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Abstract 

 

Ecology transitioned from observational studies to experimental studies and hypothesis 

testing, and is now transitioning back again; this reversal is largely due to technological 

advances in data collection, storage and computation that have enabled mining disparate 

sources of data to explore broad ecological relationships and theories. While mining 

these disparate sources of data has facilitated whole new fields of ecology and better 

understanding of ecological processes, there is a tendency to assume advanced analytics 

with complex data yields better results or better understanding; this is not always the 

case. As models and analysis become more complex so do the underlying assumptions, 

but the increased complexity may not be necessary. Herein, this thesis explores the 

value of mining disparate data sources, and of increasing model and data complexity, 

for exploring species-environment relationships (SERs) in ecology.   

The spatially explicit models underlying exploration of the SERs typically rely on 

linking attributes of a species to coarsely interpolated and temporally aggregated 

information such as ‘climate’. Climate is typically a 30 or 50 year average (as opposed 

to ‘weather’, which is more temporally discrete, e.g. daily maximum temperature), and 

spatially explicit estimates of climate and weather are typically interpolated between 

known locations based on latitude, longitude and elevation. Such climate and weather 

estimates represent spatial data which are naïve to the importance of key factors (e.g. 

topography and vegetation) that structure thermal regimes at fine scales. Further, such 

climate and weather surfaces may be biased in a non-random fashion as a result of 

estimating the environment at fine scale without reference to certain biotic and abiotic 

factors.  Hence, gridded climate and weather data are often poor predictors of the true 

environmental conditions to which species are exposed – but how much does this matter 

in exploring spatiotemporal patterns in species distribution and abundance, and how 

these SERs may change?   

Species tend to experience the environment at very local scales of time and space, thus a 

major flaw in spatially explicit ecological studies may be temporally aggregated, 

inaccurate, or spatially biased environmental data.  SERs based on spatial 

environmental layers with any of the above problems will be biased, potentially leading 
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to false inference of how the species interacts with the abiotic environment, and how 

this in-turn structures the species distribution.  Herein, I focus on improving the 

accuracy of spatial weather and climate layers and proceed to quantify the value and 

need to improve these estimates using several algorithms of increasing complexity to 

estimate SERs.  I demonstrate increased concordance of model outcomes with 

ecological niche theory when using accurate spatial data and increased utility for 

exploring new relationships. 

Underlying the entire thesis is a statistical downscaling of broad-scale weather layers 

for the Wet Tropics Bioregion of north east Queensland. I statistically downscale 30 

years of existing spatial weather estimates against empirical weather data and spatial 

layers of topography and vegetation to produce highly accurate spatial layers of daily 

weather. The downscaled weather layers are more accurate with respect to empirically 

measured temperature, particularly for maximum temperature, when compared to 

current best-practice weather layers.  Current best-practice climate layers are least 

accurate in heavily forested upland regions, frequently over-predicting empirical mean 

maximum temperature by as much as 7°C. This thesis examines the value of the extra 

effort, complexity and assumptions required to produce these data with respect to SERs. 

Correlative Species Distribution Models (SDMs) combined with spatial layers of 

climate and species’ localities represent a frequently utilised and rapid method for 

imputing relationships between a species and its environment, as well as generating 

spatial estimates of species distributions.  However, an SDM is only as accurate as the 

inputs upon which it is based – garbage in, garbage out.  Using current best-practice 

climate data and my improved climate data, I proceed to demonstrate the effect of 

inaccurately quantified spatial data on SDM outcomes for a group of seven rainforest 

skinks. Generally, the distributions of the focal species are not visibly different (at a 

coarse scale) but the predictions generated using the improved climate layers are more 

fragmented and contain less core distributional area.   

To assess a species’ vulnerability to climate change, we commonly use mapped 

environmental data that are coarsely resolved in time and space.  Coarsely-resolved 

temperature data are typically inaccurate at predicting temperatures in microhabitats 

used by an organism and may also exhibit spatial bias in topographically complex areas.  

As a result, simple correlations between where a species occurs and mapped 
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environmental data may predict thermal regimes at a site that exceed species’ known 

thermal limits. In this study, I use statistical downscaling to account for environmental 

and behavioural factors to develop high-resolution estimates of daily maximum 

temperatures for the preferred diurnal shelter of a group of rainforest frogs (Family: 

Microhylidae).  I then demonstrate that this statistical downscaling provides temperature 

estimates that consistently place focal species within their fundamental thermal niche, 

whereas coarsely resolved layers do not.  These results highlight the need for 

incorporation of fine-scale weather data into species vulnerability analyses, and 

demonstrate that statistical downscaling approaches are valuable for yielding 

biologically relevant estimates of thermal regimes. 

Methods to predict spatially explicit patterns of species abundance are numerous in 

form.  The most accurate techniques account for variable detection rates, so that we can 

separate detection from our estimate of abundance.  While elegant, these detection 

models require large presence-absence datasets, derived from repeated surveys across 

temporal and geographic gradients.  In many cases, however, the data are simply not 

available for these statistical approaches.  In these cases, detection-invariant models, 

which do not require repeated survey effort, represent an alternative.  Importantly, if 

detection rates are unaffected by the predictor variables, then these detection-invariant 

approaches may yield just as useful a measure of abundance as the more data-intensive 

models.  Thus, by avoiding the use of predictor variables that likely affect detectability, 

some of the pitfalls of detection-invariant methods can be avoided.  To test this, I model 

the abundance patterns of a group of rainforest skinks using two techniques: occupancy 

modelling, which accounts for variable detection rate, and a commonly-used presence-

only approach (MaxEnt) which does not.  I verify the veracity of model outputs against 

a large dataset of surveys for skink abundance at 200+ sites over 10 years of time.  I 

find that variable detection models and detection invariant models correlate well with 

carrying capacity across a number of sites, although variable detection models 

consistently predict abundance with greater accuracy.  This result indicates that 

detection-invariant models, such as MaxEnt, are not as good as variable detection 

models but in the absence of repeat survey data, they can come close to the accuracy of 

a variable detection model.  As such, they are still useful for the majority of cases when 

we require rapid assessment of species abundance patterns in the absence of more 

robust datasets. 
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Spatial layers of the weather have applications beyond SDMs and in this section I 

leverage information from the statistical downscaling of weather maps to demonstrate 

the effects of vegetation clearance on thermal regimes.  The impacts of deforestation are 

typically measured in terms of habitat: hectares lost, altered habitat fragmentation or 

connectivity.  However, altered habitat extent is just one component of change 

stemming from vegetation clearance. Climatic conditions too are regulated by 

vegetation and so are liable to change as well.  Vegetation buffers habitats from extreme 

climate and weather conditions, which are predicted to increase in frequency under 

global warming scenarios.  Despite this, we know surprisingly little about the indirect 

legacy of deforestation on accelerating the loss of extant climates (and dependent 

species) projected to ‘disappear’ under climate change. Here I describe the legacy of 

deforestation on climatic availability in the Australian Wet Tropics by integrating 

spatial information on vegetation and weather to quantify 30 years of weather patterns 

under two alternative scenarios of vegetation extent: prior to European Settlement (ca. 

1750) and current (1976-2005).   I find that deforestation has on average increased 

region-wide maximum temperatures by 0.67°C with larger increases in localised areas 

subjected to more extensive deforestation (0.86-0.90°C). I also show that these modest 

climate shifts can be underpinned by dramatic reductions in the available area of 

particular thermal regimes including important cool environments projected to become 

increasingly scarce under climate change.  Moreover, I demonstrate that thermal 

environments are more fragmented and less connected as a result of deforestation. 

Finally, I consider the potential for targeted reinstatement of vegetation to reduce range 

losses and buy time for adaptation to further climate change.  

As data sources describing the environment and species localities proliferate, we are left 

asking what value these data lend to ecological analyses.  Observational studies and 

statistical methods have developed to accommodate ever larger datasets, often assuming 

that more data will produce better results.  The results of this thesis demonstrate that 

simpler models, with less restrictive datasets and assumptions can utilise large pools of 

data to form accurate predictions.  However, the utility of data sources still needs to be 

address before they are applied.  My research shows that inaccurate or spatially biased 

environmental data can lead to false inference of SERs, altered patterns of predicted 

spatial distribution, and a lack of concordance with ecological theory.  However, in the 

process of tailoring these spatial data to suit a variety of ecological analyses, I have 



 

viii 

further improved our understanding of the interplay between vegetation and the 

environment.  Overall, these results indicate spatially biased climate and weather layers 

can be corrected with statistical downscaling techniques which explicitly consider 

abiotic and biotic factors that influence local processes.  Downscaled layers meet both 

statistical (predicting empirical temperatures) and biological (concordance with species 

thermal limits) criterions of accuracy.  Further, downscaling allows for an explicit 

understanding of how vegetation influences exposure, and the role of forest clearing in 

shifting thermal regimes. 
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Chapter 1:  General Introduction 

 

The Importance and Roles of Biological Diversity and Ecosystems 

Biological organisms and the complex ecological systems they form are recognised for 

possessing cultural, economic, service, and intrinsic values.  Humanity has long 

recognised the cultural significance of many species and ecosystems, but it is 

humanity’s growing knowledge of ecological systems that has shone light on the key 

services they provide.  The properties of ecosystems and the services which they 

provide seem idiosyncratic, however they depend greatly upon the composition of its 

constituent species.  Changes in species composition resulting from extinction, invasion, 

harvesting, or other mechanisms will alter ecosystems in ways which we may not be 

able to predict or understand.  Ultimately, dynamic ecosystem patterns may flow-on to 

affect nutrient cycles, water cycles, soil deposition, erosion, and climate to name only a 

few key examples.  These changes then affect our ability to extract key resources and 

services from the ecosystems.  Ecological systems are entirely responsible for the 

abundance of breathable air, potable water, and food resources upon which humans rely, 

yet many ecosystems and species are threatened by numerous processes.  As human 

populations continue to expand into the 22nd century it is vital that we identify threats to 

species and ecosystems, and develop methods to minimise threats and maintain 

sustainable ecosystems which continue to provide the vital resources which humanity 

needs to thrive. 

Threats to Biological Diversity 

In particular, global climate change has been identified as a severe threat to biological 

systems across levels of organisation and spatiotemporal scales (IPCC 2014).  

Anthropogenic climate change has already been implicated in shifting patterns of 

distribution and phenology for many taxonomically distinct species (Parmesan & Yohe 

2003, Parmesan 2006).  Climate change will not only influence mean temperature, but 

also rainfall patterns, frequency of extreme events and other climate factors as well 

(IPCC 2014).  The complexities of climatic change, and the mechanisms which drive it, 

make it difficult to predict outcomes for species with a degree of certainty.  Hence, 
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methods which can measure the impact of multiple climate aspects on species and their 

distributions will be of great importance for determining how species will respond to a 

warming world.   

Land-use change and deforestation are also human induced phenomena which threaten 

biological systems.  Deforestation reduces habitat available for species, also frequently 

resulting in increased edge effects (Kapos 1989), levels of fragmentation (Laurance 

2000), and loss of habitat or population connectivity (Dixo et al. 2009).  Vegetation 

plays a key role in structuring patterns of thermal regimes across a landscape (Ashcroft 

2006, Deo et al. 2009, Shoo et al. 2011, Storlie et al. 2013, Chapter 2); dense vegetation 

acts as an insulator, protecting species at ground level from exposure to temperature 

extremes (Scheffers et al. 2013a).  At a local scale then, the effects of deforestation on 

thermal regimes will likely mirror those predicted by anthropogenic climate change.  

The frequency and intensity of weather events flow on to affect species survival rates 

(Welbergen et al. 2008) and seasonal distribution patterns (Reside et al. 2010), to name 

only a few potential impacts.   Furthermore, deforestation releases carbon to the 

atmosphere and reduces the amount of vegetation available to absorb and store further 

carbon.  In this way too, deforestation may act to further exacerbate the impacts of 

increased atmospheric carbon dioxide concentrations on climate and weather patterns.  

As human populations grow, demand for resources and land for agriculture will too, 

indicating that deforestation will continue to threaten biodiversity into the foreseeable 

future. 

These processes and others threaten biodiversity and the ecological systems upon which 

we rely.  Climate change is particularly insidious, since its effects will be felt across 

conservation boundaries, and can only be mitigated with united international effort.  

Considering the scale of threat, and pace at which new threats emerge; techniques to 

rapidly and accurately assess species response to threat are critical. 

Metrics and Frameworks for Assessing Vulnerability 

The IUCN (2012) uses a number of metrics to define species’ vulnerability; 

distributional area, habitat fragmentation, connectivity, or population abundance may be 

used.  Singular, temporally discrete estimates of these metrics are rarely enough 

information to appropriately classify a species risk of extinction.  Risk to threat is best 
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classified by combining a number of these metrics together across time and therefore 

obtaining a dynamic estimate of change across time.  Threatening processes for 

biodiversity are unlikely to abate in the near term, and their potential to affect species 

must be documented.  Therefore techniques which can be projected into the future to 

estimate one or more of these key population metrics will be essential for appropriately 

classifying species response to threat.   

Traditional vulnerability assessments for species are often described as being a function 

of ‘sensitivity’ (the intrinsic properties of a species) and ‘exposure’ (the environmental 

conditions which a species experiences in situ) (Williams et al. 2008).  Spatial 

environmental layers are frequently utilised as sources of exposure data for these 

vulnerability analyses (Storlie et al. 2014, Chapter 3).  Unfortunately, a-priori 

assessment of layer accuracy and inclusion of species behavioural information which 

dictates exposure to any particular environmental aspect are often lacking (Storlie et al 

2013, Chapter 2, Storlie et al. 2014, Chapter 3).  When exposure data in vulnerability 

assessments do not represent or are poorly correlated with species exposure, the 

accuracy of the assessment must be drawn into question.  One possible consequence of 

such a data mismatch could be species which are predicted to thrive outside their 

empirically determined fundamental thermal niche.   

Technology, Data, and Scientific Enquiry 

The foundations of scientific enquiry are built upon observational studies.  However, in 

the 20th century the emphasis shifted from observation to experimentation and 

hypothesis testing.  Now a new shift is underway, emphasising the role of observational 

studies in determining ecological processes from observed patterns (Sagarin and 

Pauchard 2010).  Although not a panacea, observational studies have several distinct 

advantages over those which are based on manipulative experiments.  

Sources of data (e.g. species occurrences) for observational studies do not need to be 

collected inside a rigorous experimental design framework.  So called ‘citizen science’ 

derived datasets have been able to document ecological and environmental processes in 

ways which experimental science cannot (e.g. Sagarin and Micheli 2001, Royle and 

Nichols 2005).  Further, advances in GIS and satellite imagery have provided numerous 

data for diverse ecological analyses across a range of temporal and spatial resolutions.  
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Moreover, technology has increased our capacity to store data, resulting in large freely 

available datasets of spatial environmental layers (e.g. WORLDCLIM – Hijmans et al. 

2005, AWAP – Jones et al. 2009,) and species occurrences (e.g. GBIF – Flemons et al. 

2007).  The new paradigm of observational studies is largely driven by technology, 

specifically the relationship between technology and data.   

The development of statistical methods which combine these data sources (occurrence 

records and spatial layers of the environment) – examining pattern to estimate 

ecological process – has grown as a direct result of technology’s influence over the 

availability of data.  Statistical algorithms to cope with large datasets typically exhibit 

fewer constraints than more elegant models, which require smaller datasets with greater 

structural requirements.  Simpler models may offer advantages over more complex 

ones, including their low cost and rapid parameterisation (owing to already available 

data).  Frequently, however, simple algorithms with large datasets outperform complex 

algorithms with smaller datasets (Domingos 2012).  Herein I will explore the relative 

advantages of simple models with large non-specific datasets in comparison to more 

complex modelling approaches with smaller datasets.  By doing so, I hope to improve 

inference of ecological process derived from observational techniques, and more clearly 

define the appropriate use of large environmental and species datasets in ecological 

analyses. 

Species Distribution Modelling and Predicting Abundance 

Species distribution models comprise a number of techniques which aim to predict the 

geographic pattern of species occupancy and can be divided into two main groups: 

correlative and process-based (Kearney 2006).  Correlative models (hereafter, cSDMs) 

employ algorithms to identify associations between mapped environmental data and 

known locations of species presence (or absence). This effectively produces an estimate 

of the realised niche, which is then mapped back onto environmental layers to produce 

an estimate of occupancy in geographic space (Kearney 2006, Elith & Leathwick 2009).  

Mechanistic or process-based models (hereafter, mSDMs) relate environmental data to 

physiological rates of species, solving complex mass/energy balance equations to 

determine geographic areas suitable for the species (Kearney & Porter 2009, Kearney et 

al. 2009).  Estimates of physiological rates for mechanistic models are combined to 

yield an approximation of the fundamental niche, since they are created without 
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reference to the species true occurrences and interactions with other species – the 

realised niche (Kearney & Porter 2009).   

Both families of SDM techniques are underpinned by ecological niche theory, and have 

individual strengths and weaknesses.  Extrapolation into novel conditions tends to 

reduce the accuracy of cSDMs more than mSDMs (Kearney & Porter 2009).  Further, 

correlative models may be fit using environmental data which have little or no 

mechanistic impact on the species (Austin 2002).  Therefore, variables important for 

model fitting may not be responsible for structuring the species distribution, merely 

correlated with it.  Process-based models allow for a stronger understanding of 

mechanism on distribution.  In doing so, they extrapolate better into novel spatial and 

temporal conditions, and may be better suited for forming climate change predictions 

(Kearney & Porter 2009).  However, process-based models are based on an 

understanding of species physiological rates, which can be difficult to obtain without 

extensive investment of time and resources. 

Correlative SDMs take many forms ranging from simple ‘climate envelope’ approaches 

like BIOCLIM, to commonly utilised generalised linear and additive models (GLMs 

and GAMs), variable detection rate logistic regression models, presence-only entropy-

based techniques (MaxEnt), or complex machine-learning algorithms like Boosted 

Regression Trees and Artificial Neural Networks (Elith & Leathwick 2009).  Each 

specific technique has unique algorithms, input data, model output, and assumptions 

(Elith et al. 2006).  Many of the assumptions implicit in these SDMs are shared between 

techniques (Wiens et al 2009).  SDMs assume that the complete extent of habitat 

suitable for the species will be occupied, in other words, that the species distribution has 

reached equilibrium (Austin 2007).  Further, spatial layers of the environment utilised 

are assumed to relate to the fitness of individuals within the population, if only 

indirectly (Austin 2002).  Hence, selection of environmental layers is an important 

undertaking at the beginning of any modelling procedure.  Also, environmental factors 

not included in the model are assumed to not affect individual fitness.  This assumption 

implies that interspecific interactions have no effect on species distribution (Guisan et 

al. 2006).  When projecting models into the future, a key assumption of these 

techniques is niche conservatism (Wiens & Graham 2005), that the relationship between 

species and environment will not change either across time or space (Wiens et al. 2009).  
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Stated simply, these models assume all individuals within a population are the same 

regardless of demographic class or phenotype, and that evolution does not occur within 

the population over time.  Finally, cSDMs often assume that detection rate for species is 

invariable and equal to 1 (MacKenzie et al. 2002); in other words species detection is 

not affected by the environment and species which are present will be detected.  Despite 

these many assumptions, cSDMs have a wide variety of applications for ecological 

analyses, and can often be trained with relatively small datasets. 

Many varieties of cSDM can be trained using presence-only data, which is typically 

more readily available (and simpler to gather) than presence-absence datasets.  Gridded 

data-sets of the environment are now also widely available; particularly layers 

describing climate averages and vegetation across a range of spatial scales, which are 

frequently utilised in cSDMs.  The differences between variable detection and detection 

invariant cSDMs can be important when attempting to estimate abundance.  Since 

abundance and detection are often correlated (but not always, some species are 

abundant and cryptic), these two metrics can be difficult to untangle (MacKenzie et al. 

2002, Royle & Nichols 2003).  Adding further complications are the frequent 

correlations between detection rates and the environment, sampling technique, temporal 

phase, and/or observer (Royle et al. 2005).  Models which utilise repeated presence-

absence surveys to disentangle the influence of the environment on detectability may 

therefore generate more robust estimates of abundance (MacKenzie et al. 2002).  

However, long-term presence-absence datasets covering appropriate environmental and 

temporal gradients are expensive and time-consuming to procure.  When rapid 

assessment of species distribution or abundance is required often our only option will be 

to utilise a detection invariant modelling technique based on presence-only data, for 

instance, MaxEnt (e.g. VanDerWal et al. 2009c). 

There exists a paradigm in modelling literature ‘garbage in, garbage out’, which 

effectively describes that any model (e.g. an SDM) is only as accurate as the data upon 

which it is based.  Many sources of error in cSDMs have been explored (see Elith et al. 

2006, VanDerWal et al. 2009b, Gogol-Prokurat 2011, and Anderson & Gonzalez 2011) 

however few have examined the effects of inaccurate spatial layers on model outcomes.  

This will be a key emphasis of the following thesis.  Spatial climate estimates, which 

are utilised in both cSDMs and mSDMs, are often inaccurate at fine-grain sizes in areas 
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with high topographic complexity and multiple vegetation types (Shoo et al. 2011, 

Scherrer et al. 2011, Storlie et al. 2013, Chapter 2) Further, climate estimates are 

frequently biased, and can vary as a function of the environment.  Accurate, non-biased 

spatial data are necessary because these are being used in conjunction with location data 

to classify the species niche (Austin 2007).  Misclassification of the niche will result in 

inaccurate inference regarding both habitat utilisation and geographic range of the 

species (Storlie et al. 2013, Chapter 2, Storlie et al. 2014, Chapter 3).  Statistical 

downscaling techniques to improve the accuracy and resolution of spatial climate and 

weather layers have the capacity to improve SDM model outcomes. 

The Role of Climate Downscaling:  Reducing Bias and Understanding the 
Influence of Vegetation 

Understanding how current best-practice weather and climate layers are developed is 

key if we are to understand how to improve them.   Typically, average monthly climate 

conditions are aggregated at a number of sites across the extent which is under 

consideration.  Then thin-plate splines estimate the climate across a grid based on 

latitude, longitude, and elevation (McMahon et al. 1995, Jones et al 2009, Xu & 

Hutchinson 2011).  Such splines are accurate at coarse spatial resolution (5km or 

greater), but densely saturating the environment with weather stations does allow to 

increase resolution to 250m or finer (e.g. ANUCLIM).  While these techniques often 

achieve accurate climate estimates at coarse resolution in topographically homogeneous 

environments, they can be inaccurate and spatially biased at fine resolution in 

topographically complex environments (Loarie et al. 2009).   

By incorporating further empirical records and finely resolved environmental layers 

known to decouple local from regional climates with extant climate or weather layers in 

a statistical downscaling framework, it is possible to improve their accuracy and spatial 

resolution.  Multiple factors decouple regional from local climates, these include but are 

not limited to: slope, aspect, vegetation cover, distance to coast, and distance to stream 

(Shoo et al. 2011, Dobrowski 2011).  Vegetation in particular can have profound 

influence on the thermal regimes of daily maximum temperatures (Shoo et al. 2011, 

Storlie et al. 2013, Chapter 2).  Downscaled environmental layers which are based upon 

knowledge of vegetation cover provide an opportunity to examine the influence of 
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deforestation on thermal regimes to which species are exposed, and further enhance 

vulnerability assessments, SDMs, and targeted restoration activities. 

Statistical downscaling techniques may be as simple as linear regression models 

(Schoof & Pryor 2001), or utilise more complex methods such as Artificial Neural 

Networks or Boosted Regression Trees (e.g. Poteau et al. 2011).  Local and regional 

climate systems are complex and driven by a variety of environmental and biological 

factors working individually and in concert (Dobrowski 2011).  Given this complexity, 

straight forward statistical methods such as linear regression are less accurate when 

statistically downscaling regional to local climate (e.g. Schoof & Pryor 2001).  Boosted 

Regression Trees (BRTs) demonstrate great promise for this particular task, as they 

combine classic Classification and Regression Trees with a gradient boosting algorithm.  

Within the BRT framework, a single Regression Tree is used to relate mapped variables 

to empirical temperature records (Elith et al. 2008).  Residual variance will usually 

remain after fitting a single tree, and further trees are fit to these residual values in an 

iterative fashion until the remaining error reaches some predefined stopping point.  

Importantly, BRTs can model interactions between multiple variables, select only those 

which explain the most variance, and ignore those which don’t improve the model 

(Elith et al. 2008).  Gradient Boosting allows BRTs to fit complex, non-linear 

relationships between predictor and explanatory variables, thus improving model fit 

over other simpler techniques (Elith et al. 2008). 

Summary of Thesis Aims 

Herein, I will demonstrate that statistical downscaling techniques can be used to 

improve the accuracy of, and reduce bias associated with, spatial climate and weather 

layers.  I proceed to show that biased climate layers can lead to the development of 

inaccurate SERs and patterns of spatial distribution – visible only in detail, not at coarse 

resolution.  Further statistical downscaling of weather layers by including key 

behavioural information only increases their biological relevance; this insures measures 

of sensitivity and exposure for vulnerability analyses are concordant with one another 

and ecological niche theory.  Further, I examine the use of spatial climate layers and 

SDMs to predict carrying capacity of a diverse group of species.  Lastly, I leverage 

information concerning the impact of vegetation on thermal regimes from the statistical 

downscaling procedure to demonstrate the impact of deforestation on climate space. 
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Summary of Thesis Chapters 

Chapter 2:  Improved Spatial Estimates of Climate Predict Patchier 

Species Distributions 

In this chapter, I aim to improve spatial estimates of climate and weather using 

statistical downscaling techniques.  Spatial climate estimates are a key resource for 

SDM, which are available at global extent with differing levels of spatial and temporal 

resolution.  However, the spatial resolution at which these models are currently 

available is quite coarse.  This is problematic for two reasons:  the climate layers are too 

large to represent the operative scale of most species and they are limited in their ability 

to represent temperatures experienced by species in situ.  I proceed to downscale current 

best practice weather layers at 5km resolution against empirical temperature records and 

250m resolution layers of environmental factors known to decouple local and regional 

climates.  Statistical criteria reveal improved accuracy of downscaled layers, which are 

then incorporated into cSDM models for seven species of skink.  Finally, I compare 

SDMs based on downscaled and best-practice climate layers, and demonstrate that 

downscaled layers predict patchier distributions, of approximately equal distributional 

area, for all species modelled.   

Publication:  Storlie C.J., B.L. Phillips, J.J. VanDerWal, and S.E. 

Williams. 2013. Improved spatial estimates of climate predict patchier 

species distributions.  Diversity and Distributions, 9:1106-1113. 

Chapter 3:  Stepping Inside the Niche:  Microclimate Data are Critical for 

Accurate Assessment of Species Vulnerability to Climate Change 

In this chapter, I build on the outputs of Chapter 2 to further improve weather layers via 

the addition of species behavioural information.  The utility of spatial weather layers to 

act as exposure surrogates for vulnerability analyses is directly dependent upon their 

ability to re-create the environment which species experience in situ.  Many species 

utilise a variety of microhabitats across seasons and days, and as such their exposure to 

the environment will change accordingly.  Here, I incorporate behavioural information 

of seven species of Microhylid frog to recreate their thermal exposure to diurnal 

maximum temperatures.  To do this, I downscale the improved weather layers from 
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Chapter 2 against empirically recorded temperatures of these species preferred diurnal 

shelter (underneath logs in rainforest) using a simple linear model.  Then a biological 

criteria, in this case the species critical thermal maxima, is used to assess layer 

accuracy.  I demonstrate that non-downscaled layers indicate that these species thrive 

outside of their fundamental thermal niche, an impossible situation in nature.  The 

downscaled layers, however, give results concordant with the species fundamental 

niche.  

Publication: Storlie, C.J., A. Merino-Viteri, B.L. Phillips, J.J. VanDerWal, 

J. Welbergen, and S.E. Williams. 2014. Stepping inside the niche: 

microclimate data are critical for accurate assessment of species’ 

vulnerability to climate change.  Biology Letters, 10(9):20140576. 

Chapter 4: Can Less Be More?  Comparing Predictions of Species 

Abundance Using Presence-Only and Presence-Absence Datasets. 

Here, I continue to build upon the results of Chapter 2, and apply improved spatial 

climate layers in two distinct modelling frameworks to estimate site specific carrying 

capacity for a group of rainforest skinks.  Population abundance (and its rate of change) 

has long been recognised as a correlate for extinction risk of species.  However, models 

which hope to estimate abundance across space require extensive presence-absence 

datasets across geographic and temporal gradients.  These datasets can be expensive and 

time-consuming to gather, and may not be available when rapid assessment of species 

vulnerability is needed.  With this in mind, I compare the effectiveness of presence-

absence and presence-only modelling techniques to predict empirically measured 

abundance of seven species of rainforest skink.  I demonstrate that both techniques 

produce accurate and nearly equivalent estimates of population carrying capacity.   

Publication:  Storlie, C.J., J.J. VanDerWal, and B.L. Phillips. In Prep. Can 

Less Be More?  Comparing Predictions of Species Abundance Using 

Presence-Only and Presence-Absence Datasets, Ecological Modelling 
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Chapter 5:  The Legacy of Past Land Clearing on Climate Space: A Primer 

for Global Warming. 

Here I apply the knowledge gained concerning the impact of vegetation cover on local 

climate and weather (from Chapter 2) to demonstrate the ecological effects of historic 

land-clearing.  Within the Australian Wet Tropics, approximately 20% of rainforest 

areas have been cleared since European settlement.  Nearly 90% of the cleared forest is 

concentrated in two subregions, including one identified as a potential climate change 

refugia for the region’s endemic fauna.  By combining past estimates of rainforest cover 

with current maps of vegetation density, I create a simulation of vegetation density 

before European settlement (c. 1750) when large scale land clearing began.  When 

substituted into the statistical downscale procedure from Chapter 2, I recreate 30 years 

of daily temperature maps for the region under this pre-clear vegetation scenario.  These 

maps indicate that forest clearing has caused an appreciable amount of warming since 

1750, a shift nearly on par with that of global warming in the last century.  Moreover, 

thermal environments are less regular in shape and are now less connected as a result of 

deforestation.  Targeted restoration of forest habitat has the capacity to improve thermal 

buffering in upland areas and connectivity within the region, but because of the scale of 

land-clearing, cannot completely ameliorate its impact on thermal regimes. 

Publication:  Storlie, C.J., J.J. VanDerWal, and L.P. Shoo. In Prep. The 

Legacy of Past Land Clearing on Climate Space: A Primer for Global 

Warming.  Conservation Letters. 

Chapter 6:  General Discussion and Synthesis 

Lastly, I proceed to integrate the findings of the previous four chapters and discuss the 

costs and benefits of algorithm complexity in relation to SDM analyses.  The role of 

spatial bias in data layers and how this flows on to alter model outcomes is considered.  

Further the necessity of correcting spatial bias is considered in light of the purpose of 

the modelling exercise at hand.  I conclude that simple model algorithms, with unbiased 

spatial data, can provide powerful insights into species environmental relationships, 

spatial distributions, and patterns of abundance. 
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Chapter 2:  Improved Spatial Estimates of Climate 
Predict Patchier Species Distributions. 

Publication:  Storlie C.J., B.L. Phillips, J.J. VanDerWal, and S.E. 

Williams. 2013. Improved spatial estimates of climate predict patchier 

species distributions.  Diversity and Distributions, 9:1106-1113. 

Introduction 

How can we know where a species occurs?  This question is central to ecological theory 

and its answer is also of great concern to conservation planners.  Increasingly, when 

faced with uncertainty in species’ distributions, we rely on species distribution models 

(SDMs hereafter) to generate maps describing these distributions.  SDMs utilise spatial 

layers of environmental variables to generate species-environment relationships (SERs) 

and to predict occurrence in geographic space (Austin 2007).  As such, the quality and 

resolution of these spatial environmental layers will affect the quality of the resultant 

prediction of species distribution, irrespective of the modelling procedure used (e.g. 

Kearney & Porter 2004; Elith & Graham 2009).   

The accelerated pace of SDMs in addressing diverse problems in applied ecology, 

including predicting species’ invasions (Steiner et al. 2008), conservation planning 

(Gogol-Prokurat 2011), and vulnerability assessments under climate change (Thomas et 

al. 2004) highlights the importance of accurately quantified environmental spatial data.  

Numerous studies have assessed how SDM outcomes vary according to algorithm 

employed (Elith et al. 2006), extent of study area (VanDerWal et al. 2009b), grain-size 

(Gogol-Prokurat 2011) and regularisation procedure (Anderson & Gonzalez 2011).  

Despite reviews that acknowledge the importance of accurate environmental layers to 

the modelling process (e.g. Araujo & Guisan et al. 2006, Wiens et al. 2009), few studies 

conduct a priori assessments of layer accuracy, or consider the cascading effects of 

inaccurately quantified environment on model outcomes. 

The most commonly used spatial environmental layers in SDMs are undoubtedly those 

describing climate, but their accuracy, and the effects of systematic errors in these data 

are rarely considered.  Weather data interpolated at broad-scale, or without reference to 

vegetation density, is frequently inaccurate in topographically complex areas with dense 
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vegetation (e.g. Scherrer et al. 2011).  Further exacerbating this effect is the incomplete 

coverage of environmental gradients (such as vegetation) by weather recording stations.  

The implementation of these commonly employed and commonly inaccurate spatial 

layers, represents a major weakness in the SDM paradigm, and must be addressed. 

Here I use dense sampling of temperature variables across a topographically and 

biologically complex landscape (the Australian Wet Tropics) to examine the accuracy 

and extent of systematic bias in existing best-practice climate layers.  To do this, I use a 

Boosted Regression Tree (hereafter, BRT) statistical downscaling approach to transform 

existing coarse weather layers to finer-scale weather layers corrected for biotic and 

abiotic factors.  Resultant fine-scale weather layers are aggregated to be comparable to 

current best-practice climate layers (e.g. ANUCLIM, McMahon et al. 1995).  I compare 

the downscaled climate layers (hereafter, ‘accuCLIM’) to ANUCLIM to determine the 

spatial pattern of temperature bias and proceed to demonstrate that these two alternative 

characterisations of climate result in species distribution models that are broadly 

similar, but which differ strongly in their level of patchiness.   

Methods 

This study was conducted in the Australian Wet Tropics (AWT): a region exhibiting 

strong environmental gradients of temperature, rainfall, and vegetation (Nix 1991, 

Turton et al. 1999).  Mountainous sub-regions are responsible for these strong gradients, 

and have also been implicated as the cause of patterns of vegetation stability 

(VanDerWal et al. 2009a) and sub-regional endemism (Graham et al. 2006).  Seven 

species of rainforest skink (Lampropholis coggeri, L. robertsi, Carlia rubrigularis, 

Gnypetoscincus queenslandiae, Saproscincus basiliscus, S. czechurai, and S. 

tetradactyla) were chosen for the SDM exercise.  These species are almost entirely 

constrained to rainforest, yet have contrasting functional ecologies and habitat use 

profiles.   

BRTs were used to relate empirically measured temperatures to spatial estimates of 

weather and topography.  The empirical (dependent) dataset for the BRT downscale 

procedure comprises 32,239 measurements of daily maximum temperature (Tmax) and 

daily minimum temperature (Tmin), gathered by field dataloggers at 54 sites across the 

AWT during the period June 2004 to June 2009 (Figure 2.1).  A set of ten topographic, 
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weather, and environmental spatial layers were assembled to act as the independent 

variables for the BRT modelling procedure.  These include 5km resolution estimates of 

daily Tmax and daily Tmin from the Australian Water Availability Project (hereafter, 

AWAP), which are interpolated from weather station data using a three-dimensional 

topographic spline technique (Jones et al. 2009).  The independent topographic 

variables are slope, aspect, elevation, latitude, distance to coast, and distance to stream.  

Other environmental layers in the independent dataset include Foliage Projected Cover 

(FPC) and insolation.  Detailed descriptions of the datasets for the BRT models can be 

found in Appendix S1. 

 

Figure 2.1:  Map of the Australian Wet 

Tropics.  Red points indicate climate 

monitoring locations established by the 

Centre for Tropical Biodiversity and 

Climate Change.  Blue points indicate 

climate monitoring stations maintained 

by Australian Bureau of Meteorology.  

Shade of the coloured points 

corresponds to elevation of the 

monitoring sites; darker shades are 

located at high elevation. 

 
 

Two separate BRT models (one for daily Tmin and one for daily Tmax) were created using 

the above datasets.  All model fitting was completed within the R Statistical Software 

package (R Development Core Team 2012) using a modified version of Ridgeway’s 

(2010) gbm package found in Supplementary Appendix 3 of Elith et al. (2008).  Root 

Mean Squared Error (RMSE) was the loss-function chosen to assess how well 

predictions fit the training dataset.  Models were trained using the full dataset; however 
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tenfold cross-validation (Hastie et al. 2001) was used to avoid overfitting the model to 

the training data.   Detailed methods for parameterising the BRT models can be found in 

the Appendix S2. 

Once the optimal BRT models were fitted, they were projected into geographic space 

using Elith’s gbm.predict.grids function (Elith et al. 2008) for every day between 1st 

January 1970 and 31st December 2005.  I then used simple linear regression to test the 

accuracy and precision of the AWAP weather layers used for model fitting and their 

resultant downscaled BRT weather predictions.  In both cases, daily weather predictions 

were regressed against empirically measured weather; accuracy was assessed by 

departure from expected regression coefficient values (slope of 1, y-intercept of 0) and 

precision was assessed using the adjusted r2 measure of fit.  Furthermore, a subset of 

1,000 random BRT weather predictions from 13 sites between 1st January 1970 and 

31st December 1979 were regressed against their respective empirical temperature 

measurements to assess the model’s ability to predict into time periods not used for 

model fitting.  The daily BRT predictions were then summarised to produce spatial 

layers congruent with those produced by ANUCLIM (McMahon et al. 1995).  The end 

result of this process was four novel accuCLIM spatial layers at 250m resolution 

covering the entire extent of the study region which represent:  Mean Annual 

Temperature (MAT), MAT Seasonality (MATS), Mean Maximum Temperature of the 

Warmest Month (MMTWM), and Mean Minimum Temperature of the Coldest Month 

(MMTCM). 

Two separate SDMs were generated for the case study species using the Maximum 

Entropy method (Phillips et al. 2006).  One model included the standard ANUCLIM 

climatic layers (MAT, MATS, MMTWM, MMTCM, Mean Annual Precipitation, 

Precipitation Seasonality, Precipitation of the Wettest Month, and Precipitation of the 

Driest Month) for the modelling regime established by Williams et al. (2010).  The 

second model replaced ANUCLIM temperature layers with their accuCLIM equivalent.  

MaxEnt features were set to ‘auto’ and the number of model runs was capped at 500.  

Calculations of key distribution metrics were completed in R (R Development Core 

Team 2012) using the ‘ClassStat’ function within the package SDMTools (VanDerWal 

et al. 2012).  Distribution metrics compared between models within species were: total 

distributional area, core distributional area (where a ‘core’ cell is one which has no 
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contact with a cell whose value falls below the selected MaxEnt threshold for 

occurrence), aggregation index, mean fractal dimension index, number of patches, and 

landscape shape index.  For a more detailed description of occurrence records and 

MaxEnt model parameters see Williams et al. (2010). 

Results 

The BRT procedure drastically improved prediction capability over a null model, 

decreasing the initial error function by an order of magnitude for both daily Tmax and 

daily Tmin models.  For both BRT models of daily Tmin and daily Tmax three independent 

variables accounted almost 90% of all binary splits used to construct the decision tree 

prediction layers.  For the daily Tmax BRT model these were coarse daily Tmax (51%), 

elevation (30%), and Foliage Projected Cover (6%); for the daily Tmin model they were 

coarse daily Tmin (81%), elevation (11%), and coarse daily Tmax (2%). 

Linear regression indicates BRT estimates of empirically measured daily Tmax were far 

more precise and accurate (Figure 2.2 – top, slope = 0.95, y-intercept = 1.05, adj r2 = 

0.95) than those provided by AWAP weather estimates used for model fitting (Figure 

2.2 – top, slope = 0.53, y-intercept = 14.46, adj r2 = 0.57).  Results of linear regression 

indicate that BRT also predicts empirically measured daily Tmin with greater accuracy 

and precision (Figure 2.2 – bottom, slope = 0.95, y-intercept = 0.87, adj r2 = 0.95) than 

do AWAP estimates (Figure 2.2 – bottom, slope = 0.89, y-intercept =2.75, adj r2 = 

0.80), although in this case the difference is not as profound.  

The results of regressing 1000 random site days of BRT predictions against their 

respective empirical measurements (which were not used in the training dataset) 

indicate that the accuracy and precision of the BRT weather layers are maintained when 

predicting into novel time periods (Daily Tmax: slope = 0.97, y-intercept = 0.99, adj. r2 = 

0.97. Daily Tmin: slope = 0.98, y-intercept = 0.3, adj. r2 = 0.97).  Importantly, the 

prediction bias of ANUCLIM climate layers shows clear spatial patterning across the 

study region, with systematic bias greatest in the coolest, high altitude parts of the study 

area where accuCLIM MMTWM often differed by 5 – 7 degrees and occasionally by as 

much as 9 degrees (Figure 2.3). 
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Figure 2.2:  Scatterplots of empirically measured temperatures 

against predicted temperature.  Blue points represent daily BRT 

predictions (this study) and red points represent daily broad-scale 

weather interpolations (from the Australian Water Availability 

Project).  Bottom panel shows results for Tmax, top panel shows results 

of Tmin. 
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Figure 2.3:  Left – 

Difference between 

accuCLIM and ANUCLIM 

Mean Maximum 

Temperature of the Warmest 

Month.  Right – Difference 

between accuCLIM and 

ANUCLIM Mean Minimum 

Temperature of the Coldest 

Month.  Dark blue and 

purple colours indicate areas 

where ANUCLIM is 

predicting temperatures 

much higher than expected.  

 
 

Interestingly, when these different spatial climate layers were used in species 

distribution models, there was rarely much difference in total distributional area (Figure 

2.4F).  Importantly, the contribution of rainfall variables to the models (results not 

presented), varied little (<5%) between models within species, indicating that different 

model outcomes are associated with the accuracy of temperature data.  MaxEnt model 

AUC was also universally high (greater than 0.9, regardless of species or the set of 

environmental layers utilised), indicating good model fit in all cases.  Furthermore, 

model AUC showed very little discrepancy between models within species, never 

varying by more than .002 (results not shown).  Metrics which describe fragmentation 

of the distribution (e.g. aggregation index – Figure 2.4A, and number of patches – 

Figure 2.4D) indicate a greater number of patches which are, on average, smaller when 

climate is characterised by the accuCLIM layers.  Accordingly, the ‘core’ of these 

species distributions is predicted to be smaller under the more precise climate layers I 

derive here (Figure 2.4E).  Landscape shape and mean fractal dimension indices also 

indicate the landscape as a whole and individual patches are more ‘regularly’ shaped 

(have fewer edges) when modelled with ANUCLIM (Figures 2.4B & 2.4C).   
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Figure 2.4 A-F:  Comparison of distribution metrics from ANUCLIM SDM (x-axis) and 

accuCLIM SDM (y-axis) for 7 species.  Top left to bottom right: (A) Aggregation Index, 

(B) Landscape Shape Index, (C) Mean Fractal Dimension Index, (D) Number of Patches, 

(E) Total Core Distribution Area, and (F) Total Distribution Area. 
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Discussion 

The BRT statistical downscaling procedure produced estimates of weather that were 

consistently more accurate than current best-practice weather layers (e.g. AWAP).  This 

result was not unexpected considering the increased spatial resolution provided by 

statistical downscaling.  More surprising, however, is the extent of the differences 

between climate layers: for MMTWM ANUCLIM layers differed by more than seven 

degrees from the accuCLIM layers.  Importantly, the bias inherent in the ANUCLIM 

layers was distributed systematically in space (Figure 2.3), suggesting that the 

interpolation process behind the ANUCLIM data misses critical information in these 

places.  Likely, this information dearth is caused by the incomplete placement of 

weather recording stations along the elevational and vegetation gradients of the region, 

coupled with the fact that spatial interpolation operates completely naïve to the 

buffering effect of vegetation on daily Tmax; an effect shown to be particularly important 

in upland regions (Shoo et al. 2011).  Thus, it seems that broad-scale climate data will 

likely show similar large inaccuracies in other high altitude, topographically complex 

regions around the world.  My analysis shows that these inaccuracies can be corrected if 

placement of weather recording stations is made with explicit reference to 

environmental gradients, and if the interpolation procedure allows non-linear 

relationships and uses biotic as well as abiotic covariates.  The necessity of a 

downscaling procedure to increase accuracy of weather maps, however, may not be 

warranted in areas with low topographic relief, and with adequate coverage of 

environmental gradients. 

Given that correlative species distribution models simply build species environment 

relationships with the input data (naïve to ecology and physiology of the organism), I 

may not have expected SDMs built on biased ANUCLIM data to predict species 

distributions particularly different from those it would predict using the accuCLIM 

layers.  One could expect that the species environment relationship imputed by the 

model to be inaccurate when the input data are inaccurate, but this might not lead to 

different predictions of species distribution given that the model is then projected back 

onto those inaccurate layers.  Thus, I was not surprised when the area predicted for each 

of the seven modelled species was not particularly different between ANUCLIM and 

accuCLIM projections (Figure 2.4F).  However, the alternative classification of climate 
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yielded very different estimates of core distribution area and distribution fragmentation 

(Figure 2.4E, 2.4A & 2.4D).  The predicted distributions of the seven modelled species 

were consistently more convoluted (more edges) when modelled with the more accurate 

accuCLIM layers developed here (Figure 2.4 A-D).  Why then would fragmentation 

between models be so different, while total area remains unaffected?  The most likely 

explanation is that ‘edge’ cells from the ANUCLIM model were given artificially 

inflated Environmental Suitability values by the MaxEnt model because they did not 

account for the complex and non-linear interactions between topography, the 

environment, and local weather at these locations. The BRT downscale procedure 

however, accounted for these interactions and provided far more accurate temperature 

estimates in these locations.  In this way, many edge cells predicted by ANUCLIM to be 

sub-optimal, but still suitable for a species, may have been predicted unsuitable by the 

accuCLIM model.  Concentrations of these cells in habitat corridors (for instance 

connecting two mountains within a single range) would lead to greatly increased 

number of patches and fewer core areas, while having relatively little effect on total 

predicted distribution and population connectivity. 

The effect of downscaled climate layers on fragmentation appears to be exacerbated in 

species that are elevationally restricted or have small distributional areas (i.e. 

Lampropholis robertsi).   This increased patchiness in the predicted distributions is 

important, because more fragmented habitat typically make populations less resilient, as 

populations in small patches have increased vulnerability to local extinction (MacArthur 

and Wilson 1967, Laurance et al. 2002).  Fragmented populations suffer from increased 

edge effects which may alter ecosystem composition, with concomitant and often 

unpredictable effects on population dynamics of individual species (Laurance et al. 

2002).  Furthermore, species existing in fragmented populations may find it more 

difficult to shift their range in response to climate change (Barton et al. 2012).  Thus, in 

this case, inaccurate climate layers suggest a much more robust population than that 

predicted by the more accurate layers I developed.  The extent to which I am 

overestimating the connectivity of populations generally remains to be seen, but these 

results sound a cautionary note that many species distributions may be more fragmented 

than we currently appreciate.  
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Past studies have examined effects of downscaled climate on SDM outcomes, however, 

few of these have compared across models with equivalent grain size and extent, as I 

have done here.  Trivedi et al. (2008) and Randin et al. (2009) both compared 

continental scale distribution of vascular plants to local scale distribution via 

downscaling climate grids; interestingly these papers came to contrasting conclusions.  

Randin et al. (2009) found that increasing spatial resolution of climate layers led to 

increased persistence under future climate change scenarios, further they found a strong 

relationship between inaccurate prediction in continental scale cells and local 

topographic variation within those cells. Trivedi et al. (2008) reach the opposite 

conclusion, continental scale future climate change predictions predict fewer extinctions 

than those modelled at local scale.  The cause of discrepancies arising between 

predicted distributions as a result of climate downscaling cannot, however, be properly 

assessed unless spatial extent and grain size are equivalent.  My study holds all model 

factors (spatial extent, grain size) constant, allowing us to impute that differences 

between predictions were attributable to inaccuracies present in the spatial description 

of the environment.   

The inclusion of topographic data in SDMs has been demonstrated to alter model 

outcomes under climate change scenarios (Luoto & Heikennen 2008). This is a 

conceptually similar approach to my technique; Luoto & Heikennen (2008) have 

effectively added another facet to the n-dimensional hypervolume used to represent the 

species fundamental niche and hence determine SERs for the model.  My technique 

refines the n-dimensional hypervolume by increasing the accuracy of the environmental 

layers used to calculate it.  As a result, SERs are altered, and model outcomes change.  

Both techniques effectively provide a more realistic model of species distribution in 

space, but ours allows altered model outcomes to be attributed directly to the inaccurate 

quantification of the spatial environment. 

I have developed a highly accurate snapshot of daily Tmax and Tmin across the region 

between 1970 and 2009 by improving upon already existing spatial weather predictions 

(e.g. AWAP).  Downscaling weather, as opposed to climate, holds multiple distinct 

advantages.  In particular, we now live in a warming world where the occurrence of 

extreme temperature events is predicted to increase more rapidly than average 

temperature (Meehl & Tebaldi 2004).  The ability of climate layers (e.g. ANUCLIM) to 
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represent these events is low, as they intentionally smooth over them to represent 

average conditions.  The downscaling procedure I implement here allows the data to be 

aggregated in whatever fashion may be necessary; as a climate average or as a 

probability distribution, describing the frequency of extreme temperatures.  Moreover, 

the fine spatial resolution afforded by downscaling allows climate and weather 

description across multiple scales from landscape scale buffering properties to the 

thermal exposure of a small population or individual, the latter being a critical step in 

process based models.  It is clear, therefore, that increasing the accuracy and precision 

of spatial weather layers represents a substantial improvement for ecological analyses 

across spatial and temporal scales.   
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Chapter 3:  Stepping Inside the Niche: Microclimate 
Data are Critical for Accurate Assessment of Species’ 
Vulnerability to Climate Change 

Publication: Storlie, C.J., A. Merino-Viteri, B.L. Phillips, J.J. VanDerWal, 

J. Welbergen, and S.E. Williams. 2014. Stepping inside the niche: 

microclimate data are critical for accurate assessment of species’ 

vulnerability to climate change.  Biology Letters, 10(9):20140576. 

Introduction 

Global climate change represents a threat to biodiversity across multiple biomes and 

organisational scales (Parmesan & Yohe 2003).  In the face of this threat, robust 

estimation of species’ vulnerability to climate change is necessary (Williams et al. 

2008).  Species’ vulnerability can be seen as a function of the environmental regimes 

which a species experiences in situ (its exposure) and its physiological and adaptive 

responses to this environment (its sensitivity) (Williams et al. 2008).  The use of 

inaccurate measures of exposure or sensitivity for creating vulnerability analyses can 

potentially lead to false inference and wasted conservation resources.  Hence, we need 

to examine closely the analytical procedures used to derive estimates of exposure and 

sensitivity for species. 

Coarse scale weather layers will likely make a poor surrogate for the microclimate 

experienced by an organism.  Coarse scale weather layers are typically created from 

empirical point climate data (daily temperature maxima or minima, Tmax or Tmin), which 

are then splined through un-sampled geographic space according to elevation, latitude, 

and longitude (e.g. Jones et al. 2009).  Splining approaches do not take into account 

factors known to decouple local and regional thermal regimes and as a result are often 

inaccurate at the microclimate scale (Shoo et al. 2011, Scherrer et al. 2011, Storlie et al. 

2013, Chapter 2).  As well as this, coarse-scale weather takes no account of the species’ 

behaviour: nocturnal and diurnal species, for example, may have very different 

exposures. 
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We can move from coarse weather layers to fine scale layers, and ultimately species’ 

exposure, using either a correlative (statistical [Storlie et al. 2013, Chapter 2]) or a 

mechanistic (mass/energy balance [Kearney & Porter 2009]) downscaling approach.  

Mechanistic methods utilise complex energy balance equations which incorporate 

spatially mapped variables such as surface albedo, relative humidity, incoming solar 

radiation and wind speed (as well as conductivity and emission constants) to generate 

estimates of microclimate (Kearney & Porter 2009).  While very flexible, particularly 

for predicting microclimates into the future, mechanistic approaches require a large 

number of parameters to be estimated. Alternatively a correlative approach may lend 

itself well to producing spatial estimates of microclimate under current conditions 

(Storlie et al. 2013, Chapter 2).  Such an approach does not explicitly incorporate 

mechanism, but draws statistical associations between empirical microclimate 

observations and spatial layers of environmental factors (Storlie et al. 2013, Chapter 2).  

Unlike the mechanistic approach, the correlative approach does not require a large 

number of parameters to be specified a priori, and it makes use of large datasets on 

microclimate that already exist (Storlie et al. 2013, Chapter 2).   

Microclimate estimates will need to meet three criteria to be relevant to the species in 

question and therefore suitable for constructing vulnerability analyses.  First, factors 

that decouple regional and local microclimates will need to be explicitly incorporated.  

Second, microclimate estimates need to be temporally resolved enough to quantify the 

effect of short-term weather events on the focal species (Welbergen et al. 2008, Reside 

et al. 2010).  Finally, microclimate estimates will need to be consistent with what we 

know of the current distribution and physiological constraints of the species in question.  

Meeting these criteria should produce estimates of microclimate which are biologically 

sensible and useful for vulnerability assessment. 

Here, I assess the correlative approach to downscaling weather data against these three 

criteria.  I compare three datasets that represent iteratively more complex statistical 

downscaling.  The first dataset (AWAP) is of coarsely resolved (5km resolution) data 

on daily Tmax and Tmin (Jones et al. 2009).  The second dataset (DS1) is a previously-

described statistical downscale (to 250m resolution) of the first dataset that incorporates 

factors that decouple regional and local climates (Storlie et al. 2013, Chapter 2).  I 

compare these two datasets against the known critical thermal maxima (CTmax, a hard 
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physiological limit on individual survival (Lutterschmidt & Hutchison 1997) of seven 

species of endemic frog (Family Microhylidae) in the Australian Wet Tropics (AWT) 

and find them wanting.  Both indicate thermal regimes that routinely exceed the focal 

species’ CTmax, yielding an impossible situation in which focal species thrive outside 

their fundamental thermal niche.  I proceed to further statistically downscale DS1 using 

an independent dataset of microhabitat temperature records from the focal species’ 

preferred diurnal shelter (underneath fallen logs in rainforest).  The resultant dataset 

(DS2) accurately predicts observed temperatures and, importantly, projects temperature 

regimes compatible with the thermal niche of all the focal species.  Indeed, the 

downscaled weather data place the focal species firmly within their fundamental 

thermal niche, suggesting that these results are now at a sufficient spatiotemporal scale 

as to be biologically valid and useful for constructing vulnerability analyses.  

Methods 

I used the AWT as a case study region to demonstrate the problems inherent with 

utilising broad-scale weather layers to construct microclimates.  To this end, I utilise a 

biological criterion to assess the accuracy of microclimate layers:  their ability to 

accurately portray a species fundamental thermal niche.  For the latter I ask a simple 

question:  do thermal regimes predicted by weather layers at known species’ occurrence 

points conform to known CTmax of the species? 

Comparisons are drawn between three representations of thermal regimes with 

increasing spatial resolution and complexity of statistical downscaling.  The AWAP 

layers represent the daily open-air Tmax at ~1.5m above the ground at 5km daily 

resolution (Jones et al. 2009).  The DS1 weather layers representing daily Tmax and Tmin 

are downscaled to 250m resolution from the AWAP layers, according to key 

environmental factors (Storlie et al. 2013, Chapter 2).  Lastly, I use the DS1 weather 

layers (Storlie et al. 2013, Chapter 2) in conjunction with a paired empirical dataset of 

air and microhabitat (underneath fallen logs) temperature records.  A linear model is 

employed to generate a relationship between daily air temperatures and microclimate 

Tmax.  Spatially mapped air temperature values from DS1 are then substituted into the 

model to form a region-wide spatial prediction of the daily thermal regime underneath a 

fallen rainforest log (DS2 layers).  For further details of the linear downscaling model 

see Appendix S3. 
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CTmax was determined for seven species of rainforest-restricted, terrestrially developing 

Microhylid frog: Cophixalus aenigma, C. bombiens, C. exiguus, C. hosmeri, C. 

infacetus, C. mcdonaldi, and C. neglectus.  The focal species are known to be 

nocturnally active and shelter underneath fallen logs during daylight hours (Williams et 

al. 2010, C. Storlie pers. obs.). Adult male frogs were identified by call and tested 

within 24 hours using a dynamic methodology (Cowles & Bogert 1944) to determine 

CTmax. For further details on the determination of the focal species CTmax see Appendix 

S4.   

Location data for species occurrences were derived from Williams et al. (2010) and 

supplemented with recent records vetted for positional and observer accuracy.  These 

occurrences were then overlaid on the weather layers in a GIS environment using the 

SDMTools package 1.13 (VanDerWal et al 2012) in the R Statistical Software Package 

v. 2.15.1 (R Core Team 2012) to extract absolute Tmax for all occurrence points of focal 

species.  Thirty-eight years of absolute Tmax at known occurrence points were then 

standardised against each species’ thermal limits by subtracting individual species’ 

CTmax from all records.  I used kernel density estimation to represent the distribution of 

temperatures for all focal species.  Density distributions were calculated across the 

entire range of predicted standardised temperatures and the total probability density 

falling above each species’ CTmax was calculated (i.e. the density above zero after 

standardisation).  These values represent the proportion of time (given the data) that 

CTmax is exceeded across the set of species occurrence locations for each species and are 

reported in Table 3.1. 
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Results 

In producing DS2, the linear model of microclimate Tmax fits the empirical temperature 

data well, giving us confidence in its ability to estimate microclimate Tmax from air 

temperature (Figure 3.1).  

 

Figure 3.1: Relationship 

between empirical 

microclimate (underneath a 

fallen log) Tmax and 

predicted microclimate Tmax 

from the linear microclimate 

model.  Black line represents 

a 1:1 relationship.   

 

 

For all focal species, the thermal regimes predicted by AWAP and DS2 are non-

overlapping; indicating substantial differences in temperature between datasets for all 

species (Figure 3.2).  Importantly, the DS2 spatial layers rarely produce temperature 

estimates that exceed focal species’ CTmax (Table 3.1, Figure 3.2).  This contrasts 

sharply with AWAP layers for which the majority of all occurrences exist in locations 

which exceed the focal species’ CTmax (Table 3.1, Figure 3.2).  The DS1 layers produce 

estimates of thermal regimes that exceed species CTmax for four of the seven target 

species (Table 3.1, Figure 3.2).   
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Figure 3.2:  Thermal regimes predicted by 

three sets of weather layers.  Temperature 

(x-axis) is standardised against individual 

species CTmax (zero is CTmax for each 

species).  The y-axis shows the probability 

density of temperature given each dataset, 

scaled against the maximum density for 

each species set. 

 
 

Summing kernel densities above individual species’ CTmax indicates an extremely low 

probability that any DS2 thermal regimes exceed the species known thermal limits (p < 

0.0002 in all cases: Table 3.1); while the same procedure using the AWAP data shows 

an extremely high probability that conditions at known occurrence sites exceed the 

species fundamental thermal niche (Table 3.1). 
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Table 3.1:  CTmax values and standard deviations (in °C) for all focal species, the number of 

occurrence records, and the proportion of time that mean CTmax is exceeded if I treat each 

of the datasets as truth. 

Species CTmax 
SD of 
CTmax 

N 
(CTmax) 

N 

(Occurrence 
Records) 

AWAP 

Prop. Above 
CTmax 

DS1 

Prop. Above 
CTmax 

DS2 

Prop. Above 
CTmax 

C. aenigma 28.09 2.31 3 148 0.9595 .2316 0.0002 

C. bombiens 32.36 3.16 10 58 0.9990 .1692 <0.0001 

C. exiguus 35.93 1.00 6 8 0.9874 <.0001 <0.0001 

C. hosmeri 31.73 0.41 4 86 0.9990 .0111 <0.0001 

C. infacetus 35.08 0.71 5 121 0.9990 .6355 <0.0001 

C. mcdonaldi 32.77 0.65 8 22 0.9999 <.0001 <0.0001 

C. neglectus 30.70 2.56 13 45 0.9985 .0213 <0.0001 

 

Discussion 

Currently available weather layers are powerful resources for ecological applications, 

yet in the context of vulnerability analyses they require adjustment to reflect 

microclimates species experience in situ.  The addition of key environmental 

information to the AWAP layers via statistical downscaling allows for the DS1 layers to 

very accurately depict thermal regimes of open-air conditions (Storlie et al. 2013, 

Chapter 2).  In some cases, this procedure alone is enough to produce estimates of 

thermal regimes that are within the species’ fundamental thermal niche.  Yet these 

layers are still not biologically sensible for a nocturnal species which shelters 

underneath logs during the day.  The addition of the second, simpler, downscale 

procedure to the DS1 layers produces estimates of temperatures underneath logs during 

the day.  The resultant dataset, DS2, produces a biologically meaningful depiction of 

thermal regimes that is consistent with the known thermal limits of all species. 

I have presented a clear method for deriving microclimate layers which are accurate 

with respect to empirically measured temperatures and which predict thermal regimes 

within the known physiological limits of resident species.  AWAP weather layers 

consistently predict thermal regimes at known occurrence points that exceed the focal 
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species’ CTmax, effectively placing individuals outside of their fundamental niche.  The 

microhabitat-specific DS2 weather layers generated here effectively never predict 

thermal regimes which exceed a focal species’ CTmax at a known occurrence point.  This 

finding strongly supports the notion that increasing the biological relevance of weather 

layers – by including the important effects of behaviour (microhabitat use) and 

buffering at multiple scales – is a key aspect of robust vulnerability assessments.   

As well as demonstrating the importance of downscaling coarsely resolved temperature 

data, this study also demonstrates the importance of using biological criteria (e.g. the 

physiological limits and distribution of species) to verify the resultant data.  While both 

mechanistic and correlative approaches can be used to estimate microclimate (for a 

mechanistic approach, see the recent global dataset of Kearney et al. (2014), they both 

need to meet biological criteria to be convincing.  In meeting biological criteria they can 

be more confidently used to estimate species’ vulnerabilities.   

Global climate change and other stressors will continue to threaten biodiversity into the 

foreseeable future, making the application of robust vulnerability analyses for species 

key to conservation outcomes.  Estimates of species’ exposure and sensitivity, which lie 

at the core of these analyses, must both then be accurate.  Inaccuracies in these 

estimates may result in biologically nonsensical outcomes and call into question 

inference on exposure that flows from such data.  Thus, we must generate accurate 

estimates of species’ thermal regimes to be confident in the outcome of species’ 

vulnerability assessments.  These results show that correlative techniques with explicit 

consideration of key abiotic and biotic factors provide biologically meaningful 

estimates of thermal regimes. 
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Chapter 4:  Can Less Be More?  Comparing Predictions 
of Species Abundance Using Presence-Only and 
Presence-Absence SDM Techniques. 

 

Introduction 

Robust estimates of species’ occurrence and abundance, and how these patterns vary 

through space, lie at the core of many ecological analyses.  For this reason, ecologists 

have long been concerned with modelling these properties of a population.  A major 

source of structural error in abundance datasets is species detectability, and so elegant 

models which account for variable detectability have been developed and can be used to 

infer the environmental drivers of abundance (e.g. MacKenzie et al. 2002, MacKenzie 

and Kendall 2002, Royle & Nichols 2003, Royle et al. 2005).  Unfortunately, these 

techniques are data hungry and require large standard-effort presence-absence datasets 

to separate the drivers of population detectability and abundance.  Detection invariant 

methods, on the other hand, have much looser requirements (e.g. ad hoc presence-only 

records can be used) and so there is typically more data available for detection invariant 

methods than for variable detection methods.  When the aim is to predict distribution or 

abundance patterns through space, it is critical to have datasets that sample a broad 

range of environments (Austin et al. 1994, Hernandez et al. 2006).  Because of their 

larger size, presence-only datasets will typically achieve a much broader sample of 

environments than presence-absence datasets. Yet it remains to be seen for spatial 

prediction if more data in a more flexible model is more powerful than fewer data run 

through a more elegant variable detection model. 

Detection rates for all species are less than one (Kery & Schmidt 2008) therefore any 

modelling technique which does not account for detection is almost certain to 

underestimate abundance (McKenzie et al. 2002). Detection rates are influenced by a 

variety of factors including: habitat type, species ecology, observer effects, weather and 

more.  To account for varying detection, occupancy models (which account for dynamic 

species detection rates as a function of environmental covariates) allow simultaneous 

estimation of species detection rates and abundance patterns (e.g. Royle & Nichols 
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2003).  These methods (hereafter referred to as ‘occupancy models’) rely on repeated 

surveys of locations across time and produce measures of abundance, corrected for the 

effect of imperfect detection (MacKenzie et al. 2002).  Occupancy models are a 

powerful technique for examining abundance patterns at sites with repeated survey 

effort, but logistical constraints mean that the number of sites surveyed in this manner 

will always be limited, so building robust associations between abundance and 

environmental covariates using an occupancy framework can be challenging. 

Detection-invariant models, on the other hand, can still be employed to estimate 

species’ distribution patterns without accounting for detectability (Austin 2002, Elith et 

al. 2006).  Ignoring detectability means that data requirements are much looser – a 

much broader range of localities can be represented – so building associations between 

abundance and environment is more readily achieved.  This flexibility means that 

detection-invariant models have become the tool of choice for modelling species’ 

distributions, and a broad array of numerical machinery is now available for fitting 

these models (Elith et al. 2006).  While detection-invariant occupancy models do not 

produce direct measure of abundance, the outputs of these models have been 

demonstrated to correlate well with abundance (VanDerWal et al. 2009c, Torres et al. 

2012, Van Couwenberghe et al. 2012).  In particular, presence-only detection-invariant 

models (e.g. MAXENT, Phillips et al. 2006) have been shown to predict empirically 

measured carrying capacity for a wide range of taxa (VanDerWal et al. 2009c).  Further, 

these models fit complex relationships between environment and occurence, and so are 

good at representing complex realities.   

Here, I draw comparisons between detection invariant MaxEnt models and variable 

detection rate abundance models and their capacity to predict empirical abundance data.  

I demonstrate the ability of these models to predict carrying capacity via comparison to 

a large dataset of repeated count surveys for a group of 7 skinks (Family: Scincidae) in 

the rainforests of the Australian Wet Tropics (AWT).  For the purposes of comparison, I 

gave each technique the same input data and linear covariate structure.  MaxEnt models 

were trained using only location data included in the occupancy models and allowing 

only linear and quadratic relationships between environmental variables and presence 

records.  I then removed these constraints on the MaxEnt model, giving it the full 

presence-only dataset, and allowing it to fit complex relationships.  When MaxEnt was 
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constrained to the same data and structure as the occupancy model, the occupancy 

model outperformed MaxEnt at predicting empirical abundance.  When the data and 

structure constraints were removed, however, MaxEnt had similar performance to the 

occupancy models.  In this case, then, the looser data and structural constraints of the 

detection invariant model made up for the fact that it didn’t explicitly account for 

detection. 

Methodology 

I proceeded to assess the ability of two distinct modelling approaches (detection variant 

/ invariant) to predict measured count data for a group of 7 species.  To achieve this 

goal, I used quantile regression (95th percentile, see Cade et al. 1999) to relate the upper 

limit of empirically measured abundance to the output of each model.  Because 

detection is imperfect and varies through time, multiple surveys will tend to exhibit 

negative departures from some maximum abundance (i.e. carrying capacity).  Hence I 

focused on the prediction of the 95th percentile of observed abundance, as opposed to 

the mean observed abundance.   

Two-hundred twenty one sites were surveyed in the WTWHA which covered key 

environmental gradients (latitude, elevation, rainfall, and temperature) for the presence 

and abundance of a group of rainforest skinks.  The focal species of these surveys were 

(Family Scincidae): Carlia rubrigularis, Gnypetoscincus queenslandiae, Lampropholis 

coggeri, L. robertsi, Saproscincus basiliscus, S. czechurai, and S. tetradactyla.  One-

person hour active surveys (see Williams et al. 2010) were repeated at all sites 

(minimum 3 repeats, maximum 14) over a 13 year period, ending with a collection of 

1,215 surveys with a count of all 7 species for each.  Count data was averaged by 

individual species at each site across surveys; then average counts were made 

proportional to the maximum average count across all sites.   

Variable detection occupancy models and detection invariant, presence-only MaxEnt 

models were employed to relate model outputs to the empirically measured abundance 

data.  First, presence-only MaxEnt models are employed (Phillips et al. 2006). Although 

they predict ‘environmental suitability’ of the landscape for a species, prior research 

(VanDerWal et al. 2009c, Torres et al. 2012) has shown this metric relates to carrying 

capacity.  MaxEnt models were developed for each species using presence-only data 
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from Williams et al. (2010).  Initial MaxEnt models were trained using only presence 

records from the sites where repeated surveys were conducted, and were limited to 

linear and quadratic model features (i.e. a linear regression structure referred to 

hereafter as ‘Occupancy Equivalent MaxEnt models’).  Next I fit unconstrained MaxEnt 

models which were trained utilising complex features and the complete complement of 

presence-only records from Williams et al. (2010) (referred to hereafter as ‘Saturated 

MaxEnt Models’).  Finally, I compared these outputs to those from occupancy models 

fitted to the same data: using the detection / non-detection data from the 1,215 surveys 

conducted (referred to hereafter as ‘Occupancy Models’).  In this case, abundance is 

modelled with the technique of Royle & Nichols (2003) implemented in R Statistical 

Software Package v. 2.15.1 (R Core Team 2012) with the ‘unmarked’ package (Fiske et 

al. 2012).   

Selected environmental covariates for the models (Occupancy, Occupancy Equivalent 

MAXENT, and Saturated MAXENT) were the same in all instances.  Bioclimatic layers 

of Mean Maximum Temperature of the Warmest Month, Mean Annual Temperature 

Coefficient of Variation, Precipitation of the Wettest Month, and Mean Annual 

Precipitation Coefficient of Variation were selected from a pool of eight commonly 

employed on the basis of minimising co-variation (see Williams et al. 2010, 

VanDerWal et al. 2009c).  Temperature and rainfall layers were derived from Xu & 

Hutchinson (2011).  For the occupancy models, three daily environmental covariates 

were selected to model detection as a function of the environment: daily maximum 

temperature, daily temperature range, and daily rainfall derived from Jones et al. 

(2009).  As a supplement, I also undertook this entire process (all models: Occupancy, 

Occupancy Equivalent MaxEnt, and Saturated MaxEnt) using an alternative set of 

climate and weather layers which have been statistically downscaled to increase their 

accuracy when predicting empirical temperatures (Storlie et al. 2013, Chapter 2).  By 

constructing two versions of each model, where the only difference was the accuracy of 

input weather data, I was able to characterise the effect of inaccurate spatial layers on 

model outcome for all three model types.   

For the occupancy model, all possible unique combinations of abundance (up to 4 

covariates) and detection covariates (up to 3 covariates) were generated for a total of 

1954 model formulae per species.  AIC was calculated for each model, and the model 
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with the highest AIC is then chosen for each species.  MaxEnt models were based on all 

four climate layers and optimised to balance omission and commission rates:  AUC was 

calculated for all MaxEnt models to assess their fit to the data. 

Finally, model output at each sampling site was assessed against the scaled count data 

from each site for all species.  Since counts were scaled as a proportion of carrying 

capacity, quantile regression (95th percentile) is employed to relate the two metrics.  

Likelihood ratio pseudo-r2 (Magee 1990) was used to demonstrate improvement over a 

null model for both modelling techniques.  This measure of goodness-of-fit can be used 

to demonstrate which model has more explanatory power, since the independent 

variables for both (scaled counts) were the same. 

Results 

Occupancy models of species abundance patterns varied idiosyncratically in their 

predictive power (as assessed by Magee’s Pseudo-r2 measure of fit) between 0.3 and 0.7 

(Table 4.1).  Presence-only (MaxEnt) models of species environmental suitability 

attained universally high AUC scores (above 0.85, indicating a good fit for all models) 

independent of features utilised and number of sites included (Table 4.2).   

Both occupancy and MaxEnt models demonstrated variable fit to empirical count data 

across species (Table 4.3).  Several notable trends were observed concerning the fit of 

models to the abundance data; first occupancy models outperformed (have higher 

Pseudo r2 values) Occupancy Equivalent MaxEnt models (Figure 4.1, Table 4.3).  The 

addition of further presence-only records and complex model features to the Saturated 

MaxEnt model improved their fit to the data in all cases except one (Figure 4.2).  

However, complex model features and additional sites did not allow detection invariant 

models to fit the data better than occupancy models (Figure 4.3). 

The majority of the relationships between model output and empirical measured 

carrying capacity were positive for both occupancy and MaxEnt models (Figures 4.4 – 

4.6).  Predictions of abundance, as formed by relating occupancy and MaxEnt model 

outputs to empirically measured carry capacity, were nearly equivalent between the two 

approaches (Figures 4.7).  Estimates of abundance were overwhelmingly positive 

departures from measured abundance (Figures 4.8 and 4.9).  Both modelling approaches 
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predicted variable levels of abundance at sites where measured abundance is near zero 

(Figures 4.8 and 4.9).  Results of models based on the downscaled layers of Storlie et al. 

(2013, Chapter 2), and how they compared to the above models, give qualitatively 

similar results and can be found in the Appendix S5. 

Table 4.1:  Variable Detection Occupancy Model Summary.  The model formulae are 

abbreviated, the initial letter ‘d’ describes the detection variables which are:  d1 – Rainfall 

of Day Before Survey, d2 – Max Temperature of Day Before Survey, d3 – Temperature 

Range of Day Before Survey.  The letter ‘s’ describes the state (abundance) variables which 

are: s1 – Mean Annual Temperature Coefficient of Variation, s2 – Mean Maximum 

Temperature of the Warmest Month, s3 – Precipitation of the Wettest Month, s4 – Mean 

Annual Precipitation Coefficient of Variation.  Model r2 values are determined by the 

likelihood ratio test of Magee (1990). 

Species Model Formulae Model r2 AIC 
N  

Sites 
Found 

N  
Surveys 
Found 

LAMROBE ~ d2:d3 ~ s1 + s2 +s3 +s4 + s2:s3 + s1:s4 0.389 148 15 29 

LAMCOGG ~ d2+ d2:d3 ~ s1 + s4 +s1:s4 0.635 1405 206 715 

GNYQUEE ~ d2 + d3 + d2:d3 ~ s1 +s2 +s3 +s4 0.704 1245 151 512 

SAPCZEC ~ d2 + d2:d3 ~ s1 + s2 + s3 0.42 277 31 50 

SAPTETR ~ d2 ~ s1 + s2 + s4 + s2:s3 0.409 649 71 118 

SAPBASI ~ d1 + d2 + d3 + d2:d3  
~ s1 + s2 + s4 +s2:s3 + s1:s4 0.711 924 114 270 

CARRUBR ~ d2 + d2:d3 ~ s1 + s2 +s3 + s1:s4 0.559 1219 180 793 

 

Table 4.2:  Saturated MaxEnt Model Summary. 

Species Threshold Omission Rate N Occurrences AUC 

CARRUBR 0.099 0.009 470 0.861 

GNYQUEE 0.078 0.003 324 0.919 

LAMCOGG 0.081 0.009 331 0.883 

LAMROBE 0.014 <0.001 39 0.987 

SAPBASI 0.061 0.021 291 0.889 
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SAPCZEC 0.024 0.019 53 0.952 

SAPTETR 0.056 <0.001 108 0.926 

 

 

Table 4.3: Quantile Regression Carrying Capacity Model Summary. 

Species Occupancy Model 
Pseudo r2 

Occupancy Equivalent 
MaxEnt Model  

Pseudo r2 

Saturated MaxEnt 
Model Pseudo r2 

LAMROBE 0.998 0.472 0.852 

LAMCOGG 0.561 0.067 0.343 

GNYQUEE 0.711 0.668 0.464 

SAPCZEC 0.836 0.531 0.656 

SAPTETR 0.764 0.088 0.610 

SAPBASI 0.775 0.253 0.395 

CARRUBR 0.294 0.195 0.002 
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Figure 4.1:  Comparing 

pseudo r2 values for the fit of 

model outputs to the scaled 

count data, occupancy model 

values on the x-axis, 

occupancy equivalent 

MaxEnt model values on the 

y-axis. 

 

Figure 4.2:  Comparing 

pseudo r2 values for the fit of 

model outputs to the scaled 

count data, saturated 

MaxEnt model values on the 

x-axis, occupancy equivalent 

MaxEnt model values on the 

y-axis. 
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Figure 4.3:  Comparing 

pseudo r2 values for the fit of 

model outputs to the scaled 

count data, occupancy model 

values on the x-axis, 

saturated MaxEnt model 

values on the y-axis. 
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Figure 4.4:  Fit of occupancy model output (x-axis) to scaled count data (y-axis).  The dashed red 

line represents the fit of the model output to the 95th percentile of count data.  The dashed blue 

lines represent the fit of the model output to the mean of the count data. 
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Figure 4.5:  Fit of saturated MaxEnt model output (x-axis) to scaled count data (y-axis).  The 

dashed red line represents the fit of the model output to the 95th percentile of count data.  The 

dashed blue lines represent the fit of the model output to the mean of the count data.   
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Figure 4.6:  Fit of occupancy equivalent MaxEnt model output (x-axis) to scaled count data (y-

axis).  The dashed red line represents the fit of the model output to the 95th percentile of count 

data.  The dashed blue lines represent the fit of the model output to the mean of the count data.   
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Figure 4.7:  Comparison of abundance as predicted by the saturated MaxEnt model (x-axis) and 

abundance as predicted by the occupancy model (y-axis).  
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Figure 4.8:  Comparison of measured carrying capacity (x-axis) to predicted abundance from the 

Saturated MaxEnt model (y-axis). 
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Figure 4.9:  Comparison of measured carrying capacity (x-axis) to predicted abundance from the 

occupancy model (y-axis). 
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Discussion 

Increasingly, circumstances conspire to necessitate the rapid assessment of species 

abundance patterns across a number of biomes.  Complicating this issue is the fact that 

many species which are believed vulnerable are little known and frequently located in 

areas with limited access to conservation resources.  This ‘perfect storm’ of conditions 

should however not be viewed as roadblock to species’ assessment.  Correlative species 

distribution models (SDMs) are capable of extracting immense amounts of biologically 

relevant information from species about which otherwise little is known (Hernandez et 

al. 2006).  These approaches work to estimate the relationships species share with their 

physical environment and the interplay between environment, individual fitness, and 

population vulnerability (Austin 2002, Austin 2007).  Although limited in their ability 

to forecast into novel spatial and temporal environments, this and prior studies 

(VanDerWal et al. 2009c) have demonstrated the power of detection invariant, 

presence-only SDMs to predict population level features of species (i.e. carrying 

capacity). 

‘Presence only’ SDMs (such as MaxEnt) rely on relatively little information to develop 

their predictions.  All that is needed are occurrence records, as opposed to repeated 

sampling to demonstrate ‘absence’; and spatial layers which describe environmental 

factors that influence fitness (Phillips et al. 2006, Elith et al. 2006).  Both of these 

sources of data are frequently readily available, even for rare species.  Furthermore, 

advances in statistical downscaling allow globally available coarse resolution climate 

layers to be utilised at a regional or local scale (Storlie et al. 2013, Chapter 2).  

‘Presence-absence’ models of species abundance, on the other hand, rely on repeated 

surveys across seasons, years, and key environmental gradients to be appropriately 

parameterised.   

Modelling variable detection rates for species requires repeat surveys as well as the 

inclusion of extra covariates in models; which will not be universally appropriate for all 

species under consideration (Austin 2002, Storlie et al. 2014, Chapter 3).  For example, 

heliothermic species may respond to availability of sunspots on the rainforest floor, 

while those dwelling under fallen logs will likely not.  This means parameterising 

models for individual species, or at least functional groups.  Further, daily estimates of 

these variables can be difficult to find or generate.  Still, logistic-regression techniques 
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dependent upon large presence-absence datasets may be necessary when abundance and 

detection co-vary strongly (MacKenzie & Kendall 2002).  

Both the presence-absence and presence-only modelling techniques yield near 

equivalent estimates of abundance, despite differences in model structure and data for 

model training.  This would indicate that species detection rates are not responding 

strongly to the environmental covariates used to model detection.  While attempting to 

make the two models as equivalent as possible (in terms of covariates utilised) they are 

fundamentally different in terms of algorithms employed and their treatment of 

detectability.  The difference between occupancy equivalent MaxEnt and Saturated 

MaxEnt model fit to data show that complex features and an availability of presence-

only records allow presence-only models to perform almost as well as presence-absence 

models, when detection isn’t strongly affected by the covariates.   

This study demonstrates that both modelling techniques produce accurate estimates of 

carrying capacity for a range of species with varying ecological characteristics.  

Although not effective for all species modelled (e.g. C. rubrigularis and L. coggeri), 

this result may be explained by the geographic extent modelled for these species as 

opposed to the modelling techniques themselves (VanDerWal et al. 2009b, also see 

Brotons et al. 2004).  Importantly, presence-only models of species with restricted 

geographic ranges and few presence records still correlate strongly with population 

carrying capacity.  I conclude that presence-only SDMs are capable of forming near-

equivalent predictions to the more data hungry presence-absence techniques and 

therefore are a viable alternative to predicting abundance patterns of species for which 

repeat survey data are not available.   
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Chapter 5:  The Legacy of Past Land Clearing on 
Climate Space: A Primer for Global Warming. 

 

Introduction 

The spatial distribution of a species is often dependent upon, or correlated with, the 

climate to which that species is exposed.  In particular, thermal exposure plays a key 

role in regulating metabolism which influences demographic processes including 

survivorship and reproductive success, amongst others (Kearney & Porter 2009).  

Global climate change has altered climate means and the frequency of extreme events, 

as well as altering the spatial distribution of climates upon which species depend (Meehl 

& Tebaldi 2004, IPCC 2014).  As climates move through geographic space as a result of 

warming, concomitant shifts in species ranges (through both altitude and latitude) have 

been observed (Parmesan 2006).  Worryingly, climate change proceeds largely 

unabated and is causing the disappearance of some climates at global and local scales 

(Burrows et al. 2014).  Moreover, disappearing climates in tropical and subtropical 

regions are associated primarily with cool, upland locations (Williams et al. 2007), 

which are often associated with high levels of diversity and species endemism (Graham 

et al. 2006, VanDerWal et al. 2009a, Laurance et al. 2011b).  Species associated with 

these climate zones will be forced then to adapt to changing circumstances, or face 

drastic population losses and the possibility of extinction.   

Vegetation plays a key role in moderating the temperatures which species experience in 

the environment (Kearney et al. 2009).  Climate models employed to predict the spatial 

distribution of shifting and disappearing climates are often formed at large scales and 

without reference to this key buffering factor (Williams et al. 2007, but see McAlpine 

2009).  At local scales, vegetation cover ameliorates extreme temperatures near the 

ground (Scheffers et al. 2013a).   Rainforest canopies in particular are highly effective 

at buffering the land surface from heating (Shoo et al. 2011, Storlie et al. 2013, Chapter 

2), and stratify temperatures experienced by species as a function of height, providing a 

mosaic of thermal habitats over small spatial scales (Scheffers et al. 2013a).  At larger 

scales, vegetation plays a pivotal role in regulating carbon and water cycles, which in 
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turn influence regional climates (Pielke et al. 2002, Cramer et al. 2001).   Based on this 

knowledge, it is reasonable to assume that deforestation may operate synergistically 

with climate warming to increase temperatures at the ground level, and accelerate the 

disappearance of already threatened climate spaces and species. 

The impact or legacy of deforestation on climate space, and dependent species, will be a 

function of the extent and spatial pattern of deforestation with respect to extant climate 

space.  The impacts of deforestation extend beyond the simple removal of habitat or 

climate space; since the spatial configuration of deforestation will influence levels of 

regional connectivity, fragmentation, and increase ‘edge’ space of available climates.  

The extent of fragmentation will in turn dictate species’ ability to track their preferred 

climate through geographic space (Travis 2003, Thomas et al. 2012).  Furthermore, the 

local impact of deforestation on climate may depend upon topographic factors such as 

elevation, slope, and aspect.  These factors have a strong influence on local climate and 

weather patterns through their relationship with insolation and prevailing winds (Shoo 

et al. 2011).  Knowledge of how environmental factors modify the impact of 

deforestation on climate envelopes merits explicit consideration when planning land-use 

or targeted restoration of vegetation to mitigate and reconnect already altered habitats. 

I proceed to quantify the legacy of deforestation on climate space using region wide 

spatial datasets for the Australian Wet Tropics – a highly diverse tropical forest system 

severely threatened by climate change (Williams et al. 2003).  By combining past 

estimates of vegetation clearing for the region with novel statistically downscaled 

weather maps that are dependent upon vegetation density, I estimate the spatial pattern 

of daily maximum temperature (Tmax) that would have existed had rainforests not been 

cleared from the region.  I demonstrate the fragmentation and loss of connectivity 

between climate spaces as a result of forest clearing.  Further, I describe differential 

effects of deforestation based on the location and extent of clearing.  The alteration of 

climatic envelopes resulting from deforestation will exacerbate the effect of 

anthropogenic climate warming on species distributions leaving them further 

fragmented and disconnected.  However, well planned targeted restoration of degraded 

habitats remains a viable option for restoring climate space and buying species time to 

adapt to changing climatic conditions.    
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Methods 

The Australian Wet Tropics (AWT) is located approximately between 15 and 20 

degrees south latitude and 144.5 and 147.5 degrees east longitude (Figure 5.1).  The 

vegetation of the AWT consists largely of a dry sclerophyll matrix which isolates 

mountainous rainforest patches from one another (Nix 1991).   Montane rainforests are 

known regionally for high levels of biodiversity and endemism, associated with the 

cool, stable climate which dense canopy cover provides (Graham et al. 2006).  The 

AWT experienced large scale land clearing (~22% of regional cover, DSITIA 2014) of 

rainforest areas between ca. 1750 and 1988, after which remaining rainforest areas were 

largely protected by declaring the area a World Heritage site.  The majority (~87%) of 

this clearing is located in two spatially disjunct subregions, the Atherton Uplands 

(hereafter, AU) and the Cairns-Cardwell Lowlands (hereafter, CCL) (Figure 5.1).   

My goal is to determine the legacy effect of land-clearing on available climate space for 

dependent species. To achieve this I combined interpolated models of weather which 

explicitly link vegetation cover to daily maximum temperature (Tmax) with vegetation 

clearing scenarios.  Two vegetation scenarios were employed to quantify the effect of 

vegetation on daily weather and available climate space; a ‘preclear’ scenario, which 

describes distribution of rainforest across the study region before European settlement 

(ca. 1750) and a ‘remnant’ scenario detailing the extant distribution of rainforests 

(DSITIA 2014).    

Daily Tmax is estimated for both scenarios for the study region for the period 1976 to 

2005 according to the method of Storlie et al. (2013, Chapter 2).  Here, a Boosted 

Regression Tree statistical downscaling procedure linked 5km daily weather estimates 

to 250m resolution environmental factors and empirical point measurements of daily 

temperature (Storlie et al. 2013, Chapter 2).  The influence of vegetation cover was 

modelled using a 30 year average of Foliage Projective Cover (FPC) product derived 

from satellite imagery for the period 1976 to 2005 (DNRW 2008).  The preclear 

scenario required estimation of FPC for areas subject to deforestation and was 

calculated by randomly sampling from a frequency distribution of FPC in areas which 

are classified as rainforest in both the preclear and remnant scenarios.  
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Figure 5.1:  Left panel, green areas represent the current extent of rainforest in the 

AWT.  The upper box within the map encompasses a portion of the AU subregion, 

while the lower box within the map encompasses a portion of the CCL subregion.  

AU subregion, left to right:  Current Mean Maximum Temperature of the Warmest 

Month (MMTWM), Preclear MMTWM, Difference (Current – Preclear).  CCL 

subregion, left to right:  Current MMTWM, Pre-Clear MMTWM, Difference 

(Current – Preclear).  Lefthand legends are MMTWM, righthand legends are 

MMTWM difference.  All units are °C.   
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Daily weather layers for both scenarios were then aggregated to represent a 30 year 

average of Mean Maximum Temperature of the Warmest Month (MMTWM).  I 

proceeded to derive estimates of percentage change in climate space (characterised by 

0.5°C bands of MMTWM) using the preclear scenario as a baseline.  This is done for 

the whole region, and separately for two heavily deforested subregions; AU and CCL. 

All mapped layers used in analyses are sourced or derived at a resolution of 0.0025 

degrees (≈250m).    

The cumulative area below each 0.5°C band of MMTWM was calculated in hectares for 

both scenarios of vegetation extent.  Finally, metrics describing the fragmentation of 

thermal environments were calculated at the subregional level for both vegetation 

scenarios using the ‘ClassStat’ function in the SDMTools package (VanDerWal et al. 

2012) in the statistical software R (R Core Team 2012). 

Results 

Deforestation post ca. 1750 resulted in the loss of 22% of rainforest cover in the region. 

The losses of rainforest are not evenly distributed throughout the region, but are 

concentrated into two geographically distinct subregions.  These were the AU and CCL 

subregions, which together experienced 87% of the collective deforestation within the 

region, corresponding to a loss of 29 and 42% of rainforested areas in these two 

subregions respectively (Table 5.1).   

Deforestation has a discernible effect on the distribution of regional and subregional 

climates.  At the regional level MMTWM increased by 0.67°C; greater shifts were 

apparent for localised areas subjected to more extensive deforestation (~0.86-0.90°C, 

Table 1, Figure 5.1).  Deforestation results in small proportional losses of the coolest 

climate spaces in the region, and very large proportional gains in the hottest parts 

(Figure 5.1).  This pattern is evident at both the regional and subregional level. 

The extent to which deforestation manifested as a change in the available area below a 

particular maximum temperature depends on the critical thermal threshold but is non-

trivial in some circumstances (Figure 5.2). For example, deforestation reduces the 

available area below the historical mean MMTWM for AU (i.e. 25.5°C ) and CCL (i.e. 

29.5°C) by more than 50,000 ha (40%) and 60,000 ha (50%) respectively (Figure 5.3). 
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Deforestation renders thermal environments more fragmented than they were in the past 

(Figure 5.4).  Smaller values of aggregation index and larger values of landscape 

division index for the remnant rainforest scenario indicate a landscape with fewer 

similar adjacencies of climate space.  This indicates that remnant rainforest climate 

envelopes pose greater barriers to dispersal than those of the preclear scenario (but note 

the similar values of aggregation index for the CCL subregion, Figure 5.4).   

 

Table 5.1:  Summary of rainforest cover for preclear and remnant vegetation scenarios, 

separated by subregion. 

 Subregion 

 AWT CCL AU 

Preclear Rainforest Extent (10^3 

Hectares) 
770 192 247 

Current Rainforest Extent  

(10^3 Hectares) 
593 110 174 

Percent Deforested 22 42 29 

Current MMTWM (°C) 27.37 30.24 26.42 

SD of Current MMTWM (°C) 2.81 1.41 2.19 

Preclear MMTWM (°C) 26.70 29.33 25.55 

SD of Preclear MMTWM (°C) 2.66 1.33 2.12 

Difference of MMTWM 

(Current – Preclear) 
0.67 0.91 0.86 

Difference of SD of MMTWM 

(Current – Preclear) 
0.15 0.08 0.08 
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Figure 5.2: Comparative 

distribution of Mean Maximum 

Temperature of the Warmest 

Month (MMTWM) for (A) the 

whole region, and (B-C) two 

subregions where deforestation 

has been most extensive under 

two alternative scenarios of 

vegetation extent: preclear (blue 

bars) and current (red bars). Solid 

vertical lines represent means of 

the respective distributions.   The 

black line represents the 

proportional change in the extent 

of climatic envelopes 

characterised by 0.5°C bands, 

using the preclear extent as a 

baseline. 

A 

 
B 
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Figure 5.3: Impact of 

deforestation on available area of 

thermal habitat below different 

thresholds of Mean Maximum 

Temperature of the Warmest 

Month (MMTWM) under two 

alternative scenarios of vegetation 

extent: preclear (blue lines) and 

current (red lines). The black line 

represents the proportional change 

in the extent of cumulative area 

below a climatic threshold, using 

the preclear extent as a baseline. 
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Figure 5.4:  Impact of deforestation on the fragmentation of thermal environments as 

measured by Mean Maximum Temperature of the Warmest Month (MMTWM) under two 

alternative scenarios of vegetation extent: preclear (blue dots) and current (red dots). 
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Discussion 

By combining alternate vegetation scenarios and weather maps in a statistical 

downscaling framework, I demonstrate that deforestation has a strong effect on climate 

space in the study region.  Moreover, I demonstrate that the change in climate space 

resulting from deforestation is one of overall warming and fragmentation; these changes 

act as a primer for global warming, further exacerbating its effects on species 

distribution especially when the region has already seen ~1°C of warming due to 

climate change (IPCC 2014). Although this study is limited to a small and well 

protected region, the AWT, it is likely the effects of deforestation on climate envelopes 

will scale with the proportion of the landscape which has been cleared in other less 

protected or more deforested areas (Bush 2002, Feddema et al. 2005, Bala et al. 2007).  

This indicates a clear role for forest protection in minimising potential climate change 

impacts on species. 

The environmental conditions which species experience in situ, as well as their 

‘exposure’ play a key role in determining their distributional patterns.  Localised 

deforestation alters climatic exposure, increasing the Tmax that species experience.   

Thermal tolerance will then determine if a species continues to utilise the altered local 

climate, or in the case of thermally sensitive species, is forced to shift through 

geographic space to remain within its fundamental thermal niche.  Changes to the 

exposure of a species Tmax regime will likely affect species even before they reach their 

critical thermal maxima.  Specifically, exposure to daily weather patterns has been 

demonstrated to affect species distributions across seasons and years (Reside et al. 

2010).  Moreover, differential sensitivity between demographic classes means 

individuals within species may react differently to altered exposure (Welbergen et al. 

2008, Sheffers et al. 2013b).   

Deforestation has greatly reduced the climatic area available for species to utilise.  The 

proportion by which a climatic envelope has been reduced is a function of the 

geographic location of clearing with respect to other environmental factors (e.g. 

elevation, slope, aspect).  For thermally sensitive species, a reduction in the area of 

available climate will result in a concomitant decrease in distributional area and 

population size for the species.  In the AWT, this is particularly concerning because the 

AWT is home to a variety of endemic species with narrow thermal tolerances and small 
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distributional areas.  Prior studies suggest this is a result of the relative cool and stable 

climates these species have experienced over the past ~120,000 years of glacial 

expansion and contraction (Graham et al. 2010).  How the loss of climatic envelopes 

will translate to species distributional areas is still somewhat unclear, since many 

species thermal tolerances are not understood (but see Krockenberger et al. 2012, 

Moritz et al. 2012, Storlie et al. 2014, Chapter 3). 

 

The fragmentation of suitable habitat as a result of deforestation may have profound and 

differential impacts on species distributions.  One key factor that will determine the 

impact of climate fragmentation on species is dispersal ability (e.g. Barton et al. 2012).  

Increased levels of fragmentation will make it more difficult for non-vagile species to 

track their thermal environments as conditions change (Travis 2003).  Additionally, 

fragmentation often drives the rapid evolution of lowered dispersal, so, following 

fragmentation, connectivity continues to diminish over time (Murrell et al. 2002).   

Species which exhibit seasonal habitat preference may also experience climatic barriers 

to dispersal.  Further, species which must adapt to changing climate will also have 

greater difficulty migrating altitudinally or latitudinally to do so (Atkins & Travis 

2010).  The loss of cumulative area below any particular climate threshold as a result of 

deforestation may also have profound impacts on species abundance patterns and their 

dynamics.  Reduction in available climatic area will also likely result in reduced 

availability of resources.  Decreases in population size as an effect of smaller areas and 

fewer resources will leave populations more vulnerable to loss of genetic diversity or 

extinction in smaller patches, potentially creating ‘sink’ populations.  Moreover, an 

increasingly fragmented thermal landscape may result in a reduction of successful 

immigrants, destabilising metapopulation stability and hastening the process of 

extinction for populations remaining in small patches.   

 

I show that the legacy of deforestation is one that is likely to exacerbate range losses 

and accelerate projected impacts of climate change. It is notable that shifts in 

temperature resulting from deforestation are on par with, but additional to, current 

levels of global warming in the region (IPCC 2014).  Results may be conservative 

because our local climate models do not yet account for other factors such as moisture 

stress or climate-land surface feedbacks (McAlpine et al. 2009).  Nonetheless, our 

results reaffirm the importance of retaining extant vegetation cover (e.g. Mackey et al. 
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2014), but also point to the importance of reinstating vegetation to reduce range losses 

and buy time for climate change adaptation.  Clearly, there are major barriers to 

realising large scale restoration needed to effectively reverse the legacy of deforestation 

(e.g. resources and land-use). Even in this well protected system, the extent of 

deforestation (~177,000 hectares) greatly exceeds the scale of most current reforestation 

initiatives – which are typically a few hectares in extent (Catterall & Harrison 2006). 

However, a more tangible goal might be to increase the local extent of cool 

environments that are expected to have a strong bearing on the persistence of species 

within contracted ranges, or to revegetate corridors and thereby decrease fragmentation 

and reduce climatic barriers to dispersal (e.g. Shoo et al. 2011). 
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Chapter 6:  General Discussion & Synthesis 

 

While there exists an immense variety of spatial data available for use in ecological 

analyses (in particular gridded climate and vegetation data) its use must be considered 

carefully before any analysis is undertaken.  I have demonstrated that ‘available’ data 

and ‘appropriate’ data are not synonymous.  For example, distributional areas predicted 

by SDMs using freely available spatial layers showed little difference when modelled 

with more accurate, non-spatially biased data (Chapter 2).  However, the same freely 

available layers would indicate entire populations of species thriving outside their 

fundamental thermal niche (Chapter 3).  In this instance, improving data before 

modelling had a small effect on model outcome, but a large effect on increasing 

concordance with ecological theory.  This is not to say that currently existing resources 

such as AWAP (Jones et al. 2009) and ANUCLIM (Xu & Hutchinson 2011) layers are 

without use in deriving species-environment relationships.  My work has shown that 

currently available resources such as these are vital stepping stones on the path to 

deriving accurate and biologically relevant data for spatially explicit ecological 

questions.  Moreover, statistical downscaling techniques which improve the accuracy of 

these source data reveal important associations between environmental factors, such as 

vegetation cover and local climatic regimes. 

Summary of Major Findings 

Statistical Downscaling to Increase Accuracy and Reduce Bias in Climate 

Layers 

I clearly demonstrate that spatial weather estimates created at a fine resolution (250m or 

finer), are unlikely to be accurate in topographically complex systems unless they take 

into account key factors which decouple local and regional processes (Figure 2.2).  

Moreover, the bias displayed by current best practice climate layers is not distributed 

equally in geographic space (Chapter 2, Figure 2.3).  While local and regional climatic 

patterns are tightly correlated, vegetation is an important factor that buffers localities 

from high temperatures (Chapter 2, Results, Shoo et al. 2011).  Elevation is also 

identified as an important factor that decouples broad and fine scale climate (Chapter 2, 
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Results, Shoo et al. 2011).  However, this bias is likely associated with the placement of 

weather recording stations and a local association between elevation and dense 

rainforest vegetation.  

In a statistical downscaling framework, spatial variation in climate is no longer 

determined solely by Euclidean distance (as is the case for the thin-plate spline 

technique of ANUCLIM).  Instead, spatial correlations of climate are mediated by a 

number of environmental factors, resulting in climate models with greater levels of 

turnover over smaller distances than a spline technique.  Stated simply, statistically 

downscaled weather and climate layers reveal the environment to be more 

heterogeneous than previously estimated.  The environmental factors which structure 

thermal regimes at a local scale will likely depend on the peculiarities of the landscape, 

and as such, statistical downscaling of climate models in other regions may rely upon 

environmental factors that differ from those selected here.  The necessity of 

downscaling climate depends upon the scale of the analysis in question, for example, 

the costs of improving continental scale assessments of biodiversity patterns by 

downscaling climate to 250m resolution may exceed the benefits of improvement in 

predictive strength at a finer scale. 

The spatial bias of climate layers identified herein will not be confined to this study 

region only, but to other systems which have similar environmental characteristics or 

sparsely placed climate observatories (e.g. Chen et al. 1999, Scherrer et al. 2011).  

Statistical downscaling represents an excellent platform to reduce spatial bias, but the 

capacity for downscaling to improve weather layers is still heavily dependent upon 

saturating key environmental gradients with climate recording stations.  When identified 

spatial bias of climate layers is minimal, statistical downscaling may be unnecessary, 

even when accuracy of climate layers to represent empirically measured temperatures is 

low.  When inaccurate, but non-biased climate layers are used in SDM the species-

environmental responses (SERs) identified will be incorrect; but they should not affect 

the spatial distribution predicted when mapped back onto the climate layers used to 

construct them. 
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Impacts of Spatially Biased Climate Layers on SDM Outcomes 

Spatially biased climate layers cause two primary problems when implemented in SDM 

analyses:  Firstly, they mischaracterise the SERs if the species in question is distributed 

across the gradient of bias.  Secondly, and as a result of mischaracterising SERs, these 

SDMs are likely to incorrectly estimate the species distribution in geographic space.  

My research reveals that biased spatial climate layers result in species distributions 

which are of approximately similar distributional area, but which differ markedly in 

their shapes, level of fragmentation, and connectedness when compared with 

distributions predicted by non-biased spatial layers (Figure 2.4).   

When the goal of an SDM exercise is to gain further understanding of how species’ 

utilise environmental space, the use of spatially biased climate layers to infer SERs is 

not advisable.  Biased SERs skew our understanding of a species niche, potentially 

leading to misinterpretation of environmental factors which limit abundance and 

distribution of species.  Correlative SDMs may be used to gain an appreciation of 

environmental factors which limit species fitness, distribution, or abundance before 

undertaking more complex mechanistic models.  In these cases, spatially biased climate 

layers may misidentify the magnitude of a variables importance, resulting in 

parameterising physiological models that may have limited influence over individual 

fitness and hence species distributional limits.  Hence, biased SERs and altered 

distributional patterns may flow on to affect other follow-on analyses.   

Species vulnerability is strongly associated with the spatial structure of their 

distribution.  When other factors like distributional area and population abundance are 

equal, a more fragmented, irregular, or less connected distribution indicates a species or 

population at a higher level of threat (Laurance et al. 2002, Laurance et al. 2011a).  

Fragmented or irregular distributions will possess more ‘edges’, which frequently 

display reduced environmental suitability for species when compared with locations 

within the core of their range.  Further, less connected populations may suffer from 

decreased gene flow (Travis 2003, Dixo et al. 2009), potentially leading to more rapid 

shifts in population genetic structure.  A loss of connectivity will also suppress 

dispersal, making immigrants and emigrants less common (Murrell et al. 2002).  This 

may result in localised extinctions, particularly when isolated populations have a growth 

rate less than 1 (sink populations).  Disconnected landscapes will also make it more 
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difficult for species to track their thermal environmental niche across altitudes and 

latitudes as climate warming becomes more prevalent (Travis 2003).  Much of the land 

within the study region I have chosen is already protected with a network of national 

parks, and even though species distributions are predicted to be more fragmented when 

based on downscaled climate layers, further threats from deforestation and land-clearing 

are minimal.  However, where habitat fragmentation and deforestation exist at higher 

levels or continue unabated, this newer more patchy understanding of species 

distributions could further exacerbate already existing effects of habitat clearing and 

warming climate on species distributions.   

Spatially Biased Layers as a Source of Exposure Data 

In Chapter 2, I demonstrate that complex statistical models (BRTs) can relate broad 

scale weather layers to empirically measured temperatures via fine grained 

environmental layers, producing accurate estimates of daily thermal regimes.  In 

Chapter 3, I demonstrate that simpler statistical models (OLS regression) can be used to 

relate ambient air temperature to thermal regimes of nearby microhabitats (Figure 3.1).  

This allows for the production of spatially explicit maps of microhabitat thermal 

regimes, which unlike their non-downscaled counterparts, place species firmly within 

their range of thermal tolerance (Figure 3.2).  Downscaling from broad scale weather 

layers directly to microhabitats will not only involve a greater number of more complex 

models, but may also be ineffective at producing spatially explicit estimates.  This may 

arise when local factors responsible for decoupling microhabitat temperatures from 

broad scale ambient weather patterns are unavailable in a spatially explicit form.   

Spatial layers of climate and weather have applications beyond SDMs that may also be 

affected by the application of biased spatial layers.  When constructing vulnerability 

analyses for species, many conventional approaches call for estimates of both species 

environmental exposure and their sensitivity or capacity for adaptation in the face of 

change.  Thermal niche breadth of a species may be misrepresented by inaccurate 

exposure data, resulting in species which seem to be living closer to their upper thermal 

tolerance than they truly are.  In this instance, biased exposure data combined with 

accurate sensitivity data will likely result in false inference of species vulnerability.  

This is problematic, since conventional vulnerability frameworks are frequently used to 

assess species threat to a number of processes and assign conservation priorities.  In this 
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way, spatially biased weather layers as sources of exposure data may contribute to 

wasted conservation prioritisation efforts and resources. 

Downscaling weather, as opposed to climate layers, is a key component of generating 

exposure data which are biologically relevant.  Utilising a biological criterion to test the 

accuracy of spatial layers as exposure data would have not been possible utilising 

temporally aggregated climate data.  For example, an area with an average maximum 

temperature of 30°C will not likely be suitable for an animal with a CTmax of 30°C.  

Climate layers smooth over weather anomalies (hot and cold days), reducing measured 

environmental variance, and falsely indicating suitable habitat for species.  Weather 

layers at a daily time scale however, compress environmental variance far less, and are a 

better indicator of species potentially suitable habitat as a function of their instantaneous 

interactions with weather conditions.   

Predicting Patterns of Abundance with Presence Only Species 

Distribution Models and Downscaled Climate Layers 

Presence-only based SDM techniques can be used to predict population level metrics of 

species (carrying capacity), though they do not fit the empirically measured carrying 

capacity data as well as presence-absence techniques (Figures 4.2 and 4.3).  Presence-

only and presence-absence techniques both display overwhelmingly positive 

relationships with carrying capacity.  In this instance, it seems downscaled climate 

layers did not improve the predictive power of the models with respect to carrying 

capacity, or improve their fit to the occupancy data used to construct the model 

(Appendix S5, Figures S5.1-S5.5). 

Good estimates of abundance were attained for species with otherwise disparate 

ecological roles, including those that are geographically rare or hard to detect.  Skinks 

used as study species in Chapters 2 and 4 have varying microhabitat preferences, 

ranging from sunspot utilisation, to shady leaf litter dwellers, and those dwelling in 

cool, sheltered microhabitats.  Yet, without the use of species-specific environmental 

layers, quantile regression models of abundance (based on both presence-only and 

presence-absence model output) achieve a good fit to the data.  These techniques, if 

further refined, may represent an alternative approach to parameterising species-specific 

demographic models, which rely on estimating fecundity and survivorship for multiple 
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demographic classes within a species (Akcakaya 2000).  Results may improve further 

by downscaling air temperatures to the microhabitat of preference for species, or 

perhaps developing spatial layers that describe other finely resolved environmental 

variables, such as sunspot availability on the forest floor. 

The lack of improvement in model fit when utilising downscaled weather layers may 

indicate that species responses to climate and weather regimes are mediated via another 

mechanism, such as the availability of food resources or activities of competitors, which 

may themselves be responding in a non-linear fashion with thermal regimes (Austin 

2007).  We may expect thermal regimes to have a strong effect on abundance when 

species are near the limit of their thermal tolerance, but this effect should be reduced 

when a species environment is near their thermal optima, or tolerant of a wide range of 

thermal conditions.   

Although presence-only SDM outputs correlate less strongly with empirical abundance 

data than outputs from the presence-absence occupancy models, they may still be a 

powerful tool for predicting carrying capacity when detection based datasets are not 

available.  The potential to predict abundance with readily available presence-only 

datasets saves valuable conservation resources and time.  Further, the carrying 

capacities of geographically rare species (e.g. S. czechurai and L. robertsi) are predicted 

with high accuracy, indicating a potential to more easily assess the distribution of rare 

or cryptic species.   

The Role of Vegetation in Buffering Species from a Warming World 

Removal of rainforest vegetation has increased temperatures which species are exposed 

to in certain localities (Figure 5.1).  At a subregional level, the impact of deforestation is 

nearly as severe as climate warming during the last century (Figure 5.2, IPCC 2014).  

Furthermore, deforestation has fragmented climate envelopes available for species to 

utilise, leaving the thermal landscape less connected that it was before land-clearing 

began (Figure 5.3).  This indicates that climate warming and deforestation are operating 

synergistically to alter thermal environments, decreasing available habitat and time for 

adaptation for thermally sensitive species.  The placement of vegetation clearing within 

the landscape is of particular importance.  Clearing of forest in the upland regions of the 

study area has contributed to the loss of climate space which has been identified as a 
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potential for refugia for species under global warming scenarios (Shoo et al. 2011).  

While clearing in lowland areas of the study region may not immediately affect 

thermally tolerant lowland species, it may eventually accelerate the process of lowland 

biotic attrition as climate warming continues. 

All species possess a minimum distributional area required to maintain a population 

growth rate greater than 1 (Schaffer 1981), and therefore to avoid sliding into 

extinction.  The cumulative area approach utilised herein gives a strong indication of the 

level of thermal adaptation a species must undergo as a result of deforestation, based 

upon its thermal tolerance and minimum distributional area.  In this way, we can 

measure the rate at which species must adapt to changing climate, and determine what 

(if any) measures are necessary to help a species adapt in situ.  Altered thermal regimes 

will reinforce barriers to dispersal put in place by habitat removal, potentially resulting 

in the formation of small isolated populations that ultimately become sinks (Murrell et 

al. 2002).   

The time frame for adaptation to altered thermal regimes resulting from deforestation 

and global warming via evolution is likely too small for many vertebrate species 

(Quintero & Wiens 2013).  This indicates that the restoration of forest landscapes may 

become a necessary tool to buy time for species to adapt to a warming world.  The scale 

of land-clearing, however, is orders of magnitude larger than most targeted restoration 

activities (Catterall & Harrison 2006).  The use of statistically downscaled weather 

layers which specifically link thermal regimes to vegetation cover allows us to identify 

the areas which are most severely affected.  We may then proceed to cross-reference 

these with the areas of greatest ecological significance, and target restoration activities 

there to minimise fragmentation and maximise connectivity. 

Future Directions 

This research highlights methods to improve spatial climate and weather layers for 

ecological studies and also reveals avenues for further exploration.  In particular, spatial 

models of weather need to relate thermal regimes to position within the habitat (edge vs. 

core) to properly describe edge effects on climate.  This sort of technique will provide 

even more detailed information of land surface / climate feedbacks and in turn a more 

accurate picture of how vegetation regulates climate locally and regionally.   
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The demonstration of SDMs capability to predict carrying capacity for multiple species 

provides potential for rapidly assessing abundance of threatened species.  However, the 

veracity of these models could not be ascertained without a large datasets of species 

counts covering geographic, environmental, and temporal gradients.   The capacity of 

SDMs to predict abundance may be improved by demonstrating concordance of 

modelled relationships to abundance within taxa or functional groups.  This may help in 

forming predictions of abundance for species about which otherwise little is known, 

while still maintaining a measure of confidence in the predictions. 

Concluding Remarks 

The costs and benefits of selecting algorithms and input data for observational 

modelling studies depend largely on the question being asked.  Complex models with 

rigorous statistical assumptions are not a requisite when attempting to derive spatial 

properties of species distributions or their associations with the environment.  Simple 

models can extract meaningful information concerning species distributions and 

abundances from the patterns found in presence-only datasets, without restrictive 

assumptions on the data.  The accuracy of the data used as inputs in models must be 

examined carefully, however, as inaccurate spatial data can lead to false inference of 

species-environmental responses and mischaracterisation of a species fundamental 

niche.     

Threats to species and ecosystems persist and multiply, as do methods to assess and 

mitigate these threats.  Spatial climate and weather data represent a powerful resource 

for determining how species interact with their environment, a key aspect of 

vulnerability assessment and SDMs.  Statistical downscaling methods provide new 

insights into the links between the physical environment and the thermal regimes to 

which species are exposed.  Downscaling also reduces spatial bias in weather and 

climate layers, making them more accurate at fine resolution, and creating biologically 

relevant sources of exposure data.   
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Appendix S1:  Spatial Surfaces for the Boosted 
Regression Tree Downscale Procedure 

 

Temperature data were collected from a network of weather stations (n=27) distributed 

throughout the study region across a latitudinal and altitudinal gradient.  Weather 

stations were positioned underneath dense rainforest canopy at a height of 

approximately 1.3m above the ground.  Measurements of temperature were recorded 

every 30 minutes using a HOBO 8-Bit Temperature Sensor1 or an iButton thermochron2 

from November 2006 to June 2009.  Additional rainforest sites (n=14) were also 

monitored intermittently over the period June 2004 to June 2009 using thermochron 

temperature loggers sampling at the same height and time interval.  Loggers were 

protected from exposure to rainfall and direct sunlight by a housing which covered them 

from above, but allowed air to move freely around all sides.  Twice hourly data were 

summarised to the two climate variables of interest, daily Tmax and daily Tmin for all 

sites.  This empirical dataset was supplemented with climate data provided by the 

Australian Bureau of Meteorology (BoM)3.  Daily Tmax and Tmin were obtained from all 

BoM weather stations in the study region (n=13) encompassing the study period from 

November 2006 to June 2009.  The final empirical data set comprises daily 

measurements of Tmax and Tmin from 54 sites, representing 32,239 site-days.  

A suite of 10 environmental surfaces were selected as independent variables for the 

BRT downscaling, based on their ability to mediate the broad-scale/fine-scale climate 

relationship.  The broad-scale surfaces selected for the BRT downscaling procedure 

were daily Tmax and daily Tmin from the Australian Water Availability Project (AWAP, 

Jones et al. 2009) at a 5km resolution.  These AWAP surfaces of Tmax and Tmin and were 

created from observations of weather by BoM stations across Australia; spatially 

interpolated by latitude, longitude, and elevation.  AWAP surfaces were interpolated to 

250m resolution before model-fitting with the ‘interp.surface’ function from the R 

package ‘fields’ (Furrer et al. 2012).  A surface of insolation (hours of sun exposure) 

                                                 
1 http://www.microdaq.com/occ/hws/micro_station.php 
2 http://www.maxim-ic.com/products/ibutton/ 
3 http://www.bom.gov.au 
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was also calculated at 250m resolution for each day of the year using the GRASS r.sun 

command (GRASS Development Team 2012). A surface of elevation was obtained 

from Geoscience Australia at 250m resolution over the entire extent of the study 

region4.  From this surface I calculated spatial surfaces of slope and aspect, using the 

r.slope command in GRASS.  Surfaces of distance to coast and distance to stream were 

created using Spatial Analyst in ESRI ARCGIS and maps from Geoscience Australia’s 

Global Map Australia 1M 2001 product5.  Distance to stream was converted to ln 

(distance +1) to emphasise the role that very small distance from stream has in 

influencing microclimate patterns (Ashcroft 2006, Lookingbill & Urban 2003).  A 

spatial surface of foliage projected cover (FPC) was obtained from the Queensland 

Department of Natural Resources and Water (DNRW 2008).  This surface details a 30 

year average of FPC on a scale of 0 (no vegetation cover) to 100 (complete vegetation 

cover) for the entire study region at a spatial resolution of 250m.  

                                                 
4 Resampled from GEODATA 9S DEM Version 2; Geoscience Australia, http://www.ga.gov.au/ 
5 https://data.gov.au/dataset/global-map-global-map-elevation-of-australia-1-million-scale-2001 
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Appendix S2:  Parameterising the Boosted Regression 
Tree Dowsnscaling Models 

 

Two separate BRT models (one for daily Tmin and one for daily Tmax) were created using 

the above datasets.  The two BRT models use the full set of predictor variables to 

develop a statistical association between empirically observed Tmin and Tmax 

respectively.  All model fitting was completed using Elith’s modified gbm.step function 

(Elith et al. 2008, Supplementary Appendix 3) in the R-Statistical Software package (R 

Development Core Team 2009).  Errors of the dependent data approximate a normal 

distribution, so a Gaussian error distribution was used in both models.  The loss 

function chosen to evaluate model fit was Root Mean Squared Error (RMSE).  Tuneable 

parameters in the model included bag fraction (the proportion of training data to be 

randomly sampled for model fitting at each iteration), interaction depth (the number of 

potential interactions between predictors) and learning rate (a scaling factor used to 

weight the contribution of each tree as it is added to the model).  The bag fraction was 

set at a constant value of 0.5, in accordance with the recommendations from Elith et al. 

(2008).  In order to select the tuneable parameters giving the best predictive power, 16 

models were created for each dependent variable (Tmax or Tmin), each of these models 

possessing a unique combination of learning rate (0.05, 0.01, 0.025 or 0.001) and tree 

complexity (4, 8, 12 or 16).  The ‘optimal model’ selected was the model which had the 

smallest RMSE value as reported by the tenfold cross-validation procedure (Hastie et al. 

2001).  The optimal combination of learning rate and tree complexity for the BRT Tmax 

model were .05 and 8 respectively, yielding a model which minimised the RMSE at 

1,500 trees.  The optimal combination of learning rate and tree complexity for the BRT 

Tmin model were .05 and 16 respectively, yielding a model which minimised the RMSE 

at 700 trees. 
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Appendix S3:  Downscaling Weather Layers to 
Exposure Surrogates 

 

In the AWT landscape, iButton thermochrons6 were placed in a paired design 

underneath the rainforest canopy at 21 sites which largely cover key environmental 

gradients of latitude, elevation, and moisture regimes.  Two loggers were placed in each 

site, one underneath a minimally disturbed in situ fallen log (the primary diurnal retreat 

of the focal species).  A second logger was suspended above the forest floor, sheltered 

according to the method of Storlie et al. (2013, Chapter 2) and located within 20m of 

the under-log thermochrons.  Loggers recorded temperature data over three and half 

years from December 2006 to February 2010 and the resultant dataset was aggregated to 

daily maximum (Tmax) and minimum (Tmin) temperature for each microclimate (under-

log and open-air) representing 14,834 unique combinations of site and date.  Simple 

linear regression was used to relate under-log temperature maxima to open-air Tmax and 

Tmin with the following equation:  TMAX UL = 0.88*TMAX AIR – 0.36*TRANGE AIR – 

0.003*TMAX AIR*TRANGE AIR + 2.632.  By substituting mapped air temperature values 

(Storlie et al. 2013, Chapter 2) into the linear model for under-log temperature, I 

generated maps estimating 38 years of daily under-log temperature to estimate the 

thermal exposure of species using this microhabitat.  This form of model was chosen for 

two reasons; first, selected variables needed to be spatially explicit to form a prediction 

of exposure at sites of known species occurrence which lack paired empirical 

dataloggers, hence the use of daily air temperatures estimated by Storlie et al. (2013, 

Chapter 2).  Second, the independent variables were selected based on the principles of 

process-based microclimate modelling (Kearney & Porter 2009).  Atmospheric forcing 

(air temperature) is known to have a strong effect on microclimate temperatures 

(Kearney & Porter 2009).  Other variables known to effect microclimate temperatures 

(e.g. surface albedo, radiation exposure (Kearney & Porter 2009) are regionally 

homogeneous and were therefore not included in the model.  Ultimately, the linear 

                                                 
6 http://www.maxim-ic.com/products/ibutton 
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microclimate model formed accurate predictions of the empirical microclimate (under-

log) Tmax achieving an adjusted-r2 of 0.916. 
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Appendix S4:  Determination of Microhylid Frog Critical 
Thermal Maxima 

 

Measurement of the species’ CTmax were achieved using a dynamic methodology 

(Cowles & Bogert 1944) using the loss of righting response as the end point.  Calling 

males were collected from the wild, in order to ensure accurate identification of 

specimens for determining physiological tolerances.  Individuals were held for a short 

period, less than 24 hours, and the experiment was performed in situ to avoid 

complications of individuals acclimating to laboratory temperatures (Lutterschmidt & 

Hutchison 1997).  It should be noted that this CTmax metric may not be applicable to 

other age/stage classes within the focal species (e.g. eggs and juveniles).  The principles 

of biophysical modelling (Kearney & Porter 2009) indicate that adult individuals should 

be less thermally sensitive than their younger counterparts.  Therefore, this metric is 

both accurate for adult males and could be considered an underestimate of the 

sensitivity of the entire population. 

Individuals were placed in a small cylindrical chamber, with a Sable Systems TC-2000 

Thermocouple meter measuring chamber temperature continuously.  The chamber was 

sealed and placed in a water bath which was then heated at a rate of 1°C min-1 using a 

heating plate, in accordance with the recommended heating rate of Lutterschmidt and 

Hutchison (1997).  The chamber was rotated slowly and continuously, forcing the 

animal to make postural corrections for the duration of the experiment.  When an 

individual failed to initiate a righting response on two consecutive occasions the 

experiment was completed, and the animal was deemed to have reached its CTmax.  

Upon experiment completion animals were placed in a cool water bath to restore a 

functional operative body temperature and then released at their point of capture.   
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Appendix S5:  Modelling Abundance with Downscaling 
Climate and Weather Layers 

 

The use of the alternate, downscaled climate layers in the modelling exercise does not 

improve the fit of occupancy models to the empirical occupancy data used to train them 

(Figure S5.1).  There is some indication that the simpler, occupancy equivalent MaxEnt 

models have improved AUC scores when trained with downscaled climate layers, 

however, this is not the case with the Saturated MaxEnt model (Figure S5.2A and 

S5.2B).  Similarly, inclusion of downscaled climate layers does not markedly improve 

either of the three models ability to fit the count data (Figures S5.3 to S5.5).   

 

 

Figure S5.1:  Comparison of pseudo r2 values for the fit of occupancy 

modesl to the training data (species presences and absences), 

occupancy model r2 values on the x-axis were trained on non-

downscaled climate and weather layers (Jones et al. 2009, Xu & 

Hutchinson 2011), occupancy model r2 values on the x-axis were 

trained on non-downscaled climate and weather layers (Storlie et al. 

2013, Chapter 2). 
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A 

 
B 

 

Figure S5.2:  Fit of presence-only MaxEnt model Environmental 

Suitability to the training data (species occurrences); assessed using 

AUC scores.  X-axis represents AUC scores of layers utilising non-

downscaled spatial layers, y-axis represents AUC scores of models 

trained using the downscaled layers of Storlie et al. (2013, Chapter 2).  

(A)  Occupancy equivalent MaxEnt model. (B) Saturated MaxEnt 

model. 
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Figure S5.3:  Comparison of pseudo r2 values for the fit of occupancy model 

outputs to the scaled count data, occupancy model r2 values on the x-axis 

were trained on non-downscaled climate and weather layers (Jones et al. 

2009, Xu & Hutchinson 2011), occupancy model r2 values on the x-axis were 

trained on non-downscaled climate and weather layers (Storlie et al. 2013, 

Chapter 2). 
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Figure S5.4:  Comparison of pseudo r2 values for the fit of occupancy 

equivalent MaxEnt model outputs to the scaled count data, model r2 values on 

the x-axis were trained on non-downscaled climate surfaces (Xu & 

Hutchinson 2011), model r2 values on the x-axis were trained on non-

downscaled climate surfaces (Storlie et al. 2013, Chapter 2). 
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Figure S5.5:  Comparison of pseudo r2 values for the fit of Saturated MaxEnt 

model outputs to the scaled count data, model r2 values on the x-axis were 

trained on non-downscaled climate surfaces (Xu & Hutchinson 2011), model 

r2 values on the x-axis were trained on non-downscaled climate surfaces 

(Storlie et al. 2013, Chapter 2). 

 

The relationships between model output and scaled count data are still overwhelmingly 

positive in nature, although the widespread species C. rubrigularis has negative or no 

relationship between both MaxEnt outputs and the count data (Figures S5.6 to S5.8).  

There are no clear trends between the abundance predictions of the MaxEnt models and 

the occupancy model, although the MaxEnt models tend to predict larger population 

sizes at sites than do the occupancy models (Figures S5.9).  The majority of sites are 

predicted to experience positive departures from the estimated count data (Figures 

S5.10 and S5.11).   
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Figure S5.6:  Fit of occupancy model output (x-axis) to scaled count data (y-axis).  The dashed 

red line represents the fit of the model output to the 95th percentile of count data.  The dashed blue 

lines represent the fit of the model output to the mean of the count data.   
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Figure S5.7:  Fit of saturated MaxEnt model output (x-axis) to scaled count data (y-axis).  The 

dashed red line represents the fit of the model output to the 95th percentile of count data.  The 

dashed blue lines represent the fit of the model output to the mean of the count data.   
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Figure S5.8:  Fit of occupancy equivalent MaxEnt model output (x-axis) to scaled count data (y-

axis).  The dashed red line represents the fit of the model output to the 95th percentile of count 

data.  The dashed blue lines represent the fit of the model output to the mean of the count data. 
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Figure S5.9:  Comparison of abundance as predicted by Saturated MaxEnt model (x-axis) and 

occupancy model (y-axis).   
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Figure S5.10:  Comparison of measured carrying capacity (x-axis) to predicted abundance from 

the Saturated MaxEnt model (y-axis).   
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Figure S5.11:  Comparison of measured carrying capacity (x-axis) to predicted abundance from 

the occupancy model (y-axis). 



 

104 

Models based on downscaled and current-best practice climate layers are both 

producing outputs with adequate fit to the data.  MaxEnt AUC values are all good, 

while most occupancy models pseudo r2 values are above 0.7, indicating these models 

fit the training data well.  However, when model outputs are related to the count data, 

differences between them become apparent.  One explanation could be that fitness is not 

directly related to temperature experienced in this particular group.  Temperature may 

indirectly mediate fitness via a link with resource availability or competitive ability of 

congeners (Austin 2002).   
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Appendix S6:  Key Abbreviations and Definitions 

 

accuCLIM surfaces ........ A set of 30 year average climate surfaces describing 

temperature and precipitation derived by statistically 

downscaling and then aggregating broad-scale weather 

surfaces (Storlie et al. 2013, Chapter 2) 

ANUCLIM surfaces ....... Australian National University Climatological Model, a set of 

30 year average climate surfaces describing temperature and 

precipitation regimes at 250m resolution (McMahon et al. 

1995, Xu & Hutchinson 2011). 

AWAP surfaces .............. Australian Water Availability Project, a set of weather 

surfaces describing daily maximum temperatures, daily 

minimum temperatures, and daily rainfall at 5km resolution 

(Jones et al. 2009). 

Climate ............................ Temporally aggregated description of temperature or 

precipitation regimes, usually a 30 year average. 

cSDM ............................... Correlative species distribution model, a statistical technique 

to predict species environmental relationships and 

distributional characteristics based on spatial layers of the 

environment and species occurrence data. 

mSDM ............................. Mechanistic species distribution model, a biophysical 

technique to estimate a species fundamental niche and 

distributional characters based on spatial layers of the 

environment and species specific physiological rates. 

Weather ........................... Temporally discrete description of temperature or 

precipitation regimes (e.g. daily maximum temperature). 


	Cover Sheet
	Front Pages
	Title Page
	Acknowledgements
	Statement of Contribution of Others
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Acronyms Used in this Thesis

	Chapter 1: General Introduction
	Chapter 2: Improved Spatial Estimates of Climate Predict Patchier Species Distributions
	Chapter 3: Stepping Inside the Niche: Microclimate Data are Critical for Accurate Assessment of Species' Vulnerability to Climate Change
	Chapter 4: Can Less Be More? Comparing Predictions of Species Abundance Using Presence-Only and Presence-Absence SDM Techniques
	Chapter 5: The Legacy of Past Land Clearing on Climate Space: A Primer for Global Warming
	Chapter 6: General Discussion & Synthesis
	References
	Appendices
	Appendix S1: Spatial Surfaces for the Boosted Regression Tree Downscale Procedure
	Appendix S2: Parameterising the Boosted Regression Tree Dowsnscaling Models
	Appendix S3: Downscaling Weather Layers to Exposure Surrogates
	Appendix S4: Determination of Microhylid Frog Critical Thermal Maxima
	Appendix S5: Modelling Abundance with Downscaling Climate and Weather Layers
	Appendix S6: Key Abbreviations and Definitions


