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Abstract

 
 

Understanding movement is important for defining animal spatial ecology and ensuring 

effective management and conservation. Accordingly, data on animal movement 

patterns, connectivity and habitat use have become crucial elements in management and 

conservation decisions. Large-scale movements of marine individuals are monitored 

using new tracking technologies such as acoustic monitoring. These new technologies 

often produce large amounts of high quality data, so data generation is no longer a 

challenge, however, data analysis and modelling are emerging issues. 

 

Arrangement of acoustic receivers into arrays or grids (i.e., as a “network”) fits well 

with the use of an innovative approach: Network Analysis. Network Analysis is a 

powerful tool for examining the structure of complex interacting systems that are 

represented as a network characterized by connections between nodes. The use of 

Network Analysis to look at animal spatial ecology in the marine environment is in its 

early stages with only a few studies completed. Consequently, the potential of Network 

Analysis in studying animal spatial ecology using acoustic monitoring data is largely 

unexplored. However, this approach has been intensely used in other areas, including 

landscape ecology, and the results have proven incredibly useful for management and 

conservation. By combining acoustic monitoring and Network Analysis, researchers 

may be able to study the spatial ecology of species in the marine environment. 

Therefore, this project aimed to determine the contribution of Network Analysis in 

understanding marine animal spatial ecology using acoustic monitoring data. 

 

Literature analysis suggested that Network Analysis can help characterise marine 

animal spatial ecology in new ways, providing many tools to understand the complex 

interaction between animals and their environment. The multi-disciplinary nature of 

Network Analysis provides the researcher with convenient tools to understand the 

complexity of movement at different scales, compare movements between individuals 

or between species, and investigate the effect of environmental factors on the 
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movement. The reviewed techniques were tested on acoustic monitoring data from six 

predator species. Field work was conducted along the north-east coast of Queensland, 

Australia. Two arrays of 67 and 48 acoustic transmitters deployed in the central section 

of the Great Barrier Reef passively tracked six predator species from 2008 to 2014. Two 

nearshore sharks (pigeye shark (Carcharhinus amboinensis) and spottail shark 

(Carcharhinus sorrah)), two reef sharks (silvertip shark (Carcharhinus albimarginatus) 

and grey reef shark (Carcharhinus amblyrhynchos)), and two carangid teleosts (giant 

trevally (Caranx ignobilis) and golden trevally (Gnathanodon speciosus)) were selected 

to determine efficacy of the Network Analysis method to contribute to the 

understanding of marine animal spatial ecology. 

 

To investigate the utility of Network Analysis in identifying core use areas and compare 

the results with traditional analysis, a case study using C. amboinensis and C. sorrah 

was conducted. Comparison of traditional analysis (kernel utilization distribution, 

KUD) and Network Analysis demonstrated that both methods provided similar results 

for identifying core use areas (50% KUD equivalent), but that Network Analysis tended 

to overestimate general use areas (95% KUD equivalent) compared to kernel-based 

methods. Furthermore, frequent bidirectional movements within core use areas were 

identified by Network Analysis, indicating the importance of movement corridors 

within or between core areas. Movements between acoustic receivers outside core use 

areas were less frequent and unidirectional suggesting transiting movements. Therefore, 

Network Analysis may be a practical alternative or companion to traditional home range 

metrics by providing useful data interpretation that allows for a comprehensive picture 

of animal movement, including identifying core use areas and pathways used. 

 

To test if Network Analysis could provide valuable information on functional 

connectivity in offshore reef habitats, a case study using C. ignobilis, C. amblyrhynchos 

and C. albimarginatus was conducted. Network modelling was used to examine and 

compare the structure of intra-reef movements to four simulated theoretical networks. 

All three species exhibited networks with properties of small-world and scale-free 

structures with rapid and direct intra-reef movements and high numbers of 

interconnected patches (i.e., area covered by acoustic receivers). These two 
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characteristics have been identified in a variety of complex networks and explain how 

species may respond to habitat loss or disturbance. All three species also displayed 

consistent behaviour within reefs with a power-law node degree distribution suggesting 

Lévy-walk-like searching patterns. Furthermore, analyses of the networks revealed 

>75% of patches within reefs were important for either resources or connectivity for all 

three species. Receivers important for resources and for connectivity varied between 

species and reefs, and their locations were often found on opposite sides of the coral 

reefs. Consequently, network modelling provided insight into intra-reef predator 

movements that may assist in the development of effective management at an individual 

reef scale. 

 

To compare to Network Analysis results, the effects of biological and environmental 

variables on C. ignobilis monthly space use, daily presence and hourly depth use were 

investigated using traditional techniques. Using a linear modelling approach, temporal 

changes in movement patterns of C. ignobilis were explored to determine if individuals 

exhibited predictable movement patterns. Caranx ignobilis typically remained at their 

capture reef with 98.8% of detections recorded at these locations. Individuals were 

recorded in the study site for periods from 9 to 335 days (mean = 125.9) with a mean 

residency index of 0.53, indicating movements away from the reef or out of detection 

range occurred on the scale of days. Inter-reef movements from only three individuals 

were recorded which coincided with the summer full moon, and may have been related 

to spawning behaviour. Environmental drivers were correlated with daily presence and 

hourly depth use of C. ignobilis but had little influence on monthly space use. There 

was little or no effect of fish size on space use, presence and depth use. The results of 

this study reveal that individuals may be site attached and that environmental 

parameters play a role in observed movement patterns related to depth and presence. 

 

Finally, Network Analysis was used to examine the movement patterns of C. ignobilis 

and G. speciosus in inshore habitats. Tagged individuals were present in the study 

region between 30 to 394 days (mean ±SD = 166 ±116) with a mean residency index of 

0.7 (±0.1 SE). Notable inter-annual variation occurred with individuals detected on 

more days, visiting more receivers, moving more frequently, and being more resident in 
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some years than others. In addition, movement patterns differed between species, with 

C. ignobilis being detected on fewer days, using less receivers and moving less than G. 

speciosus. Network analysis revealed a combination of factors including ontogeny, 

foraging niche, and habitat influences may explain differences in space use between 

species. These results highlight unique behaviours between co-occurring and closely 

related species, and enhance our understanding of animal interactions in inshore 

habitats.  

 

This project demonstrated that by using Network Analysis, researchers studying the 

spatial ecology of marine animals can unlock a wide array of a species’ behaviour. 

Using a single method, movement pattern, connectivity and space use of six predator 

species were investigated within an inshore and offshore habitat, revealing a range of 

movement strategies. Spatial and temporal partitioning and shifting of habitats both 

between and within species were found for all six species. Decreases in intra- and inter-

specific competition for resources, difference in foraging needs, decrease in risk of 

predation, response to environmental changes, or a combination of the above are 

possible explanations for the observed range of movements. This highlights that 

mechanisms behind movement patterns are complex and variable not only between but 

also within species and has important implications for management and conservation 

purposes. Finally, Network Analysis provides a toolbox of methods that can be used to 

assess consequences of habitat fragmentation and anthropogenic and natural 

disturbances and help design and evaluate the effectiveness of management and 

conservation plans. Network Analysis provided rapid assessment of species movement 

within studied areas that allows prioritisation of key patches and movement corridors 

for potentially creating marine reserve and maintain movement corridors of marine 

species. Therefore, Network Analysis is advantageous for guiding and assessing 

management measures as it allows for assessment of species movement and for 

prediction the consequences of anthropogenic and natural disturbances by testing a 

variety of species at different scales and under multiple scenarios. 
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Chapter 1 

1. General Introduction 

 

 

Spatial ecology is the study of animal movement in relation to their environment. It 

explores how movement patterns are influenced by an array of biological, ecological, 

and environmental processes (Lowe & Bray, 2006). Knowledge of how and why 

animals use space (and associated resources) is key to identifying their ecological role. 

Studying spatial ecology is also fundamental to understanding and interpreting the 

causes, mechanisms, patterns, and consequences of all movement processes (Bélisle, 

2005; Legendre & Fortin, 1989; Nathan, 2008). As a result, the distribution, structure, 

persistence, and viability of populations can be elucidated (Lowe & Bray, 2006; Nathan 

et al., 2008; Tilman & Kareiva, 1997). Moreover, information gained from spatial and 

temporal movement patterns, connectivity, habitat use, and environmental drivers of 

behaviour can be used to refine conservation and management measures (Hastings, 

Petrovskii & Morozov, 2011; Tilman & Kareiva, 1997). 

  

Studying animal spatial ecology in the marine environment is challenging due to the 

need to cover vast areas and limited long-term access to the environment (Hussey et al., 

2015; Jacoby, Brooks, Croft & Sims, 2012). It is only recently that advances in tracking 

technology have allowed researchers to monitor the long-term movements and 

behaviour of marine species (Block et al., 2011; Cooke et al., 2004; Heupel, Semmens 

& Hobday, 2006). One of these new tracking tools is acoustic monitoring, which has 

become increasingly popular and powerful as it allows monitoring of multiple 

individuals over large areas for long period of time, is affordable and small in size 

(Heupel, Semmens, et al., 2006; How & de Lestang, 2012; Voegeli, Smale, Webber, 

Andrade & O'Dor, 2001). Acoustic monitoring includes two components: acoustic 

receivers moored at the study site and coded acoustic transmitters placed on or in the 

animal.  
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The acoustic receiver consists of an omnidirectional hydrophone which identifies coded 

transmitters at a specific frequency and stores unique tag id and sensor data. The main 

advantages of using moored receivers are the ability to monitor seasonal and annual 

animal movement patterns, and the ability to apply a network configuration (Figure 

1.1). In addition, the data logging memory allows the researchers to leave the receivers 

unattended for long-periods, which reduces field operation costs (Chateau & Wantiez, 

2009; Heupel, Semmens, et al., 2006; Rodgers, 2001; Simpfendorfer, Heupel & Hueter, 

2002). Acoustic transmitters emit a coded signal at a specific frequency (e.g. 30 kHz, 69 

kHz, 150 kHz or 180 kHz) and at a pseudo-random interval to ensure detection by the 

acoustic receiver and avoid collision of signals. The use of a unique identification code 

for each individual allows simultaneous, long-term monitoring of multiple individuals 

and species (Heupel, Semmens, et al., 2006; Rodgers, 2001; Simpfendorfer et al., 2002). 

However, the presence of an individual is only recorded if it is located within the 

listening array (i.e., within a certain distance of the acoustic receivers; Heupel, 

Semmens, et al., 2006; Rodgers, 2001). This distance varies as a function of 

environmental factors; physical structures that could reflect or obstruct the signal and 

changes in the composition of the water are among some of the factors changing this 

distance and consequently limiting the use of acoustic monitoring (Heupel, Semmens, et 

al., 2006; Kessel et al., 2014; Simpfendorfer et al., 2002).  
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Figure 1.1: Example of acoustic receiver’s deployment within Cleveland Bay, Australia. 

 represents VR2 (Vemco) acoustic receivers. Dashed grey line represent the reef. 

 

Being a relatively new technology, statistical methods to analyse the large amounts of 

data produced by acoustic monitoring are still in development. Currently, acoustic 

monitoring data are analysed using traditional statistical analyses (Heupel, 

Simpfendorfer & Lowe, 2005; Pace, 2001). However, these traditional analyses were 

designed for methods that give an exact location of the individual. Acoustic monitoring 

records the location of an individual within the range of the receiver, consequently, to 

use traditional statistical analyses on these data, researchers need to convert it to a 

suitable format (e.g., using a linear interpolation; Hedger et al., 2008; or a centre of 

activity (COA); Simpfendorfer et al., 2002). This allows use of traditional statistical 

analyses; but manipulating the data can produce error in location estimates (i.e., low 

accuracy and precision; Hedger et al., 2008; Pace, 2001). As more analytical techniques 

are developed to analyse acoustic monitoring data, the more useful this approach will 

become. Consequently, appropriate methods for quantifying and analysing movements 
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using the data in its native form (i.e., without interpolation) may be preferable and also 

essential to understanding marine animal spatial ecology (Horne, Garton, Krone & 

Lewis, 2007; Jeltsch et al., 2013; Nathan, 2008). 

 

Arrangement of acoustic receivers into arrays or grids (i.e., as a “network”; Figure 1.1) 

fits well with the use of an innovative approach: Network Analysis (NA), a powerful 

tool for assessing animal spatial data (Fletcher, Acevedo, Reichert, Pias & Kitchens, 

2011; Minor & Urban, 2007). Network Analysis examines the structure of complex 

interacting systems that are represented as a network characterised by connections (or 

edges) between nodes (West 2001). A node can symbolize a range of objects, from 

individuals and species to patches in a landscape (Schick & Lindley, 2007), and an edge 

signifies the interactions between individuals or populations, or the connectivity 

between patches via animal movements (Estrada & Bodin, 2008; Foltête, Clauzel & 

Vuidel, 2012). In acoustic monitoring research nodes can represent acoustic receivers 

while edges represent animals moving between the acoustic receivers (Figure 1.2). 

Advantages of using this approach are that additional information about the physical or 

environmental attributes, and/or frequency of movement can be added to the node and 

edge properties. Furthermore, statistical analyses developed specifically to test network 

data can be applied to either the complete or sub-networks. Network Analysis can, 

therefore, be adapted to various situations and scales to answer a wide range of 

ecological and behavioural questions (Cumming, Bodin, Ernstson & Elmqvist, 2010; 

Stehfest et al., 2013).  
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Figure 1.2: Network showing acoustic receivers (VR2, Vemco) as nodes and animal movement 
between acoustic receivers as dark blue arrow/line (i.e., edges). 

 

Network Analysis has already been applied to the marine environment where it was 

used to visualise animal movement pathways and changes in activity space (Finn et al., 

2014; Jacoby, Brooks, et al., 2012), examine social behaviour (Jacoby, Brooks, et al., 

2012; Jacoby, Croft & Sims, 2011; Mourier, Vercelloni & Planes, 2012), determine 

structural and functional connectivity (Kininmonth, De’ath & Possingham, 2009; 

Schick & Lindley, 2007; Treml, Halpin, Urban & Pratson, 2008) or model the 

movement of individuals (Stehfest, Patterson, Barnett & Semmens, 2015). These studies 

demonstrate that Network Analysis can be adapted to a range of different situations and 

types of data, including acoustic monitoring as shown in Jacoby, Brooks, et al. (2012), 

Finn et al. (2014) and Stehfest et al. (2015). The use of Network Analysis to look at 

animal spatial ecology in the marine environment is in its early stages with only a few 

studies completed, consequently, the potential of Network Analysis in studying animal 

spatial ecology using acoustic monitoring data is largely unknown. However, this 

approach has been intensely used in other areas, including landscape ecology, and the 

results have proven incredibly useful for management and conservation. 
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By combining acoustic monitoring and Network Analysis, researchers may be able to 

improve their understanding of spatial ecology of species. Therefore, the overall aim of 

this research was to investigate the contribution Network Analysis can make in 

understanding marine animal spatial ecology as applied to acoustic monitoring data. To 

address this aim; this thesis is organised as follows. First a review of the role of 

Network Analysis in understanding marine animal spatial ecology is undertaken in 

Chapter two. This review evaluates various descriptive statistics and theoretical 

concepts that can be used to examine marine animal space use, connectivity, habitat use 

and drivers responsible for their movement. Then in Chapters four, five and seven, 

using a range of case studies, the potential contribution of Network Analysis in 

understanding marine animal space use and connectivity was explored.  

 

Network Analysis was applied in conjunction with more traditional methods (i.e., 

Kernel Utilisation Distribution) to compare outcomes of the different approaches using 

two nearshore shark species as an example (Chapter four). This chapter was used to 

determine how Network Analysis outputs relate to movement patterns and space use 

metrics and to investigate Network Analysis utility in analysing animal movements in 

acoustic monitoring studies. Chapter five explored the use of Network Analysis to 

investigate functional connectivity of predator populations within a coral reef using a 

network modelling approach. Network modelling was used to examine and compare the 

structure of predator’s intra-reef movements to four simulated theoretical networks, 

thereby investigating how connectivity is maintained within coral reefs and how species 

may respond to local disturbances. Chapter six investigated the biological and 

environmental drivers responsible for the movement of Caranx ignobilis within a coral 

reef. This chapter was originally thought to be an extension of Chapter five by 

investigating the influence of environmental drivers (e.g., water temperature, moon 

illumination, etc.) on C. ignobilis movements using Network Analysis. However, 

Network Analysis theoretical concepts require information on environmental drivers at 

the node level (i.e., acoustic receivers; see Chapter two). This level of information was 

not available at the receiver level for the studied coral reefs, consequently, traditional 

analyses were used to examine the influence of the environmental drivers on the 

movement of C. ignobilis in coral reef ecosystems and thereby allowed for comparison 

to Network Analysis results in Chapters five and seven. Chapter seven provided an 
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example of the use of Network Analysis to determine the movement patterns of two 

carangid species in inshore habitats. This chapter investigated multiple network metrics 

to examine a range of movement attributes and how those attributes were affected by 

environmental drivers. Finally, Chapter eight summarizes the overall findings and 

considers pros and cons of Network Analysis in understanding marine species spatial 

ecology. 

  



Role of Network Analysis in understanding marine animal spatial ecology 

 
8 

Chapter 2 

2. Role of Network Analysis in understanding marine animal 

spatial ecology 

 

 

2.1. Introduction 

Understanding movement is important for defining animal ecology and ensuring 

effective management and conservation. Accordingly, data on animal movement 

patterns, connectivity and habitat use have become crucial elements in management and 

conservation decisions (Heupel, Yeiser, Collins, Ortega & Simpfendorfer, 2010; 

Pereira, Segurado & Neves, 2011). Movement pattern refers to how animals move 

within their habitat and how far and often they travel; for example, yearly displacements 

can range from a few metres to thousands of kilometres. Connectivity refers to the 

physical relationship between habitat patches (i.e., structural connectivity) and the 

interactions between species and habitat patches (i.e., functional connectivity; Taylor, 

Fahrig, Henein & Merriam, 1993); individuals rely on habitat connectivity for their 

survival (Rayfield, Fortin & Fall, 2011). Habitat use refers to how an animal uses the 

resources within a habitat (Krausman, 1999), with some habitats being preferred and 

others avoided (Morris, 1987) due to different habitat requirements of individuals. 

Movement patterns, connectivity and habitat use are all influenced by biological (e.g., 

individual characteristics and preferences, foraging for resources; migrating between 

resources patches, predation, intra- and inter-species competition, etc.) and 

environmental factors (e.g., freshwater influx during wet season, temperature, depth etc; 

Acevedo-Gutiérrez, 2009; Greenwood & Swingland, 1983; Stern, 2009). However, 

understanding the interactions between marine species and their environments has been 

a challenge for marine scientists (Croft, James & Krause, 2008; Wey, Blumstein, Shen 

& Jordán, 2008). As a result, relatively little is known about how marine animals move 

within and use habitats.  
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Animal movements are commonly described using dispersal measures (i.e., where and 

when an animal moves, how far they go, which direction they go) and home range 

analysis (i.e., which space they used; Kernohan, Gitzen & Millspaugh, 2001; 

Tischendorf & Fahrig, 2000; Turchin, 1998). In addition, movements can be modelled 

using random walks or theoretical models such as Lévy flight and state space models to 

try to understand the underlying behaviour that drives movements (e.g., foraging versus 

travelling states etc; Breed, Jonsen, Myers, Bowen & Leonard, 2009; Jonsen et al., 

2013; Jonsen, Flemming & Myers, 2005). Finally, distance analysis and/or 

logistic/binomial models such as generalised linear models and generalised additive 

models are used to try to determine the role environmental factors play in controlling 

movements and space use, however, this remains a challenge due to long distance 

movement, use of a wide variety of habitats and lack of data on multiple local 

environmental factors (Espinoza, Cappo, Heupel, Tobin & Simpfendorfer, 2014; 

Heithaus, Frid, Wirsing & Worm, 2008; Kadmon & Benjamini, 2006). Studying animal 

movement and the driving forces (i.e., biological and environmental factors) behind it 

provides useful information on animal behaviour, use of habitat and the connectivity 

between habitats (Krausman, 1999). 

 

Even though animal movements have been studied in great detail in terrestrial systems, 

it is only recently that scientists were able to study long-term animal movements in the 

marine environment (Heupel, Semmens, et al., 2006; Lowe, Topping, Cartamil & 

Papastamatiou, 2003). To elucidate movement paths,  individuals are tracked using 

technologies that have existed since the 1950s and undergone significant progress in 

recent years as a result of the development of new equipment and the improvement of 

battery life (Rodgers, 2001; Turchin, 1998). Large-scale movement of marine animals is 

now intensely studied using these new technologies (Bograd, Block, Costa & Godley, 

2010; Hussey et al., 2015; Rutz & Hays, 2009); the most common being: radio tracking, 

satellite telemetry and acoustic tracking and monitoring (How & de Lestang, 2012; 

Voegeli et al., 2001). Affordability, size, capacity to monitor multiple individuals, 

continuous recording, long battery life and ability to cover large areas are some of the 

advantages that make these tracking technologies popular among researchers (Heupel, 

Semmens, et al., 2006; Hussey et al., 2015; Simpfendorfer & Heupel, 2004). These new 

technologies often produce large amounts of high quality data, so data generation is no 
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longer a challenge, however, data analysis and modelling are emerging issues (Bograd 

et al., 2010; Gurarie et al., 2015; Krause et al., 2013). 

 

Various type of data are generated by the new tracking technologies, from presence 

(e.g., acoustic monitoring), to individual and time-series location data (e.g., satellite 

tracking or Vemco Positioning System - VPS); they also differ in terms of location 

accuracy and sampling intervals (e.g., due to satellite availability; Brost, Hooten, Hanks 

& Small, 2015; Gurarie et al., 2015; Tremblay et al., 2006). In the marine environment, 

accounting for data precision relative to spatial and temporal scales of movement is 

crucial (Bradshaw, Sims & Hays, 2007; Schick et al., 2008); therefore a post-processing 

stage, including filtering (i.e., to reduce spatial error) and interpolating (i.e., to reduce 

irregular sampling interval), is required to obtain better estimates and more realistic 

animal movements and behaviour (Bradshaw et al., 2007; Hedger et al., 2008; 

Simpfendorfer et al., 2002; Tremblay et al., 2006). However, this post-processing step 

can be time consuming, complex to implement, scale dependent, reduce the quality of 

the data and may introduce errors (Bradshaw et al., 2007; Schick et al., 2008; Thiebot & 

Pinaud, 2010; Tremblay, Robinson & Costa, 2009). To date, few standardised methods 

have been developed to analyse the large datasets produced by these new tracking 

technologies (Heupel, Semmens, et al., 2006; Rogers & White, 2007). Furthermore, 

scientists need to use different traditional statistical analysis to examine the different 

aspects of animal movements, therefore, results can be difficult to compare across 

studies due to differences in sampling intervals and analysis (Nathan, 2008; Tischendorf 

& Fahrig, 2000). Consequently, there is a need for standardised methods for analysing 

these large datasets that could reduce post-processing requirements, decrease the 

possibility of errors, provide consistency in the analysis and interpretation of data that 

may increase the ability to compare between studies, and also provide additional tools 

that complement or replace more traditional techniques. 

 

Network Analysis is an emerging ecological tool that offers such a framework. Network 

Analysis examines the structure of complex interacting systems that are represented as a 

network characterized by connections (or edges) between nodes (West, 2001). A node 

can symbolize a range of objects, from individuals and species to patches in a landscape 
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(Schick & Lindley, 2007), and an edge signifies the interactions between individuals or 

populations, or the connectivity between patches using animal movements. Network 

Analysis has already been used in the marine environment to look at animal social 

behaviour (Jacoby, Croft & Sims, 2012; Mourier et al., 2012; Wilson, Croft & Krause, 

2014), habitat use and movement patterns (Finn et al., 2014; Fox & Bellwood, 2014; 

Jacoby, Brooks, et al., 2012; Stehfest et al., 2015) and structural and functional 

connectivity (Kininmonth et al., 2009; Schick & Lindley, 2007; Treml et al., 2008). 

These studies demonstrated that Network Analysis can be adapted to a range of 

different situations and types of data. The use of Network Analysis to examine animal 

movements in the marine environment is in its early stages with only a few studies 

completed, however, this approach has been intensely used in terrestrial environments 

to study landscape ecology, and results have proven incredibly useful for management 

and conservation. Consequently, Network Analysis may be an effective way of studying 

marine animal spatial ecology. This review describes and discusses how Network 

Analysis can be applied to animal space use, connectivity and habitat use, how Network 

Analysis has been applied to analyse animal movement, and how it compares to 

traditional animal movement analyses. 

 

2.2. Network Analysis: origin and terminology 

Networks have been used for decades, originating from mathematical graph theory 

(Krause, Lusseau & James, 2009). Network Analysis was first applied to sociology and 

psychology in the early 1930s to analyse human relationships (Krause et al., 2009). In 

social networks, nodes represent a social entity (e.g., a person or organisation) and an 

edge signifies the relationship between two entities. Network Analysis was later adapted 

to answer ecological questions. For example, Lindeman (1942); Odum (1956) pioneered 

the use of networks as a way to represent and describe food webs. In this context, a 

node represented species and edges the interactions between species (i.e., who ate 

whom?; Borrett, Moody & Edelmann, 2014; Croft et al., 2008). In the past 15 years, this 

methodology has been increasingly applied to the study of animal behaviour (Krause et 

al., 2009; Lusseau, 2003; Mourier et al., 2012; Whitehead, 2009a). To date, most 

examples of the use of Network Analysis in non-human animals have focused on 

primates, followed by other organisms with known social interactions (Croft et al., 

2008; Krause et al., 2009; Kurvers, Krause, Croft, Wilson & Wolf, 2014); for example 
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in teleosts (Croft, Krause & James, 2004), dolphins (Ansmann, Parra, Chilvers & 

Lanyon, 2012; Lusseau et al., 2006), meerkats (Drewe, Madden & Pearce, 2009), birds 

(Aplin, Farine, Morand-Ferron & Sheldon, 2012), sharks (Mourier et al., 2012; Wilson, 

Brownscombe, et al., 2015) and rodents (Wey, Burger, Ebensperger & Hayes, 2013). 

Within several decades, Network Analysis has been adapted to numerous fields such as 

physics, geography and computing (Bunn, Urban & Keitt, 2000; Urban & Keitt, 2001) 

and has recently become a popular tool for modelling landscape connectivity (Galpern, 

Manseau & Fall, 2011; Minor & Urban, 2008; Urban & Keitt, 2001). In landscape 

ecology, nodes represent habitat patches and edges indicate the movement of animals 

between patches (Figure 2.1). Networks are slowly being integrated with new concepts 

and tools to answer more ecological questions (Bascompte, 2007; Borrett et al., 2014); 

for example disease transmission (Brooks, Antonovics & Keitt, 2008; Dube, Ribble, 

Kelton & McNab, 2009; Kiss, Green & Kao, 2006), ecosystems dynamics (Jordán & 

Scheuring, 2004), molecular biology (Luscombe et al., 2004) and animal movement 

(Finn et al., 2014). Consequently, Network Analysis is well established in a number of 

disciplines providing several sources of measures, methods, conceptual frameworks and 

user friendly software (Cumming et al., 2010; James, Croft & Krause, 2009; Krause et 

al., 2009) that can be adapted to examine marine animal movement patterns, space use 

and connectivity and result in more powerful statistical analysis (Croft, Madden, Franks 

& James, 2011; Krause et al., 2009). 

 



  Chapter 2 

 
13 

 
Figure 2.1: Example of a movement network for one individual.  

Nodes (blue circles) symbolise habitat patches and edges (lines) represent the movement of an 
individual within the study area. Arrows indicate the direction of movement. Size of nodes 
represent the centrality of habitat patches (the bigger the more central/important) and size and 
colour of edges represents frequency of movement between habitat patches (thicker the line and 
arrow the more frequently it is used). This example network comprises 15 habitat patches 
(labelled 1–15). 

 

The multi-disciplinary nature of Network Analysis provides the researcher with a 

multitude of tools, from descriptive statistics to theoretical concepts. It also brings a set 

of new and rich terminology (Table 2.1) that practitioners must be familiar with. 

Networks are characterized by connections (or edges) between nodes and in the context 

of animal movement, networks symbolize the landscape/seascape studied with node 

representing habitat patch and edge the movement of individuals within the 

landscape/seascape (Figure 2.1). Node and edge can also be complemented with 

additional information (i.e. attributes); physical and environmental attributes such as 

habitat type, salinity, depth can be included in analyses. Networks can be binary (i.e., is 

there an edge between two nodes? – presence or absence of movement between patches) 

or weighted (i.e., multiple edges between two nodes – frequency of movement between 

two patches), undirected (movement from A to B is same as from B to A) or directed 

(movement from A to B is different to movement from B to A), and unimodal (i.e., 

network based on one set of nodes – movement between locations) or bimodal (i.e., 
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network based on two sets of nodes – frequency of habitat type use for an individual or 

a population for a given time). For example in Figure 2.1, the network is weighted, 

directed and unimodal; multiple bi-directional movements were made by the individual 

between node 8 and node 9 whereas only one unidirectional movement was made from 

node 15 to node 11. Descriptive statistics explore network structures at a global, sub-

structure and local level (Table 2.1a; Krause et al., 2009), thereby providing convenient 

tools to understand the complexity of movement at different scales, from the importance 

of a patch to the movement of an individual, population or species within the study area 

(Krause et al., 2013; Stehfest et al., 2013). Network and centrality metrics, cluster and 

equivalence analyses are among some of the measures used to examine the structure of 

networks and determine nodes that are highly connected and central in the network 

space (Holland & Leinhardt, 1970; Lorrain & White, 1971; Robins, Pattison, Kalish & 

Lusher, 2007). For example, network (i.e., global level) based metrics provide 

information on the size of a network (e.g., diameter), the paths taken by the individuals 

and their frequency of use (i.e., weight) within the study area (Table 2.1a). Sub-

structure measures, such as cluster and components, provide information on the 

patchiness of the network. For example, if patches are more highly connected to each 

other than they are to the rest of the landscape, an indication of different usage of 

patches within the landscape is obtained. Finally, local (i.e., node) level metrics, such as 

centrality metrics and clustering coefficient, provide information on the patch 

importance within the network. Centrality metrics indicate how often a patch is visited 

within the landscape (Borgatti & Everett, 2006), therefore high centrality values may be 

analogous to core patches. Consequently, the use of a range of metrics provides insight 

into a range of movement attributes of the animals being examined. 

 

Theoretical concepts also explore the structure of a network, however, they explore it in 

terms of patterns. These concepts are more powerful statistical analyses that compare 

the movement network to random models (which serve as a null model), to other 

movement networks or theoretical networks (Croft et al., 2011), or that investigate the 

effect of covariates or factors on the movement described by the network structure. 

Comparing networks can provide valuable insight into the similarities between 

individuals, groups of individuals, species movements or between habitat movements. 

For example, a researcher can explore movement similarities between males and 
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females, or juveniles and adults, within the landscape studied or between habitats (e.g., 

reef vs. seagrass habitats or intertidal vs. submerged habitats). Using network 

modelling, the researcher can compare movement networks to theoretical networks that 

have known structures such as regular, random, small-world and scale-free networks 

(Figure 2.2 & Table 2.1b; Sueur, Jacobs, Amblard, Petit & King, 2011) to determine the 

pattern of movement within the landscape studied. Finally, Exponential Random Graph 

Models (ERGM) and Multiple Regression Quadratic Assignment Procedures (MRQAP) 

are used to investigate the influence of “node attributes” (i.e., covariates) on the 

movement network structure. By employing these techniques, the researcher can 

evaluate how multiple covariates contribute to the overall network structure (Pinter-

Wollman et al., 2013; Robins et al., 2007) to try to understand the mechanisms 

underlying the structures of animal movement networks and the robustness of their 

conclusions (Pinter-Wollman et al., 2013). 
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Figure 2.2: Examples of four theoretical networks using a circle layout. 
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Table 2.1: Description of the metrics and theoretical networks  

a) Network, group and node level metrics 

Metrics Definition Source 

Global level 
(i.e., network) 

Path/Pathway A route between two nodes in the network Fall et al. 2007 

 Average path length Mean shortest path between all nodes in the network. Low 
average path length mean that an individual travel more rapidly 
and directly across their activity space because of the greater 
presence of shortcuts in the network. 

Proulx et al. 2005 

 Diameter Longest path between any pair of nodes in the network. Urban & Keitt 2001 

 Node degree distribution Probability that a node has a degree k for k = 0, 1, etc. 
Frequency distribution of a node degree for the network. 

Proulx et al. 2005 

 Density Proportion of edge (or route selection) present in the network 
out of total number of edge possible, for example, when all 
nodes are connected to all others, the network has a density of 1 

Faust & Zvezki 2006 

Sub-structures Component Group of nodes that are interconnected but with no 
connection/edge to rest of network 

Fall et al. 2007 

 Cluster Sub-network of interconnected nodes that were closer to each 
other than to other nodes in network space 

Rayfield et al. 2011 

 Clique Sub-network of nodes (N ≥ 3)  in which all the nodes are 
connected to each other 

Scott 2012 

 Triad Sub-network of three nodes and possible edges between them 
within a network 

Faust & Zvezki 2006 

 Structural equivalence  Nodes with the same connections/edges to and from same nodes 
– node can be substituted from one another 

Wasserman & Faust 1994 
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 Automorphic 
equivalence  

Nodes with the same connections/edges from other nodes but 
different connections/edges to other nodes 

Wasserman & Faust 1994 

 Bridge Edge critical to maintain connectivity within the network – if 
removed, the connectivity will be lost and the network broken 
into smaller components 

Wasserman & Faust 1994 

 Stepping stone Node critical to maintain connectivity within the network – , the 
connectivity will be lost and the network broken into smaller 
components 

Wasserman & Faust 1994 

Local level 
(i.e., node) 

Degree (centrality) Number of other nodes connected to a node. Minor & Urban 2008 

 Node strength Total number or frequency of incoming/outgoing movements 
from a node.  

Barrat et al. 2004 

 Eigenvector (centrality) Sum of incoming/outgoing movements from a node weighted 
by the node strength of the node it is connected to. Node with a 
high eigenvector centrality value have high node strength 
values and are connected to nodes with similarly high node 
strength values. 

Bodin et al. 2011 

 Betweenness (centrality) The proportion of all shortest paths between pairs of nodes on 
the network that pass through a node.  

Galpern et al. 2011 

 Closeness (centrality) Indicates node that occupies a central position in the network 
due to their proximity to other nodes in the network space. 

Urban et al. 2009 

 Clustering coefficient Proportion of nodes’ neighbours that are also neighbours with 
each other (i.e., the level to which nodes in the network tend to 
cluster together). The higher the clustering coefficient the more 
clustered the network is.  

Minor & Urban 2008 
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b) Theoretical network description 

Network type Typical characteristic Source 

Regular1 All nodes in the network have same degree. Sub-types of regular network have 
additional characteristics, for example, in a circular network all the nodes in the 
network have a degree of 2, no clustering coefficient and long average path length. 

Csardi & Nepusz 2006 

Random1 Normal node degree distribution. Erdős & Rényi 1959 

Small-world Small diameter relative to number of nodes, and a higher clustering coefficient and a 
smaller average path length compared with random network. 

Watts & Strogatz 1998 

Scale-free Power law node degree distribution (or right skewed distribution) where few nodes 
had a high degree (many connections) but the majority had low degree (few 
connections). 

Barabasi & Albert 1999 

1 Examples of sub-types of regular and random networks can be found in Kininmonth et al. (2009) and Boccaletti, Latora, Moreno, Chavez 
and Hwang (2006). 
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2.3. Application of Network Analysis 

2.3.1. Space use  

Understanding animal movements provides valuable information on space use usually 

expressed as home-range and activity space. Activity space is a metric used to define 

the area an individual or population uses over a period of time, and as such is 

quantifiable (Börger, Dalziel & Fryxell, 2008; Burt, 1943). Activity spaces are dynamic 

and their size, shape, structure, and location vary with biological (e.g., body size, age, 

sex, swimming ability, intra- and inter-species competition, predation) and 

environmental factors (e.g., season, resource locations, shelter; Börger et al., 2008; 

Nash, Welsh, Graham & Bellwood, 2015; Powell & Mitchell, 2012). For example, 

migratory species may have a winter activity space that differs from summer, or 

juvenile activity space may differ from adult based on species requirements (Börger et 

al., 2008). Activity space is calculated using numerous techniques based on the densities 

of use estimated from animal locations across a landscape at a given time (Powell & 

Mitchell, 2012); the common metrics being minimum convex polygon and Kernel 

Utilisation Distribution (KUD). Using these approaches, researchers can identify core 

and general use areas within the activity space of an animal; one example is 50% (i.e., 

core use) and 95% (i.e., general use) KUDs. Understanding how animals move and the 

extent to which they use specific habitats is essential to conservation ecology and has 

direct application to spatial management planning (Börger et al., 2008; Nathan, 2008). 

This section reviews Network Analysis techniques examining space use. 

 

Use of Network Analysis to study space use enables researchers to explore animal 

movement within its environment. Network Analysis has many tools that can be used to 

simply visualize or determine core and general areas. After identifying the nodes (e.g., 

coral or forest patches, or locations within a habitat) in the animal movement network, 

researchers can visualize the space use of individuals, groups of individuals or 

populations using numerous algorithms (e.g., spring embedding, Fruchterman-Reingold 

or multi-dimensional scaling) within specialised software (e.g., Netdraw (Borgatti 2002) 

or SOCPROG (Whitehead 2009b); Schick & Lindley, 2007). It is worth noting that 

while Network Analysis can be used to examine space use, it cannot estimate activity 

space and thus is not directly comparable to traditional metrics. However, differences in 



  Chapter 2 

 
21 

space use between individuals, sexes or species or for a given period (e.g., seasons, 

months) can then be explored visually using Network Analysis (Schick & Lindley, 

2007). For example, Jacoby, Brooks, et al. (2012), used spring embedding to visually 

compare changes in the Caribbean reef shark space use at various times during their 

study period; suggesting ontogeny as a possible explanation for the observed changes. 

In addition, Finn et al. (2014) used the spatial locations of individuals to display 

movement patterns of bonefish, permit and barracuda and how they used space over 

time, showing a decrease in bonefish space use on the last day of the study period.  

 

Using descriptive statistics (e.g., centrality metrics), the relative importance of each 

node in the network can be measured (Borgatti, 2006). The researcher can capture 

distinct aspects of the node’s importance in network space using different centrality 

metrics (Estrada & Bodin, 2008) and distinct patch use within the network using sub-

structure measures. A single or multiple metrics/algorithms can be used to determine 

and validate the most important patch(es) and different usages in the network depending 

on the research question. Four studies have used descriptive statistics to examine the 

space use of sharks (Jacoby, Brooks, et al., 2012; Stehfest et al., 2015) and teleosts 

(Finn et al., 2014; Stehfest et al., 2013). Degree (Jacoby, Brooks, et al., 2012; Stehfest 

et al., 2013), eigenvector (Stehfest et al., 2015) and community detection (i.e., cluster; 

Finn et al., 2014) are among the tools used to determine the most important patch(es) 

and various usages within the network (Table 2.1). Using degree, Jacoby, Brooks, et al. 

(2012) demonstrated segregation in core patches and movements between male and 

female small-spotted catsharks. Stehfest et al. (2013) measured degree and node 

strength (Table 2.1) from the movement network of yellowfin tuna surrounding the 

island of Oahu, Hawaii, and found an inter-annual difference in their movement 

between fish aggregating devices. Stehfest et al. (2015) used eigenvector to examine the 

movement network of broadnose sevengill sharks and found male and female spatial 

segregation in the Derwent Estuary and Norfolk Bay on the southeast coast of 

Tasmania, Australia; with each sex using a different core area within the study area (i.e., 

bay for females versus estuary for males). Finally, Finn et al. (2014) used community 

detection algorithms to identify the space use of bonefish, permit and barracuda in the 

coastal waters of the island of Culebra, Puerto Rico. Results showed which sites were 

used by which teleost and how frequently, which allow the researcher to determine if 
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the site was used for foraging or spawning activity. See also Chapter four for a recent 

use of Network Analysis descriptive statistics to examine space use of two nearshore 

shark species through comparison of traditional and Network Analysis approaches. 

 

Network Analysis provides many tools to visualise and examine space use, and also 

identify different use of patches (i.e., core versus general use). Compared to traditional 

analyses, Network Analysis provides a simple way to display complex processes that 

instantly reveal valuable information on spatial and temporal changes in animal space 

use (Finn et al., 2014; Jacoby, Brooks, et al., 2012). Furthermore, visual exploration of 

the network can be used to inform subsequent quantitative analyses (Jacoby, Brooks, et 

al., 2012). While Network Analysis provides valuable information on animal space use 

patterns, it does not estimate area used; the network diameter, which is an indication of 

space use size, can be measured, however, it is unit-less so direct comparison with 

previous studies is difficult. Similarly, even though Network Analysis can identify core 

and general use patches their areas cannot be calculated. Finally, marine animals also 

move vertically (i.e., up and down the water column; Nash et al., 2015); some 

traditional analysis includes individual depth in area and volume calculations, one 

example being vertical KUD (see Heupel & Simpfendorfer, 2014 for description), 

another is 3D kernels (Simpfendorfer, Olsen, Heupel & Moland, 2012). Movement 

networks can also be visualised in 3D, however, the visualisation algorithm uses the 

depth of the habitat patch (i.e., node) not the animal depth, in addition, none of the 

Network Analysis metrics includes 3D coordinates, at the node or edge levels, in their 

calculations so this needs to be explored with future work. 

 

2.3.2. Connectivity 

Examining the movement of animals can provide valuable information on habitat 

connectivity. Individuals rely on habitat connectivity to obtain the resources required to 

ensure survival since a single habitat patch rarely provides access to all resources 

needed (Pardini, de Souza, Braga-Neto & Metzger, 2005). Habitat connectivity in turn 

has important bearing on the transfer of energy throughout the ecosystem (Deegan, 

1993). Connectivity can be measured either at the patch scale or at the landscape scale 

and can be defined at two different levels: structural connectivity and functional 
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connectivity (Bélisle, 2005; Minor & Urban, 2008). The first refers to the physical 

relationship between habitat patches (i.e., distance between patches) and is commonly 

investigated using species with planktonic stages to look at dispersal ability or distances 

between patches and re-colonisation ability (Dethier, McDonald & Strathmann, 2003; 

Tischendorf & Fahrig, 2000). The second refers to interactions between species and 

habitat patches (i.e., how easily species move within their environment; Rayfield et al., 

2011) and is determined by examining the movement of the whole population 

throughout the landscape (Frisk, Jordaan & Miller, 2014). In this section, I review 

research that has examined structural and functional connectivity using Network 

Analysis. 

 

Network Analysis has many tools adapted from the computer and social sciences that 

can be used to evaluate multiple aspects of habitat connectivity (Minor & Urban, 2008). 

Using descriptive statistics, the researcher can determine the role of each patch (node) 

or corridor (edge) in maintaining /contributing to landscape structural or functional 

connectivity (Bunn et al., 2000; Jordán, Magura, Tóthmérész, Vasas & Ködöböcz, 

2007; Pascual-Hortal & Saura, 2008). Eight reviewed studies used sub-structure and 

local metrics such as component and cluster (Bodin, Tengo, Norman, Lundberg & 

Elmqvist, 2006; Fall et al., 2007; Thomas et al., 2014), degree (Jordán et al., 2007; 

Schick & Lindley, 2007), stepping stone (Table 2.1a; Treml et al., 2008) and probability 

of connectivity (Fernandes, Penha & Zuanon, 2015; Pascual-Hortal & Saura, 2008) to 

determine the importance of patches in a network. Then, by using patch and edge 

removal and/or edge thresholding analyses, the researchers were able to examine the 

role these patches and corridors had in maintaining the structural or functional 

connectivity in the landscape studied under different patch- and corridor-loss scenarios 

(Bascompte, 2007; James et al., 2009). The advantage of these methods is that 

researchers can simulate the destruction of patches or corridors and rank them by their 

contributions to landscape connectivity, thereby allowing managers to make decisions 

based on which patches are most critical to landscape connectivity (Calabrese & Fagan, 

2004; Keitt, Urban & Milne, 1997), not just for one species but multiple species within 

the same landscape. See Espinoza, Lédée, Simpfendorfer, Tobin and Heupel (2015) for 

a recent use of probability of connectivity to determine the functional connectivity of 

multiple apex predators in the marine environment. 



Role of Network Analysis in understanding marine animal spatial ecology 

 
24 

 

Using theoretical concepts such as network modelling, the researcher can examine 

patterns of movement within the landscape. Network modelling is an extension of 

Network Analysis that compares observed networks to simulated networks that have 

known topology (i.e., structure). Network modelling is well developed in other 

disciplines, including geography (i.e., urban and transport networks) and landscape 

ecology where it was used to study landscape connectivity (Minor & Urban, 2008; 

Urban & Keitt, 2001). However, few studies have used network modelling in a marine 

environment to examine movement of fish (Fox & Bellwood, 2014; see also Chapter 

five) or structural connectivity of coral reefs (Kininmonth et al., 2009; Kininmonth, van 

Oppen, Castine, Peplow & Lutz, 2012). These studies compared the movement network 

of parrotfish (Fox & Bellwood, 2014) and larval dispersal network of coral reefs 

(Kininmonth et al., 2009; Kininmonth et al., 2012) to four and seven (three of which 

were sub-types of regular networks) theoretical networks, respectively, including 

regular, random, small-world and scale-free networks. Fox and Bellwood (2014) found 

that herbivorous fish of the Great Barrier Reef central region exhibited small-world and 

scale-free properties; whereas only small-world characteristics were found for coral 

larvae dispersal networks within the same region (Kininmonth et al., 2009; Kininmonth 

et al., 2012). Both of these characteristics help maintain connectivity within the 

landscape; by facilitating dispersal through alternative pathways (small-world) and by 

enhancing resilience to random disturbances (scale-free). 

 

Network Analysis provides a single method to examine structural and functional 

connectivity. Compared to traditional analysis, Network Analysis offers an approach 

which combines the movement or dispersal of an animal with landscape features (i.e., 

patch size, shape and location; Krause et al., 2013; Urban & Keitt, 2001). For example 

when examining animal movement, networks represent the functional connectivity as 

experienced by the animal within the landscape (Estrada & Bodin, 2008; Fall et al., 

2007; Minor & Urban, 2008). In addition, by defining patches (i.e., nodes) the 

connectivity at different levels in the landscape can be examined by using only one 

network; at patch (i.e., local metrics) and landscape (i.e., global metrics) levels (Krause 

et al., 2013; Minor & Urban, 2008; Urban & Keitt, 2001). However, patches cannot be 
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defined at resolutions finer than the input data, therefore careful consideration during 

the study design stage is critical. For example in acoustic telemetry studies, acoustic 

receiver deployments should match patch distribution within the landscape studied. On 

the other hand, in satellite or VPS studies which provide more accurate spatial 

information, defining patches will be harder because of the continuous nature of the 

spatial coordinates. Finally, patches important for maintaining connectivity or foraging 

can be measured using descriptive statistics providing valuable information for 

ecosystem-based management (Bunn et al., 2000; Urban & Keitt, 2001). 

 

2.3.3. Habitat use 

Valuable information on habitat use and preferences can also be obtained from studying 

animal movements. Habitat use is “the way an animal uses the physical and biological 

resources in a habitat” (Krausman, 1999; page 86). Some habitats are preferred and 

others avoided (Morris, 1987) due to different habitat requirements of individuals. 

Habitat may be used for foraging, protection, mating, and may be dependent on the life 

stage of an individual (Krausman, 1999). The intensity of use depends on intrinsic 

factors (size, sex, ontogenetic stages, survival, growth, reproduction or individuals 

preferences) based on individual characteristics and extrinsic factors (i.e., driving 

forces; Acevedo-Gutiérrez, 2009; Topping, Lowe & Caselle, 2005) based on an 

individuals’ ability to tolerate the environment they live in. Individuals will use and 

choose locations suitable to them. Habitat use is typically measured as the relative 

amount of time spent in different areas within a home range. Habitat preference is the 

process where an individual selects a non-random set of available habitats in which to 

live (Morris, 2003). Habitat selection is determined using statistical methods; the 

frequency of use of the habitats and density of individuals per habitat type relative to the 

availability of that habitat type is calculated and plotted to determine habitat selection 

(Mayor, Schneider, Schaefer & Mahoney, 2009; Morris, 2003; Simpfendorfer & 

Heupel, 2004). Habitat availability is scale- and time-dependant as space use sizes vary 

with time (Mayor et al., 2009; Rhodes, McAlpine, Lunney & Possingham, 2005). In 

addition, various indices (e.g., Manly’s or Strauss’ indices; Simpfendorfer & Heupel, 

2004) are used to determine which habitats are preferred and which are avoided. 

Knowing which habitats are selected by individuals provides useful information in 

predicting impacts on population persistence, distribution, structure and resilience to 



Role of Network Analysis in understanding marine animal spatial ecology 

 
26 

habitat modifications (Gratwicke, Petrovic & Speight, 2006). Therefore, assessing 

which habitats individuals prefer is valuable for habitat management and species 

conservation (Krausman, 1999; Mayor et al., 2009). In this section, I review Network 

Analysis techniques that have been applied to habitat use and preferences. 

 

In the context of habitat use and preferences, two types of habitat network may be 

created; unimodal and bimodal. Unimodal habitat networks represent the movement of 

individuals, a population or species between habitat types and can be used to examine 

habitat use. To the best of my knowledge, no researchers have used unimodal habitat 

networks to examine habitat use of animals within the marine environment. This is 

surprising as similar Network Analysis visualisation and analysis techniques (e.g., space 

use studies; see above) can easily be applied to examine habitat use (i.e., unimodal 

habitat network). For example, centrality metrics, such as eigenvector and/or node 

strength, can provide information on the most important habitat type for the individual, 

population or species. This potential to use Network Analysis to examine habitat use 

has been under-utilised and may provide opportunities in the future to further explore 

this issue. Alternatively, bimodal habitat networks represent the frequency of habitat 

type (i.e., first set of nodes) use by an individual, population or species during a 

specified period (i.e., second set of nodes, e.g., monthly, seasonally etc, Figure 2.3; 

Borgatti, 2012; Opsahl, 2013) and may be used to examine habitat preferences of an 

individual, population or species. Two approaches can be applied to visualise and 

analyse bimodal habitat networks. The first one converts (using projection techniques) 

the bimodal habitat network into two unimodal networks (i.e., one for each set of nodes; 

Opsahl, 2013); this approach is used if interested in only one set of nodes (the other 

being ignored; Borgatti, 2012). In the context of habitat preference, the unimodal 

network characterised by habitat types as nodes is analysed. This new unimodal habitat 

network represents similarities in frequency of use of a habitat type relative to other 

available habitat types. As for any unimodal networks, visualisation techniques and 

descriptive metrics can be applied to determine which habitat type may be preferred by 

the subject. However, careful interpretation of results should be made; by converting to 

a unimodal network, there is some loss of information (i.e., time period), for example 

two habitat type pairs might be highly similar in term of preferences though it could be 

within two different time periods (Borgatti, Everett & Johnson, 2013). 
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Figure 2.3: Spring embedding representation of a bimodal habitat network for C. amboinensis 
individual in Cleveland Bay, Australia from 2010 to 2011. 

Squares represent habitat type in the two-mode network; circles represent dry season months 
when the individual used all five habitats; triangles represent wet season months when the 
individual used all five habitats; Node size represents the node importance in the network: the 
bigger the node the higher the importance. Arrow head size represents the intensity of use of the 
habitat in the specific months. 

 

The second approach is to keep the bimodal habitat network as is and run a visualisation 

algorithm and adapted analysis on the bimodal habitat network. Only some descriptive 

metrics can be applied to bimodal networks; centrality metrics, for example degree or 

eigenvector, have been modified (i.e., normalised to each sets of nodes) to be used on 

bimodal networks and could be used to determine the most preferred habitat type within 

the network during a specified period (Borgatti, 2012). In addition, lack of connection 

between the two sets of nodes is possible in a bimodal network, therefore, no standard 

sub-structure measures can be used. Other techniques have been created to replace 

existing ones (Borgatti et al., 2013); for example, the metric clique (Table 2.1a) was 

replaced by bi-clique (i.e., maximal complete bipartite sub-network; Borgatti, 2012). 

Nevertheless, standard visualisation techniques can be used on bimodal habitat 

networks and multi-dimensional scaling or correspondence analyses provide an easier 



Role of Network Analysis in understanding marine animal spatial ecology 

 
28 

way to visualise habitat preference during a specified time period. For example, Figure 

2.4 shows which habitat type along the east coast of Australia is preferred by bull sharks 

during particular seasons. An alternative approach to determine marine habitat 

preferences of individuals was taken by Stehfest et al. (2015) who used eigenvector, 

measured on the unimodal habitat network of broadnose sevengill sharks, to determine 

their preferred habitat in the Derwent Estuary and Norfolk Bay. Distinct habitat 

preferences were found between male and female sharks. However, the authors 

cautioned against the conclusions from this research as the frequency of use of the 

habitat type relative to habitat type availability was not included in the calculations. 

 

 
Figure 2.4 : Correspondence analysis on the seasonal movement of female (a) and male (b) bull 
sharks along the Australian coast from 2012 to 2014. 

Blue represents the habitat type, red indicates season and size of points indicates the relative 
importance of the habitat type whereas shades of grey represent the contribution of the season. 
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An advantage of using Network Analysis in studying animal spatial ecology, compared 

to traditional methods, is its flexibility (Bascompte, 2007; Minor & Urban, 2008); the 

patches within a network can be combined at a coarser scale, using the node attributes 

to analyse the network data at multi-scales (Urban & Keitt, 2001). For example, 

locations (i.e., nodes) used in a movement network (i.e., finer scale) can be combined at 

the habitat type level, to create a habitat network (i.e., coarser scale). The researcher can 

essentially examine the movement and habitat use of an animal within its environment 

using the same network data. Finally, Network Analysis can provide valuable 

information on which habitat types are preferred and/or not used, through bimodal 

networks, however, Network Analysis does not quantitatively measure habitat selection 

(i.e., preference versus avoidance), therefore it is more of an indication of habitat use 

during specific periods. Further development of Network Analysis tools to quantify 

habitat selection (i.e., preference and avoidance) might prove useful.  

 

2.3.4. Factors influencing movement 

Animal movements are driven by biological and environmental factors (e.g., size, sex, 

temperature and resource availability etc.) across multiple spatial and temporal scales 

(Nathan et al., 2008). A species’ ability to physically tolerate variation in their 

environment and to successfully disperse, colonise or migrate between suitable areas 

will determine their chance of survival after disturbances (Eikaas & McIntosh, 2006; 

Nathan et al., 2008). Distance analysis and/or logistic/binomial models such as 

generalised linear models and generalised additive models are commonly used to try to 

determine the role environmental factors play in influencing movements and space use. 

Understanding the cause and patterns of animal movements provides useful information 

on the connectivity between habitats and space and habitat use (Krausman, 1999), and is 

central to spatial ecology, management and conservation (Nathan et al., 2008). Here, I 

review research that has used Network Analysis, and also propose Network Analysis 

techniques that can be applied to investigate biological and environmental variables 

responsible for movement network structure. 

 

Network Analysis has many tools adapted from epidemiological, social and physical 

sciences that can be used to compare movement or habitat networks across species, sex, 
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body size etc. (i.e., biological factors) and study the environmental factors influencing 

the network structure (Pinter-Wollman et al., 2013). In the context of movement and 

habitat networks, biological and environmental factors are analysed using different 

tools. This is because networks are created for an individual, groups of individuals or 

populations where nodes represent locations or habitat types and edges represent 

movement between locations or habitats. Therefore biological factors cannot be added 

to node attributes and so theoretical concepts cannot be applied as they incorporate node 

attributes into their models (Dekker, Krackhardt & Snijders, 2007; Robins et al., 2007). 

Consequently, biological factors influencing network structure are analysed by 

comparing networks, for example, by comparing movement or habitat use of male 

versus female, or juvenile versus adults. Two approaches are available for comparing 

networks and the node and path numbers in the network will determine which approach 

to choose. The first approach examines the correlations or similarities between networks 

using a Mantel test or some variation of it (Croft et al., 2008; Hemelrijk, 1990). 

However, one assumption for the Mantel test is that networks have same node and path 

numbers (Croft et al., 2008). The second approach is the triad census which provides 

information on clusters (Table 2.1a), isolates and structural holes within the network 

(Croft et al., 2008). An isolate is a node that is not connected to any others in the 

network (Bodin et al., 2011), structural hole refers to a node that is connected to nodes 

which are only connected to that specific node (e.g., types 4 and 5 in Figure 2.5; Bodin 

et al., 2011), this node can be referred as a stepping stone (Table 2.1a). Triad census 

surveys the different triad types (Figure 2.5) and frequencies in a network, providing 

information on the local structural similarities of networks (Faust & Zvezki, 2006). 

Triad census is used to compare between networks of different node and path numbers. 

These two approaches are really useful to examine the difference between networks but 

are still limited. While researcher can identify differences in network structures based 

on biological attributes (i.e., juvenile versus adult networks or female versus male 

networks), results do not really define the causative effect of the biological attribute 

(e.g., as individuals grow the diameter of their network increases etc.).  
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Figure 2.5: Triad types within a directed network using MAN labelling.  

Numbers refer to number of Mutual, Asymmetric and Null dyads (i.e., sub-network of two 
nodes and possible edges between them) in each triad (Table 2.1a). Letters refers to direction of 
edge within the triad: down (D), up (U), transitive (T) and cyclic (C). 

 

Theoretical concepts, such as Exponential Random Graph Models (ERGM) and 

Multiple Regression Quadratic Assignment Procedures (MRQAP), are better suited to 

answer more complex ecological questions such as defining environmental drivers 

responsible for the network structure (Pinter-Wollman et al., 2013). Both ERGM and 

MRQAP analyses can evaluate the influence of environmental factors on the structure 

of movement and habitat networks by incorporating node attributes into the models 

(Dekker et al., 2007; Pinter-Wollman et al., 2013; Robins et al., 2007). Both of these 

analyses are similar to general linear models, except that they include a randomisation 

test to compensate for violation of the data independence assumption. Movement 

network is the dependent variable - must be binary (i.e., binary network) for ERGM or 

can be continuous or discrete (i.e., weighted network) for MRQAP, whereas the 

independent variables can be continuous (Kolaczyk & Csárdi, 2014; Pinter-Wollman et 
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al., 2013; Robins et al., 2007). The advantages of MRQAP is that it takes into account 

autocorrelation using different permutation methods (e.g., Double semi partialing or 

Freedman-Lane semi-partialing; Dekker et al., 2007), however, methods to include 

interaction between factors are still under-development (Mann, Stanton, Patterson, 

Bienenstock & Singh, 2012). Two studies reviewed used MRQAP (with the double-

Dekker semi-partialing method) to examine the drivers influencing shark movement 

(Jacoby, Brooks, et al., 2012) and dolphin association (Mann et al., 2012).  Jacoby, 

Brooks, et al. (2012) used MRQAP to study the influence of inshore versus offshore 

locations, mean depth and habitat complexity on the movement of female and male 

small-spotted catsharks, finding that habitat type was a strong driver of female 

movement (although not significantly). Mann et al. (2012) tested whether similarity in 

maternal kinship, foraging type and/or geographic proximity were significant predictors 

of dolphin associations in Shark Bay, Western Australia. The study found all variables 

had an effect on their associations. Finally, standard visualisation techniques, such 

multi-dimensional scaling or correspondence analysis, can be used to display the 

influence of environmental factors on the movement or habitat use of marine species, 

however, this requires a bimodal network (Estrada & Bodin, 2008; Faust & Zvezki, 

2006). 

 

Similarly to traditional statistical methods, Network Analysis can be applied to examine 

the influence of environmental factors on animal movement, however, Network 

Analysis approaches require environmental data at a level of resolution comparable to 

the patches (i.e., node; Dekker et al., 2007; Pinter-Wollman et al., 2013; Robins et al., 

2007). Local environmental data in the marine environment is challenging and 

expensive to collect due to the  potentially large number of patches (i.e., large study 

area) to cover over a long period of time, but also due to specific equipment required to 

collect the data (Albaladejo et al., 2010), therefore the use of ERGM and MRQAP 

might not be possible in some situations. In addition, both analyses are performed on 

one network at a time (Croft et al., 2008), therefore it is a time consuming process at the 

individual scale. Combining network data at the population level might provide a 

solution, but information on individual variation within the population would be lost. 

The use of Network Analysis to examine environmental influences on animal 

movements is still in its early stages, and future development will increase its potential. 
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2.4. Limitations of Network Analysis 

As with other methods for examining marine animal spatial ecology, there are 

limitations to Network Analysis that should be considered when deciding to use it. First, 

because network data violate the assumption of data independence, any statistical 

methods and theories designed to or further developed for investigating important 

aspects of animal movement require the ability to handle non-independent data 

(Cumming et al., 2010; Jacoby, Brooks, et al., 2012). Most of the theoretical concepts 

reviewed here were developed specifically to test this type of data and have 

randomisation tests included in their processes to compensate for this violation 

(Cumming et al., 2010). However, some analyses do not and one possible solution is to 

use a randomisation procedure before analysing the data to be able to make inferences 

and robust interpretation of results. 

 

Movements in the marine environment are multi-dimensional (i.e., include depth) and 

are constrained by spatial features, therefore rarely follow a straight path. However, 

movement between two locations or habitat types within the network are shown as a 

straight path (Stehfest et al., 2015; Tremblay et al., 2006) and so are unrealistic. 

Furthermore, interactions between animals and their environment are dynamic in nature 

and time will influence these interactions by influencing environmental factors such as 

wind, rain etc. (Cumming et al., 2010; Pinter-Wollman et al., 2013). However, networks 

are a static representation of movement or habitat use ignoring the temporal dynamics 

of movement and residency at the habitats (Cumming et al., 2010; Stehfest et al., 2015). 

Consequently, there is a need to incorporate spatial constraints and temporal dynamics 

into animal network studies, which is critical for understanding the processes driving 

the structure of networks. Two approaches might be used to compensate for these 

limitations; the researcher can either choose intervals more relevant to the biology and 

ecology of the species studied, or use time-ordered networks (e.g., Blonder, Wey, 

Dornhaus, James & Sih, 2012; Snijders, van de Bunt & Steglich, 2010 for details). 

Another example by Stehfest et al. (2015) used state-space modelling to create networks 

for each different state before analysing the movement of broadnose sevengill sharks in 

an attempt to include temporal information in the network. Therefore, while Network 
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Analysis alone is useful in providing information on animal movement, combining 

traditional and network analyses might provide a more realistic picture of animal 

movement (Bascompte, 2007).  

 

One advantage of Network Analysis has over traditional methods is the modest data 

requirement compared to other models (Minor & Urban, 2008; Pascual-Hortal & Saura, 

2006; Rayfield et al., 2011). This is true in terms of node numbers, but most metrics are 

based on movement between nodes and large movement dataset is required to obtain 

more robust estimates (James et al., 2009; Silk, Jackson, Croft, Colhoun & Bearhop, 

2015; see also Chapter four). Nevertheless, some metrics are also more sensitive to 

low numbers of nodes; for example, betweenness and clustering coefficient precision 

declines as the number of node decrease (Silk et al., 2015). Therefore, even though 

Network Analysis does not require large amounts of data, caution should be taken in 

choosing metrics to answer specific ecological questions and in interpreting results from 

network with low numbers of nodes and movement. Also, missing data (e.g., low 

acoustic receiver coverage in acoustic monitoring studies or unknown habitat use in 

mark-recapture studies) may influence the measure of the individual movement between 

locations/habitat types (Silk et al., 2015). To conclude, in the presence of low amount of 

data and/or missing data, the use of Network Analysis may not provide a good 

representation of animal movement and traditional analyses may be more suited 

(Whitehead, 2009a). 

 

2.5. Conclusion 

This review is not intended to be exhaustive and only identified possible applications of 

Network Analysis to analyse marine animal spatial ecology. Network Analysis tools are 

extensive (Krause et al., 2013), rapidly developing (Bascompte, 2007) and growing 

(Borrett et al., 2014), therefore better suited tools will likely be available in the future. 

This review showed that Network Analysis can help characterise marine animal spatial 

ecology in new ways, providing many tools to understand the complex interaction 

between animals and their environment. Network Analysis has tools that can assess the 

core patches in a network, compare network similarities across species and study the 

drivers responsible for the structure of networks (Bunn et al., 2000; Keitt et al., 1997; 
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Urban & Keitt, 2001). The main advantages of using Network Analysis to examine 

animal movements are that many types of movement (migration, habitat use, 

connectivity) can be examined using the same visualisation and analyses (Krause et al., 

2009). Furthermore, Network Analysis can be applied at multiple scales (Stehfest et al., 

2013) depending on what is examined (e.g., movement and habitat networks; Croft et 

al., 2008). Network Analysis also provides many tools to examine how networks may 

break apart under various scenarios to assess the potential impact of anthropogenic and 

environmental stressors (e.g., loss of connectivity, habitat disturbances etc.). The 

outputs of such Network Analysis tools can then evaluate and inform on the 

effectiveness of management or help guide conservation (Bascompte, 2007; Borrett et 

al., 2014; Cumming et al., 2010; Galpern et al., 2011). 

 

In summarizing Network Analysis techniques and identifying areas in need of attention, 

this review provides researchers with a toolbox of Network Analysis methods for 

defining marine animal spatial ecology, and thus progressing our understanding of the 

processes that shape animal movement and ultimately help design management and 

conservation plans. The application of Network Analysis to examine animal movement 

over the next decades will mostly increase the potential and power of Network 

Analysis. 
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Chapter 3 

3. General Methodology 

 

 

This project used data from six predator species including two nearshore sharks (pigeye 

shark (Carcharhinus amboinensis) and spottail shark (Carcharhinus sorrah)), two reef 

sharks (silvertip shark (Carcharhinus albimarginatus) and grey reef shark 

(Carcharhinus amblyrhynchos)), and two carangid teleosts (giant trevally (Caranx 

ignobilis) and golden trevally (Gnathanodon speciosus)). Data from the two nearshore 

shark species were used to determine efficacy of the Network Analysis method to 

contribute to the understanding of space use, on a known dataset. Data were collected 

from Cleveland Bay from 2008 to 2010 by D.M. Knip for her PhD on “Spatial ecology 

of mobile predators in a nearshore tropical environment and its implication for marine 

protected areas” (Knip, 2011). Data from reef shark and carangid species were acquired 

to test if Network Analysis could provide valuable information on functional 

connectivity in offshore reef habitats. Data for the two reef shark species were collected 

from the central Great Barrier Reef from 2012 to 2014 by M. Espinoza for his PhD on 

“Movements and habitat connectivity of reef-associated sharks: implications for 

management and conservation”. Data for two carangid species were collected from 

Cleveland Bay and the central Great Barrier Reef from 2012 to 2014. Additional data 

used for Gnathanodon speciosus were collected by Amos Mapleston in 2011 as part of 

pilot studies in Cleveland Bay. 

 

3.1. Nearshore shark species 

3.1.1. Carcharhinus amboinensis (Pigeye Shark) 

Carcharhinus amboinensis (Figure 3.1) is a large-bodied shark species growing to 280 

cm and reaching maturity between 210 and 220 cm (Cliff, 2009; Last & Stevens, 2009). 

Pigeye sharks occur in tropical waters of Indo-West Pacific Ocean (Last & Stevens, 

2009), inhabiting coastal waters ranging from 0 to 60 m in depth. Individuals are 

usually found close to the bottom, feeding on teleosts, elasmobranchs, crustaceans 

and/or cephalopods (Cliff, 2009; Compagno, Dando & Fowler, 2005). 
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Figure 3.1: Pigeye Shark (Carcharhinus amboinensis). 

 

3.1.2. Carcharhinus sorrah (Spottail Shark) 

Carcharhinus sorrah (Figure 3.2) is a medium sized shark with fast growth, a maximum 

length (published) of 160 cm and reaches maturity between 90 and 95 cm (Compagno et 

al., 2005; Last & Stevens, 2009). Spottail sharks are widely distributed throughout 

tropical waters of the Indo-Pacific region (Last & Stevens, 2009), inhabiting coastal 

water ranging from 0 to 70 m in depth, (Compagno et al., 2005) feeding on teleosts, 

cephalopods and crustaceans (Last & Stevens, 2009). 

 

 
Figure 3.2: Spottail Shark (Carcharhinus sorrah). 

 

© CSIRO National Fish Collection 

 

© CSIRO National Fish Collection 
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3.2. Reef shark species 

3.2.1. Carcharhinus albimarginatus (Silvertip Shark) 

Carcharhinus albimarginatus (Figure 3.3) are larger than most reef shark species 

(Compagno et al., 2005; Last & Stevens, 2009), growing up to 300 cm and reaching 

maturity between 160 and 200 cm (Compagno et al., 2005). Silvertip sharks have a wide 

but fragmented distribution in the tropical waters of the Indo-Pacific region (Barnett, 

Abrantes, Seymour & Fitzpatrick, 2012; Last & Stevens, 2009). They occupy a wide 

range of habitats from inshore to offshore regions, (Compagno et al., 2005) and are 

found in a wide range of depths from the surface to 800 m (Compagno et al., 2005). 

Individuals feed mainly on reef fishes and cephalopods (Compagno et al., 2005). 

 

 
Figure 3.3: Silvertip Shark (Carcharhinus albimarginatus) in the central Great Barrier Reef 
region. 

 

3.2.2. Carcharhinus amblyrhynchos (Grey Reef Shark) 

Carcharhinus amblyrhynchos (Figure 3.4) is a medium-bodied shark (Compagno et al., 

2005) with total length of up to 250 cm and reaching maturity between 120 and 140 cm 

(Randall, Allen & Steene, 1997; Smale, 2009; Wetherbee, Crow & Lowe, 1997). The 

species occurs in the Indo-Pacific region (Smale, 2009), in clear tropical waters between 

10 to  > 50 m in depth (Smale, 2009). Common on coral reefs (Compagno et al., 2005), 

they feed on mainly reef fishes, crustaceans and cephalopods (Compagno et al., 2005; 

© Fishing and Fisheries Team 
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Wetherbee et al., 1997). Individuals are thought to have high site fidelity (Smale, 2009; 

Wetherbee et al., 1997). 

 

 
Figure 3.4: Grey Reef Shark (Carcharhinus amblyrhynchos) in Fiji. 

 

3.3. Carangid species 

3.3.1. Caranx ignobilis (Giant Trevally) 

Caranx ignobilis is the largest of the carangid species with a maximum size of 170 cm 

and weighs up to 53 kg (Figure 3.5); it reaches maturity between 50 and 60 cm and 

undergoes sexual dimorphism (i.e., male and female differ in coloration; Carpenter & 

Niem, 1999; Lowe, Wetherbee & Meyer, 2006; Meyer, Holland & Papastamatiou, 

2007; Randall et al., 1997; Sudekum, Parrish, Radtke & Ralston, 1991; von 

Westernhagen, 1974; Wetherbee, Holland, Meyer & Lowe, 2004). The body, head and 

fins of males are dusky to black whereas females are pale to silvery. The species occurs 

throughout most of the tropical Indian Ocean and Central Pacific. Caranx ignobilis is a 

highly mobile predator and its diet mainly includes fish and crustaceans. Juveniles are 

often found in brackish estuaries or in freshwater while adults live offshore in reef 

habitats (Lowe et al., 2006; Meyer et al., 2007; Randall et al., 1997; Sudekum et al., 

1991; von Westernhagen, 1974; Wetherbee et al., 2004). 

 

© Colin Simpfendorfer 
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Figure 3.5: Giant Trevallies (Caranx ignobilis) at Centipede Reef in the central Great Barrier 
Reef region.  

 

3.3.2. Gnathanodon speciosus (Golden Trevally) 

Gnathanodon speciosus is a fast growing carangid, reaching up to 120 cm and weighing 

up to 15 kg; it reaches maturity at approximately 33 cm (Figure 3.6; Carpenter & Niem, 

1999; Grandcourt, Al Abdessalaam, Francis & Al Shamsi, 2004; Gunn, Stevens, Davis 

& Norman, 1999; Randall et al., 1997). The species occurs throughout the warm 

tropical waters of the Indo-Pacific region (Grandcourt et al., 2004; Randall et al., 1997).  

Individuals are mainly found in inshore areas and feed on crustaceans, molluscs and 

fishes (Grandcourt et al., 2004; Randall et al., 1997). Juveniles are known to display 

piloting behaviour with sharks and other large fishes (Grandcourt et al., 2004; Gunn et 

al., 1999; Randall et al., 1997). 

 

© Jordan Matley 
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Figure 3.6: Golden Trevally (Gnathanodon speciosus) in Cleveland Bay on the northeast coast 
of Queensland, Australia.  

 

3.4. Study site and acoustic monitoring 

3.4.1. Inshore habitat  

Cleveland Bay on the north-east coast of Queensland, Australia, is a shallow 

embayment (< 10 m) covering an area of ~ 225 km2 (Figure 3.7). The bay includes 

various coastal habitat types including coral reef, sand bank, intertidal mud-flat, sea-

grass and mangrove (Knip, Heupel, Simpfendorfer, Tobin & Moloney, 2011a; Munroe, 

Simpfendorfer & Heupel, 2014) and is influenced by tides ranging up to 4.2m (Bureau 

of Meteorology, Australia). Ross River, Crocodile Creek and Alligator Creek located on 

the south-eastern side of the bay provide seasonal freshwater input (Knip et al., 2011a; 

Munroe et al., 2014). Sixty-seven acoustic receivers (VR2W Vemco Ltd); 28 in the 

western section and 39 in the eastern section (Figure 3.7) were deployed to track fish 

and shark movements. Forty-seven receivers were first deployed in November 2008, 

nine receivers were added in August 2009, six in 2010 and five in 2011 to cover 

additional areas and habitat. No receivers were deployed in the middle section of 

Cleveland Bay, as that area is a designated shipping channel. Receivers were deployed 

in all representative habitat types within the bay, including coral reef, sand bank, 

intertidal mud-flat, sea-grass and mangrove (Knip, Heupel & Simpfendorfer, 2012b; 

Knip et al., 2011a). Acoustic receivers were deployed on average 2 km apart and had a 

© Amos Mapleston 
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detection range of ~ 900 m, so there was no overlap in detection ranges. Receiver data 

were downloaded quarterly. 

 

 
Figure 3.7: Map of Cleveland Bay.  

 represents receiver locations in deeper areas of the bay,  in mudflat regions,  in coral reef 
areas,  in sandy habitats and  in seagrass habitats. Reefs are outlined (dashed) in light grey 
and mangroves are indicated in dark grey. Inset indicates location of Cleveland Bay along the 
Australian coast. 

 

3.4.2. Offshore habitat 

Field work was conducted from 2012 to 2014 in the central section of the Great Barrier 

Reef located off the north-east coast of Australia (Figure 3.8). The study region 

included a large network of mid-shelf reefs stretching from Bramble Reef (18°24’S), 

located ~ 100 km north of Townsville to Pinnacle Reef (19°01’S), located ~ 80 km east 
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of Townsville. Seventeen reefs within the study region were monitored by 48 acoustic 

receivers (VR2W Vemco Ltd, Halifax, Nova Scotia, Canada) deployed in 2011 and a 

further 8 deployed in 2013 (Figure 3.8). 

 

 
Figure 3.8: Map of the Townsville reefs in the central Great Barrier Reef region.  

 represents the location of receivers within the Townsville reefs region, dotted grey lines 
indicate reef boundaries, dotted dark grey polygons represent the drying reef, blue lines 
represent bathymetry. Top right inset indicates location of the Townsville reefs along the 
Australian coast, bottom left insets indicate the location of the receivers on: (a) Helix Reef, (b) 
John Brewer Reef, (c) Lodestone Reef and (d) Wheeler Reef.  represents the location of 
sentinel acoustic transmitters (a, b), blue lines within the insets represent the 20m contour line. 

 

Each receiver was anchored with chain directly to the substrate along the edge of the 

reef slope at depths between 12 and 20 m (Figure 3.9a). Receivers were attached to a 

~1.5 m mooring rope with heavy duty cable ties and suspended in the water column (~2 

m from the bottom) with a subsurface buoy providing flotation. Receivers were 

downloaded twice per year and had a detection range estimated to vary between 150 

and 300 m (Espinoza, Heupel, Tobin & Simpfendorfer, 2015b). Sampling and tagging 

efforts were concentrated at John Brewer, Lodestone, Keeper, Helix, Glow and Wheeler 
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Reefs; as these reefs had similar characteristics (i.e., structure, slope and habitat). Reefs 

included a well-developed reef slope, reef flat and back reef habitats, however they 

differed in size (Espinoza, Heupel, et al., 2015b; Graham, Chong-Seng, Huchery, 

Januchowski-Hartley & Nash, 2014). John Brewer had the largest area of the sampling 

reefs with ~24.6 km2, then Glow, Lodestone and Keeper with ~8.8 km2, ~8.7 km2 and 

~7.1 km2, respectively. Wheeler and Helix were the smallest reefs with ~2.9 km2 and 

~1.6 km2 respectively. Depth within the region varied from 0 to 70 m (Beaman, 2010). 

 

  
Figure 3.9: Passive acoustic telemetry. 

(a) VR2W (Vemco Ltd, Halifax, Nova Scotia, Canada) acoustic receiver placed in the study site 
and (b) acoustic transmitter which is placed in the animal. 

 

Sentinel acoustic transmitters were permanently deployed on sandy bottom at distances 

between 110 and 190 m from receivers at Helix and John Brewer Reefs to define 

receiver detection range (Figure 3.8a, b). Sentinel tags were anchored in approximately 

40 m, attached to a 25-m mooring rope with heavy duty cable ties and suspended in the 

water column at approximately 15 m. Sentinel tag data were used to establish long-term 

detection range of transmitters and identify any diel patterns in transmitter detectability. 

 

© VEMCO 

(b) (a) 

© Elodie Lédée 
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3.5. Fishing and tagging procedures 

Fishing and tagging procedures for the two inshore shark species can be found in Knip 

et al. (2011a), and for the two reef shark species in Espinoza, Heupel, Tobin and 

Simpfendorfer (2015a). The fishing and tagging procedures for the carangids species is 

outlined below.   

 

Fishing effort was concentrated in areas frequented by C. ignobilis and G. speciosus 

based on local knowledge. Carangids were captured by rod and reel using artificial 

lures, modified droplines and gill-nets (C. ignobilis), and rod and reel using artificial 

flies (G. speciosus). Barbs on hooks were flattened to reduce tissue damage during 

capture. Modified droplines were used offshore to capture C. ignobilis. Droplines were 

comprised of 20 to 40 m rope attached to a surface buoy and a 5 to 15 m sinking-line 

equipped with a single gangion with a 16/0 or 20/0 Mustad tuna circle hook baited with 

Nemipterus or squid. Droplines were soaked for 30 to 40 min. Bottom-set gill-nets were 

used inshore to capture juvenile C. ignobilis. Gill-nets were comprised of 11 cm 

stretched mesh, and deployed for approximately 1h and checked every 15 min to allow 

for tagging and release of the animal. 

 

(b) 

© Michelle Heupel 

(a) 

© Michelle Heupel 
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Figure 3.10: Tagging procedures for Caranx ignobilis in the central Great Barrier Reef region. 

(a) incision, (b) insertion of the transmitter, (c) closing the incision with d) two running stiches. 

 

After capture, individuals were placed in a large water-filled bin containing Aqui-S® 

diluted with seawater (1:10,000; AQUI-S New Zealand Ltd, Wellington, New Zealand) 

and surgically fitted with a 13 mm × 45 mm (V13P-1H, Vemco Ltd, Halifax, Nova 

Scotia, Canada – adult C. ignobilis) or 9 mm x 29 mm (V9-2x – G. speciosus and 

juvenile C. ignobilis) acoustic transmitter. Acoustic transmitters (Figure 3.9b) were 

implanted intra-muscularly in the anterior dorsal region of C. ignobilis where the 

muscle tissue was thickest to ensure long-term retention (Figure 3.10a, b, c). Due to 

their smaller size G. speciosus and juvenile C. ignobilis transmitters were implanted in 

the body cavity (Figure 3.11b, c, d). Incisions were closed with two running stitches 

(Figure 3.10d) using Maxon polyglyconate synthetic (adult C. ignobilis) and 

Polydioxanone monofilament (G. speciosus and juvenile C. ignobilis) absorbable 

sutures with disposable needles. All surgical procedures were completed in less than 5 

min. Individuals were measured to the nearest centimetre fork length, tagged with a dart 

tag (PDS; Hallprint©, Hallprint Pty Ltd, Hindmarsh valley, Australia) and a fin clip 

taken for species identification before release at the site of capture. Transmitters emitted 

a coded acoustic signal at 69 kHz with a pseudo-random ping rate between 50 and 200 s 

to reduce collision of signals between tags; estimated battery life was 364 (adult C. 

ignobilis) and 405 (G. speciosus and juvenile C. ignobilis) days. V13P-1H transmitters 

(adult C. ignobilis) were equipped with depth sensors with a maximum depth rating of 

50 m. Species identification was confirmed using the COI gene sequence obtained 

(c) 

© Michelle Heupel © Michelle Heupel 

(d) 
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following a modified version of Persis et al. (2009) methods and compared against 

sequences in GenBank®. 

 

Figure 3.11: Tagging procedures (a, b) for Gnathanodon speciosus (c) and Caranx ignobilis (d) 
in Cleveland Bay on the northeast coast of Queensland, Australia. 

 

  

(a) 

© Stephen Sutton © Michael Kaminski 

(b) 

© Elodie Lédée 

(c) 

© Elodie Lédée 

(d) 
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Chapter 4 

4. A comparison between traditional kernel-based methods 

and network analysis: an example from two nearshore 

shark species 

 

 

4.1. Introduction 

Data on animal movement patterns, connectivity and habitat use have become crucial 

elements in effective management and conservation (Greene et al., 2009; Rayfield et al., 

2011). A complete understanding of animal movement must consider how biological 

functions (e.g., foraging, reproduction, predator avoidance) and environmental factors 

(e.g., salinity, temperature, competition) influence movement (Acevedo-Gutiérrez, 

2009; Rogers & White, 2007). Empirical analysis of spatial and temporal changes in 

location and distribution of animals has traditionally applied activity space measures 

including, but not restricted to, home range metrics, random walks or theoretical models 

such as Lévy flight and dispersal measures (Greenwood & Swingland, 1983; Turchin, 

1998). However, understanding drivers for movement and interactions between marine 

species and their environment remains a challenge (Croft et al., 2008). 

 

Technological advances such as acoustic monitoring have allowed scientists to obtain 

long-term movement and behaviour data for marine organisms (Simpfendorfer, Heupel 

& Collins, 2008; Voegeli et al., 2001). Acoustic monitoring provides data sets of 

significant size and quality, but few standardized methods have been developed to 

analyse the data produced (Heupel, Semmens, et al., 2006; Rogers & White, 2007). 

Researchers either use coarse data (i.e., widely spaced acoustic receiver locations) or 

interpolate data using methods such as positioning algorithms (Hedger et al., 2008; 

Simpfendorfer et al., 2002). However, interpolation methods do not produce high 

accuracy in calculated positions due to aggregation of data at the detection range of a 

receiver and across relatively long time periods (Hedger et al., 2008). A standardized 

method for analysing acoustic data using raw detections could reduce data processing 
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requirements and decrease the possibility of introducing errors. Furthermore, a 

standardized method would provide consistency in the analysis and interpretation of 

acoustic monitoring data that may increase the ability to compare studies. 

 

Network Analysis investigates the relationship between nodes, with connections 

between nodes called edges, and the combined connections represented as a network 

(West, 2001) and may provide a standardized approach to acoustic monitoring data sets. 

Applied to acoustic monitoring, nodes represent acoustic receivers deployed in the 

study area and edges represent movement (trajectory) of an animal between nodes 

(Jacoby, Brooks, et al., 2012). Thus, networks can be constructed from detection data 

obtained from acoustic receivers. Node and edge properties can also be complemented 

with additional information. For example, physical and environmental attributes such as 

habitat type, salinity or depth can be included in analyses. Consequently, Network 

Analysis can be adapted to various situations and scales (Stehfest et al., 2013) 

depending on what is examined (Croft et al., 2008). Network Analysis can also provide 

information that traditional methods do not. For example, weighted directional 

movement patterns may highlight corridors of movement between important 

habitats/areas. Recent Network Analysis studies have used acoustic monitoring data to 

look at social behaviour of sharks (Jacoby, Croft, et al., 2012; Mourier et al., 2012), fish 

aggregations (Stehfest et al., 2013), animal movements (Finn et al., 2014; Jacoby, 

Brooks, et al., 2012) and spatial utilization (Stehfest et al., 2015). The use of Network 

Analysis in acoustic monitoring studies, however, is still in its infancy and its utility in 

analysing animal movement is yet to be well established. 

 

Since Network Analysis has rarely been applied to acoustic monitoring data, it is 

important to test and compare outputs against traditional analyses and understand where 

differences occur, what benefits may be generated and why. Therefore, the aims of this 

study were to determine the utility of Network Analysis in identifying core use areas of 

two species of acoustically monitored coastal sharks, compare results with traditional 

kernel-based analysis, and identify additional information that could be generated by 

Network Analysis to extend the interpretation of animal movement data. Finally, to 
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make direct comparisons with static traditional analysis a temporal scale was not 

explicitly explored. 

 

4.2. Data analysis 

Acoustic monitoring data from Cleveland Bay, north Queensland, Australia (Figure 

3.3), previously analysed by Knip et al. (2012b); Knip et al. (2011a) were used to test 

the efficacy of the Network Analysis approach. Prior analysis using traditional activity 

space approaches (kernel utilization distributions, KUD; extent of movement (95% 

KUD) and core use area (50% KUD) of C. amboinensis and C. sorrah) were compared 

with Network Analysis results. All Network Analysis and statistical analyses were 

conducted in the R environment (R Development Core Team, 2014) using the sna 

(Butts, 2013), igraph (Csardi & Nepusz, 2006) and tnet (Opsahl, 2009) packages. 

UCINet (Borgatti, Everett & Freeman, 2002) and Netdraw (Borgatti, 2002) were used 

for network representation. Imported data were used to create square movement 

matrices that counted the presence at, and movements between, receivers, regardless of 

time required to reach the next receiver. Only detections at the same receiver that were 5 

min or more apart were included in the network. Square matrices were used to create 

directed and weighted networks which represented the activity space of an individual. 

Each network was tested for non-random associations of receivers, based on observed 

movements, using a modified version of the Bejder–Manly method (Mourier et al., 

2012; Whitehead, Bejder & Andrea Ottensmeyer, 2005). The Bejder–Manly method 

randomized receivers’ associations to create null random networks to control for the 

sampling design of the receiver array. Receiver community memberships (i.e., group 

number of the community/cluster in the network) were calculated from the observed 

matrix to obtain group size and numbers of communities in the network and then 

permuted within each new matrix. The observed matrix was randomized 10 000 times 

with 1000 flips (i.e., receiver community membership was randomly flipped within 

each new matrix) per permutation within sampling periods (Whitehead et al., 2005). 

Coefficient of variation and likelihood ratio tests (χ22, P < 0.05) were used to determine 

whether receivers’ associations in the study area were significantly different from 

random. Data distribution and normality were tested prior to statistical analysis and if 

the normality assumption was violated, a nonparametric test was performed. 
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4.2.1. Core use receiver identification 

To assess the ability of Network Analysis to describe activity space by C. amboinensis 

and C. sorrah, monthly networks were constructed for individual sharks. The shape of 

the network varied by individual and month because of changes in movement patterns. 

The relative importance of receivers in each network were explored by first calculating 

centrality metrics for each receiver (Borgatti, 2006). Centrality metrics indicate how 

often receivers were visited within the activity space (Borgatti & Everett, 2006); 

therefore, high centrality values may be analogous to core use areas such as those 

identified by 50% KUDs (Heupel, Simpfendorfer & Hueter, 2004). To identify core use 

areas three centrality metrics were used: node strength, closeness and eigenvector 

centrality. Node strength was a measure of the connection weight, which represented 

the total number of incoming/outgoing movements from a receiver (Barrat et al., 2004). 

Closeness measured how central a receiver’s position was in network space (i.e., 

smallest number of edges (pathways) linking receivers, i.e., geodesic distance). The 

lower a receiver’s geodesic distance the higher the closeness (Urban et al., 2009). 

Finally, eigenvector centrality indicated how strategically placed a receiver was within 

the network; receivers with a high eigenvector centrality value had high node strength 

values and were connected to receivers with similarly high node strength values (Bodin 

et al., 2011). These three centrality metrics were used to explore the importance of 

individual receivers in Cleveland Bay to identify those that corresponded to core use 

areas (i.e., core use receivers, CUR). 

 

To identify CUR for each shark in each month, five different approaches were tested. 

Approaches 1–3 were based on the values of individual centrality metrics, approach 4 

was based on a combination of centrality metrics and principal component analysis 

(PCA) and approach 5 on the number of movements between each pair of receivers 

(percentage approach). The node strength, closeness and eigenvector centrality 

approaches identified receiver(s) with the highest centrality metrics score and assigned 

them as CUR. Receivers with similar properties were identified using a structural 

equivalence graph (i.e., receivers within the same cluster in the structural equivalence 

graph were also identified as CUR; Bodin et al., 2011) . Structural equivalence graphs 
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indicated two receivers were structurally equivalent if they had identical movements to 

and from all others in the network (Faust, 1988). 

 

 
Figure 4.1: Steps involved in identifying core and general use receivers in the PCA approach. 

Rounded rectangles represent the data used or created and snipped rectangles represent the 
processes used to create the datasets. 

 

The PCA approach (Figure 4.1) examined all three centrality metrics to identify which 

metric, or group of metrics, could be used to identify CUR. To remove collinearity, a 

Spearman correlation analysis was performed between all pairs of centrality metrics and 

those with ρ > 0.75 were removed. The order in which centrality metrics were removed 

due to collinearity was based on the ranking system: eigenvector centrality > node 

strength> closeness, with the metric of the lowest rank removed. A PCA was used with 

the remaining centrality metrics to determine which was most influential and could 

explain the network shape. Principal component analysis output combined all of the 
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centrality metrics (i.e., principal components or eigenvectors) and loadings of individual 

centrality metrics in each principal component. To identify the most important centrality 

metrics two steps were used. First, only principal components that had values > 1 were 

selected and from these only principal components that accounted for 80% of the 

variance were kept (Jolliffe, 2002). Second, from the remaining principal components 

centrality metrics that had the highest absolute loading values were retained. Receivers 

with the highest score were assigned to the core use group. Finally, a structural 

equivalence graph was used to select receivers with similar characteristics to core 

receiver(s) and were added to the core use group. Core use receivers were only 

identified for months in which there were sufficient data to produce a structural 

equivalence graph. If a graph was not produced that month for that individual, it was 

excluded from further analysis.  

 

The percentage approach identified CUR as those for which 50% of detections occurred 

(i.e., equivalent to 50% KUD) based on counts of the total number of movements 

between receivers. The CUR were selected one at a time based on the number of 

detections at and movements to that receiver, starting at the receiver with the highest 

number of movements. Receivers were selected until 50% of total movements were 

reached. The general use receivers (GUR; equivalent to the 95% KUD) were 

determined the same way using 95% of the movements and excluding receivers 

identified as core use. 

 

4.2.2. Comparing core use receivers with core use areas 

In Knip et al. (2012b); Knip et al. (2011a), an algorithm was used to estimate the 

positions, or centre of activity, of each individual at 30 min time steps. Using centre of 

activity positions, 50% and 95% KUDs were calculated in the ‘adehabitat’ package for 

R (Calenge, 2006). To determine whether the five Network Analysis approaches 

identified the same core use areas as KUD, the identity and number of receivers within 

50% and 95% KUDs were determined. To compare the number of CUR and GUR 

between approaches 1–5 and the KUD approach, a Mann–Whitney U test was used. In 

addition, percentages of similarities were compared with identities of the CUR within 

50% KUDs and GUR in 95% KUDs. Since the four approaches based on centrality 
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metrics used all of the data, a difference between GUR (100% area used) and receivers 

in 95% KUDs was expected. 

 

4.2.3. Core use receiver importance 

To define the importance of CUR in each network, CUR were removed, the networks 

visually examined and network properties (or network metrics) checked to determine 

removal effects. Receiver removal analysis of CUR was performed in two different 

ways: first, each CUR was independently removed from the network; second, each CUR 

was successively removed from the network. New networks were constructed after each 

removal; for instance, if a network had two CUR, receiver removal produced three new 

networks: two after the independent removal of the each CUR and one after removal of 

both CUR. Visual examination of the networks and network metrics (average path 

length, density and component) were used to determine whether removals decreased 

network centrality. Average path length was a measure of the ease of movement 

between pairs of receivers or how many receivers on average an individual passed 

through to go from one location in its network to another (i.e., movement steps). Low 

average path length meant that an individual travelled through few receivers (Rayfield 

et al., 2011). Density measured route selection (ranging from 0 to 1); when all receivers 

were connected to all others, the network had a density of 1. An individual had more 

routes to select from in a densely connected network. Components identified the number 

of subnetworks or isolates (receivers not connected to any other) that were disconnected 

from the rest of the network (i.e., movement between two components was not possible) 

and represented the level of network fragmentation (Bodin et al., 2011). Figures were 

plotted only considering removal up to the number where they were multiple values. A 

Mann–Whitney U test was performed to compare network metrics before and after 

receiver removal. If removal analysis did not result in changes to the network, the 

receiver(s) was rejected as core use. 

 

4.2.4. Movement pathways within activity space 

To explore movement within activity spaces, the number and frequency of network 

pathways within receiver groups (CUR and GUR), between receiver groups and by 

species were calculated. Pathway referred to a route between two nodes in the network 
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used by an individual (Fall et al., 2007). Pathways were classified as one-way 

(unidirectional) or two-way (bidirectional) for each receiver group, between receiver 

groups and per species to indicate directionality. Finally, the number of unidirectional 

versus bidirectional pathways, total number of pathways and their respective frequency 

were calculated. High-frequency pathways were defined as ≥ 10 uses per month based 

on 92% and 96% of pathways having counts of fewer than 10 for C. sorrah and C. 

amboinensis, respectively. Mann–Whitney U tests and t tests were used to determine 

whether pathway counts were similar between species; i.e., if there were significant 

differences in how the species moved within their activity space. 

 

4.3. Results 

Network Analysis and KUD methods were applied to data from nine juvenile C. 

amboinensis (five females, four males) and four adult C. sorrah (three females, one 

male). Sizes ranged from 73.5 to 129 cm (mean ± SE = 99.6 ± 7.3) for C. amboinensis 

and 96.5 to 115 cm (104.4 ± 3.9) for C. sorrah. Twenty-seven monthly networks, 15 for 

C. amboinensis and 12 for C. sorrah, were created and compared to the activity spaces 

estimated by Knip et al. (2012b); Knip et al. (2011a). Twenty-one networks, 12 for C. 

amboinensis and nine for C. sorrah, showed evidence of non-random community 

membership (P < 0.001) and were used for the analysis; the other six networks were 

removed. 

 

4.3.1. Core use receiver identification 

All monthly networks produced structural equivalence graphs, showing receivers with 

similar connections, so no networks were removed from the analyses using this 

selection rule. The CUR and GUR were identified for the networks using the five 

approaches (Table 4.1). The PCA approach for C. amboinensis and closeness approach 

for C. sorrah produced the closest CUR estimates, and the percentage approach 

produced the closest GUR estimates, to those defined by the kernel-based method. 

Compared to KUD, the numbers of CUR and GUR from the PCA and percentage 

approaches were similar for both species, except for GUR using the PCA approach 

which was significantly different. On average, PCA and single centrality approaches 

produced 1.08 fewer CUR and 3.12 more GUR than KUDs, whereas the percentage 
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approach produced 1.14 more CUR and 0.19 more GUR. The CUR and GUR estimates 

from the single centrality metric approaches were significantly different to KUDs, 

except for the C. sorrah CUR count which was similar to the 50% KUD (Table 4.1). 

Thus, among the five approaches, PCA and closeness best replicated KUD core use and 

percentage approach was best matched for GUR. 

 

Table 4.1: Comparison of C. amboinensis and C. sorrah core and general use areas using 
Kernel Utilisation Distribution (KUD) and Network Analysis approaches. 

 CUR GUR 
 C. amboinensis C. sorrah C. amboinensis C. sorrah 

KUD 3.92 (2 - 7) 3.50 (2 - 9) 9.14 (4 - 15) 7.22 (4 - 9) 
1-Node strength 2.83 (2 - 9) 2.56 (2 - 4) 11.75 (5 - 20) 10.78 (6 - 14) 
U (P value)  56.50 (P = 0.04) 24.50 (P = 0.07)* 6.00 (P = 0.02) 0.00 (P = 0.008) 
2-Closeness 1.83 (1 - 4) 2.89 (1 - 7) 12.75 (7 - 20) 10.44 (7 - 14) 
U (P value) 66.00 (P = 0.004) 14.50 (P = 0.46)* 0.00 (P = 0.002) 0.00 (P = 0.01) 
3-Eigenvector 2.08 (1 - 3) 2.33 (1 - 4) 12.50 (6 - 20) 11.00 (6 - 16) 
U (P value) 62.50 (P = 0.009) 24.50 (P = 0.07)* 0.00 (P = 0.004) 0.00 (P = 0.009) 
4-PCA 3.50 (2 - 9) 2.78 (2 - 4) 11.08 (5 - 20) 10.56 (6 - 14) 
U (P value) 37.00 (P = 0.33)* 16.00 (P = 028)* 12.00 (P = 0.04) 0.00 (P = 0.009) 
5-Percent 4.92 (2 - 10) 4.67 (2 - 10) 8.50 (4 - 17) 7.67 (3 - 10) 
U (P value) 17.50 (P = 0.17)* 1.50 (P = 0.07)* 41.50 (P = 0.47)* 14.00 (P = 0.61)* 
Mean receiver count in core use (CUR) and general use (GUR) areas with paired Mann-Whitney U test 
results (N = 12 for C. amboinensis & N = 9 for C. sorrah) for each receiver grouping are shown. 
Numbers in parentheses indicate range, bold * represents non-significant results where Network 
Analysis and KUD provided similar results. 

 

The CUR identified from the PCA approach produced two estimates (before being 

summed): PCA estimates were 1.75 (range 1–4) for C. amboinensis and 1.67 (range 1–

2) for C. sorrah, and structural equivalence estimates were 1.75 (range 1–7) for C. 

amboinensis and 1.11 (range 0–2) for C. sorrah (Table 4.2). The number of CUR 

determined by PCA increased by 1.10 for C. amboinensis and 0.78 for C. sorrah after 

adding the receivers identified using structural equivalence graphs. Without testing for 

structural equivalence, results from PCA were lower than results from the single 

centrality metric approaches for both species. There were no significant differences in 

the number of CUR and GUR between species (Mann–Whitney U test: CUR: U = 

64.00, N1 = 12, N2 = 9, P = 0.48; GUR: U = 53.00, N1 = 12, N2 = 9, P = 0.97), 

suggesting both species used similar amounts of space.  
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Table 4.2: Evolution of core use receiver (CUR) estimates using the PCA approach; after PCA 
and Structural Equivalence (SE) for each monthly network. 

Monthly network ID Species Detections Movement CUR 
PCA SE 

577_2010-02 C. amboinensis 349 45 2 2 
577_2010-04 C. amboinensis 244 54 2 1 
579_2009-02 C. amboinensis 187 45 1 2 
487a_2010-06 C. amboinensis 87 16 2 2 
563_2009-11 C. amboinensis 1061 139 1 1 
577_2009-11 C. amboinensis 442 48 2 1 
579_2010-06 C. amboinensis 154 29 2 7 
3463a_2009-11 C. amboinensis 699 115 4 1 
63605_2010-03 C. amboinensis 935 251 1 1 
63607_2010-03 C. amboinensis 538 117 1 1 
63614_2010-06 C. amboinensis 574 131 2 1 
63622_2010-03 C. amboinensis 770 156 1 1 
3459_2009-08 C. sorrah 554 97 2 2 
3459_2009-09 C. sorrah 408 105 1 2 
3459_2009-10 C. sorrah 170 43 2 0 
56301_2010-08 C. sorrah 2325 400 2 1 
56301_2010-09 C. sorrah 1535 168 1 1 
56301_2010-10 C. sorrah 1672 229 1 1 
56306_2010-08 C. sorrah 787 149 2 0 
56306_2010-09 C. sorrah 663 136 2 1 
56306_2010-10 C. sorrah 757 107 2 2 
Monthly network IDs were based on the ID of the shark, year and month of the data 
used to create the network. Detections represents the total detection count and 
movement represents the movement count for that month. 

 

4.3.2. Comparing core use receivers with core use areas 

Comparison of CUR and GUR for KUD and Network Analysis revealed highest 

percentage similarity from PCA for both species (Table 4.3, Figure 4.2). Closeness and 

eigenvector centrality approaches had the lowest CUR percentage similarity compared 

to KUD for both species. Single centrality metric approaches had similar results for 

GUR percentage similarity for both species (about 76% for C. amboinensis and about 

72% for C. sorrah). Results from the percentage and node strength approaches for CUR 

indicated percentage similarity varied between species; the percentage approach for C. 

amboinensis was second highest whereas the node strength approach was the second 

highest for C. sorrah. 
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Table 4.3: Receiver identification by Network Analysis approaches and Kernel Utilisation 
Distribution (KUD) for C. amboinensis (a) and for C. sorrah (b). 

a)  
 Node strength Closeness Eigenvector 50% Network PCA KUD 

Node strength - 5 46 59 89 62 
Closeness 82 - 17 20 27 27 
Eigenvector 90 84 - 36 38 34 
95% Network 65 61 68 - 68 68 
PCA 96 84 87 62 - 79* 
KUD 77 73 77 70 72* - 
       

b)  
 Node strength Closeness Eigenvector 50% Network PCA KUD 

Node strength - 19 39 45 91 80 
Closeness 81 - 8 31 23 25 
Eigenvector 92 80 - 22 39 28 
95% Network 48 40 43 - 49 36 
PCA 98 81 86 49 - 79* 
KUD 77 69 71 54 82* - 
Values above the diagonal are for core use receivers and those below for general use receivers. 
Bold * represent highest percent similarities between Network Analysis approaches and KUD. 
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Figure 4.2: Activity space of (a) two C. amboinensis for November 2009 and March 2010 and 
(b) two C. sorrah for September 2010 and October 2009 in Cleveland Bay.   

Left-hand panels represent nodes from each network and KUDs for each individual, middle 
panels show the geographical representation of each network and right-hand panels show the 
spring embedding representation of each network. Node size represents the eigenvector 
centrality in the network node and KUD colour represents core (green) and general (light grey) 
use; line thickness represents pathway frequency. 

 

4.3.3. Core use receiver importance 

The range of network impacts caused by removal of CUR varied greatly. Visual 

examination of the new networks revealed that subnetworks and isolates (a receiver not 

connected to any other) were created after removal of CUR. Broken networks indicated 

that access to parts of the activity spaces were no longer available. For example, 

receivers could become unavailable and activity space disconnected (Figure 4.3). As 
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these changes substantially affected the network, no CUR were rejected based on visual 

examination.  The removal of the most important nodes (CUR) resulted in increased 

network fragmentation (Table 4.4, Figure 4.4). A significant increase in the number of 

network components occurred when three or more CUR were removed from networks 

(Mann–Whitney U test: U = 0.00, N1 = 42, N2 = 23, P < 0.001 for both species and after 

both removal analyses), whereas eight or more GUR needed to be removed from both 

species networks (Mann–Whitney U test: U = 0.00, N1 = 42, N2 = 23, P < 0.001 after 

successive removal analysis) to produce significant fragmentation of the network. The 

number of components before and after independent removal analysis of both species’ 

GUR were similar (mean ± SE = 1.00 ± 0.00 before removal and 1.08 ± 0.02 after 

removal). 

 

 
Figure 4.3: Visualisation of core use receiver removal effects for a C. sorrah in September 
2010.  

(a) The original network of activity space, (b) the resulting activity space after removing the 
node with highest importance (W5), (c) the resulting activity space after removing the next most 
important node (W9) and (d) the resulting activity space after removing the third most important 
node (W8). 

 



  Chapter 4 

 
61 

Table 4.4: Statistical comparison of the impact on the networks after the independent and the successive removal (RRA) of core use receivers.  

Network metric RRA Independent removal Successive removal 
C. amboinensis C. sorrah C. amboinensis C. sorrah 

APL 
Before  4.16 (±0.27 SE) 2.46 (±0.08 SE) 4.16 (±0.27 SE) 2.46 (±0.08 SE) 
After  5.21 (±0.35 SE) 3.66 (±0.24 SE) 6.17 (±0.31 SE) 5.17 (±0.47 SE) 
U (P value) 83.00 (P < 0.001) 1.00 (P < 0.001) 57.00 (P < 0.001) 1.00 (P < 0.001) 

D 
Before  0.17 (±0.01 SE) 0.24 (±0.01 SE) 0.17 (±0.01 SE) 0.24 (±0.01 SE) 
After  0.16 (±0.01 SE) 0.21 (±0.01 SE) 0.14 (±0.01 SE) 0.18 (±0.01 SE) 
U (P value) 728.00 (P < 0.001) 325.00 (P < 0.001) 797.50 (P < 0.001) 325.00 (P < 0.001) 

APL: mean movement steps and D: route selection. Paired Mann-Whitney U test results (N = 42 for C. amboinensis & N = 25 
for C. sorrah) for each network metric are shown. Bold indicates significantly results. 
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Figure 4.4: Mean number (± SE) of network components created by removal of receivers for C. amboinensis (dark grey) and C. sorrah (light grey). 

(a) after the removal of core use receivers and (b) after the removal of general use receivers. Standard error was null for points with no error bar. 
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Furthermore, movement steps increased (about 79%) and route selection decreased 

(about 19%) for both species after removal of CUR, along with negligible increases in 

movement steps (about 16%) and route selection (about 24%) after removal of GUR 

(Table 4.5, Figure 4.5). Movement steps increased by 37% and 79% and route 

selections decreased by 12% and 19% for C. amboinensis and C. sorrah, respectively 

(Table 4.4) and these differences were significant. These results suggest average moves 

between locations in the network were higher with fewer routes to choose from when 

receivers were removed. Consequently, when CUR were removed, network centrality 

decreased; thus confirming the importance of receivers identified as CUR. 
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Table 4.5: Statistical comparison of the impact on the networks after the independent and successive removal (RRA) of general use receivers. 

Network metric RRA Independent removal Successive removal 
C. amboinensis C. sorrah C. amboinensis C. sorrah 

APL 
Before  3.51 (±0.27 SE) 4.30 (±0.21 SE) 3.51 (±0.27 SE) 4.30 (±0.21 SE) 
After  4.03 (±0.27 SE) 5.29 (±0.28 SE) 3.67 (±0.27 SE) 5.01 (±0.37 SE) 
M-W test (P value) 208.00 (P= 0.002) 56.00 (P= 0.003) 373.00 (P= 0.33) 122.00 (P= 0.29) 

D 
Before  0.20 (±0.01 SE) 0.21 (±0.02 SE) 0.32 (±0.03 SE) 0.19 (±0.02 SE) 
After  0.13 (±0.00 SE) 0.13 (±0.00 SE) 0.13 (±0.00 SE) 0.13 (±0.00 SE) 
M-W test (P value) 220.00 (P= 0.004) 128.00 (P=0.54) 108.00 (P< 0.001) 12.00 (P<0.001) 

APL: mean movement steps; D: route selection. Paired Mann-Whitney U test results (N = 42 for C. amboinensis and N = 25 for 
C. sorrah) for each network metric are shown. Bold indicates significant results. 

 



  Chapter 4 

 
65 

 
Figure 4.5: Monthly (a) network traveling distances and (b) route selections for one C. amboinensis (light grey) and one C. sorrah (dark grey). 

Plotted left to right - before receiver removal (Before RRA), sequential removal of core use receivers (-1,-2 etc.), after removal of all core use receivers 
(- All CURs), sequential removal of general use receivers (-1,-2 etc.) and after removal of all general use receivers (- GURs). 
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4.3.4. Movement pathways within activity space 

Both species had similar pathway counts within core and general use areas, and 

marginally higher pathway counts between them (Tables 4.6). Pathway frequency in 

core use areas was approximately 49% higher than in general use areas and 

approximately 29% higher between core and general use areas. This significant 

difference in pathway use demonstrated the importance of core use pathways for both 

species. In addition, movement pathways in core use areas varied between species. 

Carcharhinus sorrah had lower pathway counts and higher frequencies in core use 

areas than C. amboinensis. This difference may indicate that C. sorrah moved more 

selectively and frequently within their core use areas than C. amboinensis. Finally, both 

species had similar total numbers of pathways within their networks, indicating each 

had similar numbers of movement paths within their activity space. 
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Table 4.6: Movement and directionality of pathways for C. amboinensis and C. sorrah within their (a) activity spaces and (b) activity space groups. 

a)  
Pathway Species In CU Between CU and GU In GU Unidirectional Bi-directional Total 

Count 

C. amboinensis 6.25 (2 - 18) 9.33 (2 - 26) 18.08 (2 - 47) 16.33 (4 - 38) 8.67 (2 - 15) 25.00 (9 - 52) 
C. sorrah 4.67 (1 - 11) 19.00 (12 - 33) 16.44 (5 - 25) 14.33 (5 - 30) 12.89 (6 - 17) 27.22 (13 - 46) 

test (P value) W = 42 (P=0.89) t = -4.04 (P<0.001)^ W = 32.5 
(P=0.33) 

t = -0.18 
(P=0.86)~ 

t = -2.66 
(P=0.02)~ W = 13 (P=0.11) 

Frequency 

C. amboinensis 47.00 (5 - 114) 19.08 (2 - 56) 29.42 (2 - 112) 18.25 (4 - 47) 77.25 (5 - 214) 95.5 (16 - 251) 
C. sorrah 66.78 (3 - 275) 66.00 (18 - 120) 26.56 (5 - 54) 17.78 (6 - 40) 141.56 (24 - 394) 159.33 (43 - 400) 

test (P value) t = -0.47 
(P=0.65)^ t = -4.45 (P<0.004^) t = -0.79 

(P=0.44)” t = 0.35 (P=0.73)+ t = -1.49 (P=0.15)” t = -1.98 
(P=0.07)~ 

Mean pathway count and frequency in core use (CU), between CU and general use (GU), in GU, unidirectional, bi-directional and total. Ranges are in brackets, bold 
represents significant results, U for Mann-Whitney U test and t for t-test. 
 

b)  
  CU Between CU and GU GU 

Pathway Species Unidirectional Bi-directional Unidirectional Bi-directional Unidirectional Bi-directional 

Count 

C. amboinensis  1.58 (0 - 10) 2.33 (1 - 6) 4.83 (1 - 12) 2.25 (0 - 7) 9.92 (2 - 25) 4.08 (0 - 11) 
C. sorrah  0.22 (0 - 1) 2.22 (0 - 5) 5.89 (0 - 15) 6.56 (4 - 11) 8.22 (4 - 19) 4.11 (0 - 8) 

test (P value) W = 68.5 (P=0.24) W = 55.5 (P=0.94) t = -0.08 (P=0.94) t = -6.22 
(P<0.0001)~ 

t = -0.81 
(P=0.44)+ 

t = -1.15 
(P=0.27)~ 

Frequency 

C. amboinensis  2.00 (0 - 10) 45.00 (3 - 114) 5.25 (0 - 13) 13.75 (0 - 51) 10.92 (2 - 31) 18.50 (0 - 81) 
C. sorrah  0.56 (0 - 3) 66.22 (0 - 275) 7.33 (0 - 20) 58.33 (11 - 119) 9.56 (4 - 26) 17.00 (0 - 41) 

test (P value) W = 66.00 
(P=0.33) 

t = -0.002 
(P=0.99)~ t = -0.02 (P=0.99)^ -3.47 (P<0.003)~ t = -0.88 

(P=0.39)~ 
t = -0.62 

(P=0.39)~ 
Unidirectional and bi-directional pathway count and frequency in CU, between CU and GU and in GU. Ranges are in brackets, bold represents significant results, U 
for Mann-Whitney U test and t for t-test. 
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Different results were found in the numbers of unidirectional and bidirectional pathways 

between species (Tables 4.6). Carcharhinus amboinensis had approximately 47% more 

unidirectional than bidirectional pathways than C. sorrah, which had similar numbers of 

unidirectional and bidirectional pathways. In addition, bidirectional pathway frequency 

was approximately 76% higher for C. amboinensis and 87% higher for C. sorrah than 

unidirectional pathways. These results suggest bidirectional pathways were important 

for both species. Pathway directionality was similar in core and general use areas for 

both species (Table 4.6b), but there was a significant difference between species in 

bidirectional pathway count and frequency between core and general use areas. This 

difference suggests C. sorrah was moving between core and general areas more 

frequently than C. amboinensis. Furthermore, 100% of pathways with frequency > 4 

were bidirectional for both species. This demonstrated that in general, movement 

between receivers was normally bidirectional and pathways that were not repeatedly 

used were unidirectional. Unidirectional pathway count was higher and pathway 

frequency lower between core and general use areas and within general use areas for 

both species. Consequently, most bidirectional movements between receivers occurred 

within core use areas. 

 

Frequently used movement pathways were shared within and between species. 

Carcharhinus sorrah individuals shared 14 high-frequency pathways (≥ 10 uses per 

month) on the eastern side of Cleveland Bay and none on the western side (Figures 4.2, 

4.6). However, only 25% of these high-frequency pathways (N = 4) were shared by two 

individuals. Conversely, C. amboinensis individuals shared 17 high-frequency 

pathways, all on the eastern side of Cleveland Bay and 24 % of these were shared 

frequently by at least two individuals. This may indicate that both species shared space 

in a similar way. Both species shared 33 pathways, but only 14 were high-frequency 

pathways (Figure 4.6). Highest frequency pathways (>100) for both species were on the 

eastern side of Cleveland Bay. Among 14 shared pathways with high frequency, 12 

were more frequently used by C. sorrah and two more frequently used by C. 

amboinensis. This indicated that if pathways were frequently used by one species they 

were not typically used by the other. Finally, high-frequency pathways were mostly 

found in core use areas; 63% were between CUR, 33% between CUR and GUR and 4% 
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between GUR. Overall, both species were travelling between CUR more frequently than 

between core and general use receivers or between GUR. 

 

 
Figure 4.6: Movement pathways representing shared high-frequency pathways (≥10). 

(a) between three C. sorrah (  56306,  56301 and  3459); (b) between C. amboinensis (dark 
grey) and C. sorrah (light grey). The horizontal line represents high frequency pathways. 
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4.4. Discussion 

This chapter demonstrated that Network Analysis can be used to examine activity space 

and identify areas of core use from acoustic monitoring data. Furthermore, compared to 

traditional kernel-based analyses, Network Analysis provided a more comprehensive 

analysis of movement within an acoustic array. Specifically, Network Analysis 

provided a viable alternative to KUD analyses, but also revealed additional information 

regarding C. amboinensis and C. sorrah movements within their core and general use 

areas. These results align with previous studies that used Network Analysis to show 

animal movement pathways and changes in activity spaces in acoustic monitoring data 

(Finn et al., 2014; Jacoby, Brooks, et al., 2012). 

 

A clear benefit of using multiple Network Analysis approaches to identify core use 

areas was that it allowed selection of an approach that provided a robust approximation 

of KUD results (Burnham & Anderson, 2002b). Among the five approaches the PCA 

approach performed best for identifying CUR and GUR, whereas the simpler closeness 

and eigenvector centrality metrics approaches performed poorly. Therefore, the more 

complex method provided the most similar results for identification of CUR compared 

to kernel-based methods. This is not a surprising result as animal movement patterns are 

complex processes influenced by various interactions between individuals and their 

environment (Greenwood & Swingland, 1983). Thus a more complex approach 

incorporating more detail will often provide better estimates (Van Nes & Scheffer, 

2005). 

 

Network Analysis did not, however, provide an exact match of CUR compared to KUD, 

with about 75% of receivers identified similarly between methods. This dissimilarity 

could be explained by the differences between the approaches. The KUD analysis 

incorporates a smoothing factor (Hedger et al., 2008), not included in the Network 

Analysis approach, which can add receiver(s) of lesser importance or exclude important 

one(s) thus overestimating or underestimating activity space. Network Analysis 

identified important receivers that did not correspond to KUD core use, suggesting they 

may still be important locations. Assessment of CUR identified by Network Analysis 

using receiver removal analysis confirmed their importance within the individual 
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networks. The range of receiver removal effects varied from disconnections resulting in 

the creation of subnetworks, or an increase in movement steps within the activity space, 

to a decrease in route selection (or a combination of all). Consequently, receiver 

removal analysis indicated that receivers identified by Network Analysis were 

important, but were missed in KUD analysis. Finally, the complexity of effects of CUR 

removal on each network and the effects of GUR removal on C. amboinensis but not on 

C. sorrah networks provided further insight into the complexity of the interactions 

between individuals and their environment. No single location was crucial for an 

individual in a month, suggesting flexibility and plasticity in movement behaviours by 

both species. 

 

Previous studies have demonstrated that Network Analysis has additional benefits in the 

analysis of movement data. For instance, Jacoby, Brooks, et al. (2012) showed sex 

differences in area use through time by visualization of shark networks where males 

showed a roaming behaviour whereas females were resident. Similarly, Finn et al. 

(2014) used network visualization to demonstrate that individuals shifted their space use 

over time. In the present study, network visualization showed spatial segregation of C. 

sorrah with individuals mainly found on the eastern side of Cleveland Bay whereas 

others mainly used the western side which concurs with Knip et al. (2012b). 

Furthermore, incorporating a monthly time step revealed northeast displacement of C. 

amboinensis during the wet season, as also shown by Knip et al. (2011a), suggesting 

responses to acute changes such as freshwater incursions. Therefore, network 

visualization can prove valuable in revealing important information on distinct spatial 

and temporal changes in animal movement, which in this case confirmed the results 

revealed by other methods. 

 

Results from Network Analysis also revealed additional information regarding C. 

amboinensis and C. sorrah movements not provided by KUD analysis. Frequent 

bidirectional movements within core use areas were observed for both species 

highlighting important movement corridors between core habitats/areas. Knowledge of 

movement pathways within activity spaces is beneficial to identifying movement 

corridors which may help inform management plans to maintain or restore connectivity 



A comparison between traditional kernel-based methods and network analysis  

 
72 

(Chetkiewicz, Clair & Boyce, 2006; Jordán et al., 2007). Past studies have used 

Network Analysis to examine movement corridor importance for carabid beetles 

(Jordán et al., 2007) and grizzly bears, Ursus arctos (Chetkiewicz et al., 2006) to help 

prioritize conservation. Furthermore, Chetkiewicz et al. (2006) used Network Analysis 

to highlight the importance of conservation to protect corridors in case of future coastal 

or marine development. Consequently, Network Analysis can be used to identify 

corridors of importance in an area to maintain connectivity and guide design of 

developments and management. 

 

Movements between GUR were less frequent and unidirectional, suggesting individuals 

mainly used general use pathways when moving to their core use areas. In contrast, 

blacktip reef sharks, Carcharhinus melanopterus, were found to move randomly 

between important habitat patches (Papastamatiou, Lowe, Caselle & Friedlander, 2009). 

Since Network Analysis only gives a general interpretation of movement, it was 

assumed that individual movements were straight between receivers and not random. 

However, when combined with Papastamatiou et al. (2009) the results may suggest that 

transiting movements of sharks within their activity space were tortuous and random. 

Increasing the number of receivers could improve the interpretation of movement and 

allow a clearer indication of whether movement between receivers was straight or 

tortuous. Alternatively, networks could be randomized to confirm whether movement 

patterns of individuals were random before applying Network Analysis. 

 

Finally, this study showed that if a pathway was frequently used by one species it was 

seldom used by the other. This may be explained by species-specific habitat selection 

since the majority of frequently used pathways by each species were located in their 

respective core areas. This could be the result of niche separation to decrease 

intraspecific competition for resources. When pathways were used less frequently by 

both species they were typically located at the periphery of the activity spaces. At a 

species level, C. sorrah were not sharing frequently used pathways which may suggest 

individual avoidance to decrease competition. Conversely, C. amboinensis shared the 

same frequently used pathways suggesting less competition. It would be interesting to 

use shorter time steps to confirm whether these pathways are used simultaneously 
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which would suggest that individuals might be moving in groups, but the time step used 

was chosen to compare with results from Knip et al. (2012b); Knip et al. (2011a). 

Interestingly, C. amboinensis sharing pathways differs from monthly space use among 

age classes reported by Knip et al. (2011a) as a strategy to reduce intraspecific 

competition. 

 

The current study encourages the use of Network Analysis in analysing animal activity 

space within an acoustic array and the results show great potential for the method 

beyond simple network visualization. Comparison between Network Analysis and KUD 

results displayed similarities with CUR and GUR counts between methods (Knip et al., 

2012b; Knip et al., 2011a). This suggests that Network Analysis can produce similar 

results to KUD with less data manipulation and processing; although data are still 

manipulated into matrices, Network Analysis removes the need for position 

interpolation. However, Network Analysis also has limitations. Six monthly networks 

were removed from the study, which was not unexpected as they had small numbers of 

movements over short periods and were restricted to small areas. Consequently there 

were insufficient data to detect a non-random structure within the network. Therefore, 

when dealing with limited movement data, KUDs may achieve better results than 

Network Analysis. Since KUDs calculate activity space based on all the detections 

whereas Network Analysis is based only on the movement between receivers, KUDs 

will incorporate more information and obtain better results when movement data are 

limited. 

 

While Network Analysis provides an alternative method to analyse animal activity 

space within an acoustic array, it is a specialized approach which poses challenges. 

Network Analysis uses a set of terminology adapted to the context of each study and 

unique statistical analyses; consequently it is more detailed than traditional home range 

analyses. In addition, Network Analysis approaches do not provide an individual 

activity space size estimate. This makes direct comparison with previous research 

difficult unless estimated receiver detection ranges are integrated to calculate activity 

space based on Network Analysis CUR and GUR results. Although both methods are 

affected by receiver performance and detection range, Network Analysis will be more 



A comparison between traditional kernel-based methods and network analysis  

 
74 

sensitive to missing detections than KUD which uses a smoothing factor to deal with 

missing data. Furthermore, pathways will be created between receivers, regardless of 

time taken to travel from one receiver to the next, which will be misleading if data are 

missing for long periods. These aspects need to be taken into consideration, and 

comparison with other methods may be crucial to validating each approach. Thus, 

traditional home range and Network Analysis analyses have costs and benefits for users, 

but Network Analysis may be a useful supplement to traditional home range methods 

because it provides a comprehensive analysis of animal movement using a single 

approach and a platform for researchers to compare studies. 

 

4.4.1. Application and further research 

Network Analysis is a significant tool to examine the movement pattern of animals and 

enhance long-term management and conservation. The full range of Network Analysis 

statistical analyses was not applied in this study. Other centrality metrics such as 

betweenness, which indicates locations serving as stepping stones, or cut-links 

indicating the presence of a corridor that connects habitats (Brooks et al., 2008; Urban 

& Keitt, 2001), could provide a different understanding of functional connectivity 

(Jacoby, Brooks, et al., 2012). In addition, bimodal Network Analysis can simulate the 

effect of disturbances, such as habitat loss, on species movement (Jacoby, Brooks, et al., 

2012). By creating bimodal habitat networks, habitat removal analysis can be applied to 

investigate the impact of the loss on species movement or connectivity. Furthermore, as 

human impacts such as coastal developments continue to fragment marine ecosystems 

(Airoldi & Beck, 2007; Fraschetti et al., 2009) Network Analysis may be useful in 

identifying habitat loss effects. This enhanced view will help develop appropriate 

management and conservation plans. 
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Chapter 5 

5. Identifying movement patterns of reef predators: a 

network modelling approach 

 

 

5.1. Introduction 

Understanding animal movements and modelling the way individuals use or move 

between resources distributed in space is essential to defining the ecological role of a 

species (Bélisle, 2005). Individuals undertake movements that minimize cost and 

maximize fitness benefits, but factors such as intra- and inter-species traits and 

landscape structures influence their selection (Turgeon, Robillard, Gregoire, Duclos & 

Kramer, 2010). Susceptibility to competition and predation, and interactions between 

body size, age, sex and habitat productivity are among the factors affecting movement 

choices. For instance, larger animals often move more widely because they need more 

energy (Greenwood & Swingland, 1983), or females may disperse less than males to 

conserve energy for reproduction (Espinoza, Lédée, et al., 2015). Furthermore, 

landscape structures (e.g., topology, resource locations) may act as barriers forcing 

individuals to alter their movements (Bélisle, 2005; Greenwood & Swingland, 1983). 

For example, deep channels separating coral reefs may act as barriers for some 

individuals, life stages or species. Consequently, individual movements are complex 

and vary with scale (e.g., at the patch or landscape scale). Studying individual 

movement at varying scales provides an improved understanding of the movement 

ecology of a species and comparing patterns between individuals can identify common 

behaviours. 

 

Modelling the movement of mobile predators can provide valuable information on the 

functional connectivity role species play within an ecosystem. Functional connectivity 

is the interaction between individuals and their habitats (i.e., how easily individuals 

move within and between habitats; Taylor et al., 1993). Individuals rely on connectivity 

to obtain the basic resources required to ensure survival as a single habitat patch rarely 
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provides access to all resources needed (Pardini et al., 2005). Distance between resource 

patches is integral to connectivity because high fragmentation, or habitat loss or 

degradation can increase distances between productive patches and consequently lower 

connectivity. Low connectivity can limit individual movement, dispersal and re-

colonization, and adversely impact population persistence, distribution, structure and 

viability (Eikaas & McIntosh, 2006). Connectivity research in coral reef environments 

often focuses on larval dispersal (Dethier et al., 2003) with limited study of adult 

population connectivity (i.e., movement between coral reefs; Frisk et al., 2014). 

However, functional connectivity of adults at inter- and intra-reef scales is important. 

Knowing how mobile predators exploit a reef will provide information on robustness or 

vulnerability to environmental changes (Fox & Bellwood, 2014). 

 

Coral reef ecosystems are biologically diverse and economically important (De'ath, 

Fabricius, Sweatman & Puotinen, 2012). Within a coral reef, some habitats are more 

important than others (Morris, 1987) due to different requirements of individuals. The 

importance of a habitat patch to a mobile individual will depend on its intrinsic 

characteristics (size, sex, survival, growth, reproduction) and extrinsic factors (i.e., 

biological and environmental factors) that affect tolerance of conditions. One approach 

to studying these interactions is by combining acoustic monitoring and Network 

Analysis (Chapter four). Acoustic monitoring is a powerful tool that allows long-term 

passive monitoring of tagged mobile predator movement and behaviour. Network 

Analysis examines the structure of complex interacting systems, such as animals and 

their environment, that can be represented as a network (West, 2001) characterized by 

connections (or edges) between nodes. Applied to acoustic monitoring, nodes represent 

acoustic receivers (i.e., habitat patches) and edges represent movement of an individual 

between nodes (Chapter four; Jacoby, Brooks, et al., 2012). Network modelling is an 

extension of Network Analysis that compares observed networks to simulated networks 

that have known topology (i.e., structure). Network modelling is well developed in 

geography (i.e., urban and transport networks) and landscape ecology (Minor & Urban, 

2008; Urban & Keitt, 2001). However, few studies have used network modelling in 

marine environments to examine movement of marine species (Fox & Bellwood, 2014) 

or structural connectivity of coral reefs (Kininmonth et al., 2009). 
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Network modelling can provide knowledge about population resilience to habitat loss 

and identify habitat patches that are critical to landscape connectivity and hence 

population persistence (Fortuna, Gomez-Rodriguez & Bascompte, 2006; Urban & Keitt, 

2001). Also, comparing network structures can provide information on behavioural 

patterns (i.e., foraging and searching strategies); searching processes have previously 

been detected in web engine, and neural and genes studies using networks (Santos, 

Viswanathan, Raposo & da Luz, 2008; Viswanathan, Raposo & da Luz, 2008). Here 

network modelling was used to assess, describe and compare the intra-reef movement of 

three mobile reef predators, giant trevally (Caranx ignobilis), silvertip shark 

(Carcharhinus albimarginatus) and grey reef shark (C. amblyrhynchos). More 

specifically, this study compared intra-reef movement networks to four theoretical 

networks with recognized properties; examined how network structure changes among 

reefs, species and individual length; and inferred the ecological significance of these 

characteristics for the species and the ecosystem. 

 

5.2. Data analysis 

Movement data were analysed in the R statistical environment (R Development Core 

Team, 2014) using the igraph package (Csardi & Nepusz, 2006). Detection data were 

used to create square matrices that counted the presence at and relative movements 

between receivers. Detections at the same receiver were filtered using a 5 min interval. 

Relative movement was defined as the number of times a movement was made by an 

individual between two receivers divided by the total number of movements made by 

the individual (i.e., total number of edges in the network; Jacoby, Brooks, et al., 2012). 

Square matrices were used to create directed and weighted networks which represented 

individual space use at the focal reef (Figure 5.1).
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Figure 5.1:  (a) Examples of theoretical networks using a circle layout, (b) observed networks, for one Caranx ignobilis (left panel), one Carcharhinus 
albimarginatus (middle panel) and one C. amblyrhynchos (right panel) at Helix Reef.  

Size of nodes represent the number of detections at the receiver (the bigger the node the higher the detection number), line width represent the 
frequency of use (the thicker the line the higher the frequency). 
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To compare with theoretical networks, observed networks were simplified (i.e., edge 

weight, direction, and matrix diagonal were removed). Four theoretical networks 

(circular, random, small-world and scale-free; Figure 5.1a) with recognized properties 

(Table 2.1b) were compared to the simplified networks. Network properties were 

determined by calculating a number of metrics at receiver and network levels. Degree 

and clustering coefficient of each receiver were calculated (Table 2.1a). Degree 

measured receiver connection (Minor & Urban, 2008), whereas clustering coefficient 

measured local density (Watts, 2004). Three network level metrics were measured: 

average path length, diameter and node degree distribution (Table 2.1a). Average path 

length measured separation (Watts, 2004) and diameter indicated size of the network 

(Urban & Keitt, 2001); the ratio between diameter and receiver number was also 

calculated. Finally, node degree distribution (e.g., normal, skewed, power-law) for each 

network was examined. A Shapiro test was used to determine node degree distribution 

for normality and skewness was determined using the skewness function from the 

moments package (Komsta & Novomestky, 2015). Skewness referred to the symmetry 

of the distribution with positive skewness indicating the mean was larger than the 

median (i.e., right-skewed). Node degree distribution with absolute skewness values ≥ 1 

were considered highly skewed. Finally, to confirm if node degree distribution fitted a 

power-law distribution, a Kolmogorov-Smirnov test was run; P value less than 0.05 

indicated the node degree distribution did not fit a power-law distribution. 

 

All theoretical networks were generated with same number of nodes, paths and/or 

density as the simplified network. A circular network was used to determine if 

movement of individuals was circular (i.e., do fish swim around the reef, from one 

receiver to the next?). Circular networks represented a regular network in which each 

receiver was only connected to two adjacent receivers and edges did not cross each 

other (Table 2.1b; Csardi & Nepusz, 2006). A random network was used to determine if 

movement of individuals was random within the reef. Random networks were generated 

following Erdős and Rényi (1959; Table 2.1b). Small-world networks were 

characterized as having short pathways between nodes/receivers and were generated 

following Watts and Strogatz (1998; Table 2.1b). Finally, a scale-free network was used 
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to determine if movement of individuals was more concentrated on a smaller part of the 

reef rather than the whole area and were generated following Barabasi and Albert 

(1999; Table 2.1b). 

 

The number, frequency (relative movement) and directionality of paths, and movement 

count were measured in all directed and weighted networks (i.e., not the simplified 

network). A path was a route between two receivers in the network, whereas movement 

was the number of times that path was used by an individual. Number of paths was 

standardized by dividing by the number of receivers on the focal reef. The relative 

importance of receivers (i.e., habitat patches) in each network (i.e., focal reef) was 

explored by calculating centrality metrics for each receiver (Borgatti, 2006). Three 

centrality metrics were used: node strength, eigenvector and betweenness (Table 2.1a). 

Node strength and eigenvector centrality identified receivers important for resources 

within the reef (i.e., habitat patch importance). Node strength was a measure of 

connection weight (Barrat et al., 2004) and eigenvector centrality indicated how 

strategically placed a receiver was within the network (Bodin et al., 2011). Finally, 

betweenness centrality indicated receiver connectivity i.e. how much a receiver was 

involved in the flow of individuals across or around the reef (Minor & Urban, 2007). 

Receiver(s) with the highest value for each centrality metric were considered key 

receiver(s) within the network. Receivers were classified as important patches for 

resources (i.e., high node strength and eigenvector), important patch for connectivity 

(i.e., highest betweenness) or key receivers which combined receivers important for 

resources and connectivity (i.e., high node strength, eigenvector and betweenness). 

Finally, three relative distances (i.e., straight line distance between two receivers 

divided by distance between all receivers) were calculated per reef (N = 9) and per 

species (N = 9): first, between most important patches for resources (2 highest values 

for each metrics: node strength and eigenvector), then between most important patches 

for connectivity (2 highest betweenness values) and lastly, between key patches based 

on the three centrality metrics (i.e., between most important patches for resources and 

for connectivity). 
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General linear models were used to investigate the influence of species, reef and fork 

length on centrality metrics (e.g., node strength, eigenvector and betweenness 

centralities). General linear models were implemented using the ‘glm’ function (R 

Development Core Team, 2014). Collinearity between factors was assessed using 

variance inflation factors (VIF; R package ‘car’; Fox & Weisberg, 2011). Diagnostics 

plots (i.e., residuals plot and auto-correlation function plot) and tests (e.g., over-

dispersion, interactions etc.) evaluated goodness of fit (Zuur, Ieno & Elphick, 2010). 

Interactions were only considered if Tukey’s test (an output of the residualPlots 

function in the R package ‘car’; Fox & Weisberg, 2011) was significant (P < 0.05; Zar, 

1999). Maximum likelihood ratio tests (χ2, P< 0.05) indicated significant differences in 

factors and interactions (species and reef). A one-way analysis of variance (ANOVA) 

was used to investigate differences in network metrics (e.g., clustering coefficient, 

average path length and diameter) between species, size of individual and reef, and 

similarities between theoretical networks. Post-hoc multiple comparisons (Tukey's 

HSD, α= 0.05) were used to determine which species or reef were significantly different 

from each other and which theoretical networks were similar to each other. 

 

5.3. Results 

Movement data were examined from 12 C. ignobilis, 15 C. albimarginatus and 30 C. 

amblyrhynchos acoustically monitored in the central Great Barrier Reef. To determine 

the network structure of intra-reef movement only individuals that spent the majority of 

time at a single reef and were detected on four or more receivers within that reef were 

included in analyses. This ensured movement data were adequate to obtain a network 

that potentially exhibited a non-random pattern. Thus the final data set contained seven 

C. ignobilis, six C. albimarginatus and 16 C. amblyrhynchos (Table 5.1) mainly 

detected at Helix (N= 13), Wheeler (N= 9) and Lodestone (N= 7) reefs (Table 5.2). 
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Table 5.1: Network metrics per individuals. 

Tag Species Reef Detection FL 
(cm) Receiver Path Movement Clustering 

coefficient APL Diameter Skewness Normality 
(P value) 

KS  
(P value) 

7009 C. ignobilis Wheeler 7052 84.0 5 10 20 1.00 1.00 1 1.50* 0.55 (0.00) 0.00 (1.00) 
7011 C. ignobilis Wheeler 1245 74.5 5 10 20 1.00 1.00 1 1.50* 0.55 (0.00) 0.00 (1.00) 
7012 C. ignobilis Helix 192 84.0 8 18 26 0.70 1.36 2 0.75 0.86 (0.12+) 0.50 (0.06) 
7013 C. ignobilis Lodestone 505 104.0 7 16 27 0.76 1.24 2 0.50 0.76 (0.02) 0.40 (0.29) 
7014 C. ignobilis Lodestone 3140 96.5 8 27 47 0.96 1.04 2 1.88* 0.57 (0.00) 0.50 (0.06) 
7015 C. ignobilis Helix 995 90.5 8 24 44 0.86 1.14 2 1.30* 0.77 (0.01) 0.25 (0.91) 
7016 C. ignobilis Helix 6336 65.0 8 28 55 1.00 1.00 1 2.27* 0.42 (0.00) 0.36 (0.82) 
13772 C. albimarginatus Helix 16784 102.0 7 17 27 0.83 1.19 2 1.04* 0.64 (0.00) 0.29 (0.80) 
13773 C. albimarginatus Wheeler 1721 120.0 5 9 14 0.88 1.10 2 0.59 0.77 (0.04) 0.50 (0.16) 
13779 C. albimarginatus Wheeler 2759 82.0 5 9 17 0.88 1.10 2 0.59 0.77 (0.04) 0.44 (0.41) 
13781 C. albimarginatus Wheeler 3182 87.0 5 10 19 1.00 1.00 1 1.50* 0.55 (0.00) 0.36 (0.82) 
13800 C. albimarginatus Helix 10811 139.0 8 18 33 0.76 1.36 2 1.15* 0.76 (0.01) 0.67 (0.004) 
13822 C. albimarginatus Helix 253 162.0 8 13 19 0.43 1.61 3 1.12* 0.82 (0.06+) 0.41 (0.26) 
13777 C. amblyrhynchos Wheeler 21544 97.0 5 9 16 0.88 1.10 2 0.59 0.77 (0.04) 0.33 (0.77) 
13782 C. amblyrhynchos Wheeler 72653 127.0 5 7 13 0.46 1.30 2 0.96 0.79 (0.09+) 0.44 (0.41) 
13785 C. amblyrhynchos Wheeler 56497 119.0 5 9 14 0.88 1.10 2 0.59 0.77 (0.04) 0.36 (0.82) 
13789 C. amblyrhynchos Wheeler 44403 142.0 5 7 14 0.46 1.30 2 0.96 0.79 (0.09+) 0.36 (0.82) 
13792 C. amblyrhynchos Lodestone 65954 136.0 8 19 32 0.68 1.32 2 0.32 0.86 (0.15+) 0.33 (0.77) 
13793 C. amblyrhynchos Lodestone 17918 128.0 6 9 17 0.68 1.47 3 0.87 0.83 (0.14+) 0.60 (0.03) 
14738 C. amblyrhynchos Helix 59482 80.0 8 23 40 0.92 1.18 2 1.64* 0.67 (0.00) 0.33 (0.77) 
14740 C. amblyrhynchos Helix 60088 66.5 8 23 41 0.84 1.18 2 0.82 0.75 (0.01) 0.71 (0.001) 
14742 C. amblyrhynchos Helix 76654 72.7 8 16 29 0.62 1.46 3 1.50* 0.72 (0.01) 0.36 (0.82) 
14743 C. amblyrhynchos Helix 11350 84.0 8 23 38 0.86 1.18 2 1.30* 0.77 (0.01) 0.67 (0.004) 
14750 C. amblyrhynchos Lodestone 18018 114.0 4 6 11 1.00 1.00 1 1.15* 0.63 (0.00) 0.00 (1.00) 
14751 C. amblyrhynchos Lodestone 46964 72.2 8 14 26 0.47 1.54 3 0.38 0.82 (0.09+) 0.25 (0.91) 
14778 C. amblyrhynchos Helix 86892 139.0 8 27 53 0.96 1.04 2 1.88* 0.57 (0.00) 0.33 (0.77) 
14788 C. amblyrhynchos Lodestone 96539 124.0 8 16 28 0.60 1.43 2 0.63 0.82 (0.09+) 0.33 (0.77) 
14791 C. amblyrhynchos Helix 37039 59.0 5 10 20 1.00 1.00 1 1.50* 0.55 (0.00) 0.00 (1.00) 
14813 C. amblyrhynchos Helix 18774 62.8 8 22 40 0.79 1.21 2 1.85* 0.61 (0.00) 0.60 (0.03) 
Reef is the reef the individual was tagged on. Detection is the number of times the individual was detected at that reef. FL refers to fork length. Receivers is the 
number of receivers the individual was detected on. Path was the number of routes used by the individual. Movement is the number of times the individual moved 
between receivers. APL indicates average path length. Bold * refers to highly skewed distribution. Normality refer to the Shapiro test; + refers to normal 
distribution (P> 0.05). Kolmogorov-Smirnov (KS) test if the degree distribution fit a power of law distribution; bold represent the distribution that does not fit the 
power of law distribution (P< 0.05). 
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Table 5.2: Network metrics by species and reef. 

Species Tagging 
reef N FL Receiver Path Movement NS EV RI B CI CC APL D Skewness HSN 

C. ignobilis Helix 3 79.8 ±13.3 
(65.0–90.5) 8.0  23.3 ±5.0 41.7 ±14.6 0.1 

±0.02 
0.3 

±0.04 
38
% 

5.3 
±1.1 

38
% 

0.9 
±0.1 

1.2 
±0.1 

1.7 
±0.3 1.4 ±0.4 67% 

 Lodestone 2 100.3 ±5.3 
(96.5–104.4) 7.5 ± 0.7 21.5 ±7.8 37.0 ±14.1 0.1 

±0.02 
0.3 

±0.1 
13
% 

4.5 
±1.5 

25
% 

0.9 
±0.1 

1.1 
±0.1 2.0 1.2 ±0.7 50% 

 Wheeler 2 79.3 ±6.7 
(74.5–84.0) 5.0 10.0 20.0 0.1 

±0.01 
0.4 

±0.1 
20
% 

2.4 
±1.0 

40
% 1.0 1.0 1.0 1.5 100% 

 All reefs 7 85.5 ±13.1 
(65.0-104.0) 

7.0 ±1.4 
(5.0-8.0) 

19.0 ±7.5 
(10.0-28.0) 

34.1 ±14.2 
(20.0-55.0) 

0.1 
±0.01 
(0.01-
0.29) 

0.3 
±0.03 
(0.02-
0.66) 

23
% 

4.5 
±0.7 
(0.0-
18.0) 

34
% 

0.9 
±0.1 
(0.7-
1.0) 

1.1 
±0.1 
(1.0-
1.4) 

1.6 
±0.2 
(1.0-
2.0) 

1.4 ±0.2 
(0.5-2.3) 71% 

C. 
albimarginatus Helix 3 

 134.3 ±30.3 
(102.0–
162.0) 

7.7 ± 0.6 16.0 ±2.6 26.3 ±7.0  0.1 
±0.01 

0.3 
±0.1 

13
% 

7.7 
±1.7 

38
% 

0.7 
±0.1 

1.4 
±0.1 

2.3 
±0.3 1.1 ±0.03 100% 

 Wheeler 3  96.3 ±20.6 
(82.0–120.0) 5.0 9.3 ±0.6 16.7 ±2.5 0.1 

±0.02 
0.4 

±0.1 
20
% 

2.1 
±0.7 

60
% 

0.9 
±0.04 

1.1 
±0.03 

1.7 
±0.3 0.9 ±0.3 33% 

 All reefs 6 101.5 ±30.1 
(59.0-142.0) 

6.7 ±1.6 
(4.0-8.0) 

15.0 ±7.1 
(6.0-27.0) 

27.0 ±12.7 
(11.0-53.0) 

0.1 
±0.01 
(0.0-
0.2) 

0.3 
±0.04 
(0.0-
0.7) 

16
% 

5.5 
±1.1 
(0.0-
31.0) 

49
% 

0.8 
±0.05 
(0.5-
1.0) 

1.2 
±0.04 
(1.0-
1.5) 

2.1 
±0.1 
(1.0-
3.0) 

1.1 ±0.1 
(0.3-1.9) 67% 

C. 
amblyrhynchos Helix 7 80.6 ±27.3 

(59.0–139.0) 7.6 ± 1.1 20.6 ±5.7 37.3 ±10.4 0.1 
±0.01 

0.3 
±0.04 

50
% 

6.7 
±1.0 

50
% 

0.9 
±0.1 

1.2 
±0.1 

2.0 
±0.2 1.5 ±0.1 86% 

 Lodestone 5 114.8 ±25.1 
(72.2–136.0) 6.8 ± 1.8 12.8 ±5.3 22.8 ±8.6 0.03 

±0.01 
0.3 

±0.1 
25
% 

7.2 
±1.4 

38
% 

0.7 
±0.1 

1.4 
±0.1 

2.2 
±0.4 0.7 ±0.2 20% 

 Wheeler 4  121.3 ±18.8 
(97.0–142.0) 5.0 8.0 ±1.2 14.3 ±1.3 0.1 

±0.02 
0.3 

±0.1 
40
% 

3.5 
±0.7 

60
% 

0.7 
±0.1 

1.2 
±0.1 2.0 0.8 ±0.1 50% 

 All reefs 16 115.3 ±31.1 
(82.0-162.0) 

6.3 ±1.5 
(5.0-8.0) 

12.7 ±4.0 
(9.0-18.0) 

21.5 ±7.1 
(14.0-33.0) 

0.04 
±0.01 
(0.0-
0.3) 

0.3 
±0.03 
(0.0-
0.7) 

38
% 

6.2 
±0.7 
(0.0-
29.0) 

49
% 

0.8 
±0.1 
(0.4-
1.0) 

1.2 
±0.1 
(1.0-
1.6) 

2.0 
±0.3 
(1.0-
3.0) 

.0 ±0.1 
(0.6-1.5) 56% 

All individuals  29  100.5 ±28.3 
(59.0–162.0) 

6.7 ±1.5 
(4.0-8.0) 

15.5 ±6.8 
(6.0-28.0) 

27.6 ±12.6 
(11.0-55.0) 

0.1 
±0.01 
(0.0-
0.3) 

0.3 
±0.02 
(0.0-
0.7) 

62
% 

5.6 
±0.5 
(0.0-
31.0) 

71
% 

0.8 
±0.03 
(0.4-
1.0) 

1.2 
±0.03 
(1.0-
1.6) 

1.9 
±0.1 
(1.0-
3.0) 

1.1 ±0.1 
(0.3-2.3) 62% 

N: number of individuals tagged per reef. Fork length (FL) mean in cm (±SD), Receivers: mean number of receivers (±SD) the species was detected on, Path: number of routes 
(±SD) used by the species, Movement: mean number of times (±SD) species moved between receivers, NS (±SE) refers to node strength, EV (±SE) to Eigenvector centrality, 
% RI: percentage of receivers within each reef considered important for resources for each species, B (±SE) indicates betweenness centrality, % CI: percentage of receivers 
within each reef considered important for connectivity for each species, CC (±SE) refers to clustering coefficient, APL (±SE) to average path length, D (±SE) indicates 
diameter, and Skewness (±SE) refers to the symmetry of the distribution (Positive skewness indicates that the mean of the data values is larger than the median, and the data 
distribution is right-skewed). Skewness values ≥ 1 indicate highly skewed networks (HSN). All ranges are in brackets. 
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Species had networks comparable to the constructed scale-free network with 100% of 

C. ignobilis, 83% of C. albimarginatus and 63% of C. amblyrhynchos having a power-

law degree distribution (Table 5.1) and 83% of individuals with skewness slightly 

different from scale-free theoretical network values suggesting they used specific parts 

of a reef more than others. There was no significance difference in the number of 

individual networks with scale-free properties between species (χ2 = 5.12, df = 2, P = 

0.08). However, individual networks varied greatly between random and scale-free 

networks (Figure 5.2), also skewness was significantly higher for scale-free than for 

random networks (Tukey's HSD tests, P< 0.01). One C. albimarginatus and two C. 

amblyrhynchos networks were undetermined as their distribution fitted both random and 

power-law. Species also had networks comparable to the constructed small-world with 

57% of C. ignobilis, 67% of C. albimarginatus and 56% of C. amblyrhynchos having 

higher clustering coefficient and smaller average path length than the random, and 

100% of individuals with smaller diameter relative to the number of receivers (Figure 

5.2), suggesting rapid and direct movement between patches. There was no significance 

difference in the number of individual networks with small-world properties between 

species (χ2 = 0.20, df = 2, P = 0.90). However, individual networks varied between 

small-world and random networks. Although clustering coefficient and average path 

length were significantly different between species networks (F15,32 = 53.3, P< 0.001), 

both metrics were similar between small-world and random networks (Tukey's HSD 

tests, P≤ 0.99) which could explain why individual networks ranged from small-world 

to random (Figure 5.2). Yet, small-world networks were significantly smaller (i.e., 

smaller diameter) than random networks (Tukey's HSD tests, P< 0.01). Consequently, 

species networks had characteristics of scale-free and small-world, and individual 

networks within each species rarely fit neatly into one network type. 
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Figure 5.2: Small-world (a, b, c), and scale-free and random (d, e, f) key properties for individual networks compared with theoretical network values 
for Caranx ignobilis (a, d), Carcharhinus albimarginatus (b, e) and C. amblyrhynchos (c, f).  

Bars represent standard error. Colours represent different reefs: Helix Reef in yellow, Lodestone Reef in green and Wheeler Reef in blue. 
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Clustering coefficient, average path length and node distribution skewness (Table 5.2) 

were similar between species, but there were significant differences between reefs 

(Table 5.3). As such between reef differences were pooled for all species. Networks 

from Wheeler had more clusters and lower average path length than Lodestone 

(Tukey's HSD tests, P≤ 0.02), and networks from Helix were more positively skewed 

(i.e., right skewed) than for Lodestone (Tukey's HSD tests, P< 0.001). These results 

indicate that most individuals (≥71%) at Lodestone were less dependent on a small 

number of patches and moved less directly. Clustering coefficient, diameter (Table 5.2) 

and diameter/receiver number ratio (mean ±SE = 0.3 ± 0.02) differed significantly with 

length (Table 5.3, Figure 5.3) where smaller individuals had more clusters, smaller 

diameter and ratio; suggesting they used specific and smaller parts of the reef than 

larger individuals. Finally, diameter/receiver number ratio was the only metric 

significantly different between species (Table 5.3) with a higher ratio for C. 

albimarginatus than for C. ignobilis (Tukey's HSD tests, P< 0.01).  
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Table 5.3: Statistical comparison of network metrics between species, length of individual and 
reef. 

Metric Factor Test P 
Receiver Species F2,26 = 0.3 0.7 

Fork length F1,27 = 0.1 0.7 
Path Species F2,24 = 2.6 0.1 

Fork length F1,24 = 9.9 < 0.005* 
Reef F2,24 = 6.7 < 0.005* 

Movement Species F2,26 = 1.8 0.2 
Fork length F1,27 = 2.2 0.2 
Reef F2,23 = 25.3 < 0.001* 

Node strength Species χ2
2 = 64.9 < 0.001* 

 Fork length χ2
1 = 0.5 0.5 

 Reef χ2
2 = 2.4 0.3 

 Species*Reef χ2
3 = 9.4 0.03* 

Eigenvector centrality Species χ2
2 = 2.0 0.4 

 Fork length χ2
1 = 0.1 0.7 

 Reef χ2
2 = 4.5 0.1 

Betweenness centrality Species χ2
2 = 3.1 0.2 

 Fork length χ2
1 = 0.1 0.8 

 Reef χ2
2 = 6.9 0.03* 

Clustering coefficient Species F2,26 = 1.5 0.2 
Fork length F1,26 = 12.5 0.002* 
Reef F2,21 = 4.5 0.02* 

Average path length Species F2,25 = 1.7 0.2 
Fork length F1,24 = 7.3 0.01* 
Reef F2,22 = 6.8 0.005* 

Diameter Species F2,26 = 1.8 0.2 
Fork length F1,25 = 11.1 0.003* 
Reef H2= 2.8 0.2 

Ratio Species F2,26 = 4.8 0.02* 
Fork length F1,25 = 5.9 0.02* 
Reef F2,25 = 3.2 0.06 

Skewness Species F2,26 = 1.2 0.3 
Fork length F1,27 = 3.4 0.1 
Reef F2,23 = 9.8 < 0.001* 

F: One-way analysis of variance (ANOVA), χ2: Analysis of deviance 
likelihood ration chi-square (Type III error), H: Kruskal-Wallis one-way 
analysis of variance by ranks. Bold * represents the significance (P< 
0.05). 
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Figure 5.3: Fork length (a, b, c) and number of detections (d, e, f) versus receiver number (dark green), movement number (dark blue), clustering 
coefficient (blue), average path length (yellow) and diameter (green) for Caranx ignobilis (a, d), Carcharhinus albimarginatus (b, e), C. amblyrhynchos 
(c, f). 
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Numbers of path and movement were also similar between species and significantly 

different between reefs (Table 5.3); so species were pooled. Individuals at Helix moved 

more and had a greater number of paths than Lodestone and Wheeler (Tukey's HSD 

tests, P< 0.04). There was a significant relationship between number of paths and 

animal length; with smaller individuals using more paths. However, the number of 

receivers on which individuals were detected and the number of movements (Table 5.2) 

did not differ significantly by species, animal length or number of detections (Table 5.3, 

Figure 5.3). Reef differences in the number of receivers where individuals were 

detected was not tested as the reefs contained different numbers of receivers. Patches 

important for resource and connectivity varied between reefs and species (Table 5.2). 

Node strength for C. ignobilis was significantly higher than for C. albimarginatus and 

C. amblyrhynchos (Table 5.3), indicating that C. ignobilis moved back and forth 

between receivers more than shark species. An interaction between species and reefs 

was apparent in node strength where C. albimarginatus at Wheeler were significantly 

different from the other species and the other reefs. Species, reef or animal length had 

little or no influence on eigenvector centrality (Table 5.3). Betweenness was 

significantly lower at Wheeler than Helix indicating more receivers were involved in 

the flow of individuals at Helix. However there were fewer receivers at Wheeler which 

likely influenced this result. 

 

Reef and species had similar path counts between important receivers for resources and 

connectivity, marginally higher counts between other receivers and significantly lower 

counts between key receivers (Figure 5.4). Path frequency between important resource 

receivers was 85% and 83% higher than receivers important for connectivity for reef 

and species, respectively. Path frequency was also higher between other receivers for 

reef (61%) and species (56%; Figure 5.4). Differences in path frequency demonstrated 

the importance of movement between key receivers for all species. In addition, paths 

were mostly bi-directional with approximately 75% more bi-directional than 

unidirectional paths per reef and approximately 71% more per species. Bi-directional 

paths were used approximately 96% more than unidirectional paths per reef and 

approximately 95% more per species (Figure 5.5). This indicated that movement 
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between key receivers was normally bidirectional and unidirectional pathways were not 

repeatedly used regardless of receiver importance. 
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Figure 5.4: Mean path number and frequency to or from a key receiver per tagging reef (a, c) and per species (b, d).  

White represents mean path number (standardized) and frequency to or from an important patch. Light grey represents mean path number 
(standardized) and frequency to or from a receiver important for connectivity. Dark grey represents mean path number (standardized) and 
frequency to/from an important patch from/to a receiver important for connectivity. Black represent mean path number (standardized) and 
frequency to or from other receivers. Bars represent standard deviation. 
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Figure 5.5: Directionality within each receiver group per reef and per species.  

White represents mean path number (standardized) and frequency to or from an important patch. Grey represents mean path number (standardized) and 
frequency to or from an important receiver for connectivity. Dark grey represents mean path number (standardized) and frequency to/from an important 
patch from/to an important receiver for connectivity. Black represents mean path number (standardized) and frequency to or from other receivers. Bars 
represent standard deviation 
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Individuals had 2.2 (0.08 ±SE) key receivers (i.e., important patches for both resources 

and connectivity). Three C. amblyrhynchos had two receivers important for resources 

and one individual of each species had two receivers important for connectivity; 

remaining individuals had one receiver for resources and one for connectivity. Overall 

key receiver ID varied between species (Figure 5.6). For C. amblyrhynchos, up to 50% 

of receivers at Helix were important for resources whereas at Wheeler up to 60% of 

receivers were important for connectivity for both shark species. Receivers that were 

important for resources for C. ignobilis were different to those for shark species except 

at Wheeler where C. ignobilis and C. amblyrhynchos shared the same receivers for 

resources (Figure 5.6). Caranx ignobilis at Wheeler were 53% smaller than C. 

amblyrhynchos but were similar lengths at the other reefs (Table 5.2). These results 

suggest these three species exploited the reef differently with animal length an 

explanatory factor. At the reef level, 88% of receivers at Helix and 75% at Lodestone 

were considered key receivers for all three species based on the three centrality metrics. 

Whereas, all receivers at Wheeler were important for connectivity and 60% were 

important for resources, for all three species. These results indicate that in general less 

receivers were used at Lodestone than at Helix and Wheeler reefs. 
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Figure 5.6: Key acoustic receivers for Caranx ignobilis, Carcharhinus albimarginatus and C. amblyrhynchos in Helix Reef (a, d), 
Lodestone Reef (b, e) and Wheeler Reef (c, f). (a, b, c) display most important receivers for resources and (d, e, f) most important receivers 
for connectivity in each reef.  

Receivers shown with an orange, green or dark blue cross represent most important receivers for C. ignobilis, C. albimarginatus and C. 
amblyrhynchos, respectively. Dark grey point represent location of other receivers within each reef. Bottom right inset indicates location of 
the three reefs along the Australian coast. 
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Locations of key receivers varied between individuals (Table 5.4a, b); 69% of 

individuals had key receivers (resource versus connectivity importance) on the opposite 

side of the reef (north to south, east to west or vice versa). The two most important 

receivers for resources were often located on the same side of the reef and adjacent to 

each other (93% of individuals) and/or had a single receiver in between (10% of 

individuals). The two most important receivers for connectivity were either adjacent to 

each other (45% of individuals) or on opposite sides of the reef (45% of individuals). 

Relative distance between receivers important for resources (mean ±SD = 0.21 ± 0.12), 

between receivers important for connectivity (mean ±SD = 0.32 ± 0.17) and between 

key receivers (mean ±SD = 0.25 ± 0.15) were similar indicating that key receivers were 

located close to each other, but this varied between reefs and species (Figure 5.7). 

Relative distance between key receivers (resource versus connectivity importance) at 

Lodestone was at least three times larger than between receivers important for resources 

and double that between receivers important for connectivity. 
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Table 5.4: Receivers’ importance within each network. 

a) Receiver importance for resources within the network 
Tagging reef Tag Species Receiver Reef position Node strength Eigenvector 

Helix Reef 7012 C. ignobilis 113953 Southwest 0.210 0.522 
 7015 C. ignobilis 114282 Southwest 0.294 0.627 
 7016 C. ignobilis 113951 Northwest 0.130 0.499 
 13772 C. albimarginatus 114290 North 0.086 0.676 
 13800 C. albimarginatus 114290 North 0.151 0.694 
 13822 C. albimarginatus 114290 North 0.202 0.619 
 14738 C. amblyrhynchos 114294 Northeast 0.187 0.695 
 14740 C. amblyrhynchos 113952 East 0.073 0.675 
 14742 C. amblyrhynchos 113952 East 0.049 0.662 
   114294 Northeast 0.045 0.663 
 14743 C. amblyrhynchos 114290 North 0.119 0.625 
 14778 C. amblyrhynchos 111021 West 0.128 0.666 
 14791 C. amblyrhynchos 114290 North 0.199 0.686 
 14813 C. amblyrhynchos 114294 Northeast 0.106 0.618 
Lodestone Reef 7013 C. ignobilis 113949 Southeast 0.254 0.574 
 7014 C. ignobilis 113949 Southeast 0.184 0.583 
 13792 C. amblyrhynchos 114284 North 0.064 0.668 
   111015 West 0.064 0.696 
 13793 C. amblyrhynchos 111015 West 0.102 0.699 
 14750 C. amblyrhynchos 111015 West 0.041 0.708 
 14751 C. amblyrhynchos 111015 West 0.092 0.703 
 14788 C. amblyrhynchos 114284 North 0.047 0.692 
Wheeler Reef 7009 C. ignobilis 111023 West 0.132 0.626 
 7011 C. ignobilis 111023 West 0.164 0.661 
 13773 C. albimarginatus 113963 Southwest 0.183 0.714 
 13779 C. albimarginatus 113963 Southwest 0.196 0.682 
 13781 C. albimarginatus 113963 Southwest 0.212 0.591 
 13777 C. amblyrhynchos 111023 West 0.157 0.706 
 13782 C. amblyrhynchos 111024 Northwest 0.118 0.707 
   111023 West 0.116 0.707 
 13785 C. amblyrhynchos 111023 West 0.310 0.708 
 13789 C. amblyrhynchos 111023 West 0.054 0.692 
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b) Receiver importance for connectivity 
Tagging reef Tag Species Receiver Reef position Betweenness 

Helix Reef 7012 C. ignobilis 114282 Southwest 16 
 7015 C. ignobilis 114290 North 9 
 7016 C. ignobilis 114294 Northeast 18 
 13772 C. albimarginatus 114294 Northeast 13 
 13800 C. albimarginatus 113952 East 22 
 13822 C. albimarginatus 114290 North 31 
 14738 C. amblyrhynchos 111021 West 27 
 14740 C. amblyrhynchos 113951 Northwest 18 
 14742 C. amblyrhynchos 113953 Southwest 25 
 14743 C. amblyrhynchos 114294 Northeast 19 
 14778 C. amblyrhynchos 113953 Southwest 10 
 14791 C. amblyrhynchos 111021 West 8 
 14813 C. amblyrhynchos 113953 Southwest 15 
   111021 West 15 
Lodestone Reef 7013 C. ignobilis 113950 Northeast 16 
 7014 C. ignobilis 114285 Northeast 16 
 13792 C. amblyrhynchos 114288 South 29 
 13793 C. amblyrhynchos 114285 Northeast 13 
 14750 C. amblyrhynchos 113950 Northeast 4 
 14751 C. amblyrhynchos 114288 South 22 
 14788 C. amblyrhynchos 114288 South 19 
Wheeler Reef 7009 C. ignobilis 113964 Southeast 4 
   111024 Northwest 4 
 7011 C. ignobilis 111024 Northwest 9 
 13773 C. albimarginatus 113965 Northeast 8 
 13779 C. albimarginatus 113965 Northeast 7 
 13781 C. albimarginatus 111024 Northwest 3 
   111023 West 3 
 13777 C. amblyrhynchos 113964 Southeast 6 
 13782 C. amblyrhynchos 113963 Southwest 8 
 13785 C. amblyrhynchos 113965 Northeast 7 
 13789 C. amblyrhynchos 113965 Northeast 8 
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Figure 5.7: Mean relative distance (i.e., straight line between two receivers divided by distance between all receivers) between key receivers per 
tagging reef (a) and per species (b).  

White represents mean distance between important resource receivers. Grey represents mean distance between receivers important for connectivity. 
Black represents mean distance between important receivers and important for connectivity receivers. Bars represent standard deviation. 
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5.4. Discussion 

Network modelling provided valuable insight into the functional connectivity of mobile 

predators within coral reefs by determining the type of “world” they live in and how 

they move between habitat patches. Species typically exhibited properties of scale-free 

and small-world networks meaning species moved rapidly and directly within reefs and 

used a small number of highly connected patches on individual reefs. Due to the circular 

nature of reef acoustic arrays, it was expected the data may be biased toward circular 

network properties, but the results showed individuals used specific patches rather than 

swimming in circles. However, individuals might not have been detected by receivers at 

times due to reef topography and environmental noise (Welsh, Fox, Webber & 

Bellwood, 2012) causing partial networks (i.e., missing data). Silk et al. (2015) 

indicated that as long as this method is applied in a long-term study valid inferences can 

be made using a partial network; suggesting the results presented here are robust to the 

missing data. Numerous studies have identified high connectivity with tight clustering 

in a variety of complex networks (Watts, 2004); including herbivorous reef fish 

movement (Fox & Bellwood, 2014), bottlenose dolphin social groups (Lusseau et al., 

2006) and route connection between world-wide airports (Barrat et al., 2004). Complex 

network structures provided an insight into how species might resist random loss of 

habitat and how connectivity is maintained (Wey et al., 2008). 

 

The results showed consistent network structures between and within three predatory 

reef species. Networks showed scale-free characteristics with most individual networks 

having a power-law degree distribution and/or a highly skewed node degree 

distribution suggesting movements comparable to Lévy-walk where a greater number of 

patches are visited with fewer repeat visits (Austin, Bowen & McMillan, 2004). Such an 

observation provides information on searching or foraging patterns (Humphries, 

Weimerskirch & Sims, 2013). The Lévy-walk movement pattern has been observed in 

other mobile marine species such as seabirds and bony fishes and white sharks, and is 

believed to be a response by predators to patchy prey distribution (Humphries et al., 

2013; Sims, Humphries, Bradford & Bruce, 2012). However, research on prey 

distribution is needed to confirm this pattern occurs in reefs. Furthermore, scale-free 

properties may enhance resilience to habitat loss or disturbance. For example, if a low 

degree habitat patch is removed from the network there will be little change, but if a 
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high degree receiver is removed a noticeable disruption to connectivity will likely occur 

(Galpern et al., 2011; Minor & Urban, 2008; Urban & Keitt, 2001). Consequently, 

highly connected patches play a key role in resilience to habitat loss (Kurvers et al., 

2014). Minor and Urban (2008) similarly found that songbird habitat networks were 

similar to scale-free networks which made them resistant to random disturbances. 

Knowing which patches are key in the network, managers can target specific areas for 

management if required (Kurvers et al., 2014). 

 

Species networks also exhibited small-world characteristics such as high clustering 

coefficient, short path lengths and small diameter relative to number of receivers (Watts 

& Strogatz, 1998). These results were similar to Kininmonth et al. (2009) describing 

Great Barrier Reef structural connectivity as a small-world network and further 

suggesting that small-world properties were common for Great Barrier Reef marine 

species. This is particularly interesting as Kininmonth et al. (2009) explored inter-reef 

connectivity whereas the present study examined intra-reef connectivity; so small-world 

characteristics can occur not only at the reef level but also across reefs. High clustering 

coefficients indicated movement from one patch to the next by facilitating dispersal 

through alternative pathways (Fortuna et al., 2006).  Reef predator networks had short 

path lengths and small diameters, indicating patches were easily reachable and species 

moved quickly within a reef. Thus, in the case of patch loss or disturbance individuals 

should be able to easily move to another patch. Therefore connectivity of patches in the 

network was high enough to prevent the negative consequences of isolation due to 

disturbance (Minor & Urban, 2008) provided sufficient patches remain to supply fitness 

requirements. 

 

Network properties were consistent between species but varied between reefs and 

individuals. Differences in reef size and receiver numbers made direct comparison of 

some metrics difficult. Ideally, all reefs would be similar in size and have same number 

of receivers, however receiver coverage was similar among reefs (Espinoza, Lédée, et 

al., 2015) suggesting comparisons between reefs were appropriate. Results indicated 

individuals at Lodestone were less dependent on a small number of patches, moved less 

directly and used a smaller area than individuals at Helix and Wheeler Reefs. Other 
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studies in the central Great Barrier Reef showed no difference in movement pattern 

between reefs for C. ignobilis (Chapter six), while C. amblyrhynchos space use was 

significantly different between reefs (Espinoza, Heupel, et al., 2015b). Environmental 

parameters did not explain these differences (Chapter six; Espinoza, Heupel, et al., 

2015b), thus other factors such as reef area, habitat quality, benthic characteristics or 

reef complexity might cause these differences. In addition, Helix and Wheeler Reefs 

support more abundant fish assemblages (Graham et al., 2014) and are closed to fishing 

while Lodestone Reef is open to fishing which could also influence predator behaviour. 

Further research is needed to explore these hypotheses. 

 

Individual networks also varied with animal length in all species with smaller 

individuals using more specific and smaller parts of the reef than larger individuals. 

Previous studies have shown that activity space increases with length (Nash et al., 2015) 

due to higher energy requirements (McNab, 1963). Sex-based size differences are also 

apparent in several shark species and males tend to increase their activity spaces to 

potentially reduce competition with females (Espinoza, Heupel, et al., 2015a and 2015b; 

Papastamatiou, Wetherbee, Lowe & Crow, 2006). However, size based Network 

Analysis differed from activity space analyses for these species which revealed smaller 

individuals use more space than larger individuals (Chapter six; Espinoza, Heupel, et 

al., 2015b). Differences in these results may be due to behavioural effects (e.g., 

ontogenetic change, dominance hierarchy) that were not detected in Network Analysis. 

Activity space also incorporated depth which was not accounted for in Network 

Analysis and could explain differing results. 

 

Individual networks varied between scale-free, small-world and random. Variation 

between individuals could be due to low detection and movement within a reef. Testing 

indicated datasets with high detection and movement between receivers are needed to 

construct a network that exhibits a non-random pattern (Chapter four). Moreover, 

James et al. (2009) showed that scale-free characteristic are difficult to find in small 

networks which could explain the variation between scale-free and random networks. 

Finally, Silk et al. (2015) showed that clustering coefficient precision declines 

considerably in a partial network, and especially if the receiver number is relatively 
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small. This could explain the individual variation between random and small-world 

networks. 

 

Centrality metrics from the observed networks (i.e., weighted and directed) such as 

node strength, eigenvector and betweenness provided additional information to help 

identify patches of important resources and for intra-reef connectivity. At the reef level, 

many patches on Helix and Wheeler Reefs were important for the three species and 

were involved in the flow of individuals, highlighting their importance not only for 

resources but also connectivity in reef movements. Results were similar to Goetz, Jantz 

and Jantz (2009) who identified that core habitats of the north-eastern and mid-Atlantic 

USA, based on road density, amount of development and tree cover, had both high 

degree and betweenness suggesting their importance for connectivity at local and 

regional levels. Consequently, management measures such as closed areas should 

encompass the whole reef where possible to help retain connectivity and movement 

corridors. 

 

At the species and individual levels Network Analysis showed that reefs were used 

differently. Important patches for C. ignobilis differed from the two shark species at 

Helix and Lodestone Reefs. However, C. ignobilis and C. amblyrhynchos co-occurred at 

the same resource patches at Wheeler Reef, and C. amblyrhynchos and C. 

albimarginatus similarly co-occurred at Helix Reef. All three species have a similar diet 

including fish, crustaceans and/or cephalopods (Compagno et al., 2005; Sudekum et al., 

1991), but species distribution may differ spatially and temporally to reduce 

competition. In the present study, species of similar size exhibited different spatial 

distributions, whereas, concurrence was found in species of different size. Diet and 

foraging strategies may, when coupled with size, provide an explanation if larger 

individuals consume a wider variety of prey than smaller individuals. 

 

Movement between receivers was normally bidirectional for all three species, regardless 

of the receiver’s importance. This differs from results in Chapter four which showed 

that movement of sharks between core use receivers in inshore waters was bi-directional 
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and unidirectional between general use receivers. Identification of these movement 

pathways is beneficial to identifying movement corridors responsible for connectivity 

which may guide the design and developments of management plans (Chetkiewicz et 

al., 2006). 

 

Network modelling is a significant tool to investigate the functional connectivity of 

mobile predators within coral reefs and demonstrates how these predators might 

respond to habitat loss or disturbances. Knowledge of movement behaviour within coral 

reefs is critical to assessing the risk of localized impacts from reef fisheries or tourism 

development. This study demonstrated that the three reef predator species might tolerate 

some levels of habitat loss or disturbance and showed which patches appeared more 

important overall. Using this method, managers can make informed conservation plans 

(Minor & Urban, 2008) at a reef scale that will maintain connectivity and movement 

corridors of mobile species.  
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Chapter 6 

6. Movements and space use of giant trevally in coral reef 

habitats and the importance of environmental drivers 

 

 

6.1. Introduction 

Coral reef ecosystems are biologically diverse and economically important but are 

under threat due to fisheries pressure and climate change (De'ath et al., 2012). Changes 

in environmental and human-related factors can have significant effects on coral reef 

ecosystems. These changes not only impact coral species but also mobile reef species 

such as sharks and large teleosts and their interactions with the ecosystem (Chin & 

Kyne, 2007; Currey, Heupel, Simpfendorfer & Williams, 2015; Heupel & 

Simpfendorfer, 2014; Richards, Williams, Vetter & Williams, 2012). Past research has 

investigated the effects of environmental change on large-bodied teleost distribution 

(Richards et al., 2012); however, few studies have investigated large-bodied teleosts in 

coral reef habitats. Furthermore, understanding how environmental changes or 

disturbances affect highly mobile reef teleosts remains a challenge due to long distance 

movement and use of a wide variety of habitats (Croft et al., 2008; Espinoza et al., 

2014). Thus, while studies of reef fish movement have become more common (Green et 

al., 2014), knowledge remains limited on the role environmental factors play in 

controlling movements and space use (Heithaus et al., 2008; Kadmon & Benjamini, 

2006; Nilsson, Crawley, Lunde & Munday, 2009). 

 

Top predators are known to play a central role in maintaining coral reef ecosystem 

structure and function (Chin & Kyne, 2007; Dulvy, Freckleton & Polunin, 2004; 

Heithaus et al., 2008). For example, predation by large-bodied reef teleosts controls 

prey populations and community structure and maintains dominance hierarchies 

(Bascompte, Melian & Sala, 2005; Chin & Kyne, 2007; Heithaus et al., 2008). Declines 

in top predator populations can result in changes in coral reef communities such as 

higher abundance of prey altering species interactions and habitat use that may result in 
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trophic cascades (Dulvy et al., 2004; Heithaus et al., 2008; Richards et al., 2012). Top 

predators are often targeted by fisheries (Dale, Meyer & Clark, 2011; Richards et al., 

2012), and past research has shown declines in predator abundance and shifts in their 

distribution on many coral reefs due to overfishing (Dale et al., 2011; Dulvy et al., 

2014; Myers, Baum, Shepherd, Powers & Peterson, 2007). Furthermore, top predator 

movement patterns are also influenced by changes in environmental factors. How 

species respond to environmental change is a function of their biology and physiology 

(Schlaff, Heupel & Simpfendorfer, 2014; Sirot et al., 2015). Recent research has shown 

water temperature to be an important factor in the distribution of the reef predator 

Lethrinus miniatus (Currey et al., 2015) or seasons to influence the movement patterns 

of sharks and pelagic teleosts (Dale et al., 2011; Espinoza, Heupel, et al., 2015b; FAO 

Fisheries and Aquaculture Department, 2010; Knip, Heupel, Simpfendorfer, Tobin & 

Moloney, 2011b). However, our understanding of how changes in environmental 

conditions affect coral reef predator movement is limited (Currey et al., 2015; Heupel & 

Simpfendorfer, 2014). Therefore, understanding how large-bodied reef teleosts move 

and respond to changes within their environment is critical for understanding how best 

to manage these species, including the benefits that they derive from marine protected 

areas (Bascompte et al., 2005; Espinoza et al., 2014). 

 

Caranx ignobilis, the giant trevally, is a common, highly mobile predator in tropical and 

subtropical waters that has been poorly studied given their abundance (Sudekum et al., 

1991; Wetherbee et al., 2004). Information on their reproduction, movement patterns 

and habitat use is limited. Caranx ignobilis are targeted by commercial and recreational 

fisheries throughout much of their Indo-Pacific range, including in Hawaii 

(Papastamatiou, Meyer, Kosaki, Wallsgrove & Popp, 2015; Sudekum et al., 1991; 

Wetherbee et al., 2004), and the Great Barrier Reef, Australia. Given their abundance 

and importance, information on the ecology of C. ignobilis will help improve 

understanding of their role in coral reef ecosystems and improve management where it 

is required (Dale et al., 2011; Heupel & Simpfendorfer, 2014). Accordingly, the main 

aims of the research were to investigate movement patterns of this large teleost within 

and among individual coral reefs, examine temporal changes in presence/absence, space 

use and depth use and determine the role of biological and environmental factors in 

affecting these attributes. 
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6.2. Data analysis 

Detection data for each individual were exported from a VUE database (Vemco 

Division, Amirix Systems Inc., Halifax, Nova Scotia, Canada) and analysed in the R 

statistical environment (R Development Core Team, 2014). A general investigation of 

reef and temporal patterns was undertaken using analysis of variance (ANOVA); first to 

compare fish size, mean number of days and maximum consecutive days present 

between tagging reefs. Then, to investigate a possible diel movement pattern of C. 

ignobilis, mean detections were calculated per hour over the period of the study and, 

separated into day (between 0600 to 1759 hours) and night (between 1800 to 0559 

hours) phases. Paired t-tests (assuming unequal-variance) were used to determine 

significance between phases. Detections were standardised based on sentinel tags, and 

Payne, Gillanders, Webber and Semmens (2010) correction was used to confirm diel 

differences. 

 

6.2.1. Environmental data 

Environmental data were obtained from three different sources. Water temperature, 

wind speed, rainfall, light intensity and barometric pressure were sourced from an 

Australian Institute of Marine Science (AIMS) weather station and Integrated Marine 

Observing System sensors on Davies Reef at the southern end of the acoustic array 

(Australian Institute of Marine Science, 2014). Average light intensity was measured as 

downwelling photosynthetically active (400 to 700 nm) radiation in μmol/s/m2 using an 

underwater quantum sensor (LI-192SA, LI-COR Inc., Lincoln, NE, USA). Moon 

illumination (luminosity) was sourced from the United States Naval Observatory 

(http://aa.usno.navy.mil/data/docs/MoonFraction.php) and tidal heights from the Bureau 

of Meteorology of Australia (http://www.bom.gov.au/). Environmental data were 

recorded at a variety of temporal scales, and mean values were aggregated by month 

(Figure 6.1) for analyses of space use, by day for analyses of presence/absence and by 

hour for analyses of depth use. 
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Figure 6.1: Monthly environmental values for Townsville reefs region in the central Great 
Barrier Reef.  

(a) mean wind speed, (b) mean barometric pressure, (c) mean water temperature, (d) mean 
rainfall and (e) mean light intensity. Source generated from Australian Institute of Marine 
Science (2014). 
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6.2.2. Presence/absence 

A residency index was calculated for each individual by dividing the number of days an 

individual was detected within the study area by the days at liberty (i.e., from the time 

of first detection to the time of last detection). Individuals were considered present in 

the study area if they were detected at least twice per day. Residency index ranged from 

0 (not detected on any day) to 1 (detected on all days); difference in residency index 

between reefs was tested using ANOVA. 

 

Generalized linear mixed-effects models (GLMM; R package ‘lme’; Pinheiro, Bates, 

DebRoy, Sarkar & R Core Team, 2014) were used to examine the effect of fish size, 

and environmental factors on presence/absence were examined using the glmer function 

from the ‘lme4’ package (Bates, Maechler, Bolker & Walker, 2014). For GLMM 

purposes, the days an individual was present were assigned a value of one and when 

absent a value of zero. The global model was fit with a binomial error distribution using 

a logit link and a nAGQ value of seven (Bolker et al., 2009). The nAGQ was set to run 

an adaptive Gauss-Hermite quadrature (AGQ) model to increase the model estimation 

accuracy (Pinheiro & Chao, 2006). 

 

6.2.3. Space use 

Space use was estimated by vertical Kernel Utilisation Distribution (vKUD) following 

an approach used by Heupel and Simpfendorfer (2014). In this approach, each reef was 

considered as a linear system and the western tip of the reef edge as a starting point. 

Horizontal positions of individuals along the reef were estimated by calculating the 

distance from the starting point to the location of each detection and averaging this over 

a 2-h period using the centre of activity (COA) approach of Simpfendorfer et al. (2002). 

Depth was also averaged for each 2-h period and used in conjunction with COAs to 

provide two-dimensional position estimates (Heupel & Simpfendorfer, 2014). Monthly 

50% (core use) and 95% (extent) vKUD (Heupel & Simpfendorfer, 2014) were 

calculated based on position estimates for each individual (R package ‘ks’; Duong, 

2014). Only individuals with >10 COAs per month were used in the analysis. Monthly 

vKUD overlaps were estimated for each individual to determine the re-use of space over 

time and between individuals at the same reef in months where they co-occurred. 
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ANOVA was used to examine differences in monthly overlap between individuals and 

reefs. 

 

GLMMs were used to examine the influence of fish size and environmental factors on 

the space use of C. ignobilis in the Townsville reefs region. Monthly core use and extent 

estimates were transformed to normality using a square root transformation. Tide height 

and moon illumination were not included in the GLMM analysis as they were not 

informative at a monthly scale. 

 

6.2.4. Depth use 

Caranx ignobilis depth use was investigated hourly. An ANOVA was used to test 

variation in individual depth use between reefs in the central Great Barrier Reef region. 

Effects of fish size and environmental factors on vertical distribution were examined 

using the lme function from the ‘nlme’ package (Pinheiro et al., 2014). Mean depth was 

square root transformed to normalise the data. Moon illumination data was not available 

at an hourly scale so was not included in the GLMM analysis. 

 

6.2.5. Environmental effects 

A series of models were applied to explore the effects of season, fish size and 

environmental data on the movement patterns of C. ignobilis. In each case, fixed factors 

were centred to simplify interpretation and facilitate comparison of their importance 

(Schielzeth, 2010). Individual was included as a random factor to enable population-

level prediction and account for the repeated-measures nature of the data (Bolker et al., 

2009). Collinearity between biological (i.e., fish size) and environmental factors was 

assessed using Pearson correlation coefficients and variance inflation factors (VIF; R 

package ‘car’; Fox & Weisberg, 2011). If a factor had an absolute Pearson correlation 

coefficient >0.8 and a VIF value >3, it indicated collinearity with other factors and the 

factor was dropped from the analysis. Barometric pressure was not included in the 

presence/absence and space use global models based on Pearson correlation coefficients 

and VIF values due to collinearity with water temperature. In addition, rainfall was not 



Movements and space use of giant trevally in coral reef habitats  

 
110 

included in the depth use global model due to violation of collinearity based on 

Pearson’s residuals. 

 

Differences in presence/absence, space use and depth use between summer (December 

to February), autumn (March to May), winter (June to August) and spring (September to 

November) were examined independently of other environmental factors to remove 

correlation effects and reduce complexity of mixed-effects models. Wald Z tests were 

used to determine the overall seasonal effect compared to the null model. 

 

The effects of fish size and environmental factors on presence/absence, space use and 

depth use were investigated using mixed-effects models. For each metric, global models 

were fitted with different weight functions to account for heterogeneity of variance. The 

corrected AICc was calculated for each model. The models with the lowest AICc 

values, indicating greater support for the model, were selected (Burnham & Anderson, 

2004). Diagnostics plots (i.e., residuals plot and auto-correlation function plot) and tests 

(over-dispersion) evaluated goodness of fit (Burnham & Anderson, 2002a; Zuur et al., 

2010). If auto-correlation was present, global models were fitted with different 

correlation functions to account for temporal autocorrelation and heteroscedasticity. The 

corrected Akaike’s information criterion was re-calculated, and final models with the 

lowest AICc values were selected for the analyses. 

 

The best model (lowest AICc) for core use (50% vKUD) and extent (95% vKUD) did 

not include weight functions. Auto-correlation was found for core use and extent, so the 

global models were fitted with different correlation functions; the best fitted models 

(lowest AICc) included no correlation structure for core use and a correlation structure 

of order 1 (corAR1) for extent. Then, for the mean depth global model, homogeneity of 

variance was accounted for using a constant variance structure (varIdent) as weight 

function and auto-correlation using the correlation structure of order 1 (corAR1). 

 

Multi-model inference was used to improve estimation of the effects of fish size and 

environmental factors on C. ignobilis space use, presence/absence and depth use. First, 
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a set of nested models with different combinations of the fixed variables were derived 

from the global models (Bolker et al., 2009; Johnson & Omland, 2004) using the dredge 

function from the ‘MuMIn’ package (Barton, 2014). Using an information theoretic 

approach, nested model was ranked using AICc. Second, model averaging based on 

Akaike weight was applied to well-fitting nested models (∆AICc < 2). Best nested 

models were compared against the null model: y ~ 1 + (1 | ID), where y is the response, 

and significant differences were evaluated with maximum likelihood ratio tests (χ2, P < 

0.05). Fixed variable estimates were calculated using the model.avg function from the 

‘MuMIn’ package (Barton, 2014) to determine their relative importance and account for 

model selection uncertainty (Grueber, Nakagawa, Laws & Jamieson, 2011; Johnson & 

Omland, 2004). Finally, the full model-averaged coefficients (i.e., shrinkage estimates) 

were used to account for nested model selection bias (Burnham & Anderson, 2002a). 

 

6.3. Results 

From 2012 to 2014, 20 C. ignobilis were released with acoustic transmitters within the 

offshore reefs array in the central Great Barrier Reef region. Four C. ignobilis were not 

detected, and a further six were infrequently detected (<15 detections) and were 

excluded from further analysis. Sizes of the ten remaining fish ranged from 48.5- to 

104.0-cm fork length (mean ± SD = 79.9 ± 16.1); and length did not differ between 

tagging reef (F3, 5 = 2.63, P = 0.16). Caranx ignobilis reach maturity between 55 and 65 

cm fork length (Wetherbee et al., 2004), so one individual was likely to be sub-adult at 

time of capture and the remainder mature. Individuals were mostly detected at the reef 

they were caught on (98.8% of detections; Table 6.1). Only three individuals were 

detected at non-tagging reefs, all during 3 weeks in October 2013 when they were 

recorded at reefs located from 8 to 38 km away from their tagging reef. 
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Table 6.1: Tagging data for ten Caranx ignobilis monitored in central Great Barrier Reef. 

 

ID Capture 
location Tagging date FL 

(cm) 
Number of 
detections 

Detection at tagging 
reef (%) 

Total days 
present 

Days at 
liberty 

Consecutive days 
present 

Residency 
index 

7009 Wheeler Reef 24 April 2013 84.0 6,935 100.0 335 356 168 0.94 
7011 Wheeler Reef 24 April 2013 74.5 1,294 94.4 181 347 36 0.52 
7012 Helix Reef 25 April 2013 84.0 199 93.9 32 331 7 0.10 
7015 Helix Reef 20 February 2013 90.5 995 100.0 180 371 29 0.49 
7016 Helix Reef 20 February 2013 65.0 6,338 99.9 332 358 218 0.93 
7013 Lodestone Reef 19 February 2014 104.0 168 100.0 28 57 8 0.49 
7014 Lodestone Reef 19 November 2013 96.5 1,416 100.0 131 147 54 0.89 
7018 Lodestone Reef 18 February 2013 48.5 196 100.0 9 12 5 0.75 
7022 Keeper Reef 11 February 2013 71.0 84 100.0 14 200 2 0.07 
7028 Keeper Reef 30 April 2012 81.0 97 100.0 17 53 7 0.32 
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Individuals were present in the study site on average (±SD) 126 ± 128 days (Figure 6.2, 

Table 6.1). The mean maximum consecutive days detected (±SD) during the study 

period were 53 ± 76. The number of days detected and maximum consecutive days did 

not vary between reefs (F3, 6 = 2.51, P = 0.16 and F3, 6 = 1.93 P = 0.23, respectively). 

Furthermore, C. ignobilis showed significant diel variation in detections (paired t-test: 

t11 = 5.16, P < 0.001), with less detections recorded per hour during daytime (mean ± 

SE = approximately 12.4 ± 3.4) than night-time (mean ± SE = approximately 43.8 ± 

5.1). After correction for diel detection patterns based on sentinel tags (Figure 6.3), 

results did not change significantly (mean ± SE = approximately 14.92 ± 2.70 during 

the day and approximately 37.03 ± 3.96 at night) with significant diel variation apparent 

(paired t-test: t11 = 5.90, P < 0.001). Only individuals that were detected from April 

2013 to April 2014 (N = 8) were included in the generalized linear mixed-effects 

modelling. 

 

 
Figure 6.2: Daily detection history of ten tagged Caranx ignobilis from May 2012 to April 
2014. 
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Figure 6.3: Mean number of detections per hour.  

Mean number of detections were calculated before (solid light grey line) and after Payne et al. 
(2010) correction (solid dark grey line) relative to sentinel tag detections (dashed line) in the 
central Great Barrier Reef region. Light grey rectangles represent night periods. 

 

6.3.1. Presence/absence 

Mean C. ignobilis residency index was 0.53 (±0.11 SE), and there was no difference in 

residency index between reefs (F3, 6 = 1.50, P = 0.31; Table 6.1). Multi-model inference 

using an information theoretic approach (i.e., Akaike information criterion (AICc) 

ranking) was used to explain fish size and environmental effects on C. ignobilis daily 

presence/absence. Seven binary nested models best fit the data (ΔAICc < 2), and all 

models were significantly better than the null model (P < 0.001; Table 6.2a). All seven 

nested models included water temperature, wind speed and light intensity as fixed 

variables. 
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Table 6.2: Top nested mixed-effects models examining fish size and environmental variables 
effects on Caranx ignobilis in the central Great Barrier Reef from April 2013 to April 2014.  

All nested models included a random effect for individual fish, and parameters were 
standardised. Only most relevant nested mixed-effects models (ΔAICc < 2; Akaike difference) 
are shown. W is Akaike weight. Asterisks indicate models that differed from null model (P < 
0.05). Sqrt represent the square root transformation used to normalise the data. ‘Light’ is light 
intensity, ‘Temp’ is water temperature, ‘Tide’ is tide height, ‘Wind’ is wind speed, ‘Moon’ is 
moon illumination, ‘FL’ is fork length and ‘Press’ is barometric pressure. 

a) Daily presence (PA) 
Nested model Formula df QAIC W 

M1 PA ~ Light+Rainfall+Temp+Tide+Wind 7 1655.78* 0.16 
M2 PA ~ Light+Rainfall+Temp+Wind 6 1656.10* 0.13 
M3 PA ~ Light+Moon+Rainfall+Temp+Tide+Wind 8 1656.79* 0.09 
M4 PA ~ Light+Moon+Rainfall+Temp+Wind 7 1657.02* 0.08 
M5 PA ~ Light+Temp+Wind 5 1657.06* 0.08 
M6 PA ~ Light+Temp+Tide+Wind 6 1657.27* 0.07 
M7 PA ~ FL+Light+Rainfall+Temp+Tide+Wind 8 1657.71* 0.06 
QAIC is the over-dispersion bias-adjusted form of Akaike’s information criterion.  
 

b) Monthly core use (CU; 50% vertical kernel utilisation distribution; vKUD) 
Nested model Formula df AICc W 

M1 Sqrt(CU) ~ 1  3 389.98 0.18 
M2 Sqrt(CU) ~ Temp 4 390.74 0.12 
M3 Sqrt(CU) ~ Rainfall+Temp 5 391.86 0.07 
M4 Sqrt(CU) ~ FL 4 391.87 0.07 
M5 Sqrt(CU) ~ Light 4 391.92 0.07 
AICc is the small-sample bias-corrected form of Akaike’s information 
criterion. 
 

c) Monthly extent (Ex; 95% vKUD) 
Nested model Formula df AICc W 

M1 Sqrt(Ex) ~ Wind 5 524.15* 0.17 
M2 Sqrt(Ex) ~ 1  4 524.88 0.12 
M3 Sqrt(Ex) ~ Rainfall+Wind 6 525.88* 0.07 
M4 Sqrt(Ex) ~ Light+Wind 6 526.04 0.07 
 

d) Hourly mean depth (MD) 
Nested model Formula df AICc W 
M1 Sqrt(MD) ~ Light+Temp+Tide+Wind 31 3084.20* 0.30 
M2 Sqrt(MD) ~ Light+Press+Temp+Tide+Wind 32 3084.74* 0.23 
M3 Sqrt(MD) ~ FL+Light+Temp+Tide+Wind 32 3085.41* 0.16 
M4 Sqrt(MD) ~ FL+Light+Press+Temp+Tide+Wind 33 3085.92* 0.13 
 

The mixed-effects model showed that daily presence/absence was influenced by season 

(Table 6.3) with C. ignobilis more likely to be detected during winter than summer 

months (Figure 6.4a). Water temperature, wind speed, and light intensity were found to 

have a significant effect on the daily presence/absence of C. ignobilis (Table 6.4) with 

greater likelihood of detection with decreases in water temperature, light intensity and 

wind speed (Figure 6.5a,b,c). 
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Table 6.3: Seasonal effects on Caranx ignobilis presence, space use and depth in the central 
Great Barrier Reef. 

Model χ2 df P value 
PA ~ Season 73.88 3 <0.0001* 
CU ~ Season 3.40 3 0.33 
Ex ~ Season 6.28 3 0.10 
MD ~ Season 340.30 3 <0.0001* 
PA: daily presence, CU: monthly core use (50% vertical Kernel Utilisation Distribution 
vKUD), EX: monthly extent (95% vKUD) and MD: hourly mean depth. Asterisks indicate 
significant effect (P < 0.05) via Wald Z test using chi-squared test against null model. 
 

 
Figure 6.4: Effect of season on the daily presence and hourly mean depth of Caranx ignobilis.  

Daily presence (a) and hourly mean depth (b) of Caranx ignobilis in the central Great Barrier 
Reef were examined from April 2013 to April 2014. Dots indicate mean presence (a), and mean 
depth (b) with error bars representing 95% confidence intervals. 
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Table 6.4: Environmental and fish size effects on Caranx ignobilis presence from model 
averaging analysis. 

 
Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ± 0.000 NA NA - 
Light intensity −0.554 ± 0.155 3.583 <0.001* 1.00 
Rainfall −0.151 ± 0.153 0.990 0.322 0.65 
Water temperature −1.538 ± 0.195 7.895 <0.0001* 1.00 
Tide height 0.159 ± 0.218 0.730 0.465 0.51 
Wind speed −0.595 ± 0.137 4.345 <0.0001* 1.00 
Moon illumination −0.050 ± 0.101 0.489 0.625 0.38 
Fork length 0.121 ± 0.749 0.162 0.872 0.28 
Environmental parameters were standardised for comparison. Asterisks indicate 
significant effect (P < 0.05) on daily presence of Caranx ignobilis monitored in the 
central Great Barrier Reef. 

 

6.3.2. Space use 

Core use (50% vKUD) and extent (95% vKUD) areas varied between individuals and 

months. Monthly core use areas ranged from approximately 0.001 km2 to approximately 

0.016 km2 (mean ± SE = approximately 0.006 ± 0.0004) and extent from approximately 

0.004 km2 to approximately 0.062 km2 (mean ± SE = approximately 0.032 ± 0.002) 

(Figures 6.6 and 6.7). However, there was no significant difference between months 

(core use χ2
2 = 0.44, P = 0.51; extent χ2

2 = 0.69, P = 0.40). Overall, smallest individuals 

had the largest core use and extent areas within the study region. At Helix and 

Lodestone Reefs, smaller individuals used more space (48% and 19% more, 

respectively) compared to larger fish. However, at Wheeler Reef, smaller individuals 

used less space than larger fish (55% less). 
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Figure 6.5: Environmental effects on the daily presence and hourly mean depth of Caranx 
ignobilis.  

Results of mixed-effects models indicating the effects of light intensity (a, d), water temperature 
(b), tidal height (e) and wind speed (c, f) on the daily presence (a, b, c) and hourly mean depth 
(d, e, f) of Caranx ignobilis in the central Great Barrier Reef from April 2013 to April 2014. 
Lines represent mean presence (a, b, c), and mean depth (d, e, f) with grey shading indicating 
95% confidence intervals. 
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Monthly space use overlap did not vary between individuals (core use F1, 6 = 0.63, P = 

0.46; extent F1, 6 = 1.18, P = 0.32) (Figure 6.8a). Mean monthly space use overlap 

ranged from 0% to 56% (mean ± SE = 21% ± 6%) for core use and from 0% to 71% 

(mean ± SE = 31% ± 7%) for extent. Overlap between co-occurring individuals ranged 

from 0% to 52% (mean ± SE = 15% ± 3%) for core use and from 0% to 81% (mean ± 

SE = 28% ± 7%) for extent (Figure 6.8b) and varied greatly between reefs (core use F3, 3 

= 10.72, P < 0.05; extent F3, 3 = 15.67, P < 0.03). Individuals at Wheeler Reef had 

higher overlap (>50% for core use) compared to the other two reefs (<20% for core 

use). 

 

 
Figure 6.6: Mean monthly vertical space use of Caranx ignobilis. 

(a) Activity space core use (50% vertical kernel utilisation distribution; vKUD) and (b) extent 
(95% vKUD) estimates for individuals monitored from April 2013 to April 2014 in the central 
Great Barrier Reef. Lines indicate mean space use (KUDs), and grey shading represents 95% 
confidence intervals. 
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Figure 6.7: Example of six Caranx ignobilis vertical space uses. 

Three C. ignobilis were monitored at Helix (a), Lodestone (b) and Wheeler (c) Reefs during 
spring (a, b, c) and autumn (d, e, f). Black dashed lines indicate activity space core area (50% 
vertical kernel utilisation distribution; vKUD), black lines indicate extent (95% vKUD), and 
grey “+” symbols represent receivers’ locations and depth along the reef. 

 

Multi-model inference using an information theoretic approach identified five nested 

models for core use (Table 6.2b) and four for extent (Table 6.2c) that met the best fit 

criteria (ΔAICc < 2). Null models were included in the best fitted nested models for 

core use and extent. None of the core use nested models were significantly better than 

the null model (χ2, P > 0.19; Table 6.2b), whereas two of the extent nested models were 

significantly better than the null model (χ2, P < 0.05; Table 6.2c). Finally, mixed model 

effect showed no seasonal effect (Table 6.3), and model averaging showed no fish size 
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or environmental effects on monthly space use (Table 6.5a, b) indicating that none of 

these factors were important drivers of space use. 

 

Table 6.5: Fish size and environmental variables effects on Caranx ignobilis space use from 
model averaging analysis in the central Great Barrier Reef from April 2013 to April 2014. 

a) Core use (50% vertical kernel utilisation distribution; vKUD) 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Water Temperature  -0.069 ±0.117 0.588 0.557 0.42 
Rainfall 0.029 ±0.094 0.306 0.760 0.28 
Fork length  -0.050 ±0.205 0.246 0.806 0.26 
Light intensity 0.012 ±0.063 0.191 0.849 0.24 
Wind speed  0.006 ±0.059 0.100 0.921 0.23 
     

b) Extent (95% vKUD) 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Wind speed  -0.136 ±0.143 0.948 0.343 0.63 
Rainfall 0.035 ±0.090 0.383 0.701 0.31 
Light intensity 0.017 ±0.068 0.253 0.800 0.27 
Water temperature  -0.027 ±0.094 0.288 0.773 0.26 
Fork length -0.034 ±0.166 0.163 0.870 0.23 
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Figure 6.8: Mean monthly vertical space use percentage overlap. 

(a) Individual Caranx ignobilis and (b) pairs of individual C. ignobilis associated per reefs of 
residency from April 2013 to April 2014. Dark grey represents 50% monthly vertical Kernel 
Utilisation Distribution (vKUD) overlap, light grey represents 95% monthly vKUD overlap, and 
bars represent standard error. Only individuals that were present at the same reef concurrently 
were examined for the individual movement overlap. 
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6.3.3. Depth use 

Hourly mean depth ranged from 0.0 to 27.0 m (mean ± SE = 7.0 ± 0.08) between April 

2013 and April 2014 and did not vary between individuals or reefs (F6, 1 = 0.65, P = 

0.45 and F3, 4 = 0.62, P = 0.64, respectively). Four generalized linear mixed-effects 

nested models had a ΔAICc < 2 and were all significantly better than the null model (P 

< 0.0001; Table 6.2d). All nested models included light intensity, water temperature, 

tide height, and wind speed as fixed variables (Table 6.2d). 

 

Seasonal effects on hourly mean depth use were shown by the mixed-effects model 

(Table 6.3). During spring, individuals were found deeper in the water column whereas 

during autumn, they were found closer to the surface (Figures 6.4b and 6.5). Results 

from model averaging showed that C. ignobilis hourly mean depth was influenced by 

light intensity, tide height and wind speed though not fish size (Table 6.6). As light 

intensity and water movement increased and wind speed decreased, C. ignobilis were 

found deeper in the water column (Figure 6.5d,e,f). Although water temperature was 

present in all best fitted nested models and had 81% of relative importance with 

shrinkage, the effect was not significant with less than 10% of mean depth estimates 

showing a relationship with increases in water temperature (Table 6.6). 

 

Table 6.6: Environmental and fish size effects on Caranx ignobilis mean depth from model 
averaging analysis. 

 
Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ± 0.000 NA NA - 
Light intensity 0.267 ± 0.020 13.566 <0.0001* 1.00 
Water temperature 0.069 ± 0.051 1.362 0.173 0.81 
Tide height 0.163 ± 0.019 8.378 <0.0001* 1.00 
Wind speed −0.192 ± 0.026 7.485 <0.0001* 1.00 
Barometric pressure 0.017 ± 0.035 0.475 0.635 0.41 
Fork length 0.074 ± 0.190 0.391 0.695 0.38 
Environmental parameters were standardised for comparison. Asterisks indicate 
significant effect (P < 0.05) on hourly mean depth of Caranx ignobilis in the central 
Great Barrier Reef. 
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6.4. Discussion 

This research demonstrated that adult and sub-adult C. ignobilis had high levels of 

fidelity to individual reefs, and their detection at these reefs was driven by a number of 

environmental factors. The high level of fidelity to their tagging reef is in contrast to the 

strong swimming ability of this species (Sfakiotakis, Lane & Davies, 1999; Webb, 

1984) and reports of relatively large home ranges either directly (Green et al., 2014) or 

from allometric relationships between body size and home range size (Nash et al., 2015; 

Wetherbee et al., 2004). While they have good swimming ability and are designed for 

high speed swimming, the data suggest that C. ignobilis are not ‘highly mobile’ because 

no regular inter-reef movements were observed. However, it is possible that individuals 

made inter-reef movements during periods of non-detection. Ten individuals were either 

infrequently or never detected and may have undertaken movement to other reefs. For 

example, among these ten individuals, four were captured and released at John Brewer 

Reef which has a large area with a complex reef structure, and only four receivers were 

deployed on the outer-edge of the reef. Consequently, those fish may have been present 

and maintained home ranges outside the detection range of receivers; either in the 

lagoon or inter-reef areas or could have moved to non-monitored reefs. Therefore, 

limitation in the spatial coverage of the acoustic array at some reefs may have resulted 

in the activity space of C. ignobilis being underestimated. 

 

The main results of this work were consistent with those of studies of C. ignobilis in 

other locations (Lowe et al., 2006) and (Meyer et al., 2007) as well as for other carangid 

species. High residence and limited movement to other reefs or regions may be common 

in these species. Past studies have also reported a high probability of presence and 

residency of highly mobile species at their tagging reef or location including C. 

ignobilis at remote Hawaii atolls (Meyer et al., 2007), Seriola rivoliana in offshore 

shallow seamount in the Azores (Fontes, Schmiing & Afonso, 2014), Thunnus 

albacares and Thunnus obesus at fish aggregating devices surrounding the Oahu island 

in Hawaii (Dagorn, Holland & Itano, 2007) and Carcharhinus amblyrhynchos and 

Carcharhinus albimarginatus in the Great Barrier Reef region (Espinoza, Heupel, et al., 

2015b; Espinoza, Lédée, et al., 2015). However, long-term residency patterns were 

variable, and there was no evidence of differences between reefs. This suggests that C. 
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ignobilis may remain present for extended periods despite differences in reef size or 

location. 

 

Caranx ignobilis were detected more at night-time, specifically the middle of the night, 

than during the day. However, these findings were different from Meyer et al. (2007), 

where a significant diel variation was apparent with more detections recorded during 

daytime. Differences in habitat characteristics (e.g., presence of a lagoon) could explain 

these results if individuals moved into regions where receivers were not deployed. 

Receivers used by Meyer et al. (2007) may also have been deployed in areas that were 

preferentially used by C. ignobilis for daytime activities. Additionally, C. ignobilis in 

Wetherbee et al. (2004) were found to be more active at night-time and crepuscular 

periods suggesting that behaviour may be related to patrolling areas at night or shifting 

between locations during different periods of the day. Sudekum et al. (1991) found that 

C. ignobilis predominantly ate nocturnally active prey, further suggesting individuals 

were foraging at night. The observed differences in behaviour between these studies 

could be due to the different approaches used to study the movement pattern of C. 

ignobilis, passive tracking in the present study and in Meyer et al. (2007) versus active 

tracking. Differences in size classes studied, adult in the present study and in Meyer et 

al. (2007) versus juveniles (Wetherbee et al., 2004) may also explain differences in 

movement patterns. These variables have important implications for understanding 

animal movement patterns and must be considered in comparisons and explanation of 

behaviours. Different approaches will provide different kinds of spatial and temporal 

data. Given the potential mobility of this species, multiple approaches are likely to 

provide the most comprehensive understanding of movement. These studies should 

include multiple size classes if possible. 

 

Although C. ignobilis showed no evidence of regular inter-reef movement, they were 

capable of undertaking long-range movement as observed in three individuals. 

Interestingly, the inter-reef movements observed in this study coincided with the full 

moon in October. These movements were for short periods and were all undertaken by 

individuals that were considered adult at the time of the excursions. Caranx ignobilis is 

known to aggregate for spawning during summer full moon periods (Meyer et al., 2007) 
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which may explain the observed movements. Lunar timed excursions were also reported 

by Meyer et al. (2007) and considered to be related to spawning activity. Thus, C. 

ignobilis inter-reef movements in the Great Barrier Reef may have been related to 

reproduction, but more research is needed to confirm this finding. 

 

Caranx ignobilis had relatively small core use and extent activity spaces for a 

potentially highly mobile predator (Dale et al., 2011; Wetherbee et al., 2004); however, 

individuals occupied the entire water column (Sudekum et al., 1991) indicating broad 

vertical movements. Results were similar to past research on juvenile C. ignobilis 

(Wetherbee et al., 2004) but also other carangid species such as Caranx crysos (Brown, 

Benfield, Keenan & Powers, 2010) and Pseudocaranx dentex (Afonso, Fontes, Holland 

& Santos, 2009). Other coral reef predators such as lethrinids (e.g., L. miniatus, Currey 

et al., 2015; Williams, Davies, Mapstone & Russ, 2003) and serranids (e.g., 

Plectropomus leopardus, Bunt & Kingsford, 2014; Matley, Heupel & Simpfendorfer, 

2015) also use small activity spaces relative to reef size. This consistent pattern among 

piscivorous predators may be a reflection of the high productivity of reef environments 

(DeVantier, De'ath, Turak, Done & Fabricius, 2006) which allows the use of small areas 

while still accessing adequate prey. The similarity of area of space used between adult 

and juvenile C. ignobilis was interesting even though different size classes used 

different habitats with juveniles predominantly found in inshore bays before 

undertaking an ontogenetic migration to offshore reef areas when they reach maturity 

(Wetherbee et al., 2004). However, juvenile C. ignobilis in Hawaii were less resident 

compared to adults in central Great Barrier Reef. Further research on C. ignobilis 

ontogenetic movement patterns in the central Great Barrier Reef would be needed to 

confirm differences in behaviour by size class in this region. 

 

Consistent with movement patterns of other reef predators, food availability may have 

driven C. ignobilis movement patterns within individual reefs. Interestingly, individual 

core use moderately overlapped between months, indicating C. ignobilis did not have 

high fidelity to specific parts of the reefs but rather used various core areas that moved 

around individual reefs. This type of movement pattern is consistent with that of a fast 

swimming pursuit predator. Activity space data contrasts the activity patterns of sit-and-
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wait ambush predators such as leopard coralgrouper which have consistently small 

activity spaces in the same area (Bunt & Kingsford, 2014; Matley et al., 2015). Caranx 

ignobilis movement patterns were similar to those reported for bonnethead sharks, 

Sphyrna tiburo (Heupel, Simpfendorfer, Collins & Tyminski, 2006) in Florida, USA. 

Sphyrna tiburo had distinct core use areas that moved throughout the study area with 

some areas eventually re-used over several months. This somewhat nomadic pattern of 

movement was attributed to foraging for swimmer crabs in seagrass beds (Heupel, 

Simpfendorfer, et al., 2006). Thus, C. ignobilis movement patterns may also be related 

to the presence and movement of preferred prey or could be the result of environmental 

parameters. For example, areas with strong current flow may offer productive foraging 

ground (Espinoza, Heupel, et al., 2015b; Wetherbee et al., 1997), and consequently, C. 

ignobilis may move their activity space around reefs to improve foraging opportunities. 

 

Different environmental drivers were responsible for the presence and depth use of C. 

ignobilis in the central Great Barrier Reef region; however, little or no relationship was 

apparent relative to space use. Water temperature was a significant factor in C. ignobilis 

presence and depth use, which provided insight into their daily and seasonal movement 

patterns. Individuals were more present in the region in winter and also with low 

average daily water temperature. This study also showed evidence of seasonal effects on 

depth use with increases in mean depth occurring from autumn to spring. These results 

differed from other large coral reef fish such as L. miniatus (Currey et al., 2015; 

Williams et al., 2003) or P. leopardus (Bunt & Kingsford, 2014; Matley et al., 2015) 

which appear to move deeper with increases in water temperature suggesting that 

individuals were remaining in preferred temperature conditions. A change of few 

degrees in water temperature can influence the physical condition, swimming speed and 

performance (Henderson, Fabrizio & Lucy, 2014; Munday, Kingsford, O'Callaghan & 

Donelson, 2008), reproductive performance (Donelson, Munday, McCormick, 

Pankhurst & Pankhurst, 2010) and growth rate (Munday et al., 2008) of individuals; 

consequently, it is advantageous for individuals to remain in areas with optimal 

temperatures. However, C. ignobilis has a wide distribution ranging from the tropics to 

subtropics (Sudekum et al., 1991; Wetherbee et al., 2004) and high reef fidelity. The 

central Great Barrier Reef includes semi-isolated coral reef habitats (5 to 25 km apart) 

separated by deeper channels (approximately 70 m), so there is variability between and 
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within reefs; thus, C. ignobilis may have greater tolerance to environmental changes 

(Espinoza, Lédée, et al., 2015; Heupel & Simpfendorfer, 2014). Consequently, it is 

unlikely that water temperature directly influenced C. ignobilis presence or depth use 

due to biological limitations. 

 

One possible explanation for the difference in the presence and depth use observed is 

that C. ignobilis may be responding to another ecological factor such as the availability 

of prey species which do respond to temperature changes (Richards et al., 2012). The 

presence of prey can depend on season, and some species are found at different depths 

in the water column which may provide drivers for movement. This type of movement 

would be consistent with those of other coral reef predator species such as C. 

amblyrhynchos in Hawaii (Papastamatiou et al., 2006). The presence of C. ignobilis was 

higher at night, and individuals were also closer to the surface during night and low tide 

periods. C. ignobilis diet consists of mostly reef fish and invertebrates, including 

octopus and adult lobsters that use shallow-reef habitats (Dale et al., 2011; Sudekum et 

al., 1991). Moreover, prey species use shallow areas as foraging grounds when 

decreases in light occur (Luo, Serafy, Sponaugle, Teare & Kieckbusch, 2009). 

Therefore, C. ignobilis vertical movements may have been related to the distribution of 

prey species in the water column at night (Richards et al., 2012). 

 

Other environmental factors were also significant for the presence and depth use of C. 

ignobilis. For example, wind had a significant effect on the depth use of C. ignobilis, 

with individuals moving shallower when winds were high. This observation may have 

been the result of an environmental driver on predator or prey. Wind speed was also a 

significant factor in presence/absence, but wind is known to decrease the detection 

ability of acoustic receivers due to increased noise (Heupel & Simpfendorfer, 2014; 

Udyawer, Chin, Knip, Simpfendorfer & Heupel, 2013). Performance of the acoustic 

receivers or other methods employed must be considered carefully when interpreting 

drivers of movement and the implications of the data. 
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This chapter provides a better understanding of C. ignobilis movement patterns and 

interactions with their environment to develop sound management plans. By identifying 

C. ignobilis movement capabilities and site fidelity within both home ranges and 

aggregation sites, information for improved protection such as marine protected area 

(MPA) delineation (Dulvy et al., 2004; Green et al., 2014) is obtained. Caranx ignobilis 

had high reef fidelity, and consequently, a reef scale MPA might provide significant 

benefit for the species. However, 50% of the individual were rarely or not detected 

within the array. Undetected individuals may have been just outside the detection range 

of receivers, undertook long movements to the Australian coast, or moved to more 

distant parts of the Great Barrier Reef outside the study area. Consequently, more 

research is needed to determine if reef-scale management will benefit the species 

adequately or only protect a portion of the population. Finally, C. ignobilis inter-reef 

movements occurred during the summer new moons suggesting new moon closures 

would provide additional protection during spawning movements. Protection of 

individual reefs and spawning aggregations would be beneficial where management 

intervention is required for this species. 

 

6.4.1. Conclusions 

Within the central Great Barrier Reef region, C. ignobilis exhibited high reef fidelity to 

their tagging reef with limited movement to other reefs or regions. Intra-reef movements 

were somewhat nomadic and may have been related to the presence and movement of 

prey species. Water temperature, light intensity and time of day affected the presence 

and depth use of C. ignobilis within their tagging reef. The use of a variety of tracking 

methods will be necessary to fully understand C. ignobilis movement patterns at the reef 

scale, by providing different spatial and temporal levels of information. Caranx 

ignobilis were adapted to environmental changes; however, they are susceptible to 

overfishing in other regions and would benefit from reef-scale MPAs and spawning 

closure management measures. 
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Chapter 7 

7. Use of Network Analysis to characterise to movement 

patterns of two carangid species in inshore habitats 

 

 

7.1. Introduction 

Coastal waters are important fish habitats with high diversity and abundance (Allen, 

Yoklavich, Cailliet & Horn, 2006; Tobin, Mapleston, Harry & Espinoza, 2014), but are 

highly dynamic with major fluctuations in environmental conditions at a variety of 

spatial and temporal scales (James, Cowley, Whitfield & Lamberth, 2007; Knip, Heupel 

& Simpfendorfer, 2010). Tides, rainfall, salinity and wind are among the physical 

factors influencing animal movements in the coastal environment (Allen et al., 2006; 

Knip et al., 2010). For example, some tropical bays experience increased freshwater 

input during summer which in turn decreases salinity and temperature in areas around 

river mouths causing species to move out of the area (Allen et al., 2006; Knip et al., 

2010). Coastal waters also provide a range of ecological services for both juvenile and 

adult fish; including serving as nursery grounds, spawning and foraging areas, and 

providing refuge from predators (Knip et al., 2010; Tobin et al., 2014). As a result, 

some species occupy coastal areas based on seasonal or ontogenetic influences. In 

contrast, despite environmental fluctuations and life history changes many species uses 

coastal habitats year round. As a result species’ movement and habitat use patterns 

within coastal habitats can be complex and dynamic (Langton, Steneck, Gotceitas, 

Juanes & Lawton, 1996; Stoner, Manderson & Pessutti, 2001), and understanding the 

factors driving these patterns at specific spatial and temporal scales is critical for 

interpreting species ecology (Andrews & Harvey, 2013; Roessig, Woodley, Cech & 

Hansen, 2004). By definition, coastal waters are close to shore so understanding 

species’ movement and habitat use within coastal waters is essential for assessing 

vulnerability to anthropogenic threats, and the efficacy of management strategies 

(Halpern et al., 2008; Knip, Heupel & Simpfendorfer, 2012a). 
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Network Analysis is emerging as a powerful tool for assessing animal movement and 

habitat use within various ecosystems (e.g., Espinoza, Lédée, et al., 2015; Jacoby, 

Brooks, et al., 2012; Mourier et al., 2012; Stehfest et al., 2015) and providing useful 

information for management and conservation. However, few studies have used 

Network Analysis to analyse animal movement in response to changes in biological and 

environmental factors (Chapter four; Espinoza, Lédée, et al., 2015; Wilson, Krause, et 

al., 2015; Wittemyer, Douglas-Hamilton & Getz, 2005). Network Analysis examines 

the interactions between animals and their environment represented as a network 

characterized by connections (or edges) between nodes (West, 2001). Applied to 

acoustic monitoring, nodes represent acoustic receivers (i.e., habitat patches) and edges 

represent movement of an individual between nodes (Jacoby, Brooks, et al., 2012). 

Complementary information about the physical or environmental attributes of the area 

can also be added to the node and edge properties. Consequently, Network Analysis can 

be adapted to various situations and scales (Chapter four; Croft et al., 2008; Stehfest et 

al., 2013). Network Analysis also provides numerous metrics to address the different 

characteristics of animal movement within a network which are not provided by other 

methods. For example, density of a network provides information on route selection 

within that network (Chapter four). Therefore, Network Analysis may be useful in 

analysing animal movement pattern in a changing environment, such as in coastal 

waters. 

 

Carangidae are an abundant and ecologically important family that includes ~150 

species (Sadovy de Mitcheson & Colin, 2012) many of which are found in coastal 

tropical waters (Blaber & Cyrus, 1983). Carangid species occupy various habitats from 

estuarine and shallow inshore reefs to offshore reefs and oceanic waters (Gunn, 1990) 

and are one of the most important commercial fishes, although their economic value 

varies across tropical regions. Despite their abundance, ecological importance and 

economic value, the biology and ecology of carangids are poorly studied, with little 

information available on their spatial ecology (Chapter six; Papastamatiou et al., 2015; 

Wetherbee et al., 2004). The two most common carangids caught in northern Australia 

are C. ignobilis and Gnathanodon speciosus (Taylor, Webley & McInnes, 2012). 

Caranx ignobilis and G. speciosus have received little attention in the scientific 

literature (Sudekum et al., 1991; Wetherbee et al., 2004). General information on 
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distinctive characters, size and distribution is known, but information on reproduction, 

movement patterns and habitat use is limited. Therefore, information on the ecology and 

movement of these species will help define their role in the ecosystem and manage their 

use. The aims of this study were to: (1) develop methodologies for assessing 

environmental drivers of movement using network analysis, (2) examine and compare 

movement patterns of these two carangid species in coastal environments, (3) define 

temporal changes in network metrics and determine the role of biological and 

environmental drivers in affecting these metrics. 

 

7.2. Data analysis 

7.2.1. Environmental data 

Environmental data were obtained from four different sources. Air temperature (°C), 

barometric pressure (hPa), wind speed (km/h), wind direction (degrees), rainfall 

accumulation (ml) and solar exposure (MJ/m2) were sourced from the Bureau of 

Meteorology of Australia (http://www.bom.gov.au/). Wind data was transformed into 

two variables: alongshore (North-South) and cross-shore (East-West) winds following 

Begg, Chen, O'Neil and Rose (2006; page 44). Solar exposure (referred to as light 

intensity) was the total solar energy for a day from midnight to midnight and ranging 

from 1 to 35 MJ/m2. Moon illumination (luminosity) was sourced from the United 

States Naval Observatory (http://aa.usno.navy.mil/data/docs/MoonFraction.php). 

Freshwater flow (mL) from Alligator Creek was sourced from the Department of 

Natural Resources and Mines (DNRM; www.watermonitoring.dnrm.qld.gov.au ). 

Finally, water temperature (°C) was sourced from an Australian Institute of Marine 

Science (AIMS) weather station in Cleveland Bay (Australian Institute of Marine 

Science, 2015). Environmental data were recorded at a variety of temporal scales, and 

mean values were aggregated by season and year (year-season) and by month and year 

(year-month; Figure 7.1) for analyses of movement. 
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Figure 7.1: Monthly environmental values for Cleveland Bay, Australia. 
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a) mean air temperature, b) mean rainfall, c) mean light intensity, d) mean water temperature, e) 

mean barometric pressure, f) mean freshwater flow, g) mean moon illumination and mean wind 

variables (Positive values represent winds from the east and north. Negative values represent 

winds from the west and south; Begg et al., 2006). Source: generated from Bureau of 

Meteorology of Australia, United States Naval Observatory, Department of Natural Resources 

and Mines. 

 

7.2.2. Data analysis 

Carangid movement data were analysed in the R statistical environment (R 

Development Core Team, 2014) and igraph package (Csardi & Nepusz, 2006). 

Detection data were used to create square matrices that counted individual presence at, 

and relative movements between, acoustic receivers within the bay. Detections at the 

same receiver were filtered using a 5 min interval. Relative movement was defined as 

the number of times an individual moved between two receivers divided by the total 

number of movements made by the individual within its activity space (i.e., total 

number of edges in the network; Jacoby, Brooks, et al., 2012). Square matrices were 

used to create directed and weighted networks which represented individual activity 

space in Cleveland Bay. Each network was tested for non-random patterns using a link 

re-arrangement (i.e., permutation) using a bootstrap approach (n = 10,000; Croft et al., 

2011). The observed movements were randomly shuffled between receivers and new 

networks were generated using the same degree distribution as the original network 

(i.e., the procedure randomized the link while maintaining the degree distribution of the 

network). For each random network, network metrics were calculated to compare to 

metrics from the observed network using a coefficient of variation and likelihood ratio 

tests (χ2, p<0.05). 

 

Movement data were assessed seasonally and monthly for each year by constructing 

networks for individual fish. The number of receivers, paths, relative movements, 

average path length, cluster, diameter and density were calculated for each network. A 

path was a route between two receivers in the network. Average path length was a 

measure of reachability/separation (Rayfield et al., 2011). Cluster identified 

subnetworks of interconnected receivers that were closer to each other than to other 

receivers in network space (Rayfield et al., 2011). Lastly, diameter was an indicator of 
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the size of the network (Urban & Keitt, 2001) while density measured route selection 

(ranging from 0 to 1, when all receivers were connected to all others, the network had a 

density of 1). In addition, a residency index was calculated for each individual by 

dividing the number of days an individual was detected within the study area by the 

days at liberty (i.e., from the time of first detection to the time of last detection). Finally, 

difference in the number of detections, receivers, paths and movements, residency 

index, diameter, cluster, average path length and density between species, fork length 

and year of deployment was tested using one-way Analysis of Variance (ANOVA). 

Post-hoc multiple comparisons (Tukey's HSD, α = 0.05) were used to define differences 

between species and year of deployment where significant differences were detected. 

 

Generalized linear mixed effects models (GLMM) were used to investigate the 

influence of environmental data, fork length and region of the bay (i.e., east or west 

side, for C. ignobilis only) on the network metrics (e.g., average path length, density, 

diameter and cluster). In each case, fixed factors were centred to simplify interpretation 

and facilitate comparison of their importance (Schielzeth, 2010). A variable (ID_YR) 

combining individual tag and year was included as a random factor to enable 

population-level prediction, account for the repeated-measures nature of the data and for 

unequal numbers of detections used to construct individual networks across years 

(Bolker et al., 2009). General linear models were implemented using the “glm” function 

in the R statistical environment (R Development Core Team, 2014). Collinearity 

between factors was assessed using variance inflation factors (VIF; R package ‘car’; 

Fox & Weisberg, 2011). Barometric pressure was not included in the year-season and 

year-month global models based on VIF values due to collinearity with water 

temperature. Rainfall accumulation, freshwater flow and light intensity were not 

included in the year-season global models based on VIF values due to collinearity with 

each other and water temperature. Light intensity was not included in the G. speciosus 

monthly average path length global models based on VIF values due to collinearity 

with rainfall accumulation. Moon illumination was not included in the GLMM monthly 

analysis as it was not informative at a monthly scale. Data normality was also tested 

prior to statistical analysis and data was transformed to normality when required. 
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Multi-model inference using an information theoretic approach was used to investigate 

the effects of fish size and environmental factors on seasonal and monthly network 

metrics for each species. Diagnostics plots (i.e., residuals plot and auto-correlation 

function plot) and tests (over-dispersion) evaluated goodness of fit (Burnham & 

Anderson, 2002a; Zuur et al., 2010). If auto-correlation was present, global models were 

fitted with different correlation functions to account for temporal autocorrelation and 

heteroscedasticity. The corrected Akaike’s information criterion (AICc) was 

recalculated and final models with the lowest AICc values were selected for analyses. A 

set of nested models with different combinations of fixed variables were derived from 

global models (Bolker et al., 2009; Johnson & Omland, 2004) using the dredge function 

from the “MuMIn” package (Barton, 2014). Best nested models (∆ AICc < 2) were 

compared against the null model: y ~ 1 + (1 | ID_YR), where y is the response and 

ID_YR the random factor, and significant differences were evaluated with maximum 

likelihood ratio tests (χ2, p < 0.05). Fixed variable estimates were calculated using the 

model.avg function from the “MuMIn” package to determine their relative importance 

and account for model selection uncertainty (Grueber et al., 2011; Johnson & Omland, 

2004). Finally, the full model-averaged coefficients (i.e., shrinkage estimates) were used 

to account for nested model selection bias (Burnham & Anderson, 2002a). 

 

Differences in year-season and year-month average path length, density, diameter and 

cluster between bay regions (east versus west side, for C. ignobilis only) were examined 

independent of other environmental factors to remove correlation effects and reduce 

complexity of mixed-effect models. Wald Z tests were used to determine overall bay 

region effect compared to the null model. 

 

7.3. Results 

Movement data were examined from 16 Caranx ignobilis and 20 Gnathanodon 

speciosus acoustically monitored in Cleveland Bay. All individuals were successfully 

identified as C. ignobilis and G. speciosus with > 98% similarity to sequences 

previously submitted in GenBank®. To obtain representative samples and allow 

individuals to return to normal behaviour the first two days of data after surgery were 

removed. Three C. ignobilis and eight G. speciosus were not detected and three C. 
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ignobilis and three G. speciosus were detected less than 15 days. These individuals were 

removed from the analyses. The remaining (N = 19) individuals were only detected in 

the region of the bay (east or west) they were caught in. Individual size ranged from 33 

to 80 cm (fork length – mean ± SD = 46 ± 13 cm) and size differed between species 

(F1,14 = 169.1, P < 0.001) with C. ignobilis smaller on average (37.2 ± 4.3 SD) than G. 

speciosus (56.5 ± 11.6 SD). In addition, C. ignobilis on the east side of Cleveland Bay 

were significantly smaller (34.9 ± 2.0 SD) than C. ignobilis on the west side (39.6 ± 4.8 

SD; F1,6 = 18.78, P < 0.005). Caranx ignobilis reach maturity between 55 and 65 cm 

fork length (Wetherbee et al., 2004) so all were likely to be juvenile at time of capture 

(Table 7.3). Gnathanodon specious reaches maturity at approximately 33 cm fork length 

(Grandcourt et al., 2004); consequently all individuals were likely to be adults at time of 

capture. 

 

Individuals were present for 30 to 394 days (mean ± SD = 166 ± 116 d; Figure 7.2) with 

a mean residency index of 0.7 (± 0.1 SE; Table 7.1). Residency did not differ between 

species (Table 7.2), but C. ignobilis residency index was significantly lower on the east 

side of Cleveland Bay compared to the west side (F1,7 = 91.6, P < 0.001). Gnathanodon 

speciosus used on average twice as many receivers, four times more paths and moved 

within their networks seven times more during the study period (Table 7.3) than C. 

ignobilis. Both species were detected on more days, visited more receivers, moved more 

frequently, were more resident and had a smaller networks in 2011 than in 2013 or 2014 

(Table 7.2). In addition, movement patterns significantly differed between species with 

C. ignobilis detected on fewer days, using less receivers, moving less and having larger 

networks and less clusters than G. speciosus (Table 7.2). There was no difference in the 

movement patterns of C. ignobilis between bay regions which allowed for comparison 

between species at the bay level. Finally, there was no significant effect of individual 

length on tested metrics (Table 7.2). 
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Figure 7.2: Presence plot of Caranx ignobilis and Gnathanodon speciosus individuals detected in Cleveland Bay by day from February 2011 to 
November 2014. Label indicates tag ID and fork length (cm). Non-shaded area represent the Caranx ignobilis individuals. Shaded area represent the 
Gnathanodon speciosus individuals. 
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Table 7.1: Tagging data for Caranx ignobilis and Gnathanodon speciosus passively monitored in Cleveland Bay from 2011 to 2014. 

Tag Species FL 
(cm) 

Bay 
region 

Detection 
number 

Days 
detected 

Days at 
liberty 

Residency 
index Receiver Path Movement Diameter Cluster Average 

path length Density 

63584 C. ignobilis 36 W 3376 62 69 0.9 4 3 9 0.004 0.00 2.08 0.42 
63585 C. ignobilis 37 W 4015 87 92 0.95 7 12 103 0.009 0.63 1.57 0.45 
63586 C. ignobilis 39 W 15170 276 371 0.74 9 13 203 0.003 0.38 1.75 0.36 
63587 C. ignobilis 48 W 3264 73 75 0.97 7 12 262 0.004 0.67 2.38 0.45 
63589 C. ignobilis 37 W 12782 303 369 0.82 9 20 264 0.005 0.74 1.58 0.49 
63597 C. ignobilis 34 E 1084 134 234 0.57 6 9 69 0.041 0.50 1.63 0.43 
63600 C. ignobilis 38 E 444 73 188 0.39 5 6 44 0.035 0.55 1.40 0.60 
63601 C. ignobilis 34 E 164 30 160 0.19 5 5 16 0.167 0.43 1.80 0.40 
63602 C. ignobilis 35 E 448 60 186 0.32 6 12 36 0.045 0.73 1.57 0.50 
63603 C. ignobilis 33 E 442 50 186 0.27 8 10 30 0.054 0.41 2.13 0.29 
53016 G. speciosus 53 W 38915 363 421 0.86 12 35 1912 0.001 0.68 1.74 0.43 
53017 G. speciosus 59 W 15806 264 411 0.64 12 30 642 0.002 0.69 1.87 0.41 
53020 G. speciosus 36 W 20427 192 196 0.98 11 24 1004 0.001 0.58 1.88 0.34 
53023 G. speciosus 80 W 10974 394 421 0.94 26 93 1856 0.002 0.64 2.40 0.23 
53024 G. speciosus 61 W 4985 300 420 0.71 11 27 693 0.005 0.78 2.02 0.41 
63581 G. speciosus 56 W 569 98 290 0.34 8 21 128 0.018 0.81 1.41 0.59 
63583 G. speciosus 49 W 797 80 147 0.54 17 36 135 0.030 0.43 2.47 0.19 
63592 G. speciosus 59 W 4017 136 138 0.99 10 26 197 0.005 0.68 1.64 0.43 
63593 G. speciosus 56 W 2783 176 295 0.6 11 35 227 0.009 0.76 1.58 0.52 
Information includes fork length, W represent Western and E indicate Eastern side of Cleveland Bay where individual was captured; number of days present and absent in the 
study area, residency index and roaming index, number of receivers it was detected on, and number of path and relative movement per individual. 
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Table 7.2: Statistical comparison of network metrics between year of deployment (YD), species 
and fork length. 

Metric Factor ANOVA P value 
Detection number YD F2,13 = 26.95 < 0.001* 
 Species F1,13 = 11.78 < 0.001* 
 Fork length F1,13 = 0.89 0.36 
Detection days YD F2,14 = 5.56 < 0.02* 
 Species F1,14 = 10.35 0.006* 
 Fork length F1,14 = 0.66 0.43 
Residency index YD F2,13 = 24.33 < 0.001* 
 Species F1,13 = 1.91 0.19 
 Fork length F1,13 = 0.04 0.84 
Receiver YD F2,10 = 5.65 0.02* 
 Species F1,10 = 39.04 < 0.001* 
 Fork length F1,10 = 1.65 0.22 
Path YD F2,11 = 2.33 0.14 
 Species F1,11 = 84.61 < 0.001* 
 Fork length F1,11 = 4.93 0.05 
Movement YD F2,13 = 32.75 < 0.001* 
 Species F1,13 = 69.42 < 0.001* 
  Fork length F1,13 = 0.91 0.36 
Average path length YD F2,13 = 3.31 0.07 
 Species F1,13 = 0.06 0.81 
 Fork length F1,13 = 3.66 0.08 
Density YD F2,13 = 2.77 0.1 
 Species F1,13 = 0.21 0.65 
 Fork length F1,13 = 0.39 0.54 
Diameter YD F2,14 = 26.03 < 0.001* 
 Species F1,14 = 18.46 < 0.001* 
 Fork length F1,14 = 0.12 0.73 
Cluster YD F2,12 = 0.79 0.48 
 Species F1,12 = 6.23 0.03* 
 Fork length F1,12 = 0.31 0.59 
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Table 7.3: Network metrics for Caranx ignobilis and Gnathanodon speciosus in Cleveland Bay, Great Barrier Reef regions, from 2011 to 2014. 

Species Period Fork length 
(cm) ±SD 

Receivers 
±SD Path ±SD Movement 

±SD 
Average path 
length ±SE 

Density 
±SE 

Diameter 
±SE Cluster ±SE 

C. ignobilis Year-season 
37 ±4 

4.2 ±1.2 4.7 ±2.8 31.8 ±34.4 1.48 ±0.06 0.60 ±0.04 0.27 ±0.03 0.38 ±0.06 
 Year-month 3.4 ±1.2 3.3 ±2.2 18.8 ±28.1 1.42 0.05 0.66 ±0.03 0.37 ±0.04 0.48 ±0.06 
 Overall 6.6 ±1.7 10.2 ±4.9 103.6 ±101.1 1.79 ±0.10 0.44 ±0.03 0.04 ±0.02 0.5 ±0.07 

G. speciosus Year-season 
57 ±12 

8.1 ±4.3 15.3 ±12.0 152.2 ±214.4 1.93 ±0.12 0.45 ±0.03 0.13 ±0.02 0.46 ±0.03 
 Year-month 7.2 ±3.3 11.6 ±8.1 80.4 ±89.1 1.94 ±0.07 0.42 ±0.02 0.16 ±0.02 0.35 ±0.02 
 Overall 13.1 ±5.4 36.3 ±21.9 754.9 ±706.9 1.89 ±0.12 0.39 ±0.4 0.01 0.67 ±0.04 
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7.3.1. Seasonal networks 

For 91.4% of C. ignobilis and 100.0% of G. speciosus year-season networks there was 

no evidence of random movement (χ2, P < 0.001; Figure 7.3). These non-random 

networks were included in subsequent analysis. Gnathanodon speciosus year-season 

networks had twice as many receivers as and at least three times more paths and 

movements than C. ignobilis (Table 7.3). Year-season network metrics were 

significantly different between species (Table 7.4a), with G. speciosus having a smaller 

diameter and less dense networks with a higher number of clusters and longer average 

path lengths compared with C. ignobilis (Table 7.3), indicating that G. speciosus year-

season activity space was smaller and patchier. 

 

Table 7.4: Species differences on seasonal (a) and monthly (b) average path length (APL), 
density, diameter and cluster in Cleveland Bay.  

Asterisks indicate significant effect (P < 0.05) via Wald Z test using Chi-squared test. 

a)  
Model χ2 df P value 
APL ~ Species 3.9 1 <0.05* 
log(Den) ~ Species 10.9 1 <0.005* 
Dia ~ Species 23.0 1 <0.001* 
sqrt(Clus) ~ Species 5.2 1 0.02* 
    

b)  
Model χ2 df P value 
APL ~ Species 40.4 1 <0.001* 
Density ~ Species 36.9 1 <0.001* 
log(Dia) ~ Species 6.9 1 0.009* 
Cluster ~ Species 0.19 1 0.66 

  



  Chapter 7 

 
143 

 
Figure 7.3: Gnathanodon speciosus seasonal networks within Cleveland Bay in 2011.  

a) autumn, b) winter, c) spring and d) summer. Top panels are the geographic and bottom panels the Fruchterman-Reingold representations of year-
season networks. Size of node represents the filtered number of detection at the acoustic receivers. 
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Two C. ignobilis average path length and three density nested models best fit the data 

(Δ AICc < 2). All but one density model were significantly better than the null model (P 

< 0.05; Table 7.4a, b). All five nested models included fork length as fixed variables 

explaining 75% of relative importance, but the effects were not significant with less 

than 33% of average path length and density estimates showing a relationship with fork 

length (Table 7.5a, b). Null models were included in the best fitted nested models for C. 

ignobilis diameter (only one model) and cluster. None of the cluster models were 

significantly better than the null model (χ2, P > 0.05 – Table 7.4c, d). Finally, there was 

no significant effect of bay region (P > 0.05 – Table 7.6a), fork length or environmental 

data (Table 7.5a-d) on C. ignobilis year-season network metrics indicating that none of 

these factors were important drivers of C. ignobilis network metrics at a seasonal level.  

 

Table 7.5: Top nested mixed effect models from the model selection analysis examining the 
effect of fish size and environmental factors on Caranx ignobilis seasonal networks.  

All nested models included a random effect for individual fish and parameters were 
standardized. Only most relevant nested mixed effect models (Δ AICc < 2 – Akaike difference) 
are shown. W is Akaike weight. Asterisks indicate models that differed from null model (P < 
0.05). “FL” is fork length, “AW” is alongshore wind, “CW” is cross-shore wind, and “WT” is 
water temperature. 

a) Average path length (APL) 
Nested model Formula df AICc Weight 

M1 APL ~ FL 4 2.19* 0.30 
M2 APL ~ FL+CW 5 3.70* 0.14 
AICc is the small-sample bias-corrected form of Akaike’s information criterion. 
 

b) Density (Den) 
Nested model Formula df AICc Weight 

M1 log(Den) ~ FL 4 15.26* 0.25 
M2 log(Den) ~ FL+AW 5 16.28 0.15 
M3 log(Den) ~ FL+CW 5 16.76* 0.12 
Density was transformed to normality using logarithmic (log) transformation 
 

c) Diameter (Dia) 
Nested model Formula df AICc Weight 

M1 sqrt(Dia) ~ 1 4 -12.77 0.42 
Diameter was transformed to normality using square root (sqrt) transformation. 
 

d) Cluster (Clus) 
Nested model Formula df AICc Weight 

M1 sqrt(Clus) ~ 1 3 30.39 0.18 
M2 sqrt(Clus) ~ WT 4 30.76 0.15 
M3 sqrt(Clus) ~ AW 4 30.96 0.14 
M4 sqrt(Clus) ~ FL 4 31.76 0.09 
Cluster was transformed to normality using square root (sqrt) transformation 
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Table 7.6: Bay region effects on Caranx ignobilis seasonal (a) and monthly (b) average path 
length (APL), density (Den), diameter (Dia) and cluster (Clus) in Cleveland Bay.  

Asterisks indicate significant effect (P < 0.05) via Wald Z test using Chi-squared test against 
Null model. 

a)  
Model χ2 df P value 

APL ~ Bay region 1.50 1 0.22 
log(Den) ~ Bay region 1.61 1 0.20 
sqrt(Dia) ~ Bay region 0.03 1 0.86 
sqrt(Clus) ~ Bay region 1.27 1 0.26 
    

b)  
Model χ2 df P value 

APL ~ Bay region 0.34 1 0.56 
Density ~ Bay region 0.50 1 0.48 
sqrt(Dia) ~ Bay region 3.78 1 0.05 
Cluster ~ Bay region 0.08 1 0.78 
    

 

Table 7.7: Environmental and fish size effects on Caranx ignobilis seasonal network metrics 
from model averaging analysis.  

Environmental parameters were standardised for comparison. Asterisks indicate significant 
effect (P < 0.05) on seasonal network metrics of Caranx ignobilis in Cleveland Bay, Great 
Barrier Reef. 

a) Average path length 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Fork length -0.326 ±0.260 1.257 0.209 0.75 
Cross-shore wind -0.063 ±0.139 0.450 0.653 0.32 
Water temperature -0.046 ±0.121 0.378 0.705 0.28 
Alongshore wind -0.002 ±0.100 0.025 0.980 0.20 
     

b) Density 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Fork length 0.321 ±0.254 1.261 0.207 0.75 
Water temperature 0.114 ±0.180 0.634 0.526 0.44 
Cross-shore wind 0.072 ±0.150 0.480 0.631 0.34 
Alongshore wind 0.004 ±0.113 0.039 0.969 0.21 

 
c) Diameter 

 Estimate Std. ±SE Z value P value Relative importance 
(Intercept) 0.000 ±0.000 NA NA - 
Water temperature -0.019 ±0.105 0.183 0.854 0.20 
Alongshore wind 0.012 ±0.097 0.120 0.904 0.19 
Fork length -0.008 ±0.092 0.085 0.933 0.18 
Cross-shore wind 0.007 ±0.097 0.075 0.940 0.18 
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d) Cluster 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Water temperature 0.098 ±0.176 0.556 0.578 0.39 
Alongshore wind -0.078 ±0.162 0.481 0.631 0.35 
Fork length 0.053 ±0.137 0.384 0.701 0.29 
Cross-shore wind 0.029 ±0.121 0.238 0.812 0.24 
     

 

All G. speciosus best generalized linear mixed effects nested models (Δ AICc < 2) were 

significantly better than the null model (P < 0.05; Table 7.8). Five main fixed variables 

were present in most of the models; fork length, cross-shore wind, water temperature, 

alongshore wind and moon illumination, but only fork length, alongshore wind and 

moon illumination had significant effects on network metrics (Table 7.9). The mixed-

effects model showed that average path length was influenced by fork length (Table 

7.9a) with G. speciosus year-season networks having longer average path lengths as 

fork length increased (Figure 7.4a). Gnathanodon speciosus year-season networks 

revealed denser networks as alongshore wind increased (stronger northerly wind; Figure 

7.4b; Table 7.9b). Fork length and environmental data were not found to influence the 

diameter of G. speciosus year-season networks (Table 7.9c). Finally, the effect of moon 

illumination was significant (Table 7.9d) on G. speciosus year-season cluster; with 

higher illumination leading to more year-season networks with fewer clusters (Figure 

7.4c).  
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Table 7.8: Top nested mixed effect models from the model selection analysis examining the 
effect of fish size and environmental factors on Gnathanodon speciosus seasonal networks.  

All nested models included a random effect for individual fish and parameters were 
standardized. Only most relevant nested mixed effect models (Δ AICc < 2 – Akaike difference) 
are shown. W is Akaike weight. Asterisks indicate models that differed from null model (P < 
0.05). “FL” is fork length, “AW” is alongshore wind, “M” is moon illumination, “CW” is cross-
shore wind, and “WT” is water temperature. 

a) Average path length (APL) 
Nested model Formula df AICc Weight 

M1 APL ~ FL+CW 5 9.45* 0.13 
M2 APL ~ FL+CW+WT 6 9.53* 0.12 
M3 APL ~ FL+M+CW+WT 7 9.83* 0.11 
M4 APL ~ FL+M+WT 6 10.37* 0.08 
M5 APL ~ FL 4 10.67* 0.07 
M6 APL ~ FL+WT 5 10.77* 0.07 
M7 APL ~ FL+M+AW+WT 7 11.09* 0.06 
M8 APL ~ FL+AW 5 11.25* 0.05 
M9 APL ~ FL+CW+AW 6 11.39* 0.05 
AICc is the small-sample bias-corrected form of Akaike’s information criterion. 
 

b) Density (Den) 
Nested model Formula df AICc Weight 

M1 Den ~ M+AW 9 -37.23* 0.38 
M2 Den ~ AW 8 -35.80* 0.18 
 

c) Diameter (Dia) 
Nested model Formula df AICc Weight 

M1 log(Dia) ~ FL+M+CW 6 119.22* 0.17 
M2 log(Dia) ~ FL+M+CW+AW 7 119.52* 0.15 
M3 log(Dia) ~ FL+CW 5 119.86* 0.12 
M4 log(Dia) ~ FL+M+CW+WT 7 120.34* 0.10 
M5 log(Dia) ~ FL+M+CW+AW+WT 8 120.93* 0.07 
Diameter was transformed to normality using logarithmic (log) transformation 
 

d) Cluster (Clus) 
Nested model Formula df AICc Weight 

M1 Clus ~ M+CW+AW 10 -25.75* 0.32 
M2 Clus ~ M+CW 9 -24.44* 0.17  
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Table 7.9: Environmental and fish size effects on Gnathanodon speciosus seasonal network 
metrics from model averaging analysis. 

Environmental parameters were standardised for comparison. Asterisks indicate significant 
effect (P < 0.05) on seasonal network metrics of Gnathanodon speciosus in Cleveland Bay, 
Great Barrier Reef. 

a) Average path length 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Fork length 0.462 ±0.194 2.381 0.017* 0.95 
Cross-shore wind 0.152 ±0.184 0.824 0.410 0.55 
Water temperature -0.162 ±0.196 0.826 0.409 0.56 
Moon illumination 0.105 ±0.172 0.611 0.541 0.42 
Alongshore wind -0.065 ±0.138 0.467 0.640 0.33 
     

b) Density 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Moon illumination -0.124 ±0.117 1.061 0.289 0.62 
Alongshore wind 0.509 ±0.143 3.554 < 0.001* 0.96 
Fork length -0.017 ±0.065 0.261 0.794 0.15 
Water temperature 0.037 ±0.100 0.370 0.712 0.22 
Cross-shore wind -0.015 ±0.098 0.156 0.876 0.16 
     

c) Diameter 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Fork length -0.324 ±0.202 1.601 0.109 0.84 
Moon illumination 0.213 ±0.192 1.106 0.269 0.70 
Cross-shore wind 0.294 ±0.191 1.544 0.123 0.84 
Alongshore wind -0.110 ±0.163 0.674 0.500 0.46 
Water temperature -0.073 ±0.137 0.533 0.594 0.35 
 

d) Cluster 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Moon illumination -0.391 ±0.132 2.959 0.003* 0.98 
Cross-shore wind -0.302 ±0.214 1.411 0.158 0.78 
Alongshore wind 0.164 ±0.154 1.066 0.287 0.64 
Water temperature 0.007 ±0.118 0.058 0.954 0.29 
Fork length -0.018 ±0.067 0.268 0.788 0.16 
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Figure 7.4: Fish size and environmental effects on the average path length (a, d), cluster (b) and 
diameter (e, f) metrics of Gnathanodon speciosus by season (a, b, c) and month (d, e, f) 
networks. 
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7.3.2. Monthly networks 

For 90.3% of C. ignobilis and 99.0% of G. speciosus year-month networks there was no 

evidence of random movement (χ2, P < 0.001). Gnathanodon speciosus year-month 

networks had twice as many receivers and more than three times more paths and 

movements than C. ignobilis networks (Table 7.3). Year-month network metrics were 

significantly different between species (Table 7.4b), with C. ignobilis having a larger 

(i.e., diameter) and denser networks, and a longer average path length compared with 

G. speciosus (Table 7.3); indicating that at a year-month level, C. ignobilis activity 

space was larger and more complex. 

 

Null models were included in the best fitted nested models for all C. ignobilis year-

month network metrics (Table 7.10). None of the average path length, diameter and 

cluster nested models were significantly better than the null model (χ2, P > 0.05 – Table 

7.10a, c, d) however, six of the density nested models were significantly better than the 

null model (χ2, P < 0.05 – Table 7.10b). All six models included cross-shore wind as a 

fixed factor (Table 7.10b) with a relative importance of 88%; but the effect was not 

significant. Interestingly, cross-shore wind was also included in all the year-month 

network metrics models (average path length, diameter and cluster; Table 7.10a, c, d), 

but its relative importance was less than 66% (Table 7.11a, c, d) and effects were not 

significant. Finally, there was no significant effect of bay region (P > 0.05 – Table 7.6), 

fork length or environmental data (Table 7.11) on C. ignobilis year-month network 

metrics indicating that none of the predictors had a significant effect on C. ignobilis 

year-month activity space. 
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Table 7.10: Top nested mixed effect models from the model selection analysis examining the 
effect of fish size and environmental factors on Caranx ignobilis monthly networks. 

All nested models included a random effect for individual fish and parameters were 
standardized. Only most relevant nested mixed effect models (Δ AICc < 2 – Akaike difference) 
are shown. W is Akaike weight. Asterisks indicate models that differed from null model (P < 
0.05). “FL” is fork length, “AW” is alongshore wind, “L” is light intensity, “CW” is cross-shore 
wind, “WF” is water flow and “WT” is water temperature. 

a) Average path length (APL) 
Nested model Formula df AICc Weight 

M1 APL ~ CW 4 14.02 0.10 
M2 APL ~ 1 3 14.68 0.08 
M3 APL ~ L+CW 5 15.24 0.06 
M4 APL ~ CW+WF 5 15.49 0.05 
M5 APL ~ FL+CW 5 15.57 0.05 
M6 APL ~ FL 4 15.81 0.04 
M7 APL ~ WF 4 15.84 0.04 
M8 APL ~ CW+AW 5 16.01 0.04 
AICc is the small-sample bias-corrected form of Akaike’s information criterion. 
 

b) Density (Den) 
Nested model Formula df AICc Weight 

M1 Den ~ CW 5 -3.88* 0.09 
M2 Den ~ CW+WF 6 -3.73* 0.09 
M3 Den ~ L+CW 6 -3.58* 0.08 
M4 Den ~ CW+WF+AW+WT 8 -3.38* 0.07 
M5 Den ~ CW+WF+WT 7 -3.31* 0.07 
M6 Den ~ CW+AW+WT 7 -2.86* 0.06 
M7 Den ~ CW+WT 6 -2.47 0.05 
M8 Den ~ CW+AW 6 -2.30 0.04 
M9 Den ~ 1 4 -1.90 0.04 
 

c) Diameter (Dia) 
Nested model Formula df AICc Weight 

M1 sqrt(Dia) ~ FL 5 -14.45 0.11 
M2 sqrt(Dia) ~ FL+CW 6 -13.88 0.08 
M3 sqrt(Dia) ~ 1 4 -13.60 0.07 
M4 sqrt(Dia) ~ CW 5 -12.74 0.05 
M5 sqrt(Dia) ~ FL+AW 6 -12.60 0.04 
Diameter was transformed to normality using square root (sqrt) transformation 
 

d) Cluster (Clus) 
Nested model Formula df AICc Weight 

M1 Clus ~ CW 4 52.66 0.09 
M2 Clus ~ CW+WF 5 52.96 0.08 
M3 Clus ~ L+CW 5 53.09 0.08 
M4 Clus ~ 1 3 53.65 0.06 
M5 Clus ~ WF 4 53.80 0.05 
M6 Clus ~ L+CW+WF 6 54.15 0.04 
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Table 7.11: Environmental and fish size effects on Caranx ignobilis monthly network metrics 
from model averaging analysis. 

Environmental parameters were standardised for comparison. Asterisks indicate significant 
effect (P < 0.05) on monthly network metrics of Caranx ignobilis in Cleveland Bay, Great 
Barrier Reef. 

a) Average path length 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Cross-shore wind  -0.189 ±0.209 0.903 0.367 0.61 
Light intensity 0.047 ±0.144 0.326 0.744 0.29 
Freshwater flow -0.046 ±0.115 0.401 0.688 0.30 
Fork length -0.055 ±0.130 0.425 0.671 0.31 
Alongshore wind 0.032 ±0.104 0.309 0.757 0.26 
Water temperature 0.008 ±0.109 0.078 0.938 0.23 
     

b) Density 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Cross-shore wind 0.359 ±0.217 1.655 0.098 0.88 
Freshwater flow 0.106 ±0.156 0.681 0.496 0.45 
Light intensity -0.058 ±0.152 0.380 0.704 0.26 
Alongshore wind -0.078 ±0.147 0.527 0.598 0.35 
Water temperature -0.127 ±0.210 0.605 0.545 0.45 
Fork length 0.021 ±0.101 0.209 0.834 0.25 
     

c) Diameter 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Fork length -0.180 ±0.199 0.907 0.365 0.61 
Cross-shore wind -0.082 ±0.151 0.547 0.584 0.38 
Alongshore wind -0.034 ±0.107 0.317 0.751 0.26 
Freshwater flow -0.036 ±0.105 0.345 0.730 0.27 
Light intensity -0.024 ±0.114 0.210 0.834 0.24 
Water temperature 0.003 ±0.107 0.025 0.980 0.22 
     

d) Cluster 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Cross-shore wind  0.216 ±0.215 1.008 0.313 0.66 
Freshwater flow 0.101 ±0.155 0.649 0.516 0.45 
Light intensity -0.066 ±0.161 0.410 0.682 0.33 
Water temperature -0.004 ±0.113 0.033 0.974 0.24 
Alongshore wind 0.024 ±0.094 0.253 0.800 0.25 
Fork length  0.020 ±0.096 0.210 0.834 0.23 
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All G. speciosus best mixed effects nested models (Δ AICc < 2) for three monthly 

network metrics (i.e., average path length, diameter and cluster) were significantly 

better than the null model (P < 0.05; Table 7.12). Five main fixed variables were 

present in most of the models; fork length, alongshore wind, water temperature, light 

intensity and rainfall accumulation, but only alongshore wind, fork length and light 

intensity had significant effects on two network metrics (Table 7.13). Average path 

length was influenced by alongshore wind (Table 7.13a) with G. speciosus year-month 

networks having shorter average path lengths as alongshore wind increased (Figure 

7.4d). Model averaging showed fork length and light intensity significantly influenced 

diameter of G. speciosus year-month networks (Table 7.13c) with increased network 

size as fork length increased and light intensity decreased (Figure 7.4e, f). There was no 

significant effect of fork length or environmental data on the cluster of G. speciosus 

year-month networks (Table 7.13d). Finally, none of the G. speciosus density models 

were significantly better than the null model (χ2, P > 0.05 – Table 7.12b) indicating 

neither fork length nor environmental data were influential (Table 7.13b).  
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Table 7.12: Top nested mixed effect models from the model selection analysis examining the 
effect of fish size and environmental factors on Gnathanodon speciosus monthly networks. 

All nested models included a random effect for individual fish and parameters were 
standardized. Only most relevant nested mixed effect models (Δ AICc < 2 – Akaike difference) 
are shown. W is Akaike weight. Asterisks indicate models that differed from null model (P < 
0.05). “FL” is fork length, “AW” is alongshore wind, “L” is light intensity, “CW” is cross-shore 
wind, “RA” is rainfall and “WT” is water temperature. 

a) Average path length (APL) 
Nested model Formula df AICc Weight 

M1 APL ~ AW+WT 8 24.80* 0.19 
M2 APL ~ FL+AW+WT 9 25.47* 0.14 
M3 APL ~ AW 7 25.81* 0.11 
M4 APL ~ FL+AW 8 25.92* 0.11 
AICc is the small-sample bias-corrected form of Akaike’s information criterion. 
 

b) Density (Den) 
Nested model Formula df AICc Weight 

M1 log(Den) ~ 1 3 22.72 0.10 
M2 log(Den) ~ WT 4 23.34 0.07 
M3 log(Den) ~ L 4 23.83 0.06 
M4 log(Den) ~ AW+WT 5 24.23 0.05 
M5 log(Den) ~ RA 4 24.47 0.04 
Density was transformed to normality using logarithmic (log) transformation 
 

c) Diameter (Dia) 
Nested model Formula df AICc Weight 

M1 log(Dia) ~ FL+L+RA 6 121.86* 0.24 
M2 log(Dia) ~ FL+L+CW+WT 7 122.92* 0.14 
M3 log(Dia) ~ FL+L+RA+AW 7 123.81* 0.09 
Diameter was transformed to normality using logarithmic (log) transformation  

d) Cluster 
Nested model Formula df AICc Weight 

M1 Clus ~ L 6 -54.92* 0.11 
M2 Clus ~ WT 6 -53.98* 0.07 
M3 Clus ~ FL+L 7 -53.61* 0.06 
M4 Clus ~ L+WT 7 -53.56* 0.06 
M5 Clus ~ RA+WT 7 -53.27* 0.05 
 

  



  Chapter 7 

 
155 

Table 7.13: Environmental and fish size effects on Gnathanodon speciosus monthly network 
metrics from model averaging analysis. 

Environmental parameters were standardised for comparison. Asterisks indicate significant 
effect (P < 0.05) on monthly network metrics of Gnathanodon speciosus in Cleveland Bay, 
Great Barrier Reef. 

a) Average path length 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Alongshore wind 0.273 ±0.132 2.066 0.039* 0.90 
Water temperature 0.138 ±0.159 0.866 0.387 0.55 
Fork length 0.109 ±0.167 0.655 0.513 0.44 
Cross-shore wind 0.008 ±0.047 0.164 0.870 0.22 
Rainfall 0.009 ±0.060 0.149 0.882 0.22 
     

b) Density 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Water temperature -0.072 ±0.131 0.548 0.583 0.41 
Light intensity -0.047 ±0.105 0.443 0.658 0.35 
Alongshore wind -0.039 ±0.096 0.402 0.687 0.33 
Rainfall -0.021 ±0.080 0.268 0.789 0.29 
Cross-shore wind -0.015 ±0.065 0.227 0.821 0.26 
Fork length -0.017 ±0.112 0.148 0.882 0.24 
     

c) Diameter 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Fork length -0.598 ±0.202 2.966 0.003* 0.98 
Light intensity 0.350 ±0.124 2.817 0.005* 0.98 
Rainfall 0.105 ±0.109 0.956 0.339 0.64 
Cross-shore wind 0.037 ±0.071 0.519 0.604 0.39 
Water temperature 0.114 ±0.152 0.747 0.455 0.52 
Alongshore wind 0.015 ±0.051 0.286 0.775 0.27 
     

d) Cluster 
 Estimate Std. ±SE Z value P value Relative importance 

(Intercept) 0.000 ±0.000 NA NA - 
Light intensity -0.146 ±0.155 0.938 0.348 0.61 
Water temperature -0.148 ±0.182 0.815 0.415 0.54 
Fork length 0.056 ±0.136 0.413 0.680 0.32 
Rainfall 0.021 ±0.095 0.218 0.827 0.29 
Alongshore wind -0.037 ±0.094 0.400 0.689 0.31 
Cross-shore wind  0.010 ±0.062 0.172 0.864 0.24 
     

 

7.4. Discussion 

Network analysis revealed environmental drivers affected the movement of the two 

carangid species differently. A number of environmental drivers significantly affected 

the movement patterns of G. speciosus, but had little or no effect on C. ignobilis 
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movement patterns. Use of four network metrics provided insight into a range of 

movement attributes of these species and how those attributes were affected by 

environmental drivers. Diameter - a proxy for the amount of space used, and cluster - an 

indication of differences in patterns of use (i.e., patchy space use) provided a general 

description of the networks. Whilst average path length (reachability) and density (route 

selection), provided information on individual movement within networks, indicating 

how regularly parts of their networks were visited and how specific movement routes 

were. The latter two metrics provided information about movement within activity 

spaces not provided by traditional home range methods. These results align with 

previous studies that highlight the potential of using Network Analysis in animal 

movement studies to obtain a comprehensive picture of individual movement. Network 

Analysis can be used to simply visualise animal movement pathways and changes in 

activity space (Finn et al., 2014; Jacoby, Brooks, et al., 2012), or investigate more 

complex aspects of space use (Chapter four), determine structural and functional 

connectivity (Espinoza, Lédée, et al., 2015; Kininmonth et al., 2009) or model the 

movement of individuals (Chapter five; Stehfest et al., 2015).  

 

Tracking C. ignobilis and G. speciosus within the same location enabled comparison of 

their spatial ecology. There was no difference in the movement patterns of C. ignobilis 

between bay regions which allowed comparison between species at the bay level. 

Movement patterns differed between these two congeneric species. Despite being on 

average physically larger, G. speciosus had smaller and more complex networks than C. 

ignobilis. Larger individuals generally exploit more resources over larger areas likely 

due to higher energy requirements and lower predation risk associated with travel 

(Gruss, Kaplan, Guenette, Roberts & Botsford, 2011). Consequently, the size of G. 

speciosus networks may be expected to be larger than those of C. ignobilis (Nash et al., 

2015) due to their differences in body size. However, ontogeny, foraging strategies, and 

habitat use patterns may explain why C. ignobilis had larger networks than G. speciosus 

despite differences in fork length. Both species feed on crustaceans, molluscs and fishes 

in sand (Grandcourt et al., 2004), but young C. ignobilis use a wider range of habitats 

from brackish estuaries to shallow reefs (Sudekum et al., 1991; Wetherbee et al., 2004). 

In contrast, G. speciosus is commonly found in inshore reef and deeper areas 

(Grandcourt et al., 2004; Randall et al., 1997), similar habitats where G. speciosus was 
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found in the present study. These findings were consistent with other carangids species 

such as C. ignobilis and C. orthogrammus in Hawaii (Meyer, Holland, Wetherbee & 

Lowe, 2001), but more research on C. ignobilis and G. speciosus diet (e.g., using stable 

isotope) should be undertaken to confirm these patterns. 

 

Both species were resident in the bay which is consistent with previous findings for 

adult C. ignobilis (Meyer et al., 2007) and other coastal predator species such as C. 

melampygus (Holland, Lowe & Wetherbee, 1996), Carcharhinus sorrah (Knip et al., 

2012b) and C. fitzroyensis (Munroe, Simpfendorfer, Moloney & Heupel, 2015). 

However, long-term residency patterns varied across individuals and bay regions, with 

some individuals spending less than 60% of their time in the bay. Within-population 

variability may exist where a proportion of individuals also display transient movement 

behaviour – a pattern common in other species such as Lethrinus miniatus (Currey, 

Heupel, Simpfendorfer & Williams, 2014), Plectropomus leopardus (Matley et al., 

2015) and Carcharhinus sorrah (Knip et al., 2012b) and may reduce intra-specific 

competition for resources (Chapman, Hulthen, et al., 2012). Consequently, mechanisms 

behind residency may be more complex and variable than bay region can explain. 

 

Gnathanodon speciosus showed distinct movement patterns during the study period 

related to environmental factors at seasonal and monthly time scales. Fork length was a 

significant factor in G. speciosus average path length and diameter which provided 

insight into the reachability within and size of their network. As fork length increased 

network size increased and parts of their network took longer to reach. This result was 

consistent with other teleost (Nash et al., 2015) and shark (Heupel et al., 2004; Knip et 

al., 2011a) studies that found space use of individuals increased with body size; which 

likely reflects an increase in energy requirements associated with growth (Nash et al., 

2015). Additionally, individuals revisited areas within their network less regularly (i.e., 

longer average path length) indicating G. speciosus did not have high fidelity to 

specific parts of their network but rather used various core areas. This behaviour is 

typical of fast swimming predators (Nash et al., 2015). Results for G. speciosus in this 

study were similar to those of C. ignobilis in the Great Barrier Reef region (Chapter 

six) and Sphyrna tiburo in Florida, USA (Heupel, Simpfendorfer, et al., 2006), where 
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individuals used core areas throughout their networks with some areas re-used over a 

few months. Gnathanodon speciosus networks became denser and sections took longer 

to reach with stronger northerly wind. In shallow coastal areas, influences of wind on 

wave action, turbidity and localized water temperature (Clark, Bennett & Lamberth, 

1996) are more important than they are in deeper areas. The west side of Cleveland Bay 

is protected from northerly wind by Magnetic Island so those waters may be calmer and 

less turbid which provide greater opportunities for a visual hunter like G. speciosus 

(Mapleston, unpublished data) and consequently the movement patterns of G. speciosus 

may have reflected this foraging advantage. Wind is also known to decrease the 

detection ability of acoustic receivers due to increased noise (Heupel & Simpfendorfer, 

2014; Udyawer et al., 2013), however, due to Magnetic Island, the performance of the 

acoustic receivers should not have been greatly affected. Finally, as moon illumination 

and light intensity increased, G. speciosus networks were less patchy and smaller in 

size. As a visual hunter light (i.e., solar or moon illumination) is likely to be important 

for a range of G. speciosus behaviours related to their survival. Environmental factors 

thus affected G. speciosus movement in a number of ways, and the use of network 

metrics proved useful in understanding how moved within the study area and within 

their network. 

 

In the present study, 55% of G. speciosus were either infrequently or never detected, 

which could be the result of individuals suffering mortality or moving to unmonitored 

areas (e.g., shipping channel in the middle of the bay or outside the bay), therefore, 

results might reflect only a portion of the population. Undetected individuals were 

smaller on average (< 53 cm) than resident individuals (> 56 cm), suggesting that spatial 

movement patterns may differ by life stages and within the adult population. Juveniles 

are known to display “piloting” behaviour in offshore areas (Gunn et al., 1999; Randall 

et al., 1997) which was not observed in inshore waters, indicating adult and juvenile 

movement patterns may be driven by different survival strategies. Also, the behavioural 

polymorphism exhibited by the adult population might be explained by partial 

migration, where a proportion of the adult population is resident while others exhibit 

preferences for alternative areas or more nomadic movement. This behavioural pattern 

has been reported in other species (e.g., L. miniatus, Currey et al., 2014; C. sorrah, Knip 

et al., 2012b) and may be due to different feeding strategies (Chapman, Hulthen, et al., 
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2012; Gruss et al., 2011), but directed research on diet and foraging is needed to 

confirm this behavioural pattern. 

 

Caranx ignobilis displayed less variable and less predictable movement patterns than G. 

speciosus. None of the biological (i.e., fork length), physical (i.e., bay side) or 

environmental factors were important drivers of C. ignobilis networks at the different 

temporal scales (months or seasons); indicating that movement patterns of juveniles 

were similar in both regions of the bay and not easily predicted. Results were consistent 

with adult C. ignobilis in the central Great Barrier Reef region (Chapter six), where 

biological and environmental factors had little or no influence on adult C. ignobilis 

space use; however these results differed from juvenile C. ignobilis in Hawaii 

(Wetherbee et al., 2004), which exhibited increased space use with increased fish size. 

Possible explanations for differences in juvenile movement patterns in Cleveland Bay 

and in Hawaii may include differences in biological and physical factors between study 

areas. For instance, Wetherbee et al. (2004) tracked individuals across a much wider 

size range (14 to 44 cm FL) than in the present study (33 to 48 cm FL). Furthermore, 

Wetherbee et al. (2004) studied C. ignobilis using active tracking for up to two weeks, 

whereas passive monitoring was used in the present study from a month to over a year. 

 

Despite the lack of environmental drivers of movement, C. ignobilis movement was 

influenced by ontogeny. Most of the smaller C. ignobilis (<35 cm FL; 50% of 

individuals) were captured and detected on the eastern side of Cleveland Bay. The east 

side of the bay was subject to variations in salinity and turbidity due to proximity to 

rivers (Knip et al., 2011a), and is similar to estuarine environments which are favoured 

by smaller juvenile C. ignobilis.  In contrast, larger juveniles were found on the western 

side of the bay near coral and sand habitats. In addition, no cross-bay movements were 

observed. These results suggest that areas on the eastern side of Cleveland Bay may 

serve as a nursery ground for smaller juvenile C. ignobilis before they shift to more reef 

associated location as they grow; resulting in the observed habitat partitioning by fish 

size. Ontogenetic migration is common in numerous teleost species (Gruss et al., 2011) 

and C. ignobilis spatial segregation by fish size is consistent with the findings of 
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Wetherbee et al. (2004) who found small C. ignobilis in turbid regions of Kaneohe Bay 

and medium size C. ignobilis on inshore reefs within Kaneohe Bay. 

 

Understanding how species move in dynamic environments is essential for assessing the 

efficacy of management measures. This study showed distinct movement strategies 

from both species which suggest effective management strategies will require species-

specific approaches. Although both species are targeted regionally by recreational 

fishers and are important in Indo-Pacific inshore fisheries (Department of Sustainability, 

Environment, Water, Population and Communities, 2012; Grandcourt et al., 2004; 

Gunn, 1990), little information is available on their ecology and status. Consequently, it 

is unknown if these species are vulnerable to fishing and if they benefit from 

management already in place. This study provides a better understanding of C. ignobilis 

and G. speciosus movement patterns and interactions with their environment that may 

offer some insight on their potential vulnerability to fishing. Given their ecological 

importance, significance for fisheries, and their potential vulnerability to fishing, it is 

recommended that more research should be undertaken to support well-informed spatial 

management plans. 
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Chapter 8 

8. General Discussion 

 

 

8.1. Contribution of Network Analysis to understanding marine 

spatial ecology 

This thesis demonstrated that by using Network Analysis, researchers studying the 

spatial ecology of marine animals can explore a wide array of a species’ behaviour. 

Results obtained here aligned with previous studies that highlight the ability of Network 

Analysis to provide a more comprehensive picture of animal movement; by visualising 

animal movement pathways and changes in space use (Finn et al., 2014; Jacoby, 

Brooks, et al., 2012), identifying important animal movement pathways (Chapters four 

& five), being involved in more complex analysis to identify space use (Chapter four), 

determining structural and functional connectivity (Chapter five; Espinoza, Lédée, et 

al., 2015; Kininmonth et al., 2009) and modelling the movement of individuals 

(Chapter seven; Stehfest et al., 2015). 

 

Chapter two highlighted various Network Analysis techniques from descriptive 

statistics to theoretical concepts that are available to study marine animal spatial 

ecology. The review showed that Network Analysis can help characterise marine animal 

movement in new ways, providing many tools to understand the complex interaction 

between animals and their environment (Borrett et al., 2014; Krause et al., 2013; Urban 

& Keitt, 2001). The reviewed techniques from Chapter two were then tested on 

acoustic monitoring data from six predator species (Chapters four, five & seven).  

 

Network Analysis proved to be a good alternative to traditional analyses to examine 

space use (Chapters four & seven) and identify areas of core use (Chapters four & 

five). Using descriptive statistics (Chapter two), Network Analysis provided a general 

description of the network (Chapter seven) and determined distinct aspects of node 

importance in the network (Chapters four & five). Diameter and cluster were used to 
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give an indication of C. ignobilis and G. speciosus space use and differences in patterns 

of use in an inshore bay (Chapter seven). Node strength, closeness and eigenvector 

centralities identified core patch(es) of five focal species (Chapters four & five). These 

node level metrics or a combination thereof were also used in previous studies (Jacoby, 

Brooks, et al., 2012; Schick & Lindley, 2007; Stehfest et al., 2015; Stehfest et al., 2013) 

to determine core patch(es) in space use of sharks and teleosts from various habitats. 

Consequently, Network Analysis can contribute to the understanding of space use and 

explore the extent to which marine animals use specific patches. 

 

Network Analysis was also used to examine C. ignobilis, C. amblyrhynchos and C. 

albimarginatus patterns of movement and determine role of patch(es) in contributing to 

seascape functional connectivity within the network (Chapter five; Borgatti, 2006; 

Bunn et al., 2000; Estrada & Bodin, 2008; Pascual-Hortal & Saura, 2008). Network 

modelling was used to examine and compare the structure of intra-reef movements to 

four simulated theoretical networks. All three species exhibited networks with 

properties of small-world and scale-free structures with rapid and direct intra-reef 

movements and high numbers of clusters. The same network structures were also found 

in previous studies on the movement of other teleosts (Fox & Bellwood, 2014) or the 

structural connectivity of coral reefs (Kininmonth et al., 2009; Kininmonth et al., 2012). 

Furthermore, betweenness centrality was used in Chapter five and Treml et al. (2008) 

to identify important patch(es) responsible for functional connectivity of C. ignobilis, C. 

amblyrhynchos and C. albimarginatus and structural connectivity in coral reef dispersal, 

respectively. Network Analysis can, therefore, be used to evaluate multiple aspects of 

seascape connectivity (Minor & Urban, 2008). 

 

Network Analysis provided valuable information on how species move and how 

important movement corridors are within their space use not provided by traditional 

analysis (Chapters four, five & seven). Average path length and density (Chapter 

seven) described the movement of animals within their networks, indicating how 

specific movement routes were and how regularly parts of their networks were visited. 

Average path length and density were also used in other analyses; to validate core 

patch(es) importance in C. amboinensis and C. sorrah networks after core patch 
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removal analysis (Chapter four), to compare with simulated networks (Chapter five; 

Fox & Bellwood, 2014; Kininmonth et al., 2009) and to compare networks between 

individuals and age classes and test for random pattern in space use in Jacoby, Brooks, 

et al. (2012). Furthermore, Network Analysis revealed valuable information on 

directionality and frequency of movement pathways between area of use or patches 

(Chapters four & five). For example in Chapter four, two nearshore shark species 

moved more frequently within core areas than general areas compared to two offshore 

shark species in Chapter five that moved similarly within core and general patches. 

Thus, Network Analysis revealed more detailed information on animal movements than 

provided by traditional analysis. 

 

8.2. Spatial ecology of marine predators 

Understanding movement is important for defining animal ecology. Movement of 

marine species is driven by ecological processes and behavioural responses (Dahlgren 

& Eggleston, 2000; Lowe & Bray, 2006; Speed, Field, Meekan & Bradshaw, 2010). For 

multiple species and multiple individuals to coexist, habitat partitioning and shifting 

over space and/or time is essential to decrease intra- and inter-specific competition for 

resources, risk of predation, or to respond to environmental changes (Dahlgren & 

Eggleston, 2000; Speed et al., 2011). Knowledge of how and why animals use space is 

key to identifying the ecological role of species in their environment. This research has 

shown that the six focal predator species exhibited a range of movement strategies.  

 

Spatial and temporal habitat partitioning between and within species were found for all 

six species within the central region of Great Barrier Reef. Based on findings from 

Chapters four, five and six, three different types of habitat partitioning were apparent 

at the species level. Carcharhinus amboinensis and C. sorrah exhibited species-specific 

habitat selection within Cleveland Bay (Chapter four) with individuals from both 

species typically occurring on different sides of the bay. Caranx ignobilis, C. 

amblyrhynchos and C. albimarginatus displayed spatial segregation by size in offshore 

reefs (Chapters five & six); with different species distributions at the reef level. For 

example, key patches for C. ignobilis differed from the two shark species at Helix and 

Lodestone Reefs. Caranx ignobilis and C. albimarginatus also displayed diel 
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segregation in depth use (Chapter six; Espinoza, Heupel, et al., 2015a), with 

individuals from both species found deeper in the water column during the day and 

shallower at night. Habitat partitioning also occurred at the population level (Chapters 

four & seven). Partial migration was observed for C. sorrah and G. speciosus. A 

portion of the C. sorrah population was found on the eastern side of Cleveland Bay 

where C. amboinensis was also present (Knip et al., 2012b). For C. sorrah individuals 

found on the same side as C. amboinensis, spatial segregation occurred at the path level; 

if a path was frequently used by one species it was seldom used by the other (Chapter 

four). Finally, only half of tagged adult G. speciosus remained in Cleveland Bay which 

suggests preferences for alternative areas (Chapter seven). These varied movement 

strategies are common in numerous teleost and shark species (Chapman, Skov, et al., 

2012; Gruss et al., 2011) and may be related to foraging strategies at the species and 

individual level (Chapman, Hulthen, et al., 2012). Consequently, mechanisms behind 

movement patterns are complex and vary not only between but also within species. 

 

Spatial and temporal habitat shifting within species was found for three species within 

the central region of Great Barrier Reef. Individuals shift and/or expand their habitat use 

due to changes in foraging needs and/or predation risk as individuals grow, but also to 

respond to environmental changes (Dahlgren & Eggleston, 2000; Knip et al., 2011a). 

Many species utilise nearshore habitats when juveniles before migrating to their adult 

habitat (Edwards, Elliott, Pressey & Mumby, 2010). Movement and habitat use of C. 

ignobilis showed ontogenetic migration (Chapters six & seven), where juveniles may 

have migrated from estuarine type habitat to reefs located within Cleveland Bay and 

then to offshore reef habitats when reaching maturity. Similar behaviour was found for 

C. amboinensis in Knip et al. (2011a) who described a habitat shift in depth and location 

between young and sub-adult individuals. In addition, only adult G. speciosus were 

observed in Cleveland Bay (Chapter seven) suggesting that juveniles reside elsewhere 

and movement patterns may also be related to ontogeny. Ontogenetic habitat shifts are 

common in numerous marine species (Dahlgren & Eggleston, 2000; Edwards et al., 

2010) and have important implications for management and conservation (Knip et al., 

2011a). Knowledge of movement and habitat use of a species at different life stages is 

often sparse, however it is essential for effective management strategies specifically for 

species that shift habitat as they grow (Dahlgren & Eggleston, 2000; Knip et al., 2011a; 
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Speed et al., 2010). Furthermore, individuals shifted/expanded their habitat use due to 

changes in environmental conditions. Based on findings from Chapters four, six and 

seven, environmental drivers affected the movements of C. amboinensis, C. ignobilis 

and G. speciosus. Chapter four revealed C. amboinensis shifted their habitat during the 

wet season, as also shown by Knip et al. (2011a), suggesting responses to acute changes 

such as freshwater incursions. Water temperature and light intensity affected the 

presence and depth use of adult C. ignobilis within offshore reefs (Chapter six) with 

individuals more present in the region with low average daily water temperature and 

deeper in the water column as light intensity increased. Northerly wind, moon 

illumination and light intensity influenced G. speciosus movement pattern within 

Cleveland Bay (Chapter seven). Gnathanodon speciosus networks became denser and 

sections took longer to reach with stronger northerly winds, and less patchy and smaller 

in size as moon illumination and light intensity increased. Thus, environmental factors 

affected marine species movements in a number of ways and information gained from 

these three chapters can be used to refine conservation and management measures 

(Hastings et al., 2011; Tilman & Kareiva, 1997). 

 

8.3. Implication for management 

Habitat fragmentation and loss, exposure to fisheries and climate change are some of 

the most serious threats to marine ecosystems (Block et al., 2011; De'ath et al., 2012; 

Espinoza et al., 2014), so understanding how individuals respond through movement is 

essential for ensuring effective management and conservation (Nathan et al., 2008). 

Network Analysis provides a toolbox of methods that can be used to assess these risks 

and help design and evaluate the effectiveness of management and conservation plans 

(Chapter two; Borrett et al., 2014; Cumming et al., 2010; Galpern et al., 2011). In the 

present project, Network Analysis provided rapid assessment of species movement 

within studied areas to allow prioritisation of key patches and corridors (Bergsten & 

Zetterberg, 2013; Jordán et al., 2007; Urban & Keitt, 2001). Core habitat use was 

examined and assessed to define the effect of disturbances on individual space use 

(Chapters four & five). Knowing which patches are key in the network, managers can 

target specific areas for management if required and leave others open for exploitation 

(Estrada & Bodin, 2008; Kurvers et al., 2014; Urban & Keitt, 2001) as such NA can be 

applied to help design and select location for marine reserves (Minor & Urban, 2007). 
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Movement pathways within space use were also examined (Chapters four & five) to 

identify important movement corridors that may enable dispersal and gene flow within 

the population (Jordán et al., 2007). Knowledge of movement pathways within space 

use is beneficial to help inform management plans to maintain or restore connectivity 

(Chetkiewicz et al., 2006; Jordán et al., 2007). Furthermore, Network Analysis was 

beneficial in assessing the consequences of habitat fragmentation and anthropogenic 

and natural disturbances, and identifying patch/habitat loss effects (Chapters four, five 

& seven; Minor & Urban, 2007 and 2008). The role important patch(es) and corridors 

play in maintaining connectivity in the landscape studied can be examined under 

different patch- and corridor-loss scenarios (Chapters two, four & five; Bergsten & 

Zetterberg, 2013; Jacoby, Brooks, et al., 2012; James et al., 2009). In addition, Network 

Analysis was useful in identifying different movement attributes within space use and 

the effect of biological and environmental stressors on these attributes (Chapter seven). 

Therefore, Network Analysis is advantageous for developing, guiding and assessing 

management measures as it allows for assessment of species movement (Chapters 

four, five & seven) and for prediction about consequences of anthropogenic and natural 

disturbances (Chapters four, five & seven) by testing and experimenting on a variety 

of species at different scales and under multiple scenarios (Bergsten & Zetterberg, 2013; 

Cumming et al., 2010; Jacoby, Brooks, et al., 2012; Minor & Urban, 2008). 

 

8.4. Future research 

Despite the successful contribution of Network Analysis to understanding marine 

animal spatial ecology, it is important to acknowledge current limitations and areas in 

need of further research. As discussed in Chapters two and four, Network Analysis 

does not provide an individual activity space size estimate. Therefore, integrating 

estimated receiver detection ranges to calculate activity space based on Network 

Analysis core and general use receiver results would allow more direct comparison with 

previous research. Also, in Chapter four, Network Analysis did not provide an exact 

match of core use receivers compared to KUD. The network metrics used to identify 

core use receivers did not include detections recorded at the acoustic receivers. 

Therefore, incorporating residency index at each acoustic receiver in the analysis to 

identify core use receivers could improve comparison between KUD and Network 
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Analysis. Combining Network Analysis with traditional analyses will help improve 

understanding of spatial ecology (Block et al., 2011; Jachowski & Singh, 2015). 

 

Networks are a static representation of movement or habitat use ignoring the temporal 

dynamics of movement (Cumming et al., 2010; Stehfest et al., 2015). Networks in 

Chapters four and seven were created at different temporal scales to incorporate some 

temporal dynamic of the movement. However, paths between acoustic receivers were 

created regardless of the time taken to travel from one receiver to the next, which is 

misleading if data are missing for long periods (e.g., outside of receiver range). 

Information on maximum speed of a species could be used to create the network. 

Observed speed can be calculated for each edge and added to attributes, then using an 

edge threshold analysis any edge with a value greater than the maximum speed of a 

species could be removed to obtain a more realistic network. Temporal dynamics need 

to be taken into consideration when examining the movement of animals, and 

comparison with other methods may be crucial to validating each approach. 

 

Due to lack of information on environmental data at the receiver level, Network 

Analysis could not be used in Chapter six and traditional analyses were applied 

instead. Deploying environmental sensors along with acoustic receivers could provide 

the information required and allow the researcher to study the environmental factors 

influencing the network structure. By adding environmental sensors with acoustic 

receivers in the study area the cost will greatly increase, unless acoustic receivers are 

upgraded to include environmental sensors. Acoustic receivers could not only record 

individual ID and time and date of detection but also the environmental conditions at 

the time of detection. Furthermore, a habitat survey at receiver locations could be done 

during receiver deployment and downloading to obtain more information about an 

individual’s habitat to be included in the Network Analysis. Therefore, providing more 

accurate information about movement and environmental factors at the time the 

individual was present in the area could be used to refine conservation and management 

measures (Hastings et al., 2011; Tilman & Kareiva, 1997) 
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From knowledge gained in Chapters five, six and seven, it is still unclear what affected 

the movements of C. ignobilis. Movement patterns may have been related to presence of 

prey. Other approaches could be used to gain insight into drivers of C. ignobilis 

movement patterns. For example, stable isotope analysis could be applied to determine 

prey composition and sources of organic input at the base of the food web as a proxy to 

habitat selection (Hobson, 2008; Newsome, Clementz & Koch, 2010). Both acoustic 

telemetry and stable isotopes have been concurrently studied in the past (e.g., Cunjak et 

al., 2005; Currey et al., 2014; Matley et al., 2015; Papastamatiou, Friedlander, Caselle 

& Lowe, 2010; Speed et al., 2012). Combining these techniques has provided important 

information about fish and sharks, such as identifying migration periods, residency 

patterns, and habitat preference. Finally, increased sampling of large juveniles in 

inshore areas, as well as deploying an acoustic array between an inshore embayment 

and offshore reef areas, may have captured C. ignobilis movement between these areas. 

Caranx ignobilis are known to move to offshore reefs as they reach maturity (Sudekum 

et al., 1991; Wetherbee et al., 2004). Unfortunately, this project did not capture an 

ontogenetic migration within the central Great Barrier Reef. Modification of the layout 

and positioning of receivers, as described above, would provide additional information 

on their movement to support well-informed spatial management plans. 

 

The work described in this thesis has increased understanding of adult G. speciosus, but 

it has also highlighted the complexity of movement strategies within the population 

(Chapter seven). Gnathanodon speciosus movement studies would benefit from an 

expansion of the acoustic array. The acoustic array in Cleveland Bay underestimated the 

movement pattern of part of the population, therefore, deploying more receivers around 

Magnetic Island and just outside the bay would provide a more complete picture of G. 

speciosus. Also, juveniles were missing from sampling, consequently increasing fishing 

effort in areas covered by an expanded array could provide more information on 

juveniles. Although G. speciosus are targeted regionally by recreational fishers and are 

important in Indo-Pacific inshore fisheries (Department of Sustainability, Environment, 

Water, Population and Communities, 2012; Grandcourt et al., 2004; Gunn, 1990), little 

information is available on their ecology and status. Detailed knowledge on the 

distribution and behaviour of species at all life-stages is critical to understanding spatial 
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ecology of the whole population and implementation of appropriate conservation and 

management measures (Hastings et al., 2011; Tilman & Kareiva, 1997). 
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Appendix 1: Copyright statement from Animal Behaviour for “Lédée, E.J.I., Heupel, 

M.R., Tobin, A.J., Knip, D.M. & Simpfendorfer, C.A. (2015). A comparison between 

traditional kernel-based methods and Network Analysis: an example from two 

nearshore shark species. Animal Behaviour, 103, 17-28”. 
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