ResearchOnline@JCU

This is the Accepted Version of a paper published in the journal Diversity and Distributions:

Grech, Alana, Wolter, Jolan, Coles, Rob, McKenzie, Len, Rasheed, Michael, Thomas, Christopher, Waycott, Michelle, and Hanert, Emmanuel (2016) *Spatial patterns of seagrass dispersal and settlement*. Diversity and Distributions, 22 (11). pp. 1150-1162. http://dx.doi.org/10.1111/ddi.12479

Diversity and A Journal of **Distributions** Conservation Biogeography

Spatial patterns of seagrass dispersal and settlement

Journal:	Diversity and Distributions
Manuscript ID	DDI-2016-0073.R1
Manuscript Type:	Biodiversity Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Grech, Alana; Macquarie University, Department of Environmental Sciences Wolter, Jolan; Universite Catholique de Louvain, Earth and Life Institute (ELI) Coles, Rob; James Cook University, Centre for Tropical Water & Aquatic Ecosystem Research McKenzie, Len; James Cook University, Centre for Tropical Water & Aquatic Ecosystem Research Rasheed, Michael; James Cook University, Centre for Tropical Water & Aquatic Ecosystem Research Thomas, Christopher; Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (iMMC) Waycott, Michelle; University of Adelaide, School of Biological Sciences, Environment Institute, Australian Centre for Evolutionary Biology and Biodiversity Hanert, Emmanuel; Université catholique de Louvain, Earth and Life Institute (ELI)
Keywords:	dispersal, Great Barrier Reef, hydrodynamics, seagrass, recovery, resilience
Note: The following files were su PDF. You must view these files	ibmitted by the author for peer review, but cannot be converted to (e.g. movies) online.
0801N3_sub.mp4 0801N3_sur.mp4 0801N16_sub.mp4 0801N16_sur.mp4 0801N24_sub.mp4 0801N24_sur.mp4 0801N29_sub.mp4 0801N29_sur.mp4 0903N3_sub.mp4 0903N3_sub.mp4 0903N16_sub.mp4 0903N16_sur.mp4 0903N24_sub.mp4 0903N24_sur.mp4 0903N24_sur.mp4	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0903N29_sur.mp4 1001N3_sub.mp4 1001N16_sub.mp4 1001N16_sub.mp4 1001N24_sub.mp4 1001N29_sub.mp4 1001N29_sub.mp4 1001N29_sur.mp4 1102N3_sub.mp4 1102N16_sub.mp4 1102N16_sur.mp4 1102N24_sub.mp4 1102N24_sub.mp4 1102N24_sub.mp4
20 21	
22	SCHOLARONE [™]
∠3 24	Manuscripts
25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47	
49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	
	Diversity and Distributions

Diversity and Distributions

1 2		
2 3 4	1	Title: Spatial patterns of seagrass dispersal and settlement
5 6	2	Running head: Spatial patterns of seagrass dispersal
7 8 9	3	
10 11 12 13 14	4	Authors: Alana Grech ¹ *, Jolan Wolter ² *, Rob Coles ³ , Len McKenzie ³ , Michael Rasheed ³ ,
	5	Christopher Thomas ⁴ , Michelle Waycott ⁵ , Emmanuel Hanert ²
14 15 16	6	¹ Department of Environmental Sciences, Macquarie University, Sydney, New South Wales,
17 18	7	Australia, 2109
19 20	8	² Earth and Life Institute (ELI), Université catholique de Louvain, Louvain-la-Neuve, Belgium,
21 22 23	9	1348
23 24 25 26 27 28 29 30 31 32 33 34 35	10	³ TropWATER (Centre for Tropical Water & Aquatic Ecosystem Research), James Cook
	11	University, Cairns, Queensland, Australia, 4870
	12	⁴ Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain,
	13	Louvain-la-Neuve, Belgium, 1348
	14	⁵ School of Biological Sciences, Environment Institute, Australian Centre for Evolutionary
36 37	15	Biology and Biodiversity, The University of Adelaide, South Australia, Australia, 5001
38 39 40	16	*These authors contributed equally to this manuscript
40 41 42	17	Corresponding author:
43 44	18	Dr Alana Grech
45 46 47	19	Department of Environmental Sciences, Macquarie University
47 48 49	20	Sydney, New South Wales, 2109, Australia
50 51 52	21	Email: <u>Alana.grech@mq.edu.au</u> Telephone: +61 2 9850 7477
52 53 54	22	
55 56	23	Word count: 5016
57 58 59		
60		1

Abstract Aim The movement of propagules among plant populations affects their ability to replenish and recover after a disturbance. Quantitative data on recovery strategies, including the effectiveness of population connectivity, is often lacking at broad spatial and temporal scales. We use numerical modelling to predict seagrass propagule dispersal and settlement to provide an approach for circumstances where direct, or even indirect, measures of population dynamics are difficult to establish. Location Great Barrier Reef, Australia **Methods** We used the finite element Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM) to resolve the hydrodynamics of the central Great Barrier Reef and to simulate the dispersal of seagrass. We predicted dispersal and settlement patterns by releasing 10.6 million passive particles representing seagrass propagules at known sites of seagrass presence. We considered two fractions when modelling seagrass dispersal: floating and suspended propagules. Both fractions were modelled using 34 simulations run for a maximum of 8 weeks during the peak seagrass reproductive period, capturing variability in winds, tides and currents. **Results** The 'virtual' seagrass propagules moved on average between 30 and 60 km, but distances of over 900 km also occurred. Most particle movement was to the north-west. The season (month) of release and source locations of the particles correlated with their dispersal distance, particularly for particles released offshore, with the complex coastal topography impeding movements close to the coast. The replenishment and recovery potential of the northern most meadows was influenced by southern meadows. Protected north facing bays were less likely to receive particles.

Main conclusions Our approach advances the conservation and management of marine
biodiversity by predicting a key component of ecosystem resilience at a spatial scale that informs
marine planning. We show a complex interaction among time, wind, water movement and
topography that can guide a management response to improving replenishment and recovery
after disturbance events.

52 Key words: Dispersal, Great Barrier Reef, hydrodynamics, seagrass, recovery, resilience

53 (A) Introduction

Safeguarding biodiversity and the delivery of marine ecosystem services requires the maintenance of ecological processes that underpin their functioning and resilience (Roberts et al. 2003; Magris *et al.* 2014). The multiple factors that contribute to resilience and their interactions are complex (Kilminster et al. 2015; Unsworth et al. 2015). An important component of marine ecosystem resilience is the capacity to recover from loss or degradation. Recovery is supported by the dispersal of larvae, adults or propagules via the convective forces of ocean waves and currents (Berumen et al. 2012; Bode et al. 2012). The rate of exchange or connectivity among populations effects the replenishment and recovery of populations after major disturbances (e.g. storms) and population dynamics (Treml *et al.* 2008). However, our understanding of dispersal and connectivity via ocean waves and currents is poor for many ecosystems, especially seagrasses (McMahon et al. 2014).

Seagrasses comprise a group of angiosperms that have successfully dispersed and colonised throughout the world's coastal seabeds. Seagrass meadows can be found on all continents except Antarctica, and from the high intertidal zone down to 61 m deep (Coles et al. 2009). The 15 species that are found in the Great Barrier Reef World Heritage Area (GBR) in north eastern Australia (Fig. 1) are a vital part of the reef ecosystem and provide food for numerous fish, crustacean, sea turtles and dugong (Unsworth et al. 2014). Seagrasses are widespread in these waters (Coles et al. 2009; Grech and Coles 2010), however recent tropical cyclones and floods have had severe impacts on the viability of some meadows and resulted in losses occurring at scales of hundreds of kilometres (Rasheed et al. 2014; Coles et al. 2015; McKenna et al. 2015).

Diversity and Distributions

The effect of climatic disturbances on seagrasses in the GBR is exacerbated by the impacts of
coastal development and poor water quality (Coles *et al.* 2015). Predicting the effect of
disturbances and potential recovery trajectories requires information on factors influencing
resilience of seagrass meadows, including replenishment and recolonization modes (Kendrick *et al.* 2012).

Propagule dispersal has been well studied in terrestrial plants, although the predictability of successful dispersal mechanisms is less well understood, particularly over longer distances and when animal mediated (Nathan et al. 2008; Nathan and Muller-Landau 2000). Propagules can be seeds, fruit or viable plant fragments. Dispersal mechanisms include movement with wind, waterborne, through ingestion by or attachment onto birds and land animals, and through various transport methods during the movement of soil. Seed pollination can be mediated by insects or wind transport. Wholly marine seagrass species can grow and colonise vegetatively by rhizome extension over short distances (100s of metres), but must use other mechanisms for dispersal over broad spatial scales. Most seagrass fruits are short-lived, and have negatively buoyant seeds with primary movement likely to be no more than several kilometres (Kendrick et al. 2012; Berković *et al.* 2014). Seagrass seeds can also be transported in the gut and faeces of fish, water fowl, sea turtles and dugongs (McMahon 2005; Sumoski and Orth 2012; Tulipani and Lipcius 2014); viable seeds have been found in the faeces of dugong (James Cook University, unpublished data). However, for tropical and sub-tropical seagrass species, by far the most likely mechanism for transport over broad spatial scales is by waterborne transport of viable propagules (i.e. vegetative fragments, fruits and plant fragments with attached fruits and seeds) (Berković et al. 2014). Buoyancy and survival times (although not necessarily leading to successful

1

Diversity and Distributions

2
2
3
4
5
6
0
7
8
o o
9
10
11
12
10
13
14
15
16
10
17
18
19
20
20
21
22
23
20
24
25
26
20
21
28
29
20
30
31
32
33
00
34
35
36
27
51
38
39
40
44
41
42
43
11
- - +
45
46
47
10
40
49
50
51
51
52
53
54
57
55
56
57
58
50
59
60

establishment) for seagrass propagules may be as long as 85 days in temperate species (Thomson *et al.* 2014), but varies for subtropical species with 0.5 days for *H. decipiens*, 4.5 days for *H. ovalis* and 21 days for *Z. muelleri* (Weatherall *et al.* 2016). The maximum dispersal distances
recorded in literature are generally less than 100 km, except during extreme weather events when dispersal has been recorded over distances of up to 400 km (Lacap *et al.* 2002).

There is a considerable body of literature on survival of propagules in the water column, as well 105 as on their buoyancy and potential distance moved (Ruiz-Montoya et al. 2012; McMahon et al. 106 2014). However, there is little comprehensive analysis using hydrodynamics to predict seagrass 107 dispersal over broad scales (Ruiz-Montova et al. 2012 e.g. Erftemeijer et al. 2008; Källström et 108 al. 2008; Ruiz-Montoya et al. 2015), and no studies relevant to tropical species. This leaves a 109 110 gap in our ability to provide management agencies with evidence-based science on the capacity for the replenishment and recovery of tropical seagrass meadows from natural and anthropogenic 111 disturbances. 112

113

The focus of this study was to address this gap using as an example the spatial dispersal of
seagrass propagules in the central GBR, an area encompassing the major regional city and port of
Townsville, as well as Hinchinbrook Island, Cleveland Bay, Bowling Green Bay and the
Whitsunday Islands (Fig. 1). It is one of a few regions in the world with a long history of
seagrass research and mapping (Coles *et al.* 2007; McKenzie *et al.* 2010; Petus *et al.* 2014) as
seagrasses in the area are exposed to urban and port developments, poor water quality from
terrestrial runoff and tropical storms (Grech *et al.* 2011; Rasheed *et al.* 2014; Coles *et al.* 2015).

Effective management is therefore required to protect and enhance seagrass resilience and itssubsequent long-term survival.

We used a numerical modelling approach to resolve the hydrodynamics of the central GBR and to simulate the dispersal of floating and suspended 'virtual' seagrass propagules. The hydrodynamic model used was the finite element Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM), a model ideally suited to studying areas of complex topography and flow patterns at very high spatial resolution (Lambrechts *et al.* 2008). We predicted the dispersal and settlement patterns of seagrass by simulating the release of millions of passive 'virtual' propagules (seagrass propagules are represented as particles in the model) at known sites of seagrass presence. The simulations were timed to capture variability in winds, currents, and tides during the peak seagrass reproductive period. The simulation outputs were used to identify factors which facilitate abiotic seagrass dispersal and settlement, and to assess, spatially, the likelihood of replenishment and post-disturbance recovery of seagrass meadows in the central GBR. (A) Methods (B) Study region The central GBR coast between 17.5°S and 20.7°S (~730 km) is characterised by a series of small estuaries and north-facing bays (Fig. 1A). The region includes the city and port of Townsville, and a developing port at Abbot Point near the town of Bowen. The largest island in

Page 9 of 55

1

Diversity and Distributions

2	
3	144
4 5	
6 7	145
, 8 9	146
10 11	147
12 13	148
14 15	140
16 17	149
18	150
20 21	151
22 23	152
24 25	153
26 27	154
28 29	155
30 31	100
32 33	156
34 35	157
36 37	158
38 39	159
40 41 40	160
42 43 44	161
45	4.62
46 47	162
48 49	163
50 51	164
52 53	165
54 55	166
56 57	
58 59	

144 the GBR, Hinchinbrook, is in the north, and the complex of islands that make up the tourist destination of the Whitsunday Islands is in the south. The climate is influenced by monsoonal 145 wind and rainfall patterns. Strong south-easterly winds dominate during the dry season (April-146 October). Weaker variable winds are more common during the wet (monsoon) season 147 (November-March). 148

Water circulation on the GBR continental shelf is driven by tides, wind and water exchanges 150 with the neighbouring Coral Sea (Wolanski *et al.* 2013). Tides in the GBR range from 2.5 - 9 m 151 (Hopley *et al.* 2007) and tidal currents play an important role in cross-shelf mixing, though their 152 amplitude can vary considerably with latitude (Andrews and Bode 1988). The westward-flowing 153 South Equatorial Current impinges on the GBR continental shelf from the Coral Sea, bifurcates 154 155 into northward and southward components, and drives the southward-flowing Coral Sea Lagoonal Current through the central and southern parts of the GBR, and the East Australian 156 Current at the shelf break and seaward of it (Church and Boland 1983; Church 1987; Wolanski et 157 158 al. 2013). During periods of sustained south-easterly trade winds however, these act to drive a northward longshore current through the central and southern regions of the GBR which opposes 159 the Coral Sea Lagoonal Current, and can result in a reversal of the net direction of flow through 160 the shelf, towards the north (Andrews and Furnas 1986). At finer scales, flow patterns are 161 influenced by the high complexity of the reef topography (Wolanski and Spagnol 2001; Hamann 162 et al. 2011; Thomas et al. 2014). 163

(B) Seagrass distribution 165

We investigated the dispersal of the most common seagrass genera in the central GBR: Halophila, Halodule, Cymodocea and Zostera (Lee Long et al. 1993; Carruthers et al. 2002; Coles et al. 2003). A spatial (geographic information system [GIS]) layer of intertidal and shallow subtidal seagrass distribution was obtained from McKenzie et al. (2014a) (Fig. 1A and 2). The layer incorporates the composite outputs of seagrass surveys conducted between November 1984 and June 2010 (McKenzie et al. 2010). The total area of intertidal and shallow subtidal seagrass in the study region was 848.3 km², and the number of meadows 121. The size of individual meadows ranged from $0.4 - 155.0 \text{ km}^2$ (mean = 7.0 km^2 ; see Table S1 in Supporting Information). Each intertidal and shallow subtidal meadow was allocated into one of two generalised species classes to facilitate analysis of dispersal and settlement among meadows dominated by species of similar life-history traits (Fig. 1A and 2) (see Kilminster et al. 2015 for full discussion): the structurally robust opportunistic and persistent tropical seagrass species (genera Halodule, *Cymodocea* and *Zostera*) (n = 83), hereafter referred to as foundation species; and the structurally small ephemeral and transient species of the genus *Halophila* (n = 41), hereafter referred to as non-foundation species. We also allocated meadows into 28 discrete habitat units (Fig. 2) based on their species class and similarities in biogeographic properties (i.e. located in the same bay, estuary or island system) to facilitate statistical analysis (Table S1). A spatial layer of deep-water (> 15 metres depth) seagrass (genus *Halophila*; non-foundation species) was obtained from Coles et al. (2009). We assumed that Halophila was present at locations where the layer predicted a > 25 % likelihood of seagrass presence. The total area of

Diversity and Distributions

3 4	190	deep-water seagrass with a > 25 % likelihood of seagrass presence in the study area was 5,792.5
5 6 7	191	km ² . We divided the deep-water layer into three meadows and discrete habitat units (Fig. 2) of
, 8 9	192	approximately equal latitudinal distance to facilitate statistical analysis (Table S1).
10 11	193	
12 13 14	194	(B) Oceanographic model
15 16	195	
17 18	196	The dispersal of 'virtual' seagrass propagules (i.e. fruit, seeds or fruit attached to plant material
19 20 21	197	or viable fragments) was modelled using the finite element, unstructured-grid ocean model SLIM
22 23	198	(Legrand et al. 2006; Lambrechts et al. 2008) in Gmsh (Geuzaine and Remacle, 2009). SLIM is
24 25	199	well suited to modelling complex oceanography because of its variable resolution; the model has
20 27 28	200	a fine scale spatial resolution near the coast, reefs and islands (minimum 200 m), and coarser
29 30	201	resolution in homogenous areas (maximum 5 km). SLIM has previously been calibrated and used
31 32 33	202	to simulate the hydrodynamics and sediment transport in the GBR (Lambrechts et al. 2008;
34 35	203	Andutta et al. 2012), as well as dispersal of coral larvae (Thomas et al. 2014 and 2015) and turtle
36 37	204	hatchlings (Hamann <i>et al.</i> 2011).
38 39 40	205	
41 42	206	Data on daily wind speed and direction (9 am and 3 pm) and tides for the time period August 1 st
43 44 45	207	2012 – January 31 st 2013 were obtained from the Australian Bureau of Meteorology, NOAA
45 46 47	208	NCDC Climate Forecast System Reanalysis (Saha et al. 2014) and the TOPEX satellite altimetry
48 49	209	(Egbert and Erofeeva 2002). Depth-integrated shallow-water equations were used to compute the
50 51 52	210	water elevation η and the current 2D velocity vector \boldsymbol{u} :
53 54	211	
55 56 57 58 59	212	(1) $\frac{\partial \eta}{\partial t} + \boldsymbol{\nabla} \cdot (H\boldsymbol{u}) = 0$

213 (2)
$$\frac{\partial u}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -f\mathbf{e}_z \times \mathbf{u} - g\nabla\eta - C_D |\mathbf{u}|\mathbf{u} + \frac{\tau}{\rho H} + \frac{1}{H}\nabla \cdot [H\nu(\nabla u)]$$

where *H* is the water column depth, *f* is the Coriolis factor, e_z is a unit vector pointing vertically upwards, *g* is the gravitational acceleration, C_D is the bottom stress coefficient, τ is the surface wind stress, ρ is the water density and *v* is the horizontal eddy viscosity. The model parameters and external forcing were taken from Thomas *et al.* (2014).

The dispersal of passive 'virtual' propagules (i.e. particles were unable to direct their own
motion) was simulated using a Lagrangian Particle Tracker, similar to Spagnol *et al.* (2002). This
model uses a random walk formulation of the 2D advection-diffusion equation:

224 (3) $x_{n+1} = x_n + v_n \Delta t + \frac{R_n}{\sqrt{r}} \sqrt{2K\Delta t}$

225 (4)
$$\boldsymbol{v}_n = \left(\boldsymbol{u} + C_w \boldsymbol{u}_w + \frac{K}{H} \boldsymbol{\nabla} H + \boldsymbol{\nabla} K\right)|_{\boldsymbol{x}_n}$$

(B) Simulation parameters

where x_n and x_{n+1} are the particle positions at iterations *n* and n+1, Δt is the time interval between iterations, R_n is a horizontal vector of zero-mean random numbers of variance *r*, *u* the depth-averaged horizontal water velocity computed from Eq. (2), u_w is the wind velocity at a height of 10 m over the sea surface, C_w is the wind drag coefficient and *K* is the horizontal diffusivity coefficient.

- 55 234

Diversity and Distributions

The time period of simulations covered the southern hemisphere spring reproductive period
(Table 1), which follows the peak of the flowering period and time of highest seagrass
abundance (beginning of August through to the end of November; Waycott *et al.* 2004; Kuo *et al.* 1991 and 1993; Kuo and Kirkman 1992). The start dates of individual simulations were
chosen to capture variability in tides (spring, neap, and first and last quarter tides) across the
reproductive period (Table 1).

The total number of particles (representing 'virtual' seagrass propagules) released per simulation was optimised for the model domain ($n = \sim 154,000$). An equal number of particles were released per release location. Release locations were spread evenly across intertidal and shallow subtidal meadow at intervals of $\sim 2 \text{ km}$ (n = 266; Fig. 1B). Meadows of size $< 4 \text{ km}^2$ had one release location placed at its geometric centre. Release locations were spread evenly across each deepwater meadow at intervals of ~ 10 km (n = 53). The number of particles released per unit area was smaller in deep-water meadows than in intertidal and shallow subtidal meadows because deep-water seagrasses generally have lower biomass and abundance relative to coastal seagrass (Coles et al. 2007; Coles et al. 2009; Rasheed et al. 2014). Particles were released at an equal rate over the first 24 hours of the simulations to capture daily variation in tidal conditions.

We assumed that the size and shape of seagrass propagules (fruit, seeds or fruit attached to plant material or viable fragments) were the same. We attempted to capture variability in the buoyancy of 'virtual' propagules by simulating the dispersal of propagules floating at the surface and suspended below the surface, and by using a first-order decay function to simulate the gradual settlement of propagules, as described below.

2		
3		
4		
5		
6		
7		
1		
8		
9		
1	0	
1	1	
1	2	
1	<u>ר</u>	
1	J ⊿	
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
ว	ñ	
ے م	4	
2 c	1	
2	2	
2	3	
2	4	
2	5	
2	6	
$\overline{2}$	7	
~	' ^	
2	8	
2	9	
3	0	
3	1	
3	2	
3	3	
2	л Л	
ິ	4 5	
3	ວ	
3	6	
3	7	
3	8	
3	9	
4	ō	
т Л	1	
+	ו ר	
4	2	
4	3	
4	4	
4	5	
4	6	
4	7	
۵	Ŕ	
+ 1	ი ი	
4 7	ป ก	
о -	ý	
5	1	
5	2	
5	3	
5	4	
5	5	
5 5	с С	
о г	0	
5	1	
5	8	
5	9	
6	ი	

258

We considered two different fractions when modelling seagrass dispersal using our 'virtual' 259 propagules: (1) floating propagules; and (2) suspended propagules. In Eq. (4), the term 260 depending on the wind velocity represents the wind contribution to the particle advecting 261 velocity. The value of the wind drag coefficient C_w is usually determined empirically as it 262 depends on the particle mass, shape, buoyancy and the wind angle of attack. We used a 263 sensitivity analysis to determine the wind drag coefficient by running 8 simulations with $C_w =$ 264 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4% and measured the distance between release and settling location. 265 Increasing the wind drag coefficient resulted in particles moving further from their release 266 location in a linear function. We used the outputs of the sensitivity analysis to determine a 267 conservative wind drag coefficient of 2 % (i.e. a velocity equal to 2 % of the wind speed was 268 added to the velocity of the particles) when 'virtual' propagules were assumed to float at the 269 surface. Erftemeijer et al. (2008) and Harwell and Orth (2002) use a wind drag coefficient of 3 % 270 to predict the dispersal of the structurally more robust northern hemisphere Zostera marina 271 272 (eelgrass) fragments with reproductive shoots that contain seeds. However, the fragments and seeds of eelgrass are much larger then tropical seagrass propagules. A wind drag coefficient of 0 273 % was used when particles were suspended below the surface. 274

275

Two sets of simulations were conducted at each start date with either 2% and 0% wind drag coefficients to assess differences in the dispersal of floating and suspended particles, and the role of wind in particle transport (n = 68). The ratio of floating and suspended propagule fractions in the central GBR at any given time is unknown. We assumed that the outputs of the two sets of simulations represent equally plausible realities based on our present knowledge.

Diversity and Distributions

1 2		
- 3 4	281	
5 6 7	282	Each of the 68 simulations were run for a maximum likely survival time of propagules in the
7 8 9 10 11	283	tropics (8 weeks/56 days; Lacap et al. 2002; Harwell and Orth 2002; Hall et al. 2006; Källström
	284	et al., 2008, Kendrick et al. 2012; Thompson et al. 2014). A first-order decay function was used
12 13	285	to simulate the gradual settlement of particles after their release following a previously published
14 15 16	286	approach (Erftemeijer et al. 2008; Fig. S1):
17 18	287	
19 20 21	288	$(5) C(t) = C_0 \cdot e^{-kt}$
22 23	289	
24 25	290	where the decay rate $k = 0.075 \text{ day}^{-1}$ (Erftemeijer <i>et al.</i> 2008) and <i>C(t)</i> is the particle
26 27 28	291	concentration at time <i>t</i> .
29 30	292	
31 32	293	(B) Statistical analysis and replenishment index
33 34 35	294	
36 37	295	Dispersal distance was calculated as the Euclidean distance between the release location and the
38 39 40	296	settling location in ArcGIS [®] 10.3. The dispersal distance was aggregated at each release location
40 41 42	297	for the 34 simulations of floating propagules and the 34 simulations of suspended propagules,
43 44	298	and the 95 th percentile calculated. We used a linear mixed-effect model (package 'nlme') in R (R
45 46 47	299	Core Team 2013) and release location as a random factor to test for significant effects of
48 49	300	predictor variables on the dispersal distance of particles at each release location: month of release
50 51	301	(August, September, October or November); tide on start date of simulation (neap, spring or first
52 53 54	302	and last quarter tide); depth (intertidal/subtidal or deep); species (foundation or non-foundation
55 56 57 58	303	species); and Euclidean distance (metres) between mainland coast and release location. The
59 60		14

continuous variables of dispersal distance and distance to coast were log transformed to achieve normal distribution and heterogeneity of variances. Model selection was conducted using the function 'dredge' in R package 'MuMIn'. The model with lowest AICc value was considered as 'best fit'. Competing models were ignored because deltaAIC values were > 3 and virtually all weight was given to the first model. The study region was converted to a raster grid of 1 km² resolution. We calculated the number of settled particles and the number of discrete habitat units that were sources of the settled particles at each 1 km^2 grid cell. We assumed that the capacity of a meadow to recover from a disturbance depends on both the number of particles that settle on that meadow and on the number of different sources from which these particles originate. We used discrete habitat units rather than meadows as an indicator of the number of source locations due to the large variability in size and number of individual meadows in the region (Table S1). A potential replenishment index was mapped for both foundation and non-foundation species classes by multiplying the logarithm of the number of settled particles by the number of source discrete habitat units at each grid cell. We used the logarithm of the number of particles for visualisation purposes. (A) Results Our simulations predicted a mean dispersal distance of floating 'virtual' seagrass propagules (particles) of 60.0 km, and suspended particles of 33.8 km. The maximum dispersal distance of particles was 950 km (simulation of floating particles, release 1 August, discrete habitat unit 31)

- and a minimum distance of 0 km (simulations of suspended particles, 29 August, 7 October, 17

Diversity and Distributions

2	
3	327
4 5	
6	328
7	
8	329
9 10	
11	330
12	221
13 14	331
15	332
16	552
17 18	333
19	
20	334
21	
22	335
24	
25	336
26 27	227
28	337
29	338
30	550
31	339
33	
34	340
35 36	
37	341
38	
39	342
40 41	212
42	545
43	344
44 45	511
46	345
47	
48 40	346
50	
51	347
52	~
53 54	348
55	210
56	549
57 58	
59	
60	

327 October, 25 November, discrete habitat units 22 and 19). Animations of seagrass dispersal 328 simulations at multiple locations and release dates are provided in Appendix S1.

Boxplots (Fig. 3) summarise the range of possible dispersal distances of particles for each 330 discrete habitat unit (Fig. 2) generated by the 34 simulations of floating particles and 34 331 simulations of suspended particles. Simulations of floating particles were affected by wind and 332 had higher dispersal distances (i.e. particles moved further) than simulations that were not 333 affected by wind (i.e. suspended particles). The deep-water non-foundation meadows (discrete 334 habitat units 29, 30 and 31) had the highest range and median dispersal distances for both 335 floating and suspended particles. Particles released from deep-water meadows and coastal 336 regions of high exposure to wind activity (e.g. discrete habitat units 7, 8, 28, 4, 2; Fig. 2) 337 travelled further than meadows in protected bays because they were exposed to strong offshore 338 currents or were not trapped by tidal movements in complex coastal topographic features (Fig. 339 3). 340 341 We used the orientation of settlement locations relative to release locations to develop wind roses 342 of the proportion of floating and suspended particles dispersed at various directions and distances 343 (Fig. 4). Most (77%) floating particles were dispersed towards the north-west quadrant because 344 the seagrass reproductive period is dominated by south-easterly trade winds. Most suspended 345

particles were also dispersed towards the north-west quadrant due to wind-induced water 346

currents, however 32% of particles were dispersed towards the south-east quadrant due to strong 347

water current movement in that direction in September. 348

Particles released from the southern limit of our modelling domain (i.e. discrete habitat unit 9;

Fig. 2) did not move towards the north-west and were either trapped in Repulse Bay, or were moved south-eastwards by water currents. Particles released from the adjacent Whitsunday Islands moved towards the north-west and settled in deep offshore waters and some coastal locations. Due to the shape and direction of the coast south of Repulse Bay (Fig. 1C), it is likely that the southern limit of seagrass connectivity in the central GBR is the Whitsunday Islands. The linear mixed-effect models of floating and suspended particles at the 95th percentile (Table S2) showed significant seasonal effects (month), and species (foundation and non-foundation) and location (distance to coast) effects. The south-east trade winds, a feature of the region during the mid-year winter, decrease towards the beginning of the monsoon in summer, influencing propagule movement through direct wind effects and indirectly through movement of water. Particles from meadow locations away from the coast in deeper water travelled further than those

from coastal locations (Fig. 3) as they entered ocean currents and winds unimpeded by the configuration of coastal topography. Deeper meadows are also populated by non-foundation

species and not the foundation species, leading to significant interaction terms.

The potential replenishment indexes of both foundation and non-foundation species indicate a site's relative potential for re-establishment and recovery of seagrass via natural biotic processes (Fig. 5). High levels of replenishment potential were observed along most of the coast. Coastal areas of low replenishment potential included the southern edge of protected bays (e.g. Cleveland Bay, Bowling Green Bay, Upstart Bay), and Edgecombe Bay, Repulse Bay and the Whitsunday Islands. The shape of Edgecombe Bay shelters most of the bay from south-easterly winds,

Diversity and Distributions

preventing seagrass propagules from neighbouring southern meadows from entering the site. The
Whitsunday Islands are exposed to strong south-easterly winds and seagrass propagules are
quickly transported away from their release locations. The region between Townsville and
Hinchinbrook Island also had a low level of replenishment potential for foundation species, but a
higher level of replenishment potential for non-foundation species because of settlement of
propagules from deep-water seagrass meadows.

380 (A) Discussion

We used hydrodynamic modelling and parameters informed by literature to investigate the potential dispersal and settlement patterns of simulated particles representing seagrass propagules in the central GBR. This approach enabled the assessment of factors that influence an important component of resilience: the potential for re-establishment of seagrass meadows after loss or damage (Unsworth et al. 2015). From a global perspective, the knowledge gaps identified in this process are first in the assumptions that viable propagules do actually settle and establish as plants in a new location, and that the physical characteristics of propagule fragments of different species interact with wind and water movements in the same way; and second in our poor overall understanding of the movement behaviour of propagules (including loss rates and buoyancy times) in the real world of open ocean transport. The size and density of seeds, fruits and vegetative fragments can vary over orders of magnitude (mms to 10 cms; Oldham et al. 2014) and more information is needed to appropriately incorporate this variation in hydrodynamic models. Our results based on the example of the central GBR represent a theoretical approach to modelling seagrass dispersal based on the best available knowledge to

provide an insight into how these complex systems work at a scale that is useful for management. Our results also enable testing of hypotheses to evaluate the specifics of dispersal ranges by testing this model in situ.

The results of the simulations indicated that most seagrass propagules on average do not travel far from their source location, especially when suspended in the water column. The average distance travelled by particles within the 8 week time period was between 30 and 60 km (Fig. 3). Particles from deep-water meadows travelled further than those closer to the coast (Fig. 3). 77 % of particles had a northerly component to movement if floating and slightly less when suspended (Fig. 4). Time of release influenced the distance travelled with longer distances observed earlier in the reproductive period due to the greater strength of south-easterly trade winds in August and September compared with later in the year.

Coastal topography influenced the trajectory of particles in the model. Model release locations in offshore meadows allowed particles to move unimpeded and travel further than coastal meadows. Topography also influenced the number of discrete habitat units that could contribute to a recipient meadow (a likely key component of a meadows recovery capacity) with greater potential for replenishment in northern locations and shadows of low replenishment, particularly in the lower portion of north-facing bays (Fig. 5).

> The maximum dispersal distance of 'virtual' propagules was 950 km, approximately half the length of the GBR coast line. While this travelled distance may represent a rare event, propagule dispersal over long distances may be critical for adaptability at these scales. Propagules that

Page 21 of 55

Diversity and Distributions

travel only short distances or remain within the boundary of an existing meadow will have a better chance of remaining in locations likely to be conducive to seagrass growth. However, in the tropics and subtropics, dispersal strategies of marine angiosperms must also operate at scales that explain existing distributions (thousands of kilometres) (Coles et al. 2009; McKenzie et al. 2010, Waycott et al. 2014). Many tropical meadows have persistent viable seed banks but effective methods must be available for longer distance dispersal and replenishment (even if these mechanisms are rare), simply because of the high number of propagules released from meadows over many years. Our modelling demonstrates that most dispersal is limited to short distances, especially when propagules are suspended in the water column, and replenishment is certain to occur within the 30-60 km range. Longer distance dispersal is possible, but likely to be uncommon and have a proportionally reduced role in meadow recovery after loss. The destructive tropical storms and sediment loads from land runoff from 2007 to 2011 (McKenzie et al. 2012; Rasheed et al. 2014; McKenna et al. 2015) were the catalyst to ask questions regarding propagule dispersal, modes of re-establishment and seagrass recovery in the central GBR. Previous losses of seagrass on the east coast of Queensland have generally recovered naturally in a 3-5 year timeframe (Preen et al. 1995; Campbell and McKenzie 2004), but depending on the habitat and location, can take longer (York et al. 2014; McKenzie et al. 2015), even more than a decade (Birch and Birch 1984). There is little guidance on potential recovery trajectories at the scale of hundreds of kilometres. The results of our study show it would be reasonable to generalise for management in the central GBR that provided there was a healthy meadow nearby and to the south, then re-establishment and/or recovery of a damaged meadow by natural propagule supply would be possible. However, not all meadows have a

Page 22 of 55

replenishment potential as great as others (Fig. 5) due to the influences of topography, location
and time of year, and individual meadows could be recruitment limited if and when local
supplies of propagules are exhausted through disturbance.

Coastal development and watershed impacts from farming and urban and industrial land use have largely been confined to the southern half of the GBR (Grech et al. 2011). The results of our study reduce the comfort provided to management by the assumption that the lack of development in the northern GBR provides a buffer to losses in the south. Impacts on meadows from runoff and coastal development in the southern half of the GBR may reduce propagule supply northward, and therefore reduce the replenishment of northern meadows after loss or damage from climatic disturbances. At the scale of the central GBR, southern meadows and meadows in north-facing bays are less likely to be replenished after disturbance events. The lesson from these results more globally is that losses of seagrass meadows may have unexpected consequences for the resilience of meadows many kilometres away. Management actions that protect factors influencing resilience other than dispersal (e.g. genetic diversity, species diversity, energy reserves and seed banks) should target sites with low or potentially low replenishment capacity to improve their post disturbance recovery trajectories. Management actions that protect factors influencing resilience are likely also to lead to enhanced dispersal. Maintaining and enhancing resilient seagrass systems require keeping food webs intact (i.e. balancing herbivore grazing pressure), conserving functionally important species, and ensuring connectivity with adjacent supporting ecosystems (e.g. mangroves; Unsworth et al., 2015).

Diversity and Distributions

We have used a "big picture" approach to model the likely interactions among seagrass meadows. This approach has provided valuable insights into how seagrass ecosystems may respond to impacts such as widespread loss after a major storm. These insights can be used to evaluate and improve environmental decision making and marine planning. However, it is important to consider an exercise such as this as a starting point from which to test biological realities and for directing further research in the field to test the parameters that modelling has identified as critical to our understanding.

472 Acknowledgments

Computational resources were provided by the supercomputing facilities of the Université
catholique de Louvain (UCLouvain/CISM) and the Consortium des Équipements de Calcul
Intensif en Fédération Wallonie-Bruxelles (CÉCI). Funding for this research was provided by
Macquarie University, James Cook University, the Ian Potter Foundation, Sea World Research
and Rescue Foundation Inc (SWR/6/15) and Wallonie-Bruxelles International. Many thanks to
O. Luiz (Macquarie University) and T. Bridge (Queensland Museum) for assistance with the
statistical analysis.

Author contributions

A.G., J.W., C.T., L.M., R.C., M.R., M.W. and E.H. conceived the ideas; A. G., J.W., C.T., E.H.,
R.C., L.M. and M.R. collected the data; A.G., J.W., E.H. and C.T. analysed the data; and A.G.,
R.C. and J.W. led the writing, with contributions from all authors.

Diversity and Distributions

2 3 4	487			
5 6 7	488	Bio	sketch	
7 8 9	489			
10 11	490	Ala	na Grech is a senior lecturer in the Department of Environmental Sciences at Macquarie	
12 13	491	Uni	versity. Her research interests focus on modelling the spatial distribution of coastal and	
14 15 16 17	492	mai	rine features, cumulative impact assessment, conservation planning and environmental	
17 18	493	decision making.		
19 20 21	494			
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	495	Lite	erature cited	
	496	1.	Andrews, J.C. & Bode, L. (1988) The tides of the central Great Barrier Reef. Continental	
	497		Shelf Research, 8, 1057-1085.	
	498	2.	Andrews, J.C. & Furnas, M.J. (1986) Subsurface intrusions of Coral Sea water into the	
	499		central Great Barrier Reef - I. Structures and shelf-scale dynamics. Continental Shelf	
	500		Research, 6, 491-514.	
	501	3.	Andutta, F.P., Kingsford, M.J. & Wolanski, E. (2012) 'Sticky water' enables the retention of	
38 39 40	502		larvae in a reef mosaic. Estuarine, Coastal and Shelf Science, 101, 54-63.	
40 41 42 43 44 45 46 47 48 49 50 51	503	4.	Bereuman, M.L., Almany, G.R., Planes, S., Jones, G.P., Saenz-Agudelo, P. & Thorrold, S.R.	
	504		(2012) Persistence of self-recruitment and patterns of larval connectivity in a marine	
	505		protected area network. Ecology and Evolution, 2(2), 444-452.	
	506	5.	Berković, B., Cabaco, S., Barrio, J.M., Santos, R., Serrão, E.A. & Alberto, F. (2014)	
	507		Extending the life history of a clonal aquatic plant: Dispersal potential of sexual and asexual	
53 54	508		propagules of Zostera noltii. Aquatic Botany, 113, 123-129.	
55 56				
57 58 59				
60			23	

60

Diversity and Distributions

2			
3 4	509	6.	Birch, W. & Birch, M. (1984) Succession and pattern of tropical intertidal seagrasses in
5 6	510		Cockle Bay, Queensland, Australia: a decade of observations. Aquatic Botany, 19, 343-367.
7 8 9	511	7.	Bode, M., Armsworth, P.R., Fox, H.E. & Bode, L. (2012) Surrogates for reef fish
10 11	512		connectivity when designing marine protected area networks. Marine Ecology Progress
12 13	513		Series, 466, 155-166.
14 15 16	514	8.	Campbell, S.J. & McKenzie, L.J. (2004) Flood related loss and recovery of intertidal
17 18	515		seagrass meadows in southern Queensland, Australia. Estuarine, Coastal and Shelf Science,
19 20	516		60, 477-490.
21 22 23	517	9.	Carruthers, T., Dennison, W., Longstaff, B., Waycott, M., Abal, E.G., McKenzie, L.J. & Lee
23 24 25	518		Long, W. (2002) Seagrass habitats of north east Australia: models of key processes and
26 27	519		controls. Bulletin of Marine Science, 71, 1153-1169.
28 29 30	520	10	. Church, J.A. (1987) East Australian current adjacent to the Great Barrier Reef. Marine and
31 32	521		Freshwater Research, 38, 671-683.
33 34	522	11.	. Church, J.A. & Boland, F.M. (1983) A permanent undercurrent adjacent to the Great Barrier
35 36 37	523		Reef. Journal of Physical Oceanography, 13, 1747-1749.
38 39	524	12	. Coles, R.G., Rasheed, M.A., McKenzie, L.J., Grech, A., York, P.H., Sheaves, M., McKenna,
40 41 42	525		S. & Bryant, C. (2015) The Great Barrier Reef World Heritage Area seagrasses: Managing
42 43 44	526		this iconic Australian ecosystem resource for the future. Estuarine, Coastal and Shelf
45 46	527		Science, 153, A1-A12.
47 48 40	528	13	. Coles, R.G., McKenzie, L.J. & Campbell, S. (2003) The seagrasses of eastern Australia. In:
49 50 51	529		Green, E.P. & Short, F.T. (eds.) The World Atlas of Seagrasses: Present Status and Future
52 53 54 55	530		Conservation. University of California Press, Los Angeles, USA.
56 57 58			
59			

3 4	531	14.	Coles, R.G., McKenzie, L.J., Dèath, G., Roelofs, A. & Lee Long, W.J. (2009) Spatial
5 6 7	532		distribution of deepwater seagrass in the inter-reef lagoon of the Great Barrier Reef World
7 8 9	533		Heritage Area. Marine Ecology Progress Series, 392, 57-68.
10 11	534	15.	Coles, R.G., McKenzie, L.J., Rasheed, M.A., Mellors, J., Taylor, H., Dew, K., McKenna, S.,
12 13	535		Sankey, T., Carter, A. & Grech, A. (2007) Status and trends of Seagrass Habitats in the
14 15 16	536		Great Barrier Reef World Heritage Area. Unpublished report to the Marine and Tropical
17 18	537		Sciences Research Facility, Reef and Rainforest Research Centre Limited, Cairns, Australia.
19 20	538	16.	Egbert, G.D. & Erofeeva, S.Y. (2002) Efficient inverse modeling of Barotropic Ocean tides.
21 22 23	539		Journal of Atmospheric and Oceanic Technology, 19 (2), 183-204.
24 25	540	17.	Erftemeijer, P., van Beek, J., Ochieng, C., Jager, Z. & Los, H. (2008) Eelgrass seed dispersal
26 27 28	541		via floating generative shoots in the Dutch Wadden Sea: a model approach. Marine Ecology
20 29 30	542		Progress Series, 358, 115-124.
31 32	543	18.	Geuzaine, C. & Remacle, J.F. (2009) Gmsh: a three-dimensional finite element mesh
33 34 35	544		generator with built-in pre- and post-processing facilities. International Journal for
36 37	545		Numerical Methods in Engineering, 79(11), 1309-1331.
38 39	546	19.	Grech, A. & Coles, R.G. (2010) An ecosystem-scale predictive model of coastal seagrass
40 41 42	547		distribution. Aquatic Conservation, 20, 437-444.
43 44	548	20.	Grech, A., Coles, R.G. & Marsh, H. (2011) A broad-scale assessment of the risk to coastal
45 46	549		seagrasses from cumulative threats. Marine Policy, 35, 560-567.
47 48 49	550	21.	Hall, L.M., Hanisak, M.D. & Virnstein, R.W. (2006) Fragments of the seagrasses Halodule
50 51	551		wrightii and Halophila johnsonii as potential recruits in Indian River Lagoon, Florida.
52 53	552		Marine Ecology Progress Series, 310, 109-117.
54 55 56			
57 58			
59 60			25

Page 27 of 55

Diversity and Distributions

1 2		
- 3 4	553	22. Hamann, M., Grech, A., Wolanski, E. & Lambrechts, J. (2011) Modelling the fate of marine
5 6 7	554	turtle hatchlings. Ecological Modelling, 222, 1515-1521.
7 8 9	555	23. Harwell, M.C. & Orth, R.J. (2002) Long-distance dispersal potential in a marine
10 11	556	macrophyte. <i>Ecology</i> , 83, 3319-3330.
12 13	557	24. Hopley, D., Smithers, S.G. & Parnell, K.E. (2007) The Geomorphology of the Great Barrier
14 15 16	558	Reef: Development, diversity and change. Cambridge University Press, Cambridge, United
17 18	559	Kingdom.
19 20 21	560	25. Källström, B., Nyqvist, A., Åberg, P., Bodin, M. & André, C. (2008) Seed rafting as a
22 23	561	dispersal strategy for eelgrass (Zostera marina). Aquatic Botany, 88, 148-153.
24 25	562	26. Kendrik, G.A., Waycott, M., Carruthers, T.J.B., Cambridge, M.L., Hovey, R., Krauss, S.L.,
26 27 28	563	Lavery, P.S., Les, D.H., Lowe, R.J., Mascaro I Vidal, O., Ooi, J.L.S., Orth, R.J., Rivers,
29 30	564	D.O., Ruiz-Montoya, L., Sinclair, E.A., Statton, J., Van Dijk, J.K. & Verduin, J.J. (2012)
31 32 32	565	The central role of dispersal in the maintenance and persistence of seagrass populations.
33 34 35	566	<i>Bioscience</i> , 62, 56-65.
36 37	567	27. Kilminster, K., McMahon, K., Waycott, M., Kendrick, G.A., Scanes, P., McKenzie, L.J.,
38 39 40	568	O'Brien, K.R., Lyons, M., Ferguson, A., Maxwell, P., Glasby, T. & Udy, J. (2015)
41 42	569	Unravelling complexity in seagrass systems for management: Australia as a microcosm.
43 44 45	570	Science of the Total Environment, 534, 97-109.
45 46 47	571	28. Kuo, J. & Kirkman, H. (1992) Fruit, seeds and germination in the seagrass Halophila ovalis
48 49	572	(Hydrocharitaceae). Botanica Marina, 35, 197-204.
50 51 52	573	29. Kuo, J., Coles, R.G., Lee Long, W.J., & Mellors, J.E. (1991) Fruits and seeds of <i>Thalassia</i>
53 54	574	hemprichii (Hydrocharitaceae) from Queensland, Australia. Aquatic Botany, 40, 165-173.
55 56		
57 58 59		
60		26

2			
3 4	575	30	. Kuo, J., Lee Long, W.J. & Coles, R.G. (1993) Occurrence and fruit and seed biology of
5 6 7	576		Halophila tricostata Greenway (Hydrocharitaceae). Australian Journal of Marine and
7 8 9	577		Freshwater Research, 44, 43-57.
10 11	578	31	. Lacap, C.D.A., Vermatt, J.E., Rollon, R.N. & Narcoda, H.M. (2002) Propagule dispersal of
12 13 14	579		the SE Asian seagrasses Enhalus acoroides and Thalassia hemprichii. Marine Ecology
15 16	580		Progress Series, 235, 75-80.
17 18	581	32	. Lambrechts, J., Hanert, E., Deleersnijder, E., Bernard, P.E., Legat, V., Remacle, J.F. &
19 20 21	582		Wolanski, E. (2008) A multi-scale model of the hydrodynamics of the whole Great Barrier
22 23	583		Reef. Estuarine, Coastal and Shelf Science, 79, 143-151.
24 25 26	584	33	. Lee Long, W.J, Mellors, J.E. & Coles, R.G. (1993) Seagrasses between Cape York and
20 27 28	585		Hervey Bay, Queensland, Australia. Australian Journal of Marine and Freshwater
29 30	586		Research, 44, 19-32.
31 32 33	587	34	. LEGRAND, S., DELEERNIJDER, E., HANERT, E., LEGAT, V. & WOLANSKI, E. 2006.
34 35	588		High-resolution, unstructured meshes for hydrodynamical models on the Great Barrier Reef
36 37	589		(Australia). Estuarine, Coastal and Shelf Science, 68, 36-46.
38 39 40	590	35	. Magris, R.A., Pressey, R.L., Weeks, R. & Ban, N.C. (2014) Integrating connectivity and
41 42	591		climate change into marine conservation planning. <i>Biological Conservation</i> , 170, 207-221.
43 44 45	592	36	. McKenna, S., Jarvis, J., Sankey, T., Reason, C., Coles, R.G. & Rasheed, M. (2015) Declines
45 46 47	593		of seagrasses in a tropical harbour, North Queensland, Australia, are not the result of a single
48 49	594		event. Journal of Biosciences, 40, 389-398.
50 51 52	595	37	. McKenzie, L.J., Collier, C., Langlois, L., Yoshida, R.L., Smith, N. & Waycott, M. (2015)
52 53 54 55 56	596		Reef Rescue Marine Monitoring Program - Inshore Seagrass, Annual Report for the
57 58 59			
60			27

Page 29 of 55

Diversity and Distributions

1 2			
3 4	597		Sampling Period 1st June 2013 – 31st May 2014. Centre for Tropical Water & Aquatic
5 6 7	598		Ecosystem Research (TropWATER), James Cook University, Cairns, Australia.
8 9	599	38.	McKenzie, L.J., Collier, C., Waycott, M., Unsworth, R., Yoshida, R.L. & Smith, N. (2012)
10 11	600		Monitoring inshore seagrasses of the GBR and responses to water quality. In: Yellowlees, D.
12 13 14	601		& Hughes, T.P. (eds.) Proceedings of the 12th International Coral Reef Symposium, Cairns,
15 16	602		Australia, 9-13 July 2012. James Cook University, Townsville, Australia.
17 18	603	39.	McKenzie, L.J., Yoshida, R.L. & Unsworth, R.K.F. (2014b) Disturbance influences the
19 20 21	604		invasion of a seagrass into an existing meadow. Marine Pollution Bulletin, 86, 186-196.
22 23	605	40.	McKenzie, L.J., Yoshida, R.L, Grech, A. & Coles, R.G. (2010) Queensland seagrasses.
24 25 26	606		Status 2010 - Torres Strait and East Coast. Fisheries Queensland (DEEDI), Cairns,
20 27 28	607		Australia.
29 30	608	41.	McKenzie, L.J., Yoshida, R.L., Grech, A. & Coles, R.G. (2014a) Composite of coastal
31 32 33	609		seagrass meadows in Queensland, Australia - November 1984 to June 2010. PANGAEA:
34 35	610		http://doi.pangaea.de/10.1594/PANGAEA.826368
36 37	611	42.	McMahon, K. (2005) Recovery of subtropical seagrasses from natural disturbance. PhD,
38 39 40	612		University of Queensland, Brisbane, Australia.
41 42	613	43.	McMahon, K., Van Dijk, K.J, Ruiz-Montoya, L., Kendrick, G.A., Krauss, S.L., Waycott,
43 44 45	614		M., Verduin, J., Lowe, R., Statton, J., Brown, E. & Duarte, C. (2014) The movement
45 46 47	615		ecology of seagrasses. Proceedings of the Royal Society of London B: Biological Sciences,
48 49	616		281, 20140878.
50 51 52	617	44.	Nathan, R. & Muller-Landau, H. (2000) Spatial patterns of seed dispersal, their determinants
52 53 54	618		and consequences for recruitment. Trends in Ecology & Evolution, 15, 278-285.
55 56			
57 58			
60			28

3 4	619	45. Nathan, R., Getz, W., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D. & Smouse, P. (2008)
5 6 7	620	A movement ecology paradigm for unifying organismal movement research. Proceedings of
7 8 9	621	the National Academy of Sciences, 105, 19052-19059.
10 11	622	46.
12 13 14	623	47. Oldham, C.E., McMahon, K., Brown, E., Bosserelle, C. & Lavery, P. (2014) A preliminary
14 15 16	624	exploration of the physical properties of seagrass wrack that affect its offshore transport,
17 18	625	deposition and retention on a beach. Limnology & Oceanography: Fluids and Environment.
19 20 21	626	4: 120–135.
22 23	627	48. Petus, C., Da Silva, E.T., Devlin, M., Wenger, A.S., & Álvarez-Romero, J. G. (2014) Using
24 25	628	MODIS data for mapping of water types within river plumes in the Great Barrier Reef,
26 27 28	629	Australia: Towards the production of river plume risk maps for reef and seagrass
29 30	630	ecosystems. Journal of Environmental Management, 137, 163-177.
31 32	631	49. Philbrick, C.T. & Les, D.H. (1996) Evolution of aquatic angiosperm reproductive systems.
33 34 35	632	<i>BioScience</i> , 46, 813-826.
36 37	633	50. Preen, A.R., Lee Long, W.J. & Coles, R.G. (1995) Flood and cyclone related loss, and
38 39	634	partial recovery, of more than 1,000 km2 of seagrass in Hervey Bay, Queensland, Australia.
40 41 42	635	Aquatic Botany, 52, 3-17.
43 44	636	51. R Core Team. (2014) R: A Language and Environment for Statistical Computing. R
45 46 47	637	Foundation for Statistical Computing, Vienna, Austria.
47 48 49	638	52. Rasheed, M.A., McKenna, S.A., Carter, A. & Coles, R.G. (2014) Contrasting recovery of
50 51	639	shallow and deep-water seagrass communities following climate associated losses in tropical
52 53 54 55	640	north Queensland, Australia. Marine Pollution Bulletin, 83, 491-499.
56 57		
58 59		29
bU		

Page 31 of 55

Diversity and Distributions

1 2		
3 4	641	53. Roberts, C.M., Andelman, S., Branch, G., Bustamante, R.H., Carlos Castilla, J., Dugan, J.,
5 6 7	642	Halpern, B.S., Lafferty, K.D., Leslie, H., Lubchenco, J., McCardle, D., Possingham, H.P.,
8 9	643	Ruckelshaus, M. & Warner, R.R. (2003) Ecological criteria for evaluating candidate sites for
10 11	644	marine reserves. Ecological Applications, 13, 199-214.
12 13 14	645	54. Ruiz-Montoya, L., Lowe, R.J. & Kendrick, G.A. (2015) Contemporary connectivity is
15 16	646	sustained by wind- and current-driven seed dispersal among seagrass meadows. Movement
17 18	647	<i>Ecology</i> , 3, 9.
20 21	648	55. Ruiz-Montoya, L., Lowe, R.J., Van Niel, K.P. & Kendrick, G.A. (2015) The role of
22 23	649	hydrodynamics on seed dispersal in seagrasses. Limnology and Oceanography, 57(5), 1257-
24 25 26	650	1265.
20 27 28	651	56. Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.T.,
29 30	652	Chuang, H.Y., Iredell, M., Ek, M., Meng, H., Yang, R., Mendez, M.P., Van Den Dool, H.,
31 32 33	653	Zhang, Q., Wang, W., Chen, M. & Becker, E. (2014) The NCEP Climate Forecast System
34 35	654	Version 2. Journal of Climate, 27(6), 2185–2208.
36 37	655	57. Spagnol, S., Wolanski, E., Deleersnijder, E., Brinkman, R., McAllister, F., Cushman-Roisin,
38 39 40	656	B. & Hanert, E. (2002) On an error frequently made in the evaluation of advective transport
41 42	657	in two-dimensional Lagrangian models of advection-diffusion in coral reef waters. Marine
43 44 45	658	Ecology Progress Series, 235, 299-302.
46 47	659	58. Sumoski, S. & Orth, R. (2012) Biotic dispersal in eelgrass Zostera marina. Marine Ecology
48 49	660	Progress Series, 471, 1-10.
50 51 52	661	59. Thomas, C.J., Bridge, T.C.L., Figueiredo, J., Deleersnijder, R. & Hanert, E. (2015)
53 54	662	Connectivity between submerged and near-sea-surface coral reefs: can submerged reef
55 56 57	663	populations act as refuges? <i>Diversity and Distributions</i> , 21(10), 1254-1266.
57 58 59		
60		30

2			
3 4	664	60.	Thomas, C.J., Lambrechts, J., Wolanski, E., Traag, V.A., Blondel, V.D., Deleersnijder, E. &
5 6 7	665		Hanert, E. (2014) Numerical modelling and graph theory tools to study ecological
7 8 9	666		connectivity in the Great Barrier Reef. Ecological Modelling, 272, 160-174.
10 11	667	61.	Thomson, A.G., York, P., Smith, T., Sherman, C.H., Booth, D., Keough, M., Ross, D.J. &
12 13	668		Macreadie, P. (2014) Seagrass viviparous propagules as a potential long-distance dispersal
14 15 16	669		mechanism. Estuaries and Coasts, 38, 927-940.
17 18	670	62.	Treml, E.A., Halpin, P.N., Urban, D.L. & Pratson, L.F. (2008). Modeling population
19 20 21	671		connectivity by ocean currents, a graph-theoretic approach for marine conservation.
21 22 23	672		Landscape Ecology, 23(1), 19-36.
24 25	673	63.	Tulipani, D.C. & Lipcius, R.N. (2014) Evidence of eelgrass (Zostera marina) seed dispersal
26 27 28	674		by northern diamondback terrapin (Malaclemys terrapin terrapin) in lower Chesapeake Bay.
29 30	675		<i>PloS ONE</i> , 9, e103346.
31 32	676	64.	Unsworth, R.K.F., Collier, C.J., Waycott, M., McKenzie, L.J. & Cullen-Unsworth, L.C.
33 34 35	677		(2015) A framework for the resilience of seagrass ecosystems. Marine Pollution Bulletin,
36 37	678		100, 34-46.
38 39	679	65.	Unsworth, R.K.F., Hinder, S.L., Bodger, O.G. & Cullen-Unsworth, L.C. (2014) Food supply
40 41 42	680		depends on seagrass meadows in the coral triangle. Environmental Research Letters, 9,
43 44	681		094005.
45 46 47	682	66.	Waycott, M., McMahon, K.M & Lavery, P. (2014) A Guide to Southern Temperate
48 49	683		Seagrasses. CSIRO Publishing, Melbourne, Australia.
50 51	684	67.	Waycott, M., McMahon, K.M., Mellors, J.E., Calladine, A. & Kleine, D. (2004) A Guide to
52 53 54	685		Tropical Seagrasses of the Indo-West Pacific. James Cook University, Townsville,
55 56	686		Australia.
57 58			
59 60			31

Diversity and Distributions

2
3
1
- -
5
6
7
8
9
10
11
12
13
14
14
10
16
1/
18
19
20
21
22
23
20
24
20
26
27
28
29
30
31
32
22
33
34
35
36
37
38
39
40
41
42
-12 12
43
44
45
46
47
48
49
50
51
52
52
23
54
55
56
57
58

59

687	68. Weatherall, E.J., Jackson, E.L., Hendry, R.A. & Campbell, M.L. (2016) Quantifying the
688	dispersal potential of seagrass vegetative fragments: A comparison of multiple subtropical
689	species. Estuarine, Coastal and Shelf Science. 169, 207-215.

- 690 69. Wolanski, E. & Spagnol, S. (2000) Pollution by mud of Great Barrier Reef coastal waters.
 691 *Journal of Coastal Research*, 16, 1151-1156.
- 692 70. Wolanski, E., Lambrechts, J., Thomas, C.J. & Deleersnijder, E. (2013) The net water
 693 circulation through Torres Strait. *Continental Shelf Research*, 64, 66-74.
- 694 71. York, P.H., Davies, J.N. & Rasheed, M.A. (2014) Long-term seagrass monitoring in the
- 695 *Port of Mourilyan 2013.* Centre for Tropical Water & Aquatic Ecosystem Research
 - 696 (TropWATER) report 14/06, James Cook University, Cairns, Australia.

Table 1: Date and tide parameters of seagrass dispersal simulations. Two simulations were

started at each date to simulate particles that were floating and suspended in the water column.

2	
3 ⊿	697
4 5	
6	698
7 8	699
9	
10	700
12	701
13 14	701
15	
16 17	
18	
19 20	
21	
22 23	
24	
25 26	
20 27	
28	
29 30	
31	
32 33	
34	
35 36	
37	
38 20	
39 40	
41	
42 43	
44	
45 46	
47	
48 ⊿q	
50	
51 52	
53	
54	
ວວ 56	
57	702
58 59	

1

Tables

Simulation	Start date	Tide
1	August 1	Spring
2	August 5	-
3	August 9	Neap
4	August 13	-
5	August 17	Spring
6	August 20	-
7	August 23	Neap
8	August 26	-
9	August 29	Spring
10	September 3	-
11	September 8	Neap
12	September 11	-
13	September 15	Spring
14	September 18	-
15	September 21	Neap
16	September 23	-
17	September 26	Spring
18	October 1	-
19	October 7	Neap
20	October 10	-
21	October 14	Spring
22	October 17	-
23	October 21	Neap
24	October 24	-
25	October 27	Spring
26	November 2	-
27	November 6	Neap
28	November 10	-
29	November 14	Spring
30	November 17	-
31	November 20	Neap
32	November 22	-
33	November 25	Spring
34	November 28	-

Figure Legends

Figure 1: (A) Distribution of foundation and non-foundation seagrass meadows in the central

Great Barrier Reef; (B) particle release locations off north Hinchinbrook Island; and (C) the

1
2
3
4
5
5
6
1
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
20
22
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
46
47
+1 10
40 40
49
50
51
52
53
54
55
55
00 57
5/
58
59

location of the central Great Barrier Reef study site relative to Australia.
Figure 2: Discrete habitat units of foundation and non-foundation seagrass meadows in the
central Great Barrier Reef. 124 seagrass meadows were grouped into 31 discrete habitat units
based on similarities in their seagrass genera and biogeographic properties (i.e. located in the
same bay, estuary or island system).
Figure 3: Boxplot of the minimum, first quartile, median, third quartile, and maximum
Euclidean (straight line) distance (kilometres) between the release location and the settling
location of particles across 34 simulations at each discrete habitat unit (Fig. 2). Data in the top
graph did not include a wind advection coefficient and simulated seagrass propagules suspended
in the water column; data in the bottom graph included a 2% wind advection coefficient to
simulate the dispersal of floating seagrass propagules.
Fig. 4. Wind reason of the properties $(0/)$ of particles dispersed at various directions and distances

Fig. 4: Wind roses of the proportion (%) of particles dispersed at various directions and distances
from their origin of simulations that were: (A) floating; and (B) suspended in the water column.

Fig. 5: Potential replenishment index for foundation and non-foundation species when particlesfloat (E and F respectively), are suspended (C and D) in the water column, and both floating and

Diversity and Distributions

suspended (combined; A and B). Particle supply was mapped by multiplying the logarithm of the

number of settled 'virtual' propagules by the number of source discrete habitat units at each grid

2	
3	720
4	/20
5	727
6 7	121
8	728
9	720
10	729
11	125
12	
14	
15	
16	
17	
18	
20	
21	
22	
23	
24	
25 26	
27	
28	
29	
30 21	
31	
33	
34	
35	
36	
38	
39	
40	
41	
42	
43 44	
45	
46	
47	
48 40	
49 50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	

60

1

cell. 729

-18°S

-19°S

Figure 1: (A) Distribution of foundation and non-foundation seagrass meadows in the central Great Barrier Reef; (B) particle release locations off north Hinchinbrook Island; and (C) the location of the central Great Barrier Reef study site relative to Australia.

Figure 2: Discrete habitat units of foundation and non-foundation seagrass meadows in the
central Great Barrier Reef. 124 seagrass meadows were grouped into 31 discrete habitat units
based on similarities in their seagrass genera and biogeographic properties (i.e. located in the
same bay, estuary or island system).

Diversity and Distributions

Figure 3: Boxplot of the minimum, first quartile, median, third quartile, and maximum
Euclidean (straight line) distance (kilometres) between the release location and the settling
location of particles across 34 simulations at each discrete habitat unit (Fig. 2). Data in the top
graph did not include a wind advection coefficient and simulated seagrass propagules suspended
in the water column; data in the bottom graph included a 2% wind advection coefficient to
simulate the dispersal of floating seagrass propagules.

Fig. 4: Wind roses of the proportion (%) of particles dispersed at various directions and distancesfrom their origin of simulations that were: (A) floating; and (B) suspended in the water column.

Diversity and Distributions

Fig. 5: Potential replenishment index for foundation and non-foundation species when particles
float (E and F respectively), are suspended (C and D) in the water column, and both floating and
suspended (combined; A and B). Particle supply was mapped by multiplying the logarithm of the
number of settled 'virtual' propagules by the number of source discrete habitat units at each grid
cell.

Supporting Information

- Additional Supporting Information may be found in the online version of this article:
- **Table S1:** Attributes of 124 seagrass meadows.
- Fig. S1: Graph of the first-order decay function.
- **Appendix S1:** Animations of the dispersal of particles representing 'virtual' seagrass propagules.
- Table S2: Results of the linear mixed-effect model.

<text><text><text><text>

Table S1: Attributes of 124 seagrass meadows. Deep-water seagrass habitats are meadows 122,

123 and 124.

10 11	Meadow	Discrete habitat unit	Species class	Number of release	Area km ²
12	ID	ID	Species ciuss	locations	mea nm
13	1	9	Foundation	1	3.07
14	2	9	Foundation	1	3.14
15 16	3	9	Foundation	1	0.50
17	4	10	Foundation	1	0.42
18	5	9	Foundation	1	0.75
19	6	9	Foundation	3	8.35
20 21	7	11	Foundation	1	2.75
22	8	11	Foundation	1	0.71
23	9	11	Foundation	1	0.74
24	10	11	Foundation	1	1.76
25 26	11	10	Foundation	1	0.67
27	12	11	Foundation	1	2.05
28	13	10	Foundation	1	0.55
29	14	11	Foundation	1	0.64
30 31	15	10	Foundation	2	3 63
32	16	11	Foundation	- 1	4 56
33	17	10	Foundation	1	0.80
34 35	18	10	Foundation	1	0.60
36	19	10	Foundation	1	2 45
37	20	10	Foundation	1	4.06
38	20	10	Foundation	1	0.51
39 40	21	10	Foundation	1	0.91
40	22	10	Foundation	1	17.86
42	23	10 8	Non foundation	4	0.64
43	24	8 7	Foundation	1	0.04
44 45	23	1	Foundation	1	0.45
46	20	0 7	Foundation	1	5.54
47	27		Foundation	1	1.05
48	28	5	Non-foundation	1	0.52
49 50	29	7	Foundation	l	0.49
50 51	30	7	Foundation	l	1.41
52	31	7	Foundation	1	0.55
53	32	5	Non-foundation	1	0.73
54 55	33	7	Foundation	1	0.55
55 56	34	7	Foundation	1	1.60
57	35	6	Foundation	1	2.36

4 37 6 Foundation 1 0.50 6 38 4 Foundation 1 3.57 7 39 4 Foundation 1 0.54 9 40 4 Foundation 1 0.97 10 41 4 Foundation 1 1.29 12 42 4 Foundation 1 0.97 10 41 4 Foundation 1 0.29 12 43 3 Foundation 1 0.88 14 44 3 Foundation 1 2.47 14 44 3 Foundation 3 1.30 02 49 2 Non-foundation 3 1.30 02 49 2 Non-foundation 1 1.37 15 12 Foundation 1 1.04 27 14 Foundation 1 0.42 28 <t< th=""><th>3</th><th>36</th><th>7</th><th>Foundation</th><th>1</th><th>0.52</th></t<>	3	36	7	Foundation	1	0.52
6 38 4 Foundation 1 3.57 7 39 4 Foundation 1 0.54 9 40 4 Foundation 1 0.54 9 40 4 Foundation 1 0.57 10 41 4 Foundation 1 0.69 11 42 4 Foundation 1 0.68 12 43 3 Foundation 1 0.89 14 44 3 Foundation 1 2.34 16 46 3 Foundation 1 2.34 19 48 3 Foundation 3 13.00 21 50 1 Non-foundation 7 38.18 23 51 12 Foundation 1 1.04 24 52 12 Foundation 1 0.42 25 14 Foundation 1 0.42	4 5	37	6	Foundation	1	0.50
7 39 4 Foundation 1 0.54 8 40 4 Foundation 1 0.97 10 41 4 Foundation 1 1.22 11 42 4 Foundation 1 1.09 12 43 3 Foundation 1 0.68 14 44 3 Foundation 1 0.88 15 45 3 Foundation 3 7.84 16 46 3 Foundation 3 13.00 20 49 2 Non-foundation 3 13.00 21 50 1 Non-foundation 7 36.11 24 52 12 Foundation 1 0.42 25 13 Non-foundation 1 0.42 26 53 13 Non-foundation 1 0.42 28 55 14 Foundation 1 0.42<	5 6	38	4	Foundation	1	3 57
8 0 1 Foundation 1 0.97 9 40 4 Foundation 1 1.22 11 42 4 Foundation 1 1.09 13 43 3 Foundation 1 0.68 14 44 3 Foundation 1 0.89 15 45 3 Foundation 1 2.47 16 46 3 Foundation 3 13.00 20 49 2 Non-foundation 3 13.00 21 50 1 Non-foundation 7 38.18 23 51 12 Foundation 1 1.37 25 53 13 Non-foundation 1 0.42 26 55 14 Foundation 1 0.42 25 14 Foundation 1 0.42 25 14 Foundation 1 0.42	7	39	4	Foundation	1	0.54
910414Foundation1 1.22 11424Foundation1 1.09 13433Foundation1 0.68 14443Foundation1 0.89 15453Foundation1 2.47 16463Foundation3 2.34 17473Foundation3 3.30 20492Non-foundation7 36.18 21501Non-foundation7 36.11 22501Non-foundation1 1.37 255313Non-foundation1 0.44 265514Foundation1 0.44 275413Non-foundation1 0.44 285514Foundation1 0.42 285514Foundation1 0.42 295614Foundation1 0.51 315714Foundation1 0.52 335914Foundation1 0.99 366114Foundation1 0.99 366114Foundation1 0.99 366317Non-foundation1 0.99 366416Foundation1 0.81 356817Non-foundation1 0.81 4460 <td< td=""><td>8</td><td>40</td><td>4</td><td>Foundation</td><td>1</td><td>0.97</td></td<>	8	40	4	Foundation	1	0.97
10 11 42 4 Foundation 1 1.22 11 42 4 Foundation 1 0.68 13 43 3 Foundation 1 0.89 14 44 3 Foundation 1 0.89 15 45 3 Foundation 1 2.47 16 46 3 Foundation 1 2.34 19 48 3 Foundation 3 13.00 20 49 2 Non-foundation 7 38.18 21 50 1 Non-foundation 7 38.18 22 50 1 Non-foundation 1 1.07 24 52 12 Foundation 1 0.42 25 53 13 Non-foundation 1 0.42 26 53 13 Non-foundation 1 0.42 27 54 13 Non-foundation 1 0.42 28 55 14 Foundation	9	40	4	Foundation	1	1.22
12424111.01.013433Foundation10.6814443Foundation37.8416463Foundation12.4717463Foundation12.3418473Foundation313.0020492Non-foundation35155.0021501Non-foundation738.18235112Foundation11.37245212Foundation10.4225313Non-foundation10.42265313Non-foundation10.42275413Non-foundation10.42285514Foundation10.42335914Foundation10.42346014Foundation10.82356114Foundation10.994616Foundation10.99477017Non-foundation10.82386317Non-foundation10.81446916Foundation10.81456817Non-foundation10.81466916Foundation10.81477017Non-foundation10.73 <td>10</td> <td>41</td> <td>4</td> <td>Foundation</td> <td>1</td> <td>1.22</td>	10	41	4	Foundation	1	1.22
13435Foundation10.0814443Foundation10.8915453Foundation12.4716463Foundation12.3417473Foundation313.0020492Non-foundation35155.0021501Non-foundation738.18235112Foundation11.37245212Foundation10.42255313Non-foundation10.42285514Foundation10.75305714Foundation10.42295614Foundation10.42335914Foundation10.42346014Foundation10.82356317Non-foundation10.82366114Foundation10.99366317Non-foundation11.18426616Foundation10.44436717Non-foundation10.82366114Foundation10.99376215Non-foundation10.81446616Foundation10.823719Non-foundation10.81 <t< td=""><td>12</td><td>42</td><td>4</td><td>Foundation</td><td>1</td><td>1.09</td></t<>	12	42	4	Foundation	1	1.09
14445Foundation10.6315453Foundation37.8416463Foundation12.4718473Foundation313.0020492Non-foundation35155.0021501Non-foundation738.18235112Foundation730.11245212Foundation11.04255313Non-foundation10.42285514Foundation10.42295614Foundation10.42295614Foundation10.42315714Foundation10.42335914Foundation10.90346014Foundation10.90376215Non-foundation10.99366114Foundation10.99366317Non-foundation11.18426616Foundation10.81446916Foundation10.81456817Non-foundation10.81446916Foundation10.81456817Non-foundation10.73446916Foundation10.73 <td>13</td> <td>43</td> <td>5</td> <td>Foundation</td> <td>1</td> <td>0.08</td>	13	43	5	Foundation	1	0.08
15 45 3 Foundation 5 7.84 16 46 3 Foundation 1 2.47 17 47 3 Foundation 3 13.00 20 49 2 Non-foundation 35 155.00 21 50 1 Non-foundation 7 38.18 23 51 12 Foundation 7 30.11 24 52 12 Foundation 1 1.37 25 53 13 Non-foundation 1 0.42 28 55 14 Foundation 1 0.44 29 56 14 Foundation 1 0.42 28 55 14 Foundation 1 0.42 29 56 14 Foundation 1 0.42 213 59 14 Foundation 1 0.42 23 59 14 Foundation 1 0.99 36 61 14 Foundation <td>14 15</td> <td>44</td> <td>3</td> <td>Foundation</td> <td>1</td> <td>0.89</td>	14 15	44	3	Foundation	1	0.89
17465Foundation1 2.44 18473Foundation1 2.34 19483Foundation3 13.00 20492Non-foundation35 155.00 21501Non-foundation7 38.18 235112Foundation1 1.37 245212Foundation1 1.04 265313Non-foundation1 0.42 285514Foundation1 0.44 295614Foundation1 0.42 315714Foundation1 0.42 335914Foundation1 0.51 346014Foundation1 0.90 376215Non-foundation1 0.90 376215Non-foundation1 0.99 396416Foundation1 0.99 396416Foundation1 0.81 446717Non-foundation1 0.81 456817Non-foundation1 0.81 466916Foundation1 0.81 477017Non-foundation1 0.81 446616Foundation1 0.81 456817Non-foundation1 0.81 4669 </td <td>15</td> <td>45</td> <td>3</td> <td>Foundation</td> <td>3</td> <td>/.84</td>	15	45	3	Foundation	3	/.84
18473Foundation1 2.34 19483Foundation313.0020492Non-foundation35155.0021501Non-foundation738.18235112Foundation730.11245212Foundation11.37255313Non-foundation10.42285514Foundation10.42285514Foundation10.42295614Foundation10.42305714Foundation10.42335914Foundation10.42346014Foundation10.82356114Foundation10.90376215Non-foundation10.99396416Foundation10.99396416Foundation11.88446817Non-foundation11.88446817Non-foundation10.81446817Non-foundation10.81456817Non-foundation10.81446616Foundation10.81457319Non-foundation10.94457518Foundation1 <td>17</td> <td>46</td> <td>3</td> <td>Foundation</td> <td>1</td> <td>2.47</td>	17	46	3	Foundation	1	2.47
19483Foundation313.0020492Non-foundation35155.0021501Non-foundation738.18235112Foundation730.11245212Foundation11.37265313Non-foundation10.42285514Foundation10.44295614Foundation10.44295614Foundation10.44335914Foundation10.42335914Foundation10.42346014Foundation10.82366114Foundation10.99376215Non-foundation10.99406416Foundation10.99416517Non-foundation11.18426616Foundation11.88436717Non-foundation10.81446717Non-foundation10.73456817Non-foundation10.81456817Non-foundation10.73447017Non-foundation10.73527418Foundation10.73547518Foundation1<	18	47	3	Foundation	l	2.34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	48	3	Foundation	3	13.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	49	2	Non-foundation	35	155.00
235112Foundation7 30.11 245212Foundation1 1.37 255313Non-foundation1 0.42 265514Foundation1 0.42 285514Foundation1 0.44 295614Foundation1 0.42 305714Foundation2 4.04 325814Foundation1 0.42 335914Foundation1 0.42 346014Foundation1 0.82 366114Foundation1 0.90 376215Non-foundation2 7.85 386317Non-foundation1 0.99 396416Foundation1 1.18 426616Foundation1 3.86 416517Non-foundation1 3.86 426616Foundation1 0.81 446916Foundation1 0.81 456817Non-foundation1 0.73 466916Foundation1 0.73 527418Foundation1 0.73 537418Foundation1 0.94 547518Foundation1 0.73 557619<	21 22	50	1	Non-foundation	7	38.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	51	12	Foundation	7	30.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	52	12	Foundation	1	1.37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	53	13	Non-foundation	1	1.04
28 55 14 Foundation 1 0.44 29 56 14 Foundation 1 0.75 30 57 14 Foundation 2 4.04 32 58 14 Foundation 1 0.42 33 59 14 Foundation 1 0.51 34 60 14 Foundation 1 0.82 36 61 14 Foundation 1 0.90 37 62 15 Non-foundation 2 7.85 38 63 17 Non-foundation 1 0.99 36 64 16 Foundation 6 28.36 41 65 17 Non-foundation 1 1.18 42 66 16 Foundation 3 12.17 43 67 17 Non-foundation 1 0.81 44 68 17 Non-foundation	26 27	54	13	Non-foundation	1	0.42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	55	14	Foundation	1	0.44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	56	14	Foundation	1	0.75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	57	14	Foundation	2	4.04
33 59 14Foundation1 0.51 34 60 14Foundation1 0.82 36 61 14Foundation1 0.90 37 62 15Non-foundation2 7.85 38 63 17Non-foundation1 0.99 39 64 16Foundation1 0.99 40 64 16Foundation1 1.18 42 66 16Foundation1 1.18 42 66 16Foundation3 12.17 43 67 17Non-foundation1 3.86 44 68 17Non-foundation1 0.81 45 68 17Non-foundation1 0.81 47 70 17Non-foundation1 0.66 48 71 19Non-foundation1 1.20 51 73 19Non-foundation1 0.94 53 76 19Non-foundation1 0.81 55 76 19Non-foundation1 0.58 56 77 19Non-foundation1 0.65 58 19Non-foundation1 0.65	31	58	14	Foundation	-	0.42
34 60 14 Foundation 1 0.82 35 60 14 Foundation 1 0.82 36 61 14 Foundation 1 0.90 37 62 15 Non-foundation 2 7.85 38 63 17 Non-foundation 1 0.99 40 64 16 Foundation 6 28.36 41 65 17 Non-foundation 1 1.18 42 66 16 Foundation 3 12.17 43 67 17 Non-foundation 3 12.17 43 67 17 Non-foundation 3 12.17 44 68 17 Non-foundation 32 145.58 46 69 16 Foundation 1 0.81 47 70 17 Non-foundation 1 1.12 50 72 19 Non-foundation 1 1.20 51 73 19 Non-foundation <td>33</td> <td>59</td> <td>14</td> <td>Foundation</td> <td>1</td> <td>0.51</td>	33	59	14	Foundation	1	0.51
35 60 14 Foundation 1 0.02 36 61 14 Foundation 1 0.90 37 62 15 Non-foundation 2 7.85 38 63 17 Non-foundation 1 0.99 40 64 16 Foundation 6 28.36 41 65 17 Non-foundation 1 1.18 42 66 16 Foundation 3 12.17 43 67 17 Non-foundation 3 12.17 43 67 17 Non-foundation 32 145.58 46 69 16 Foundation 32 145.58 46 69 16 Foundation 1 0.81 47 70 17 Non-foundation 1 0.66 49 71 19 Non-foundation 1 0.73 50 72 19 Non-foundation 1 0.94 54 75 18 Foundation 1 0.81 55 76 19 Non-foundation 1 0.58 56 77 19 Non-foundation 1 0.65 58 78 19 Non-foundation 1 0.65	34	60	14	Foundation	1	0.82
36 61 14 Foundation 1 0.96 37 62 15 Non-foundation 2 7.85 38 63 17 Non-foundation 1 0.99 39 64 16 Foundation 6 28.36 41 65 17 Non-foundation 1 1.18 42 66 16 Foundation 3 12.17 43 67 17 Non-foundation 1 3.86 44 66 16 Foundation 32 145.58 46 69 16 Foundation 1 0.81 47 70 17 Non-foundation 1 0.81 47 70 17 Non-foundation 1 1.12 50 72 19 Non-foundation 1 1.20 51 73 19 Non-foundation 1 0.73 52 74 18 Fo	35	61	14	Foundation	1	0.02
37 62 13 Non-foundation 2 7.83 38 63 17 Non-foundation 1 0.99 40 64 16 Foundation 6 28.36 41 65 17 Non-foundation 1 1.18 42 66 16 Foundation 3 12.17 43 67 17 Non-foundation 1 3.86 44 66 16 Foundation 32 145.58 46 69 16 Foundation 1 0.81 47 70 17 Non-foundation 1 0.66 48 71 19 Non-foundation 1 1.20 50 72 19 Non-foundation 1 0.73 52 74 18 Foundation 1 0.94 53 75 18 Foundation 1 0.81 55 76 19 Non-foundation 1 0.58 56 77 19 Non-foundation 1 0.70 58 78 19 Non-foundation 1 0.65	36	62	14	Non foundation	1	0.90 7.85
39 63 17 Non-foundation 1 0.99 39 64 16 Foundation 6 28.36 41 65 17 Non-foundation 1 1.18 42 66 16 Foundation 3 12.17 43 67 17 Non-foundation 3 12.17 43 67 17 Non-foundation 1 3.86 44 68 17 Non-foundation 3 12.17 45 68 17 Non-foundation 1 3.86 45 68 17 Non-foundation 32 145.58 46 69 16 Foundation 1 0.81 47 70 17 Non-foundation 1 0.73 48 71 19 Non-foundation 1 1.20 51 73 19 Non-foundation 1 0.73 52 74 18 Foundation 1 0.81 55 76 19 Non-founda	37 38	62	15	Non foundation		7.85
40 64 16 Foundation 6 28.36 41 65 17 Non-foundation 1 1.18 42 66 16 Foundation 3 12.17 43 67 17 Non-foundation 1 3.86 44 68 17 Non-foundation 32 145.58 46 69 16 Foundation 1 0.81 47 70 17 Non-foundation 1 0.66 48 71 19 Non-foundation 1 1.12 50 72 19 Non-foundation 1 0.73 52 74 18 Foundation 1 0.73 52 74 18 Foundation 1 0.81 54 75 18 Foundation 1 0.81 55 76 19 Non-foundation 1 0.58 56 77 19 Non-fo	39	03	17	Farm dation		0.99
416517Non-foundation11.18426616Foundation312.17436717Non-foundation13.86446817Non-foundation32145.58466916Foundation10.81477017Non-foundation10.66487119Non-foundation11.12507219Non-foundation10.73517319Non-foundation10.73527418Foundation10.81537619Non-foundation10.81557619Non-foundation10.58567719Non-foundation10.70577819Non-foundation10.65	40	64	10	Foundation	0	28.30
42 66 16 Foundation 3 12.17 43 67 17 Non-foundation 1 3.86 44 68 17 Non-foundation 32 145.58 46 69 16 Foundation 1 0.81 47 70 17 Non-foundation 1 0.66 48 71 19 Non-foundation 1 1.12 50 72 19 Non-foundation 1 0.73 51 73 19 Non-foundation 1 0.73 52 74 18 Foundation 1 0.94 54 75 18 Foundation 1 0.58 56 77 19 Non-foundation 1 0.58 56 77 19 Non-foundation 1 0.70 57 78 19 Non-foundation 1 0.65	41	63	1/	Non-Ioundation	1	1.18
446717Non-foundation13.86456817Non-foundation32145.58466916Foundation10.81477017Non-foundation10.66487119Non-foundation11.12507219Non-foundation11.20517319Non-foundation10.73527418Foundation10.94537518Foundation10.81557619Non-foundation10.58567719Non-foundation10.70577819Non-foundation10.65	42 43	66	16	Foundation	3	12.1/
456817Non-foundation32145.58466916Foundation10.81477017Non-foundation10.66487119Non-foundation11.12507219Non-foundation11.20517319Non-foundation10.73527418Foundation10.94537518Foundation10.81557619Non-foundation10.58567719Non-foundation10.70577819Non-foundation10.65	44	67	17	Non-foundation	l	3.86
466916Foundation10.81477017Non-foundation10.66487119Non-foundation11.12507219Non-foundation11.20517319Non-foundation10.73527418Foundation10.94537518Foundation10.81557619Non-foundation10.58567719Non-foundation10.70577819Non-foundation10.65	45	68	17	Non-foundation	32	145.58
477017Non-foundation10.66487119Non-foundation11.12497119Non-foundation11.20507219Non-foundation10.73517319Non-foundation10.73527418Foundation10.94537518Foundation10.81547519Non-foundation10.58567719Non-foundation10.70577819Non-foundation10.65	46	69	16	Foundation	1	0.81
407119Non-foundation11.12497219Non-foundation11.20507219Non-foundation10.73517319Non-foundation10.73527418Foundation10.94537518Foundation10.81547519Non-foundation10.58567719Non-foundation10.70577819Non-foundation10.65	47 49	70	17	Non-foundation	1	0.66
107219Non-foundation11.20507219Non-foundation10.73517319Non-foundation10.73527418Foundation10.94537518Foundation10.81547519Non-foundation10.58557619Non-foundation10.70567719Non-foundation10.70577819Non-foundation10.65	40 49	71	19	Non-foundation	1	1.12
517319Non-foundation10.73527418Foundation10.94537518Foundation10.81547519Non-foundation10.58567719Non-foundation10.70577819Non-foundation10.65	50	72	19	Non-foundation	1	1.20
527418Foundation10.94537518Foundation10.81547519Non-foundation10.58557619Non-foundation10.70567719Non-foundation10.70577819Non-foundation10.65	51	73	19	Non-foundation	1	0.73
537518Foundation10.81547519Non-foundation10.58557619Non-foundation10.70567719Non-foundation10.70577819Non-foundation10.65	52	74	18	Foundation	1	0.94
557619Non-foundation10.58567719Non-foundation10.70577819Non-foundation10.65587819Non-foundation10.65	วง 54	75	18	Foundation	1	0.81
567719Non-foundation10.70577819Non-foundation10.65	55	76	19	Non-foundation	1	0.58
57 587819Non-foundation10.65	56	77	19	Non-foundation	1	0.70
	57 58	78	19	Non-foundation	1	0.65

2					
3	79	20	Foundation	1	1.01
4 5	80	19	Non-foundation	1	1.82
6	81	19	Non-foundation	1	3.74
7	82	20	Foundation	1	1.88
8	83	20	Foundation	1	0.45
9 10	84	19	Non-foundation	1	0.72
11	85	20	Foundation	1	1 44
12	86	20	Foundation	1	0.66
13	87	18	Foundation	1	2.77
14	88	18	Foundation	1	1.00
16	89	18	Foundation	1	1.80
17	90	18	Foundation	1	2 24
18 10	91	21	Foundation	1	2.21
20	92	21	Foundation	1	0.81
21	93	21	Foundation	1	0.59
22	93	21	Foundation	1	0.59
23	94	21	Non foundation	1	0.30
25	95	22	Non-foundation	1	0.41
26	90	22	Foundation	1	2.00
27	97	21	Non foundation	1	1.01
28 20	98	22	Non-foundation	1	2.22
30	99	22	Non-foundation	1	0.61
31	100	22	Non-foundation	3	6.39
32	101	22	Non-foundation	1	0.75
33 34	102	24	Foundation	1	0.48
35	103	22	Non-foundation	2	3.64
36	104	21	Foundation		1.66
37	105	25	Foundation	3	11.41
38	106	23	Non-foundation	12	68.35
40	107	27	Foundation	1	0.47
41	108	27	Foundation	1	0.62
42	109	27	Foundation	2	7.67
43 44	110	27	Foundation	1	2.27
45	111	28	Non-foundation	1	0.51
46	112	28	Non-foundation	1	0.53
47	113	28	Non-foundation	1	1.43
48 40	114	16	Foundation	21	88.30
- 50	115	17	Non-foundation	6	23.68
51	116	13	Non-foundation	1	5.34
52	117	3	Foundation	3	18.24
วง 54	118	21	Foundation	1	1.52
55	119	24	Foundation	3	11.55
56	120	24	Foundation	1	4.44
57	121	26	Non-foundation	2	5.37
วช 59					

1 2						
2		100	20	Non foundation	18	2083 13
4		122	30	Non-foundation	10 23	2085.15
5 6		123	31	Non-foundation	12	1394 75
o 7 8 9 1 1 1 2 3 4 5 6 7 8 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	771					1394.73
00			-	Disconstruction of Discotly of		
			[Diversity and Distributions		

6

Appendix S1: Animations showing the dispersal of particles for discrete habitat units 3, 16, 24

and 29 (Fig. 2) at four start dates. Only those particles still in movement are displayed (i.e.

settled particles are not displayed).

Discrete habitat	Species class	Fraction	Start date	File name
2	Foundation	Suspandad	1 August	0901N2 sub
3	Foundation	Floating	1 August	$0801N3_sub$
5 16	Foundation	Floating	1 August	$0001N5_sul$
10	Foundation	Electing	1 August	0801N10_SUD
10	Foundation	Floating	1 August	$0801N10$ _sur
24	Non-foundation	Suspended	1 August	0801N24_sub
24	Non-foundation	Floating	1 August	0801N24_sur
29	Non-foundation	Suspended	l August	0801N29_sub
29	Non-foundation	Floating	l August	0801N29_sur
3	Foundation	Suspended	3 September	0903N3_sub
3	Foundation	Floating	3 September	0903N3_sur
16	Foundation	Suspended	3 September	0903N16_sub
16	Foundation	Floating	3 September	0903N16_sur
24	Non-foundation	Suspended	3 September	0903N24_sub
24	Non-foundation	Floating	3 September	0903N24_sur
29	Non-foundation	Suspended	3 September	0903N29_sub
29	Non-foundation	Floating	3 September	0903N29_sur
3	Foundation	Suspended	1 October	1001N3_sub
3	Foundation	Floating	1 October	1001N3_sur
16	Foundation	Suspended	1 October	1001N16_sub
16	Foundation	Floating	1 October	1001N16_sur
24	Non-foundation	Suspended	1 October	1001N24_sub
24	Non-foundation	Floating	1 October	1001N24_sur
29	Non-foundation	Suspended	1 October	1001N29_sub
29	Non-foundation	Floating	1 October	1001N29_sur
3	Foundation	Suspended	2 November	1102N3_sub
3	Foundation	Floating	2 November	1102N3 sur
16	Foundation	Suspended	2 November	1102N16_sub
16	Foundation	Floating	2 November	1102N16_sur
24	Non-foundation	Suspended	2 November	1102N24 sub
24	Non-foundation	Floating	2 November	1102N24_sur
29	Non-foundation	Suspended	2 November	1102N29 [_] sub
29	Non-foundation	Floating	2 November	1102N29_sur

Diversity and Distributions

1 2		
2 3 4	779	Table
5 6	780	(dista
7 8 9	781	(mon
10 11	782	aggre
12 13	783	the 95
14 15 16	784	
17 18 19	785 786	(A) F
$\begin{array}{c} 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\end{array}$	787	(Inter Fmor Fmor Fspec Ftide Ftide Fdept log(cd <i>Mode</i> Globa frelea (Int 28 5.4

10

Table S2: Results of linear	r mixed-effe	ect model to test	for to signi	ificant e	effects o	f predictor variab	oles on the disp	ersal distance	
(distance) at each release lo	ocation of (A	A) floating 'virt	ual' propag	ules an	d (B) su	spended 'virtual'	propagules: m	onth of release	
(month); tide on start date of	of simulation	n (<i>tide</i>); depth (depth); spe	cies (sp	ecies); a	and distance to co	oast (<i>coast</i>). Di	spersal distance	ewas
aggregated at each release	location for	the 34 simulation	ons of float	ing proj	pagules	and the 34 simul	ations of suspe	nded propagule	es, and
the 95 th percentile calculate	ed.								
-									
(A) Floating 'virtual' propa	agules								
Summary statistics full mod	del								
	Value	Std.Error	DF	t-v	alue	p-value			
(Intercept)	5.453471	0.19474034	10522	28.0	0381	< 0.001			
Fmonth November	-1.476736	0.01355755	10522	-108.	92351	< 0.001			
Fmonth October	-1.43034	0.01393982	10522	-102.	60823	< 0.001			
Fmonth September	-1.372027	0.01393982	10522	-98	.425	< 0.001			
Fspecies Non-foundation	-0.023565	0.05629774	315	-0.4	1858	0.6758			
Ftide Neap	-0.001098	0.0122822	10522	-0.0	8936	0.9288			
Ftide Spring	-0.062758	0.01185855	10522	-5.2	9225	< 0.001			
Fdepth Intertidal/Subtidal	-0.70966	0.08384329	315	-8.4	6412	< 0.001			
log(coast + 1)	0.089379	0.01838781	315	4.8	6075	< 0.001			
Model selection table									
Global model call: lme.for	mula(fixed =	= log(distance)	~ fmonth +	fspecie	s + ftide	e + fdepth + log(d)	coast + 1) data	= floating rand	om = ~1
frelease location)								-	
(Int) fdp	fmn	fsp ftd	log(coast	:+1)	df	logLik	AICc	deltaAIC	weight
28 5.459 +	+	+	0.0866	9	10	-8641.124	17302.3	0	0.945
				1					

Diversity and Distributions

	32 5.453 +		+	+ +		0.08938	11	-8642	2.995	17308	5.75	0.053
	20 5.438 +		+			0.08669	8	-8649	9.633	17315.3	13.01	0.001
	12 6.389 +		+	+			9	-8650).222	17318.5	16.19	0
	24 5.432 +		+	+		0.08938	9	-865	1.504	17321	18.76	0
788												
	Final Model											
			Value 📐	Std.Error	DF	7	t-value	p-value				
	(Intercept)		5.458697	0.1940865	5	10522	28.12507	<0	.001			
	Fmonth November		-1.476736	0.0135575	5	10522	-108.92351	<0	.001			
	Fmonth October		-1.43034	0.0139398	2	10522	-102.60823	<0	.001			
	Fmonth September		-1.372027	0.0139398	2	10522	-98.425	<0	.001			
	Ftide Neap		-0.001098	0.012282	2	10522	-0.08936	0.9	288			
	Ftide Spring		-0.062758	0 0118585	5	10522	-5 29225	<0	.001			
	Edenth Intertidal/Sul	otidal	-0 705696	0.0831980	6	316	-8 48213	<0	.001			
	$\log(coast + 1)$	Judui	0.086695	0.0172112	4	316	5 03711	<0	.001			
789	105(00050 + 1)		0.000072	0.01/2112		510	5.05711					
790	(B) Suspended 'virtu	al' prop	pagules									
791	· / -											
	Summary statistics f	ull mod	el									
	<u> </u>		Value	Std.Err	or	DF	t-val	ue	p-value			
	(Intercept)		4.305612	0.21428	961	10522	20.092	249	< 0.001			
	Fmonth November		-0.058105	0.011093	378	10522	-5.237	635	< 0.001			
	Fmonth October		0.170247	0.01140	658	10522	14.925	327	< 0.001			
	Fmonth September		0.063067	0.01140	658	10522	5.528	976	< 0.001			
	Fspecie Non-founda	tion	-0.21/86/	0.061984	484	315	-3.514	-842	< 0.001			
	Ftide Neap		-0.004428	0.01005	502	10522	-0.440	563	0.6595			
	Ftide Spring		0.00615	0.00970	353	10522	0.633	784	0.5262			
	Fdepth Intertidal/Sul	otidal	-1.045538	0.092312	299	315	-11.326	6008	< 0.001			
	log(coast + 1)		0.105338	0.02024	531	315	5.2030	069	< 0.001			
792												
	Model selection tabl	е										

Diversity and Distributions

(I	(nt)	fdp	fmn	fsp	ftd	log(coast+1)	df	logLik	AICc	deltaAIC	weigh
4.	.307	+	+	+		0.1053	9	-6556.011	13130	0	0.961
4.	.355	+	+			0.08053	8	-6560.227	13136.5	6.43	0.039
5.	.219	+	+				7	-6565.687	13145.4	15.34	0
4.	.306	+	+	+	+	0.1053	11	-6563.028	13148.1	18.04	0
5.	.324	+	+	+			8	-6566.056	13148.1	18.09	0
F_{i}	'inal Model										
				Value	Std.	Error DF		t-value p-val	lue		
(I	Intercept)			4.306678	0.2	2142423	10524	20.101903 < 0.0	001		
F	month Nove	mber		-0.058788	0.01	104067	10524	-5.324719 <0.0	001		
F	month Octol	ber		0.169611	0.01	138047	10524	14.903732 <0.0	001		
F	month Septe	mber		0.062431	0.01	138047	10524	5.485821 <0.0	001		
F	specie Non-	foundati	on	-0.217867	0.06	198484	315	-3.514842 <0.0	001		
F	depth Interti	dal/Subt	idal	-1.045538	0.09	231299	315	-11.326008 <0.0	001		
lo	$\log(coast + 1)$	1		0.105338	0.02	2024531	315	5.203069 <0.0	001		
-)										

(A) Distribution of foundation and non-foundation seagrass meadows in the central Great Barrier Reef; (B) particle release locations off north Hinchinbrook Island; and (C) the location of the central Great Barrier Reef study site relative to Australia. Fig. 1

210x296mm (96 x 96 DPI)

14 15

Foundation Non-foundation

Whitsunday

Islands

12

Discrete habitat units of foundation and non-foundation seagrass meadows in the central Great Barrier Reef.

124 seagrass meadows were grouped into 31 discrete habitat units based on similarities in their seagrass

genera and biogeographic properties (i.e. located in the same bay, estuary or island system).

Fig. 2

210x296mm (96 x 96 DPI)

Diversity and Distributions

1 3 2 Bowene 4

65 7 8

Repulse 9

Bay

28^{Mission Beach}

21₁₈

Townsville • 16

16 17

Hinchinbrook

Island

Boxplot of the minimum, first quartile, median, third quartile, and maximum Euclidean (straight line) distance (kilometres) between the release location and the settling location of particles across 34 simulations at each discrete habitat unit (Fig. 2). Data in the top graph did not include a wind advection coefficient and simulated seagrass propagules suspended in the water column; data in the bottom graph included a 2% wind advection coefficient to simulate the dispersal of floating seagrass propagules.

Fig. 3 219x199mm (150 x 150 DPI)

Potential replenishment index for foundation and non-foundation species when particles float (E and F respectively), are suspended (C and D) in the water column, and both floating and suspended (combined; A and B). Particle supply was mapped by multiplying the logarithm of the number of settled 'virtual' propagules by the number of source discrete habitat units at each grid cell. Fig. 5

99x124mm (150 x 150 DPI)