
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This file is part of the following reference: 

 

Thibaut, Loïc (2015) Population regulation and diversity-

stability relationships in ecological time-series. PhD thesis, 

James Cook University. 

 

 

 

Access to this file is available from: 

 

http://researchonline.jcu.edu.au/46590/ 
 

 
The author has certified to JCU that they have made a reasonable effort to gain 

permission and acknowledge the owner of any third party copyright material 

included in this document. If you believe that this is not the case, please contact 

ResearchOnline@jcu.edu.au and quote 

http://researchonline.jcu.edu.au/46590/ 

ResearchOnline@JCU 

http://researchonline.jcu.edu.au/46590/
mailto:ResearchOnline@jcu.edu.au
http://researchonline.jcu.edu.au/46590/


 

 

 

Population regulation and diversity-stability relationships in ecological 

time-series 

 

 

 

Thesis submitted by 

Loïc Thibaut 

 

 

In April 2015 

For the degree of Doctor of Philosophy 

in the College of Marine and Environmental Sciences, 

James Cook University



Acknowledgements 

  i 

Acknowledgements 

 

To the memory of Andrée Thibaut and Paulette Frache 

 

First and foremost I want to thank Sean Connolly for his unconditional support 

throughout this project. Sean has been the most remarkable mentor one could wish for, 

teaching me all the tools of the trade: ecological theory, ecological modelling, scientific 

writing, teaching, responding to picky reviewers and communicating with journal 

editors, among many other things. Sean’s steady support and constant availability while 

I was experiencing serious health issues has been essential to the completion of my 

PhD. 

I am profoundly grateful to Terry Hughes for supporting me since our very first 

encounter in France a long time ago through to the final stages of this project. Terry is 

an incredibly busy academic, yet I have always found his door open when I was in need 

of assistance. 

I thank René Galzin, Michel Kulbicki and Jocelyne Ferraris for their help during 

the early stages of this project. 

I am grateful to the members of the Ecological Modelling Research Group for 

providing an intellectually stimulating environment in which any new idea could be 

critically assessed. I especially thank the old companions of the lab: Shane Blowes, 

Paulina Cetina Heredia, Erin Graham and Mizue Hisano. 



Acknowledgements 

ii 

I owe many thanks to all the individuals that, over the years, supported me with 

their friendship and companionship: Emanuelle Botte, Condo Costello, Clement Fay, 

Marie Mawois, Vanessa Messmer, Veronique Mocellin, Morgane Moreau, Lucy Owen, 

Marie Roman, Matthew Vickers, Cecilia Villacorta Rath and Stefan Walker. 

Lastly, I thank my family, my father Gilbert Thibaut and my sisters Véronique 

Thibaut and Corinne Thibaut for their endless support and encouragement. 

 



Statement of the Contribution of Others 

  iii 

Statement of the Contribution of Others 

1.1. Contribution of all authors to co-authored papers 

Chapter 2 

Loïc Thibaut conceived the project, designed and performed the analyses and wrote the 

first draft of the manuscript. 

Sean Connolly assisted in developing the approach and argument, assisted in the 

interpretation of the results, and made suggestions on and edits to multiple drafts of the 

paper. 

Hugh Sweatman provided the data, provided expert advice for classifying herbivorous 

fishes into functional groups, assisted in the interpretation of the results, and provided 

helpful comments on and edits to the manuscript. 

Chapter 3 

Loïc Thibaut conceived the project, derived the mathematical results, co-developed the 

approach and argument, designed and performed the analyses, and wrote the first draft 

of the manuscript. 

Sean Connolly co-developed the approach and argument and made suggestions on and 

edits to multiple drafts of the paper. 



Statement of the Contribution of Others 

iv 

Chapter 4 

Loïc Thibaut conceived the project, designed and performed the analyses, and wrote the 

first draft of the manuscript. 

Sean Connolly assisted in developing the approach and argument and made suggestions 

on and edits to multiple drafts of the paper. 

1.2. Other contributions 

This thesis was funded by the ARC Centre of Excellence for Coral Reed Studies, an 

Australian Professorial Fellowship to Sean Connolly, and James Cook University. I was 

supported by a Postgraduate Research Scholarship co-funded by the School of Marine 

Biology and James Cook University. This thesis was conducted under the supervision 

of Sean Connolly and Terry Hughes. 

Chapter 2 

 The graphics team at the Australian Institute of Marine Science prepared Figure 

2.1. 

 D. Bellwood, J. H. Choat, R. Galzin, T. P. Hughes, A. MacNeil, and two 

anonymous reviewers provided valuable comments and suggestions at various 

stages of the project. 

 M. Kulbicki kindly provided access to his database on reef fish biomass. 

 The staff of the Long Term Monitoring team at the Australian Institute of 

Marine Science collected the data with support from AIMS, the CRC Reef 



Statement of the Contribution of Others 

  v 

Research Centre and the Australian Government’s Marine and Tropical Sciences 

Research Facility. 

 The High Performance Computing unit of James Cook University facilitated 

numerical simulations. 

Chapter 3 

 M. Huston, S. Keith, M. Loreau, J. Martiny, B. Phillips, S. Walker and an 

anonymous reviewer provided helpful comments on the manuscript 

The members of the Ecological Modelling Discussion Group at James Cook University 

provided advice and feedback during the development of the ideas presented in chapters 

2, 3 and 4 

  



Statem
ent of the Contribution of O

thers 

vi 

Contributions of all authors to papers (signed) 

 



Abstract 

  vii 

Abstract 

Biodiversity can provide insurance against ecosystem collapse by stabilizing 

assemblages that perform critical ecological functions (the “portfolio effect”). However, 

the extent to which this occurs in nature, and the importance of different mechanisms 

that generate portfolio effects, remain controversial. The overall aim of this thesis was 

to develop a quantitative approach to estimate the extent to which diversity stabilizes 

communities, and to apply this approach to herbivory on coral reefs. 

In chapter 2, I examined herbivory on the Great Barrier Reef. On coral reefs, 

herbivory helps maintain coral dominated states, so volatility in levels of herbivory has 

important implications for reef ecosystems. In this chapter, I used an extensive time 

series of abundances on 35 reefs of the Great Barrier Reef of Australia to quantify the 

strength of the portfolio effect for herbivorous fishes. Then, I disentangled the 

contributions of two mechanisms that underlie it: compensatory interactions, and 

differential responses to environmental fluctuations (“response diversity”), by fitting a 

community-dynamic model than explicitly includes terms for both mechanisms. I found 

that portfolio effects operate strongly in herbivorous fishes, as shown by nearly 

independent fluctuations in abundances over time. Moreover, I found strong evidence 

for high response diversity, with nearly independent responses to environmental 

fluctuations. In contrast, I found little evidence that the portfolio effect in this system 

was enhanced by compensatory ecological interactions. My results show that portfolio 

effects are driven principally by response diversity for herbivorous fishes on coral reefs. 

I conclude that portfolio effects can be very strong in nature, and that, for coral reefs in 
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particular, response diversity on coral reefs may help maintain herbivory above the 

threshold levels hypothesized to trigger regime shifts. 

In chapter 3, I developed a theoretical framework to understand diversity-

stability relationships (DSRs) in nature, in order to overcome shortcomings in past 

approaches that became apparent during the work for Chapter 2. Specifically, DSRs are 

analysed using a variety of different population and community properties, most of 

which are adopted from theory that makes several restrictive assumptions that are 

unlikely to be reflected in nature. Here, I constructed a simple synthesis and 

generalization of previous theory for the DSR. I showed that community stability is a 

product of two quantities: the synchrony of population fluctuations, and an average 

species-level population stability that is weighted by relative abundance. Weighted 

average population stability can be decomposed to consider effects of the mean-

variance scaling of abundance, changes in mean abundance with diversity, and 

differences in species’ mean abundance in monoculture. My framework makes explicit 

how unevenness in the abundances of species in real communities influences the DSR, 

which occurs both through effects on community synchrony, and effects on weighted 

average population variability. This theory provides a more robust framework for 

analysing the results of empirical studies of the DSR, and facilitates the integration of 

findings from real and model communities.  

Observation error is pervasive in ecological time-series and can have important 

implications for estimating and identifying the drivers of stability in community time-

series. In chapter 4, I used a model which explicitly accounts for observation error to 

assess the strength of evidence for population regulation in time-series from the Global 

Population Dynamics Database (GPDD). The extent to which populations in nature are 
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regulated by density-dependent processes is unresolved. While experiments 

increasingly find evidence of strong density-dependence, unmanipulated population 

time series yield much more ambiguous evidence of regulation. In this chapter, I re-

examined the evidence for density-dependence in time series of population sizes in 

nature, by conducting an aggregate analysis of the populations in the GPDD. I found 

that density-dependence is likely over-estimated when it is fitted independently for each 

population, even when accounting for observation error. However, in the aggregate, 

very strong evidence for weak, but non-zero, density-dependence remains. Rather than 

falling into categories of density-dependent and density-independent dynamics, 

differences in support for density-dependence are likely the result of differences in 

statistical power. My findings suggest that the observational record does indeed contain 

strong support for density-dependence, but that its intensity is likely weaker than is 

detected in laboratory and field experiments. 

The findings from my latter two chapters have important implications for the 

assessment of diversity-stability relationships from the analysis of ecological time 

series. Specifically, the framework developed in chapter 3 shows that the DSR can be 

partitioned into an effect of synchrony and an effect of population variability. 

Consequently, the role and importance of several ecological drivers of the DSR can be 

disentangled by considering separately their effect on community synchrony and 

population variability. Finally, chapter 4 illustrates that observation error should be 

explicitly accounted for to ensure sound inferences about the processes driving 

fluctuations in species’ abundances. 
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Chapter 1. Introduction 

Understanding what drives the stability of ecological systems is of considerable 

theoretical and practical interest and has been a central question in ecology since the 

inception of the discipline (Elton 1927). For example, the Newfoundland cod fishery 

collapsed unexpectedly in 1994 despite being actively managed by the Canadian 

Department of Fisheries and Oceans, with dramatic economic and ecological 

consequences (Roughgarden and Smith 1996). More recently, concerns about the 

consequences of the worldwide loss of biodiversity has sparked renewed interest in  the 

relationship between diversity and stability in ecosystems (Tilman and Downing 1994, 

Tilman 1996, Ives and Carpenter 2007). Comprehending what drives the stability of 

ecological systems is therefore essential for our understanding of their functioning and 

critical to ensure our capacity to manage them against collapse in an increasingly 

anthropogenically influenced world. 

Defining stability has been a key challenge for research on the stability of 

ecological systems. A plethora of concepts and definitions associated with stability have 

been introduced (Pimm 1984, Ives and Carpenter 2007). The difficulty of defining 

stability is three-fold. Firstly, ecological systems can display a range of radically 

different dynamics. For example, some systems have a single stable equilibrium point. 

In such systems, the time needed to return to equilibrium after perturbation has been 

used as stability metric (Pimm 1984). Other systems can exhibit more complex 

dynamics, such as periodic cycles (Krebs et al. 2001), chaos (Costantino et al. 1997) or 

alternate stable states (Scheffer et al. 2001) and appropriate measures of stability vary 

accordingly (Ives and Carpenter 2007). Secondly,  the nature of the environmental 
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perturbation regime is key to defining stability. For example some studies consider that 

environmental conditions fluctuate frequently and randomly around average (constant) 

conditions (e.g. Ives et al. 2003) while others focus on the response of the system to 

rare, catastrophic perturbations (e.g. Mumby et al. 2007). Thirdly, the definition of 

stability depends on the quantity of interest. For example, some studies focus on the 

stability of the population size of a focal species, while others consider the dynamics of 

an aggregated property of a community, such as the total abundance or the species 

richness. Consequently, the choice of a stability measure is dictated by the assumptions 

we make about the dynamics of the system, the variable of interest and the 

environmental regime considered. In this thesis, I use the temporal variability of the 

total abundance of a functional group or guild as an inverse measure of stability (cf. 

Tilman 1996, Doak et al. 1998). 

My original overall goal was to develop a quantitative approach to estimate the 

extent to which diversity stabilizes communities, and to apply this approach to 

herbivory on coral reefs. I began, in chapter 2, by examining herbivory on the Great 

Barrier Reef. 

On coral reefs, herbivorous fishes play a critical role on ecosystem function by 

mediating competition between corals and macroalgae for space. Vacant space on the 

substrate opened by recurrent perturbations such as storms, cyclones or bleaching, is 

colonized by macroalgae under conditions of low herbivory, leading to inhibition of 

coral recruitment and coral overgrowth. Once initiated, this process is hard to reverse 

and can result in large scale phase-shifts where previously coral-dominated systems 

become dominated by algae (Hughes 1994, Bellwood et al. 2004). Consequently the 
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magnitude of the temporal variability of herbivory is important to the control of 

macroalgae on coral reefs and to their maintenance in a coral-dominated state.  

Asynchrony in the fluctuations of species’ abundances is the key mechanism 

underlying the stabilizing effect of species diversity on aggregate community properties 

(Doak et al. 1998, Tilman et al. 1998, Yachi and Loreau 1999, Loreau 2010). Therefore 

I used community asynchrony to quantify the strength of the diversity-stability 

relationship for herbivorous fish. Community asynchrony, in turn, is driven by two 

mechanisms: competitive interactions among species and differential responses to 

environmental fluctuations (response diversity). Competition between species can 

generate strong asynchrony in species’ fluctuations because a decrease in abundance of 

one species is likely to promote an increase in competitor abundance through 

competitive release. Similarly, if species respond differently to environmental 

fluctuations, then a year in which conditions are poor for one species will not 

necessarily be poor for other species. Consequently response diversity promotes 

asynchrony in species’ fluctuations. 

The extent to which interspecific ecological interactions and response diversity 

contribute to the diversity-stability relationship is contentious and has never been 

assessed in natural assemblages. Theoretical studies suggest that interspecific 

competition has little influence on the DSR, because the stabilizing effect resulting from 

competition-driven asynchronous dynamics is compensated by the destabilizing effect 

of competition on population variability (Ives et al. 1999, Ives and Hughes 2002). In 

contrast, a recent study suggests that competition has a destabilizing effect (Loreau and 

Mazancourt 2013). The quantitative approach I developed in chapter 2 is the first study 
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that disentangles the relative contributions of ecological interactions and response 

diversity to the diversity–stability relationship in a natural ecological community. 

Using an extensive dataset of time-series of abundances on 35 reefs of the GBR, 

I first quantified the strength of asynchrony in temporal fluctuations of abundance 

among herbivorous fishes. Then, by fitting a model of community dynamics that 

explicitly includes terms for compensatory interactions and response diversity, I 

estimated their relative contribution to the stabilising effect of species diversity. My 

results show that response diversity is the main driver of the stabilizing effect of species 

diversity for herbivorous fishes on the GBR, with important implications for the 

management of coral reefs.  

1.1. Population synchrony and community stability 

The approach I developed in chapter 2 is based on the positive relationship between 

community asynchrony and the stabilizing effect of species’ diversity on the total 

abundance of the community. This relationship has been established in many empirical 

and theoretical studies (Doak et al. 1998, Tilman et al. 1998, Yachi and Loreau 1999, 

Loreau 2010). However there is no consensus about how community asynchrony should 

be measured and how it contributes to the diversity-stability relationship. This is the 

question I address in chapter 3.  

In chapter 3, I developed a theoretical framework to understand diversity- 

stability relationships in nature. Following years of theoretical debate about the 

relationship between diversity and stability in ecological systems, biodiversity 

experiments have found that aggregate community properties, such as total abundance 
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or productivity tend to fluctuate less in species-rich communities, a phenomenon 

commonly termed the portfolio effect. Theoretical studies have identified four 

determinants of the portfolio effect: community asynchrony, evenness of abundance 

among constituent species, the relationship between total community abundance and 

diversity and the way in which temporal variability in abundance scales with its mean. 

However, predictions from portfolio effect theory have been increasingly at odds with 

results from empirical studies, leading to calls for the development of a new theory 

which relaxes several of the restrictive assumptions made by existing theory (Grman et 

al. 2010, Mikkelson et al. 2011). 

Generalizing existing theory, I produce a simple model of portfolio effects that 

shows that community variability is the product of two quantities: community 

synchrony and weighted average population variability. This relationship is robust to 

arbitrary violation of the evenness assumption and is much more general than previous 

models of the portfolio effect. Weighted average population variability can in turn be 

decomposed to consider effects of the mean-variance scaling of abundance, changes in 

mean abundance with diversity and differences in species’ mean abundance in 

monoculture. Using this framework, I show how evenness in the abundances of a 

community’s constituent species influences the diversity-stability relationship through 

combined effects on community synchrony and weighted average population stability. 

Finally, I illustrate how this framework helps to resolve the apparent contradictions 

between conflicting results from empirical studies and portfolio effect theory. 

Community synchrony, weighted average population variability and the way they 

change with diversity are the key elements to understand diversity-stability 

relationships. Most empirical studies do not report these quantities, although most have 
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collected the data to do so, suggesting that a re-examination of existing data could 

improve our understanding of diversity-stability relationships in natural communities. 

1.2. Observation error and quantifying ecological stability 

Ecological time-series of population counts inevitably contain errors of measurement, 

where the population size recorded is different from the actual true population size. 

Ignoring observation error in the analysis of time series can bias parameter estimates 

and compromise the  inferences drawn from fits of population and community dynamics 

models to data (De Valpine and Hastings 2002, Polansky et al. 2009). For example, 

ignoring observation error in studies of population regulation leads to over-estimation 

of  the strength of density dependence (Freckleton et al. 2006). In population viability 

analyses, extinction risk can be under-estimated when observation error is ignored 

(Nadeem and Lele 2012). Similarly, ignoring observation error can potentially have 

important implications for estimating and identifying the drivers of stability in 

community time-series. For example, errors of observation among species are typically 

assumed to be uncorrelated, as would be the case if environmental conditions do not 

affect the observation process. Consequently, ignoring observation error could 

spuriously decrease the strength of correlation between species responses to 

environmental fluctuations, resulting in an over-estimate of response diversity. 

In chapter 4, I used a model which explicitly accounts for observation error to 

assess the strength of evidence for population regulation in ecological time-series from 

the Global Population Dynamics Database (GPDD). The extent to which natural 

populations are regulated has been a contentious issue in ecology for nearly a century. 

The debate seemed to come to an end when several studies found strong evidence for 
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population regulation in large collections of time-series of population sizes (Brook and 

Bradshaw 2006, Sibly et al. 2007). However, more recently, the conclusions of these 

studies have been challenged on the ground that they did not acknowledge for 

uncertainty in abundance estimates (observation error) (Knape and de Valpine 2012, 

Lebreton and Gimenez 2013). Observation error is pervasive in ecological time-series, 

and, unless it is explicitly accounted for, it can lead to the detection of strong negative 

density-dependence even though density-dependence is weak or absent (Freckleton et 

al. 2006). Indeed, a recent analysis of the patterns of density dependence in the GPDD 

found that the strength of evidence for population regulation decreased substantially 

when observation error is accounted for, suggesting that density-dependence has been 

overestimated in early analyses. Some authors have even suggested that the patterns of 

density-dependence previously detected in the GPDD could be entirely driven by 

observation error (Holmes et al. 2007). Alternatively, the reduced rate of detection of 

statistically significant density-dependence could result from the loss of statistical 

power associated with the explicit incorporation of observation error. Indeed the 

detection of density-dependence in single time-series of population counts with 

observation error is notoriously difficult, owing to the large uncertainty in estimates of 

the strength of density-dependence (Dennis et al. 2006, Dennis et al. 2010). To 

overcome this difficulty, I conduct an aggregate analysis of the GPDD, considering 

evidence for density-dependence across all time-series. 

My population by population  results match closely those of previous studies: 

statistically significant density-dependence is detected in only 16% of the time-series. 

However, in the aggregate, I find very strong evidence for density-dependence, even 

though its intensity is weaker than suggested by averaging estimates from separate fits 
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to individual time-series. This indicates that density-dependence might be over-

estimated when based on analysis of a single time-series in isolation, even though 

observation error has been accounted for. Moreover, I find no evidence that individual 

time-series fall into categories of density-dependent and density-independent dynamics, 

suggesting that differences in support for density-dependence are likely the result of 

differences in statistical power. Overall my findings suggest that the observational 

record does indeed contain strong support for density-dependence, but that its intensity 

is likely weaker than is detected in laboratory and field experiments.   

 

Chapter 2 has been published in Ecology (Thibaut et al. 2012), © 2012 by the 

Ecological Society of America. Chapter 3 has been published in Ecology Letters 

(Thibaut and Connolly 2013), © 2012 Blackwell Publishing Ltd/CNRS. Chapter 4 has 

been submitted for publication. Chapter 2 has been co-authored with Sean Connolly and 

Hugh Sweatman, and chapter 3 and 4 have been co-authored with Sean Connolly. 
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Chapter 2. Diversity and stability of herbivorous fishes on coral reefs 

2.1. Introduction 

The relationship between species diversity and stability of ecological systems 

has been heavily debated in ecology since the middle of the last century, when the 

paradigm that diversity begets stability became established (e.g. MacArthur 1955). 

While this view was challenged by subsequent theoretical work (May 1973), increased 

availability of empirical data has revealed that species richness stabilizes aggregate 

community properties such as productivity or total community abundance, when 

stability is defined as a tendency to fluctuate less, a phenomenon commonly termed the 

“portfolio effect” (Tilman 1996). These empirical findings motivated the development 

of new theory for the relationship between diversity and community stability  (Doak et 

al. 1998, Tilman et al. 1998, Yachi and Loreau 1999). This work has identified 

asynchrony in the fluctuations of species’ abundances as the key mechanism underlying 

the stabilizing effect of species diversity. When species do not fluctuate in perfect 

synchrony, aggregate community properties are stabilized. The stabilizing effect is 

stronger as asynchrony between species increases, and as the number of species 

increases.  

The extent of asynchrony in fluctuations of abundance is determined by two 

basic kinds of processes: species-species interactions, such as competition or 

facilitation, and species-environment interactions, such as differences in species’ 

responses to environmental fluctuations. For example, competition between species can 

generate negative covariance (i.e., strong asynchrony) in two species’ abundances over 

time, because a decrease in the abundance of one species is likely to promote an 
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increase in competitor abundance through competitive release. Similarly, if species 

respond differently to environmental fluctuations, then a year in which conditions are 

poor for one species will not necessarily be poor for other species; consequently, 

increases and decreases in abundance caused by environmental stochasticity are likely 

to be less pronounced at the assemblage level than at the level of individual species 

(hereafter I term this phenomenon “response diversity” following Elmqvist et al. 2003). 

To determine the relative importance of these different phenomena for the overall 

strength of the portfolio effect, a mechanistic approach is required that explicitly 

includes terms that characterize how species interactions and covariances in species’ 

responses to environmental fluctuations influence community dynamics (Cottingham et 

al. 2001, Ives and Carpenter 2007).  

Disentangling the components that contribute to asynchronous population 

fluctuations in natural communities (hereafter termed “portfolio effect” for brevity) 

raises particular challenges.  Firstly, the direction and strength of species interactions in 

species-rich communities cannot be evaluated by experimental approaches for simple 

logistical reasons. For example, more than 50 species of herbivorous fishes are common 

on the coral reefs of the Great Barrier Reef; it is clearly impossible to assess interaction 

strengths for all possible species pairs by experimental manipulation of fish densities. 

Therefore, broad-scale assessment of interaction strengths at the assemblage level must 

be approached indirectly, by fitting models of community dynamics that explicitly 

incorporate species interactions. In fact, even with such a modeling approach, the 

number of species that can be included explicitly is limited by the quantity of data 

available. This is because the number of estimated parameters increases with the square 

of the number of interacting populations, whereas the quantity of data (number of time 
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series of abundances) increases only linearly with the number of interacting 

populations. Thus, the more interacting populations that are to be included in a model, 

the longer the time series required in order to estimate all the model parameters. 

Because even the longest ecological time series seldom exceed 20 years, this effectively 

limits the approach to a handful of species. Finally, most communities have a large 

number of rare species.  Species with low abundances are more likely not to be 

recorded, producing proportionately large observation error and large numbers of zero 

abundances in the community time series, which hampers fitting community models to 

abundance data. This chapter addresses these difficulties using a multiple-scale 

approach in which species that have similar ecological functions are grouped together 

for analysis. First, I quantify the portfolio effect and analyze ecological interactions and 

response diversity among these functional groups. I then conduct a similar analysis 

within functional groups by modeling the ecological interactions and response diversity 

between subsets of species within functional groups.  This approach allows me to 

examine the effects of species-level interactions on the portfolio effect, while avoiding 

the “curse of dimensionality” that precludes the estimation of interaction terms and 

environmental covariances for all pairs of species. 

On coral reefs, herbivorous fishes can help to maintain coral cover by limiting 

the growth of macroalgae that compete with corals for space (Bellwood et al. 2004). 

These fishes can be classified into three functional groups. “Territorial Grazers” are 

site-attached fishes that actively defend their territories against other herbivores. 

“Roving Grazers” are relatively mobile herbivores that move around the reef in large 

schools feeding on superficial epilithic and macroalgae. “Scrapers” are highly mobile 

fishes that consume epilithic algae and remove sediment by scraping the limestone 
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surface of the reef. These three functional groups constitute the most important grazers 

of macroalgae on coral reefs (Sammarco and Carleton 1981, Choat 1991, McClanahan 

et al. 2003, Mumby et al. 2006). Moreover, theoretical models and empirical work both 

indicate that, when herbivory declines below threshold levels, macroalgae can rapidly 

colonize space made vacant by coral mortality. This in turn inhibits recruitment of 

corals, prompting a shift from dominance by corals towards dominance by macroalgae 

(Birkeland 1977, Hughes 1994). Moreover, such shifts may be difficult to reverse: there 

is some evidence that herbivorous fishes have a reduced ability to control macroalgae 

once macroalgae become highly abundant (Mumby et al. 2007, Hoey and Bellwood 

2011). Thus, compensatory dynamics between functional groups of herbivorous fishes 

(i.e., a portfolio effect), due either to ecological interactions between groups or to 

differences in their responses to environmental fluctuations, can contribute to temporal 

stability in the control of macroalgae, which is critical to the maintenance of coral reefs. 

However, some experimental work indicates that control of macroalgal abundances is 

more effective where functional diversity of herbivores is higher (Burkepile and Hay 

2008), suggesting that compensatory dynamics within functional groups (i.e., 

simultaneous stabilization of territorial grazing, roving grazing, and scraping via 

portfolio effects) are also likely to be important to the control of macroalgae on coral 

reefs.  

In this chapter, I estimate the strength of the diversity-stability relationship for 

herbivorous fishes on Australia’s Great Barrier Reef, and I develop and apply a new 

approach to quantify the relative contributions of ecological interactions and response 

diversity to this relationship. My analyses provide the first quantitative picture of the 

strength of the portfolio effect and the importance of response diversity on coral reefs. 
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Also, more broadly, they illustrate how the various mechanisms that give rise to the 

portfolio effect can be disentangled in species rich communities. Specifically, I estimate 

spatial variation in the overall strength of the portfolio effect, of ecological interactions, 

and of response diversity, both between and within herbivore functional groups. I then 

examine the overall magnitude of each of these and determine how spatial variation in 

the magnitude of the portfolio effect is explained by corresponding variation in the 

magnitude and direction of ecological interactions, and by the extent of response 

diversity.  

2.2. Material and Methods 

Overview of approach 

I analyze an extensive time-series of abundances of herbivorous fishes from 35 

reefs on the Great Barrier Reef (Sweatman et al. 2008). The same statistical approach is 

used to analyze the portfolio effect both between functional groups and within 

functional groups. For each analysis, three statistics related to the diversity-stability 

relationship are calculated for each of 35 study reefs. The first statistic is an index of 

community synchrony obtained by quantifying the covariance in fluctuations of 

abundance between or within functional groups. The second statistic is a community-

level index of interactions, which indicates whether the interactions between functional 

groups, or between species within functional groups, tend to be competitive or 

facilitative, and how strong those interactions are.  The third statistic is an index of the 

synchrony of the responses to environmental fluctuations. The latter two statistics 

represent the mechanisms potentially driving the diversity-stability relationship, and 

must be estimated by fitting a model that explicitly characterizes their effects on 
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community dynamics. Finally, I use a multiple regression to quantify how much 

variation in the strength of the overall portfolio effect among sites is explained by 

spatial variation in response diversity and the direction and magnitude of species 

interactions. 

Data 

The data come from the surveys of fish communities and benthic cover 

conducted by the Australian Institute of Marine Science’ Long Term Monitoring 

Program (LTMP) of the Great Barrier Reef (Sweatman et al. 2008). The sampling 

design and operational procedures are fully described elsewhere (Halford and 

Thompson 1996) and only summarized here. My dataset is based on 35 reefs spread 

across a large proportion of the Great Barrier Reef province (Figure 2-1). The surveys 

started in 1993 and are continuing, although the number of years of surveys varies from 

reef to reef (see Table A-1 in Appendix A). At each reef, there are three distinct sites on 

the north-east flank of the reef. Each site contains five permanently marked 50m 

transects running parallel to the reef crest. Trained observers assess the abundance of 55 

species of herbivorous fishes by underwater visual census; this includes most of the 

larger herbivorous fishes that can be effectively surveyed in this way. Two transect 

sizes are used: small, sedentary species are surveyed on 1 m wide transects, while 

larger, more mobile species are surveyed on 5 m wide transects. Therefore, abundances 

were standardized to density for analysis. 
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Figure 2-1.—Map of the Great Barrier Reef of Australia showing the location of the 35 

reefs included in this study. 
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I classified the 55 surveyed species of herbivorous fishes into one of the three 

functional groups according to their behavior and feeding mode, based on the literature 

(see Table A-2 in Appendix A.1). The territorial grazers were dominated by 

pomacentrid species that actively cultivate selected filamentous algae within their 

territories. However, this group also included two acanthurid species, Acanthurus 

lineatus and Acanthurus nigricans, which are also territorial and aggressive towards 

other herbivores, at least on the Great Barrier Reef (Choat and Bellwood 1985, Randall 

1996). Field observations also suggest that A. lineatus may cultivate algae within its 

territories (D. Bellwood, personal communication). Roving grazers included all other 

acanthurid herbivores, along with siganids. These species are less site-attached than the 

territorial grazers, do not aggressively defend territories against other species of 

herbivore, and forage over larger areas, typically in schools. Scrapers consisted of all 

parrotfish species (formerly Scaridae, now a sub-group of the Labridae: Cowman et al. 

2009): these are also highly mobile herbivores, but unlike roving grazers, these species 

forage by scraping the limestone surface of the reef with their beak-like teeth, removing 

epilithic algae and sediment in the process. 

Quantifying portfolio effects 

By definition, the degree of stabilization provided by the co-existence of 

multiple functional groups is caused by asynchrony of fluctuations in abundance of 

those groups over time (Gonzalez and Loreau 2009). To quantify the strength of this 

portfolio effect, I use the average pair-wise cross-correlations between abundances of 

the functional groups over time, a standard approach for estimating community-wide 

patterns of synchrony (Bjornstad et al. 1999). I term this the “Synchrony Index” (SI), 
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rather than “portfolio effect Index”, because it is inversely related to the strength of the 

portfolio effect. 

Mechanisms underlying portfolio effects 

To disentangle the effect of between-group ecological interactions from that due 

to differences in responses to environmental fluctuations, I fitted our time-series to a 

model of community dynamics that explicitly included terms for each of the 

mechanisms. More specifically, I tested two models involving different functional 

relationships for within- and between-group interactions: the Lotka-Volterra model, 

which assumes a linear relationship between abundance and per capita growth rate, and 

the Gompertz model (Ives et al. 2003), which assumes a linear relationship between 

log-abundance and per capita growth rate. Both visual inspection of model fits and 

formal model selection strongly favored the Gompertz model (see Appendix A.2), so I 

used the Gompertz model in all of my analyses. 

Specifically, my model is a multivariate, discrete time, stochastic version of the 

Gompertz model (hereafter GMAR [Gompertz Multivariate Autoregressive Model]). 

This model was first proposed by Ives et al. (2003) for estimating community stability 

from time-series data. It is well-suited to this study because the model explicitly 

incorporates between-group and within-group interactions, as well as correlated 

responses to environmental fluctuations. However, as noted by Ives (2003), observation 

error can bias the estimates for ecological interactions and response diversity. 

Therefore, to disentangle observation error from responses to environmental 

fluctuations, I allowed the per-capita growth rate to vary from year to year by including 

a random effect in the model specification. For example, if a given year is a bad year, 

we expect the abundance to show a dip (represented by a negative random effect on 



Chapter 2 – Diversity and stability of herbivorous fishes on coral reefs  

18 

population growth). Conversely, in a good year we expect the population growth rate to 

be higher than otherwise predicted by the model, represented by a positive random 

effect. In my model, I treated the response to environmental fluctuations as a random 

effect on the site-level per capita increase in abundance, and treated variation in growth 

rate within sites as residual noise unexplained by the model, such as observation error. 

Note that this random-effects approach to response diversity means that, for each site, I 

estimated each group’s year-to-year variance in abundance, and the between-group 

covariance in abundance, that is due to environmental fluctuations. This gave an overall 

picture of the variation in abundance that is due to response diversity, but it makes no 

assumptions about the specific environmental causes of particular ups and downs in 

abundance. 

Given the hierarchical structure of the dataset, ecological interactions can be 

parameterized at different levels: equivalent interactions for all reefs in the dataset, 

different interactions for each reef, or different interactions for each site within each 

reef. To determine the optimal parameterization, I fitted alternative models representing 

each of those possibilities and used Akaike’s Information Criterion (AIC) to identify the 

model best supported by the data. AIC strongly favored the model in which ecological 

interaction parameters were the same for different sites on the same reef, but differed 

between reefs. 

One significant advantage of the GMAR model is that it is a linear 

autoregressive model on a logarithmic scale. Thus, the change in abundance of group i 

between time t and time t+1 on reef r at site s, transect u, 𝑛𝑖,𝑟,𝑠,𝑢
𝑡 , is modeled as: 

log(𝑛𝑖,𝑟,𝑠,𝑢
𝑡+1 ) − log(𝑛𝑖,𝑟,𝑠,𝑢

𝑡 ) = 𝑎𝑖,𝑟 + ∑ 𝑏𝑖,𝑗,𝑟 log(𝑛𝑗,𝑟,𝑠,𝑢
𝑡 )

3

𝑗=1

+ 𝑟𝑖,𝑟,𝑠
𝑡 + 𝑒𝑖,𝑟,𝑠,𝑢

𝑡  
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The left side of the equation is the per capita growth rate for group i, ai,r is the 

intrinsic growth rate of group i at reef r, bi,j,r represents the effect of group j on the 

growth rate of group i at reef r, 𝑟𝑖,𝑟,𝑠
𝑡  is the random perturbation to the intrinsic growth 

rate of group i due to environmental fluctuations at time t, on reef r, site s, and 𝑒𝑖,𝑟,𝑠,𝑢
𝑡  is 

the residual variation in per capita growth rate (e.g., due to observation error). I 

assumed that both 𝑟𝑖,𝑟,𝑠
𝑡  and 𝑒𝑖,𝑟,𝑠,𝑢

𝑡  were normally distributed with mean zero. 

Between-groups analysis.—Once the model had been fitted to the data, I 

calculated two statistics representing the two processes underlying the diversity-stability 

relationship: ecological interactions and response diversity. Firstly, I obtained a 

community-wide index of interactions between groups by averaging the between-group 

interaction strengths estimated from the model (i.e., for every reef r, I averaged all bi,j,r 

with 𝑖 ≠ 𝑗 ). The resulting between-group interaction index, hereafter “Interaction 

Index” (II), indicates the nature of the interactions in the community: a negative value 

indicates that competitive interactions are dominant in the community, while a positive 

value indicates that facilitative interactions are dominant (note that, like the Synchrony 

Index, larger, positive values of this index tend to weaken the portfolio effect). In order 

to compare the magnitude of between-group interactions and within-group interactions, 

I also calculated a within-group interaction index, hereafter “Density-dependence 

Index” (DDI), by averaging the within-group interaction strengths (i.e., for every reef r, 

I averaged all bi,i,r). A negative value would indicate that the within group interactions 

tended to be compensatory (i.e., individuals reduced one another’s per-capita growth 

rates). Secondly, for every reef, I estimated the degree of synchrony between groups in 

the responses to environmental fluctuations.  I did this by first calculating, for each reef, 

the correlation coefficients between groups for the random effects on the intrinsic 
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growth rate (i.e., for every reef r, I calculated, for each pair of groups i and j, the 

correlation coefficient between ri,r,s,t and rj,r,s,t). I then averaged these correlation 

coefficients over all pairs of groups for each reef. I term this quantity the 

“Environmental Response Synchrony Index” (ERSI). 

Within-groups analysis.—Fitting a model of three interacting functional groups 

allowed me to assess the extent to which diversity of functional groups influenced 

ecological stability. However, species diversity within functional groups may also 

influence stability. Here, I face the “curse of dimensionality”: the number of estimated 

parameters increases with the square of the number of interacting populations in the 

multivariate Gompertz model, precluding an explicit species-level approach. Therefore, 

I devised a tractable test for diversity-stability relationships at this scale by randomly 

and repeatedly splitting each functional group into two subgroups of species, and then 

analyzing the community dynamics of the two subgroups. I repeated this procedure 9 

times for each functional group. 

The rationale for the above analysis is as follows. If within-group compensatory 

dynamics are driven by competition among species, then the between-subgroup II 

should tend to be negative. In contrast, if within-group compensatory dynamics are 

largely driven by within-species density-dependence acting on different species 

independently, then the within-subgroup DDI should tend to be negative, while the 

between-subgroup II should be close to zero. However, it is important to bear in mind 

that the analysis of subgroups means the Synchrony, Interaction, and Environmental 

Response Synchrony Indices estimated in this way do not directly quantify average 

within-species DDI or species-level II. I therefore also assessed whether estimates of 

Synchrony, Interaction, Density-Dependence, and Environmental Response Synchrony 
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Indices tended to be biased high or low when those species were pooled into subgroups 

for analysis, compared with the “true” underlying corresponding quantities (see 

Discussion). 

2.3. Results 

The portfolio effect was found to operate strongly in the community of 

herbivorous reef fishes on the GBR at the level of functional groups, as indicated by 

nearly independent fluctuations of their abundances (average Synchrony Index 0.1). 

The range of values estimated across the 35 reefs, [-0.1 to 0.3], indicates that the 

strength of the portfolio effect varies geographically. I also found a strong portfolio 

effect operating within groups, among the Territorial Grazers and among the Roving 

Grazers. The diversity-stability relationship was weaker among Scrapers, as shown by a 

higher average Synchrony Index (Figure 2-2A).  

Overall, I found strong evidence for high response diversity between and within 

functional groups. The responses of the three functional groups to environmental 

fluctuations were nearly independent (average Environmental Response Synchrony 

Index of 0.1 among reefs, Figure 2-2B). The within-groups analysis indicated that 

response diversity was similarly high among Territorial and Roving Grazer species, but 

somewhat weaker for Scrapers (Figure 2-2B).  



Chapter 2 – Diversity and stability of herbivorous fishes on coral reefs  

22 

 

Figure 2-2.—Mean values and standard deviation for the (A) Synchrony, (B) 

Environmental Response Synchrony, (C) Interaction, and (D) Density-dependence 

Indices.“Among–Groups” refers to the analysis of interactions between the functional 

groups, while “TG”, “RG” and “S” refer to the within-group, random-subset analyses 

for the Territorial Grazers, Roving Grazers and Scrapers functional groups, respectively. 

Note that the lowest possible value for the synchrony indices is -1/2 for the among-

groups analysis and -1 for the within-groups analyses. In (A) and (B), the dashed line 

indicates the Synchrony Index corresponding to complete absence of a portfolio effect. 
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In (C), the dashed line indicates the absence of compensatory interactions: values below 

the line indicate compensatory interactions, while those above the line indicate 

facilitative interactions. Similarly, in (D), values below the dashed line indicate 

compensatory (i.e., negative) density-dependence, and those above the line indicate 

facilitative (i.e., positive) density-dependence.  
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As noted above, my preliminary analysis found that different interaction 

parameters applied at each reef, indicating that interactions between functional groups 

did vary across reefs. However, these interactions had a mean close to zero, and were 

much less variable than the Synchrony and Environmental Response Synchrony indices 

(Figure 2-2A-C).  This suggests that that average between-group interaction strength 

varied spatially from weakly competitive to weakly facilitative. Very similar results 

were obtained for the within-groups analysis (Figure 2-2C, Table 2-1). In contrast, 

within group interactions were always strongly competitive, as shown by consistently 

large, negative Density-Dependence Indices (Figure 2-2D).  
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Table 2-1.—Results of multiple linear regressions of Synchrony Index against 

Interaction Index and Environmental Response Synchrony Index for between-groups 

and within-group analyses.Between groups is the analysis based on fluctuations in 

abundance of the three  functional groups (cf. Figure 2-2). TG, RG, and S refer to 

analyses of the fluctuations of abundance of the random subgroups within the Territorial 

Grazers, Roving Grazers, and Scrapers, respectively. The overall R2 value was 

partitioned between the two explanatory variables by performing a simple regression for 

each variable after checking that the two variables were not significantly correlated. ¤ 

p<0.1, * p<0.05, ** p<0.01, *** p< 0.001.  

Dataset 

Overall Regression  
Environmental Response 

Synchrony Index 
Interaction Index 

Signif. R2 Coef. R2 Coef. R2 

Between 

groups 
*** 0.69 0.51 *** 0.43 0.90 *** 0.23 

TG *** 0.67 0.45 *** 0.23 1.88 *** 0.53 

RG *** 0.55 0.52 *** 0.49 0.59 ¤ 0.19 

S *** 0.27 0.94 *** 0.27 0.13 0.02 
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 Multiple regression was used to examine spatial variation in the Synchrony 

Index as a function of the Interaction and Environmental Response Synchrony Indices. 

Response diversity was the principal driver of the portfolio effect, consistent with the 

previous analyses. Together, the Interaction and the Environmental Response 

Synchrony indices explained 69% of the variation in the overall Synchrony Index across 

the 35 reefs (Figure 2-3, Table 2-1). However, the ERSI explained twice as much 

variation in community synchrony as the Interaction Index did, indicating that response 

diversity was the main driver of the portfolio effect. Interactions between functional 

groups made a significant but weaker contribution to the portfolio effect: reefs with 

negative interactions between groups did tend to have lower Synchrony Indices, as 

evidenced by the significantly positive regression coefficient for the Interaction Index 

(Table 2-1). The relationship between response diversity and the overall portfolio effect 

also held within functional groups: in all cases, this relationship was positive, strong, 

and statistically significant, as in the between-groups analysis (Table 2-1).  Ecological 

interactions had no statistically significant effect on the strength of the portfolio effect 

(as measured by the Synchrony Index) in Scrapers and Roving Grazers, indicating that 

the portfolio effect was driven principally by response diversity, as was the case in the 

between-groups analysis (Table 2-1). In the Territorial Grazers functional group, 

ecological interactions explained more variation in the portfolio effect than did response 

diversity, although both effects were statistically significant (Table 2-1).  
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Figure 2-3.—Multiple regression of Synchrony Index on Interaction Index and 

Environmental Response Synchrony Index. Each point represents a reef (n=35), and the 

dashed grid shows the fit of the regression model. See Table 2-1 for regression 

statistics.  
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2.4. Discussion  

Herbivorous fishes provide a critical ecosystem function on coral reefs, 

consuming macroalgae and thereby facilitating the maintenance of reefs in coral-

dominated states. Stability in the performance of this function has important 

implications for reef dynamics, since collapses in herbivore populations can provoke 

regime shifts to macroalgal-dominated states that may be difficult to reverse (Mumby et 

al. 2007, Hoey and Bellwood 2011). My results show that the portfolio effect strongly 

stabilizes overall abundances of herbivorous fishes on the Great Barrier Reef. 

Fluctuations in abundances of the three functional groups were nearly independent of 

one another. Territorial Grazers and Roving Grazers showed a similarly strong portfolio 

effect, whereas fluctuations in abundance of Scrapers (parrotfishes) tended to be 

positively correlated, indicating a weaker portfolio effect. In addition, I found that high 

response diversity – demonstrated by nearly independent responses to environmental 

fluctuations across the three functional groups – was the main driver of this portfolio 

effect. Ecological interactions between functional groups also had a significant 

influence on the portfolio effect, but their effect was weaker than that of response 

diversity. I found similar results when considering portfolio effects within groups: 

Scrapers and Roving Grazers had high response diversity, and this explained much 

more of the variation in the portfolio effect among reefs than did ecological interactions. 

In Territorial Grazers, however, ecological interactions explained more of the variation 

in the portfolio effect for that group. 

Assessing the mechanisms underlying the diversity-stability relationship in 

species-rich assemblages is particularly challenging, because as the number of species 

increases, the number of model parameters increases more rapidly than the number of 
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data points. Moreover, species-rich assemblages tend to have a large number of rare 

species that are only observed occasionally. These problems were circumvented by first 

analyzing the effect of multiple functional groups on stability, and then gaining insight 

into species-level effects by analyzing random assignment of species to subgroups 

within functional groups. Portfolio effects at both levels are important ecologically. 

Stability in the herbivorous fish community as a whole ensures that consumers of 

macroalgae are sufficiently abundant. However, differences in diet and foraging 

between functional groups, and the potentially synergistic effects of these differences on 

macroalgal control (Burkepile and Hay 2008), mean that stability in the abundances of 

each functional group is also ecologically significant.  

For my within-groups analysis, I used Synchrony, Interaction, and 

Environmental Response Synchrony Indices between random subgroups of species as 

proxies for the corresponding quantities for pairwise species interactions. Using 

random-subgroups is likely to give a conservative basis for my two principal 

conclusions: that the portfolio effect operates strongly within and between groups, and 

that response diversity is the principal driver of this effect. Specifically, it is possible to 

show analytically that estimating both the Synchrony and Environmental Response 

Synchrony Indices with this approach tends to lead to estimates that are higher than the 

corresponding species-level quantities (thus underestimating portfolio effects and 

response diversity, Appendix A.3). This means that the portfolio effect and response 

diversity for species within functional groups are likely to be stronger than my subgroup 

analyses suggest. Also, a simulation study of the effects of grouping on Interaction 

Indices suggests that the Interaction Index is biased away from zero when species are 
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combined into subgroups (Appendix A.3), meaning that species interactions are likely 

to be even weaker than the estimates from my analyses of subgroups. 

This is the first study that disentangles the relative contributions of ecological 

interactions and response diversity to the diversity-stability relationship in ecological 

communities. I found evidence for a remarkably strong portfolio effect in herbivorous 

coral reef fishes, with nearly independent fluctuations in abundance over time across the 

functional groups. Few studies have focused on the direct evaluation of the portfolio 

effect using empirical data, with the exception of Valone & Barber (2008), who 

analyzed long-term data from several terrestrial assemblages. Their portfolio effect 

statistic, a median Spearman rank correlation on the abundance of species pairs over 

time, is similar but not identical to my Synchrony Index. However, the two statistics 

appear to yield very similar conclusions: when I applied their statistic to my data, I 

found an average correlation of 0.1 across the 35 reefs, identical to my average 

Synchrony Index, and notably lower than the average value of 0.26 that they reported in 

terrestrial systems. Similarly, average values for Territorial Grazers and Roving Grazers 

were also remarkably lower (0.03 and 0.004 respectively) than those of the terrestrial 

assemblages, although the average value for Scrapers, at 0.25, was similar to the 

terrestrial analyses. The lower Synchrony Index values in my data suggest that the 

diversity-stability relationship is stronger in herbivorous reef fishes than in the 

terrestrial assemblages previously studied.  

Communities of coral reef fishes are among the most diverse vertebrate 

communities on earth, and this high species diversity is accompanied by high diversity 

of morphologies and behaviors (e.g. Ehrlich 1975). For herbivorous fishes, this high 

functional diversity has been shown experimentally to enhance their capacity to control 
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macroalgal abundance (Burkepile and Hay 2008). Even closely related species from the 

same functional groups can show striking differences in foraging patterns and habitat 

use. For example, Pomacentrid territorial grazers vary substantially in their degree of 

specialization in resource use and habitat requirements (Allen 1991), and a recent study 

has found that niche breadth explained most of the variance in species’ mean response 

to coral decline (Wilson et al. 2008). It seems likely that this variety of strategies 

contributes to species’ relatively independent responses to environmental fluctuations 

(i.e., high response diversity) that I found. Moreover, the lower response diversity 

among Scrapers is consistent with their lower taxonomic and functional diversity 

compared with Territorial and Roving Grazers. Scrapers all belong to one clade within 

the Labridae, which have a relatively recent evolutionary origin (Cowman et al. 2009), 

have similar morphologies and substantially overlapping foraging patterns (Bellwood 

and Choat 1990) and often form multi-specific schools (Overholtzer and Motta 2000). 

This comparatively strong ecological and morphological similarity may well explain 

why environmental fluctuations appear to affect species within this group more 

similarly than within the other groups. 

In this context, it is worth noting that the Territorial Grazers were all 

pomacentrid species, with only two exceptions: Acanthurus lineatus and Acanthurus 

nigricans. Both of these species are reported as aggressive, and they are relatively site-

attached, compared to Roving Grazers (Choat and Bellwood 1985; Randall et al. 1990). 

However, given the ecological differences between these species and the pomacentrids 

that constitute the rest of this group, I repeated my between-groups and within-

Territorial Grazers analyses with the two Acanthurus species excluded. My modified 

estimates of the strength of the overall portfolio effect, response diversity, and 



Chapter 2 – Diversity and stability of herbivorous fishes on coral reefs  

32 

ecological interactions were all within 0.01 of the values from the original analyses (cf. 

Figure 2-2). Similarly, all terms that were significant in the original regression analyses 

(Table 2-1) remained significant in the revised analyses. These results indicate that my 

results are not sensitive to the decision to classify these species in the same functional 

group as the pomacentrid grazers.  

In contrast to response diversity, I found little evidence in this system that the 

portfolio effect was enhanced by compensatory ecological interactions, either between 

functional groups or within them. Instead, I found that, when averaged over the 

community, interactions at different locations varied from weakly compensatory to 

weakly facilitative, with an average value near zero. There is a diversity of opinion 

about the relative importance of competition and facilitation in coral reef fishes. 

Although interspecific competition has been considered to be a major structuring factor 

in reef fish communities (e.g. Roughgarden 1974, Sale 1977), recent studies have 

argued that the importance of facilitation has been overlooked in community ecology 

(Bruno et al. 2003, Hay et al. 2004).  For instance, at the functional group level, 

conspicuous aggressive behavior of territorial grazers towards other herbivorous fishes 

has been assumed to indicate strong competitive interactions between territorial and 

roving grazers (e.g. Vine 1974, Jones 2005). However, the aggressive behavior of 

territorial grazers may be circumvented by schooling of roving herbivores (Robertson et 

al. 1976), and “farming” of algae by territorial species may, in fact, enhance the algal 

yield for roving grazers, resulting in facilitation (Russ 1987). Few studies have 

specifically assessed spatial variation in the nature and magnitude of interactions 

between herbivorous reef fishes, but the limited data indicate that species interactions 

are weak and spatially variable. For instance, Choat & Bellwood (1985) studied the 
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interactions between parrotfishes and an abundant territorial grazer, Acanthurus 

lineatus. They found that the direction and magnitude of the interactions were site-

specific, which they attributed to local differences in habitat structure. Similarly, in the 

Caribbean, an extensive study of aggression among parrotfishes found that only 10% of 

the observed aggression was interspecific, while 90% of aggressive encounters involved 

conspecifics (Mumby and Wabnitz 2002). My findings are consistent with these results 

and support a Gleasonian view of herbivorous reef fish assemblages in which the effects 

of inter-specific interactions, while present, tend to be weak, diffuse and variable 

(Gleason 1939).  

Our study focuses specifically on the effects of diversity on the stability of 

abundance of herbivores, where abundance is defined as the number of individuals. 

However, from the standpoint of overall stability of levels of grazing, not all individuals 

make equal contributions. In particular, larger fishes are likely to graze more than 

smaller fishes. To investigate the robustness of my results to this potential effect, I 

converted each species’ abundance to an approximate biomass, based on estimates of 

average size obtained from existing data (Kulbicki et al. 2005, Green and Bellwood 

2009, Kulbicki et al. 2011). I then repeated my between-groups analysis, and I found 

that the modified estimates of the strength of the overall portfolio effect, of response 

diversity, and of ecological interactions, were within 0.04 of the values obtained in the 

original analysis (cf. Figure 2-2). Moreover, all terms that were significant in my 

original regression analyses (Table 2-1) remained significant in the modified analyses. 

While not a comprehensive accounting of inter-specific differences in biomass (which 

will vary among individuals within species, as well as between species), the fact that I 

obtained very similar results, despite a range of body size of about three orders of 
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magnitude among species, indicates that my conclusion that there is a strong portfolio 

effect, and in particular high levels of response diversity, is not sensitive to the use of 

numbers of individuals as my measure of abundance. 

In contrast to between-group interactions, which were, on average, near zero, I 

found strong evidence for within-group density-dependence. Such a result could 

indicate strong compensatory interactions among species within groups (e.g., strong 

competition among roving grazer species, or among territorial grazer species). If this 

were the case, then I would have expected my within-groups analyses to show negative 

interactions between subgroups. Instead, between-subgroup interactions were near zero 

on average, while within-subgroup density-dependence was strong, as in my between-

groups analysis. This suggests that the strong density-dependence within groups is 

mainly the result of the cumulative effects of intraspecific density-dependence. This 

does not, of course, preclude the possibility that particular pairs of species may interact 

strongly, but if they do, negatively-interacting and positively-interacting species are 

largely canceling one another out at the functional group level. 

Strong density-dependence appears at odds with the Recruitment-Limitation 

Hypothesis (RLH), according to which post-settlement interactions are overwhelmed by 

random fluctuations in abundance due to the vagaries of larval recruitment (Doherty and 

Fowler 1994). Such high population variability has been invoked to propose that 

density-dependence is not important in many reef fish populations (Sale and Tolimieri 

2000). In contrast, a meta-analysis of reef fish studies found strong evidence for 

density-dependence, even in the subset of studies that individually lacked sufficient 

statistical power to detect it (Osenberg et al. 2002). Subsequent work also indicates that 

density-dependence is important in reef fishes, but most such studies have focused on 
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relatively small, site-attached species (e.g., Johnson 2008, Samhouri et al. 2009). The 

fact that my estimates of the strength of density-dependence are, if anything, stronger in 

the Roving Grazers and Scrapers than in the Territorial Grazers (Figure 2-2D), suggests 

that this process is also important in less site-attached reef fishes as well. 

One of the key services provided by species diversity is the stabilization of 

ecosystem functioning: by means of the portfolio effect, species-rich communities can 

have less variable rates of production, consumption, detoxification, and other important 

processes (Naeem and Li 1997). This stabilizing effect can play an important role in the 

management of ecosystems, by reducing the risk that such functions will cross threshold 

levels that trigger major, ecosystem-level changes. Here, I have used a new approach to 

quantifying the portfolio effect which allows the roles of compensatory ecological 

interactions and response diversity, the underlying drivers of the portfolio effect, to be 

disentangled. I developed this approach in order to assess diversity-stability 

relationships among herbivorous fishes on coral reefs. In most of the world’s reef 

ecosystems, fishes are the principal consumers of algae, and their grazing helps keep 

space available for the recruitment and growth of corals. My study reveals firstly that 

there is a strong portfolio effect both within and among functional groups of 

herbivorous fishes on the Great Barrier Reef.  Secondly, this relationship is driven 

principally by response diversity: differences in how species respond to environmental 

fluctuations. These findings indicate that herbivorous fish diversity provides insurance 

against major environmentally-induced collapses in herbivory that could potentially 

trigger macroalgal blooms on coral reefs, with its attendant adverse consequences for 

tourism and other reef-based economic activities that depend on high levels of coral 

cover (Pratchett et al. 2008). My findings support calls to specify the conservation of 
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functional diversity as an important goal in ecosystem management (Naeem and Li 

1997, Bellwood et al. 2004). 

In this chapter, I used the average correlation coefficient (SI) to quantify the 

degree of asynchrony among functional groups of herbivorous fishes, a common 

practice in studies of spatial and temporal fluctuations of abundances (e.g. Bjornstad et 

al. 1999, Valone and Barber 2008). A problem with this approach is that, in real 

communities, species may differ substantially in their variances, so some between-

species correlations are likely to be more important to overall community stability than 

others. Consequently, two communities with the same mean correlation coefficient 

could differ substantially in their synchrony (see Appendix B.1 for an example). There 

is no consensus about how community asynchrony should be measured and how it 

contributes to the diversity-stability relationship. Consequently, I turn to this problem in 

Chapter 3. 
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Chapter 3. Understanding diversity-stability relationships: towards a 

unified model of portfolio effects 

3.1. Introduction 

In nature, many species’ ecological roles are essential for ecosystem functioning 

or for the provision of ecosystem services to human societies (Lawton 1994, Worm et 

al. 2006, Cardinale et al. 2012). For example, species that forage for pollen or nectar 

facilitate reproduction in the plants on which they forage, a function that is essential for 

the maintenance of plant populations, including in agricultural ecosystems (McGregor 

1976, Hoehn et al. 2008). On coral reefs, grazing by fishes helps to maintain healthy, 

coral-dominated reefs (Bellwood et al. 2004). One essential service provided by 

biodiversity is to stabilize the overall abundance of an assemblage of organisms that 

provides a particular ecosystem service or function, thereby making it less vulnerable to 

fluctuations in the abundances of individual populations. This phenomenon, or 

components of it, have been characterized using a variety of terms (e.g., statistical 

averaging, portfolio effect, covariance effect, insurance hypothesis, stabilizing effect: 

(Doak et al. 1998, Tilman et al. 1998, Yachi and Loreau 1999, Loreau 2010). For 

simplicity, I here refer to the relationship between the number of populations and 

temporal stability of total community abundance as the “diversity-stability 

relationship”, or DSR, and the tendency for DSRs to be positive (i.e., for stability to 

increase with diversity), as the “portfolio effect”. This definition of the latter term is 

consistent with its use in other disciplines, such as finance (Markowitz 1952, 1987), and 

with its original use in the context of the DSR (Tilman et al. 1998, contra Tilman 1999). 
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In both model and experimental communities, stability is typically taken to be 

inversely related to the coefficient of variation of some measure of ecosystem function, 

such as total community abundance. The DSR is the relationship between this measure 

of stability, and diversity (here defined as the number of constituent populations). 

Usually diversity is quantified as species richness, but communities can be stabilized by 

diversity at other levels of organization as well, such as functional groups (Bai et al. 

2004) or number of phenotypes within populations (Norberg et al. 2001). Various 

proposed statistical formalisms for the DSR have suggested that, at least in principle, it 

may be positive or negative (Tilman 1999, Lhomme and Winkel 2002). However, 

stochastic competition models have consistently found portfolio effects (e.g. Lehman 

and Tilman 2000, Ives and Hughes 2002, Loreau and de Mazancourt 2008). Similarly, 

two decades of experimental research into DSRs indicates that portfolio effects are 

overwhelmingly present, but that their strength and magnitude varies considerably 

(Campbell et al. 2011). However, inverse portfolio effects, where stability decreases 

with diversity, also can occur in nature (DeClerck et al. 2006, Yang et al. 2011).   

Several community properties have been identified as important determinants of 

the portfolio effect. Four that have received particular attention are asynchrony in 

population fluctuations, evenness of abundance, effects of diversity on total community 

abundance, and the way in which temporal variability in abundance scales with its mean 

(Cottingham et al. 2001). Firstly, theoretical studies indicate that portfolio effects 

should strengthen as asynchrony in the fluctuations of a community’s constituent 

populations increases (Doak et al. 1998, Loreau 2010). Despite its importance in 

diversity-stability relationships, however, there is no consensus about how asynchrony 

should be measured, or about how it contributes to the DSR. A variety of metrics have 
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been proposed, including coefficients of pairwise correlations of species’ fluctuations in 

abundance (Doak et al. 1998), summed species-level variances and covariances (Tilman 

1999), and total community variance relative to that of a perfectly synchronous 

community (Loreau and de Mazancourt 2008). All of these metrics are still used in 

empirical studies (e.g., Mikkelson et al. 2011, Roscher et al. 2011, Thibaut et al. 2012). 

Secondly, models of the DSR also predict that the portfolio effect will be stronger 

where evenness of mean abundance among populations is greater (Doak et al. 1998, 

Lhomme and Winkel 2002): when evenness is very low, the rarest species make a 

limited contribution to overall stabilization of function at the community level, 

compared to when evenness is high. However, researchers have found positive 

relationships between evenness and stability (Mikkelson et al. 2011), no relationship 

(Isbell et al. 2009), and even negative relationships (van Ruijven and Berendse 2007), 

leading to calls for the development of theory to better understand how evenness affects 

community stability (Grman et al. 2010, Mikkelson et al. 2011). Thirdly, mean 

community biomass often increases with increasing diversity  (Duffy 2009, Cardinale et 

al. 2012), a phenomenon sometimes termed “overyielding” (Tilman 1999), and several 

empirical studies have identified overyielding as a mechanism driving the DSR (Tilman 

et al. 2006, Isbell et al. 2009, Hector et al. 2010).  Finally, there is a well-known 

tendency for the temporal variance in population abundance to exhibit a power-law 

relationship with the mean (Taylor 1961). Theoretical studies have suggested that 

stability should increase as the value of the exponent of this mean-variance scaling 

relationship increases above unity (Tilman et al. 1998, Tilman 1999). However some 

experimental studies have found contrary results (Valone and Hoffman 2003, van 

Ruijven and Berendse 2007, Yang et al. 2011).  
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A comprehensive understanding of the combined effects of synchrony, 

overyielding, mean-variance scaling, and evenness on the diversity-stability relationship 

has been hampered by the need to make idealized assumptions about some of these 

phenomena when investigating effects of others. For example, in order to examine the 

effect of evenness, Doak et al. (1998) assumed that all between-species correlations are 

equal, and that total community size is independent of diversity (no overyielding). 

Tilman’s (1999) framework assumes perfect evenness (all species’ mean abundances 

are equal), and independence of species fluctuations (all ij=0), in order to examine the 

effect of overyielding. Similarly, community-dynamic approaches have made strong 

symmetry assumptions (e.g., all species have the same intrinsic growth rates, carrying 

capacities, competition coefficients, and between-species correlations in responses to 

environmental fluctuations: (Ives and Hughes 2002, Loreau 2010). These assumptions 

have come under increasing criticism, particularly in empirical studies that have 

obtained anomalous results (such as “inverse” portfolio effects, where communities 

become less stable as diversity increases) under conditions where particular simplifying 

assumptions are violated (e.g., Valone and Hoffman 2003, Steiner et al. 2005, van 

Ruijven and Berendse 2007, Grman et al. 2010, Yang et al. 2011). 

An additional challenge to understanding the DSR is teasing apart the factors 

that drive the relationship between community stability, and stability of the individual 

populations that constitute the community. In a meta-analysis, Campbell et al. (2011) 

found strongly bimodal responses of population stability with diversity: some studies 

find that diversity stabilizes populations, while a comparable number of studies find that 

diversity de-stabilizes populations. Because either of these contrasting population-level 

responses may occur in assemblages exhibiting portfolio effects at the community level, 
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clarifying the relationship between population stability and overall community stability 

has been identified as a critical knowledge gap in our understanding of the DSR (Vogt 

et al. 2006, Campbell et al. 2011). 

In order to generalize the theory that we use to understand the DSR, and to place 

earlier theoretical and empirical findings in a broader context, I here synthesize key 

elements of previous approaches (e.g., Doak et al. 1998, Tilman 1999, Loreau 2010), in 

order to produce a simple model of portfolio effects that makes explicit how community 

stability relates to the stability of a community’s constituent populations, and in turn 

how asynchrony, overyielding, mean-variance scaling, and evenness influence this 

relationship. Analysis of this model reveals that the DSR is the product of a synchrony 

effect and a weighted average population variability effect, a simple expression that is 

robust to the presence or absence of overyielding, and to differences in means or 

variances of species abundances (i.e., arbitrary violation of the evenness assumption). 

Weighted average population variability can be further decomposed into an 

overyielding-related effect and a single-species variability effect. This synthetic 

framework clarifies the sometimes counter-intuitive ways that evenness can affect the 

DSR, and helps to explain apparent inconsistencies among alternative statistical 

frameworks, empirical studies of the DSR, and theoretical studies based on analysis of 

community-dynamic models. It also suggests some additional assumptions common to 

DSR theory that are likely to be violated in nature, but whose effects on the DSR have 

received little or no attention to date. 
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3.2. Towards a unified model of portfolio effects 

Following previous theory for the portfolio effect (e.g., Doak et al. 1998, Tilman 

1999, Loreau 2010), I here treat species abundances as stationary random variables (i.e., 

abundances fluctuate over time, with a fixed mean and variance). Thus, a community of 

n species can be described with a vector of mean species abundances, mn and a 

variance-covariance matrix of abundances, Vn: 

𝐦𝑛 = (
𝑚𝑛

𝑠 (1)
⋮

𝑚𝑛
𝑠 (𝑛)

)                                                    (3.1a) 

𝐕𝑛 = (
𝑣𝑛

𝑠(1,1) ⋯ 𝑣𝑛
𝑠(1, 𝑛)

⋮ ⋱ ⋮
𝑣𝑛

𝑠(𝑛, 1) … 𝑣𝑛
𝑠(𝑛, 𝑛)

)                                      (3.1b) 

where 

𝑣𝑛
𝑠(𝑖, 𝑗) = 𝜌𝑖𝑗√𝑣𝑛

𝑠(𝑖, 𝑖)𝑣𝑛
𝑠(𝑗, 𝑗)                                       (3.1c) 

In eq. (3.1), and throughout this chapter, I use the superscript c to designate community 

level quantities, and the superscript s for species-level quantities. n is the number of 

species in the community. m denotes mean abundances, and v variances and 

covariances. Thus, mn
s(i) denotes the mean abundance of species i, vn

s(i,i) the variance 

(over time) of abundance of species i, and vn
s(i,j) the temporal covariance of abundances 

of species i and j, in a community of n species. By definition, the covariances depend on 

the species-specific variances, and a coefficient, ij, characterizing the temporal 

correlation between the abundances of the two species.  
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Measuring Asynchrony 

Of particular interest in analyses of the portfolio effect has been the 

development of measures of community synchrony. In early work, community 

synchrony was defined using the correlation coefficients in eq. (3.1c), which were 

assumed to be the same for all pairs of species in the community (ρij=ρ for all i,j) (Doak 

et al. 1998, Tilman 1999).  Because, in real communities, correlation coefficients will 

differ between different pairs of species, based on the idiosyncratic characteristics that 

determine their interactions and responses to environmental fluctuations, most empirical 

analyses rely on the mean of the correlation coefficients, 𝜌̅ (Valone and Barber 2008, 

Thibaut et al. 2012), which is bounded in the range [−
1

𝑛−1
, 1]. A problem with this 

approach is that, in real communities, species may differ substantially in their variances, 

so some between-species correlations are likely to be more important to overall 

community stability than others. Consequently, two communities with the same mean 

correlation coefficient could differ substantially in their synchrony (see Appendix B.1 

for an example).  

An alternative approach to measuring synchrony considers the sum of the 

species-level variances (diagonal elements of eq. 3.1b) and the sum of the between-

species covariances (off-diagonal elements of eq. 3.1b). Tilman (1999) argued that these 

two quantities measure different drivers of asynchrony: the former a “portfolio 

effect”—the benefit of diversity due to statistical averaging (a narrower definition of the 

term than used in this chapter)—and the latter a “covariance effect”, which represents 

the stabilizing effect of compensatory interactions (e.g., the tendency for a species to 

increase in abundance from competitive release, when another species decreases). 
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However, while there is still some disagreement in the literature about the utility of 

summed covariances as an indicator of compensatory interactions, there is now broad 

consensus that summed variances and covariances do not partition statistical averaging 

and compensatory interaction effects (Ives and Carpenter 2007, Houlahan et al. 2008, 

Loreau and de Mazancourt 2008, Ranta et al. 2008) . 

More recently, Loreau & de Mazancourt (2008) proposed quantifying 

community synchrony using the statistic: 

𝜙 =
∑ 𝑣𝑛

𝑠 (𝑖,𝑗)𝑖𝑗

(∑ √𝑣𝑛
𝑠 (𝑖,𝑖)𝑖 )

2 =
𝑣𝑛

𝑐

(∑ √𝑣𝑛
𝑠 (𝑖,𝑖)𝑖 )

2                                            (3.2) 

(also see Loreau 2010). Here, the scalar  𝑣𝒏
𝒄 indicates the variance of total community 

abundance for a community of n species, which, by definition, is the sum of all 

elements of the community variance-covariance matrix (the summed variances plus the 

summed covariances). The denominator is the variance of a hypothetical community 

with the same species-level variances, but in the presence of perfect synchrony (Loreau 

and de Mazancourt 2008). One advantage of , hereafter termed the “synchrony index”, 

is that it makes no assumptions about the particular distribution of values for the 

pairwise correlation coefficients. This is because the off-diagonal elements of the 

community variance-covariance matrix influence  only through their combined effect 

on the total community variance in abundance, vn
c, which can be measured directly in 

the aggregate (i.e., without separate estimation of pairwise covariances).  is also 

normalized, independent of diversity: it always varies between zero (when total 

community abundance is constant), and one (when fluctuations are perfectly 

synchronous). Finally, in contrast to the mean correlation coefficient, it explicitly 
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incorporates the effects of unequal species-level variances on synchrony (see Appendix 

B.1). 

 

Figure 3-1.—Schematic illustrating how population and community variability 

(ellipses) are influenced by the four determinants of the DSR highlighted in the 

Introduction: synchrony of population fluctuations, evenness, overyielding, and the way 

variance in population fluctuations scales with the mean (rectangles). Arrows merge 

where an effect arises from an interaction between two determinants. “+” indicates that 

an effect is positive (e.g., community variability increases as synchrony increases), and 

“+/-” indicates that an effect may be either positive or negative.  

Unifying Population and Community Variability 

 We can derive a very general relationship for the relationship between 

population and community variability by taking advantage of the synchrony index, re-



Chapter 3 – Understanding diversity-stability relationships: towards a unified model of portfolio effects 

46 

arranging eq. (3.2), and rescaling our measure of community variability from total 

variance to CV: 

𝐶𝑉𝑛
𝑐 = √𝜙𝐶𝑉𝑛

s̃                                                           (3.3) 

where CVn
c is the coefficient of variation of total community abundance, for a 

community of n species, and 𝐶𝑉𝑛
s̃  is the average species-level coefficient of variation 

for a community of n species, weighted by species’ relative mean abundance: 

𝐶𝑉𝑛
s̃ = ∑

𝑚𝑛
𝑠 (𝑖)

𝑚𝑛
𝑐𝑖

√𝑣𝑛
𝑠 (𝑖,𝑖)

𝑚𝑛
𝑠 (𝑖)

                                                     (3.4) 

(see Appendix B.2 for derivation). mn
c is the temporal mean of total community 

abundance (i.e., the sum of species-level mean abundances). Eq. (3.3) shows that the 

dimensionless community variability in abundance is completely determined by the 

weighted average species-level coefficient of variation, and the synchrony index  

(Figure 3-1, black arrows). In eq. (3.3), dimensionless population and community 

variability are linearly proportional to one another, with a constant of proportionality 

that depends on how synchronous the fluctuations of different species are. When 

fluctuations are highly synchronous (), community variability tracks population 

variability. When fluctuations are less synchronous (is smaller), population variability 

is damped at the community level. The fact that population variability is a weighted 

average in eq. (3.3) indicates that the variability of more abundant populations make 

larger contributions to overall community variability. 

Equation (3.3) is much more general than previous DSR models. In particular, it 

makes no assumptions about evenness of mean abundances, about the distribution of 
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variances or correlation coefficients in the covariance matrix, or about the direct 

ecological interactions or responses to environmental fluctuations that influence those 

variances and correlation coefficients. Note that, because ≤1, community variability is 

never greater than population variability.  

To examine more specifically the role of overyielding and mean-variance 

scaling, I extend eq. (3.3) by making two further assumptions that have reasonably 

broad empirical support. Firstly, I assume that temporal variance in species’ population 

sizes scale with their means according to Taylor’s (1961) power law:  

𝑣𝑛
𝑠 = 𝑎(𝑚𝑛

𝑠 )𝑏                                                             (3.5) 

where a and b are coefficients relating mean and variance of abundance. Secondly, both 

species and community mean abundance may vary as a function of diversity. I model 

this phenomenon using Tilman’s (1999) functional form for this relationship, modified 

to allow unequal mean abundances: 

𝑚𝑛
𝑐 = ∑ 𝑚𝑛

𝑠 (𝑖)𝑖 =  ∑
𝑚1(𝑖)

𝑛𝑥𝑖 ,                                                    (3.6) 

where m1(i) is the abundance of species i in monoculture, and x drives how the total 

abundance of the community changes with diversity. If x=1, the abundance of the total 

community is fixed, independent of diversity, as is assumed in many theoretical studies 

of the DSR (sensu Doak et al. 1998, Ives et al. 1999, Loreau 2010). “Overyielding” 

occurs whenever x<1: the mean of total community abundance increases with diversity. 

If 0<x<1, this increasing community abundance is accompanied by decreases in mean 

species abundance with diversity; if x=0, mean species abundances are independent of 

diversity; and if x<0, mean species abundance actually increases with diversity. Finally, 
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if x>1, mean community abundance and mean species abundances both decrease with 

diversity (underyielding).  

Incorporating eqs. (3.5) and (3.6) into eq. (3.3), I extend my framework to 

explicitly include the effect of overyielding on the DSR: 

𝐶𝑉𝑛
𝑐 = √𝜙 √𝑛(2−𝑏)𝑥  𝐶𝑉1̃                                                        (3.7) 

(see Appendix B.3 for derivation). This essentially sub-divides species-level population 

variability into two components: an “average single species variability” term, 𝐶𝑉1̃ , 

which represents species’ weighted average CV in monoculture, and a “mean-

abundance effect”, √𝑛(2−𝑏)𝑥, which characterizes how 𝐶𝑉𝑛
𝑠̃  changes with diversity as a 

consequence of associated systematic changes in mean abundance (Figure3-1, blue 

arrows). Eq. (3.7) generalizes Tilman’s (1999) model considering the effect of 

overyielding on the portfolio effect, which assumes that all species have the same mean 

abundance, and species’ fluctuations in abundance are uncorrelated with one another. 

Similarly, it can be considered a generalization of eq. 5.8 in Loreau (2010), who 

considered the special case of no overyielding and perfect evenness. Note that, if the 

mean-abundance effect increases with diversity, then changes in mean species 

abundances associated with increasing diversity tend to be destabilizing at both 

population and community levels. In contrast, if the mean-abundance effect decreases 

with diversity, then changes in mean species abundance associated with increasing 

diversity are stabilizing at both population and community levels.  
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Figure 3-2.— Illustration of relationship between diversity-dependence of (a) 

the synchrony index, , and (b) the mean correlation coefficient, 𝜌̅ , under the 

assumption of equal population variances. The green line shows the limiting case of 

perfect synchrony (𝜌̅ = 1, 𝜙 = 1) . The magenta line shows the limiting case of perfect 

asynchrony (𝜌̅ = −
1

𝑛−1
, 𝜙 = 0 whenever n>1). For the orange, blue, and black lines, 𝜌̅ 

is constant, independent of diversity (at 0.7, 0.1, and 0, respectively), so  is calculated 

from eq. (3.8) using the specified value of 𝜌̅. Because 𝜌̅ is only defined for n>1, the 

lines in panel (b) commence at n=2. Note that species richness is plotted on a 

logarithmic scale.  



Chapter 3 – Understanding diversity-stability relationships: towards a unified model of portfolio effects 

50 

 

Figure 3-3.— Illustration of the diversity-dependence of the mean-abundance 

effect for mean-variance scaling exponents of (a) b=1.5, (b) b=2, and (c) b=2.5. Results 

are qualitatively identical to (a) whenever b<2, and to (c) whenever b>2. The different-

colored lines show the mean-abundance effect for different values of the overyielding 

coefficient, x, as indicated in the figure. Note that all lines are super-imposed when b=2. 

Species richness is plotted on a logarithmic scale.  

 

Synchrony, Overyielding, Evenness, and the Portfolio Effect 

 Eq. (3.3) makes explicit how portfolio effects arise from changes in synchrony 

and population variability with species richness. To understand how synchrony is likely 

to change with diversity, it is helpful to consider the relationship between 𝜙 and the 

mean correlation coefficient, 𝜌̅, derived by Loreau (2010): 

𝜙 =
1+(𝑛−1)𝜌̅

𝑛
=

1

𝑛
(1 − 𝜌̅) + 𝜌̅                                          (3.8) 
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Eq. (3.8) holds only for the special case when all species have the same variances, but is 

still useful for thinking about the implications of different community structures for the 

diversity-dependence of synchrony. For instance, in the limiting case of perfect 

synchrony, 𝜌̅ = 1 and=1, regardless of diversity (Figure 3-2, green line). Conversely, 

for perfect asynchrony, 𝜌̅ = −
1

𝑛−1
, and =0 everywhere (except in monoculture, 

where=1) (Figure 3-2, magenta line). For the special case of a community of non-

interacting species, fluctuations in abundance between species are correlated only due to 

similarities in their responses to environmental fluctuations, so pairwise correlation 

coefficients are constant, independent of diversity (Ives et al. 1999). If 𝜌̅ is small,  

decreases strongly with diversity (Figure 3-2, black and blue lines), while if 𝜌̅ is large, 

then  is less strongly diversity-dependent (Figure 3-2, orange line). This tendency for 

to decline asymptotically with diversity also occurs in the presence of competition 

(see Appendix B.4), and there are good reasons to expect this tendency to be common 

in nature. Firstly,  in monoculture, and must decline from this value as diversity 

increases if species are not perfectly positively correlated. Secondly, as diversity 

becomes large, each additional species makes a progressively smaller marginal 

contribution to the overall mean correlation coefficient, implying that chages in 𝜌̅ (and 

thus, by eq. 3.8, ) will become smaller and smaller as diversity increases.    

 Although the influence of overyielding on population variability has been 

investigated previously, these studies have tended to focus on the ranges 0<x<1 and 

1<b<2 (e.g., Lhomme and Winkel 2002). In this range, the mean-abundance effect 

causes population variability to increase with diversity (Fig. 3.3a, blue line). The focus 

on 1 ≤ 𝑏 ≤ 2 was likely due to a belief that exceptions to this range are rare (e.g., 
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Kilpatrick and Ives 2003). However, a growing number of studies report scaling 

exponents >2 (e.g., Valone and Hoffman 2003, Vogt et al. 2006, van Ruijven and 

Berendse 2007). Similarly, a focus on 0 ≤ 𝑥 ≤ 1 makes sense for manipulations of 

diversity under fixed environmental conditions, where x reflects mainly the combined 

effects of competition and niche partitioning (Tilman 1999, Lehman and Tilman 2000). 

However, in nature, diversity often covaries with environmental conditions that 

influence mean abundance in other ways, and DSR studies along natural gradients have 

found both cases of underyielding (x>1; Yang et al. 2011), and cases where mean 

species abundance actually increases with diversity (x<0: Valone and Hoffman 2003). 

Considering this broader range of parameter values, the mean-abundance effect can be 

seen to have both positive and negative effects on population variability (Figure 3-3). 

The direction of the mean-abundance effect depends on whether mean species 

abundance decreases with species richness or not (x>0 or x<0), and whether species-

level variances scale less than or more than quadratically with the mean (b<2 or b>2). 

Specifically, if mean species abundance decreases with species richness (x>0), then the 

mean-abundance effect is de-stabilizing at the population level when variance scales 

less than quadratically with mean species abundance (b<2), and stabilizing when b>2 

(compare blue, orange, and green lines in Fig. 3.3a,c). If mean species abundance 

increases with species richness (x<0), then mean-variance scaling has the opposite 

effect (compare magenta lines in Fig. 3-3a,c).  
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Figure 3-4.— Combined influences of synchrony and the mean-abundance 

effect on community variability. The left column of panels shows b=1.5 (cf. Fig. 3-3a), 

the middle column b=2 (cf. Fig. 3-3b), and the right column b=2.5 (cf. Fig. 3-3c). Rows 

of panels incorporate different models of synchrony from Fig. 3-2 (calculated from eq. 

3.8 using the values of the mean correlation coefficient to the right of each row on the 

panel above). Colored lines represent different values of the overyielding coefficient, x, 

as in Fig. 3-3 (as indicated by the legend on the panel above). Note that all lines are 

super-imposed when b=2, or 𝜌̅ = −1/(𝑛 − 1) . Species richness is plotted on a 

logarithmic scale.  
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Figure 3-4 illustrates how the DSR may be influenced by the interaction 

between community synchrony and the mean-abundance effect. Several non-intuitive 

results are worth highlighting. Firstly, a portfolio effect can be apparent even when 

synchrony is perfect, if population variability decreases with species richness (Figure 3-

4f, blue, orange and green lines). Secondly, Figure 3-4 shows that inverse portfolio 

effects are possible (e.g., Figure 3-4m). Thirdly, when population variability and 

synchrony act in opposite directions, non-monotonic DSRs can be produced, for which 

community variability initially decreases with species richness, then increases. For 

instance, when 𝜌̅ = 0.1, independent of diversity, decreases asymptotically towards 

0.1 as richness increases (eq. 3.8). Thus, its response to diversity may dominate the 

DSR at low diversity, while population variability dominates at high diversity (compare 

blue line in Figure 3.2a with orange lines in Figures 3.3a and 3.4j).  

 Considering the effect of unevenness in light of eqs. (3.3) and (3.7) indicates 

that it may actually increase or decrease community variability, and may increase or 

decrease the strength of the portfolio effect, depending on its effects on the synchrony 

index, , and on species population variability 𝐶𝑉𝑛
𝑠̃ . The effect of evenness on  (Figure 

3.1, orange arrow) depends on the how the population sizes of the different species 

fluctuate relative to one another (i.e., on the structure of the covariance matrix, Vn [eq. 

3.1b]). Previous consideration of the effect of evenness on the DSR has assumed, 

implicitly or explicitly, that the populations of all species pairs are equally correlated 

(all ij= see, e.g., Doak et al. 1998). However, in the general case where the ij differ, 

the effect of unevenness is more contingent. For example, consider an assemblage in 

which population fluctuations of most species are highly synchronous, except for one 

species, whose fluctuations are strongly negatively correlated with all the other species 
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(as in Appendix B.1). For this community, the portfolio effect will be maximized when 

this latter species is disproportionately abundant (or, more precisely, contributes 

disproportionately to the total community variance). Moreover, non-intuitive effects of 

evenness can emerge even when correlation coefficients are independent of relative 

abundance. For example, in Figure 3.5a, I generated hypothetical communities by 

drawing species’ mean abundances at random from a lognormal distribution, and I 

assigned pairwise correlation coefficients at random with respect to abundance such that 

the expected mean correlation coefficient is zero, regardless of evenness or diversity. (I 

achieved the latter by exploiting a hyperspherical parameterization of the correlation 

matrix (Pinheiro and Bates 1996). By drawing each parameter from a uniform 

distribution on [0,], I sample from the entire universe of possible correlation matrices 

where, on average, the mean correlation coefficient is zero.) When there is perfect 

evenness, for the randomly assembled community is identical to the theoretical 

prediction (eq. 3.7 with 𝜌̅ = 0). As evenness decreases, synchrony increases, consistent 

with the hypothesis that unevenness is de-stabilizing at the community level. However, 

the same asymptotic value is approached at high diversity, so the effect of this is to 

cause synchrony to decrease more gradually with diversity when unevenness is higher 

(Figure 3.5a). 
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Figure 3-5.— Illustration of effects of unevenness on the DSR. In all panels, species 

abundances are drawn from a lognormal distribution with mean of log-abundance , 

and mean-variance scaling coefficient a=1. (a) Diversity-dependence of synchrony for 

different levels of unevenness, generated using the specified standard deviation of log 

abundance, . For all curves, b=2 and correlation coefficients were assigned randomly 

as described in the text. (b)  𝐶𝑉𝑛
𝑠̃  as a function of evenness (communities were 

simulated using 0≤≤3, and evenness quantified using the index Evar: Smith and Wilson 

(1996). (c) 𝐶𝑉𝑛
𝑠̃  versus diversity, illustrating the effect of b. For all lines, =2 and x=0. 

(d) 𝐶𝑉𝑛
𝑠̃  versus diversity, illustrating the interaction between evenness and mean-

abundance effects. Note the log-scale for species richness.  
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Evenness can also influence weighted average population variability,  𝐶𝑉𝑛
𝑠̃ , but 

its qualitative effect depends upon the nature of mean-variance scaling (Figure 3.1, 

green arrows). Specifically, as evenness decreases, 𝐶𝑉𝑛
𝑠̃  decreases when species’ 

population variability scales less than quadratically with the mean (b<2), and increases 

when b>2 (Fig. 3.5b). This is because weighted average population variability becomes 

progressively less dominated by the more abundant species as evenness increases. In 

particular, when b<2, CV decreases with mean abundance. As evenness decreases, the 

most abundant species occupy a progressively larger fraction of the community, and 

thus population variability becomes progressively more dominated by these low-

variability populations.  

This relationship between evenness and population variability implies that 

unevenness can alter the way in which population variability changes with species 

richness, even when species are assembled randomly into communities with respect to 

their mean abundances. It is easiest to understand this effect by considering first the 

special case when species’ mean abundances are independent of diversity (x=0, so the 

mean-abundance effect in eq. [3.7] is unity). In this case, unevenness tends to cause 

population variability to decrease with diversity when b<2, and to increase when b>2 

(Figure 3.5c). I interpret this result as follows. As diversity increases, the likelihood of 

the assemblage, by chance, containing a species with very high mean abundance 

increases. The populations of these highly-abundant species will be more or less stable 

than the populations of species with average mean abundance, depending on whether 

b<2 or b>2, respectively. Of course, there is also a progressively greater likelihood of 

including species with unusually small mean abundances as diversity increases. 

However, because  𝐶𝑉𝑛
𝑠̃  is a weighted average, the effect of sampling further out in the 
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abundant tail of the distribution outweighs the countervailing effect of sampling further 

out in the rare tail. This interpretation is supported by simulations using a wide variety 

of shapes of species-abundance distributions (including symmetrical, left, and right-

skewed distributions), and by the fact that, in contrast to  𝐶𝑉𝑛
𝑠̃ , unweighted population 

variability exhibit no trends with diversity when x=0, regardless of b (results not 

shown).  

The nature of the interaction between unevenness and the mean-variance scaling 

parameter b implies that, when species’ abundances differ (i.e., unevenness is present) 

and species’ mean abundances tend to decrease with species richness (x>0), mean-

variance scaling may actually act in countervailing ways along a diversity gradient. For 

instance, when x>0 and b<2, the mean-abundance effect is de-stabilizing at the 

population level, but the effect of unevenness is stabilizing (e.g., compare Figure 3.3a, 

blue line, and Figure 3.5c, solid line), whereas the opposite occurs when b>2 (e.g., 

Figure 3.3c, blue line, and Figure 3.5c, dotted line). This makes sense: increasing 

unevenness will tend to make the most abundant species – which dominate the weighted 

average population variability – increasingly more abundant relative to the average 

species mean abundance. Consequently, populations will be more stable if b<2 and less 

stable if b>2.  Conversely, x>0 will tend to reduce all species’ mean abundances as 

diversity increases, so populations will become less stable if b<2, and more stable if 

b>2. Thus, whether population variability is stabilized or destabilized by unevenness 

depends upon the magnitude of the overyielding parameter, x, relative to the among-

species variance in mean abundances (i.e., the extent of unevenness), and on whether 

b<2 or b>2 (Figure 3.5d). 
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Of course, along natural diversity gradients, species may not be added at random 

with respect to their mean abundances, with implications for how population variability 

changes with species richness. For example, species’ colonization abilities are 

sometimes hypothesized to be negatively correlated with their resource-use efficiency, 

(and thus population density at equilibrium: e.g., Tilman and Downing 1994). In such 

cases, succession would be expected to commence with species that have colonizer 

strategies, low resource-use efficiency, and thus low equilibrium abundance, and to 

progress by adding poorer colonizers that have greater resource-use efficiency and 

higher equilibrium abundances (Tilman and Downing 1994). Because these conditions 

imply that species tend to be added to communities in order of progressively increasing 

mean abundances, weighted average population variability would tend to decrease with 

species richness if b<2 (because species with higher mean abundances have lower CV 

when b<2, and these species are increasingly represented as species richness increases). 

Conversely, weighted average population variability would increase with species 

richness under these conditions if b>2. 

3.3. Diversity and stability in nature 

The model in eq. (3.3) shows that there are two key elements to making explicit 

the relationship between population and community variability. The first is to define 

community synchrony in terms of the synchrony index  of Loreau & de Mazancourt 

(2008). The second is to measure population variability as a weighted average across 

species. The resulting relationship is extremely general. It holds regardless of extent or 

nature of unevenness of abundances among species, and regardless of the pattern of 

variances or covariances of species’ abundances. Thus, it is robust to the nature of 
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overyielding (if it is present), or the nature of the mean-variance scaling of species’ 

abundances. Consequently, it offers a promising framework for understanding the broad 

range of relationships between population and community variability observed in 

natural and experimental systems. 

The fact that portfolio effects are commonly found even in the presence of 

increasing population variability suggests that synchrony tends to decrease with 

diversity in DSR studies, consistent with our conjecture that this pattern is likely to be 

common in nature. There have been only two empirical studies that explicitly quantify 

the diversity-dependence of synchrony, but both exhibit an asymptotic decline that is 

consistent with a small, positive mean correlation coefficient that remains 

approximately constant as diversity changes. Specifically, Roscher et al. (2011) found 

that synchrony decreased strongly with diversity, from a median of ~0.55 when n=2 to 

~0.1 when n=60, which is similar to what would be expected for a community with 

𝜌̅~0.1 (cf. Figure 5.2a, blue line). Similarly, Isbell et al. (2009) found that synchrony 

decreased from ~0.6 to ~0.3 as diversity increased from 2 to 8, consistent with 𝜌̅~0.2. 

Of course, given that species are often added non-randomly along natural diversity 

gradients, and the idiosyncratic nature of species’ responses to environmental 

fluctuations, there are likely to be exceptions to any general tendency for to decrease 

monotonically with diversity. An advantage of the framework in eq. (3.3) is that it 

makes no implicit simplifying assumptions about community structure that impose a 

particular functional form on this relationship.  

The potential diversity-dependence of synchrony, along with eq. (3.3), offers an 

explanation for why studies of the DSR find a variety of different relationships between 
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population and community variability. For instance, in a study of a natural diversity 

gradient among patches of boreal forest habitat, DeClerck et al. (2006) found that 

population variability increased with diversity, and between species correlation 

coefficients were positive and large. The large correlation coefficients suggest that  

exhibited relatively little change with diversity in this system, because its value would 

have been dominated by the second term in eq. (3.8), which is independent of diversity. 

In this case, the DSR would be driven by how population variability changes with 

diversity, and, indeed, that appears to be precisely what happens: this study documented 

one of the very few empirical examples of an inverse portfolio effect in the literature. 

Conversely, in the experimental grassland communities of Roscher et al. (2011), 

synchrony was strongly diversity-dependent, so a portfolio effect could be apparent in 

spite of the fact that population variability increased with diversity.  

Eq. (3.7) extends the framework in eq. (3.3) to separate out the contribution of 

overyielding to population variability, and shows that overyielding and mean-variance 

scaling can have a broader range of effects than has been assumed in the literature 

(Figures 3-3,3-4).  For instance, many empirical studies that have found both portfolio 

effects, and evidence of overyielding (i.e., x<1), have invoked the latter as a key 

mechanism driving the former (Valone and Hoffman 2003, Tilman et al. 2006, Isbell et 

al. 2009, Hector et al. 2010, Roscher et al. 2011), based on early analytical work 

suggesting that overyielding can induce a stabilizing effect of diversity at the 

community level (Tilman 1999). Similarly, some empirical studies have reported b as a 

measure of the intensity of the DSR, with any value of b>1 being taken as evidence that 

the portfolio effect is operating (e.g. Steiner et al. 2005, Polley et al. 2007, Isbell et al. 

2009, Roscher et al. 2011), because simple analytical models have suggested that 
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diversity should stabilize communities when the mean-variance scaling exponent b>1, 

and de-stabilize them when b<1 (Tilman et al. 1998, Tilman 1999, Loreau 2010). 

However, the derivation of these two conditions is sensitive to particular combinations 

of simplifying assumptions (see Appendix B.5). In fact, eq (3.7) shows that, in general, 

the key determinants of the stabilizing or destabilizing effect of overyielding, at both 

population and community levels, are whether mean species abundance decreases (x>0) 

or increases (x<0) with diversity, and on whether species-level variances scale more 

(b>2) or less (b<2) than quadratically with the mean (Figure 3-3).  

 The strength of the portfolio effect is widely believed to be enhanced whenever 

evenness is greater, and this effect has been reproduced in the few theoretical studies 

that have relaxed the evenness assumption (Doak et al. 1998, Loreau 2010). This makes 

intuitive sense: if a community is dominated by one species, then adding rare species 

will produce only a small reduction in total community variance, which will be 

dominated by the abundant species’ population variability. However, eqs. (3.3) and 

(3.7) show how evenness may actually increase or decrease community stability, 

depending on its combined effects on synchrony and population variability. This 

context-dependence may help to explain why there is a lack of consistency in empirical 

relationships between stability, evenness, and diversity (Steiner et al. 2005, Polley et al. 

2007, van Ruijven and Berendse 2007, Isbell et al. 2009, Grman et al. 2010, Mikkelson 

et al. 2011). For instance, several empirical studies have found that, when averaged over 

all species in the community, b<2 (i.e., larger populations are more stable: Bai et al. 

2004, Leps 2004, Steiner et al. 2005, Polley et al. 2007, Roscher et al. 2011). This 

implies a stabilizing effect of unevenness at the community level, although there is 

some evidence that species-specific deviations from the mean-variance scaling 
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relationship may play an additional role (Grman et al. 2010: see Future Directions, 

below) . 

In decomposing population variability into a mean-abundance effect and a 

single-species variability effect, two assumptions were made that are more restrictive 

than those used in the derivation of our more general model unifying population and 

community variability: power-law scaling of the temporal mean and variance of 

abundance, and a monotonic change in mean abundance with diversity. Because there is 

strong support for both such relationships in nature, and they are commonly examined 

in both theory and experiments of the DSR, these additional assumptions may seem, at 

first, to be relatively innocuous. However, their inclusion in eq. (3.7) implies the 

additional assumptions that the mean-variance scaling exponent, and the overyielding 

coefficient, are the same for all species in the community, and do not vary as functions 

of diversity. In nature, the extent to which these assumptions are violated varies 

between systems. For instance, Yang et al. (2011) found that a single mean-variance 

scaling exponent explained >90% of the variation in temporal variances in alpine 

meadow communities (also see, e.g., Isbell et al. 2009), but van Ruijven & Berendse 

(2007), also studying herbaceous plants, found a nearly fourfold variation in the mean-

variance scaling exponent among species. If mean-variance scaling exponents vary 

independently of species’ relative abundances and responses to overyielding, then I 

would not expect the relationships shown in Figure 3-3 to be qualitatively affected, and 

this is consistent with the results of preliminary simulations (not shown). However, 

covariation between mean-variance scaling parameters and species’ relative abundances 

could change the way weighted average population variability changes with diversity. 

For instance, if disproportionately abundant species have lower than average b, then 
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𝐶𝑉𝑛
𝑠̃  will tend to be smaller than predicted by eq. (3.7), because more stable species 

contribute disproportionately to the weighted average. There is empirical evidence for 

such relationships. For instance, Grman et al. (2010), examining residuals of an 

aggregate mean-variance scaling relationship, found evidence that disproportionately 

abundant species had smaller mean-variance scaling exponents than less abundant 

species.  

Finally, although eq. (3.3) unifies population and community variability under a 

much broader range of conditions than previous models, it does retain one assumption 

of nearly all DSR theory that is likely to be violated to some degree, particularly in 

experimental manipulations of diversity gradients: that the community is fluctuating 

around a stochastic equilibrium (“stationarity”). Few DSR studies explicitly address the 

stationarity assumption (see (Tilman et al. 2006, Grman et al. 2010) for exceptions). 

Nevertheless, in most experimental diversity manipulations, stationarity is likely to be 

violated, at least to some degree. There are certainly some circumstances in which 

estimates of the portfolio effect could be biased by non-stationary dynamics. For 

example, if a competitively-structured community begins with all species abundances 

well below, or well above, their equilibrium values, then most species will tend to 

increase or decrease, respectively, and exhibit much more synchronous dynamics, and 

higher species-level variances, than they would exhibit at equilibrium. Conversely, an 

assemblage that begins with some species well below, and others well above, their 

equilibrium values, dynamics may appear initially highly asynchronous relative to 

equilibrium, as over-abundant species persistently decline and under-abundant species 

increase towards their respective equilibria.  
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A comprehensive assessment of how these biases may influence empirical 

estimates of DSRs in nature is not possible, since few studies report evidence for or 

against underlying temporal trends in species abundances. However, two findings from 

recent meta-analyses suggest that experimental estimates of DSRs are unlikely to be 

consistently biased, relative to DSRs on natural diversity gradients. Firstly, one might 

expect shorter experiments to be more dominated by transient dynamics, but there does 

not appear to be any relationship between experiment duration and the effect of 

diversity on either population or community variability.  Secondly, there are no 

significant differences in the mean effect sizes of DSR studies that involve direct 

diversity manipulations, indirect manipulations, or that use natural diversity gradients  

(Campbell et al. 2011; also see (Jiang and Pu 2009)). However, studies of the DSR on 

natural diversity gradients do exhibit greater among-study variability than manipulative 

studies (Campbell et al. 2011).Thus, natural diversity gradients produce more instances 

in which portfolio effects do not occur (e.g., Rodriguez and Hawkins 2000, DeClerck et 

al. 2006), but they also produce instances of very strong portfolio effects (e.g., 

McNaughton 1985, Mouillot et al. 2005, Romanuk et al. 2009). This indicates that the 

non-random addition of species that occurs along natural diversity gradients adds more 

complexity to the community-level effects of diversity than may be apparent in 

experimental studies (Mittelbach et al. 2001, Huston and McBride 2002), and highlights 

the importance of having a framework for understanding DSRs that is robust to 

idiosyncratic changes in species’ mean abundances, variances, and covariances with 

increasing diversity, such as eq. (3.3).   
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3.4. Conclusions and future directions 

The framework developed here makes explicit the relationships between several 

phenomena that previous theoretical and empirical studies have found to have important 

effects on the diversity-stability relationship, by relaxing several important simplifying 

assumptions that have been employed in various combinations in previous work. It 

makes explicit how the DSR depends on how two quantities change with diversity: the 

weighted average species-level variability (𝐶𝑉𝑛
𝑠̃ ) , and community synchrony (). 

Moreover, it clarifies how the strength of overyielding (x), and the slope of the mean-

variance scaling relationship (b), interact to influence population and community 

variability. Both species-level variability and synchrony depend on evenness, and, in 

most cases, are likely to vary as a function of diversity. This synthesis reveals important 

interactions between these different phenomena that influence the strength, and even the 

direction, of the DSR.  

My framework also suggests several particularly promising areas for further 

work. In particular, the synchrony index,  is the key community property linking 

population and community variability. Only three empirical studies to date have 

explicitly estimated this quantity (Isbell et al. 2009, Roscher et al. 2011, Yang et al. 

2011). However, virtually all empirical studies of the DSR collect the data necessary to 

estimate , meaning that a re-examination of existing data has the potential to rapidly 

flesh out our understanding of how  changes with diversity in different types of 

assemblages. Similarly, population-level variability is universally understood to have a 

key influence on the DSR, but the way population variability is measured is 

inconsistent. Some studies quantify population variability separately by species; others 
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compute (unweighted) averages across species at each diversity level; still others 

compute means and variances separately for all species at all diversity levels, and 

examine the aggregate relationship for systematic changes with diversity. Indeed, this 

inconsistency has been identified as a key barrier to our understanding of the 

relationship between population and community variability (Campbell et al. 2011). Eq. 

(3.3) reveals that the critical measure of population variability, at least from the 

standpoint of the DSR, is a weighted average, 𝐶𝑉𝑛
𝑠̃ . To date, no empirical studies of the 

DSR have measured population variability in this way (although most studies will have 

collected the data necessary to do so), suggesting that a re-examination of population 

variability and synchrony in empirical studies of the DSR may offer fresh insights into 

diversity-stability relationships in nature.  

The development of portfolio effect theory by analysis of properties of the 

community covariance matrix (eq. 3.1b), or by analysis of community-dynamic models, 

have often been seen as mutually exclusive alternatives (Loreau 2010). However, 

statistical frameworks such as that proposed here can provide a common language for 

the interpretation and comparative analysis of studies of the DSR in both empirical and 

model communities. Community-dynamic models produce long-run means and 

variances of population and community abundance, and thus their outputs can be 

interpreted within the framework outlined here, just as empirical data can. Such 

approaches can reveal how particular assumptions about population dynamics and 

species interactions impose particular constraints on the diversity dependence of 

community synchrony (Loreau 2010), and average population variability (Tilman 

1999), as well as on the particular components of species-level variability, such as the 
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nature of the mean-variance scaling relationship (e.g., Tilman 1999, Kilpatrick and Ives 

2003).  
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Chapter 4. Strong evidence for weak density-dependence in population 

dynamics 

4.1. Introduction 

The extent to which natural populations are regulated, and the relative 

importance of internal processes such as density dependence versus environmental 

forcing, has raged in the ecological literature for at least 60 years (Andrewartha and 

Birch 1954, Hassell et al. 1976). Population regulation has important implications for 

population replenishment, for the resilience of populations buffeted by environmental 

perturbations, and thus for the stability of ecosystem functions performed by 

populations (Chesson and Warner 1981, Dennis et al. 2006, Thibaut et al. 2012). 

Population regulation also has evolutionary implications, influencing the nature of 

selection (Charlesworth 1971). In addition to its fundamental importance to ecological 

and evolutionary dynamics, accurate assessments of the existence and strength of 

density-dependence have important practical applications for the sustainable 

exploitation of populations, population viability analysis, pest control and eco-

toxicology (Hilborn et al. 1995, Freckleton et al. 2006)   

Until recently, many field experiments failed to detect density-dependence 

(Osenberg et al. 2002), leading some researchers to challenge the assumption that 

density-dependent processes are widespread in nature (Sale and Tolimieri 2000). This 

has been somewhat surprising, given that the conceptual issues underpinning the 

population regulation debate largely have been resolved (Turchin 1995). “Negative” 

density-dependence, whereby a population’s per-capita population growth rate is a 
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decreasing function of population size, must occur at sufficiently many times and places 

to ensure population persistence (Hixon et al. 2002). In a meta-analysis of reef fish 

studies, Osenberg et al. (2002) suggested a resolution to the apparent discrepancy 

between ecological theory, according to which density-dependence should be nearly 

ubiquitous, and the apparent absence of evidence for density-dependence in a large 

proportion of field experiments. Specifically, there is strong evidence for density-

dependent recruitment in the aggregate (i.e., across experiments), even though support 

for density-dependence in individual studies often falls short of the conventional 

threshold of P=0.05. Indeed, studies failing to find density-dependence did not yield 

markedly weaker estimates of the strength of density-dependence; rather, they inherited 

larger confidence intervals due, presumably, to greater levels of environmental 

stochasticity. More recently, a broad range of laboratory and field experiments have 

been conducted, the overwhelming majority of which have also detected strong density-

dependence (e.g., 35 out of 41 in a systematic literature review: see Table C-1 in 

Appendix C.2). 

Ecologists also have sought to evaluate the generality of density-dependence by 

analysing ensembles of population time series. Such analyses have focused on the 

Global Population Dynamics Database (GPDD), a dataset that now contains over 5000 

time series of a large range of taxa (zooplankton, birds, mammals, fishes, reptiles, etc.), 

covering durations of up to 120 years (NERC Centre for Population Biology 1999). The 

earliest of these studies found evidence for relatively strong density-dependence in the 

majority of time series (Sibly et al. 2005, Brook and Bradshaw 2006, Sibly et al. 2007). 

However, the models used in these studies implicitly assume that there is no observation 

error, and the unexplained variation in the data is overwhelmingly dominated by 
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process noise (i.e., stochasticity in population growth). More recent analyses of the 

GPDD, which explicitly account for both observation error and process noise, have 

found much weaker evidence for density-dependence. For instance, Knape & deValpine 

(2012) found that the proportion of time series exhibiting significant density-

dependence falls from 56% to just 16% when observation error is incorporated. 

Moreover, when density-dependence is detected (or its existence assumed), the 

estimated strength of density dependence tends to be weaker when observation error is 

accounted for (Freckleton et al. 2006, Ziebarth et al. 2010, Knape and de Valpine 2012).  

 These more recent studies raise the possibility that density dependence has been 

over-estimated in early analyses, possibly substantially so, a conclusion that would be at 

odds with the apparently growing evidence for density-dependence from experimental 

studies. However, an alternative possibility is that the explicit incorporation of 

observation error increases the uncertainty associated with estimates of density-

dependence, and thus the reduced frequency with which it is detected may be largely 

due to reduced statistical power. One way to resolve this is to consider the evidence for 

density-dependence in the aggregate (i.e., across time series), much as Osenberg et al. 

(2002) overcame the limitations of individual studies by meta-analysing estimates of the 

strength of density-dependence from a large sample of experimental studies.  

Here, I re-examine the evidence for density-dependence in the GPDD, by 

conducting an aggregate analysis of the entire database. I first conduct an analysis using 

the conventional approach of fitting density-dependent and density-independent models 

to each of the data sets independently, but combining likelihoods across data sets to 

produce an overall estimate of the strength of evidence for density-dependence. 

However, because the information about density-dependence in individual time series 
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can vary due to a broad range of factors such as time series length and magnitude of 

environmental noise, I also consider two reduced-parameter density-dependent models 

that leverage information across data sets. My findings suggest resolutions, both to the 

apparent ambiguity in the evidence for density-dependence in observational time series, 

and the seeming inconsistency between conclusions from experimental and 

observational studies of density-dependence. 

4.2. Methods 

I analyzed the same 627 population time series that were considered by Knape 

and deValpine (2012). These data consisted of all time series in the GPDD 

(http://www3.imperial.ac.uk/cpb/databases/gpdd) with at least 15 distinct years of 

observation, and for which abundances were sampled at annual intervals (Knape and de 

Valpine 2012).  

To account for both observation error and process noise in the estimation of 

density-dependence, I use the Gompertz model, which has been found to describe the 

relationship between per capita growth rate and population size better than alternatives, 

such as the discrete-time logistic (Rotella et al. 1996, Brook and Bradshaw 2006, 

Thibaut et al. 2012). It also has the advantage of being linear on a logarithmic scale, 

facilitating its application in time series analysis. Specifically, the Gompertz model 

follows: 

𝑁𝑡+1 = 𝑁𝑡 exp(𝑎 + (𝑏 − 1) ln 𝑁𝑡 + 𝑒𝑡(0, 𝜎2)),                                      (4.1) 

where Nt is population size, a is the density-independent exponential growth rate, b is an 

inverse measure of the strength of density-dependence (b<1 indicates density-dependent 
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dynamics), and et is an independent random perturbation to the exponential growth rate 

due to fluctuating environmental conditions (i.e., process noise). Defining xt = ln(Nt), 

eq. (4.1) becomes linearized: 

𝑥𝑡+1 = 𝑎 + 𝑏𝑥𝑡 + 𝑒𝑡(0, 𝜎2)                                                     (4.2a) 

Eq. (4.2a) is typically called the “state equation”, because it represents the dynamics of 

the true unobserved state. To incorporate observation error, I couple eq. (4.2a) with an 

observation equation that links observations of the system with the corresponding true 

states. Specifically, if yt denotes the observed log-abundance at time t, I can write: 

𝑦𝑡 = 𝑥𝑡 + 𝑓𝑡(0, 𝜏2)                                                                 (4.2b)                 

where ft is an independent random deviation of observed abundance yt from true 

abundance xt due to observation error. Eqs. (4.2a) and (4.2b) together constitute the 

“Gompertz state space model” (hereafter termed the GSS model: Dennis et al. 2006). 

Because eq. (4.2) is linear, I can employ an algorithm known as the Kalman filter to 

obtain maximum likelihood estimates of a, b, and the standard deviations due to process 

noise and observation error (hereafter designated  and , respectively) (see Appendix 

C.1).  

 Two of the variants of the GSS model that I fit to each time series follow the 

convention of previous tests of density-dependence in population time series. In the full 

density-dependent model, all four GSS model parameters (a, b, , and ) are estimated 

separately for each time series. In the density-independent model, b is fixed at one. The 

key feature of this latter model is that the discrete-time per-unit-abundance growth rate, 

defined as ln (
𝑛𝑡+1

𝑛𝑡
), is independent of population size.  



Chapter 4 – Strong evidence for weak density-dependence in population dynamics 

74 

 In a conventional meta-analysis, an estimate of an effect of interest, with its 

associated precision, is extracted from each individual study, and these estimates used 

to produce a kind of weighted average effect size, where each study’s contribution to 

the overall estimate is weighted by its precision (Cochran and Carroll 1953). However, 

these approaches assume that the sampling distribution of the statistic is approximately 

Gaussian. Unfortunately, the sampling distribution of estimates of the strength of 

density-dependence are extremely poorly behaved for many of our data sets: the 

sampling distribution of b in many datasets is highly asymmetric in idiosyncratic ways, 

sometimes with evidence of multi-modality (see Figure 4-1). 
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Figure 4-1.— Parametric bootstrap distributions of the density-dependence parameter 

(b) for 4 representative time-series. GPDD ID refers to the unique identification code 

for the time series in the GPDD. The solid line is a kernel density estimator fitted to the 

bootstrap distribution.  
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 Due to the poor statistical behaviour of independent estimates of b for each time 

series, I adopt two alternative approaches to estimating the overall strength of evidence 

for density-dependence in the dataset. Specifically, I fit all the time series in an omnibus 

analysis, where each time series has its own values of a, , and , but where there is a 

common strength of density-dependence, b, for all data sets (hereafter termed the 

“common-b” model). Thus there are 3 n + 1 estimated parameters, where n is the 

number of time series being analyzed. I also fit a random effects model, in which there 

is an overall mean value of b, and an among-population variance of b, and each time 

series’ b value is a random draw from this distribution (hereafter the “random-b” 

model). Thus, the common-b model is analogous to a fixed effects meta-analysis, where 

there is a single “true” b value and differences in estimates of b among data sets reflect 

only sampling error, and the random-b model is akin to a random-effects meta-analysis, 

where each study has a different “true” effect size, which is drawn from an overall 

distribution of effect sizes (Kontopantelis and Reeves 2012). The random-b model 

contains the common-b model as a special case, which in turn contains the density-

independent model as a special case (in the former, the variance of the random effect is 

zero, and in the latter, the common value of b is equal to1).  

 The common-b model assumes that the strength of density-dependence is the 

same for all populations in the GPDD. This hypothesis is not biologically realistic, since 

there is no reason to expect that all populations are governed by the same density-

dependence parameter. However, here, the purpose of the common-b model is not to 

test whether the strength of density dependence varies among populations, but to 

provide a model that can be compared with the density-independent model, but which, 

unlike the full density-dependent model, has a similar number of parameters. 
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Consequently, if the density-independent model outperforms the full model, but the 

common-b model outperforms the density-independent model, it will indicate that the 

former statistical result is a consequence of lack of data within individual data sets to 

estimate a distinct strength of density-dependence, rather than an absence of evidence 

for density-dependent regulation in general. 

 After fitting each of my four models (full density-dependent, density-

independent, common-b, and random-b) to the data using maximum likelihood 

methods, I compared their relative fit using two different model selection criteria: AICc 

(Akaike’s Information Criterion with the standard bias-correction for small sample size: 

Burnham and Anderson 2003) and BIC (Bayesian Information Criterion: Schwarz 

1978). In addition, I compared the fit of the full density-dependent and density-

independent models using a parametric bootstrap version of the likelihood ratio test 

(hereafter PBLR). The PBLR is like a standard likelihood ratio test, except that the 

expected distribution of log-likelihood ratios under the null hypothesis of no density-

dependence is generated explicitly by simulation from the density-independent model, 

to avoid biases associated with using the  distribution as the null distribution (Dennis 

and Taper 1994, Knape and de Valpine 2012). For this latter test, for every time series, I 

simulated 1000 time series using the best-fit parameters of the density-independent 

model. Then I fitted both the density-independent and full density-dependent models to 

the simulated time series, and calculated the Likelihood Ratio between the two fitted 

models. If the observed likelihood ratio was larger than the 95th quantile of the 

likelihood ratios from the simulated data, I considered that there was significant 

evidence for density-dependence. Computational constraints prevented me obtaining 

null distributions for the “common-b” and “random-b” models, because fitting and 
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assessing convergence of these models was quite time consuming (often involving 

detailed visual inspection of model fits that could take a day or more for each simulated 

dataset of 627 time series); thus, replicating the procedure for 1000 simulated datasets 

was not logistically feasible. 

Finally, I evaluated the biological plausibility of our model fits by examining the 

density-independent growth parameters produced by the fitted density-dependent 

models. A recent review has suggested that fitted models with density-dependence can 

imply unrealistically high values of the density-independent growth rate a (Lebreton 

and Gimenez 2013). Because estimates of the density-independent and density-

dependent parameters have strong statistical covariances (Lebreton and Gimenez 2013), 

unrealistic values of density-independent growth rates would undermine the plausibility 

of estimates of the strength of density-dependence as well (Delean et al. 2013). 

Therefore, I examined the distribution of density-independent parameter values (a) 

across data sets for our density-dependent models.  
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Table 4-1.—Results of model selection. # pars is the number of estimated parameters in 

the model, NLL is the negative of the maximum log-likelihood, AICc is Akaike’s 

Information Criterion corrected for small sample bias, and BIC is the Bayesian (or 

Schwarz) Information Criterion.  

 # pars NLL ΔAICc ΔBIC 

Full density-dependent 

model 
2508 18646 0 4209 

Common-b model 1882 19665 486 0 

Random-b model 1883 19665 488 10 

Density-independent model 1881 20214 1582 1089 

 

  



Chapter 4 – Strong evidence for weak density-dependence in population dynamics 

80 

 

Figure 4-2.—Ordinary and parametric bootstrap likelihood ratio (PBLR) tests. 

The green line shows the theoretical Chi-square distribution (i.e., the standard 

asymptotic null distribution), and the histogram shows the parametric bootstrap 

distribution of the likelihood ratio statistic. The vertical red arrow indicates the 

observed Likelihood Ratio statistic.  

 

Figure 4-3.— Profile likelihood intervals for the strength of density-dependence 

in the “common-b” density-dependent model. The 95% confidence interval falls 
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between the two downward-pointing vertical arrows. The maximum likelihood estimate 

of b, 0.876, is at the minimum of the log-likelihood ratio function.  

 

Figure 4-4.— Boxplots of the estimated strength of density-dependence (b) 

produced by the full model, for the time series in which the evidence for density-

dependence was statistically significant (right), and the time series for which it was not 

significant (left). The horizontal dashed line indicates the value of b corresponding to no 

density-dependence. Smaller values of b indicate stronger density-dependence.  
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Figure 4-5.— Histogram of estimates of the Gompertz density-independent 

growth parameter, a, for (A) the full model, and (B) the common-b model. A histogram 

of a for the random-b model is not shown, because it is virtually identical to that of the 

common-b model.  
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4.3. Results 

Considering the individual time series separately, my results correspond closely 

with those of Knape & de Valpine (2012): among the 627 time series analysed, only 

102 (~16%) exhibited significant density dependence, according to the PBLR. 

Nevertheless, at the whole dataset level, if I focus only on the full density-dependent 

model and the density-independent model, the results are ambiguous. The PBLR 

(Figure 4-2) and AICc (Table 4-1) favour the full density-dependent model over the 

density-independent model. Consistent with this, a bootstrap estimate of the average 

strength of density-dependence across all 627 time series suggests that density-

dependence is strong: 𝑏̅ = 0.59 (95% CI: 0.50-0.68). However, BIC strongly favours 

the density-independent model (Table 4-1).  

The ambiguity in the evidence for density-dependence disappears, however, 

when I consider the common-b and random-b models. Both of these models outperform 

the density-independent model on both AICc and BIC, with the common-b model 

slightly favoured over the random-b model. Moreover, in contrast to the full density-

dependent model, where estimates of b for individual time series often indicate 

pathological statistical behaviour of the density-dependent parameter (e.g., Figure 4-1), 

the log-likelihood profile for the common value of b behaves very well: it is 

approximately parabolic in shape, with the density-independent special case (b=1) 

clearly outside of the 95% confidence intervals (Figure 4-3). On the other hand, it 

indicates substantially weaker density-dependence (b=0.88 [0.868 0.885 95% CI]) than 

was suggested by averaging the independent estimates of bi from the full density-

dependent model. 
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My analyses also provide no evidence that the time series are divided into 

groups of density-independent versus density-dependent dynamics. For the full density-

dependent model (where each density-dependent parameter was estimated separately), a 

comparison of the distributions of the estimated strength of density dependence for the 

datasets with and without statistically significant density-dependence yields no evidence 

of bimodality (Figure 4-4). The mean value of the density-dependent parameter b is 

very similar in the two subgroups of data, although there is greater variability among 

estimates of b for the time series not exhibiting significant density-dependence. 

Consistent with this, the common-b model was favoured over the random-b model, 

contrary to what I would expect if there were evidence of substantial heterogeneity in 

the existence or strength of density-dependence in the data.  

 Further support for the common-b model as more biologically plausible than the 

full model is apparent from inspection of the estimated density-independent growth 

rates. When the Gompertz model is fitted independently to each data set, the density-

independent growth parameter a corresponds to geometric growth factors (∝

exp(𝑎)) that differ by up to 40 orders of magnitude, a far greater range of variation than 

in the common-b model (Figure 4-5). It is particularly revealing to examine the 

demographic parameters for species represented multiple times in the GPDD. For 

example, if I consider the demographic parameters for the Dickcissel (Spiza americana) 

among the 11 time series analysed, I find that the density-independent growth factor 

exp(a) varies by more than 3 orders of magnitude (from exp(0.01) to more than exp(7)), 

whereas, in the common-b model, the corresponding range of variation is only a factor 

of about 1.5 (from exp(0.12) to exp(0.52)).  
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4.4. Discussion 

 A recent analysis of population time series, which takes explicit account of 

observation error, has raised questions about the strength of evidence for density-

dependence in natural populations (Knape and de Valpine 2012). My population-by-

population results are consistent with that study. However, my findings also indicate 

that, in the aggregate, there is strong evidence for density-dependence in the Global 

Population Dynamics Database, but that the intensity of density dependence is weak. 

The strong support for density-dependence is most apparent in the much greater support 

for the common-b model over the density-independent model, while the evidence that 

density-dependence is weak is apparent from the much greater biological plausibility of 

the density-independent growth rates yielded by the common-b relative to the full 

density-dependent model. That density-dependence is consistently weak is supported by 

the lack of evidence for heterogeneity in estimates of b, either in the comparison 

between the common-b and random-b models, or in the distributions of estimates of b 

between the subsets of populations that do and do not exhibit statistically significant 

density-dependence individually.  

The seeming erosion of evidence for strong density-dependence in observational 

time series studies, which accompanied explicitly accounting for both observation and 

process error, has been at odds with evidence from experimental studies of density-

dependence (e.g., Table C-1). It is notoriously difficult to detect density-dependence in 

sequential censuses of populations (e.g. Gaston and Lawton 1987, Fowler et al. 2006). 

In general, experimental studies have tended to find strong evidence for density-

dependence; however, these studies commonly impose very large differences in density 



Chapter 4 – Strong evidence for weak density-dependence in population dynamics 

86 

among treatments, and, especially in laboratory studies, reduce the effects of other, 

potentially confounding sources of variation in population growth (Fowler et al. 2006). 

The controlled nature and small scale of experimental studies also might reasonably be 

expected to reduce observation error, compared to many observational time series. 

These factors would both increase the expected magnitude of density-dependent effects, 

and reduce the magnitude of both process noise and observation error, making density-

dependence easier to detect (Osenberg et al. 2002).  

In addition to the above factors, experimental studies are, of necessity, small-

scale, relative to the scale of interbreeding populations in nature: field experiments 

typically focus on habitat patches or relatively small sub-populations, while laboratory 

studies typically generate populations that are comparatively small, and inhabit a 

relatively homogeneous environment, than would be the case for those populations in 

nature (e.g. Pearl 1927, Gause 1934, Hazlerigg et al. 2012, Boström-Einarsson et al. 

2013). Thus, the extent to which strong density-dependence at the patch level might 

scale up to regulate population size at the meta-population level has been a key point of 

contention in the debate about density-dependence (Sale and Tolimieri 2000). Our 

findings support the hypothesis that these local-scale density-dependent effects do, in 

fact, scale up to have a detectable effect on population regulation, consistent with both 

metapopulation theory (Hanski 1991, Hixon et al. 2002) and with a recent laboratory 

meta-population experiment (Strevens and Bonsall 2011). Such effects may be quite 

heterogeneous among populations: for instance, in an experimental study, Schmitt & 

Holbrook (2007) found large variation in the  strength of density-dependence among 6 

local populations of a reef fish, due to local variation in predator abundance. Because 

density-dependent processes act on individuals in response to their local environment, 
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such heterogeneity among local habitat patches could well weaken the apparent strength 

of density-dependence at the whole-population level, particularly if population 

dynamics are asynchronous among habitat patches (Wang et al. 2009). 

One striking difference between the full density-dependent model on the one 

hand, and the common-b and random-b models on the other, is the average strength of 

density-dependence. That the full density-dependent model produces much stronger 

average strength of regulation implies that the time series that produce weak density-

dependence have more information in them than the time series that produce strong 

density-dependence. Consistent with this, time series yielding very weak density-

dependence (b>0.9) tended to be long time series of (especially) birds and mammals. In 

the subset of data I analysed, birds, fishes, mammals, and insects each constitute about a 

quarter of the time series (only 9 time series did not fall into one of these four groups). 

Indeed, a simple linear model with the full model estimate of b as the response variable 

indicated that longer time series produced weaker estimates of density-dependence than 

short ones, with estimates of density-dependence strongest for fishes, then insects, then 

mammals and birds (see Table 4-2). 

  



Chapter 4 – Strong evidence for weak density-dependence in population dynamics 

88 

Table 4-2.—Results of linear regression of the density-dependent parameter (b) against 

the length of the time-series and the taxon of the focal species. Time-series were 

grouped in 5 taxon classes: Aves (188), Insecta (156), Mammalia (130), 

Osteichtyes(144) and Other (9).  

 d.f. 
Sum of 

squares 

Mean 

squares 
F P-value 

Taxon 4 10.1 2.5 12 <.001 *** 

Length 1 4.6 4.6 22 <.001 *** 
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Figure 4-6.— Simulated observations of Gompertz population dynamics, incorporating 

process and observation error (A) starting far below carrying capacity, and (B) starting 

at carrying capacity (a=0.92, b=0.8, σ2 =0.3, and τ2=0.3 in both cases). Lower panels 

show log-likelihood profiles for (C) the time series starting far from carrying capacity, 

and (D) the time series starting at carrying capacity. The vertical arrows on the log-

likelihood profiles indicate the 95% confidence interval.  
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One factor likely contributing to the relatively low power to detect density-

dependence in individual time series is the nature of the fluctuations in the data. 

Information about density-dependence is clearest when excursions to low density occur 

that are substantially larger in magnitude than typical interannual environmental 

fluctuations (i.e., rare catastrophes), after which recovery towards carrying capacity 

might be expected to occur (Figure 4-6). Few such excursions to low density occur 

naturally in the GPDD, whereas experimental studies typically impose large differences 

in abundance among treatments (Fowler et al. 2006). This suggests that organisms 

subject to episodic disturbances on a frequency that is comparable to that of expected 

recovery to equilibrium (e.g., reef corals: Osborne et al. 2011) may be particularly well-

suited to assessments of the strength of evidence for density-dependence in nature.  

Another factor potentially influencing the detection of density-dependence is 

differences in the taxonomic coverage of observational and experimental data sets.  

While the GPDD contains time series of insects, plankton, and fish (taxa that dominate 

experimental studies of density-dependence), it also contains time series for many 

organisms that tend to be relatively large, long-lived, and have relatively small litter 

sizes (e.g., half of the time series I analysed were for birds or mammals), compared to 

the insects, planktonic micro-organisms, and fish that dominate experimental studies.  

Short-lived, highly fecund organisms are more likely to have the capacity to increase 

rapidly towards, or overshoot, carrying capacity, inducing rapid changes in resource 

availability per-capita and thus severe density-dependence such as mass starvation or 

the attraction of large numbers of predators (Herrando-Pérez et al. 2012). In contrast, 

longer-lived organisms that produce few offspring at a time may respond by delays in 

reaching reproductive maturity, reductions in litter size, and other non-lethal density-
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dependent responses as resources become limiting. Indeed, a recent review of density-

dependence in ungulates argued that these milder forms of density-dependence are 

typically those that are first observed as resources become limiting (Bonenfant et al. 

2009).  

Finally, the need to estimate both density-dependent and density-independent 

components of population growth may itself complicate the process of detecting 

density-dependence. These two parameters typically covary positively and strongly: 

very large density-independent growth rates coupled with strong density-dependence 

often fit the same data nearly as well as low density-independent growth rates coupled 

with weak density-dependence, creating ridges in the likelihood surface that imply 

substantial uncertainty about the value of both. Consequently, imposing constraints on 

the density-independent growth rate using other sources of information has been 

identified as one way to improve the detection and estimation of density-dependence 

(Lebreton and Gimenez 2013). Two potential sources of such information are 

independent experimental estimates of the density-independent growth rate, or the use 

of allometric relationships (Fenchel 1974). Recently, Delean et al. (2013) employed 

allometric relationships to impose priors on the density-independent growth rate. They 

found that the prior dominated the posterior distribution of the density-independent 

growth rate, which is consistent our finding that time series frequently contain very little 

information about this parameter.  
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4.5. Conclusions 

Accounting for both observation error and process noise is critical to avoid over-

estimation of the strength of density-dependence (Knape and de Valpine 2012, Lebreton 

and Gimenez 2013). Unfortunately, doing so also reduces drastically the statistical 

power to detect the existence of density-dependence.  Previous workers have suggested 

three ways to mitigate this problem in the collection of time series. First, collecting 

longer time series will strengthen statistical power, although power to detect density-

dependence increases very slowly with time series length (Dennis et al. 2006). 

Secondly, replicated sampling, where multiple observations of population size are 

collected at each time step, can considerably improve inference by teasing apart 

observation error and process noise (Dennis et al. 2010). Finally, time series with large 

excursions from carrying capacity contain much more information on density-

dependence than time series of population fluctuating around carrying-capacity (see Fig. 

S2 in Supplementary Information for an example). However, most existing time series 

are relatively short, do not include replicate observations of density, and lack large 

excursions from carrying capacity. Nevertheless, there is a need to use the information 

in these studies as effectively as possible to understand how populations are regulated in 

nature. Our findings show one way to strengthen our inferences about this: by using 

statistical models that leverage information from multiple time series to mutually 

inform one another. For the GPDD, such an approach reveals that, despite the loss of 

statistical power associated with accounting for observation error and process noise, 

there is strong evidence that density dependence is common in nature, but that it is 

weaker in strength than either experimental studies or early analyses of population time 

series suggest. 
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Chapter 5. General discussion 

5.1. Summary of key findings 

In chapter 2, I developed a quantitative approach to measure the stabilizing effect of 

species richness on herbivory on coral reefs. My results show that this effect is strong, 

with nearly independent fluctuations among herbivorous fishes. Furthermore, I found 

that differential responses to environmental fluctuations among herbivorous fishes is the 

main driver of the portfolio effect in this community. Ecological compensatory 

interactions, such as competition, also contribute significantly to the portfolio effect but 

to a much lesser extent. My results support the current view among coral reef 

researchers that herbivorous fish diversity provides insurance against catastrophic shift 

from dominance by corals towards dominance by macroalgae (Burkepile and Hay 2008, 

Adam et al. 2015). 

In chapter 3, I developed a framework to understand diversity-stability 

relationships in ecological communities. I established a general mathematical 

relationship relating community variability to population variability. This relationship 

shows that community variability is always smaller than weighted-average population 

variability, and that the factor by which it is smaller is the square root of the community 

synchrony index (Φ). Additionally, I showed how the weighted-average population 

variability depends on the mean-variance scaling of abundance, changes in abundance 

with diversity and differences in species’ mean abundance in monoculture. My results 

reveal important interactions between these phenomena that influence the strength, and 

even the direction, of the diversity-stability relationship. Furthermore, I studied how 
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evenness in abundances alters the diversity-stability relationship through combined 

effects on community synchrony and weighted-average population variability. Contrary 

to the widely held view that evenness has a stabilizing effect, my results reveal that 

evenness can be either stabilizing or destabilizing, depending on the nature of the mean-

variance scaling and whether species’ mean abundances tend to decrease as species 

richness increases. This framework appears to have the potential to reconcile seemingly 

conflicting results from empirical and theoretical studies. 

In chapter 4, I assessed the strength of evidence for population regulation in the 

Global Population Dynamics Database. I found that individual time-series of population 

sizes contain little information about density-dependence, and that separate analyses of 

these time-series are likely to over-estimate its strength, even when observation error is 

accounted for. In contrast, I find very strong evidence for density-dependence when 

performing an analysis across all time-series, although its magnitude is weak. This 

finding suggests that leveraging information from multiple time-series allows stronger 

inferences about density-dependence in population time-series, and helps to explain the 

apparent inconsistencies between experimental studies, recent analyses of population 

time-series, and ecological theory.  

My findings in chapters 3 and 4 have important implications for quantifying 

how biodiversity stabilizes communities. In chapter 2, I used an average correlation 

coefficient to quantify community synchrony. As I have shown in chapter 3, a better 

metric of community synchrony for quantifying diversity-stability relationships is Φ. 

Further analyses of the data from Chapter 2 show that Φ and the Synchrony Index are 

strongly correlated (ρ = 0.76), suggesting that my conclusions are unlikely to be 

affected by my use of the average correlation coefficient. Nevertheless, in future, 
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studies of diversity-stability relationships should use Φ, since the average correlation 

coefficient may not always be well-correlated with community synchrony, particularly 

when abundances are uneven within the community (Appendix B.1).  

Additionally, the linear mixed-effect model framework that I used in chapter 2 

does not explicitly account for observation error. Instead, I have taken advantage of the 

replicated sampling design to estimate a yearly random effect, representing random 

perturbations to the intrinsic growth rate due to environmental fluctuations at the reef 

scale. The residual variation is assumed to be due to observation error and other sources 

of unexplained variation, including heterogeneity and stochasticity at the sub-reef scale. 

Although this approach explicitly accounts for two sources of stochastic fluctuations, 

reef-scale environmental fluctuations and residual variation, it is not, strictly speaking, a 

process noise and observation error model, because it does not keep track of an estimate 

of the true (unobserved) population size. At each time-step, the population size next 

year is predicted from the observed population size this year, which is assumed to be 

accurate. Then the deviation between the predicted and observed value is partitioned 

between reef-scale process noise (due to environmental fluctuations) and residual error. 

Clearly these two steps make inconsistent assumptions: the prediction step assumes that 

observations are accurate, while the partitioning step assumes the opposite. In contrast, 

a state-space model approach, such as that I developed in chapter 4, would keep track of 

the true unobserved population size and use it to make one-step-ahead predictions.  

A complete assessment of the potential biases induced by the hierarchical 

analytical approach I have used in chapter 2 would require fitting a state-space model to 

the data and comparing the results. Unfortunately, accurate estimation of state-space 

models’ parameters requires longer time-series than available in this dataset. However, 
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there are good reasons to think that my results are robust. Firstly, using a state-space 

model is unlikely to change the estimates of response diversity. Response diversity is 

calculated from the covariance matrix of process noise among species, and it is hard to 

imagine how the statistical model I used would systematically bias the patterns of 

covariance among species at the reef scale. Secondly, the simplified model is likely to 

produce over estimates of density-dependence, since process-noise only models are 

known to do this (chapter 4). Consequently, we can expect the density-dependence 

index to be biased low. My analysis however does not focus on density-dependence, but 

rather the interaction index (II) , the average of the interaction strengths between 

species. The extent to which ignoring observation error can systematically bias 

estimates of interaction strengths between species is unknown (Ives et al. 2003). 

However, it is likely that there will be negative covariances among interaction 

parameters, because a decrease in one parameter needs to be compensated by an 

increase in another parameter so that the predicted average abundance remains close to 

the average of the data. Consequently, elements of the community matrix are likely to 

be biased in compensatory ways: some coefficients will be biased low while some 

others will be biased high. By averaging interaction strengths over all species pairs, I 

would expect my index to have mitigated the impact of any such biases.  

5.2. Caveats 

Functional form of density-dependence 

Analysing population dynamics using time-series of abundances requires choosing a 

functional form of density-dependence to characterize the expected deterministic 

dynamics in the absence of stochasticity. Popular choices for the functional form 
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include the θ-logistic model (e.g. Sibly et al. 2005, Brook and Bradshaw 2006, Sæther 

et al. 2008), the Ricker model (e.g. Brannstrom and Sumpter 2006, Abbott 2011) and 

the Gompertz model (e.g. Pollard et al. 1987, Dennis et al. 2006, Knape and de Valpine 

2012). These models are phenomenological models, in the sense that the density-

dependence of birth and death terms are not explicitly derived from mechanistic 

assumptions. The lack of biological assumptions makes it difficult to assess objectively 

the suitability of a particular model for the dynamics of a specific population. 

Consequently, the choice of the model is often done a priori, based on personal 

preference, or based on considerations of analytical tractability. 

Analytical tractability might explain the popularity of the Gompertz model in 

ecological analysis of time-series (Dennis et al. 2006). When expressed in log-

abundances, the Gompertz model is linear. Under the assumption that observation error 

can be ignored, and that environmentally-driven random fluctuations of growth rates are 

normally distributed on the log-abundance scale, the resulting model can be fitted to 

time-series using simple linear regression. Additionally, if both process noise and 

observation error are considered, and if observation error also is assumed to be normally 

distributed on the log-abundance scale, the Gompertz model becomes a linear Gaussian 

state-space model that can be fitted to time-series using the Kalman Filter. Software 

packages to perform Kalman filtering exist that are designed to be accessible to 

ecologists (e.g. Holmes et al. 2012). 

If the Gompertz model is chosen for statistical convenience rather than for 

ecological reasons, one could legitimately question its suitability for analysing 

ecological time-series analysis. However, studies that have compared multiple 

functional forms of density-dependence consistently find that the Gompertz model 
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performs at least as well as other models for time-series of natural population 

abundances. For example, Brook & Bradshaw (2006), analysing a large collection of 

time-series, found that the Gompertz model consistently outperformed the θ-logistic and 

the Ricker model for a wide range of taxa. Moreover, Knape & de Valpine (2012), in an 

extensive analysis of the GPDD found that the Ricker and the Gompertz model lead to 

very similar distributions of the strength of density-dependence among time-series, 

suggesting that the relative strength of density-dependence is robust to the choice of the 

functional form. Using data from laboratory experiments, Ferguson & Ponciano (2014) 

compared the performance of alternative functional forms for population viability 

analysis. They found that the form of density-dependence had a moderate effect on 

predictions, but that these effects were small compared to removing density-dependence 

entirely. The Ricker model performed best for populations embedded within simple 

communities (one consumer, multiple resources) whereas the Gompertz model 

outperformed other models for populations embedded within complex communities 

(multiple consumers, multiple resources). They conclude that the Gompertz model may 

be a better model for larger communities, where interactions with others species play a 

role in population regulation, as is the case for most populations in nature (including the 

herbivore assemblage analysed in chapter 2). These experimental findings suggest that 

the Gompertz model is a good candidate for analysing the dynamics of natural 

populations.  

Statistical distribution of observation error 

In the analysis of time-series of population abundances, observation error usually refers 

to any discrepancy between the true unobserved population size and the recorded 

population size. Observation error results from the interaction of multiple processes 
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involved in the collection of data, such as miscounts made by the observer or sampling 

error. Indeed, estimates of population sizes are rarely based on exhaustive censuses of  

individuals, but rather on samples. Consequently, some sampling error will affect 

population size estimates with a magnitude and a distribution dependent on the 

sampling design and on the spatial distribution of the population. For simple sampling 

designs and under simplifying assumptions, the distribution of observation error can be 

derived directly. For example, counting individuals from a population randomly 

distributed in space results in a Poisson-distributed sampling error. However, for many 

ecological time-series, there is no natural way of determining the distribution of 

observation error. In such cases, the choice of the distribution of observation error is 

often dictated by analytical tractability, as noted above in the context of using the 

Kalman Filter to fit population time series.  

In contrast to the functional form of density-dependence, there are compelling 

reasons to think that the choice of the error model can influence inferences on 

population-dynamic parameters. For example, in a simulation study, Knape et al. (2011) 

found that selecting an incorrect distribution of observation error could result in severe 

over-estimation of density-dependence. Additionally, they tested whether the true 

distribution of observation error could be identified from the data by arbitrating between 

several error models with model selection criteria. They found that, when using single 

time-series, the model of observation is commonly mis-identified, in some instances in 

70% of the cases. In contrast, when using replicated time-series, the correct model was 

identified in most cases. Consequently, unless replicated time-series are available, the 

correct error model will likely not be identifiable from the analysis of the data.  
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Acknowledging for observation error in the analysis of population and 

community time-series is a necessity for reliable inference, but it remains a challenging 

task. Firstly, it is notoriously difficult to tease apart process noise from observation 

error in short ecological time-series (Dennis et al. 2006, Dennis et al. 2010, Lebreton 

and Gimenez 2013). Estimates of the variance of process noise and observation error 

tend to be strongly negatively correlated, often resulting in a large variance for one 

source of variability and a small variance for the other. Secondly, the choice of the error 

model itself has important implications for parameter estimation. Analysing replicated 

time-series considerably improves parameter estimation (Dennis et al. 2010), and may 

allow to select an appropriate model of observation error (Knape et al. 2011). 

Unfortunately, most time-series are not replicated. Nevertheless, some recent 

developments may help to address these issues. First, Knape et al. (2013) have 

developed a new method for analysing population time-series when estimates of 

population sizes are accompanied by standard errors. This method performs as well or 

even better than the joint analysis of replicated time-series when the number of 

replicates is small. Second, when the true observation model  is incompletely known, 

flexible distributions for observation error can be used to incorporate prior information 

about general features of the observation error distribution, such as left or right skew 

(Hosack et al. 2012). These two approaches could be useful, for instance, if  the 

magnitude or form of observation error can be estimated post-hoc from other studies 

that mimic the focal study’s sampling design, but with replication.  Finally, using 

weakly informative priors on demographic parameters can dramatically increase 

estimation efficiency (Lebreton and Gimenez 2013). 
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5.3. Future directions 

Ecological drivers of the diversity-stability relationship (DSR) 

The extent to which interspecific ecological interactions and response diversity 

contribute to the diversity-stability relationship remains an open question. Early 

theoretical studies suggested that interspecific competition has little influence on the 

DSR, because the stabilizing effect resulting from competition-driven asynchronous 

dynamics is compensated by the destabilizing effect of competition on population 

variability (Ives et al. 1999, Ives and Hughes 2002). In contrast, a recent study suggests 

that competition has a destabilizing effect (Loreau and Mazancourt 2013). However 

these theoretical predictions are at odds with the findings of Chapter 2, which found that 

compensatory interactions have a weak but significant stabilizing effect on herbivory. 

Existing theory typically assumes strong symmetry in the community’s 

population dynamics (all species have identical values for some parameters). This 

assumption has been relaxed only for simple communities of two interacting species, or 

through simulation of larger communities, yielding different conclusions about 

diversity-stability relationships depending on details of model structure and parameter 

values (Ives et al. 1999, Hughes and Roughgarden 2000, Ives et al. 2000, Fowler et al. 

2012, Loreau and Mazancourt 2013). The interpretation of community-dynamic models 

within the framework developed in Chapter 3 opens the way to re-examine the 

relationship between ecological interactions, response diversity and their influence on 

the diversity-stability relationship for realistic communities. For example, using this 

framework, a recent study characterized how functional distance between species and 
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the relative importance of predation and competition drive the diversity-stability 

relationship in complex communities (Bauer et al. 2014). 

 

Disentangling the relative contribution of levels of organization to the DSR 

The mounting evidence that portfolio effects operate strongly in natural communities 

has important implications for conservation. Species diversity can stabilize critical 

ecosystem functions, such as herbivory on coral reefs. This stabilization, in turn, can 

provide insurance against regime shifts when those functions are key for keeping the 

system in a particular basin of attraction (Standish et al. 2014, Adam et al. 2015). In 

many cases, the assemblage of species performing a particular function is itself 

composed of several functional groups. For example, on coral reefs, herbivorous fishes 

can be classified as Territorial grazers, Roving grazers and Scrapers.  

Conservation of both species diversity and functional diversity are commonly 

identified as goals in ecosystem management. Therefore, determining which level of 

organization contributes most to the DSR is of considerable interest for informing 

conservation decisions. The framework developed in Chapter 3 could be extended to 

allow estimation of the relative contribution of within-group asynchrony and among-

group asynchrony to overall community asynchrony.  

5.4. Conclusions 

The results of this thesis support the view that positive diversity-stability relationships 

might be common, but not ubiquitous, in natural assemblages. Ultimately, the strength 

and direction of the diversity-stability relationship depends on the interplay of several 



Chapter 5 – General discussion 

  103 

ecological drivers of fluctuations in species’ abundances. The analysis of time-series 

with community dynamics models can provide useful insights on the relative 

importance of these ecological drivers. For example, I have shown that, when the 

drivers of population synchrony are partitioned between response diversity and 

compensatory interactions, the former is the main determinant of the diversity-stability 

relationship for herbivorous fishes on coral reefs. The DSR itself can be partitioned into 

an effect of synchrony, and an effect of population variability, when these are quantified 

as the community synchrony index (Φ) and the weighted-average population variability. 

Because population and community-dynamic processes affect both average population 

variability and community synchrony, their role on the strength and direction of the 

DSR can be disentangled by considering separately their effect on community 

synchrony and population variability. However, my final chapter indicates that there is 

still some important work to do in terms of understanding DSRs in community time 

series, in order to more rigorously account for the effects of observation error, and 

thereby better ensure sound inferences about the magnitudes of the processes driving 

fluctuations of the communities being sampled.   
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Appendix A. Supplementary material for chapter 2 

A.1. Functional groups and reefs surveyed 

Table A-1.—Survey reefs and period of surveys. 

Reef Period surveyed 

Low Isles Reef 1997 – 2004 

Green Island Reef 1993 – 2004 

Mackay Reef 1995 – 2004 

Hastings Reef 1993 – 2009 

Michaelmas Reef 1993 – 2004 

Thetford Reef 1994 – 2009 

Agincourt Reefs (No. 1) 1994 – 2009 

St. Crispin Reef 1995 – 2009 

Opal Reef 1995 – 2004 

Broomfield Reef 1995 – 2009 

Wreck Island Reef 1996 – 2004 

One Tree Reef 1995 – 2004 

Lady Musgrave Reef 1995 – 2009 

Martin Reef 1995 – 2004 

North Direction Reef 1994 – 2004 

Carter Reef 1995 – 2004 

Yonge Reef 1993 – 2004 

No Name Reef 1994 – 2004 

Gannett Cay Reef 1993 – 2004 
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Snake Reef 1993 – 2004 

Chinaman Reef  1993 – 2009 

Horseshoe Reef 1995 – 2004 

East Cay Reef 

Turner Reef 

John Brewer Reef 

Davies Reef 

Myrmidon Reef 

Dip Reef 

Chicken Reef 

1994 – 2009 

1994 – 2004 

1993 – 2004 

1993 – 2004 

1993 – 2004 

1995 – 2004 

1994 – 2009 

Reef 19-131 

Reef 19-138 

Reef 20-104 

Slate Reef 

Hyde Reef 

Rebe Reef 

1996 – 2004 

1994 – 2004 

1993 – 2004 

1995 – 2004 

1994 – 2004 

1994 – 2004 
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Table A-2.—List of functional groups’ constituent species. 

Territorial Grazers Roving Grazers Scrapers 

Acanthurus lineatus Acanthurus maculiceps Bolbometapon muricatum 

Acanthurus nigricans Acanthurus nigrofuscus Calotomus carolinus 

Chrysiptera biocellata Acanthurus triostegus Cetoscarus bicolor 

Chrysiptera rex Naso lituratus Chlorurus bleekeri 

Dischistodus melanotus Naso tuberosus Chlorurus japanensis 

Dischistodus prosopotaenia Naso unicornus Chlorurus microrhinos 

Dischistodus 

pseudochrysopoecilus 

Siganus doliatus Chlorurus sordidus 

Hemiglyphidodon 

plagiometopon 

Siganus fuscescens Hipposcarus longiceps 

Plectroglyphidodon 

lacrymatus 

Siganus lineatus Scarus altipinnis 

Pomacentrus bankanensis Siganus punctatissimus Scarus chameleon 

Pomacentrus chrysurus Siganus punctatus Scarus dimidiatus 

Pomacentrus 

grammnorhyncus 

Siganus spinus Scarus flavipectoralis 

Pomacentrus wardi Zebrasoma scopas Scarus forsteni 

Stegastes apicalis Zebrasoma veliferum Scarus frenatus 

Stegastes fasciolatus  Scarus ghobban 
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Stegastes gascoynei  Scarus globiceps 

Stegastes nigricans  Scarus longipinnus 

   Scarus niger 

  Scarus oviceps 

  Scarus psittacus 

  Scarus rivulatus 

  Scarus rubroviolaceus 

  Scarus schlegeli 

  Scarus spinus 
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A.2. Selection of functional form 

To establish the functional relationship between per capita growth rate and abundance, I 

fitted two different models to the abundance data: a discrete time version of the Lotka-

Volterra model (Ives and Carpenter 2007) and a discrete time version of the Gompertz 

model (Ives et al. 2003). In these models, the change in abundance of group i at time t 

on reef r at site s, transect u, 𝑛𝑖,𝑟,𝑠,𝑢
𝑡 , is modeled as: 

Gompertz model:  

 log(ni,r,s,u
t+1 ) - log(ni,r,s,u

t ) = ai,r + ∑ bi,j,r log(nj,r,s,u
t )3

j=1 + ri,r,s
t + ei,r,s,u

t  

Lotka-Volterra model:      

 log(ni,r,s,u
t+1 ) - log(ni,r,s,u

t ) = ai,r + ∑ bi,j,rnj,r,s,u
t3

j=1 + ri,r,s
t + ei,r,s,u

t  

Note that both models have exactly the same structure and differ only in the functional 

relationship between per capita growth rate and abundance: per-capita growth rate 

declines linearly with abundance in the Lotka-Volterra model, but linearly with log-

abundance in the Gompertz model. Note also that the Lotka-Volterra model is 

essentially a multi-species extension of the “ricker-logistic”, which preserves the 

linearity between per-capita growth rate and abundance, while preventing negative 

population sizes. 

I fitted both models and compared the fits using Akaike Information Criteria, which 

strongly favored the Gompertz model. The better fit of the Gompertz model is also 

supported by visual inspection of model fit. Specifically, plots of per-capita growth rate 

against log-abundance for all three functional groups exhibit linearly decreasing 
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relationships, consistent with Gompertz model assumptions), but nonlinear relationships 

with abundance on an arithmetic scale, in violation of Lotka-Volterra model 

assumptions. Figure A-1 illustrates this, using the roving grazer data.  
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Roving grazers - Lotka-Volterra
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Figure A-1. — Biplots of per capita growth rate versus either log-abundance (for the 

Gompertz model) or arithmetically-scaled abundance (for the Lotka-Volterra model) for 

the Roving Grazers.The non linearity of the relationship is conspicuous for the Lotka-

Volterra model.   
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A.3. Effect of grouping species on indices 

Effect of grouping species on Synchrony Index estimates 

To examine the effect of pooling species into subgroups on estimates of the Synchrony 

Index, I consider, for simplicity, a community composed of 2n species, each with 

variance V and correlation coefficient α between the abundances of all pairs of species; 

thus, the species-level Synchrony Index is α.  I consider the effect of splitting the 

community into 2 groups of n species each, and seek to determine the Synchrony Index 

for the two subgroups (this is the quantity actually estimated in our empirical analyses). 

Following the definition of the correlation coefficient, the subgroup-level Synchrony 

Index is: 

𝛼𝑒𝑠𝑡 =
σ(𝑔𝑟𝑜𝑢𝑝1, 𝑔𝑟𝑜𝑢𝑝2)

√σ2(𝑔𝑟𝑜𝑢𝑝1) ∗ σ2(𝑔𝑟𝑜𝑢𝑝2)
 

(A.1) 

Where group1 and group2 represent the total abundance of the two subgroups, 

σ(group1,group2) is the covariance between subgroups, and σ 2(group1) and σ 2(group2) 

are the variances.  

Now I consider how the subgroup variances depend on the species-level 

variances. The total variance of a subgroup is a function of its constituent species-level 

variances and covariances, according to the definition of the variance of a sum (e.g. 

Pitman 1993): 
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𝜎2 (∑ 𝑥𝑖

𝑛

𝑖=1

) = ∑ 𝜎2(𝑥𝑖)

𝑛

𝑖=1

+ ∑ 𝜎(𝑥𝑖, 𝑥𝑗)

𝑖≠𝑗

 

(A.2) 

If I denote the species-level variances are V, and the species-level covariances , this 

simplifies to: 

σ2(𝑔𝑟𝑜𝑢𝑝1) = σ2(𝑔𝑟𝑜𝑢𝑝2) = 𝑛 ∗ 𝑉 + 𝑛 ∗ (𝑛 − 1) ∗ 𝛼 ∗ 𝑉 

(A.3) 

Also, the covariance between groups is the sum of the pairwise covariances of species 

of different groups: 

covar( 𝑔𝑟𝑜𝑢𝑝1, 𝑔𝑟𝑜𝑢𝑝2) = ∑ covar(𝑠𝑝𝑖 , 𝑠𝑝𝑗) = 𝑛2

𝑖∈𝑔𝑟𝑜𝑢𝑝1,𝑗∈𝑔𝑟𝑜𝑢𝑝2

∗ 𝛼 ∗ 𝑉 

(A.4) 

Substituting eqs. (A.3) and (A.4) into (A.1), I obtain the subgroup-level Synchrony 

Index as a function of the species-level Synchrony Index: 

𝛼𝑒𝑠𝑡 =
𝑛 ∗ 𝛼

1 + (𝑛 − 1) ∗ 𝛼
 

Knowing that α is a correlation coefficient and therefore less than or equal to 1, it 

follows that 

𝛼𝑒𝑠𝑡

𝛼
=

𝑛

1 + (𝑛 − 1) ∗ 𝛼
≥ 1 
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Because this ratio is always positive and bigger than 1, the quantity estimated in our 

analyses—the between subgroup Synchrony Index—is an overestimate of species-level 

Synchrony. This is illustrated in Figure A-2 for a community of 10 species split in two 

groups of 5. The same argument applies for the Environmental Response Synchrony 

Index. 

  

Figure A-2. — Bias resulting from calculating the Synchrony Index between groups 

instead of doing it at species level. The dashed line is the unity line (species level 

synchrony index = between-subgroup Synchrony Index). 
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Effect of grouping species on Interaction Index estimates 

I used a simulation study to determine whether pooling species into subgroups biases 

the Interaction Index, relative to the true species-level interactions. I assembled 

communities of 3, 5 and 10 species with varying values of the Interaction Index. Again, 

for simplicity, I assume that all species had the same growth rate, density-dependent 

parameter (b) and the same effects on one other (aij=a for all i,j). Negative values of a 

(which is equivalent to the species-level Interaction Index) correspond to a community 

where diffuse competition takes place, while positive values of the interaction Index 

indicates that diffuse facilitation occurs. The resulting community matrix B had the 

following format:  

𝐵 = (

𝑏 𝑎
𝑎 𝑏

… 𝑎
⋱ ⋮

⋮ ⋱
𝑎 …

⋱ 𝑎
𝑎 𝑏

) 

Only communities having a stable equilibrium are of interest to our analysis, and I 

therefore determined the stability conditions of this model. It can be shown that B has 

(n-1) eigenvalues equal to b-a and one eigenvalue equal to a(n-1)+b, where n is the 

number of species in the community. The conditions for the existence of a stable 

equilibrium (all eigenvalues have a magnitude less than one) can then be written as 

follows: 

−
2

𝑛
< 𝑎 <

2

𝑛
 

𝑖𝑓 𝑎 ≥ 0, 𝑎 − 1 < 𝑏 < 1 − 𝑎(𝑛 − 1) 

𝑖𝑓 𝑎 ≤ 0, −1 − 𝑎(𝑛 − 1) < 𝑏 < 𝑎 + 1 
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For each value of n, I assembled 10 communities with an Interaction Index varying 

within the stability ranges shown above. A value of b was chosen in the middle of the 

range of values that ensure stability (b = a(2-n)/2). For each community, simulations of 

community dynamics were run to produce 1000 replicate time-series of community 

abundances over 100 time steps. Once the data had been simulated, the n species were 

split into two randomly drawn groups, and the between-subgroup Interaction Index 

estimated, following the same procedure I used for the empirical data. Finally, I 

calculated the ratio of the estimated (between-subgroup) Interaction Index between the 

two groups and the species-level Interaction Index (a) that was used to generate the 

simulated data. A ratio with a magnitude above 1 implies that the subgroup-level 

Interaction Index is larger in magnitude than the actual species-level interaction index; a 

positive ratio implies that the estimated Interaction Index is in the same direction as the 

true species-level index. Our results show this ratio is consistently both positive and 

greater than 1, regardless of the magnitude or sign of the true interaction index (e.g., 

Figure A-3). This indicates that the subgroups analysis tends to correctly estimate the 

sign, and to overestimate the strength, of species-level interactions. Qualitatively 

identical results were obtained for all values of n, the number of species in the 

community, with the biases tending to be larger in magnitude for a larger number of 

species, suggesting that subgroup-based analyses of high diversity communities are 

particularly likely to overestimate, rather than underestimate, the species-level 

interaction strengths.  

In another series of simulations, I varied b, the strength of density-dependence. 

Except for some borderline cases, where the community was on the threshold of 

instability (i.e., the leading eigenvalue’s magnitude was very close to one), the results 
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were qualitatively similar, with the Interaction Index estimate biased away from zero, 

relative to the species-level interaction strength. 

 

Figure A-3. — Ratio of the between-subgroup interaction index over the species-level 

interaction index, for a community of 5 species, as a function of the species-level 

interaction index. Each boxplot summarizes the results of 1000 simulation for a given 

between-species interaction index. The horizontal red line indicates a ratio of 1.  
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Appendix B.  Supplementary material for chapter 3 

B.1. Effects of unequal variances on the mean correlation coefficient and 

synchrony index 

A major shortcoming of the mean correlation coefficient as a measure of 

community synchrony is that it is not robust to unequal variances. In contrast, the 

synchrony index implicitly accounts for the different effects of species with large 

versus small variances on total community variance. This can be illustrated with a 

simple toy example comparing two community covariance matrices, which differ only 

in the inequality of their variances. 

Consider a community of n species, where the first n-1 species are perfectly 

correlated with each other (𝜌 = 1), and the nth species is perfectly negatively correlated 

with the other n species (𝜌 = −1). First, consider the case where all species have the 

same variance, v. Then, the community covariance matrix is: 

 n

v v v

v v v
v v v

 
 
 
 
 
  

V                                                               (B.1.1) 

The synchrony index for this community (from eq. 3.2) is: 

𝜙 =
∑ 𝑣𝑛

𝑠 (𝑖,𝑗)𝑖𝑗

(∑ √𝑣𝑛
𝑠 (𝑖,𝑖)𝑖 )

2 =
(𝑛−1)2𝑣+𝑣−2(𝑛−1)𝑣

𝑛2𝑣
=

(𝑛−2)2

𝑛2                                        (B.1.2) 

and the mean correlation coefficient is: 
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𝜌̅  = (
(𝑛−1)𝑛

2
)

−1

((1)
(𝑛−1)(𝑛−2)

2
+ (−1)(𝑛 − 1)) =

𝑛−4

𝑛
                                (B.1.3) 

When there are only two species in the community (n=2), they are perfectly negatively 

correlated, and, consistent with this, 𝜙 = 0 and 𝜌̅ = −1. As n increases, the negatively 

correlated species contributes a smaller and smaller portion of the total community 

variance, and the community variability is increasingly dominated by the perfectly 

synchronized species. Accordingly, both the synchrony index and the mean correlation 

coefficient converge to 1 as 𝑛 → ∞. 

Now consider a community with the same correlation coefficients, and where 

the first n-1 species still have variance v, but where the variance of the nth species is 

now (n-1)2v: 

2

( 1)

( 1)
( 1) ( 1) ( 1)

n

v v n v

v v n v
n v n v n v

  
 
 
  
 
     

V                                             (B.1.4) 

Note that this community is perfectly asynchronous: the total community variance (sum 

of all of the covariance matrix elements) is zero (i.e., total community size remains 

constant over time), as long as there is more than one species in the community. This is 

reflected in the synchrony index, which is now zero for any n>1: 

𝜙 =
∑ 𝑣𝑛

𝑠 (𝑖,𝑗)𝑖𝑗

(∑ √𝑣𝑛
𝑠 (𝑖,𝑖)𝑖 )

2 =
0

4(𝑛−1)2𝑣
= 0                                             (B.1.5) 

In contrast, the mean correlation coefficient is the same as for the community with 

equal variances (eq. B.1.3, above). In other words, even though this community is 

perfectly asynchronous (it remains constant over time), the mean correlation coefficient 
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actually still converges to the opposite extreme (perfect synchrony, 𝜌̅ = 1) as species 

richness increases. 

 The problematic behavior of the mean correlation coefficient for the unequal 

community arises because the contribution of the negatively correlated species to the 

mean correlation is the same as the contribution of all the other species (and thus makes 

a proportionately smaller contribution at larger n), even though it contributes very 

disproportionately to the total variance of the community in the second example for all 

n. 

B.2. Derivation of relationship between population and community 

variability 

To derive eq. (3.3), I re-arrange eq. (3.2) by solving for community variance: 

𝑣𝑛
𝑐 = 𝜙(∑ √𝑣𝑛

𝑠(𝑖)𝑖 )
2
                                                        (B.2.1) 

I then divide both sides by temporal mean of total community abundance, mn
c (i.e., the 

sum of mean abundances of all species in the community):  

𝐶𝑉𝑛
𝑐 =

√𝑣𝑛
𝑐

𝑚𝑛
𝑐 =

√𝜙(∑ √𝑣𝑛
𝑠 (𝑖)𝑖 )

2

𝑚𝑛
𝑐                                                   (B.2.2) 

This allows me to express community variability as a dimensionless quantity: the 

coefficient of variation of total community abundance, 𝐶𝑉𝑛
𝑐 . I then factor out the 

synchrony index: 

𝐶𝑉𝑛
𝑐 =

√𝜙(∑ √𝑣𝑛
𝑠 (𝑖)𝑖 )

2

∑ 𝑚𝑛
𝑠 (𝑖)𝑖

= √𝜙
∑ √𝑣𝑛

𝑠 (𝑖)𝑖

∑ 𝑚𝑛
𝑠 (𝑖)𝑖

                                          (B.2.3) 
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Equation (3.3) says that community variability is simply the product of a synchrony 

effect, √𝜙 , and a population variability effect. One way to express the population 

variability is as the average standard deviation of species abundance, divided by the 

average mean species abundance. We can see this more clearly by dividing the right-

hand numerator and denominator in (B.2.3) by the number of species, n: 

𝐶𝑉𝑛
𝑐 =

√𝜙(∑ √𝑣𝑛
𝑠 (𝑖)𝑖 )

2

∑ 𝑚𝑛
𝑠 (𝑖)𝑖

= √𝜙
1

𝑛
∑ √𝑣𝑛

𝑠 (𝑖)𝑖
1

𝑛
∑ 𝑚𝑛

𝑠 (𝑖)𝑖
                                            (B.2.4) 

However, the link between population and community variability can be expressed 

more intuitively by recognizing that the ratio in eq. (B.2.4) is equivalent to a weighted 

average of each species’ coefficient of variation, where the weighting is by each 

species’ relative mean abundance. We can do this by first pulling the sum in the 

numerator out in front of the fraction: 

𝐶𝑉𝑛
𝑐 = √𝜙  

∑ √𝑣𝑛
𝑠 (𝑖)𝑖

∑ 𝑚𝑛
𝑠 (𝑖)𝑖

= √𝜙 ∑
√𝑣𝑛

𝑠 (𝑖)

∑ 𝑚𝑛
𝑠 (𝑗)𝑗

𝑖 ,                                          (B.2.5) 

 

and then multiplying through by 𝑚𝑛
𝑠 (𝑖)

𝑚𝑛
𝑠 (𝑖)⁄  

𝐶𝑉𝑛
𝑐 = √𝜙 ∑

√𝑣𝑛
𝑠 (𝑖)

∑ 𝑚𝑛
𝑠 (𝑗)𝑗

𝑖 = √𝜙 ∑
𝑚𝑛

𝑠 (𝑖)

∑ 𝑚𝑛
𝑠 (𝑗)𝑗

√𝑣𝑛
𝑠 (𝑖)

𝑚𝑛
𝑠 (𝑖)𝑖 = √𝜙 𝐶𝑉𝑛

𝑠̃                       (B.2.6) 

The term inside the sum in eq. (B.2.6) is simply the relative mean abundance of species 

i (i.e., mean abundance relative to the mean total community abundance), times the 

coefficient of variation of abundance of species i. That is, the sum represents a weighted 

average species-level coefficient of variation, where the weighting is by species’ 
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relative abundance. Thus, for instance, in the special case where all species have the 

same mean abundance, 𝐶𝑉𝑛
𝑠̃  collapses to a normal unweighted average CV. 

B.3. Derivation of relationship between mean-abundance effect and 

population variability 

To derive eq (3.7) in the main text, we first rewrite eq. (3.4), using the mean-variance 

scaling relationship from eq. (3.5): 

𝐶𝑉𝑛
𝑠̃ =  

∑ √𝑣𝑛
𝑠 (𝑖)𝑖

∑ 𝑚𝑛
𝑠 (𝑖)𝑖

=
∑ √𝑎 (𝑚𝑛

𝑠 (𝑖))
𝑏

𝑖

∑ 𝑚𝑛
𝑠 (𝑖)𝑖

                                          (B.3.1) 

Then, we substitute the right-hand side of eq. (3.6) for mn
s(i) in eq. (B.3.1), and factor 

out the nx terms in the resulting numerator and denominator: 

𝐶𝑉𝑛
𝑠̃ =

∑ √𝑎 (𝑚𝑛
𝑠 (𝑖))

𝑏
𝑖

∑ 𝑚𝑛
𝑠 (𝑖)𝑖

=
∑ √𝑎 (

𝑚1(𝑖)

𝑛𝑥 )
𝑏

𝑖

∑
𝑚1(𝑖)

𝑛𝑥𝑖

=
√(

1

𝑛𝑥)
𝑏

1

𝑛𝑥

 ∑ √𝑎 (𝑚1(𝑖))
𝑏

𝑖

 ∑ 𝑚1(𝑖)𝑖
.                           (B.3.2)  

We then simplify the left-most fraction on the right-hand side of eq. (B.3.2), to obtain: 

𝐶𝑉𝑛
𝑠̃ =

𝑛
−

𝑥𝑏
2

𝑛−𝑥

 ∑ √𝑎 (𝑚1(𝑖))
𝑏

𝑖

 ∑ 𝑚1(𝑖)𝑖
= √𝑛(2−𝑏)𝑥

∑ √𝑎 (𝑚1(𝑖))
𝑏

𝑖

∑ 𝑚1(𝑖)𝑖
.                            (B.3.3) 

Next, analogous to the derivation of 𝐶𝑉𝑛
𝑠̃  (Appendix B.2, eqs. B.2.3-B.2.5), we note that 

the fraction on the far right-hand side of eq. (B.3.3) is equivalent to the weighted 

average of species’ CV in monoculture: 

𝐶𝑉𝑛
𝑠̃ = √𝑛(2−𝑏)𝑥

∑ √𝑎 (𝑚1(𝑖))
𝑏

𝑖

∑ 𝑚1(𝑖)𝑖
= √𝑛(2−𝑏)𝑥 ∑ √𝑣1(𝑖)𝑖

∑ 𝑚1(𝑖)𝑖
= √𝑛(2−𝑏)𝑥  𝐶𝑉1̃.               (B.3.4) 
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Substituting the right-hand side of the above equation into eq. (3.3) in the main text, we 

obtain eq. (3.7). 

B.4. Effect of direct interactions on diversity-dependence of synchrony 

To investigate the effect of incorporating direct interactions on the tendency for 

the synchrony index, , to decrease with diversity, we calculate synchrony from the 

analytical results of Ives et al. (1999) and Ives et al. (2003). Specifically, we consider 

the discrete-time Lotka-Volterra model of symmetric, diffuse competition: 

𝑁𝑖(𝑡 + 1) = 𝑁𝑖(𝑡) ∙ exp [𝑟 (1 −
𝑁𝑖(𝑡)+𝛼 ∑ 𝑁𝑗(𝑡)𝑛

𝑗≠𝑖

𝐾
)] ∙ exp(𝜖𝑖(𝑡))                      (B.4.1) 

where Ni(t) is population size of species i and time t, r =intrinsic growth rate, K = 

Carrying capacity, α = competition coefficient, and i(t) is a random perturbation to the 

growth rate due to environmental fluctuations (drawn for all n species in the community 

from a multivariate normal distribution with variances σe
2 and correlation coefficients 

ρe). Note that the ρe represent the correlations in species’ responses to environmental 

fluctuations, which will, in general, be different from correlations in the overall 

fluctuations in abundance () used in the calculation of 𝜌̅ and . Ives & Hughes (2002) 

derive a first-order Taylor series approximation of the model above: 

 
* *

( 1) 1 ( ) ( ) ( )i i
i i j i

j i

N Nn t r n t r n t e t
K K




 
     

 


                                 (B.4.2)
 

where ni(t) is abundance of species i, expressed as a perturbation from equilibrium at 

time t, Ni
* is the equilibrium population size of species i, and ei(t) is a re-scaled random 

perturbation to the growth rate (𝑒𝑖(𝑡) = 𝑁𝑖
∗𝜖𝑖(𝑡): Ives & Hughes 2002). Because this 
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approximation is linear in Ni, the covariance matrix (eq. 1b) can be solved numerically 

(see eqs 15-17 in Ives et al. 2003). From this, we can calculate the mean correlation 

coefficient, 𝜌̅, and the synchrony index, as described in the main text. 

Note that, when α =0, species are non-interacting, so 𝜌̅=e and exhibits the 

same pattern of diversity dependence as for the corresponding values of 𝜌̅ in the main 

text (compare orange lines in Figure B-1 with the orange, blue, and black lines in Figure 

3.2a). As α increases, the qualitative pattern of an asymptotic decline in is preserved 

(Figure B-1: compare different colored lines of the same line type).  However, because 

competition makes species’ dynamics less synchronous, decreases more rapidly, and 

to a lower value, compared to the equivalent non-interactive case, but the asymptotic 

shape of the decline is qualitatively unchanged (Figure B-1).  
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Figure B-1.— Diversity-dependence of the synchrony index under the discrete-time 

version of the Lotka-Volterra model, for the special case of symmetric, diffuse 

competition  (eq. B.4.1). For all graphs, r=1, K=100, and  and e differ between lines 

as indicated on the figure panel. Note that, to better illustrate the asymptotic nature of 

the decline in synchrony, species richness is here plotted on an arithmetic scale (in 

contrast to the figures in the main text).  
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B.5. Overyielding, porfolio effects, and the “threshold” of b=1 

In Tilman’s (1999) analytical model, 1≤b≤2, =0, and only values of 0≤x≤1 are 

considered. For this special case, synchrony decreases inversely with diversity towards 

zero (=n-1 [eq. 3.8], black line in Figure 3.2), and thus eq. (3.7) simplifies to: 

𝐶𝑉𝑛
𝑐 = 𝐶𝑉1̃√𝑛(2−𝑏)𝑥√𝑛−1 

Because 0<x<1 and 1<b<2, the mean-abundance effect increases with diversity, driving 

the increase in population variability with diversity (e.g., Figure 3.3a, orange line). 

However, because it increases more slowly than synchrony decreases, there is still a 

portfolio effect (Figure 3.4g). As overyielding increases (x decreases below 1), the 

increase in the mean-abundance effect with diversity becomes progressively weaker 

(Figure 3.3a), and so the overall portfolio effect becomes stronger (Figure 3.4g). Thus, 

overyielding promotes portfolio effects here by reducing the de-stabilization of species 

abundances, allowing the diversity-dependence of synchrony to dominate the 

community-level response.  

These countervailing effects of overyielding and diversity-dependent synchrony 

are present in the experimental study of Roscher et al. (2011). They found 1<b<2, and 

that community abundance increases, but species abundance decreases, with diversity 

(implying 0<x<1). This should tend to cause population variability to increase with 

diversity. However, synchrony declines strongly with diversity towards a value close to 

zero (similar to what is implied by the =0 assumption in Tilman’s model). 

Consequently, at the community level, diversity-dependent synchrony outweighs the 

decreasing population stability, and a portfolio effect is observed.  



Appendix B – Supplementary material for chapter 3 

152 

Similarly, the threshold b=1 is derived from models sharing two key 

assumptions: constant community size, independent of diversity (i.e., x=1, no 

overyielding), and independence of species’ fluctuations in abundance (i.e., all =0). 

This corresponds to the special case above, with x=1:  

𝐶𝑉𝑛
𝑐 = 𝐶𝑉1̃√𝑛(2−𝑏)√𝑛−1 = 𝐶𝑉1̃√𝑛(1−𝑏) 

Clearly, in this specific case, there is a portfolio effect when b>1, and an inverse 

portfolio effect when b<1. However, the result is highly sensitive to this particular 

combination of assumptions. Whenever either assumption is violated (as they will 

almost always be in nature), b=1 ceases to be a threshold defining portfolio effects. 
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Appendix C.  Supplementary material for chapter 4 

C.1. Model likelihoods 

 The Kalman filter provides a way of fitting stochastic time series when the true 

state of the system is uncertain, due to observation error. In a nutshell, the approach 

works because a Cholesky decomposition of the theoretical variance-covariance matrix 

of the observations at each time step, when multiplied by the vector of observations, 

produces a vector of transformed observations that are independently and identically 

distributed. That is, the transformation removes the serial correlation structure that 

arises from the fact that population sizes are dependent on population sizes at previous 

time steps. In fact, the Kalman filter is simply an very efficient algorithm to compute 

the Cholesky decomposition of the theoretical variance-covariance matrix of the 

observations for space-space models (Eubank and Wang 2002). 

Specifically, any Gaussian linear state-space model, such as the Gompertz 

model, can be written as (following the notation of Durbin and Koopman 2012): 

𝛼𝑡+1 = 𝑇𝛼𝑡 + 𝑅𝜂𝑡 

𝑦𝑡 = 𝑍𝛼𝑡 + 𝜖𝑡 

𝜂𝑡~𝑁(0, 𝑄) 

𝜖𝑡~𝑁(0, 𝐻) 

𝑡 = 1, … , 𝑛  
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where 𝛼t is a m × 1 vector denoting the unobserved (true) state of the system at time t, yt 

is a p × 1 vector of observations at time t, T is an m×m matrix whose elements define 

the functional dependence of αt+1 on αt, R is a m×r matrix characterizing the process 

noise in the system, Z is a p×m matrix describing the effect of the true state on the 

observed state at time t, and Q and H are positive-definite matrices of dimensions r×r 

and p×p respectively, giving the variance-covariance matrix for the vectors of error 

terms ηt and ϵt, which are hypothesized to be serially independent and independent of 

each other. The matrices T, R, Z, Q and H are assumed to depend on the elements of an 

unknown parameter vector Ψ. 

The Kalman filter is then the following set of five recursive equations: 

𝜈𝑡 = 𝑦𝑡 − 𝑍𝑥𝑡                                                 (C.1a) 

𝐹𝑡 = 𝑍𝑃𝑡𝑍′ + 𝐻                        (C.1b)  

𝐾𝑡 = 𝑇𝑃𝑡𝑍′𝐹𝑡
−1                                 (C.1c) 

𝑥𝑡+1 = 𝑇𝑥𝑡 + 𝐾𝑡𝜈𝑡                                      (C.1d) 

𝑃𝑡+1 = 𝑇𝑃𝑡𝑇′ + 𝑅𝑄𝑅′− 𝐾𝑡𝐹𝑡𝐾𝑡
′                                (C.1e)  

Where 𝜈𝑡 is known as the innovation at time t, 𝐹𝑡 is the variance matrix of 𝜈𝑡, 𝐾𝑡 is the 

Kalman gain and 𝑃𝑡 is the variance matrix of the unobserved state vector 𝛼𝑡 . 

 A disadvantage of the Kalman filter is its notational complexity. Dennis et al. 

(2006) proposed a way of expressing the Gompertz state space form that reduced the 
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number of recursive equations from five to two. Specifically, one can set 𝛼𝑡 = (
𝑎
𝑥𝑡

) for 

t=1,…,n, 𝑇 = (
1 0
1 𝑏

) , 𝑅 = (
0
1

), 𝑄 = 𝜎2, 𝑍 = (0 1), and 𝐻 = 𝜏2, 

where a, b, σ2, and τ2 are the Gompertz model parameters as specified in the main 

text.With this formulation, 3 elements of 𝑃𝑡 are always 0 (because a is a constant in 𝛼𝑡), 

and thus one element of  𝐾𝑡 is always 0: 

𝑃𝑡 = (
0 0
0 𝑝𝑡

) 

𝐾𝑡 = (
0
𝑘𝑡

) 

Using this notation, and substituting into system (S.1), the kalman filter equations for 

the Gompertz model become: 

𝜈𝑡 = 𝑦𝑡 − 𝑥𝑡                                                   (C.2a) 

𝐹𝑡 = 𝑝𝑡 + 𝜏2                                        (C.2b) 

𝑘𝑡 = 𝑏𝑝𝑡𝐹𝑡
−1                (C.2c) 

𝑥𝑡+1 = 𝑎 + 𝑏𝑥𝑡 + 𝑘𝑡𝜈𝑡         (C.2d) 

𝑝𝑡+1 = 𝑏2𝑝𝑡 + 𝜎2 − 𝑏2𝑝𝑡(𝑝𝑡𝐹𝑡
−1)      (C.2e) 

Each of these equations has an intuitive interpretation that aids in understanding how 

the Kalman filter works. Here, vt is a residual (observed minus predicted state at time t). 

Ft is the total variance of the observed relative to the true (unknown) state: the sum of 

the variance in the predicted state, pt (due to a combination of observation error from 
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previous states, and process noise), and the variance of the observation of the state at 

time t, 2.  kt is termed the “kalman gain”, and measures the information about the true 

state of the system provided by the observation, relative to the predicted state: ptFt
-1 is 

the ratio of the variance of the predicted state to the total variance: if it is close to zero, 

the variance based on the prediction from the previous time step is close to zero, 

compared to the total variance, so we trust the prediction. If it is close to unity, then the 

total variance is almost entirely due to the variance in the predicted state, so we trust the 

observation. This relative weighting influences the both the predicted state at time t+1, 

xt+1, and the variance in the predicted state at t+1, pt+1, in intuitive ways. As the ptFt
-1 

approaches zero, observation error at time t dominates the total variance, so kt 

approaches zero and the predicted state at t+1 in eq. (C.2d) is based overwhelmingly on 

the predicted state at time t. Similarly, the variance in the predicted state at time t+1 (eq. 

C.2e) depends on the variance in the predicted state at time t, plus the process noise 

associated with population growth between time t and t+1, which has variance σ2 (i.e., 

the last term drops out). Conversely, as ptFt
-1 approaches unity, observation error is 

negligible, kt approaches b, and eq. (C.2d) approaches 𝑥𝑡+1 = 𝑎 + 𝑏𝑦𝑡(i.e., we rely on 

the observation at the previous time step).  For analogous reasons, the variance in the 

predicted state at time t cancels out in eq. (C.2e) (due to the fact that our observation of 

the state at time t is reliable), so the variance in the predicted state at time t+1 depends 

only on the process noise between time t and time t+1. 

We can simplify system (C.2) by re-arranging eq. (C.2e): 

𝑝𝑡+1 = 𝑏2𝑝𝑡(1 − 𝑝𝑡𝐹𝑡
−1) + 𝜎2 = 𝑏2𝑝𝑡(𝐹𝑡 − 𝑝𝑡)𝐹𝑡

−1 + 𝜎2 = 𝑏2𝜏2𝑝𝑡𝐹𝑡
−1 + 𝜎2 
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By substituting eq. (C.2c) for 𝑘𝑡 in eq. (C.2d), solving eq. (C.2b) to obtain 𝑝𝑡= 𝐹𝑡 − 𝜏2, 

and substituting this into eq. (C.2e), the last two recursive equations become sufficient 

to carry out the calculations: 

𝑥𝑡+1 = 𝑎 + 𝑏 (𝑥𝑡 +
𝐹𝑡−𝜏2

𝐹𝑡
(𝑦𝑡 − 𝑥𝑡))                                 (C.3a) 

𝐹𝑡+1 = 𝑏2𝜏2 𝐹𝑡−𝜏2

𝐹𝑡
+ 𝜎2 + 𝜏2                                     (C.3b) 

(Dennis et al. 2006). 

The log-likelihood for this model can be calculated in standard fashion, by recognizing 

that the residuals between observed states and the estimated true states are now 

independent, normally-distributed random variables with mean zero and variance Ft. 

 The recursion (C.3) does not account for missing observations. For the 

Gompertz model, this includes years when zero individuals were observed (due to the 

log-transformation of abundance). Such cases are relatively common in the GPDD (281 

time series contain at least one missing value or zero abundance estimate). Fortunately, 

it is straightforward to extend the approach to handle this problem. When an 

observation, 𝑦𝑡  is missing, it is still necessary to generate a predicted true state (and 

variance associated with the true state).  I do this with a simple prediction step. In my 

original matrix notation this is: 

𝛼𝑡+1 = 𝑇𝛼𝑡 

𝑃𝑡+1 = 𝑇𝑃𝑡𝑇′ + 𝑅𝑄𝑅′ 

The corresponding simple expressions are found in the same way as above: 
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𝑥𝑡+1 = 𝑎 + 𝑏𝑥𝑡 

𝐹𝑡+1 = 𝑏2(𝐹𝑡 − 𝜏2) + 𝜎2 + 𝜏2 

It is also necessary to choose initial values, x1 and F1, to start the Kalman filter. Here, I 

follow Knape and deValpine (2012) and employ the “large variance” approach: 

𝑥1 = 𝑦1  

𝐹1 = 10 

This approach assumes that we have very little information about the initial state (recall 

that x is abundance on a log scale, so F1=10 implies a variance of e10 individuals on an 

arithmetic scale).  Alternatively, it is straightforward to derive analytical expressions for 

exact diffuse initial conditions, where the variance F0 is assumed to be infinite instead 

of very large (de Jong 1991). However I favoured the large variance approach so that 

my results could be directly compared with those of (Knape and de Valpine 2012). I 

also repeated the analyses using exact diffuse conditions and found qualitatively 

identical results. 

As noted in the main text, I fit all of the time series in a single analysis. Thus, 

the full density-dependent model has log-likelihood: 

log[𝐿(𝒂, 𝒃, 𝝈, 𝝉|𝒚𝟏,, 𝒚𝟐, … , 𝒚𝑫)] = ∑ ∑ log[𝑓(𝑦𝑖,𝑡 − 𝑥𝑖,𝑡|0, 𝐹𝑖,𝑡)]

𝑡𝑖

 

where a, b, and are vectors of the Gompertz model parameters (one for each data 

set), The yi represent each of the D time series, and 𝑓(𝑦𝑖,𝑡 − 𝑥𝑖,𝑡|0, 𝐹𝑖,𝑡) is the normal 

distribution with mean zero and variance Fi,t. The density-independent model is 
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identical, except with all bi=1. Similarly, the constant b model sets all bi=b (but this 

single b is estimated, rather than being fixed as in the density-independent model). 

Finally, the log-likelihood for the random b model follows the standard formula for 

mixture distributions: 

log[𝐿(𝒂, 𝜇𝑏 , 𝑣𝑏, 𝝈, 𝝉|𝒚𝟏,, 𝒚𝟐, … , 𝒚𝑫)]

= ∑ ∑ ∫ log[𝑓(𝑦𝑖,𝑡 − 𝑥𝑖,𝑡|0, 𝐹𝑖,𝑡)𝑓(𝑏𝑖|𝜇𝑏, 𝑣𝑏)] 𝑑𝑏𝑖
𝑏𝑖𝑡𝑖

 

where 𝜇𝑏  is the mean value of the density-dependent parameter, and 𝑣𝑏is the among-

time series variance in the strength of density-dependence. Effectively, this computes a 

weighted-average likelihood for each possible value of bi, where the weighting is 

according to the relative probability of that value of bi, given the among-time series 

mean and variance 𝜇𝑏  and 𝑣𝑏. 

I fitted the alternative models in ADMB (Fournier et al. 2012), with the 

exception of the random b model, which we fitted using ADMB-RE. The integrated 

likelihood was calculated using Gauss-Hermite quadrature with 20 sample points. 

C.2. Literature survey for experimental studies of density-dependence 

I queried the Web of Science using the keywords “density-dependen*” and 

“experiment*” and restricted the search to the research area “Environmental sciences, 

ecology”. I recorded a study as finding density dependence (“yes”) only when all tested 

responses indicated density-dependence, “no” when all tested responses failed to 

indicate density-dependence, and “ambiguous” when at least one tested response 

exhibited density-dependence, and at least one failed to exhibit density-dependence. 
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Table C-1.—Summary of a systematic literature survey for experimental studies of 

density-dependence. 

Reference Field/Lab Taxon 
Density-

dependence 
Notes 

(Clay and 

Shaw 1981) 

Field Plant 

Diamorpha smallii 

yes 3 components of 

fecundity are 

density-dependent 

(Stapanian 

and Smith 

1984) 

Field Plant (nuts) 

Juglans nigra 

Quercus macrocarpa 

Quercus 

muehlenbergii 

yes Survival is 

density-dependent 

(Olfafsson 

1986) 

Field Bivalve 

Macoma balthica 

ambiguous Growth  is 

density-dependent 

in muddy sand but 

not in sand 
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(Shaw and 

Antonovics 

1986) 

Field Plant 

Salvia lyrata 

yes Seedling mortality 

and growth are 

density-dependent 

(Ellison 1987) Lab. Plant 

Atriplex triangulari 

yes Mortality and 

fecundity are 

density-dependent 

(Shaw 1987) Field Plant 

Salvia lyrata 

no Effect of adult 

density on 

fecundity, survival 

and growth is non-

significant.  

(Vanbuskirk 

1987) 

Lab. Insect 

Pachydiplax 

longipennis 

yes Survival and 

growth are 

density-dependent 

(Smith et al. 

1988) 

Lab. Crustacea 

Daphnia 

Ceriodaphnia 

yes Growth rate is 

density-dependent 
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(Wang 1989) Lab. Insect 

Diaphania indica 

yes Larval 

development rate, 

larval survival and 

adult fecundity are 

density-dependent  

(Reed 1990) Field Plant 

Pterygophora 

californica 

yes Growth, 

reproduction, and 

recruitment are 

density-dependent 

(Gould et al. 

1990) 

Field Insect 

Lymantria dispa 

yes Mortality is 

density-dependent 

(Martin et al. 

1991) 

Field Fish 

Neophylax fuscus 

Pycnopsyche guttifer 

ambiguous Survival of larvae 

is density-

dependent for N. 

fuscus, but not for 

P. guttifer 

(Goater 1992) Lab. Worm 

Rhabdias bufonis 

yes Growth and 

fecundity are 

density-dependent 
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(Ostfeld and 

Canham 

1995) 

Field Mammal 

Microtus 

pennsylvanicus 

yes Reproductive rate 

and recruitment 

are density-

dependent 

(Johnson et al. 

1995) 

Field Insect 

Epitheca cynosura 

yes Survival of larvae 

is density-

dependent 

(Wagner and 

Wise 1996) 

Field & 

Lab. 

Spider 

Schizocosa ocreata 

yes Mortality is 

density-dependent  

(Both 1998) Field Bird 

Parus major 

yes Reproductive 

output is density-

dependent 

(Post et al. 

1999) 

Field Fish 

Onchorynchus 

mykiss 

yes Growth is density-

dependent 
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(Tanaka et al. 

1999) 

Field Mollusk 

Pomacea 

canaliculata 

yes Growth and 

reproductive 

output are density-

dependent 

(Wilson and 

Osenberg 

2002) 

Field Fish 

Gobiosoma evelynae 

G. prochilos 

yes Settlement and 

survival are 

density-dependent 

(Moe et al. 

2002) 

Lab Insect 

Lucilia sericata 

yes Reproductive rate 

is density-

dependent, 

juvenile survival is 

facilitated at low 

density and 

hampered at high 

density 

(Biro et al. 

2003) 

Field Fish 

Onchorynchus 

mykiss 

yes Mortality is 

density-dependent 



Appendix C – Supplementary material for chapter 4 

  165 

(Hildrew et al. 

2004) 

Field Insect 

Sialis fuliginosa 

yes Survival is 

density-dependent  

(Stewart et al. 

2005) 

Field Mammal 

Cervus elaphus 

yes Physical condition 

and reproductive 

output are density-

dependent 

(Einum and 

Nislow 2005) 

Field Fish 

Salmo salar 

yes Survival of 

juveniles is 

density-dependent 

(Guelda et al. 

2005) 

Field Crustacea 

Bosmina longirostris 

cyclopoid copepods 

yes Population growth 

rate is density 

dependent when 

food is limiting 

(Steele and 

Forrester 

2005) 

Field Fish 

Coryphopterus 

glaucofraenum 

yes Mortality is 

density-dependent 
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(Gunnarsson 

et al. 2006) 

Field Bird 

Anas platyrhynchos 

yes Survival of 

ducklings is 

density-dependent 

(Craig et al. 

2007) 

Field Fish 

Leiostomus 

xanthurus 

yes Growth and 

mortality are 

density-dependent 

(Gunnarsson 

and Elmberg 

2008) 

Field Bird 

Anas platyrhynchos 

yes Nest survival is 

density-dependent 

(Brouwer et 

al. 2009) 

Field Bird 

Acrocephalus 

sechellensis 

yes Reproductive 

output is density-

dependent 

(Fordham et 

al. 2009) 

Field Reptile 

Chelodina rugosa 

yes Reproductive 

output is density-

dependent 

(Gunton and 

Kunin 2009) 

Field Plant 

Silene latifolia 

yes Reproductive 

output is density-

dependent 
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(Nicolaus et 

al. 2009) 

Field Bird 

Parus major 

yes Clutch size is 

density-dependent 

(Loman and 

Lardner 2009) 

Field Frog 

Rana arvalis 

Rana temporaria 

ambiguous Growth is density-

dependent for R. 

arvalis but not for 

R. temporaria 

(Forrester et 

al. 2011) 

Field Fish 

Coryphopterus 

glaucofraenum 

yes Reproductive 

output is density-

dependent 

(Leicht-

Young et al. 

2011) 

Field Plant 

Celastrus 

orbiculatus 

Celastrus scandens 

no Survival exhibits 

positive (inverse) 

density-

dependence 

(Stewart et al. 

2011) 

Field Mammal 

Odocoileus 

hemionus Cervus 

elaphus 

yes Diet quality 

decreases with 

density 
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(Flockhart et 

al. 2012) 

Lab Insect 

Danaus plexippus 

yes Larval survival is 

density-dependent 

(Bassar et al. 

2013) 

Field Fish 

Poecilia reticulata 

yes Survival of 

juveniles and 

reproductive 

output are density-

dependent 

(Gripenberg et 

al. 2014) 

Field Five forest tree 

species 

ambiguous Seed germination 

is density-

dependent for one 

species among 5 
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