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Abstract 

Abstract 

Almost all life on earth is directly or indirectly dependent on phytoplankton 

primary productivity. In many aquatic systems, phytoplankton primary production 

is limited by the availability of nitrogen in the environment. Therefore, studying the 

dynamics of nitrogen uptake and assimilation by phytoplankton cells is critically 

important for understanding many ecosystem services and global biogeochemical 

cycles. Mathematical models are particularly powerful tools for analyzing dynamic 

processes in many areas of ecology, but so far their employment with phytoplankton 

time-series has been limited. Specifically, published phytoplankton models are 

unable to explicitly account for the role of different nitrogen forms on cell division 

and can only be calibrated with time-consuming and impractical monitoring of 

specific variables. Overall, this thesis aimed to expand previous models by 

incorporating important processes regulating nitrogen utilization in phytoplankton 

cells, and by improving their calibration with proxy data routinely monitored in 

experimental studies. 

Nitrate and ammonium are the two most important sources of inorganic 

nitrogen driving phytoplankton primary productivity. The performance of 

phytoplankton species changes when reared with either of these two forms of 

nitrogen individually, as well as when they are both present, or when cells have 

experienced previous periods of nitrogen starvation. However, current functional 

responses are unable to capture transient and interactive dynamics of nitrate and 

ammonium uptake, nor can they capture how these two forms of nitrogen 

differently influence cell division. Hence, in chapter 2, I designed and empirically 
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tested a new process-based model that includes uptake of both nitrate and 

ammonium, as well as the effects of starvation length and inhibition of nitrate 

uptake by ammonium on phytoplankton cell division. Results for the green alga 

Chlorella sp. showed that a single parameterization of the model performed well 

across data from laboratory cultures started at 12 different initial conditions. This 

new model allowed for the first time the quantification of nitrate-ammonium 

utilization traits of a phytoplankton species. This contributes to a more 

comprehensive understanding of the factors underpinning the high variation in 

nitrate-ammonium assimilation observed in natural and engineered systems. 

Characterizing resource utilization traits of a species is particularly important 

for identifying processes promoting biodiversity and ecosystem functioning in 

nature. Most trait-based studies define species by their mean trait values and assume 

intraspecific trait variability to be negligible compared to interspecific differences. 

However, phenotypic plasticity may be an important source of variation in 

phytoplankton species, which are well known for their ability to rapidly adjust their 

cell size according to biotic and abiotic conditions. In chapter 3, I used the model 

designed in chapter 2 to evaluate the effects of cell size plasticity on the nitrogen 

utilization traits of the green alga Desmodesmus armatus, reared under different 

nitrogen sources (nitrate, ammonium, or both) and nitrogen histories (N-replete and 

N-deplete). Results showed that nitrate-ammonium utilization traits depended 

substantially on mean cell size and nitrogen history and that representing 

phytoplankton species by their mean trait values (as per traditional approaches) 

could underestimate the actual performance of a species by as much as one order of 

magnitude. These results highlight the ecological importance of intraspecific 
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variability in determining the ability of a species to adjust to new environmental 

conditions. 

Biologically, it is well-known that the internal concentration of the most 

limiting nutrient (cell “quota”) is what determines the growth rate of a cell. Given 

the critical importance of nitrogen for phytoplankton cell division, monitoring 

nitrogen quota is important to understand aquatic primary productivity, 

phytoplankton ecology, eutrophication and algal blooms. However, current methods 

to directly monitor nitrogen quota remain inaccurate, expensive, destructive, and 

time-consuming. Thus, in chapter 4, I tested the hypothesis that optical changes in 

single cells, which can be rapidly and accurately monitored with a standard flow 

cytometer, can provide reliable proxies for per-cell internal nitrogen. Results from 

four freshwater phytoplankton species showed that cellular nitrogen quota could be 

estimated accurately (R2 = 0.9) from cell optical properties and medium nitrogen, 

and that the relationship did not change among different species or different initial 

conditions. In particular, red chlorophyll autofluorescence (from here on simply 

“red fluorescence”) was the most important variable explaining 77% of the total 

variability in total cell nitrogen. These results indicate that optical flow cytometric 

variables are a reliable and non-destructive method to estimate nitrogen quota in 

phytoplankton cells.  

Finding an efficient proxy to evaluate cell nitrogen quota is particularly 

valuable for extending the applicability of phytoplankton models. The internal 

nitrogen status of a cell is critical to analyze the dynamics of nitrogen-limited 

phytoplankton populations, but accounting for this process in phytoplankton models 

requires monitoring per-cell nitrogen quota, which is time-consuming, inaccurate, 
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and destructive. Instead, the method I proposed in chapter 4 to quantify nitrogen 

quota using the optical properties of individual cells is rapid, precise, accurate, and 

non-destructive. Hence, in chapter 5, I evaluated a new way to model phytoplankton 

populations, consisting in explicitly including cell optical properties as a proxy for 

nitrogen quota within phytoplankton Quota models. Results showed that accounting 

for cell optical properties could improve the performance of phytoplankton 

population models while still accounting for the biologically important process of 

cell nitrogen storage. More broadly, these findings highlight the importance of 

identifying proxy variables for the internal condition of an organism when using 

population models to analyze species dynamics. 

The overarching aim of my thesis was to improve current phytoplankton 

models for the analysis of phytoplankton nitrogen utilization. This was achieved by 

presenting and calibrating a new mathematical framework describing the dynamics 

of nitrate-ammonium utilization in phytoplankton populations (chapter 2), by 

evaluating the effect of mean cell size and previous nitrogen history in determining 

the nitrogen utilization of a cell (chapter 3), and by documenting the importance of 

cell optical properties for explaining the dynamics of phytoplankton populations 

(chapters 4 and 5). These findings improve our ability to identify, analyze, and 

understand the relationships between nitrogen concentrations in the environment 

and phytoplankton populations. More broadly, this thesis offers new mathematical 

tools to better investigate the processes regulating phytoplankton primary 

productivity in nature and engineered systems. 
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Chapter 1 

Chapter 1: General Introduction 

 

Phytoplankton Nitrogen Assimilation 

All life depends on nitrogen. It is the building block from which nature 

assembles essential biomolecules, including amino acids, proteins, and nucleic acids 

(Crawford et al. 2000; Capone et al. 2008). The Earth’s atmosphere is composed of 

78% nitrogen, but for the most part it is in a form that is not directly usable by most 

organisms (Wayne 1993; Carpenter & Capone 2008). Only a minority of specialized 

organisms (e.g. N2-fixing cyanobacteria and proteobacteria) are able to convert and 

deliver nitrogen from the atmosphere to the rest of the biosphere (Carpenter et al. 

2008). Overall, phytoplankton cells contribute around 70% to global nitrogen 

assimilation, and they are responsible for 30-40% of the primary productivity on 

Earth (Duarte & Cebrian 1996; Collos & Berges 2002). Hence, investigating the 

processes regulating phytoplankton nitrogen utilization is critically important for 

global nitrogen cycles, ecosystem management, and ecological processes. 

Scientific interest in phytoplankton nitrogen utilization has risen consistently 

in the past few decades, especially due to certain emerging key issues. Firstly, 

economic development is profoundly altering nitrogen fertilization regimes, both in 

terms of total concentrations and also relative abundance of different nitrogen types 

(Domingues et al. 2011; Fowler et al. 2013). The impacts are predicted to increase 

in freshwater and coastal systems, especially near highly populated areas, with 

effects that are difficult to forecast (Fowler et al. 2013). Secondly, there is 

considerable evidence showing that altering total and relative nitrogen fertilization 



Chapter 1 

can destabilize natural food webs and affect ecosystem functioning and plant 

community structure (Folke et al. 2004; Schimel & Bennett 2004; Boudsocq et al. 

2012). For instance, whole-lake experiments have shown that changing fertilization 

rates can shift an aquatic system characterized by clear-water and nutrient recycling, 

to an alternative stable state of turbid-water, dominated by toxic cyanobacteria, and 

with anoxic events and high fish mortality (Smith 1998; Folke et al. 2004). Thirdly, 

microalgal biotechnology is emerging as an important source of energy and primary 

metabolites (e.g. sugars, oils and lipids; Mata, Martins & Caetano 2010; Gimpel et 

al. 2013). The economic sustainability of phytoplankton industrial production also 

relies on ensuring optimal regimes of nitrogen fertilization of the biomass, avoiding 

limited growth while reducing excess nutrients in wastewaters (Lardon et al. 2009; 

Yang et al. 2011). Thus, the interaction between phytoplankton and nitrogen is 

critically important in many areas of conservation, ecology, and economics. 

Nitrate and Ammonium 

Phytoplankton assimilation of nitrate and ammonium quantitatively dominates 

the nitrogen cycle (Gruber 2008). However, the assimilation of these two forms of 

nitrogen differs. Ammonium is easier to assimilate because most amino acids are in 

the same oxidation state; in contrast, nitrate must first be reduced to ammonium, by 

means of specialized enzymes, before assimilation can occur (Dortch 1990; 

Crawford et al. 2000; Gruber 2008). These physiological differences in the 

assimilation of nitrate and ammonium lead to transitory uptake dynamics in the 

environment. For instance, phytoplankton cells tend to favor ammonium over 

nitrate when both are present (Dortch 1990; Domingues et al. 2011). Also, cells 

recovering from nitrogen starvation require an acclimatization period before they 
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can assimilate nitrate, while ammonium uptake is not affected (Dortch et al. 1982; 

Martinez 1991; De La Rocha et al. 2010). Therefore, transitory and interactive 

processes affect the way in which phytoplankton cells uptake and assimilate nitrate 

and ammonium from the environment. 

Quota Models 

Fitting process-based models to time-series is a particularly powerful way to 

analyze nitrogen utilization in phytoplankton cultures. The main advantage of 

analyzing culture dynamics with process-based models is that it uses functional 

responses to analyze correlated changes in multiple state variables (i.e. rate of 

population growth depends on changes in nitrogen uptake and internal storage), 

conversely to phenomenological (statistical) curve-fitting methods where each state 

variable is analyzed in isolation. Also, process-based models are built on prior 

knowledge about how a system works, making their assumptions more transparent. 

Furthermore, these modeling techniques can account for transient dynamics of a 

cell, by explicitly incorporating the effect of time in the culture, which is 

particularly important for phytoplankton systems that are not at equilibrium 

(Hilborn & Mangel 1997; Bolker 2008; Cuddington et al. 2013).  

The Quota model, first introduced by Droop (1968), is today the most 

successful type of process-based model to describe nitrogen-limited growth in 

phytoplankton populations (Pahlow & Oschlies 2013). The major innovation of 

Quota models is that stored nutrients within a cell can allow cell division even in the 

absence of sufficient external nutrients, as opposed to previous models where 

instead cell division depended directly on external nutrient concentrations (Droop 

1983; Droop 2003; Leadbeater 2006). This assumption of Quota models is largely 
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biologically justified: phytoplankton cells are adapted to respond to nutrient-limited 

conditions by relocating resources from storage molecules (e.g. lipids, 

carbohydrates, proteins, pigments, RNA) to vital metabolic functions (e.g. cell 

division; Dortch et al. 1984). Today Quota models are used both for theoretical 

analysis of phytoplankton dynamics (e.g. Klausmeier et al. 2004; Grover 2011), and 

for analyzing nutrient utilization of algal species in the field or in laboratory 

conditions (e.g. Solidoro et al. 1997; Ducobu et al. 1998). The main advantage of 

using Quota models to analyze nitrogen utilization from time-series of 

phytoplankton dynamics is that it allows calibrating functional responses based on 

all variables in the system, therefore quantifying the flows of nitrogen between the 

environment (i.e. ambient nitrate and ammonium concentrations), the pre-existing 

biomass (i.e. intracellular nitrogen storages), and the newly produced biomass (i.e. 

cell division). 

Improving Phytoplankton Quota Models 

Multiple Nitrogen Types 

Phytoplankton quota models have been extended to multiple nitrogen sources 

to improve current oceanographic models (e.g. Moore et al. 2002, Litchman et al. 

2006). However, these more complex models have never been directly calibrated to 

experimental data. Instead, their parameters have been inferred from literature 

surveys. Quota models that have been calibrated to phytoplankton nutrient-

utilization data have been, so far, overwhelmingly limited to a single source of 

ambient nitrogen (but see Malerba, Connolly & Heimann 2012). In particular, their 

formulation cannot distinguish between the different effects of nitrate and 

ammonium on cell division. Current analytical methods for the analysis of nitrate-



Chapter 1 

ammonium utilization in phytoplankton cells are phenomenological. They mainly 

consist of calculating per-cell rates by dividing depleted medium nitrogen by cell 

density at two successive points in time, and then fitting a functional response with 

least-squares techniques (e.g. Dortch 1990; Maguer et al. 2007; Laws et al. 2011; 

Tantanasarit, Englande & Babel 2013). While convenient for the analysis of 

systems at equilibrium, these traditional approaches are unable to characterize the 

mechanism of cell specific growth rate as a function of per-cell nitrogen 

assimilation. Phenomenological models can estimate how the assimilation of a cell 

or its growth rate change as a function of nutrient concentrations, but they cannot 

characterize nitrogen dynamics among the different compartments in the system 

(i.e. from the medium to the internal quota of a cell and to the newly produced 

cells). Also, the precision of these approaches is limited, since each point is 

calculated from two observations only. A different way to analyze phytoplankton 

nutrient utilization is by fitting process-based models to time-series observations. 

Differently to phenomenological models, process-based models explicitly 

characterize changes in response variables (biomass, ambient nitrogen, etc.) as 

functions of events that drive those changes (nitrogen uptake, assimilation, cell 

proliferation, etc.). This makes possible calibration of species-specific functional 

responses on data from all variables at once, thereby characterizing how flows of 

nitrogen among ambient nitrate and ammonium, internal nitrogen quota, and 

population density influence one another. Hence, in the first part of this thesis, I 

developed an alternative mathematical framework for the analysis of nitrate-

ammonium utilization in phytoplankton dynamics. To do this, I extended the classic 

formulation of the Quota model to explicitly account for two different nitrogen 

sources (i.e. nitrate and ammonium), and to characterize how each one affects 
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population dynamics. By designing and fitting a new Quota model, it was possible 

to quantify the different contributions of nitrate and ammonium to the overall rate of 

cell division in phytoplankton populations. Furthermore, this approach allowed 

accounting for two factors that are important to regulate nitrate and ammonium 

assimilation: the transient effect of nitrogen starvation length on nitrate uptake, and 

the inhibitory effects of ammonium uptake on nitrate uptake.  

Possessing a process-based method for quantifying phytoplankton nitrate-

ammonium utilization in phytoplankton species also allows investigating what 

factors regulate nitrogen assimilation in single cells. For instance, the size of a cell 

is often considered the “master” trait in phytoplankton species (Litchman & 

Klausmeier 2008). This is mainly because the ability of a cell to assimilate 

nutrients, photosynthesize, or divide is constrained by its surface-to-volume ratio by 

first principles of physics and chemistry (Litchman et al. 2008; Barton et al. 2013). 

However, phytoplankton cells are also known for their remarkable ability to rapidly 

respond to changes in environmental conditions by adjusting their cell size (Duarte 

et al. 1996). Potentially, this means that the nitrogen utilization of a species will 

change depending on the size of the cell. Therefore, chapter 3 tested the hypothesis 

that phenotypic plasticity in cell size influences the nitrogen utilization of 

phytoplankton species. I tested this hypothesis by fitting alternative 

parameterizations of the Quota model designed in chapter 2 to time-series collected 

from a different phytoplankton species.  

Optical Proxies for Per-Cell Nitrogen Status 

It has long been recognized that phytoplankton cells experiencing nutrient 

limitation divide at a rate that is proportional to the internal supply of the most 
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limiting nutrient, and only indirectly dependent on ambient nutrient availability 

(Caperon 1968; Droop 1968). As a consequence, any attempt to model 

phytoplankton nitrogen-limited dynamics requires explicit characterization of the 

dynamics of the internal nitrogen concentration within a cell (Caperon & Meyer 

1972; Droop 2003). The traditional approach to estimate nitrogen status in 

phytoplankton cells is mainly by direct elemental analysis (Shelly, Holland & 

Beardall 2010). However, these protocols are usually time-consuming, require 

specialized laboratory equipment, and cannot differentiate between elements 

derived from live and dead cells or inorganic particles, which can substantially 

overestimate per-cell nutrient composition (Beardall, Young & Roberts 2001; 

Shelly et al. 2010). Dynamics of internal nitrogen can sometimes be inferred based 

on changes in population density and ambient nitrogen depletion (Fujimoto et al. 

1997; De La Rocha et al. 2010). Previous experiments showed that phytoplankton 

Quota models could be fitted to laboratory time-series data even when internal 

quota is not directly monitored (Ducobu et al. 1998; Malerba et al. 2012). However, 

this approach is limited to closed and highly controlled laboratory settings, and it 

generally requires more data and more complex experimental designs. In chapter 4, 

I explored an alternative method to monitor the per-cell nitrogen concentrations 

within phytoplankton cells. Specifically, I tested the hypothesis that the cell 

nitrogen status leads to systematic changes in the optical properties of a cell, which 

can provide a quantifiable proxy for cell nitrogen concentrations that is non-

destructive and more precise to measure than traditional methods. 

Using optical analysis to estimate internal nitrogen status in phytoplankton 

cells can be particularly useful for modeling phytoplankton nutrient-limited 

dynamics. Calibrating Quota models to data usually requires time-series of daily 
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observations of multiple state variables. This task becomes particularly time-

consuming when, together with ambient nitrogen and population density, also 

internal cell nitrogen needs to be monitored. Flow cytometric optical analysis of 

phytoplankton cells is instantaneous, non-destructive, precise, and can be monitored 

through automated programmable instruments (Collier 2000; Dubelaar & Jonker 

2000; Veldhuis & Kraay 2000). Therefore, monitoring the optical information of a 

culture for calibrating nitrogen-limited Quota models can be vastly more efficient 

than directly quantifying nitrogen concentrations within cells. In chapter 5, I assess 

the feasibility and precision of calibrating Quota models to phytoplankton time-

series where optical information are employed as a proxy of internal nitrogen. 

Thesis Structure 

The overarching aim of this thesis is to improve the design and broaden the 

applicability of Quota models for understanding nitrogen utilization in 

phytoplankton cells. The data chapters in this thesis are divided in two thematic 

sections, each consisting of two chapters. The aims of each chapter are presented 

below: 

Part I: Nitrate-ammonium utilization in phytoplankton cells 

• Chapter 1: The aim is to formulate, calibrate, and test a new Quota model 

that quantifies the nitrate-ammonium utilization of phytoplankton 

populations, also accounting for transient and interactive effects of 

starvation length and ammonium inhibition on the nitrate uptake. 

• Chapter 2: The aim is to test whether changes in mean population cell size 

can affect nitrate-ammonium utilization traits of phytoplankton cells. 
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Part II: Optical proxy for internal nitrogen status in single phytoplankton cells 

• Chapter 3: The aim is to investigate whether cell optical properties can be 

used as an accurate predictor of nitrogen quota in laboratory phytoplankton 

cultures. 

• Chapter 4: The aim is to evaluate the reliability of explicitly accounting for 

cell red fluorescence as a proxy for internal nutrient status in phytoplankton 

nitrogen-limited models. 

Publication Details 

Each data chapter is presented as a stand-alone scientific article. As a result, 

the contextualization of the work in each chapter was broadened to fit the scope of 

the target journal. Chapter 2 of my thesis is published in Ecological Modelling 

(Malerba, Connolly & Heimann 2015). Chapter 4 is published in the Journal of 

Applied Phycology (Malerba, Connolly & Heimann, 2016). Chapters 3 is in press in 

Functional Ecology. Chapter 5 is currently under review in Journal of Theoretical 

Ecology (JTB-S-15-01491).
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Chapter 2: An experimentally validated nitrate-ammonium-

phytoplankton model including effects of starvation length 

and ammonium inhibition on nitrate uptake 

Introduction 

All living organisms require nitrogen (N) for the production of new biomass. 

While heterotrophic organisms rely exclusively on organic N from their diet, 

autotrophic organisms can also absorb inorganic N from the environment (Crawford 

et al. 2000). Ammonium and nitrate are the two most common ionic (reactive) 

forms of inorganic N, and their assimilation by plants and photosynthetic algae 

quantitatively dominates the nitrogen cycle (Zehr & Ward 2002; Gruber 2008). 

However, the way autotrophic organisms incorporate these two N forms differs. 

Ammonium is easier to assimilate because most amino acids are in the same 

oxidation state; in contrast, nitrate must be first reduced to ammonium by means of 

specialized enzymes and then assimilated (Guerrero, Vega & Losada 1981; Syrett 

1981; Berges 1997). This key difference between nitrate and ammonium 

assimilation leads to different assimilation kinetics in autotrophic organisms, which 

have far reaching implications in many areas, including understanding changes in 

species competition (Jackson, Schimel & Firestone 1989; Donald et al. 2011), 

evaluating the effects of eutrophication (Cox et al. 2009), quantifying fluxes of the 

nitrogen cycle (Fowler et al. 2013), and analyzing optimal fertilization for industrial 

production (Michalczyk et al. 2014). 
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Assimilation of nitrate and ammonium is particularly important for 

phytoplankton, estimated to be responsible for around 30-40 % of global primary 

productivity (Duarte et al. 1996). Nitrate and ammonium concentrations in natural 

environments affect phytoplankton ecology, by selecting for different 

phytoplankton species (Donald et al. 2011) or modifying the risk for algal bloom 

formation (Dugdale et al. 2007). Because of the importance of nitrogen sources in 

phytoplankton ecology, numerous studies over the last 40 years have documented a 

range of processes regulating nitrate-ammonium assimilation kinetics in 

phytoplankton cells (Dortch 1990; Flynn, Fasham & Hipkin 1997b). Firstly, 

phytoplankton cells can display different degrees of specialization toward 

ammonium or nitrate by presenting better kinetic parameters when reared with 

either source of nitrogen (here referred to as "preference"; reviewed in Dortch 

1990). Secondly, supplying ammonium can repress the nitrate uptake of a cell by 

either altering the activity of specific transport enzymes or by preventing their 

synthesis ("inhibition"; Morris & Syrett 1963; Berges 1997; L’Helguen, Maguer & 

Caradec 2008; although not all species are affected, Mulholland & Lomas 2008). 

Physiological studies have determined that the observed ammonium-induced 

inhibition is a product of the ammonium assimilation pathway, which often impairs 

the ability of a cell to assimilate nitrate (Syrett & Morris 1963; Rigano et al. 1979). 

Thirdly, periods of nitrogen starvation can lead to an initial delay in nitrate 

assimilation and cell division ("starvation"; Dortch et al. 1982; Martinez 1991; De 

La Rocha et al. 2010). However, our understanding of these phenomena is 

incomplete; in particular, we do not know how processes of preference, starvation 

and inhibition can interact to simultaneously influence phytoplankton dynamics 

under different nitrate and ammonium concentrations. This aspect can be important 
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in multiple fields. In nature, phytoplankton communities can be exposed to periods 

of N starvation with episodic and cyclic resupplies of nitrate or ammonium (Priddle 

et al. 1997; Young & Beardall 2003a). In aquaculture, imposing periods of nitrogen 

limitation can increase the quality of the final product by increasing the specific 

lipid content in the biomass (Griffiths, van Hille & Harrison 2014). Finally, 

managing aquatic environments also involve regulating nitrate-polluting (e.g. land 

clearing, agriculture) and ammonium-polluting activities (e.g. human waste 

discharge, intensive livestock) in order to minimize risks of algal bloom formation 

(Domingues et al. 2011). 

Some time ago, Dortch (1990) called for an improved approach for 

quantifying nitrogen (N) utilization in single species to make better sense of 

phytoplankton dynamics in nature. Molecular methods of measuring the activity of 

assimilatory enzymes can provide important information about N utilization (Fan et 

al. 2003; Lomas 2004), but quantifying nitrogen uptake and its conversion into 

producer biomass still requires monitoring total phytoplankton assimilation (either 

directly with isotope techniques, or indirectly from ambient N depletion) and 

producer population densities (Bronk et al. 2007). Typically, species-specific 

kinetic estimates for per-cell nitrogen uptake are calculated by dividing N consumed 

by cell density at successive points in time, and then fitting a saturating Michaelis-

Menten functional response (Maguer et al. 2007; Laws et al. 2011; Tantanasarit, 

Englande & Babel 2013). While convenient when analyzing rates of N utilization 

under constant nutrient regimes, this technique cannot tractably capture the 

functional relationships that govern important processes, such as interactions 

between nitrate and ammonium uptake and acclimatization following extended 

starvation periods. Furthermore, the precision of this technique is limited by the fact 
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that each estimate for per capita uptake rate is based on only two observations at 

successive times. One way forward is to develop a more process-oriented 

framework for modeling nitrate and ammonium utilization in phytoplankton also 

accounting for the interactive and transient dynamics involved in this process. 

In this study, we develop, calibrate, and test a model to characterize nitrate-

ammonium utilization of phytoplankton populations reared in laboratory conditions, 

including transient effects of preference, starvation, and inhibition. The only 

previous models describing nitrate-ammonium utilization in phytoplankton cells 

(without the effect of starvation) are very detailed, explicitly characterizing the main 

biochemical processes that regulate the flows between multiple internal pools of 

different N forms (Flynn and Fasham 1997; Flynn et al. 1997) . Such a modeling 

approach requires estimates of biochemical rate parameters that can only be 

obtained from expensive and time-consuming measurements that are very rarely 

made in nitrogen utilization experiments. For example, the ANIM model of Flynn et 

al. (1997) requires estimates of the shape parameters for the size of the glutamine 

pool that stops NH4 uptake (NH4mGLN), for the maximum size of the nitrate and 

ammonium internal pools assuming a maximum biomass N:C ratio (NO3Pm, 

NH4Pm), and for the curve characterizing glutamine suppression of nitrate-nitrite 

reductase synthesis (NNiRhGLN). Indeed, as yet, no comprehensive set of parameter 

estimates for any such model has been obtained for any species. Our goal here is to 

sacrifice the explicit characterization of the dynamics of multiple intracellular 

nitrogen pools, and instead to construct more tractable models whose best-fit 

parameter values and 95% confidence limits can be estimated from time-series of 

external nutrient concentrations and population size, variables that are commonly 

measured in phytoplankton laboratory cultures. Our results show that transient and 
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interactive processes between nitrate and ammonium uptake play an important role 

determining the dynamics of our species. The present approach contributes to a 

more comprehensive understanding of the factors underpinning the high variation in 

nitrate-ammonium assimilation observed in natural and experimental systems. 
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Materials and Methods 

Model 

To analyze nitrate-ammonium utilization in Chlorella sp., we first design a 

process-based model derived from our current understanding of the biological 

processes acting on the study system (see Table 2.1 for parameter definitions and 

units). Our model extends the commonly used “Quota” model for a single nitrogen 

source, to explicitly account for two different nitrogen sources (i.e. nitrate and 

ammonium) and how they drive cell division. In the original Quota model, cells are 

assumed to assimilate a single generic form of nitrogen and divide at a rate that is 

proportional to their internal nitrogen concentration as follows: 

     (eq. 2.1 a) 

   (eq. 2.1 b) 

    (eq. 2.1 c) 

where N(t), Q(t), and B(t) represent external nitrogen, internal nitrogen within each 

cell, and population density respectively as a function of time,  represents 

the functional response quantifying uptake rate as a function of medium nitrogen 

concentration,  is the growth rate of a cell at infinite internal nitrogen, and 

 is the threshold of internal nitrogen concentration at which no cell division 

occurs. 

Our formulation extends this framework by allowing nitrogen to be 

assimilated as either nitrate or ammonium. In doing so, we account for the main 
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interactions known to regulate nitrate and ammonium utilization in phytoplankton 

cells (Dortch 1990). We use two saturating functional responses for each nitrogen 

type: 

 

   (eq. 2.2 a) 

                          (eq. 2 b) 

where  and  represent the maximum feasible per-cell uptake rate, and 

 and  specify the half-saturation constants, for nitrate and ammonium 

respectively.  and  are indicator functions (i.e. functions 

whose values are either 0 or 1).  indicates whether or not recovery 

from starvation has occurred and depends on the starvation status of the cell ( ). 

Finally,  indicates whether ammonium-induced nitrate uptake 

inhibition is occurring. 

Studies on nitrate assimilation have found that, when a culture is N starved, 

the conversion of  into assimilated N can require some time to be reactivated. 

This is because non-constitutive enzymes (e.g. nitrate reductase) need an induction 

period after extended lack of use. Hence, upon resupply of nitrate, there can be an 

initial time lag required for a cell to reactivate the N assimilation pathways 

(Martinez 1991). Previous studies have also found that extended starvation lengths 

are associated with an increasingly long period required for the culture to 

acclimatize to nitrate repletion (Martinez 1991; De La Rocha et al. 2010). To 

reproduce this behavior, we assume that each cell can withstand a period of length 
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 without displaying starvation symptoms for nitrate. Further increases in 

starvation time ( ) will require a proportionally longer rehabilitation period : 

 (eq. 3) 

where  is the sensitivity of the rehabilitation period to starvation time. During 

the rehabilitation period cells cannot assimilate nitrogen ( ), and they 

return to normal assimilation once rehabilitated ( ), as per: 

           (eq. 2.4) 

Eq. 2.4 imposes a step-function in nitrogen uptake: it is either zero, or equal to 

its normal predicted uptake. We considered smoother (sigmoid) transition functions, 

but in practice, the transition from zero to approximately normal uptake was rapid, 

relative to our daily sampling interval, which meant that the step-function was 

adequate to characterize the response in our experiments. 

Most previous models have assumed the process of ammonium inhibition on 

nitrate uptake to be a function of ambient ammonium concentration. However, 

physiological studies have documented that is the assimilation of ammonium (not 

its external concentration) that inhibits the nitrate uptake of a cell. Furthermore, the 

form of functional response for ammonium inhibition over nitrate uptake changes 

depending on the species (Dortch 1990; L’Helguen et al. 2008). In Chlorophyceae 

and Cyanophyceae, ammonium addition often causes an immediate cessation of 

nitrate utilization (Syrett et al. 1963; Thacker & Syrett 1972; Pistorius, Funkhouser 

& Voss 1978; Cullimore & Sims 1981). Hence, in this study nitrate uptake 

inhibition is assumed to follow a step-function  where the uptake of ammonium 

above a critical level ( ) fully represses nitrate uptake: 
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  (eq. 2.5) 

However, alternative functional responses representing a linear or an 

exponentially decreasing inhibition may be more suitable for diatoms (Parker 1993), 

coccolithophores (Varela & Harrison 1999) or dinoflagellate species (Collos et al. 

2004), and could readily be accommodated within the modeling framework 

presented here. 

The full structure of our nitrate-ammonium model for batch cultures is: 

    (eq. 2.6 a) 

     (eq. 2.6 b) 

  

     (eq. 2.6 c) 

     (eq. 2.6 d) 

where  and  are specified by eq. 2.2-2.5 (see 

Fig. 2.1 for conceptual diagram and Table 1 for a summary table of model 

parameters). In this model, assimilated nitrate and ammonium are jointly stored in 

an internal nitrogen quota compartment whose concentration determines the rate at 

which the cell divides. Note that, because all parameters in eq. 6 c also appear in 

one of the other equations, it is possible to calibrate the model using only 

observations on phytoplankton population size and external nitrate and ammonium 

concentrations, and to infer changes in internal nitrogen from the fitted parameter 
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values (De La Rocha et al. 2010; Malerba et al. 2012). Specifically, these fitted 

parameters determine the concentration of internal nitrogen at which cell division 

stops ( ) and the initial quota concentrations at the start of each experiment 

( ). For experiments in which cells were experimentally starved,  was set at 

. 

Overall, there are some physiological differences between nitrate and 

ammonium assimilation in phytoplankton cells that our model had to simplify in 

order to allow calibration from observations of only medium nitrogen and 

population size. For instance, assimilated ammonium can only be stored as organic 

nitrogen (mainly amino acids or N-containing pigments), and therefore its 

assimilation rate is influenced by the carbon availability of the cell (Crawford et al. 

2000). Conversely, nitrate can also be stored in its inorganic form, but its 

assimilation is dependent on photosynthetic electron transport for the production of 

reduced ferredoxin (Collos et al. 2002). We experimentally controlled for the 

influence of carbon limitation by ensuring pH levels below 7, using magnetic 

stirrers to continuously suspend the cultures, supplying air, and by collecting data at 

the same time in the diel cycle. Furthermore, high concentrations of ammonium 

have been shown to become cytotoxic due to formation of un-ionized ammonia 

from the ammonium ion in response to photosynthesis-induced high culture pH 

(Kallqvist & Svenson 2003; Yoshiyama & Sharp 2006). In this study, ammonium-

derived ammonia toxicity was avoided by maintaining culture pH below 7. The 

absence of ammonium-induced ammonia toxicity was confirmed in a specific 

experiment (see N starvation followed by  repletion in the Calibration 

Experiments section). 
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Experimental Design 

Monoclonal 1.2 L batch cultures of the ecologically ubiquitous and 

commercially important green alga Chlorella sp. (Kallqvist et al. 2003; Yoshiyama 

et al. 2006; culture accession NQAIF 305, sourced from the North Queensland 

Algal Culturing and Identification Facility at James Cook University, Townsville, 

QLD) were reared in standard Bold Basal Medium (BBM; Nichols 1973). Nitrogen 

was set as the limiting factor for growth in all experimental cultures, supplied at 1/8 

and 1/4 the recommended BBM concentration either as sodium nitrate (NaNO3) for 

nitrate-BBM, or ammonium chloride (NH4Cl) for ammonium-BBM, or both (see 

specific experiment descriptions below). Furthermore, dissociation of ammonium 

ion ( ) into volatile un-ionised ammonia ( ) was minimized by ensuring pH 

levels below 7 by buffering the modified nitrate-BBM and ammonium-BBM media 

with 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) at 8 mmol L-1 

and NaHCO3 at 2.38 mmol L-1 (Vaddella, Ndegwa & Jiang 2011). Cultures were 

kept in a temperature-controlled room at 27±3°C with a 14-10 h day-night cycle at a 

light intensity of 45 µmol photons m2 s-1. Cultures were continuously mixed with 

magnetic stirrers at 300 rpm (IKA RCT Basic, IKA Labortechnik, Germany) and 

aerated with 0.45 µm filtered air (Durapore, Millipore). For all experiments, daily 

triplicate measurements for cell numbers were collected by flowcytometry (Guava, 

Millipore, Hayward, CA, USA) and for nitrogen concentrations with the auto-

analyser EasyChem Plus (Systea S.p.A., Anagni, Italy), following the 

manufacturer’s EPA-approved and certified protocols (Systea User Manual, 2011). 

Glassware was acid-washed (10% HCl) and all culturing materials were autoclaved 

and handled aseptically in a laminar-flow cabinet (Alternative Environmental 
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Solutions fitted with high-efficiency particulate arresting filter, Australia Standards 

4260, National Association of Testing Authorities certified). 

Time series were collected from 14 different initial conditions of medium 

 and/or , starvation treatment, and initial population size across five 

different experiments: data from the first 4 experiments were used to calibrate the 

model, while those collected in the last experiment were used for model validation 

(i.e. confronting the parameterized model with a new dataset not used for 

calibration). Experimental designs and starting conditions used for the different 

experiments were as follows: 

Calibration experiments 

Single nitrogen source utilization - To observe the behavior of the species 

when reared with either nitrate- or ammonium-BBM, two mother cultures were 

grown in modified BBM medium with the corresponding nitrogen forms and 

inoculated at 2.5×106 cells mL-1 (n=3). Initial nitrogen concentration was 

standardized at 400 µmol N L-1 of either  or . 

 +  utilization - To observe growth and nitrogen assimilation 

response to simultaneous and equally concentrated medium nitrate- and ammonium-

N, a single nitrogen-replete mother culture was reared in nitrate-BBM and used to 

inoculate 3 independent replicate cultures. Cultures were inoculated with 4.5×106 

cells mL-1 and nitrogen was supplied at 400 µmol N-  and 400 µmol N- . 

N starvation followed by  repletion - To test for the effect of nitrogen 

starvation length on the performance of the nitrate uptake system, a single mother 

culture reared in nitrate-BBM was starved for 6, 8, 11, 14, and 17 days; for each 
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starvation period a culture was inoculated with 5×106 cells mL-1 and 400 µmol N-

 L-1 and monitored until stationary phase. 

N starvation followed by  repletion – To confirm that starvation only 

affected nitrate assimilation, but not ammonium assimilation, and that our range of 

ammonium concentrations did not produce cytotoxic effects (both processes not 

included in the model), a single mother culture reared in ammonium-BBM was used 

to inoculate 4 independent cultures at 5×106 cells mL-1, with a factorial design of 2 

levels of starvation (0 and 17 days), each with 2 levels of initial ammonium 

concentration (200 and 800 µmol N-  L-1). The experiment confirmed that  

was assimilated immediately, irrespective of starvation status, and that rates for the 

highest population growth did not differ between low and high ammonium 

concentrations (data not shown). 

Validation experiments 

Ammonium-acclimatization after N starvation - To test whether acclimatizing 

cells with nitrogen resupplied as ammonium could eliminate the starvation effect on 

initial nitrate assimilation, a single 17-day starved mother culture was used to 

inoculate 3 independent cultures at an initial density of 5×106 cells mL-1 and 500 

µmol N-  L-1. When ammonium was depleted, an additional 1000 - 1500 µmol 

N-  L-1 was supplied to test the response of the same culture under repleted 

conditions. These trajectories were compared to 2 additional equally inoculated 

cultures that did not receive ammonium acclimatization but an equal concentration 

of 500 µmol N-  L-1. 
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Model Calibration 

We used maximum likelihood methods to fit eq. 2.6 to data from the first four 

experiments simultaneously. This way, model predictions generated from a single 

set of parameters were confronted with time series from 12 different combinations 

of initial nitrate, ammonium, population density, and starvation length. Note that all 

of the parameters that influence the dynamics of the unobserved state (internal 

quota, Q(t)) also appear in the equations for the dynamics of one of the observed 

states. Flux into the quota can be inferred from changes to medium nitrate and 

ammonium, while flux out of the quota can be inferred from changes in population 

density. Note that this would not be true if we had multiple internal pools sensu 

Flynn et al. (1997a) or Flynn et al. (1997b), with fluxes between them. Indeed, 

when we explored a model with a glutamine pool between inorganic nitrogen 

uptake and a fully assimilated internal quota, numerical algorithms failed to 

converge on best-fit parameters because compensatory changes in model parameters 

involving the flux between the glutamine pool and the internal quota produced 

equally good fit to the data (results not shown). 

Two different sources of error can affect parameter calibration from time-

series data: process noise and observation error (Hilborn et al. 1997; Bolker 2008). 

Process noise refers to unexplained variation due to natural stochasticity in the 

culture dynamics, while observation error refers to unexplained variation caused by 

measurement error. The appropriate way to fit the model and calculate parameter 

best estimates depends on which type of error dominates in the system. When 

process noise dominates over observation error, then measurements for the state 

variables will generally be much closer to the system’s true state than the predicted 
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values, so observed states at time t should be used to predict states at time t+1. 

Conversely, when observation error dominates over process error, then model 

predictions are likely to be closer to the true values of the state variables than the 

measured values, so predicted states at time t should be used to predict states at time 

t+1.  

For highly controlled microbial laboratory systems, observation error is often 

quite small, and it is reasonable to assume that process noise dominates the random 

variation in the data (Bolker 2008). Indeed, in our data, there was strong evidence 

that this was the case: the standard deviation from the triplicate independent 

readings offers an independent estimate of the magnitude of the observation error 

and was usually less than 5% of the total error calculated from model calibration. 

Consequently, standard one-step ahead techniques were employed to account for 

process noise during parameter calibration (Hilborn et al. 1997; Bolker 2008). For 

our dataset, the function for the negative log-likelihood score (-L) assuming 

normally-distributed process noise is: 

 (eq. 2.7) 

where i indexes each state variable (i.e. nitrate, ammonium, and population density), 

t indicates time (days since the start of the experiment), n is the length of the time 

series,  is the variance of state variable i, and  and  are the observed 

value of state variable i at time t, and the corresponding model predicted value 

(calculated from eq. 2.6 based on the observed state at time t -1), respectively. 

Maximum likelihood parameter estimates were obtained by minimizing eq. 2.7 

summed across all t, all i, and all calibration experiments using the unconstrained 
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general-purpose optimization function nlminb in the software program R (R Core 

Team 2014). 

Model Selection 

To assess how the parameterization of individual functional responses 

contributed to the model fit, we compared the fit of the fully parameterized model 

against reduced versions, where particular functional responses were simplified or 

excluded. We used Akaike’s Information Criterion (AIC) to select the best fitting 

model. The best model was the one that minimized the formula , 

where  is the log-likelihood score and  is the total number of calibrated 

parameters (Bozdogan 1987). The model with the lowest AIC is the estimated best 

model. In general, models within 2 AIC units of the best model should be 

considered as having significant statistical support (Burnham & Anderson 2002). 

We also confirmed that alternative model selection techniques of Bayesian 

Information Criterion (BIC) and Likelihood Ratio Testing produced the same 

conclusions as AIC. For the best model, we calculated 95% profile likelihood 

confidence intervals for each of the estimated parameters and we evaluated the 

model’s goodness of fit by inspecting how evenly the residuals were distributed 

across replicate cultures for each day of the different experiments. 

Model Validation 

While experiments including different degrees of starvation or simultaneous 

exposure to nitrate and ammonium include unique information about the behavior 

of the species, single nitrogen utilization and acclimatization experiments include 

information also present in at least one other experiment. Time-series from the 

 k
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acclimatization experiment (see section Acclimatization after N-Starvation) 

represent the most novel and challenging set of initial conditions. Therefore, the 

data from this experiment were excluded from model calibration and were instead 

used for model validation: after using data from the first 4 experiments to select the 

best model, and to estimate the maximum likelihood parameter estimates for that 

model, the same parameter values were used to predict the trajectories of the 5 other 

independent cultures inoculated with 17-day starved cells, re-supplied with either 

ammonium (n=3) or nitrate (n=2), and finally supplied with a pulse of new nitrate. 

To quantify the fit, a standard coefficient of determination ( ) between the 

model prediction and the observed values for each state variable of each experiment 

was calculated as follows: 

 (eq. 8) 

where c indexes the independent cultures, d indexes the observations for each day 

within each culture,  is the observed value from culture c at day d,  is the 

corresponding predicted value generated by the calibrated model with eq. 2.6, and 

 is the mean value from culture c across the time-series (Turchin 1996; Lindstrom 

et al. 1999). To further evaluate the predictive ability of the model, we also report 

the  coefficients from the only other possible cross-validation configuration, 

where the single nitrogen source utilization experiments were used as validating 

datasets, and all other data were used as training datasets.  
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Results 

Model calibration and model selection 

The model described the data for our first four experiments reasonably well 

(Figs. 2.2-2.4). Model selections with AIC and BIC both indicated that observations 

of Chlorella sp. were best described by a model assuming linear nitrate and 

ammonium assimilation and incorporating nitrate starvation and ammonium-

induced nitrate uptake inhibition (Table 2.2). Alternative model selection technique 

of Likelihood Ratio Testing produced identical conclusions (results not shown). 

Maximum likelihood estimates and 95% confidence limits were successfully 

identified for all model parameters, and they indicate that Chlorella sp. exhibited a 

higher per-cell uptake rate for nitrate over ammonium (compare wNO3 and wNH4 in 

Table 2.1). 

The first experiments with nitrate- and ammonium-only tested the model 

against data from two single-N experiments, and showed that, in the absence of 

starvation or multiple N sources, observed trajectories are well characterized by the 

model: residual variation was small compared to the mean and symmetrically 

distributed around zero (Fig. 2.2), except during days 3 and 4 for the ammonium 

cultures, where ammonium uptake rates were consistently lower than those 

predicted by the model. This is apparent in Fig. 2.2 C by arrowheads (model 

predictions) pointing consistently below observed values at days 3 and 4, yielding 

positive residuals across all replicates for those days. The second experiment tested 

the model against time-series of Chlorella sp. reared with nitrate and ammonium 

simultaneously, which the model also captured reasonably well (Fig. 2.3). This 

included up to an approximately one-day delay in nitrate uptake due to fast rates of 
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ammonium uptake, followed by a return to rapid nitrate uptake by the second day 

(initial horizontal trajectories, followed by rapid declines in Fig. 2.3 A). There was a 

time delay between N assimilation and population growth that the model did not 

capture: the rapid increase in population density resulting from the substantial  

+  uptake at day 2 was predicted to take place at day 3, but was mainly 

observed at days 4 and 5. This is apparent by arrowheads pointing above the 

observed values (all negative residuals) at day 3, while pointing consistently below 

the observed values (all positive residuals) at days 4 and 5 (Fig 2.3 C). However, 

the overall good fit indicates that the model was able to simultaneously (i.e., with 

the same fitted parameters) explain both nitrate- and ammonium-only growth, as 

well as growth with the two nutrients in equal quantities, with relatively small errors 

in the timing of when the most rapid changes occurred. 

N starvation had an important effect on nitrate uptake in Chlorella sp. (Fig. 

2.4 A-B). Model selection favored a functional response in which activation of the 

nitrate uptake system is delayed by a brief (<1 day) period that is proportional to the 

length of starvation experienced before the experiment (Table 2.2), which the model 

captured well across all starvation treatments (residuals approximately evenly 

spread among negative and positive values in Fig. 2.4 A). Data on population 

growth for N-starved cultures resupplied with nitrate showed evidence of temporal 

correlation in the residuals. Population size trajectories were under-predicted by the 

model, with arrowheads consistently pointing below observed values (mostly 

positive residuals in Fig. 2.4 B). This indicates that cells displayed greater 

efficiency in converting N into new cells than the model could capture. Starvation 

only affected nitrate uptake, as ammonium assimilation did not show any delays, 

even after 17 days of starvation (data not shown). 
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Model validation 

Using parameter estimates from fits of the previous four experiments, data 

from acclimatization experiments (see section Acclimatization after N starvation in 

material and methods) were used to test the predictive power of the model.  

coefficients were generally very high (0.86-0.99; Fig. 2.5). Acclimatizing 17-day 

starved cultures with a preliminary pulse of ammonium removed any initial delay in 

nitrate assimilation (no nitrate uptake delay after day 5 in Fig. 2.5 B). Conversely, 

acclimatizing equivalently starved cells with nitrate showed an initial 24-hour delay 

in nitrate uptake and cell division that is consistent with nitrate starvation 

experiments (cf. horizontal orange arrows at day 0 for 17-day starved treatment in 

Fig. 2.4 A with two horizontal arrows at day 0 in Fig. 2.5 E). Once cells recovered 

from starvation, the rate of per-cell nitrate assimilation did not differ between 

nitrate- and ammonium-acclimatized cultures (comparable uptake at day 5 between 

Fig. 2.5 B and 2.5 E). The only lack of fit occurred between days 1 and 3, where the 

model predicted a slower rate of ammonium depletion (arrows pointing consistently 

above observed values, yielding negative residuals for these days in Fig. 2.5 C) than 

occurred in the cultures. Finally, the excellent prediction ability of the model was 

further confirmed by repeating cross-validation using the single nitrogen utilization 

experiments as validating datasets and all other experiments as training datasets: 

 for all state variables were between 0.85 and 0.99, very similar to the  

values reported in our original validation experiment (Fig. 2.5). Because fitted and 

predicted trajectories in this second exercise were virtually identical to those shown 

in Figs. 2.2-2.5, we have not reproduced them here. 
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Table 2.1: Summary table of model state variables and parameters. Maximum 

likelihood estimates are reported only for those parameters in the model selected by 

AIC (cf. Table 2.2 for AIC scores). Hence, parameter best estimates for the 

functional response for the hyperbolic nitrogen uptake were not reported as the best-

fitting model has a linear uptake. Also dNO3 was not reported, as the best-fitting 

model does not have delayed nitrate starvation.  

Variables Definition (units)  

 Nitrate in medium (µmol  L-1)  

 Ammonium in medium (µmol  L-1)  

 Nitrogen quota (µmol N cell-1)  

 Population density (cell L-1)  

Parameters Definition (units) Mean (± 95% CI) 

 Maximum per-capita nitrate uptake rate (µmol  cell-1 day-1) -- 

 Nitrate half-saturation constant (µmol  L-1) -- 

 Rate of daily per-capita nitrate uptake (cell-1 day-1) 9.82 (9.03-10.5) ×10-11 

 Maximum per-capita ammonium uptake rate (µmol  cell-1 day-1) -- 

 Ammonium half-saturation constant (µmol  L-1) -- 

 Rate of daily per-capita ammonium uptake (cell-1 day-1) 6.74 (5.88-7.17) ×10-11 

 
Recovery rate of the nitrate assimilation systems following a period 

of nitrogen starvation (days-1) 

0.088 (0.074-0.093) 

 
Length of nitrogen starvation that a cell can withstand without 

displaying negative effects on nitrate assimilation systems (days) 

-- 

 
Critical ammonium uptake rate above which the nitrate uptake of a 

cell is repressed (µmol  L-1 day-1) 

1.08 (1.02-1.21) ×10-

8 

 

Per-capita minimum nitrogen quota (µmol N cell-1) 

3.10 (2.36-3.67) ×10-

8 

 Growth rate at infinite nutrient storage (day-1) 16.10 (9.02-19.1) 

 
Experimental period of nitrogen starvation imposed on the culture 

before the experiment (days) 

Fixed experimentally 

 Length of starvation-induced delay before a cell can resume nitrate 

uptake (days) 

Calculated via eq. 2.3 

from , , and 

 



 

Table 2.2: Formal model selection with Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) between 

functional responses for nitrate and ammonium uptake ( ), rehabilitation time following nitrogen starvation ( ), and ammonium-

induced inhibition on nitrate uptake ( ). We compared the fit of the full model against reduced versions, where particular functional 

responses were simplified or excluded from the fully parameterized model. Biological interpretation and scores for maximum negative 

log-likelihood (-L), AIC, difference in AIC (ΔAIC), BIC, difference in BIC (ΔBIC) are reported between competing models for each 

functional response (FR), with their corresponding number of calibrated parameters in brackets (# pars). Boldface indicates the 

estimated best-fitting model and therefore the one employed for parameter estimation. See eq. 2.2-2.5 for full functional responses, 

Model Selection section in Material and Methods, and Table 2.1 for parameter definitions, units, and calibrated values. 

  



 

  

Competing models for each FR [# pars] 

Nitrate (N=NO3) Ammonium (N=NH4) Biological  

FR  -L AIC ΔAIC BIC ΔBIC  -L AIC ΔAIC BIC ΔBIC Interpretation 

 (1)       [23] -3068 6182 0 6277 0 
 

-3068 6182 0 6277 0 
Functional response for the uptake of a 

single cell: 

(1) Increases linearly with N 

(2) Fix for any N 

(3) Saturates at high N 

 (2)        [23] -3156 6358 176 6453 176  -3189 6424 242 6519 242 

 (3)        [24] -3068 6184 2 6283 6 

 

-3068 6184 2 6283 6 

(1)  [24] -3068 6184 2 6283 6 

 

     Starvation-induced delay on nitrate uptake 

(1) Linearly proportional to starvation 

length after  days of starvation 

(2) Linearly proportional to starvation 

length 

(3) No starvation effect 

 (2)  [23] -3068 6182 0 6277 0 
 

     

 (3)        [22] -3133 6310 128 6401 124 
 

     

 (1)  [24]     
 

-3068 6184 0 6283 0 
Ammonium-induced inhibition on nitrate 

uptake: 

(1) Threshold at  

(2) No Inhibition 

 

 (2)       [23]
 

     

 

-3093 6232 48 6327 44 
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Figure 2.1: Model diagram for nitrate ( ) and ammonium ( ) 

utilization in phytoplankton cells. The double-lined ellipse represents the cell wall 

of a single cell. Squares indicate the state variables for the different forms of 

nitrogen, either in the medium or inside the cell. The diamond represents the 

starvation length. Black arrows describe nitrogen flows in the system. Grey arrows 

indicate inhibitor mechanisms on the per-cell nitrate uptake rate. Nitrate and 

ammonium are taken up through the membrane and stored inside the cell. The 

production of new cells (dashed lines) is a saturating function of internal nitrogen 

concentration (Q), whose shape is determined by the parameters for maximum 

growth rate (µmax) and minimum internal nitrogen (Qmin). See Table 2.1 and eq. 2.1-

2.6 for details on model formulation. 
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Figure 2.2: Time-series for medium nitrogen (A, C) and population size (B, 

D) for Chlorella sp. reared in batch culture with either nitrate (A, B) or ammonium 

(C, D) as the only nitrogen sources. Each symbol type is an independent replicate 

culture and each point is the mean between three replicate measurements for that 

culture. Arrows show one-step ahead predictions for the best-fit model assuming 

process noise, where the observed values at time t (base of arrows) are used in eq. 

2.6 to predict values at time t + 1 (arrowheads; see calibration section). Line graphs 
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beneath each panel connect the residuals between model predictions and 

observations for each day and are color coded for each culture. Vertical axes are 

scaled consistently across the two sub-panels. 
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Figure 2.3: Time-series and model fit for medium nitrate (A), medium 

ammonium (B), and population size (C) for Chlorella sp. reared in the presence of 

both forms of nitrogen. Each symbol type is an independent replicate culture and 

each point is the mean between three replicate measurements for that culture. 

Arrows (top panel) and lines (bottom panel) show the predicted values for the best-

fit model and its residuals. See Fig. 2.2 legend for further details.   
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Figure 2.4: Time-series and model fit for medium nitrate (A) and population 

size (B) of a nitrogen-starved inoculum of Chlorella sp. resupplied with nitrate. 

Legend indicates the length (days) of starvation imposed before starting the 

experiment. Each point represents the mean between three replicate measurements 

for each culture. Arrows (top panel) and lines (bottom panel) show the predicted 

values for the best-fit model and its residuals. See Fig. 2.2 legend for further details.  
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Figure 2.5: Model validation with time-series from a 17-day starved inoculum 

of Chlorella sp. not included during model calibration. Left column – Time-series 

for population size (A) resupplied at day 0 with ammonium (B) and at day 5 with 

nitrate (grey dashed vertical line in C). Right column – Time-series for population 

size (D) resupplied with nitrate (E) both at day 0 and at day 5. Each symbol type is 

an independent replicate culture and each point is the mean between three replicate 

measurements for that culture. Arrows (top panel) and lines (bottom panel) show 



Chapter 2 

the predicted values for the best-fit model and its residuals. See Fig. 2.2 legend for 

further details. 

Discussion 

Our results show that a single set of model parameters can characterize well 

the coupled dynamics between nitrate and ammonium uptake and cell division in 

the green algal species Chlorella sp. reared in batch culture under a wide range of 

initial conditions. Analyzing nitrate-ammonium utilization with the present model 

allowed us to quantify functional responses for assimilation of nitrate and 

ammonium individually or combined, as well as effects of nitrogen starvation or 

ammonium-induced nitrate uptake inhibition on nitrate uptake. Furthermore, high 

 scores recorded during model validation suggest that the model describes 

culture trajectories well even under novel experimental conditions. 

While previous studies have quantified assimilation responses to a few 

particular starvation lengths, the present study is the first to calibrate a functional 

response quantifying delay in nitrate uptake as a continuous function of starvation 

length. The physiological reason for such delay is a slow recovery in nitrate-

reductase activity following nitrogen starvation, which acts as the limiting step for 

nitrate assimilation and amino acid incorporation into proteins (Dortch et al. 1982). 

This explanation is also consistent with our observed absence in a delay for 

ammonium uptake following starvation, as no enzymatic reduction is required for 

its assimilation (Crawford et al. 2000). Proteins involved in the reduction of nitrate 

to organic nitrogen were recorded to decrease by 60-90% in the diatom 

Thalassiosira pseudonana at the onset of nitrogen starvation (Hockin et al. 2012). 

Different species display variable delay times to starvation: 1 and >2.5 hours delays 
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for 3 and 4 days of starvation (Martinez 1991) and 2 hours for 3 days of starvation 

for the diatom Skeletonema costatum (Dortch et al. 1982), 8 hours for 3 days of 

starvation for the dinoflagellate Amphidinium carterae (Dortch et al. 1982), and no 

delay for the green alga Dunaliela tetriolecta (Dortch et al. 1982). These observed 

delay times are comparable with presently calibrated functional responses for 

Chlorella sp., where 3 and 4 days of starvation would correspond to 5 and 7 hours 

of delay, respectively. In nature, some species, mostly diatoms, form fortnightly 

algal blooms near estuaries correlated with tidal cycles (Parsons et al. 1983; Zamon 

2002). One potential explanation is that, within phytoplankton communities, some 

species are adapted to respond quickly to nutrient fluxes after extended starvation 

periods (Largier 1993). This hypothesis could be tested by calibrating and 

comparing the shapes of the functional responses for the recovery rate of nitrate 

uptake to nitrogen starvation ( ) for species that commonly produce algal 

blooms, and those that do not. 

Interestingly, the effect of starvation on nitrate assimilation was removed 

when starved cultures were first acclimated with ammonium before supplying 

nitrate (Fig. 2.4). This result is consistent with earlier work on Chlorella vulgaris, 

where the production of nitrate reductase, a specific enzyme required for nitrate 

assimilation, increased when cells were reared in ammonium following N starvation 

(Morris & Syrett 1965). Also the marine haptophyte Isocrysis galbana registered a 

low but constant production of nitrate reductase when reared with ammonium as the 

only nitrogen source (Flynn et al. 1993). In contrast, synthesis of nitrate reductase 

did not occur in cells of the freshwater rhodophyte Cyanidium caldarium grown in 

ammonium-based media (Rigano & Violante 1973). The lack of a clear trend across 
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species poses further complications in our understanding of the general role of 

nitrate and ammonium fluctuations in the regulation of phytoplankton communities. 

Analyzing episodes in which the model failed to reproduce observed 

trajectories can indicate mis-specification of functional forms or implicate 

biological responses not explicitly incorporated in the model. For instance, 

discrepancies between the data and our model indicated that the rate at which 

assimilated nitrogen was converted into new cells was more rapid in cultures 

recovering from nitrogen starvation compared to replete conditions (mostly positive 

residuals in Fig 2.3B). A possible explanation is that cells with insufficient nitrogen 

for production of new biomass will channel excess carbon produced from 

photosynthesis into storage molecules such as triglyceride or starch (Zhang et al. 

2013). This produces an increase in the C:N ratio that can enhance growth rate 

following nitrogen resupply (Bittar et al. 2013). Chlorella sp. has been documented 

to display a significant increase in lipid and carbohydrate contents in response to 

nitrogen starvation conditions (Zhang et al. 2013). Thus, one area for refinement for 

our model would be to explicitly account for the relationship between nitrogen 

starvation, carbon content of a cell, and per-cell rate of population growth. 

Despite decades of research, the role of different nitrogen sources on the 

ecology of autotrophic communities remains unclear (Schimel et al. 2004; 

Boudsocq et al. 2012). For phytoplankton, this problem has implications for a broad 

range of aquatic systems: from coastal areas, where seasonal precipitation or tidal 

regimes drive large fluctuations in nitrogen availability at multiple scales, to inland 

basins, experiencing temporally variable anthropologic nitrogen release from 

fertilizers or waste-water discharge (Domingues et al. 2011). The present data on 
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nitrate and ammonium assimilation clearly show that there are major differences in 

how cells take up and assimilate these two different nitrogen sources. The modeling 

approach presented and tested here can contribute to our understanding of how 

different nitrogen supplies influence growth and interactions of phytoplankton 

communities in nature.  
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Chapter 3: Intraspecific cell size plasticity influences 

phytoplankton nitrate-ammonium utilization traits 

Introduction 

Explaining ecological communities and ecosystem functioning requires 

considering how multiple morphological and functional characteristics of a wide 

range of species change along various environmental gradients (McGill et al. 2006). 

Therefore, in ecology it is often advantageous to describe species not by their 

taxonomic identity, but rather by well-defined, measurable properties of a species 

that determine its performance (“functional traits”; McGill et al. 2006; Albert et al. 

2010). When examining the distribution of a species and how it changes with biotic 

and abiotic factors, trait-based approaches allow far greater generality and 

predictability (e.g. plants with dense canopy are more temperature-tolerant) 

compared to more traditional nomenclature approaches focusing on species 

identities (e.g. species X grows better at temperature Y; Lavorel et al. 1997; Violle 

et al. 2007). 

Ecological studies have often assumed that intraspecific variability in 

functional traits is negligible compared to interspecific differences (Albert et al. 

2010; Albert et al. 2011). However, a growing number of studies challenge this 

assumption. In particular, phenotypic plasticity, a major source of intraspecific 

variability in species traits, has often been documented to play an important role in 

species’ ability to cope with changing environmental conditions (Bolnick et al. 

2002; Albert et al. 2010). For example, leaves of several plant species inhabiting 
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wet habitats have adapted mechanisms to rapidly increase oxygenation and better 

cope with flooding events (Mommer et al. 2006). Furthermore, the phytoplankton 

species Scenedesmus subspicatus is able to increase cell size, form larger colonies, 

and develop spines to reduce grazing mortality a few hours after being exposed to 

new biotic and abiotic conditions (Hessen & Vandonk 1993; Donk, Lürling & 

Lampert 1999). Hence, not accounting for intraspecific trait variability due to 

phenotypic plasticity risks underestimating the actual ability of a species to persist 

under changing biotic and abiotic conditions, and thus potentially to overestimate 

community turnover along environmental gradients. 

The influence of phenotypic plasticity on intraspecific trait variability has the 

potential to be particularly important in phytoplankton ecology. Functional traits are 

commonly used to explain species trade-offs, optimal size, or size structure in 

phytoplankton communities (Irwin et al. 2006; Litchman et al. 2007). For example, 

phytoplankton nitrogen utilization traits, such as the maximum uptake rate, the 

maximum growth rate, and the ability to store nutrients, can be directly linked to the 

performance of the population, as well as its competitive ability within the 

community, and its contribution to nitrogen fluxes within the ecosystem 

(Falkowski, Barber & Smetacek 1998; Field et al. 1998; Edwards et al. 2012). 

Furthermore, there is now considerable evidence showing that phytoplankton 

nutrient-utilization traits change systematically with a species mean cell size (Stolte 

& Riegman 1995; Litchman et al. 2007; Edwards et al. 2012). Specifically, small 

species show higher specific population growth rates and assimilation efficiencies, 

while large species show higher nutrient uptake rates and greater ability to store 

nutrients (Stolte & Riegman 1996; Litchman et al. 2008; Edwards et al. 2012). 

However, phytoplankton cells are also known for their remarkable ability to rapidly 
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respond to changes in environmental conditions by adjusting their cell size (Duarte, 

Agusti & Canfield 1990; Dassow, Chepurnov & Armbrust 2006; Lyczkowski & 

Karp-Boss 2014). To our knowledge, no study has quantified the effects of 

intraspecific cell size plasticity on the nutrient utilization traits of a species. If 

fluctuations in cell size were to substantially influence the nutrient utilization traits 

of a species, then characterizing phytoplankton trait distribution solely by inter-

specific allometric relationships is likely to underpredict a species’ ability to 

respond and adjust to environmental fluctuations (Duarte et al. 1990). Hence, 

quantifying the effects of intraspecific cell size plasticity on nutrient utilization 

traits, particularly relative to interspecific variability in such traits, is important to 

assess the reliability of using species-level mean trait values in assessments of trait 

variability in phytoplankton. 

In this study, we test the hypothesis that changes in mean cell size are 

correlated with the nitrate-ammonium utilization dynamics of the widespread 

freshwater phytoplankton species Desmodesmus armatus (Chlorophyta). The 

nutrient utilization traits under analysis are: the per-capita rates for nitrate and 

ammonium assimilation, the maximum division rate, and the minimum storage of 

nitrogen. The experiment monitored the performance of the species under different 

nitrogen sources (nitrate, ammonium, or both) and nutrient histories (N-replete and 

N-deplete). The effects of temporal changes in mean cell size, and of nutrient 

histories, on the nitrate-ammonium utilization of the species were evaluated by 

fitting dynamic models. Specifically, four alternative Quota-type models were 

designed and fitted to data by assuming different relationships between cell size and 

nutrient traits: (1) traits are independent of nutrient history and cell size (“baseline” 

model); (2) traits depend only on nutrient history (“N-history” model), or (3) only 
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on cell size (“allometric” model); and (4) traits depend on both cell size and nutrient 

history (“allometric N-history” model). Results show that the effects of cell size and 

N-history on nutrient utilization dynamics in Desmodesmus armatus depends on the 

trait: ammonium uptake, maximum growth rate, and minimum internal N quota 

vary systematically with changes in cell size and previous N-history, while nitrate 

uptake is less related to both factors. This is the first study to quantify the 

importance of intraspecific trait variability on the population and nutrient-uptake 

dynamics of a species. 

Materials and Methods 

Process-based models  

Model presentation 

The nitrate-ammonium-phytoplankton model proposed by Malerba et al. 

(2015) was fitted to time-series of Desmodesmus armatus reared in laboratory 

conditions across treatments of nitrogen types (nitrate, ammonium, or both) and N-

history (N-replete or N-deplete). The model followed the general assumptions of the 

original “Quota” model, first proposed by Droop (1974): cells take up nitrogen from 

the environment and divide at a cell-specific rate that is proportional to their internal 

nitrogen concentration. Malerba et al. (2015) extended this model to explicitly 

account for the dynamics of two specific types of nitrogen sources, with cells 

dividing after taking up either nitrate or ammonium or both. The main feature of the 

model is that phytoplankton cells can display different degrees of specialization 

toward ammonium or nitrate by presenting better kinetic parameters when reared 

with either source of nitrogen. Moreover, the model accounts for the interaction 
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between nitrate and ammonium assimilation: high rates of ammonium uptake are 

known to repress nitrate uptake of a cell, by either altering the activity of specific 

transport enzymes or by preventing their synthesis (Syrett et al. 1963). The structure 

of the model was as follows (see Table 3.1 for definitions of state variables and 

parameters): 

     (eq. 3.1 a) 

        (eq. 3.1 b) 

 (eq. 3.1 c) 

         (eq. 3.1 d) 

with the four differential equations describing changes in nitrate , 

ammonium , internal cell nitrogen , and total population size 

. The functional responses for  and  represent 

per-cell uptake of nitrate and ammonium, respectively, with  

quantifying the inhibition of ammonium uptake on nitrate uptake. Finally,  

represents the functional response regulating the specific daily growth rate of a cell 

as a function of its internal nitrogen concentration.  

Traditionally, the per-capita nitrogen uptake rate of a cell is assumed to follow 

a saturable Michaelis-Menten functional response of the form  , 

where  is the maximum per-capita uptake rate and  is the half-saturation 

constant. However, preliminary experiments showed that the per-capita nitrogen 

uptake for the study species is linearly proportional to the nutrient concentration in 

the environment, for the range of concentrations considered here. A linear 
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functional response for per-cell nitrogen assimilation is consistent with 

physiological studies. Phytoplankton cells have evolved two alternative assimilatory 

systems to better cope with fluctuating nutrient availabilities (Collos et al. 1997; 

Flynn 1999; Collos, Vaquer & Souchu 2005). High nutrient concentrations (~100-

1000 µmol-N) induce the expression of a low-affinity system, which is linearly 

proportional to external nitrogen (Crawford et al. 2000). Conversely, low nutrient 

concentrations (1-100 µmol-N) induce a high-affinity system, which follows a 

saturable function of external nitrogen concentration (Crawford et al. 2000). Hence, 

per-cell nitrate and ammonium assimilation was modeled as a linear functional of 

medium nitrogen: 

    (eq. 3.2 a) 

    (eq. 3.2 b) 

where  and  are the per-cell nitrate and ammonium uptake rates, 

respectively (units of cell-1 day-1). 

Physiological studies have shown that ammonium inhibition on nitrate uptake 

depends on the per-cell ammonium uptake rate (not of the external ammonium 

concentration) (Syrett et al. 1963). The specific form of this functional response can 

depend on the species and the experimental conditions, ranging from an immediate 

cessation of nitrate utilization in the presence of ammonium, to a less abrupt 

transition, or even to the absence of any interactions between ammonium and nitrate 

uptake. A general and flexible way to parameterize the effect of ammonium 

inhibition on nitrate uptake is using a negative exponential functional response 

between 0 (fully inhibited) and 1 (no inhibition), as: 

     (eq. 3.3) 
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with a and b regulating the shape of the curve. 

Finally, the function  regulates the growth rate of a cell as a function of 

its internal nitrogen concentration. For phytoplankton species this relationship is 

commonly represented with a non-linear rectangular hyperbola of the form: 

    (eq. 3.4) 

where  indicates the growth rate at infinite internal quota and  indicates 

the concentration of per-cell internal nitrogen at which no cell division occurs (with 

). 

Alternative models 

Four alternative models were derived assuming different functional responses 

for describing the traits for the species. The first model (“baseline model”) assumes 

that all traits in eq. 3.2 a-b and eq. 3.4 (i.e.  ,  , , and ) are fixed 

species-specific terms. The second model (“N-history model”) instead assumes that 

the traits of the species differ with nitrogen status. Empirical studies have 

documented that N-deplete cells often respond to new nitrogen availability with 

higher nitrogen uptake rates and lower division rates (Cochlan & Harrison 1991; 

Sinclair et al. 2006). Hence, this model includes two independent sets of parameters 

to describe the species’ traits for nitrogen uptake and growth rate: one to represent 

experiments whose inoculum was previously N-replete (  ,  , and 

) and another for experiments whose inoculum was N-deplete (  , 

 , and ). There is no biological reason to assume that cells change 

their minimum internal nitrogen requirement between nitrogen replete and deplete 

conditions, so the parameter  was fixed, independent of nitrogen history. We 



Chapter 3 

checked that including two independent  parameters for different nitrogen 

histories did not change the interpretation of the results. Overall, the “N-history” 

model included 7 estimated parameters. The third alternative model (“allometric 

model”) assumed that N-utilization traits of a species are a power-law function of 

the mean cell size in the population. For example, the trait for the nitrate uptake rate 

of a cell now becomes: 

   (eq. 3.5) 

with  and  as tuneable parameters regulating the shape of 

the relationship. In this way, each demographic parameter in the “baseline model” 

became an allometric function of cell size, for a total of 8 estimated parameters. 

Because there is strong biological evidence indicating that phytoplankton cells 

assimilate nitrogen at a rate that is proportional to their cell surface area (Aksnes & 

Egge 1991), both  and  were constrained to be positive. Also 

 was constrained to be positive, as the minimum internal nitrogen of a cell 

is directly proportional to the cell area (Shuter 1978; Edwards et al. 2012). We also 

checked that removing these constraints did not change the interpretation of the 

results. Notice that the slope between the size and the maximum growth rate of a 

cell was left unconstrained, as this relationship can either be positive or negative 

depending on the mean cell size of the species (Wirtz 2011; Maranon et al. 2013). 

Finally, the fourth “allometric N-history” model merges the assumptions of the 

“allometric model” and the “N-history” model: each trait in the “N-history” model 

follows an allometric function of mean population cell size. Hence, this 

parameterization assumes that the effect of cell size changes depending on whether 



Chapter 3 

the inoculum was N-replete or N-deplete before the experiment, with a total of 14 

estimated demographic parameters. 

Data Collection 

Culture maintenance 

Monoclonal 1.2 L batch cultures of the green microalga Desmodesmus 

armatus (R. Chod.) Hegev. (culture accession: NQAIF301, sourced from the North 

Queensland Algal Culturing and Identification Facility at James Cook University, 

Townsville, QLD) were reared in standard Bold Basal Medium (BBM; Nichols 

1973). Nitrogen was set as the limiting factor for growth in all experimental 

cultures, supplied between 4 to 8 times below the recommended BBM concentration 

with either sodium nitrate (NaNO3) for nitrate-BBM, or ammonium chloride 

(NH4Cl) for ammonium-BBM, or both. Phosphorous, iron, and all other nutrients 

were supplied at non-limiting concentrations. Furthermore, dissociation of 

ammonium ion ( ) into volatile un-ionised ammonia ( ) was minimized by 

ensuring pH levels below 7 by buffering the modified nitrate-BBM and ammonium-

BBM media with 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) at 8 

mmol L-1 and NaHCO3 at 2.38 mmol L-1 (Vaddella et al. 2011). Cultures were kept 

in a temperature-controlled room at 27 ± 3°C with a 14-10 day-night cycle at a light 

intensity of 70 µmol photons m2 s-1. Cultures were continuously suspended with 

magnetic stirrers at 300 rpm (IKA RCT Basic, IKA Labortechnik, Germany) and 

aerated with 0.45 µm filtered air (Durapore, Millipore).  
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Experimental design 

The experimental set-up was a factorial design of two treatments of cell N-

history (N-replete and N-deplete) crossed with three treatments of nitrogen type 

(nitrate, ammonium, or both), each replicated with three 1.2 L independent replicate 

cultures (see Fig. S3.1 for experimental design in Appendix Chapter 3). Initial 

medium nitrogen was standardized to 800 µM-N. Initial cell inoculation density was 

standardized at 1×109, which ensured between 4 to 8 days of rapid growth before 

reaching stable population densities. For N-replete cultures, exponentially growing 

cells were taken from a mother culture and inoculated into experimental cultures 

with fresh N-rich BBM medium. Data collection started immediately after 

inoculation. For N-deplete cultures, exponentially growing cells from the mother 

culture were inoculated into experimental cultures with N-free BBM medium. Cells 

were monitored until population density reached stationary growth, to ensure that all 

internal nitrogen was consumed before the beginning of the experiment (typically 3 

to 4 days). Data collection started following fertilization of the N-free medium with 

nitrogen. 

Population density and mean cell size 

Three replicate measurements per culture were taken every day by loading 

250 µL on a 96 well plate and measured with a Guava EasyCyte flow cytometer 

(Millipore, Hayward, CA, USA). To control for the effects of the 14-10 day-night 

photoperiod cycle on cell cycle, data collection was conducted daily at 13:00 (7 

hours into the light period). Before cytometric analysis, each sample was diluted 

with DI water between 25 and 50 times to maintain the optimal precision range of 

the instrument (50 to 500 cells µL-1). Population size was estimated after excluding 
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dead cells and inorganic particles characterized by low red fluorescence signals. 

Mean cell size was estimated optically through the forward light scatter recorded 

with the flow cytometer. Mullaney, Dilla and Coulter (1969) showed that the light 

refraction at small angles (i.e. forward light scatter) was proportional to the size of 

the particle, as predicted by Mie theory (Sharpless et al. 1975; Sharpless & 

Melamed 1976; Veldhuis et al. 2000; Shapiro 2005). Light microscopy validated 

the use of forward light scatter as an accurate linear proxy for mean cell size (cell 

area: F1, 17 = 64.9, p<0.001, R2 = 0.79; cell perimeter: F1, 17 = 49.6, p<0.001, R2 = 

0.66). Instrument precision was periodically checked with Guava easyCheck beads 

(Catalog No. 4500-0025, Millipore), ensuring a coefficient of variation (CV) < 5% 

for all detectors. 

Medium nitrogen analysis 

Medium nitrate (NO3
-) was quantified using the ultraviolet spectrometric 

screening method (Collos et al. 1999; Lanoul, Coleman & Asher 2002; Malerba et 

al. 2016). Three 1.25 mL replicate samples per culture of filtered supernatant were 

acidified with 25 µL 1N HCl to prevent interference from hydroxide or carbonate 

molecules (Clescerl, Greenberg & Eaton 1999). After vortexing, 250 µL was 

transferred onto a 96-wellplate (Ultraviolet-Star®, Greiner Bio-One GmbH) and 

optical density was measured at 230 nm (OD230; EnSpire® Multimode Plate 

Reader; Perkin-Elmer, Waltham MA, US). As certain types of dissolved organic 

matter can also absorb at 230 nm and NO3
- does not absorb at 275 nm, a second 

measurement at 275 nm (OD275) was used to correct each OD230 reading (Clescerl 

et al. 1999). The standard curve for (OD230 - OD275) was linear across the range 

of nitrogen concentrations used in the experiments (R2 ≥ 0.995). 
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Model Calibration 

We fitted the four process-based models to data for medium nitrogen and 

population density from all experiments. This way, model predictions generated 

from a single set of parameters were confronted with time series from 6 different 

combinations of nitrogen types and N-histories, with each treatment replicated 3 

times. Quota dynamics were not experimentally measured but were instead inferred 

from the model fits: all of the parameters that influence the dynamics of the 

unobserved internal quota (Q(t)) also appear in the equations for the observed 

dynamics for nitrate depletion and biomass growth. Hence, flux into the quota can 

be inferred from changes in medium nitrate and ammonium, while flux out of the 

quota can be inferred from changes in population density (De La Rocha et al. 2010; 

Malerba et al. 2012; Malerba et al. 2015). 

Two different sources of error can affect parameter calibration from time-

series data: observation error and process noise (see Model Calibration in Chapter 2 

for details; Hilborn et al. 1997; Bolker 2008). While highly controlled experimental 

systems are typically more consistent with process noise (Bolker 2008), the use of 

an optical proxy for mean cell size has the potential to increase the effects of 

observation error. Therefore, we adopted in this study the common approach of 

fitting two separate likelihood functions, one accounting for process error-only and 

a second one for observation error-only. We then checked that model selection and 

parameter estimation gave comparable results for the two methods, and supported 

the same conclusions (Malerba et al. 2012). Markov Chain Monte Carlo techniques, 

with Adaptive Mixture-Metropolis and Random Walk Metropolis and uniform 

priors, were used to fit all models, using package LaplacesDemon (Hall 2008) in the 
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software R (R Core Team 2015). To monitor for successful convergence, we 

visually inspected the iterated history, density plot, and correlation diagram for each 

of the parameters on four chains, and we checked for a potential scale reduction 

factor lower than 1.2 using Gelman and Rubin’s MCMC convergence diagnostic 

(Gelman & Rubin 1992). 

Model Selection 

The goodness of fit for the “Baseline”, “N-history”, “Allometric”, and 

“Allometric N-history” models were compared using Deviance Information Criteria 

(DIC) (Spiegelhalter et al. 2002; Hooten & Hobbs 2015). The model with the 

lowest DIC score is the estimated best-fitting model. In general, models separated 

by more than 5-10 DIC units from the best model should be considered as fitting the 

data substantially worse (Spiegelhalter et al. 2002). Model goodness of fit was also 

evaluated in two additional ways. Specifically, we calculated a standard coefficient 

of determination (R2) for each state variable in each experiment, and we also 

inspected the distribution of residuals around predicted values. 

Phenomenological models 

The main advantage of fitting process-based models to our data is that it 

allows calibrating species-specific functional responses on data from all variables at 

once, thereby quantifying how flows of nitrogen among ambient nitrate and 

ammonium, internal nitrogen, and population density influence one another. 

However, most published demographic parameters for phytoplankton species have 

not been calculated in this way, but rather by calibrating each functional response 

independently, using more traditional least-squared regression between successive 
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points in time of each individual variable. Hence, we also tested if the conclusions 

from our dynamic model analysis were consistent with least-squared regressions 

from observed rates of per-cell nitrate and ammonium uptake and cell division (see 

Fig. S3.4 in Appendix Chapter 3). 

Specific growth rates were computed for each day of each experiment as: 

     (eq. 3.6) 

where B represents the total population density either at time t or t-1 (units of day-1). 

Per-cell nitrogen uptake for nitrate and ammonium were computed for each day of 

each experiment as: 

             (eq. 3.7 a) 

                       (eq. 3.7 b) 

where NO3 and NH4 represent the mean nitrate and ammonium concentrations at 

time t or t+1. Hence, nitrogen uptake is computed as the total assimilated nitrogen 

divided by the mean population density (left fraction in eq. 3.7 a-b), and further 

divided for the mean nitrogen concentration (right fraction in eq. 3.7 a-b). In this 

way,  and  quantified per-cell nitrogen uptake rates while accounting for 

total medium nitrogen availability, with units of cell-1 day-1. 

RESULTS 

Process-based models 

The “Allometric N-history” model was selected as the best-fitting model by 

DIC model selection (Table 3.2). This model assumes that the species traits follow 
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two different allometric relationships with cell size, depending on the N-history of 

the cell. The “Baseline” model, which assumes that all demographic parameters are 

independent of cell size and N history, performed the worst (Table 3.2). The 

“Allometry” model, which assumes that demographic parameters vary with cell 

size, and the “N-history” model, assuming N-replete and N-deplete cells to display 

different size-independent demographic parameters, ranked in-between (Table 3.2). 

Furthermore, calibrating the model with either observation error-only or process 

noise-only likelihood functions produced equivalent conclusions, which indicate 

that the results are robust and independent of the assumptions about the source of 

error in the data (Table 3.2). 

Except for the rates of per-cell nitrate uptake, all species traits show 

substantial differences when estimated with the “Allometric N-history” model (solid 

lines) compared to the size- and N-history-independent “Baseline” model (dashed 

lines; Fig. 3.1). Specifically, per-cell ammonium uptake was substantially 

influenced by mean cell size, and was higher in N-deplete cells than N-replete cells 

(Fig. 3.1 B). The maximum specific division rate increased with cell size for N-

replete cells, but remained constant for N-deplete cells (Fig. 3.1 C). Finally, 

minimum internal nitrogen was higher when cells were larger (Fig. 3.1 D). 

Conversely, per-cell nitrate uptake was independent of cell size and was comparable 

between N-replete and N-deplete cells (Fig. 3.1 A). Functional responses calibrated 

by fitting the model with observation error-only or with process noise-only 

likelihood functions produced equivalent conclusions (compare Fig. 3.1 with Fig. 

S3.3 in Appendix Chapter 3). 
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Visually inspecting the fit for the four calibrated models revealed why the 

“Allometric N-history” model performed the best (Fig. 3.2-3.4). Because model 

selection (Table 3.2) and relationships of demographic and uptake parameters 

(Figures 3.1 and S3.3 in Appendix Chapter 3) were consistent between the process 

error-only and observation error-only models, we focus here only on observation 

error-only models. Cells that were previously N-replete and re-supplied with a 

single-nitrogen source showed smooth and gradual changes in nitrogen depletion 

(symbols in Fig. 3.2 A and 3.2 C), mean cell size (bars in Fig. 3.2 A and 3.2 C), and 

population density (Fig. 3.2 B and 3.2 D). In contrast, previously N-deplete cells 

reared under the same nitrogen regime showed faster initial nutrient depletion 

(symbols in Fig. 3.3 A and 3.3 C), an abrupt spike in mean cell size (bars in Fig. 3.3 

A and 3.3 C), and a faster increase toward population carrying capacity (Fig. 3.3 B 

and 3.3 D). The same qualitative differences remained when cells were 

simultaneously supplied with both nitrate and ammonium: N-replete cells 

consistently displayed more regular transitions than N-deplete cells (compare Fig. 

3.4 A-C with Fig. 3.4 D-F). Only the “Allometric N-history” model performed 

consistently well (R2 > 0.9) with both smooth and abrupt dynamics from N-replete 

and N-deplete cells, respectively (dark blue line in Fig 3.2-3.4). The “Baseline” and 

“N-history” models performed well only with smooth N-replete dynamics (yellow 

and orange lines, respectively; Fig. 3.2, 3.4 A-C), instead showing clear lack of fit 

from data collected for N-deplete cultures (Fig. 3.3 B, 3.3 D and 3.4 F). Conversely, 

the “Allometric” model showed mostly good fits for abrupt N-deplete cultures (Fig. 

3.3 and 3.4 D-F), but often failed to capture the smooth dynamics in N-replete 

cultures (Fig. 3.2 B-D and 3.4 C). 
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The explanation for the poor performance of the “Allometric” model with N-

replete cells and of the “N-history” model with N-deplete cells lies in the observed 

mean cell sizes: N-deplete cells changed their size more suddenly than N-replete 

cells (compare bars in Fig. 3.2 A, 3.2 C, and Fig. 3.4 A against bars in Fig. 3.3 A, 

3.3 C, and Fig. 3.4 D), mostly also recording higher peak values. The “Allometric” 

model can perform well with N-deplete cells because these rapid changes in cell 

size are indicative of imminent transitions in culture dynamics. However, this 

relationship between cell size and cell performances changed between N-replete and 

N-deplete cells. Consequently, forcing a single functional response for both N-

deplete and N-replete cells (as assumed in the “Allometric” model) was inadequate 

and produced worse fits than the size-independent “baseline” and “N-history” 

models. This is the reason why the “Allometric N-history” model (assuming two 

different allometric relationship between N-replete and N-deplete cells) can 

combine the good performances of the “Allometric” model for N-deplete cells and 

of the “N-history” model for N-replete cells. 

Overall, changes in mean cell size closely matched the transitions in medium 

nitrogen in the cultures: increasing cell size coincided with periods of high medium 

nitrogen, and decreasing cell size with periods of no available nitrogen (Fig. 3.2 A, 

C, Fig. 3.3 A, C, Fig. 3.4, A, D). Thus, it is not surprising that observations on 

population mean cell size and model-inferred internal nitrogen quota from the best-

fitting “Allometric N-history” model were highly correlated (Spearman’s rho 

correlation: rs = 0.77, S = 6970, p > 0.001, N=57; Fig. S3.2 in Appendix Chapter 3). 

Interestingly, however, the relationship was consistent for both N-replete and N-

deplete cells (Fig. S3.2). 
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High ammonium concentrations produced a temporary phase of slow or 

absent nitrate assimilation (low nitrate depletion in the first 24 hours in Fig. 3.4 A, 

D). Most models captured this behavior well, which indicates that the deterministic 

structure of the model was adequate to describe ammonium-induced inhibition of 

nitrate uptake for this species. 

Phenomenological models  

Statistical linear models revealed a significant effect of cell size and nutrient 

history on the observed rates of nitrogen assimilation and specific growth rates, 

calculated between each two successive days with eq. 3.6 and 3.7 a-b. Specifically, 

nitrate uptake showed a weak positive effect of cell size (F1,48 = 6.59, MS = 2.30, 

p=0.033), but no significant effect of nutrient history (F1,48 = 0.97, MS = 0.34, 

p>0.5; Fig. S3.4 A in Appendix Chapter 3). Conversely, rates for ammonium uptake 

were significantly higher in N-deplete cells compared to N-replete cells (F1,40 = 

41.90, MS = 5.69, p<0.001) and displayed a significant positive effect of cell size 

(F1,40 = 43.47, MS = 5.9, p<0.001; Fig. S3.4 B). The effect of cell size was constant 

across nutrient histories for both nitrate (F1,48 = 0.27, MS = 0.1, p>0.05) and 

ammonium uptake (F1,40 = 0.01, MS = 0.01, p>0.05; Fig. S3.4 A-B). Finally, growth 

rate increased with cell area at N-deplete conditions, not at N-replete conditions 

(F1,149 = 8.07, MS = 0.51, p<0.01; Fig. S3.4 C). Overall, these results are mostly 

consistent with findings from fitting the process-based models. The only detectable 

difference is the effect of cell size on per-cell nitrate uptake, which was not detected 

by the process-based models. However, the very weak coefficient of determination 

(R2<0.13) and the 95% confidence intervals for the slope coefficient almost 
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including zero (0.12 - 2.6) suggest some care should be taken in the interpretation of 

this result (Fig. S3.4 A).  
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Table 3.1: Best-estimates from the posterior distribution (median and upper 

and lower 95% credible intervals) of the parameters in the “allometric N-history” 

model with observation error-only likelihood function, which was the best-fitting 

model following DIC model selection (confront to Table 3.2 for DIC scores).  

Variables Definition (units) 

NO3
 Nitrate in medium (µmol  L-1) 

NH4
 Ammonium in medium (µmol  L-1) 

Q Nitrogen quota (µmol N cell-1) 

B Population density (cell L-1) 

  

Parameters Definition [Median (± 95% C.I.) units] 

wNO3_coef_rep Scaling intercept for per-cell nitrate uptake in replete cells [1.99 (1.7-2.31) 10-9 cell-1 cell area-

1 day-1] 

wNO3_exp_rep Scaling exponent for the per-cell nitrate uptake in replete cells [2.55 (1.7-3.69) 10-6 unitless] 

wNH4_coef_rep Scaling intercept for the per-cell ammonium uptake in replete cells [5.52 (4.49-7.06) 10-21 

cell-1 cell area-1 day-1] 

wNH4_exp_rep Scaling exponent for the per-cell ammonium uptake in replete cells [8.14 (8.04-8.20) unitless] 

µmax_coef_rep
 Scaling intercept for growth rate at infinite nutrient storage in replete cells [10.2 (8.50-13.7) 

10-5 day-1 cell area-1] 

µmax_exp_rep Scaling exponent for growth rate at infinite nutrient storage in replete cells [21 (19-22.2) 

unitless] 

wNO3_coef_dep Scaling intercept for the per-cell nitrate uptake in deplete cells [6.75 (5.83-7.82) 10-10 cell-1 

cell area-1 day-1] 

wNO3_exp_dep Scaling exponent for the per-cell nitrate uptake in deplete cells [1.09 (8.8-13.9) 10-8 unitless] 

wNH4_coef_dep Scaling intercept for the per-cell ammonium uptake in deplete cells [2.09 (1.63-2.72) 10-10 

cell-1 cell area-1 day-1] 

wNH4_exp_dep Scaling exponent for the per-cell ammonium uptake in deplete cells [0.55 (0.46-0.62) unitless] 

µmax_coef_dep Scaling intercept for growth rate at infinite nutrient storage in deplete cells [3.9 (3.18-4.88) 

day-1 cell area-1] 

µmax_exp_dep Scaling exponent for growth rate at infinite nutrient storage in deplete cells [0.62 (0.57-0.66) 

unitless] 

Qmin_coef Scaling intercept for per-cell minimum nitrogen quota [1.32 (0.9-1.58) 10-9 µmol N cell-1 cell 

area-1] 

Qmin_exp Scaling exponent for per-cell minimum nitrogen quota [1.57 (1.49-1.68) unitless] 
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a Shape parameters for the inhibition of ammonium uptake on per-cell nitrate uptake [2.49 

(1.97-3.05) 10-14 unitless] 

b Shape parameters for the inhibition of ammonium uptake on per-cell nitrate uptake [6.98 

(6.74-7.16) unitless] 
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Table 3.2: Formal model selection criteria between competing models with 

Deviance Information Criterion (DIC). Values represent the deviance (D(θ)), the 

DIC score, and the difference in DIC (ΔDIC) scores (thus, by definition, the best fit 

model has ΔDIC = 0), for models calibrated with either observation error-only or 

process noise-only likelihood functions. Boldface indicates the model with greater 

support from the data. 

 

 Observation Error  Process Error 

Alternative Models D(θ) DIC ΔDIC  D(θ) DIC ΔDIC 

Allom. N-History 9893 9946 0  9903 9930 0 

N-History 10014 10057 111  10007 10029 99 

Allometry 10037 10080 134  10106 10131 201 

Baseline 10101 10141 195  10138 10165 235 
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Figure 3.1: Comparison for the best-estimates for demographic parameters 

(median ±95% confidence intervals) calculated with the “baseline” model (dashed 

lines) and with the best-fitting “Allometric N-history” model (solid lines). 

Parameters were calculated using observation error-only likelihood functions and 

represent rate of per-cell uptake for nitrate (A) and ammonium (B), growth rate at 

infinite stored internal nitrogen (C), and minimum internal nitrogen (D). Two solid 

lines in the same pannel represent the effect of cell size on the demographic 

parameters between N-replete (red) and N-deplete (blue) previous N-history. 

Dashed line is the corresponsive parameter estimated with the “baseline” model, 
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which assumes independence with cell size and nutrient history. Notice that pannel 

D has only one solid line; this is because the functional response for minimum 

internal nitrogen in the “Allometric N-history” model was only designed as a 

function of cell size and independent of previous N-history of the culture. See 

Material and Methods, Table 3.1 for more details on model formulation and 

demographic parameters, and Fig. S3.3 in Appendix Chapter 3 for equivalent plot 

calculated with alternative process noise-only likelihood functions. 
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Figure 3.2: Time-series and model fits for nitrogen-replete culture dynamics 

grown with either nitrate (A, B) or ammonium (C, D) as the only nitrogen source. 

Plots show changes in medium nitrogen depletion (A, C) and population size (B, D) 

over the course of the experiments. Grey bars represent daily estimates for optical 

proxy for mean population cell size (+ St. Dev.; A, C). Different symbols represent 

the mean among three replicate measurments for each day for each of the three 

independent replicate culture. Colour lines represent model goodness-of-fit for the 

four competing models calibrated with observation error-only likelihood functions 
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(see Calibration section in Material and Methods). A coefficient of determination 

quantifies the goodness of fit for each competing model. 
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Figure 3.3: Time-series and model fits for nitrogen-deplete culture dynamics 

grown with either nitrate (A, B) or ammonium (C, D) as the only nitrogen source. 

Plots show changes in medium nitrogen depletion (A, C) and population size (B, D) 

over the course of the experiments. Grey bars represent daily estimates for optical 

proxy for mean (+ St. Dev.; A, C). Different symbols represent the mean among 

three replicate measurments for each day for each of the three independent replicate 
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culture. Model fits were calculated using observation error-only likelihood 

functions. See legend for Fig. 3.2 for more information.   
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Figure 3.4: Time-series and model fits for nitrogen-replete (A-C) and 

nitrogen-deplete (D-F) cultures grown with both nitrate and ammonium as the only 

nitrogen source. Plots show changes in medium nitrogen depletion (A-B, D-E) and 

population size (C, F) over the course of the experiments. Grey bars represent daily 

estimates for optical proxy for mean (+ St. Dev.; A, D). Different symbols represent 

the mean among three replicate measurments for each day for each of the three 

independent replicate culture. Model fits were calculated using observation error-

only likelihood functions. See legend for Fig. 3.2 for more information. 
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Discussion 

The analysis supported our hypothesis that nutrient utilization dynamics of 

Desmodesmus armatus vary strongly with cell size and nutrient history. Overall, 

larger cells recorded higher ammonium uptake rate, maximum specific growth rate, 

and minimum internal nitrogen quota. Furthermore, rates of ammonium uptake were 

higher in cells recovering from N-depletion, while maximum cell growth rates 

increased with cell size more under N-replete than N-deplete conditions. Minimum 

cell quota increased with size under N-deplete conditions, but remained virtually 

constant under N-replete conditions. Finally, the positive relationship between mean 

cell size and (model-inferred) changes in internal nitrogen quota was consistent 

between N-replete and N-deplete cells across all experiments. 

Our physiological understanding of the effect of N-stress in phytoplankton 

cells is consistent with an important role of mean cell size and previous N-history 

on phytoplankton nutrient utilization traits. For instance, our results show that rates 

of cell division were positively correlated with cell size under N-replete conditions. 

This is consistent with larger cells being at a more advanced stage of the cell 

division cycle (Hunter-Cevera et al. 2014), which explains the positive correlation 

with maximum cell division rates under N-replete conditions. Conversely, 

maximum cell division rates for N-deplete cells were independent of cell size due to 

faster rates recorded for small cells. When N availability inhibits cell division, cell 

size decreases and photosynthetic energy is diverted and stored in the form of lipids 

or carbohydrates (Rodolfi et al. 2009; Mata, Martins & Caetano 2010). When 

exposed to new nutrients, those energy stores can reactivate cell division at a rate 

that is temporarily enhanced (Bittar et al. 2013). Moreover, rates for ammonium 
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uptake were consistently higher for N-deplete than N-replete cells. This is likely 

because many species are adapted to exploit new supplies of a limiting nutrient by 

taking up more than would be required to sustain immediate growth (Sinclair et al. 

2006). However, enhanced N uptake is more common when cells are supplied with 

ammonium, and less frequent with nitrate (Cochlan et al. 1991). This is also 

because ammonium is easier to assimilate, as most amino acids are in the same 

oxidation state. In contrast, nitrate can be assimilated only after being first reduced 

to ammonium, by means of specialized enzymes (Berges 1997). Overall, our results 

show that using single species-specific parameter values (i.e. “Baseline model”) 

leads to a substantial underestimation of a species’ ability to divide (up to 64 %), 

take up ammonium (up to 52 %) and nitrate (up to 63 %), and to store nitrogen 

intracellularly (up to 53 %), compared to accounting for variation due to cell size 

and N-history (“Allometric N-history model”). 

It is commonly assumed that within-species trait variability in phytoplankton 

species is negligible compared to between-species variability. However, this 

assumption is rarely tested. A way to estimate the relative importance of within-

species sources of trait variation is by using information from published 

phytoplankton allometric relationships. We compared the range between minimum 

and maximum within-species trait values recorded here for each trait, against the 

standard deviation of the residuals in allometric scaling relationships across multiple 

species for the same trait. In this study, mean rates for nitrate uptake increased by 

up to 40%, while ammonium uptake, maximum growth rate, and minimum internal 

nitrogen increased between half and one and a half orders of magnitude. These 

ranges were low (within 1 standard deviation of between-species residual variation) 

for nitrate uptake, but were substantially higher (by more than three standard 
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deviations) for ammonium uptake, maximum growth rate, and minimum nitrogen 

quota when compared to the residual standard deviations in interspecific allometric 

N utilization traits for freshwater phytoplankton communities reported in Edwards 

et al. (2012). This indicates that for three of the four traits not accounting for 

phenotypic plasticity and intraspecific trait variability can lead to substantial 

uncertainty when calculating interspecific allometric relationships. 

Overall, our findings are in agreement with the growing body of ecological 

literature highlighting the importance of phenotypic plasticity on species traits 

(Mommer et al. 2006; Violle et al. 2007). Phenotypic plasticity can provide an 

advantage to an individual by better adjusting to changes in abiotic conditions, 

while simultaneously decreasing interspecific competition by reducing niche 

overlap (Jung et al. 2010). In phytoplankton communities, the ability to modulate 

cell size can extend the geographic distribution of a species by adjusting for nutrient 

requirements in oligotrophic or fluctuating environmental conditions or by 

modifying grazing risks and sinking velocity in eutrophic environments (Duarte et 

al. 1990; Grover 1991; Maranon 2015). Similarly, plant communities occupying 

dynamic and unpredictable habitats, such as river floodplains, are dominated by 

species featuring wide phenotypic plasticity in traits determining gas exchange and 

submergence tolerance (Mommer et al. 2006; Jung et al. 2010). Another example is 

the common fruit fly Drosophila melanogaster, whose ability to thrive at different 

temperatures has large intraspecific variability, with the expression of heat-shock 

proteins depending on previous thermal regimes experienced throughout the life 

history of the individual (Krebs & Feder 1997). Further examples of intraspecific 

trait plasticity include relationships between mean clutch size and exposure to 

predators for the freshwater crustacean Daphnia pulex (DeWitt 1998) and between 
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development time and desiccation risk in the amphibian Rana temporaria (Merila, 

Laurila & Lindgren 2004).  

In conclusion, our results show that the nutrient utilization dynamics of a 

phytoplankton species are functions of changes in mean cell size and previous 

nitrogen history. The importance of recognizing and quantifying trait plasticity in 

single species has become more urgent since a growing number of plant and animal 

studies use trait databases to investigate community patterns (Berg & Ellers 2010). 

Quantifying intraspecific trait plasticity is complex and most trait databases often 

report only fixed species-specific values for each life history trait (Vieira et al. 

2006; Kleyer et al. 2008). Hence, it is important to recognize and distinguish 

between traits where interspecific variability is dominant, and traits where ignoring 

intraspecific trait plasticity will impair the explanatory power of trait-based analyses 

(Berg et al. 2010). 
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Chapter 4: Standard flow cytometry as a rapid and non-

destructive proxy for cell nitrogen quota 

Introduction 

Identifying nitrogen limitation and quantifying the degree of nitrogen stress in 

phytoplankton cells is of primary importance in ecological and applied 

phytoplankton fields. Nitrogen is the nutrient required in highest amounts for cell 

division, and is often the first to become limiting. A limiting nutrient is defined as 

the element whose availability inside the cell is the lowest in relation to the cell’s 

requirement (typically nitrogen, phosphorous, or iron; Howarth 1988). The capacity 

of a species to store internal nitrogen (here referred as “cell nitrogen quota”) is a 

main determinant of primary productivity, nutrient competition outcomes, and a key 

mechanism for the maintenance of phytoplankton diversity (Grover 1991; Holt 

2008). Furthermore, especially in oligotrophic waters, a sudden release of nitrogen 

can lead to increasing chances of an algal bloom, often with negative ecological and 

economic consequences (Cloern 2001). Therefore, substantial resources are 

allocated to monitor changes in phytoplankton nitrogen content, in order to regulate 

nitrogen loading budgets from anthropogenic activities (Shelly et al. 2010). 

Changes in phytoplankton nitrogen quotas are also routinely monitored in algal 

aquaculture practices: an intermediate degree of nitrogen limitation is needed to 

balance the quality (i.e. stress-related increase in lipid and carbohydrate contents) 

and quantity of the final product (Adams et al. 2013). 
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Current techniques to determine phytoplankton nitrogen status can be divided 

into direct and indirect methods, both with limited employability (Beardall et al. 

2001; Shelly et al. 2010). The two most common direct methods are elemental 

analysis and digestion protocols. These techniques quantify the absolute and relative 

concentrations of single elements in biomass samples and infer the nitrogen quota of 

single cells (e.g. Raimbault et al. 1999a; Bertilsson et al. 2003; Li et al. 2014a). 

However, direct techniques tend to be costly, rely on sophisticated instruments and, 

most importantly, cannot differentiate between elements derived from live and dead 

cells or inorganic particles, which can substantially overestimate per-cell nutrient 

composition (Beardall et al. 2001). Alternatively, indirect methods to quantify 

nitrogen status consist of “bioassays” or “enrichment experiments”, where the 

degree of nitrogen limitation is determined by comparing the response (usually 

growth rate, but also changes in protein content or specific enzymatic activities) of 

an indicator species (or of a community of species) in a sample when re-supplied 

with nitrogen (e.g. Hayes, Whitaker & Fogg 1984; Hecky & Kilham 1988; Dodds, 

Strauss & Lehmann 1993). Compared to direct methods, indirect techniques 

generally do not rely on costly equipment and can exclude the contribution from 

non-autotrophic particles. However, these experiments are more time consuming 

(lasting up to weeks) and their results are more controversial due to influences 

associated with extended confinement of natural assemblages in bottles (Graziano et 

al. 1996; Beardall et al. 2001; Shelly et al. 2010). Collectively, these shortcomings 

highlight the need for a reliable and more rapid method to quantify nitrogen status 

in phytoplankton communities. 

An alternative way to improve current estimation techniques for 

phytoplankton nitrogen limitation is through the analysis of single-cell optical 
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properties. Nitrogen limitation influences many physiological and morphological 

aspects of phytoplankton cells such as cell volume, cell roundness, pigment 

composition, quantities of internal organelles, and concentrations of storage 

molecules (e.g. lipids, carbohydrates, proteins; Kolber, Zehr & Falkowski 1988; 

Rodolfi et al. 2009; Vanucci et al. 2010; Adams et al. 2013). The conventional way 

to quantify cell morphological features is with flow cytometers, which measure 

optical properties such as light refraction and fluorescence signals as a laser beam 

excites individual cells (Collier 2000; Veldhuis et al. 2000; Sosik, Olson & 

Armbrust 2010). In this way flow cytometric variables only depend on intrinsic 

properties of a cell without being influenced by total population size. Three types of 

flow cytometric optical signals directly relate to the anatomy and physiology of 

phytoplankton cells. The red fluorescence signal is proportional to the internal 

concentration of chlorophyll a inside the cell, and can be used to differentiate 

phytoplankton cells from chlorophyll-free particulate matter (Sosik, Chisholm & 

Olson 1989; Dubelaar et al. 2000). The forward light scatter represents the light 

travelling along the same axis of the laser beam and its intensity is proportional to 

the cell cross section (Dubelaar et al. 2000). Finally, the side light scatter represents 

the light travelling orthogonally to the incident laser beam and its intensity relates to 

the internal and external structures and granularity of the cell (Dubelaar et al. 2000). 

If the oncoming of nitrogen limitation leads to systematic anatomical and 

physiological changes within a cell, then a flow cytometric optical analysis should 

provide a quantifiable signal for evaluating cell nitrogen quota in ways that are 

instantaneous, non-destructive, precise, and practical to monitor with automatic 

programmable instruments. 
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Optical properties detected with flow cytometers have already been 

successfully used to infer specific features in phytoplankton cells (Balfoort et al. 

1992). The red fluorescence signal accurately (R2 > 0.8) predicted per-cell 

concentration of various pigments across different marine phytoplankton species 

(Cavender-Bares et al. 1999). Furthermore, analysis of forward light scatter signals 

provided information about the calcification level in coccolithophore cells (von 

Dassow et al. 2012). Regarding the relationship between optical proprieties and 

nitrogen status, flow cytometric red fluorescence of Prochlorococcus, 

Synechococcus, and picoeukaryotes showed a significant increase following 

nitrogen addition, which did not occur when supplied with non-limiting iron and 

phosphorous (Davey et al. 2008). Also Microcystis aeruginosa showed a positive 

relationship between flow cytometric red fluorescence and medium nitrogen 

availability (Brookes et al. 2000). Therefore, flow cytometric variables of red 

fluorescence, forward and side scatter all appear to be sensitive to changes in 

nitrogen status across different phytoplankton species and growth conditions. 

It is important to consider and account for the effects of photoperiod when 

evaluating the use of optical properties as a proxy for nutrient status in 

phytoplankton cells (DuRand & Olson 1998; Mas et al. 2008). Photoperiod 

regulates the cell cycle: formation of cleavage furrows in the cell wall, organelle 

replication, increase in photosynthetic performance, and change in cell shape and 

size (Roenneberg & Mittag 1996; Luning 2005). As a result, optical properties of a 

cell also change depending on cell cycle relative to photoperiod (DuRand et al. 

1998; DuRand et al. 2002). Hence, in order to eliminate diurnal effects, data 

collection was standardized with respect to sampling time. 
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The aim of this study was to investigate whether cell optical properties 

measured daily at 18:00 with a standard flow cytometer can be used as an accurate 

predictor of nitrogen quota in four nitrogen-limited microalgal species 

Desmodesmus armatus, Mesotaenium sp., Scenedesmus obliquus, and Tetraedron 

sp. grown in laboratory batch culture. In the experiment, nitrogen-limited cultures 

were re-supplied with nitrate and monitored daily until stationary phase across two 

treatments of initial inoculation densities. Our results demonstrate that flow 

cytometric optical properties can serve as excellent proxies for nitrogen quota in 

laboratory batch cultures. 

Materials and Methods 

Culture maintenance 

Monoclonal 1.2 L batch cultures of three green microalgae, Desmodesmus 

armatus (R. Chodat) E. Hegewald (culture accession: NQAIF301), Scenedesmus 

obliquus (Turpin) Kützing (NQAIF299), and Tetraedron sp. (NQAIF295), and one 

charophyte, Mesotaenium sp. (NQAIF303), were sourced from the North 

Queensland Algal Culturing and Identification Facility at James Cook University 

(Townsville, QLD). The four species coexist in nature and are among the most 

common and resilient species in the area where they were originally isolated, at the 

Tarong ash-dam Power Station (Tarong, Queensland, Australia). Mother cultures 

were reared in standard Bold Basal Medium (BBM; Nichols 1973). All chemicals 

for culturing and nutrient analyses were purchased from Sigma-Aldrich. Nitrogen 

was set as the limiting factor for growth in all experimental cultures, by 

acclimatizing in nitrogen-free BBM prior to the beginning of the experiments until 

population density reached stationary phase, and successively supplying 1000 
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µmol-N L-1 of sodium nitrate (NaNO3), which represents a third of the original 

BBM nitrogen concentration. Potential for carbon limitation was minimized by 

ensuring pH levels below 7 by buffering the modified nitrate-BBM with 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) at 8 mmol L-1 and by 

supplying NaHCO3 at 2.38 mmol L-1. Cultures were kept in a temperature-

controlled room at 27±3°C with a 14-10 day-night cycle at a light intensity of 70 

µmol photons m2 s-1. Cultures were continuously mixed with magnetic stirrers at 

300 rpm (IKA RCT Basic, IKA Labortechnik, Germany) and aerated with 0.45 µm 

filtered air (Durapore, Millipore). Glassware was acid-washed (10% HCl) and all 

culturing materials were autoclaved and handled aseptically in a laminar flow 

cabinet (Alternative Environmental Solutions fitted with High-Efficiency 

Particulate Arresting filter, Australia Standards 4260, National Association of 

Testing Authorities certified). 

Experimental design 

To test for the influence of light penetration and per-cell medium nitrogen 

availability, two independent replicate cultures for each of the four species were 

grown at two treatments of initial inoculation densities, leading to different per-cell 

nitrogen availabilities and mean light penetrations. Culture volume was 

standardized at 1 L. To standardize initial conditions for biomass and light 

penetration across species with different cell sizes, starting inoculation cell densities 

were set at optical densities of 0.01 for the low initial inoculation treatment and 

were increased 5-fold to 0.05 for the high initial inoculation treatments. Initial 

medium nitrogen was kept constant at 1000 µmol-N L-1, which meant an 

approximate 5-fold difference in per-cell medium nitrogen availability between the 
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two treatments. Inoculation densities were based on preliminary analysis of the 

species to ensure from 3 to 6 days of fast nitrogen-driven population growth. 

Optical densities were measured at 750 nm on three 250 µL mother culture samples 

loaded on standard 96 well plates (EnSpire® Multimode Plate Reader; Perkin-

Elmer, Waltham MA, US).  

It is important to consider and account for the effects of photoperiod when 

evaluating the use of optical properties as a proxy for nutrient status in 

phytoplankton cells (DuRand et al. 1998; Mas et al. 2008). Photoperiod regulates 

the cell cycle: formation of cleavage furrows in the cell wall, organelle replication, 

increase in photosynthetic performance, and change in cell shape and size 

(Roenneberg et al. 1996; Luning 2005). As a result, optical properties of a cell also 

change depending on cell cycle relative to photoperiod (DuRand et al. 1998; 

DuRand et al. 2002). Hence, data collection was conducted every day at 18:00, in 

order to control for any diurnal fluctuations. 

Flow cytometric analysis 

Three replicate measurements per culture were taken every day at 18:00 

loading 250 µL on a 96 well plate and measured with a Guava EasyCyte flow 

cytometer (Millipore, Hayward, CA, USA). Before cytometric analysis, each 

sample was diluted with DI water between 25 and 50 times to maintain the optimal 

precision range of the instrument (50 to 500 cells µL-1). Optical variables are 

represented by the mean of the cytometric histograms for red fluorescence, forward 

scatter, and side scatter. The excitation light was a blue laser at 488 nm and 75 MW, 

and emission was recorded at 488 (± 6) nm for forward and side light scattering and 

at 690 (± 50) nm for red fluorescence as individual cells pass through a 
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microcapillary flowcell at 0.1 µL sec-1. Population size and optical coefficients were 

estimated after excluding dead cells and inorganic particles characterized by low red 

fluorescence signals. Instrument precision was periodically checked with Guava 

easyCheck beads (Catalog No. 4500-0025, Millipore), ensuring a coefficient of 

variation (CV) < 5% for all detectors. Flow cytometric optical values are relative to 

the voltage applied to the photo-detector. We controlled for the sensitivity of the 

photo-detector by keeping it constant throughout all experiments and all species. 

Moreover, we facilitated result reproducibility by normalizing flow cytometric 

readings by the optical mean values of the easyCheck beads, a strategy already 

adopted by Durand and Olson (1996); DuRand et al. (1998) and Mas et al. (2008). 

Medium nitrogen analysis 

Phytoplankton cells can respond with nitrite ( ) excretion when initially 

exposed to a surge of ambient nitrate ( ; Malerba et al. 2012)  . Hence, we 

quantified total medium nitrogen as the sum of nitrate and nitrite ambient 

concentrations with the ultraviolet spectrometric screening method (Lanoul et al. 

2002). Three 1.25 mL replicate samples per culture of filtered supernatant were 

acidified with 25 µL 1N HCl to prevent interference from hydroxide or carbonate 

molecules (Clescerl et al. 1999). After vortexing, 250 µL was transferred onto a 96-

wellplate (Ultraviolet-Star®, Greiner Bio-One GmbH) and optical density was 

measured at 230 nm wavelength (OD230; EnSpire®). Also, because certain types of 

dissolved organic matter can also absorb at 230 nm and  and  do not 

absorb at 275 nm, a second measurement at 275 nm (OD275) was used to correct 

each OD230 reading (Clescerl et al. 1999). The standard curve for (OD230 - OD275) 
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was linear across the range of nitrogen concentrations used in the experiments (R2 ≥ 

0.995). 

Total Particulate Nitrogen and Cell Nitrogen Quota 

Estimation of total particulate nitrogen content was performed by digesting 

biomass samples and oxidizing all nitrogen to nitrate following the persulfate 

oxidation method (Delia, Steudler & Corwin 1977; Solorzano & Sharp 1980; Eaton 

et al. 2005), and later estimating total nitrate-only concentration with the salicylate 

method (Cataldo et al. 1975). Cell nitrogen quota was then estimated for each 

sample by dividing total particulate organic nitrogen by the population size at each 

day of the experiment. The persulfate digestion required 2 reagent solutions: (1) 

2.01 g of K2S2O8 and 1.5 mL of 5M NaOH in 100 mL DI water (made fresh daily); 

(2) 6.18g H3BO3 and 0.8g NaOH in 100 mL DI water (stable solution). Nitrate 

determination with the salicylate protocol required two reagent solutions: (3) 0.5g of 

C7H6O3 in 10 mL of conc. H2SO4 (made fresh daily); (4) 200 g NaOH in 1 L DI 

water (stable solution). Inorganic and organic standard nitrogen stocks were: (1) 

1.011g KNO3 in 1 L DI water for the inorganic control; (2) 0.75 g of glycine in 1 L 

DI water for the organic control. 

The procedure for determining total particulate nitrogen consisted of three 

steps. Firstly, cells were separated from the supernatant by centrifuging between 2 

to 14 mL of sample (depending on the total nitrogen content in the sample) at 3,000 

g at 5 °C for 10 min (Eppendorf R 5810), gently removing 12 mL of supernatant, 

and re-suspending the biomass by diluting with DI water to a total volume of 14 

mL. The procedure was repeated 4 times and, at the end of the fourth cycle, cells 

were concentrated in 2 mL. Secondly, biomass digestion was carried out by mixing 
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2 mL of reagent (1) with the concentrated biomass samples, autoclaving the solution 

for 30 min at 121°C, and allowing to rest in the autoclave overnight. We checked 

that increasing autoclaving time to 45 and to 60 min did not change the digestion 

efficiency. Thirdly, total nitrate was determined by mixing 300 µL of digested 

sample and 400 µL of reagent (3), vortexing, and incubating at room temperature 

for 20 min. Then, 5.7 mL of reagent (4) was added to the solution. Optical density 

was read at 410 nm after loading 350 µL on a 96 well plate (EnSpire®). For each 

sample, total nitrogen concentration was calculated based on a linear regression 

from a 7-point calibration curve, made daily from potassium nitrate stock (R2 > 

0.99). A second 7-point calibration curve made daily from organic glycine and 

served as positive control for the persulfate oxidation method. 

Statistical analysis 

A multiple linear regression was carried out to examine daily changes in 

cellular internal nitrogen as a function of 5 continuous explanatory variables of per-

cell red fluorescence, per-cell forward and side light scatters, medium N 

concentration, population size, and 2 categorical explanatory variables of the two 

experimental initial conditions and the four species. To ensure linearity, red 

fluorescence, forward light scatter, side light scatter, and population size were 

natural log-transformed, while medium N concentration was square root 

transformed. To satisfy the assumptions of generalized linear models, we avoided 

biases due to multicollinearity between main effects by setting a cut off variance 

inflation factor value of 5 (Zuur et al. 2009). In the data, all dynamics transitioned 

from states of high nitrogen-low population size to zero nitrogen-high population 

size; as a result, the variables for medium nitrogen and population size were highly 
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negatively correlated (variance inflation factor of 12) and could not both be 

included as explanatory variables in the same model. However, availability of 

medium nitrogen was clearly the underlying driver: a decrease in irradiance from 

increased population size and increased self-shading is expected to increase per-cell 

red fluorescence, due to higher pigmentation from photoacclimatization (Sosik et al. 

1989). Conversely, a decrease in medium nitrogen availability should coincide with 

a decline in cell red fluorescence, due to reduced photosynthetic rate from factors 

such as reduced N-rich pigments, reduced thylakoid efficiency, decline in 

photosystem II density, reduction in light-harvesting complex, and a decline in 

enzymatic activities (Turpin 1991). Because we observed decreasing red 

fluorescence during the experiments, medium nitrogen is implicated as the driver. 

Hence, population size was removed from the initial full model and this reduced the 

maximum variance inflation factor score to 2.7, which was below the assumed 

cutoff value of 5. 

Combinations between the 4 species and 2 initial inoculation densities could 

produce different interactive effects on optical properties, medium nitrogen, or total 

cell nitrogen. To account for this, 9 two-way interaction terms were included for all 

combinations between all continuous variables and the categorical explanatory 

variables of species and initial population size (also including an interaction term 

between the two categorical variables). Furthermore, 3 additional interaction terms 

were included between all combinations of optical properties with each other, to 

account for likely interactions between physical properties of a cell (e.g. 

fluctuations in red fluorescence can depend on changes in forward or side light 

scatters. When designing the initial model, we also considered adding quadratic 

terms for each of the continuous variables for the initial model. However, none of 
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the quadratic coefficients for the quadratic terms were significantly different from 0 

(with alpha at 0.05) and were therefore omitted from the starting model. Overall, 31 

estimated parameters were included in the initial full model, with a total of 89 

residual degrees of freedom. Standard diagnostic plots on model residuals were 

examined to ensure normality (QQ plot), homoscedasticity (standardized residuals 

vs. fitted values), and absence of influential observations or outliers (Cook’s 

distance < 0.5). Bayesian Information Criterion (BIC; Schwarz 1978) was adopted 

to determine the best-fitting model from all possible candidates, obtained by 

removing single or combination of parameters from the initial fully parameterized 

model. The best fitting model following BIC model selection is the one that 

minimizes the formula: , where  is the maximum 

likelihood score,  is the total number of calibrated parameters, and n is the sample 

size. ΔBIC was then calculated by subtracting the BIC score of the best model from 

all other scores (i.e., the ΔBIC for the best model is 0). In general, models with 

ΔBIC between 0 and 2 should be considered as having substantial empirical support 

(Kass & Raftery 1995; Strong et al. 1999). Model selection was carried out with the 

R package MuMIn (Barton 2014). 

For the best-fitting model selected by BIC, the independent contribution of 

each explanatory term to the total explained variability was calculated with the 

hierarchical partitioning method (HPM) by Chevan and Sutherland (1991). The 

HPM method isolates the unique contribution of each single variable in a multiple 

regression analysis. For example, the contribution of variable U to the total R2 of a 

multiple regression including U, V, Y, and Z is calculated by evaluating the 

incremental improvement in total explained variance  when introducing U to 

all possible model configurations, averaged within a certain model size (i.e. first-
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order: V, Y, Z; second order: VZ, YZ, VY; third order: VYZ). Finally, the unique 

contribution of U to the total R2 in the multiple regression is calculated by taking the 

average of the three  scores across the first, second, and third orders of model 

sizes (Gromping 2006). The 95% confidence intervals (CI) for the relative 

contributions are calculated by ordinary non-parametric bootstrapping of all 

observations in the dataset (with replacement) 104 times and repeating the HPM 

method for each bootstrapped dataset (Gromping 2006). HPM and bootstrapped CI 

were calculated with R package relaimpo (Gromping 2006; Gromping 2007). 

Statistical computer software R and RStudio were used for all analyses and graphs 

(RStudio 2013; R Core Team 2014). 

Results and Discussion 

This study confirmed the hypothesis that flow cytometeric optical properties 

could reveal information about nitrogen quota in laboratory batch cultures. Of all 

the competing models derived from removing single or combinations of parameters 

from the starting full model, only one fell within the threshold level of ΔBIC<2 

(Table 4.1). This best-fitting model explained 90.2% of the changes in cell nitrogen 

quota as a function of the main effects for all three optical properties (i.e. red 

fluorescence, forward and side light scatters) and available medium nitrogen (Table 

4.1). Model selection did not detect any important main or interactive effects of 

species (Table 4.1), implying that the effects of the main explanatory variables were 

consistent across all four species. Similarly, initial population size was not included 

in the best model (Table 4.1), indicating that any effects of different per-cell 

medium nitrogen availabilities were implicitly accounted for by optical properties 

and medium nitrogen. The best-fitting model performed very well across all four 



Chapter 4 

species and for both initial nitrogen conditions (r = 0.87-0.94), showing no evidence 

of bias (Fig. 4.1). Red fluorescence had the highest explanatory power in the 

analysis. The total explained variability in the best-fitting model was 90%, but 

optical parameters of red fluorescence, forward scatter, and side scatter contributed 

to 88%, and only the remaining 2% was explained by medium nitrogen (Fig. 4.2). 

Indeed, a linear model including only the two most influential explanatory 

variables, red fluorescence and side scatter, could explain 87% of the total 

variability in total cell nitrogen (Fig. 4.3), of which the overwhelming majority 

(77%) could be explained with a simple linear regression only including red 

fluorescence (Fig. 4.4). Overall, these results strongly support the hypothesis that 

optical variables are a potential proxy for nitrogen quota for all four algal species 

reared in laboratory nitrogen-limited batch culture conditions. 

The existence of a relationship between nitrogen quota and cell optical 

properties is consistent with our understanding of nutrient-limited growth in 

autotrophic cells. Together with carbon, nitrogen is the element in highest demand 

during cell division and, when nitrogen is in short supply, cells respond by 

relocating nitrogen from storage molecules to vital metabolic functions (Dortch et 

al. 1984; Mulholland et al. 2008). Hence, low nitrogen status usually coincides with 

a decline in N-rich pigments, density of internal organelles, and decrease in cell 

size, which are all related to the optical properties recorded with a flow cytometer: 

the intensity of the red fluorescence signal is mainly proportional to the total 

pigment concentration (especially chlorophyll a), forward light scatter is a proxy for 

cell cross-section and cell volume, and side light scatter is proportional to the 

general internal complexity of the cell (or its granularity; Dubelaar et al. 2000). In 

principle, similar mechanisms should also apply for cells limited by different 
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nutrients. For instance, positive trends in flow cytometric optical values have been 

recorded from nutrient-limited cultures resupplied with iron (Zettler et al. 1996; 

Timmermans et al. 2001; Davey et al. 2008; Liu & Qiu 2012), phosphorous 

(Cleveland & Perry 1987; Demers, Davis & Cucci 1989), and silicon (Demers et al. 

1989). 

This is the first documentation of flow cytometric optical properties as a 

quantifiable proxy for cell nitrogen quota in phytoplankton cells. These findings 

have implications for the way we monitor phytoplankton species. Firstly, optical 

properties are among the few measurements that can be quantified non-destructively 

from phytoplankton cells. This circumvents having to indirectly calculate per-cell 

concentrations by dividing two estimates for total elemental concentration and total 

population size, which inevitably leads to propagation and compounding of the 

uncertainty around the overall mean. Secondly, measuring optical properties in field 

or laboratory samples easily allow filtering out the contributions from all non-

autotrophic particles through the intensity of the red fluorescence signal, which is 

mainly proportional to the concentration of pigments in photosynthetic tissues 

(Dubelaar et al. 2000). Moreover, it is now technologically feasible to measure 

phytoplankton optical properties from automated monitoring stations (Zhou et al. 

2012; Thyssen et al. 2014). The temporal resolution from such flow-cytometric time 

series can provide important information about the influence of biotic and abiotic 

factors on nitrogen quota dynamics. 

Introducing a protocol for flow cytometric analysis of nitrogen status can also 

benefit microalgal biotechnological production systems. Imposing a nitrogen-

limited regime to a culture can substantially enhance the production of storage lipids 
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(e.g. triacylglycerols) and carbohydrates (mainly starch), leading to a significant 

increase in the specific value of the microalgal biomass (Ikaran et al. 2015). Today, 

conventional analytical methods are often implemented for monitoring and 

optimizing biomass quality, but with results only available considerable time after 

each sample is taken (da Silva, Roseiro & Reis 2012). Only recently, flow 

cytometric systems for continuous culture monitoring of lipid content, cell size, 

enzyme activity, and identification of microbial species are starting to emerge (da 

Silva et al. 2012; Hyka et al. 2013). While not common, such near-instantaneous 

methods have already produced some improvements in the productivity and the 

reproducibility of microalgal cultivation processes (de la Jara et al. 2003; Gouveia 

et al. 2009; Doan & Obbard 2011). Our approach can complement such applications 

of flow cytometry, by facilitating rapid assessments of culture nitrogen status. 

It is important to quantify the variability of the relationship between optical 

properties and nitrogen quota across different species. Trends in optical properties 

mainly depend on the relative composition of different types of pigments within a 

cell (Sosik et al. 1989). Hence, it is likely that taxonomically related species will 

often show consistent relationships in optical properties. In this study, the calibrated 

relationship between nitrogen quota and cell optical properties was consistent across 

three chlorophytes and one charophyte species (BIC selected against species-

specific coefficients; see Table 4.1). This means that an increase in internal nitrogen 

corresponded to the same response in optical properties across all four species. The 

extent to which this relationship remains consistent across more taxonomically 

disparate species, however, requires further investigation. 
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Future research should assess the reliability of optical properties as a proxy 

for nitrogen quota when extended from laboratory cultures to field samples of 

mixed assemblages. This requires analyzing the effects of additional covariates, 

such as the effects of multiple potentially limiting nutrients. Furthermore, cells can 

photoacclimatize and change their pigment concentrations when exposed to 

different light intensities (Jacquet et al. 1998; Dusenberry, Olson & Chisholm 1999; 

Collier 2000). Hence, the influence of light irradiance on the relationship between 

optical properties and nitrogen quota should be calibrated. Finally, optical 

characteristics also change throughout the diel cycle, usually increasing intensity 

throughout the light phase (DuRand et al. 1998; Mas et al. 2008), highlighting the 

need to standardize for time of sampling. Assessing each individual contribution 

from these factors can facilitate the comprehensive interpretation of time-series of 

per-cell optical properties with respect to nitrogen quota from field samples. 

The capacity of phytoplankton cells to assimilate and store growth-limiting 

nutrients has important implications in nature and in engineered systems. Presently 

available techniques for directly measuring nitrogen quota in phytoplankton cells 

are difficult, and not feasible for monitoring frequently or over large areas (Shelly et 

al. 2010). The use of optical proxies has already revolutionized the scale and 

frequency of phytoplankton monitoring. For instance, the MODIS 

spectroradiometer installed on satellites Terra and Aqua documented, for the first 

time, patterns of global primary production on ocean surfaces by recording total 

chlorophyll fluorescence as a proxy for phytoplankton biomass (Bordi, Neeck & 

Scolese 1999). Today flow cytometers are installed in most oceanographic vessels 

and can even be designed as automated submersible units for continuous monitoring 

of natural phytoplankton assemblages or microalgal bioreactors (Yentsch et al. 
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1983; Olson, Shalapyonok & Sosik 2003). The results of the present study indicate 

that flow cytometeric data does not just indicate total population size, but also has 

the potential to provide information on nitrogen quota of phytoplankton cells. 

 



 

Table 4.1: Summary table for the ten best models following Bayesian Information Criterion (BIC) model selection. Rows 

represent individual models ordered from lowest to highest BIC score. Columns indicate each model term (main effects or interactions 

that were selected at least once in the top ten models), coefficient of determination (R2), degree of freedom (df), maximum log-

likelihood score (LogLik), BIC score, ΔBIC, and cumulative weight. Presence for model terms is indicated with either its estimated 

parameter value for continuous variables or with a “+” sign for categorical variables. Models were judged based on ΔBIC, calculated 

by subtracting the overall best BIC score from the scores of each model (hence, by definition the ΔBIC of the best model is 0). “Exp.” 

indicates the two initial conditions of starting population densities, “Fwd” is forward light scatter, “Red” is red fluorescence, “Side” is 

side light scatter, and “MdN” is the available medium nitrogen. Interaction terms between two variables are represented with the 

column sign (“:”). 
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1 -17.77  0.32 0.90 0.35  0.01        0.90 6 16.38 -4.03 0.00 0.46 

2 -18.21  -0.57 1.06 0.32  0.01   0.39     0.90 7 17.46 -1.42 2.61 0.12 

3 -17.66 + 0.32 0.86 0.37  0.01        0.90 7 17.15 -0.79 3.23 0.09 

4 -17.95   0.96 0.41  0.01        0.89 5 11.97 0.00 4.02 0.06 

5 -18.00  0.36 0.98 0.15  0.01      0.07  0.90 7 16.75 0.01 4.04 0.06 

6 -17.64 + 0.30 0.83 0.34  0.01  +       0.91 8 18.89 0.52 4.55 0.05 

7 -17.74  0.45 0.90 0.37  0.01    0.08    0.90 7 16.42 0.68 4.71 0.04 

8 -17.87 + 0.30 0.92 0.34  0.01  +      0.91 8 18.80 0.71 4.73 0.04 

9 -19.09 + 0.90 1.23 -0.90 + 0.02  +   + 0.35 + 0.94 18 42.66 0.85 4.88 0.04 

10 -17.87 + 0.28 0.89 0.30  0.01 + +      0.91 9 20.92 1.26 5.28 0.03 
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Table 4.2: ANOVA table for the best-fitting multiple linear regression on total 

cell nitrogen following BIC model selection (see model #1 in Table 4.1). 

Source (transformation) Sum of squares d.f. Mean square F value Prob(F) 

Red fluorescence (loge) 41.8 1 41.8 899.1 <0.0001 

Side Scatter (loge) 5.6 1 5.6 119.6 <0.0001 

Forward Scatter (loge) 0.5 1 0.5 11.1 <0.0001 

Medium N (sqrt) 1.3 1 1.3 28.9 <0.0001 

Residuals 5.3 115 0.05   

      

F4,115 = 265, Prob (F) < 0.0001; R2 = 0.902, adj. R2 = 0.899 
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Figure 4.1: Observed and predicted nitrogen quota values extracted from the 

best-fitting model for each species. Each dot represents an independent culture for 

each day of the experiment, with different symbols indicating the two different 

initial per-cell nitrogen availabilities. The correlation coefficient quantifies the 

goodness of fit for each species pooled across both treatments of initial nitrogen. 

The diagonal line is the unity line, where observed and predicted values are equal 
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Figure 4.2: The unique contribution of explanatory variables for red 

fluorescence (“Red”), side light scatter (“Side”), forward light scatter (“Forward”), 

and medium nitrogen (“Medium N”) to the coefficient of determination (R2 ± 95% 

bootstrapped confidence intervals) of the multiple regression model (see Table 4.1), 

as calculated by the hierarchical partitioning method (HPM). Total model explained 

variability (i.e. sum of the four unique contributions) was 90% 
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Figure 4.3: Multiple linear regression for total cell nitrogen as a function of 

the two most important model explanatory variables: flow cytometric red 

fluorescence and side scatter (see Table 4.1 and Fig. 4.2). Optical values are in 

relative units and normalized by mean optical values of the flow cytometric beads. 

Each point is a daily measurement at 18:00 collected from a factorial design of two 

independent replicate cultures for four species for two initial cell densities (R2 = 

0.868). Points and perpendicular residuals to the prediction plane are color-coded 

for the four different species 
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Figure 4.4: Linear regression for total cell nitrogen as a function of red 

fluorescence with 95% confidence intervals (red envelop) and 95% projection 

intervals (dashed lines). Optical values are in relative units and are normalized by 

mean optical values of flow cytometric beads. Each point is a daily measurement of 

a species at 18:00 from two independent replicate cultures at two initial cell 

densities (R2 = 0.77).  
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Chapter 5: Improving dynamic phytoplankton reserve-

utilization models with an indirect proxy for internal 

nitrogen. 

Introduction 

Proxy variables are commonly used in ecology as a way to quantify processes 

that would otherwise be difficult or impossible to monitor directly (Caro 2010; 

Lindenmayer, Barton & Pierson 2015). For instance, indirect proxies can facilitate 

mapping ecosystem services over large scales (Eigenbrod et al. 2010; Stephens et al. 

2015). This is especially true for vegetation maps: It is now common in ecology to 

use observations from remote sensors onboard of satellites as an indirect optical 

proxies for different canopy attributes (e.g. net primary production, plant biomass, 

photosynthetically active radiations) to overcome many long-standing monitoring 

challenges, for example evaluation of impervious regions, such as Arctic and 

Antarctic (Santin-Janin et al. 2009; Epstein et al. 2012), or fragmented and isolated 

areas (Pereira Coltri et al. 2013; Li et al. 2014b), or very extended territories (Son et 

al. 2014; Stephens et al. 2015). Anther use of indirect proxies in ecology is to 

quantify the overall performance of a species. For instance, trait-based approaches 

use different types of measurable ecophysiological and life-history traits (e.g. 

growth, body mass, fecundity) as a proxy of the ecological capabilities of a species 

(e.g. competitive ability) and about complex processes at higher organizational 

levels (e.g. community structure, ecosystem functioning, energy flow: McGill et al. 

2006; Violle et al. 2007). For example, the colony shape of a coral species is a 
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proxy for its susceptibility to mortality from physical dislodgment (Madin et al. 

2014). Proxies can also be used to quantify the condition of an individual organism. 

For instance, the size of the liver and its lipid concentration is a good proxy for the 

health of a fish (Dempster et al. 2011). Also, whole-organism oxygen consumption 

rate is a traditional proxy for metabolic activity or energy consumption (Brown et 

al. 2004; Salin et al. 2015) and various biochemical indices have been used as 

proxies for specific growth rate and overall activity of an organism (Runge & Roff 

2000; Holmborn et al. 2009). Hence, indirect proxies serve different purposes in 

ecology across different scales, ranging from biomes, to species, to individuals. 

The use of indirect proxies is particularly important when studying organisms 

that are difficult to measure directly, such as phytoplankton. The productivity of 

phytoplankton populations is critical to sustain life on the planet and their rate of 

cell division is often regulated by the availability of inorganic nutrients to a cell. 

However, phytoplankton cells are also adapted to store nutrients to support growth 

in periods of low nutrient availability (Caperon et al. 1972; Droop 1973; Droop 

1983), which complicates the analysis of nutrient utilization and population 

dynamics. Quota models are the most successful representation of phytoplankton 

nutrient utilization to date, because of their ability to incorporate internal nutrient 

storage within single cells that can temporarily support cell division even in the 

absence of sufficient external nutrients (Droop 1973; Leadbeater 2006; Pahlow et 

al. 2013). The key assumption of Quota models is largely biologically justified: 

phytoplankton cells are adapted to respond to nutrient-limited conditions by 

relocating resources from storage molecules (e.g. lipids, carbohydrates, pigments, 

RNA) to vital metabolic functions (e.g. cell division; Dortch et al. 1984). However, 

analyzing phytoplankton nutrient utilization by fitting Quota models to data also 
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requires monitoring the internal nutrient status of a cell, which is the most stringent 

limitation to this modeling technique. Estimating nutrient concentrations within 

phytoplankton cells is technically complicated, costly, destructive, and time-

consuming (Sattayatewa, Arnaldos & Pagilla 2011; American Public Health 

Association 2012). For instance, a performance study of this technique reviewing 55 

laboratories revealed that around half of the participating laboratories produced 

inconsistent results, and the coefficient of variation among the reliable laboratories 

was up to 20% for nitrogen and 60% for phosphorous concentrations (Aminot, 

Kirkwood & Carlberg 1997). Alternatively, Quota models can be fitted to data even 

when internal quota are not directly monitored (Ducobu et al. 1998; Malerba et al. 

2012; Malerba et al. 2015). This is possible because the dynamics of internal 

nutrients in closed systems can sometimes be inferred from population densities and 

ambient nutrient depletion (Brand 1991; Fujimoto et al. 1997; De La Rocha et al. 

2010). However, this approach is limited to highly controlled laboratory settings 

and it generally requires more data and more complex experimental designs. Hence, 

overcoming the limitations involved with direct measurements of cell internal 

nutrients could substantially enhance our ability to understand and predict dynamics 

of phytoplankton populations. 

A recent study by Malerba et al. (2016) proposed a new way to fit Quota 

models to phytoplankton population dynamics, by using cell optical properties as an 

indirect proxy for internal nitrogen status. Nitrogen status is known to alter many 

physiological and morphological aspects of a cell (e.g. cell volume, cell roundness, 

pigment composition, quantities of internal organelles, concentrations of storage 

molecules; Vanucci et al. 2010; Adams et al. 2013). Flow cytometric optical 

analysis provides a means to directly quantify these anatomical and physiological 
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changes that are intrinsically linked to the nitrogen quota of a single cell (Collier 

2000; Dubelaar et al. 2000; Veldhuis et al. 2000). In particular, flow cytometric red 

fluorescence from four phytoplankton species grown in nitrogen-limited batch 

cultures explained 77% of the variability in per-cell internal nitrogen, across species 

and a range of initial nutrient concentrations (Malerba et al. 2016). Monitoring red 

fluorescence emission from phytoplankton cells has many practical advantages: it is 

instantaneous, non-destructive, precise, non-biased by inorganic particles, feasible 

to monitor automatically, and often routinely measured as part of the protocol for 

estimating total population densities (Collier 2000; Dubelaar et al. 2000; Veldhuis 

et al. 2000). However, inferring a state variable from an indirect proxy also requires 

accounting for an additional source of error, due to the use of a calibration curve to 

convert between a variable and its proxy. Hence, while incorporating red 

fluorescence as a proxy for cell nitrogen quota could extend the utilization of Quota 

models, it is unknown how the added uncertainty of using a calibration curve could 

affect parameter identifiability, precision, and accuracy when fitting Quota models 

to phytoplankton time-series. 

The aim of the present study was to evaluate the use of flow cytometric red 

fluorescence in Quota models as a proxy for internal nutrient status. To this end, we 

conducted two different analytical approaches. In the first analysis, we generated 

data by simulation, so that the three models could be compared using mean squared 

error (MSE) from the difference between the estimated parameter values and the 

known, true parameter values used to generate the data. Phytoplankton allometric 

relationships were used to generate parameter values from a phytoplankton 

community spanning several orders of magnitude in cell size. In the second 

analysis, we used the data collected in chapter 4 from laboratory cultures of four 
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green algal species (i.e. Desmodesmus armatus, Mesotaenium sp., Scenedesmus 

obliquus, and Tetraedron sp.), each started at two initial conditions. This study 

illustrates the usefulness of incorporating red fluorescence as a proxy for cell 

nitrogen quota to improve the applicability and performance of phytoplankton 

models. This study illustrates the usefulness of incorporating red fluorescence as a 

proxy for cell nitrogen quota to improve the applicability and performance of 

phytoplankton models. 

Material and Methods 

Model development 

In this study we derived three forms of Quota models: the “Nitrogen-Quota” 

model, “Virtual-Quota” model, and the “Fluorescence-Quota” model. The three 

different models were derived from the original Quota model by Droop (1973), as: 

      (eq. 5.1 a) 

     (eq. 5.1 b) 

      (eq. 5.1 c) 

where , , and  indicate ambient nitrogen, per-cell internal nitrogen 

quota, and population density, respectively. Functional responses  and 

 describe the per-cell uptake rate and growth rate as a function of external 

and internal nitrogen, and are represented with two saturating functional responses: 

      (eq. 5.2 a) 
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     (eq. 5.2 b) 

where  is per-capita maximum uptake rate,  is the Michaelis-Menten half-

saturation constant,  is specific growth rate of a cell at infinite nitrogen quota, 

and  is the threshold internal nitrogen concentration at which no cell division 

occurs. 

All three models include the state variable , as the nitrogen quota within a 

single phytoplankton cell, but differ in the way the model is calibrated to the data. 

The nitrogen-quota model calibrates the dynamics for  to direct measurements 

of per-cell internal nitrogen, as: 

       (eq. 5.3) 

where  is the observed nitrogen quota within a single cell, and c is a positive 

constant accounting for bias associated with laboratory protocols when recording 

total cell nitrogen in phytoplankton cultures. Directly estimating cell quota has two 

sources of bias. Firstly, the precision of measuring the elemental composition within 

a cell depends on the type of chemical bonds within the molecules (e.g. nitrogen 

atoms connected by double bonds within molecules yield very poor recovery rate 

with most traditional protocols; Aminot et al. 1997; Raimbault et al. 1999b). 

Secondly, field and laboratory samples often present variable loads of dead cells 

and nutrient-rich inorganic particles in solution, which contribute to the overall 

reading and overestimate cell quota in living cells (Shelly et al. 2010). Hence, the 

parameter c represents underestimated  due to partial N recovery associated 

with experimental protocol (c<1), or overestimated  due to nitrogen 

recovered from dead cells and suspended inorganic particles within the sample 
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(c>1). Bias of up to 50% has been reported with organic nitrogen standards (Nydahl 

1978; Langner & Hendrix 1982; Raimbault & Slawyk 1991; Raimbault et al. 

1999b), so in each simulated dataset c was generated from a uniform distribution 

ranging between 0.5 and 1.5. The reason for assuming an uninformative prior 

distribution is because in this way the parameter c will have more flexibility to 

explore the range of potential values between upward and downward biases of 50%. 

The uninformative prior distribution assumed for this parameter was  c to explore 

the entire range of values. The case with no bias in  was also explored, by 

repeating the analysis with c fixed at 1 (see Testing Robustness in Results section). 

The fluorescence-quota model derives  from the red fluorescence signal 

emitted by a cell. Previously, Marra, Bidigare and Dickey (1990) showed the utility 

of using red fluorescence as a proxy for internal nutrient status in phytoplankton 

Quota models. We build on this idea by considering flow cytometric red 

fluorescence measured from individual cells, instead of total red fluorescence from 

a volume of water. In this way, the recorded value of red fluorescence signal is 

determined only by properties of individual cells, without the need to standardize by 

total population density within the culture (which would introduce additional 

measurement error). The relationship between  and per-cell fluorescence 

intensity was assumed to follow the same power-law functional response 

documented in Malerba et al. (2016): 

       (eq. 5.4) 

which can be rearranged as: 
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       (eq. 5.5) 

where  indicates the strength of the red fluorescence signal, and a and b are 

shape parameters. 

Finally, the virtual-quota model uses only observations of phytoplankton 

population size and external nitrate and ammonium concentrations, and infers 

changes in internal nitrogen  from the fitted parameter values. This approach to 

infer  is equivalent to Ducobu et al. (1998), Malerba et al. (2012), and Malerba 

et al. (2015). Hence, the total number of estimated parameters changes between the 

three models: the virtual-quota model has 4 parameters, while the nitrogen-quota 

model and fluorescence-quota model have 1 (i.e. c from eq. 5.3) and 2 (i.e. a and b 

from eq. 5.5) additional parameters, respectively. 

Approach 1: Simulation-based analysis 

Data simulations 

The nitrogen-quota, the virtual-quota, and the fluorescence-quota models were 

compared by fitting each model to 100 simulated datasets. In this way, model 

performance could be calculated from the average distance between the parameter 

values used to generate the data (“true” parameters) and the model estimates 

calibrated from the same data (estimated parameters). Each simulation was 

generated following these steps: (1) choose a set of demographic parameters, (2) use 

stochastic simulations to generate trajectories for external nitrogen, cell nitrogen 

quota, population density, and red fluorescence, and (3) generate trajectories of the 

corresponding observations of these state variables incorporating the measurement 
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error for each state variable. Here we describe each step in more detail (please refer 

to Appendix B Chapter 5 for a graphical summary of each step in the analytical 

methods). 

The first step consisted of generating the demographic parameters for a 

hypothetical phytoplankton species sampled from a phytoplankton community. To 

do that, a cell volume was selected from a uniform distribution on log10-scale from 

102 to 105 µm3, which is the approximate range reported in Edwards et al. (2012) 

for freshwater phytoplankton species. Then, the allometric relationships in Edwards 

et al. (2012) were used to associate the sampled cell volume to expected values for 

maximum nitrogen uptake ( ), half-saturation rate ( ), maximum theoretical 

growth rate ( ), and minimum nitrogen quota ( ; see Table S5.1 in 

Appendix A Chapter 5, and Appendix B Chapter 5). Also, to account for between-

species variation around the four allometric relationships in Edwards et al. (2012), a 

residual was extracted from the error distribution of each linear regression and 

added to the expected parameter values (Table S5.1 in Appendix A Chapter 5). 

The second step consisted in simulating the true dynamics of the system. We 

did that by using eq. 5.1 a-c, with the demographic parameters determined in the 

first step, to calculate time-series for external nitrogen (N(t)), population density 

(B(t)), internal nitrogen (Q(t)), and red fluorescence (F(t)). Trajectories for the red 

fluorescence emission (i.e. F(t)) of a cell were calculated based on changes in its 

internal nitrogen status (Q(t)) using eq. 5.5. The values for  and  were drawn 

from a bivariate uncertainty distribution from calibration of this relationship using 

empirical data from four phytoplankton species (Malerba et al. 2016). Log-normally 

distributed process noise was added to each of the state variables to represent the 
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unexplained variation due to natural stochasticity in the dynamics (Hilborn et al. 

1997; Bolker 2008). The magnitudes of process noise were estimated from 

calibrating eq. 5.1 a-c to empirical data (Malerba et al. 2016). Each time-series was 

simulated for 100 days, to ensure narrow confidence intervals for all estimated 

parameters. The initial concentration for external nitrogen was standardized as ten 

times the half-saturation constant (i.e. 10×k) of the species. The initial population 

density was calculated so that medium nitrogen would become limiting half way 

through the time-series (i.e. between day 40 and 60). In this way, available nutrients 

transitioned from N-rich, to N-limited, to N-absent conditions, and growth rates 

transitioned from fast to zero. Finally, initial per-capita internal nitrogen was 

randomly selected from a uniform distribution between nitrogen deplete (i.e. Q(to) = 

Qmin) and nitrogen replete (i.e. Q(to) = 10× Qmin). 

The third step consisted in adding observation error to the true system 

dynamics calculated in step 2. Observation error was added to the dynamics of 

ambient nitrogen (N(t)), observed internal quota (Qobs(t)), population density (B(t)), 

and red fluorescence (F(t)). The magnitudes of observation error were calculated 

from the standard deviations of the triplicate independent readings from empirical 

data in Malerba et al. (2016), which offers an independent estimate for the size of 

the measurement error for each state variable. They were all assumed to follow a 

log-normal distribution, except for medium nitrogen, which was assumed to be 

normally distributed based on previous work (Malerba et al. 2016). Time-series for 

observed internal quota (Qobs(t)) were further modified to account for bias by using 

eq. 5.3 with a value for c sampled from a uniform distribution between 0.5 and 1.5. 
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Model calibration to simulated data 

All three models were calibrated to 100 simulated datasets. The nitrogen-

quota model was calibrated to trajectories of external nitrogen (N(t)), population 

density (B(t)), and observed internal quota (Qobs(t)), with internal quota (Q(t)) 

estimated from eq. 5.3. The virtual-quota model was calibrated only to external 

nitrogen (N(t)) and population density (B(t)), with internal quota (Q(t)) inferred 

from changes in N(t) and B(t). The fluorescence-quota model was calibrated to 

external nitrogen (N(t)), population density (B(t)), and red fluorescence (F(t)), with 

internal quota (Q(t)) estimated from F(t), using eq. 5.5. 

State-space statistical estimation techniques were used to fit each model to 

each of the 100 datasets. State-space models allow estimating model parameters by 

simultaneously accounting for both process noise and observation error (Bolker 

2008; Pedersen et al. 2011). The underlying idea behind this modeling technique is 

that observation error and process noise affect the variability around the model in 

different ways: the variability caused by observation error will remain constant 

through time, while the influence of process noise will compound over time. 

Mathematically this corresponds to: 

   (eq. 5.6 a) 

    (eq. 5.6 b) 

where  represents the log-normally distributed process noise,  represents the 

normally distributed observation error,  and  are the true states of the 

system at times t and t+1, and  is the measured state of the system at time t+1 

(see Appendix B Chapter 5 for more details). 
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Sampling from the posterior distribution using Bayesian Markov-Chain 

Monte Carlo (MCMC) is a particularly suitable method to fit state-space models 

accounting for observation error and process noise. Each dataset was sampled 105 

times with Gibbs sampler, following 50000 iterations for adapting the chains and 

50000 for burn in, using software JAGS and R with package rjags (Plummer 2003; 

R Core Team 2014; Plummer 2015). To monitor for successful convergence, we 

visually inspected the iterated history, density plot, and correlation diagram of each 

chain in each model. Also, we graphically inspect the overlapping posterior 

distribution between the whole chain and the last 10%, and ensured Geweke z-

scores between -2 and 2 (Geweke 1992). Chains were extended if they failed to 

meet convergence criteria. Software R was used with packages coda and ggmcmc 

for statistical analyses and plots (Plummer et al. 2006; Marín 2015). 

The performance of each model to estimate maximum nitrogen uptake ( ), 

half-saturation rate ( ), maximum specific growth rate ( ), and minimum 

nitrogen quota (  was evaluated using mean squared error (MSE), as: 

        (eq. 5.7) 

where  is the parameter value used to simulate the dataset, and  is the value of 

the parameter estimated from the same dataset. 

Approach 2: Testing the models with real data 

Data from chapter 4 were used to test the model with laboratory data. Refer to 

material and methods in chapter 4 for a detailed description of the experimental 

methods. Briefly, four green algal species (i.e. Desmodesmus armatus, 

Mesotaenium sp., Scenedesmus obliquus, and Tetraedron sp.) were reared in batch 
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culture conditions under two different initial conditions of medium nitrogen and 

initial population density. Triplicate readings for population density, medium 

nitrogen, cell internal nitrogen quota, and cell red fluorescence were collected daily 

at 18:00, in order to control for any diurnal fluctuations. 

Model calibration to laboratory time-series 

Each model was calibrated to each time-series collected in chapter 4. The 

Nitrogen Quota model was calibrated using observations for the internal nitrogen 

quota (Qobs(t)), as well as medium nitrogen (N(t)) and population density (B(t)). The 

Red Quota mode was calibrated to data for red fluorescence (R(t)), medium nitrogen 

(N(t)), and population density (B(t)). Finally, the Virtual Quota model was 

calibrated to data for medium nitrogen (N(t)) and population density (B(t)). The 

models were calibrated using the same techniques for the simulated datasets (see 

section “Model calibration for simulated data”). However, there were not enough 

observations in the time-series to simultaneously account for the effects of both 

process noise and observation error. Therefore, we simplified the analysis by 

assuming that the residuals in the data were only due to observation error. This 

assumption is more reasonable than assuming process noise-only, because protocols 

to monitor per-cell internal nitrogen quota are complex and often suffer from lack of 

precision. 

In contrast to simulated data, it is not possible to calculate an MSE for model 

parameters for laboratory data, as the “true” parameter values (  in eq. 5.7) are 

unknown. Instead, we assumed that the observations for the internal nitrogen quota 

represent the “true” dynamics of the internal quota and we tested the ability of each 

model to fit the observed dynamics. For each calibrated model, we used the 
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coefficient of determination (R2) between the observed quota and the model-

inferred quota as the index for the goodness-of-fit of the model. We calculated the 

R2 of the model integrated over the posterior distribution of the parameters. In this 

way, we could evaluate both the accuracy (mean R2 value) and the precision 

(variability around the R2 coefficient).  

Note that the above approach is biased in favor of the Nitrogen Quota model: 

the observations on internal quota are used for both calibrating the parameters and 

for evaluating the performance of the model. This is not the case for the Red Quota 

and Virtual Quota models, as the data on internal quota dynamics are not used for 

their calibrations. 

 

Results 

Simulated data 

The relationship between the simulated data for red fluorescence (F(t)) and 

observed internal quota (Qobs(t)) recorded a mean R2 of 0.9, which is 15% higher 

than the corresponding coefficient from empirical data (Malerba et al. 2016). This 

indicates that a fraction of the observation error in F(t), Qobs(t), or both, was not 

included in the standard deviations calculated from triplicate independent readings 

of the samples in Malerba et al. (2016). Therefore, it was necessary to simulate 

time-series of F(t) and Qobs (t) with an increased observation error estimate (note 

that process noise does not contribute to the precision of this relationship). To be 

conservative, we added equal proportions of observation error to F(t) and Q(t) until 
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the empirically detected R2 of 0.77 in Malerba et al. (2016) was reflected in the 

simulated data. 

Analysis 

The virtual-quota model performed substantially worse than either the 

fluorescence-quota or the nitrogen-quota models. The mean squared error of the 

four parameters estimated with the virtual-quota model (MSEvirt) were between 2 to 

4 orders of magnitude higher than the error for the nitrogen-quota (MSEnitr) and 

fluorescence-quota (MSEflu) models (Fig. 5.1). The accuracy of the nitrogen-quota 

model was intermediate, performing consistently better than the virtual-quota model 

across all parameters (Fig. 5.1). Specifically, the MSEvirt for maximum uptake rate 

(vmax), half-saturation constant (k), and minimum quota (Qmin) was 2 and 4 orders of 

magnitude higher than MSEnitr and MSEflu , respectively, while maximum growth 

rate (µmax) differed by 1 and 2 orders of magnitude, respectively (Fig. 5.1). Hence, 

inferring internal nitrogen dynamics from external nitrogen depletion and 

population density (i.e. virtual-quota model) led to less accuracy and less precision 

compared to including measurements of internal nitrogen or of red fluorescence. 

The fluorescence-quota model showed better performance compared to the 

nitrogen-quota model in nearly all cases, but the difference between the two models 

depended on the parameter and on the cell size used to simulate the data (Fig. 5.2). 

For small cell sizes, the MSEflu of all parameters was 2-3 orders of magnitude 

smaller than the MSEnitr (Fig. 5.2). For large cell sizes, the differences in orders of 

magnitude were substantially reduced, between 0.5 and 1.5 for maximum uptake 

rate (vmax) and minimum quota (Qmin), and the two models performed equally for 

half-saturation constant (k ; Fig. 5.2 A-C). Finally, the maximum growth rate (µmax) 
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was better estimated by fluorescence-quota model compared to nitrogen-quota 

model, by between 2 and 3 orders of magnitude, and this difference was 

independent of the cell size (Fig. 5.2 D). In conclusion, the fluorescence-quota 

consistently outperformed the nitrogen-quota model, especially for small cell sizes. 

The reason for an effect of cell size on the relative performance of 

fluorescence-quota and nitrogen-quota models is because small cells are more likely 

to reach stationarity at the end of the simulations, compared to larger cells. The 

onset of N-limitation, standardized in this study to occur half-way through the 

simulated dataset, leads to a gradual transition toward an equilibrium state of the 

system (i.e. absence of medium nitrogen, and constant levels of internal nitrogen 

and biomass). Larger cells have higher capacity to maintain cell division in the 

absence of external nutrients. Therefore, the high internal N storage in large cells 

leads to a slower transition toward steady-state conditions compared to small cells. 

This means that a dataset of 100 observations for a large cell is more likely to 

include less information about the carrying capacity of the system, and this leads to 

lower precision in the demographic parameters for the species. Differently to the 

nitrogen-quota model, the necessity of the fluorescence-quota model to calibrate a 

relationship between two different quantities (i.e. red fluorescence and internal N 

quota) makes this model more susceptible to limited information on steady-state 

conditions in the data. Indeed, excluding the datasets with population trajectories 

not stabilizing at carrying capacity removed the negative effect of cell size on model 

relative performance (data not shown). 
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Testing Robustness 

The analysis was repeated by modifying the effect of the parameter c, 

quantifying the magnitude of bias when measuring Qobs(t) from Q (t). Repeating the 

analysis with no bias in Qobs(t) (i.e. fixing c=1) produced virtually identical 

conclusions to the main analysis (data not shown). Hence, the bias-effect of the 

parameter c did not influence the overall performance of the nitrogen-quota model. 

Laboratory data 

All three models fit time-series for medium nitrogen and population density 

very accurately (most R2 higher than 0.8; see Fig. S5.1-5.4 in Appendix C). The 

mean goodness-of-fit between model-inferred quota dynamics and observations on 

internal nitrogen was highest in the Nitrogen Quota model (R2 = 0.55), followed by 

the Red Quota model (R2 = 0.47) and the Virtual Quota model (R2 = 0.32; 

horizontal bars in Fig. 5.3). Moreover, all R2 coefficients for the Virtual Quota 

model presented higher uncertainty compared to the Nitrogen Quota and the Red 

Quota models (Fig. 5.3). These results further validate the use of red fluorescence as 

a proxy for internal nitrogen within Quota models. 

  



Chapter 5 

 

 

 

Figure 5.1: Mean Squared Error, calculated as , where 

 is the value used to generate the data and  is the value estimated from the 

data, associated with vmax, k, µmax , and Qmin  calibrated with the three alternative 

models. Colors indicate equivalent parameters calibrated with different models. The 

total error for each parameter was calculated by summing up results from 100 

calibrated datasets for each model. 
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Figure 5.2: Mean and 95% confidence intervals for the difference in Mean 

Squared Error between the two best-performing models, the Fluorescence-Quota 

model and the Nitrogen-Quota model (MSEflu − MSEnitr), as a function of the cell 

size used to simulate the datasets for per-cell maximum nitrogen uptake rate (A), 

Michaelis-Menten half-saturation constant for the nitrate uptake functional response 

(B), per-cell minimum internal quota (C), and maximum specific growth rate (D). 

Negative Y-axis values indicate better performance of the Fluorescence-Quota 

model (MSEflu < MSEnitr), while positive values show better performance of the 

Nitrogen-Quota model (MSEflu > MSEnitr). Confidence intervals were calculated 

with Bayesian linear regressions, by subtracting the posterior distributions between 

Mean Squared Error and cell size across all 100 simulations for the two models. 
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Figure 5.3: Goodness-of-fit between model inferred-quota and observed-quota 

integrated over the posterior distribution for the three different models calibrated to 

the time-series collected in chapter 4 (i.e. 4 green algal species, each grown at two 

initial conditions). The horizontal line represents the weighted mean over all R2 

distributions (±95% confidence intervals). Refer to panel C and F in Fig. S5.1-S5.4 

in Appendix C for the graphical representation of the model fits.  
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Discussion 

This study showed that including per-cell red fluorescence as a proxy for 

internal N (fluorescence-quota model) can improve the performance of Quota 

models while still accounting for the ability of a cell to store nitrogen intracellularly. 

The analysis based on simulated dataset showed that the higher instrumental 

precision for red fluorescence, compared to measuring internal nitrogen directly, 

makes the fluorescence-quota model superior even to the classic nitrogen-quota 

model. Furthermore, fitting Quota models to laboratory time-series showed that 

including information on red fluorescence can improve the ability of the model to 

predict the internal quota dynamics within a cell. 

Replacing direct monitoring of internal N quota with per-cell red fluorescence 

can expand the applicability and the precision of Quota models. Firstly, protocols 

for measuring flow cytometric red fluorescence are non-destructive, allowing 

monitoring the same sample over time, which cannot be done with direct 

measurements for cell internal nitrogen. Secondly, technological advances in 

nutrient probes and automated submersible flow cytometers (cytobot; Olson et al. 

2003) make possible the use of Quota models for real-time forecasting of 

phytoplankton dynamics in natural and engineered systems. In contrast, protocols 

for monitoring total internal N quota are more complex to automate. Thirdly, red 

fluorescence is an optical property intrinsic to living photoautotrophic cells, so 

suspended matter in water solution does not bias its reading (Collier 2000; Dubelaar 

et al. 2000; Veldhuis et al. 2000). Conversely, directly estimating total elemental 

composition from samples with variable loads of dead cells or dissolved nutrient-
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rich inorganic/organic particles can substantially overestimate nutrient quota for 

living cells (Beardall et al. 2001; Shelly et al. 2010). Fourthly, it is feasible to 

separately monitor red fluorescence intensity for mixed species with non-

overlapping optical ranges (Trask, Engh & Elgershuizen 1982). This could allow 

calibration of Quota models from time-series of interacting species. In contrast, 

direct methods for total nitrogen quota can only estimate the total elemental 

composition within a sample. These many advantages make the proposed 

fluorescence-quota model a promising way to reduce some of the limitations of 

modeling phytoplankton dynamics. 

Laboratory studies have documented factors other than nitrogen status that 

can affect the phenomenon of phytoplankton chlorophyll fluorescence, such as light 

intensity, diel cycle, pigment composition, and other limiting nutrients (Sosik et al. 

1989; DuRand et al. 1998; Mas et al. 2008). However, the analysis of per-cell 

fluorescence has received relatively little attention compared to other types of 

fluorescence (e.g. total fluorescence, Pulse Amplitude Modulated fluorometry), as 

the use of flow cytometers was established in phytoplankton ecology relatively 

recently (Veldhuis et al. 2000; Sosik, Olson & Armbrust 2010). Flow cytometers 

automatically record fluorescence intensity whenever they are used to estimate the 

population density of a phytoplankton sample. At present, time-series of per-cell red 

fluorescence are rarely of interest and scientific publications mostly do not report 

them. New evidence indicates that flow cytometric red fluorescence can not only 

reveal physiological mechanisms of a cell but also improve current phytoplankton 

models (Malerba et al. 2016). Promoting the publication and use of per-cell red 

fluorescence data can provide more opportunities for further verification and a 
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better evaluation of using flow cytometric fluorescence proxies in phytoplankton 

models. 

The simulated datasets including observation error and process noise recorded 

a mean R2 between red fluorescence (F(t)) and observed internal quota (Qobs(t)) that 

was 15% higher than the coefficient recorded from laboratory experiments in 

Malerba et al. (2016). It cannot be determined from the data how and where this 

additional observation error between measurements of F(t) and/or Qobs (t) entered 

the system. However, details about the experimental protocols provide some 

indications. Multiple aspects contribute to the overall magnitude of observation 

error for measuring internal nitrogen quota: the precision of the spectrophotometer 

when recording reaction intensity (instrumental error), the accuracy of dispensing 

reagents or diluting samples (manipulative error), and the rate of chemical 

degradation in all chemical reactions (chemical error). While instrumental and 

manipulative errors were fully replicated in the experimental methods and thus 

reflected in the estimate of observation error from the triplicate readings, chemical 

error can potentially be mis-represented by triplicate readings: the same reagents 

and stock standards are used at each day, and chemical decay can cause an increase 

in observation error that is not included in the standard deviations of the replicate 

measurements. Also, standard stocks for measuring cell internal nitrogen require 

organic stock standards (i.e. glycine), which are less stable than more traditional 

inorganic controls. Conversely, the observation error associated with measuring red 

fluorescence only depends only by the instrumental error from the flow cytometer, 

which is well characterized by multiple independent sample readings. In fact, red 

fluorescence originates from exposing untreated cells to blue light at a wavelength 

of 488 nm and any inconsistencies involved with handling the sample can only 
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influence estimates for cell densities, not for the red fluorescence emission of a cell. 

In conclusion, the additional observation error is more likely to be associated with 

measuring per-cell internal nitrogen, rather than red fluorescence. Hence, our 

approach to add equal proportions of observation error to F(t) and Q(t) until the 

empirically detected R2 of 0.77 in Malerba et al. (2016) makes the analysis 

conservative, as it is likely to overestimate the error in F(t) and underestimate that 

in Q(t). 

Our study presents a novel approach to incorporating and evaluating indirect 

proxies in dynamic models. Specifically, present findings showed that red 

fluorescence can substantially improve the estimation of phytoplankton 

demographic parameters when fitting process-based Quota models to time-series 

data. Many other population models incorporate variables representing the condition 

of individual organisms. For instance, Dynamic Energy Budget models rely on the 

assumption that energy and resources can be stored within organisms (Nisbet et al. 

2000; Kooijman 2010). However, variables characterizing the internal condition of 

individuals often require destructive and time-consuming laboratory protocols, or 

they may simply be impossible to measure directly (e.g. separate energy reserves for 

growth, reproduction, or maintenance of an individual). Consequently, most 

dynamic models infer changes in internal storages without testing these implied 

dynamics against data (i.e., they are unobserved state variables). This practice 

impairs the capacity to validate model performance, and it increases parameter 

uncertainty. Therefore, the approach applied here to evaluate an internal nitrogen 

proxy in phytoplankton may also be useful more broadly, for evaluating indirect 

proxies in other populations for which difficult-to-measure internal states strongly 

influence population dynamics. 
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Chapter 6: General Discussion 

Thesis Findings and Implications 

Understanding nitrogen assimilation in phytoplankton communities is critical 

for multiple purposes: from informing conservation policies, to quantifying global 

cycles, to modeling the effects of future global warming, to biotechnological 

applications (Hatfield & Follett 2008; Suggett, Borowitzka & Prášil 2010; Gimpel 

et al. 2013). Our ability to model the pathways of phytoplankton nitrogen 

assimilation and cell division is a key element to target these objectives. In the first 

half of my thesis, I presented a new approach to analyze phytoplankton utilization 

for nitrate and ammonium, the two most important ionic forms of inorganic nitrogen 

driving primary productivity (Gruber 2008). This approach relies on calibrating 

process-based models to laboratory time-series data, including multiple transitory 

and interactive uptake dynamics, which traditional curve-fitting techniques are 

unable to account for. By using this new nitrate-ammonium model, I documented 

and quantified the important influences of nitrogen starvation length and 

ammonium-induced inhibition on nitrate uptake of a cell. Moreover, I demonstrated 

that the nitrate-ammonium utilization of a cell changes substantially due to cell size 

plasticity and previous nitrogen regimes. I showed that evaluating nitrogen 

utilization performance without accounting for changes in mean size of a cell could 

substantially underestimate the actual ability of the species to cope with new 

conditions. In the second part of my thesis, I examined another aspect of 

phytoplankton models: the quantification of internal nitrogen status in 

phytoplankton populations. Traditional laboratory protocols present substantial 



Chapter 6 

limitations in estimating the degree of nitrogen status in phytoplankton cells. Hence, 

I proposed and tested a new, more precise and non-destructive indirect proxy that is 

based on optical properties of a cell to evaluate nitrogen limitation. Finally, I 

showed that the higher instrumental precision associated with monitoring cell red 

fluorescence can substantially improve the performance of traditional phytoplankton 

nutrient-limited models, relative to models where internal nitrogen is directly 

monitored without the use of a proxy. 

The overarching theme of this thesis was the use of contemporary modeling 

techniques for the analysis of phytoplankton time-series data. The analytical 

methods in many published phycological studies are often based on rates of 

nitrogen utilization and biomass growth calculated between each two successive 

observed points in time (e.g. Laws et al. 2011; Martinez, Pato & Rico 2012). The 

modeling techniques presented here represent a more comprehensive and flexible 

tool to quantify dynamic systems, also able to account for multiple transient and 

interacting processes (see chapter 2). Furthermore, my approach was specifically 

designed to allow calibration with only daily observations of medium nitrate, 

medium ammonium, and population density, rendering the models applicable to a 

vast number of studies where these variables are routinely monitored. Many 

published phytoplankton models cannot do that. For instance, anyone attempting to 

rigorously estimate the dozens of parameters of the phytoplankton models in Flynn 

et al. (1997b) and Flynn et al. (1997a) would require additional complicated, 

expensive and time consuming experiments. Indeed, there have been no attempts to 

comprehensively estimate these parameters for any study species, despite the >15 

years since the original publications. Thus, this thesis also filled the need for a more 
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tractable modeling approach, sacrificing the explicit characterization of biochemical 

pathways in order to be applicable with routinely monitored variables. 

Broader Implications 

This work has both applied and fundamental implications. An improved 

understanding of nitrate-ammonium assimilation by phytoplankton species could 

help better manage the risk of algal bloom formation, by regulating nitrate-polluting 

(e.g. land clearing, agriculture) and ammonium-polluting activities (e.g. human 

waste discharge, intensive livestock) in coastal areas (Cloern 2001; Domingues et 

al. 2011). Throughout my thesis, I elaborated a general modeling framework to 

represent the process of phytoplankton nitrogen assimilation. This work could 

contribute to investigating the causal links between dynamics of phytoplankton 

communities and nitrogen eutrophication in natural environments. More 

fundamentally, large-scale models for global nutrient cycles rely on nitrogen 

budgets where the role of phytoplankton is highly simplified. For instance, the 

ability of phytoplankton cells to store resources is particularly difficult to include in 

biogeochemical models. This is mainly because monitoring phytoplankton storage 

conditions is not feasible for large areas (Shelly et al. 2010). In consequence, many 

biogeochemical models simplify total primary production to follow a non-linear 

function of the ambient concentration of the most limiting resource (e.g. Follows et 

al. 2007; Weitz et al. 2015). In the second part of this thesis I address this limitation 

by integrating into current mathematical models a new approach that is more 

precise, non-destructive, and easier to perform to quantify nitrogen storage in 

phytoplankton cells. This alternative approach relies on measuring changes in red 

fluorescence from single cells that now can be continuously monitored from 
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automated submersible units from natural phytoplankton assemblages (Olson et al. 

2003; Hunter-Cevera et al. 2014). Given the important contribution of 

phytoplankton to the balance of the biosphere, an improved characterization of how 

cells can use intracellular nutrient storages to grow can substantially enhance our 

ability to detect cycles and trends and make long-term predictions. 

Robustness of Results and Future Directions 

All experiments in this thesis ensured that nitrogen was the only limiting 

factor for cell division. Therefore, altering experimental conditions (e.g. light, 

temperature, other nutrients) will also cause a change in the parameter values 

estimated by fitting the models. However, the mathematical structure of these 

models was based on prior physiological knowledge of the principles regulating 

phytoplankton nitrogen assimilation. Therefore, the model structures represent the 

dynamics of phytoplankton under the general conditions of nitrogen limitation and 

should not be specific to my choices of species and environmental parameters. 

However, further testing under different experimental conditions is needed to verify 

the generality of the models. 

The effects of light are especially important for nitrogen utilization of 

phytoplankton cells. Light availability determines the inflow of photosynthetic 

energy to a cell and regulates its metabolic activities (Al-Qasmi et al. 2012). As a 

consequence, altering light regimes could influence many of the results documented 

in this thesis. Firstly, the assimilation of nitrate depends on light conditions because 

the incorporation of this type of nitrogen is dependent on photosynthetically-driven 

chemical reductions (Berges 1997; Crawford et al. 2000). Hence, exposing a species 

to different light conditions could lead to very different dynamics in the nitrate-
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ammonium utilization of a cell, requiring re-calibration of all functional responses. 

Secondly, increasing or decreasing light exposure could lead to variations in the 

relative and total pigment concentration of a cell (MacIntyre et al. 2002; Lutz et al. 

2003). For instance, many phytoplankton species can mitigate damages from 

excessive light by increasing the production of photo-protective accessory pigments, 

such as the carotenoids xanthophylls and carotenes (Polimene et al. 2012; Christaki 

et al. 2013). However, most non-chlorophyll pigments are unlikely to alter the 

optical properties of cells used in this thesis, as they do not include nitrogen in their 

elemental structure and they contribute very little to the red fluorescence emission 

(at 670 nm) of a cell (Takaichi 2011; Devred et al. 2013). Nonetheless, cells 

exposed to different light conditions will also optimize their photosynthetic capacity 

by regulating the density of light-trapping chlorophyll pigments, which will affect 

the red fluorescence signal emitted by a cell (Demmig-Adams & Adams 2000; 

Bonilla, Rautio & Vincent 2009). Furthermore, the allocation of nitrogen can 

change depending on light availability: more nitrogen will be allocated to pigments 

and associated protiens in light-limited cells compared to light-saturated cells (see 

Wirtz and Pahlow 2010), affecting the reliability of a calibration curve between red 

fluorescence and nitrogen status. Testing of the relationship between red 

fluorescence and internal cell nitrogen would therefore be required for cells 

undergoing light adaptation. Finally, changes in light conditions and chlorophyll 

pigments could also change the precision of the calibration curve, affecting the 

employability of red fluorescence as a proxy for internal nitrogen. Because 

phytoplankton species are adapted to thrive in very different conditions (from 

benthic to pelagic, from single cells to colonies), the influence of different light 

exposures on the accuracy of the calibration curve between red fluorescence and 
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internal nitrogen is likely to be group- and species-specific. Thus, further studies are 

particularly needed to analyze how the strength of the relationship between red 

fluorescence and total cell nitrogen changes across different species and 

experimental settings. 

A final consideration goes to the choice of species. All datasets used in this 

thesis were collected from Chlorophytes and Charophyte freshwater green algae. 

These species are fast-growing and often dominate algal communities of lakes, 

rivers, and estuaries (Graham 2000). They are also commonly used in 

bioengineering research, especially in industrial production of renewable energy, 

human and animal nutrition, high-value pharmaceutical compounds, and 

environmental bioremediation (Becker 1994; Ghirardi 2000; Rosenberg et al. 2008). 

Generalizing the present work beyond green algae would require repeating these 

studies with more phylogenetically distant species. However, the pathways for 

nitrate-ammonium assimilation are equivalent across phytoplankton groups and it is 

likely that the proposed models will still capture the qualitative nitrogen utilization 

dynamics of other species (except for species adapted to fix nitrogen gas; Crawford 

et al. 2000). Also the use of red fluorescence as a proxy for internal nitrogen is 

likely to extend to other species and taxonomic groups, for two reasons. Firstly, 

chlorophyll molecules are particularly rich in nitrogen and its concentration should 

therefore be dependent on the nitrogen status of a cell (Sachs, Repeta & Goericke 

1999; Young & Beardall 2003b). Secondly, the red fluorescence emitted by 

phytoplankton species across all major taxonomic groups is mainly produced by 

chlorophyll a (and to some extent also chlorophyll b), which consistently peaks in a 

surprisingly narrow range across very distantly related species (673 to 679 nm; 

Johnsen & Sakshaug 2007). So, despite large variation in pigment composition 
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across taxonomic groups, red fluorescence measured at 670 nm can be monitored 

for other species in the same way it was documented for green algae in chapter 4, 

and the same principles applied in this thesis to green algae are likely to apply also 

for other taxonomic groups. 

Implications for Multi-Species Assemblages 

A clear next step from this thesis is to apply the techniques presented here to 

experimental settings of mixed-species assemblages. An interesting question that 

remains unsolved is how important is the contribution of nitrogen partitioning in 

promoting species coexistence. The models developed in the first part of this thesis 

may help to answer this question. For instance, phytoplankton communities reared 

in continuous (chemostat) cultures at different relative concentration of nitrate and 

ammonium can test the hypothesis of whether nitrogen partitioning favors higher 

species diversity. Another important ecological question is how fluctuations in 

relative nitrogen composition can affect the stability of a phytoplankton community. 

In this case, the tested hypothesis would be that generalist species are advantaged 

over specialized species under fluctuating concentrations of nitrogen types. 

Another potential application emerging from this research is the use of red 

fluorescence for studying cell internal nitrogen from individual species when reared 

in mixed cultures. Direct estimation using traditional laboratory protocols cannot 

allow separately monitoring nutrient storages of mixed species. Conversely, indirect 

estimation from optical properties of mixed phytoplankton species with non-

overlapping values can easily be partitioned, quantifying the contribution of each 

individual species (Trask et al. 1982; Petersen et al. 2012). There is a large body of 

theoretical work examining the role of resource storage in community ecology and 
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its interaction with temporal and spatial variability (Grover 2011; Grover, Hsu & 

Wang 2012). The methodologies and the models explained in the second part of this 

thesis may help to test theoretical predictions with empirical laboratory 

experiments. 

Conclusions 

The link between nitrogen and phytoplankton biomass is complex. Fitting 

Quota models to time-series is a powerful and flexible tool to investigate the main 

processes regulating nitrogen utilization in single cells. In this thesis, I addressed 

two main limitations of classic Quota models: I explicitly included two sources of 

inorganic nitrogen, and I integrated red fluorescence as a more precise and non-

destructive method to monitor cell nitrogen quota. Overall, I showed that Quota 

models could be extended to suit the specific experimental setting in a way that 

remained mathematically tractable and that allowed calibration from commonly 

measured time-series. Before this thesis, the only alternatives to traditional Quota 

models were highly detailed biochemical models, whose large numbers of 

parameters and state variables prevented calibration from experimental data. In 

conclusion, as future research further clarifies the role of nitrogen for phytoplankton 

population dynamics, this thesis showed that Quota models could represent a 

suitable tool to incorporate new processes and investigate their roles in the 

dynamics of phytoplankton populations. 
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Figure S3.1: Diagram for the 3 × 2 factorial experimental design. 
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Figure S3.2: Correlation between internal quota dynamics extracted from the 

best-fitting “Allometric N-history” model and observed mean population cell size. 

Different symbols represent nitrogen-replete and nitrogen-replete experimental 

conditions. Also reported is the Spearman’s rho correlation coefficient (r s). 
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Figure S3.3: Comparison for the best-estimates for demographic parameters 

(median ±95% confidence intervals) calculated with process noise-only likelihood 

functions for the “baseline” model (dashed lines) and with the best-fitting 

“Allometric N-history” model (solid lines). Parameters represent rates of per-cell 

uptake for nitrate (A) and ammonium (B), growth rate at infinite stored internal 

nitrogen (C), and minimum internal nitrogen (D). Two solid lines in the same 

pannel represent the effect of cell size on the demographic parameters between N-

replete (red) and N-deplete (blue) previous N-history. Dashed line is the 

corresponsive parameter estimated with the “baseline” model, which assumes 

independence with cell size and nutrient history. See Fig. 3.1 in Chapter 3 for more 

details. 
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Figure S3.4: Effects of cell size and nutrient history on the observed per-cell 

rates for (A) nitrate uptake, vNO3,t , (B) ammonium uptake, vNH4,t , and (C) specific 

culture growth rate, µt . Each point is the mean between three replicate 

measurements for each replicate culture, for each day, for each experimental 

treatment. All plotted lines represent significant linear models at p<0.05. 
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Table S5.1: Models used to generate demographic parameters for simulating 

the datasets. A linear model was used to calculate a deterministic prediction for each 

parameter. Then, a random residual was extracted from a normal distribution with 

the standard deviation reported in the table. All coefficients were taken from 

freshwater phytoplankton communities in Edwards et al. (2013). 

 

Par Allometric model for  Stand. Deviation 

 1.3 × (cell size) − 8.8 0.75 

 0.52 × (cell size) − 0.71 0.34 

 − 0.36 × (cell size) + 0.69 0.27 

 0.68 × (cell size) − 8.7 0.14 
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Graphical explanation for each step of the analytical methods 
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Step 4. Simulate true trajectories 
(white dots): simulate deterministic 
trajectories (Det.) between each time 
step (arrows) and include stochastic 
process noise (red dashed line). Run 
simulations for 100 days.

Step 5. Simulate observed 
trajectories (black dots):
add observation error (black dashed 
line) to each true value (white dots).

Step 6. A dataset for the three state 
variables, simulated with both 
process noise and observation error

Det.

Process noise

Observ. error
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Step 7. Use the calibration curve 
documented in Malerba et al. (2015) 
and convert values of internal per-
cell nitrogen to per-cell red 
fluorescence. Ensure a final R2 of 
0.77 between the two variables, 
equivalent to the relationship 
recorded empirically. If the precision 
of the relationship is higher than 
empirical data, increase observation 
error by increasing empirically-
recorded observation error estimates1

for both variables by keeping the 
ratio constant (conservative option2)

R2 = 0.77
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Fig. S5.1: Model fits for medium nitrogen (A, D), biomass (B, E), and 

nitrogen quota (C, F) for the time-series collected in chapter 4 from Desmodesmus 

armatus under two different initial conditions (Experiment 1 in A-C, and 

Experiment 2 in D-F). All models were calibrated assuming observation error-only. 

Only the Nitrogen Quota model is calibrated including observations for medium 
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nitrogen, biomass, and internal quota (panel C and F). Instead, the Red Quota model 

inferred the internal quota trajectories from time-series observations of red 

fluorescence, as well as ambient nitrogen and biomass. The Virtual Quota model 

inferred quota trajectories only from changes in ambient nitrogen and biomass 

growth. See material and methods in chapter 4 for more details on data collection. 
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Fig. S5.2: Model fits for medium nitrogen (A, D), biomass (B, E), and nitrogen 

quota (C, F) for the time-series collected in chapter 4 from Mesotaenium sp. under 

two different initial conditions (Experiment 1 in A-C, and Experiment 2 in D-F). 

See legend in Fig. S5.1 and material and methods in chapter 4 for more details. 
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Fig. S5.3: Model fits for medium nitrogen (A, D), biomass (B, E), and nitrogen 

quota (C, F) for the time-series collected in chapter 4 from Scenedesmus obliquus 

under two different initial conditions (Experiment 1 in A-C, and Experiment 2 in D-

F). See legend in Fig. S5.1 and material and methods in chapter 4 for more details. 

  



Appendices 

 

Fig. S5.4: Model fits for medium nitrogen (A, D), biomass (B, E), and nitrogen 

quota (C, F) for the time-series collected in chapter 4 from Tetraedron sp. under two 

different initial conditions (Experiment 1 in A-C, and Experiment 2 in D-F). See 

legend in Fig. S5.1 and material and methods in chapter 4 for more details. 
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