proportional to the level of parasite exposure
in the environment. For example, Baum et al. compared protein
microarray seroreactivity from individuals living in Kenya at differ-
ent elevations [58]. In lowland areas exposure to parasite infected
mosquitoes is much more intense than in the highlands, and the
breadth and intensity of the antibody response is also elevated
in the lowland population. Similar relationships between para-
site exposure and the serological response have been observed
across Africa, Papua New Guinea and Peru (unpublished). In a dif-
ferent study in Kenya, the influence of HIV infection on immunity
to malaria was investigated, since HIV-malaria co-infections are
common in many areas but are poorly understood at the immuno-
proteomic level. In that study, individuals from areas of high and
low endemicity had different antibody profiles, as seen elsewhere,
but surprisingly HIV infected patients with normal CD4+ counts
had the same reactivity against malaria antigens as HIV negative
individuals leading to the conclusion that early stage HIV infected
patients are not at risk of losing NAI [59]. Individuals with advanced
AIDS were not examined in that study.

P. falciparum erythrocyte membrane protein 1 (PfEMP1), which
mediates parasite sequestration and host immune evasion, is con-
sidered an important antigen in the context of NAI [60,61]. In the
first protein microarray based study of variant antigens in malaria,
an array was produced containing 123 var domains derived from
P. falciparum field isolates from Papua New Guinea [60]. The data
showed that the anti-PfEMP1-DBL� antibody responses increase in
diversity, magnitude, and prevalence with age. In another study,
reactivity to 21 PfEMP1 fragments on a protein microarray was
measured in serum samples from Malian children aged 1–6 years
and adults [61]. Seroreactivity to PfEMP1 fragments was higher in
adults than in children. In a different study, differential recogni-
tion of terminal extracellular P. falciparum VAR2CSA domains were
determined by printing a protein microarray which included five
overlapping fragments of the 3D7 VAR2CSA extracellular region
and probing this with sera from multigravid, malaria-exposed
Malian women (manuscript in press). Women  with a history of at
least one pregnancy had antibody responses against four of these
fragments and had stronger reactivity against the two distal frag-
ments than did nulliparous women, children, and men from Mali,
suggesting that the C-terminal extracellular VAR2CSA domains are
a potential focus of protective immunity.

Protein microarrays have also been applied to study the effect
of sickle-cell trait on the P. falciparum specific antibody response
in a cohort of naturally exposed individuals from Mali [62]. Het-
erozygous states of hemoglobin (Hb) A and HbS (HbAS, sickle-cell
trait) or HbC (HbAC) protect against P. falciparum malaria but the
mode of protection is unclear. One hypothesis is that HbAS and
HbAC accelerate the acquisition of immunity to malaria, possi-
bly by enhancing Pf-specific antibody responses. However, in this
study, protein microarray data showed there were no significant
differences in antibody profiles between individuals with normal
or sickle cell traits [62].

The array technology has been also applied to compare antibody
profiles between the Fulani and Dogon ethnic groups in Mali, which
differ in prevalence of symptomatic clinical malaria (manuscript in

submission). Elevated IgG and IgM antibody levels were reported
in the genetically resistant Fulani people, compared to the more
susceptible sympatric Dogon population.

The collective message from all these studies is that naturally
acquired immunity is associated with elevated antibodies against
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undreds of blood stage antigens. A vaccine that boosts antibody
esponses against a collection of these blood stage antigens may
llow children to reach protection from symptomatic malaria at
n earlier age. The waning immune response in adults residing in
reas undergoing elimination could also be boosted with a vaccine
f this kind.

.2. Protein microarray studies of sporozoite induced immunity

In our initial studies with the protein microarray platform, we
eported results from a clinical trial of experimental immunization
ith radiation attenuated sporozoites in which some of the volun-

eers were protected from an experimental challenge and others
ere not [33,35]. Microarrays containing 2320 P. falciparum pro-

eins were used to determine the profile of antibody responses in
olunteers immunized with sporozoites administered by the bites
f irradiated mosquitoes. Immunized volunteers reacted against

 collection of P. falciparum proteins more strongly than mock
nfected or naïve individuals. After being challenged with viable
porozoites from infected mosquitoes (Controlled Human Malaria
nfection, CHMI), the antibody profile in the protected subjects
id not significantly change, indicating that immunization pro-
uced a sterilizing infection-blocking immune response (supported
y PCR evidence) that blocked maturation of the organism at an
arly stage post-challenge, and no new antigens were presented
o the immune systems as a result of the challenge. In contrast,
n unprotected subjects antibody titers increased against dozens
f additional proteins after challenge, indicating that new blood
tage antigens were presented to the immune system as blood
tage parasitemia progressed during the course of clinical malaria.
o determine whether antibody responses at the time of challenge
ould differentiate between protected and unprotected volunteers,
he corresponding protein microarrays profiles were compared.

 panel of 19 pre-erythrocytic stage antigens was identified as
trongly associated with sporozoite-induced protective immunity;
6 of these antigens were novel and have been independently iden-
ified in sporozoite and/or liver stage proteomic or transcriptomic
atasets [35]. Reactivity to any single antigen did not correlate with
rotection but there was a highly significant difference in the cumu-

ative signal intensity of multiple antigens between protected and
ot protected individuals [35]. These data provide the first evidence
hat sterile protective immunity against malaria is directed against

 panel of protective P. falciparum antigens rather than a single
ominant antigen. These results also have important implications
or vaccine development, suggesting that an efficacious malaria
accine should be multivalent and targeted at a select panel of key
ntigens, many of which have not been previously characterized.

This vaccination modality which uses the bites of irradiated P.
alciparum-infected mosquitoes to administer the irradiated sporo-
oites is not a practical pharmaceutical product. Taking on this
ranslational research challenge, Sanaria, Inc. (Gaithersburg, MD)
as developed the capacity to produce vialed aseptic, purified, and
ryopreserved radiation-attenuated and non-attenuated P. falcipa-
um sporozoites in a highly regulated, cGMP compliant, industrial
etting [63]. Several CHMI clinical trials have been conducted
hich show the vaccine to be safe and capable of inducing protec-

ive immunity after intravenous administration [64–68]. Protein
icroarray analysis of some of these specimens is in progress.
Analysis of specimens collected from individuals experimen-

ally immunized by CPS-immunization (ChemoProphylaxis and
porozoites) has also been conducted. In those studies, a down-

elected proteome array containing 809 of the reactive antigens
ecognized in other cohorts [33–35] has been probed with plasma
pecimens from CPS-immunized individuals and the responses
ompared with that of specimens from adult individuals from
enya with NAI. CPS and NAI both induce potent antibody
3 (2015) 7496–7505 7499

responses against a large number of P. falciparum antigens, but
while many antigens overlap in the two  profiles, other antigens
are distinctly different [69]. Thus, NAI induces antibodies against
hundreds of antigens derived from blood stage parasites, but since
chloroquine prevents replication of blood stage parasites there are
many antigens recognized in the NAI profile that are not recognized
by CPS immunized individuals. Conversely, CPS immunized sub-
jects have antibodies against hundreds of antigens that are lacking
in individuals with NAI, and are postulated to represent antigens
associated with pre-erythrocytic stages of infection [69].

4.3. Protein microarray studies of pre-erythrocytic vaccine
induced immunity

The leading malaria vaccine candidate is the GlaxoSmithKline
vaccine RTS,S/AS01, a hybrid virus-like particle formulation of
recombinant partial-length circumsporozoite protein and hepatitis
B surface antigen expressed in Saccharomyces cerivisiae, adjuvanted
in liposomes with MPL® and QS21 immunostimulants [70]. This
vaccine protected ∼50% of volunteers against experimental chal-
lenge 2 weeks after the last immunization, and 22% of volunteers
when challenged at 6 months [71]. Recently, results of the Phase
3 study of RTS,S in sub-Saharan Africa have been reported, with a
demonstrated reduction in clinical malaria in the target age group
of infants aged 6–12 weeks at first vaccination of only 18% follow-
ing the 3-dose primary schedule or 26% following a booster dose
with RTS,S at 18 months; efficacy in children aged 5–17 months was
slightly higher (28% and 36%, respectively) [72]. Protein microarray
analysis of specimens from this field trial showed that the breadth
and magnitude of the antibody response to both liver and asexual
blood stage antigens was  significantly lower in RTS,S vaccines than
in controls [73,74] consistent with a partial effect associated with
reduction of blood stage parasitemia in the vaccinated population
[72].

5. T cell-based proteomic studies to antigen discovery

Methods for the identification of T cells antigens have been
reviewed in detail recently [75]. In the case of malaria, two main
approaches have been explored to identify P. falciparum antigenic
targets of T cell responses induced by experimental immunization
or natural exposure to malaria.

5.1. Epitope-based prediction algorithms

One approach to identifying targets of T cell responses has been
the use of computerized algorithms that predict putative CD8+

or CD4+ T cell epitopes from proteins translated from genomic
sequence [76,77]. A key component of this approach is the iden-
tification of HLA supertypes that account for the majority of HLA
polymorphisms such that a limited number of HLA supertypes
are representative of all racial and ethnic populations [78]. These
supertypes share largely overlapping peptide binding specificities,
allowing the definition of motifs that predict the binding affinity of a
given peptide sequence to specific HLA class I and class II molecules
[79,80]. Synthetic peptides representing the predicted CD8+ and
CD4+ T cell epitopes can be then synthesized and screened for
immune recognition using specimens from individuals experimen-
tally immunized or naturally exposed to the pathogen of interest.
The accuracy of these epitope predictions was validated in the
malaria model for both CD8+ and CD4+ T cell responses, using

specimens from RAS immunized and naturally exposed individuals
[81,82].

The initial proof-of-concept study for this epitope-based
approach to T cell antigen discovery, also conducted in the malaria
model, identified a number of proteins recognized by T cells from
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AS immunized volunteers [83]. One of those proteins has been
hown to be a target of cross-species protection in murine mod-
ls ([84], in preparation). Subsequently, a more comprehensive
tudy has been undertaken. A subset of ∼1500 P. falciparum pro-
eins representing the complete set of putative proteins thought
o be expressed in the pre-erythrocytic stage of the P. falciparum
arasite and representing approximately 30% of the P. falciparum
enome were identified. For each putative protein, class I and class
I epitopes restricted by multiple HLA supertype alleles were pre-
icted by computerized algorithms. A set of 20 peptide sequences
hich bound with high affinity to three MHC  class I supertypes

nd the degenerate HLA-DR class II supertype were synthesized
nd screened for immune reactivity with specimens from immune
r semi-immune individuals ([83,85]; manuscript in preparation).
roteome-wide or sub-proteome screens of T cell targets of CPS
r RAS are ongoing or pending. Results to date show that T cell
esponses to the Plasmodium parasite are broadly distributed in the
roteome, rather than narrowly focused on a few immunodom-

nant antigens and epitopes, providing experimental validation
f the concept that malaria vaccines should be designed to tar-
et multiple antigens rather than one or a few antigens. Studies
lso identified a prioritized set of antigens which are highly T cell
eactive and therefore would be predicted to be excellent target
ntigens for inclusion in a vaccine designed to prevent Plasmodium
nfection.

.2. Antigen Lead Acquisition System (ATLAS)

An alternative T cell antigen discovery platform has been devel-
ped in recent years to identify potential antigenic targets using

 pan-proteomic screening approach [86] (Fig. 1). With this tech-
ology, dubbed ATLAS (Antigen Lead Acquisition System), the full
roteome of a pathogen is expressed as individual clones in bacte-
ial hosts (E. coli) which are co-cultured with professional antigen
resenting cells (APC) derived from the blood of selected human
onors. As the APC ingest and process the E. coli-enclosed pro-
eomic library, they process and present peptide epitopes in the
ontext of MHC  class I or class II molecules that can be recog-
ized by autologous T cells derived from the same patient. For
HC  class I presentation, the E. coli co-express a cytoplasmic vari-

nt of Listeria monocytogenes listeriolysin O which forms pores in
he acidified endosome which provides access for the expressed
rotein to the cytosol for processing and presentation though the
roteasome/TAP pathway [87,88]. If recognition events occur (hit),

 phenotypic readout of T cell activation can be measured (e.g. pro-
uction of IFN-�). This approach offers a marked benefit over the
se of overlapping peptide pools in that it decreases the number of
eterminants that need to be screened against (e.g. antigens) while
t the same time ensuring that the epitopes are representative of
he subject’s antigen processing machinery and are always pre-
ented in the optimal MHC  restriction context. When this platform
s used to analyze blood samples from suitably stratified patient
ohorts for their responses to a given pathogen, the pattern of
esponses can be used to infer the identity of pathogen proteins
ssociated with productive, non-productive or even deleterious
mmune responses. To date, this platform has been applied success-
ully to identify T cell antigens from several microbial proteomes,
ith sizes ranging from a few dozen (HSV-2) to a few thousand

xpressed genes (S. pneumoniae, C. trachomatis) [86,89,90]. Phase 2
linical trials are currently evaluating a candidate vaccine against
neumococcus comprised of antigens identified using this technol-

gy.

Genocea Biosciences Inc. (Cambridge, MA)  has built a full-length
xpressed protein library encompassing a significant fraction of
he proteome of P. falciparum (currently about 1500 expressed
roteins). In order to minimize the requirements for blood
3 (2015) 7496–7505

samples, the library was tailored to genes that have been asso-
ciated with the pathogen’s hepatic development stage, through
analysis of proteomic and/or transcriptomic data for the murine
strain P. yoelii and for which clearly identified orthologs existed
in the published genome of P. falciparum [91,92]. This library has
been further refined using a high quality proteome analysis of P. fal-
ciparum sporozoites as well as liver stage parasites differentiated
in humanized mice (S. Kappe, personal communication). Prelimi-
nary screens with retained samples from RAS and CPS-immunized
subjects demonstrate that this technology is capable of identify-
ing effector memory (TEM) responses against specific P. falciparum
antigens (data unpublished). The nature of these types of screens,
combined with the low frequencies of circulating P. falciparum-
specific TEM cells requires a fairly large number of samples to be
analyzed before antigenic hits can be confirmed with statistical
confidence. The completion of upcoming clinical trials involving
RAS and CPS regimens and the availability of additional samples
in late 2015 hopefully will confirm initial trends observed with the
ATLAS technology. Finally, building a more complete library for this
screening platform may  ultimately be needed given the evidence
that cross-stage antigens (e.g. blood stage) could be important for
protection. This should prompt further technological developments
to decrease the blood volume requirements while at the same time
maintain the ability to detect low frequency antigen-specific TEM
cells. These further developments may  prove timely and useful for
a wide range of immune-profiling projects.

6. Transcriptomic approaches to antigen discovery

The premise for transcriptome-based discovery is that pathogen
life cycle stages or phenotypes that are targets of vaccines should
upregulate a specific subset of genes encoding protective antigens.
As an example, increased transcription of genes encoding antigenic
proteins has been shown for Neisseria meningitidis serogoup B and
led to the identification of new vaccine candidates that protected
mice against meningococcus and have been included in the human
meningococcal vaccine [93,94].

In the case of malaria, parasite transcriptomes can be exploited
in two  ways for vaccine antigen discovery [95]. First, where a spe-
cific parasite stage or parasite phenotype is the target for a vaccine
strategy, then differential transcriptional profiling can be used to
define its discrete antigens. Second, where an immune response
has been associated with protection, expression libraries that rep-
resent the translated products of the parasite transcriptome can be
screened for recognition by protective antibodies or T cells.

6.1. Deciphering differential transcriptomes to identify vaccine
targets

P. falciparum gene expression during different parasite life cycle
stages was  first profiled by microarrays [4,5]. In one study of cDNA
from nine stages (sporozoite stage, seven asexual erythrocytic
stages, two  gametocyte stages), 4557 of 5159 predicted genes were
detected [4]. Genes with similar or related functions clustered in
expression profiles, and cross-hybridization studies indicated that
most genes are well conserved. Subsequent studies showed that
field isolates could be reliably studied by microarray [96] or by RNA
sequencing studies [97]. While most genes are largely invariant
across strains, some highly variable genes (e.g. var,  rif,  stevor, and
msp2 genes) have generally reduced signals by microarrays [98,99].

Because the host immune system drives sequence variation, these
variable genes may  include important vaccine candidates. In par-
ticular, var genes encode large variant antigens (200- to 400-kDa)
implicated in adhesion to vascular receptors [100], and therefore
believed to impart parasite virulence. There are 59 var genes in
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Fig. 1. T cell antigen discovery using ATLASTM for Plasmodium falciparum. (A) ATLASTM screening in the context of subjects immunized with live-attenuated malaria vaccination
regimen. Blood from subjects immunized with RAS or CPS is collected prior to CHMI and Peripheral Blood Mononuclear Cells (PBMC) are isolated using conventional methods
(Ficoll  gradient). Adherent cells are recovered for differentiation into Monocyte – Derived Dendritic Cells (MDDC) which will serve as antigen presenting cells (APC) in
the  ATLAS assay, while CD4 and CD8 T cells subsets are amplified separately following bead purification. At completion of differentiation, MDDC are plated on libraries
of  E. coli bacteria expressing pre-erythrocytic Plasmodium falciparum antigen identified from sporozoites and/or liver stages. APC are allowed to process the bacteria and
their  Plasmodium cargo for autologous presentation in the context of MHC  Class I or II to T cells derived from the same subject. After incubation, culture supernatants are
recovered and analyzed for the presence of secreted cytokines (IFN-�) which act as biochemical marker of antigen recognition and T cell activation. Patterns of T cell activation
are  compared across subjects and immunization cohorts allowing differential identification of T cell antigens associated with protection from CHMI. (B) Detail of antigen
presentation to CD4+ (left panel) and CD8+ (right panel) T cells in the ATLASTM assay. Plasmodium protein expressing E. coli clones are phagocytized by differentiated MDDC,
which  will lead to their degradation in late phagolysosomes and presentation of degradation peptides to autologous CD4 T cells on MHC  Class II molecules (left panel). When
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he 3D7 P. falciparum genome and similar numbers in other strains
101].

Placental malaria vaccines provide a good example for blood
tage antigen discovery by transcriptomic approaches. Infected
rythrocytes (IE) bind CSA in the placenta, but do not bind CD36,
CAM-1, or other endothelial receptors that commonly support
inding of other parasites [102]. Women  become resistant to

lacental malaria as they acquire antibodies against placental IE
103]. This suggests that IE express a finite number of antigens
r epitopes during pregnancy that are not displayed during child-
ood infections. qPCR of all known var genes in CSA-selected

aboratory parasites revealed that PFL0030c, now known as var2csa,
cidification of the late phagolysosome leads to formation of pores in the vesicles’
content, followed by processing by the proteasome and presentation to autologous

was transcribed at higher levels than in non-selected parasites
[104]; var2csa is also upregulated in isolates from pregnant women
[105,106].

Subsequently, microarray and RNA sequencing studies have
extended our knowledge of the placental IE transcriptome.
Microarray studies of parasites collected from pregnant Tanza-
nian women  identified a suite of eight upregulated invariant genes,

and confirmed upregulation of var2csa [96]. The genes included
in this suite predict proteins with transmembrane and/or sig-
nal sequences as well as putative export (PEXEL or VTS) motifs
[107,108], as might be expected for candidate vaccine antigens
against placental IE. Among these, PFD1140w has a PEXEL sequence,
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hile PFL0050c and PFI1785w each have a VTS motif. PFI1785w
elongs to a P. falciparum family composed of 16 uncharacterized
ypothetical genes, most of which have predicted export sequences
www.PlasmoDB.org). Two genes are members of the HISTa gene
amily, consisting of 42 paralogs in P. falciparum that encode pro-
eins with putative PEXEL sequences [109]. Finally, PF10 0013 has
n atypical PEXEL motif with isoleucine rather than leucine at
esidue 3, and has been localized to the Maurer’s cleft by proteomic
nalysis [110].

Results obtained by microarray have been confirmed by
ext-generation sequencing of RNA (RNAseq). Because it yields
igital signal, RNAseq displays a much broader dynamic range
han microarrays, without the problems of saturation or cross-
ybridization [111]. Further, RNAseq can sometimes provide

nformation on transcription even where underlying genomic
equence is not fully defined. Therefore, RNAseq is better suited
or studies of P. falciparum field isolates, including studies of their
ariable surface antigens where full sequences are missing. The
obustness of the RNAseq technique has been demonstrated by
ts ability to identify the known placental IE transcriptome [97].
his includes the variant antigen var2csa. Four other invariant
enes previously identified by microarray studies [96] were also
mongst the most upregulated genes in RNAseq studies of IE
rom pregnant women (PFB0115w and 3 members of the variant
ene family of exported pHIST proteins (PFD1140w, PFL0050c, and
AL13P1.470)).

.2. Serologic screening of transcriptome expression libraries to
dentify vaccine targets

In contrast to placental malaria where the parasite phenotype is
lear, the pathogenesis of severe malaria in children remains largely
nknown, and differential transcriptome studies have been less
uccessful for identifying vaccine candidates. Two  DNA microar-
ay studies failed to identify parasite genes whose expression was
elated to disease severity [112,113]. RNAseq of clinical P. falcipa-
um isolates using not-so-random (NSR) primers identified a subset
f 4 parasite transcripts that distinguished parasites infecting chil-
ren from those infecting pregnant women, but these RNAseq
tudies did not assess whether these genes played a role in severe
alaria syndromes [97].
In place of differential transcriptomic approaches, severe

alaria vaccine antigen discovery has recently employed sero-
ogic screening to survey the transcriptome. Human residents of
ndemic areas develop protective immunity that limits parasitemia
nd disease. Using a cDNA library–based differential screening
ethod [114] and plasma and epidemiologic data from a Tanzanian

irth cohort [115], the protein products of the P. falciparum blood-
tage transcriptome were surveyed. Plasma from “resistant” and
susceptible” 2-year-old children, defined by their control of blood
tage parasite density, were used to identify targets of protective
ntibody responses [116]. This approach identified two previously
nknown hypothetical genes as well as MSP-7, a known vaccine
andidate [117].

Among the hypothetical genes, PfSEA-1 was shown to local-
ze to the schizont/parasitophorous vacuole membrane, Maurer’s
lefts, and the inner leaflet of the RBC membrane in schizont-
nfected RBCs. Antibodies to PfSEA-1 significantly attenuated
arasite growth by arresting schizont egress from infected RBCs,
nd immunization with the PbSEA-1 ortholog conferred protec-

ion to mice against a lethal P. berghei ANKA challenge. Naturally
cquired antibodies to PfSEA-1 were associated with significant
rotection from severe malaria in young Tanzanian children, and
ith significant protection against parasitemia in adolescents and

oung adults in Kenya [116].
3 (2015) 7496–7505

These studies strongly support PfSEA-1 as a candidate for
pediatric falciparum malaria, as well as the general approach of
differential screening of cDNA libraries with carefully curated
serum sets. The second hypothetical protein identified by sero-
logic screening was GARP (glutamic acid rich protein). Interestingly,
GARP was  earlier identified by RNAseq as one of four parasite trans-
cripts specifically associated with parasites infecting children [97].
Because GARP is only encoded in the P. falciparum and P. reichenowi
genomes, future characterization of its potential as a vaccine target
will await studies that use the human parasite, possibly in monkey
models that support P. falciparum infection.

7. Antigen targets of protective immunity

It should be noted that only a fraction of the reactive antigens
discovered using high throughput screening approaches are likely
to be protective vaccine candidates. Identifying such candidates
requires both the careful choice of input samples used for high
throughput antibody or T cell based screening, as well as down-
selection filtering of the output list of antigens discovered. A simple
comparison of disease cases (exposed) with disease-free (unex-
posed) controls could reveal both protective antigens and other
antigens that play no role in protection. In the context of vaccine
design for malaria, for example, it is desirable to directly com-
pare the response of individuals who  are protected versus those
who are unprotected, as in for example, profiling P. falciparum
reactivity in sera from children in Mali [34] or controlled human
malaria infection following immunization with radiation attenu-
ated sporozoites [35]. Those studies identified 46 antigens that
were preferentially recognized by asymptomatic children as com-
pared with age-matched children who suffered from malaria, and
16 antigens that were associated with infection-blocking immunity
against sporozoite challenge, respectively. After high throughput
screening, protection can be assessed in animal models, such as
the stringent P. yoelii rodent model of malaria. Usually, however,
the number of candidates identified by in vitro high through-
put screening is large and additional filtering is required prior to
in vivo assessment, since immunizing animals with selected anti-
gens, peptides or peptide pools and evaluating protection is only
possible for limited numbers of targets. Computational filters can
be used to rank-order candidate antigens from large lists of poten-
tial antigens of interest. In the case of antibody targets, predicted
surface-location or presence of signal peptides, transmembrane
domains or PEXEL motifs may  qualify a novel candidate for fur-
ther investigation. Unlike antibodies which need to access surface
structures, protective T cell epitopes can be located anywhere in the
proteome of the pathogen, and there are currently no validated in
silico algorithms which can predict T cell reactivity from sequence
data. However, factors such as the absence of human homology
determined by blasting the pathogen sequence against the human
proteome database can be very informative. Also, for both anti-
bodies and T cells, conservation of the antigen target between
P. falciparum strains and even among all Plasmodium species are
would be desirable characteristics for a vaccine with widespread
coverage.

8. Future directions for malaria antigen discovery

While more work remains to be done on both asexual blood
stages and sporozoite stages for vaccine antigen discovery, other

life cycle stages also provide opportunities. Liver stage parasites
are known to be a target of protective immunity in animal and
human studies, but the relative inaccessibility of these parasites
in the large mass of the liver has allowed only incomplete suc-
cess to define transcriptomes and proteomes [92]. Further, the



ccine 3

p
p
[
f
a
b
w
b
t
a

t
i
g
i
v
s
e
B
s
a
c
f
c
w

9

s
t
t
n
b
b
a
h
g

A

c
l
t
a
S
I
P
P
n
C
K
d
c
g
r
I
b
M
f
e

C

a

D.H. Davies et al. / Va

rotective immune response to pre-erythrocytic parasites is com-
lex, and may  involve antibody, CD4+ T cells, and CD8+ T cells
20,21]. This complicates the effort to discern candidate antigens
rom the liver-stage of the parasite life cycle, especially those not
lso expressed in sporozoite or asexual blood stages, or to use anti-
ody to screen for protective antigens. Overcoming this challenge
ill aid in the identification of specific target antigens recognized

y RAS-induced protective immune responses, which are thought
o be mediated predominantly by CD8+ T cell responses directed at
ntigens expressed in the liver stage [19,21,22,65].

Another area of increasing interest over the past few years is
he development of a malaria vaccine that can block transmission,
n response to the challenge by Bill and Melinda Gates in 2007 for
lobal malaria eradication [118] and the subsequent Malaria Erad-
cation Agenda (http://malera.tropika.net). Transmission-blocking
accines that target parasite antigens expressed during mosquito
tages represent a more tractable target for antigen discovery
fforts, owing to the greater accessibility of these parasite stages.
ecause antibody mediates the protective effect of these vaccines,
erologic screening of sexual stage cDNA libraries offers a promising
pproach to new antigen discovery. Serum sets for such studies may
ome from animals vaccinated with whole parasite preparations
rom the relevant stages (gametocytes, gametes, zygotes), or may
ome from naturally exposed individuals who acquire antibodies
ith transmission-blocking activity.

. Summary

Herein, we have described a series of distinct large-scale
creening approaches to malaria vaccine antigen discovery which
ake advantage of the rich information in genomic, proteomic and
ranscriptomic datasets. Such approaches enable the discovery of
ew antigenic targets of antibody or T cell responses which can
e prioritized for clinical evaluation. In our opinion, such genome-
ased approaches offer enormous potential for the development of

 vaccine against a parasite which has co-evolved with the human
ost for thousands of years and which remains a major problem for
lobal public health.
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