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ABSTRACT
Bacterial communities associated with healthy corals produce antimicrobial

compounds that inhibit the colonization and growth of invasive microbes and

potential pathogens. To date, however, bacteria-derived antimicrobial molecules

have not been identified in reef-building corals. Here, we report the isolation of an

antimicrobial compound produced by Pseudovibrio sp. P12, a common and

abundant coral-associated bacterium. This strain was capable of metabolizing

dimethylsulfoniopropionate (DMSP), a sulfur molecule produced in high

concentrations by reef-building corals and playing a role in structuring their

bacterial communities. Bioassay-guided fractionation coupled with nuclear

magnetic resonance (NMR) and mass spectrometry (MS), identified the

antimicrobial as tropodithietic acid (TDA), a sulfur-containing compound likely

derived from DMSP catabolism. TDA was produced in large quantities by

Pseudovibrio sp., and prevented the growth of two previously identified coral

pathogens, Vibrio coralliilyticus and V. owensii, at very low concentrations

(0.5 mg/mL) in agar diffusion assays. Genome sequencing of Pseudovibrio sp. P12

identified gene homologs likely involved in the metabolism of DMSP and

production of TDA. These results provide additional evidence for the integral role of

DMSP in structuring coral-associated bacterial communities and underline the

potential of these DMSP-metabolizing microbes to contribute to coral disease

prevention.
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INTRODUCTION
Coral reefs are one of the most biologically diverse ecosystems on the planet (Bellwood &

Hughes, 2001; Knowlton, 2001; Pauley, 1997). Each square centimeter of a coral’s surface

harbors several thousand species of microbes (Sunagawa, Woodley & Medina, 2010)

and up to 107 bacterial cells (Garren & Azam, 2010; Koren & Rosenberg, 2006), an

abundance ten times greater, on average, than the surrounding sea water. These microbial

assemblages are often highly specific to their coral host and include large numbers of rare

and sometimes even unique taxa (Sunagawa, Woodley & Medina, 2010). Although the

phylogenetic diversity and dynamics of coral-associated bacterial communities have

been studied for more than a decade (Bourne & Munn, 2005; Bourne et al., 2013;

Littman et al., 2009; Rohwer et al., 2001; Sunagawa, Woodley & Medina, 2010), their

ecological and functional roles in the biology and health of corals are still poorly

understood.

Recent studies have started to unravel the roles that coral-associated bacteria and their

interactions with their coral hosts are likely to play within the coral holobiont. For

example, some members of the Cyanobacteria, Rhizobiales and Vibrionaceae taxa are likely

to fix dissolved nitrogen, a particularly important process in oligotrophic environments

such as coral reefs (Lema, Willis & Bourne, 2012; Lesser et al., 2004; Olson et al., 2009).

Others, like Roseobacter, Pseudomonas and Oceanospirillales, can metabolize

dimethylsulfoniopropionate (DMSP), an organic sulfur compound produced in large

quantities by corals and suspected to play a role in structuring coral-associated bacterial

communities (Raina et al., 2010; Raina et al., 2013). It has also been hypothesized that

bacteria act as a line of defense against invasive pathogens, either by competing for space

and occupying coral niches (Ritchie & Smith, 2004), or by directly producing

antimicrobial compounds that inhibit the growth of invasive microbes in coral mucus

(Ritchie, 2006).

In artificial culture conditions, approximately 25% of the cultivable coral bacteria

produce antimicrobial compounds that prevent the growth of pathogenic

micro-organisms (Ritchie, 2006; Shnit-Orland & Kushmaro, 2008). Several of these

antimicrobial-producing taxa, such as Pseudoalteromonas, Pseudomonas, and the

Roseobacter clade are commonly found in association with numerous coral species

(Nissimov, Rosenberg & Munn, 2009; Radjasa et al., 2008; Rypien, Ward & Azam, 2010;

Shnit-Orland & Kushmaro, 2009). Although the presence of antimicrobial defences in

reef-building corals has been reported (Geffen, Ron & Rosenberg, 2009; Geffen &

Rosenberg, 2005; Gochfeld & Aeby, 2008; Koh, 1997), only few active compounds—all

produced by the coral animal itself—have been isolated to date (Fusetani et al., 1996;

Kodani et al., 2013; Vidal-Dupiol et al., 2011). The aim of this study was to identify specific

antimicrobial compounds and thereby enhance our understanding of the functional roles

played by coral-associated bacteria. Our specific objectives were to: (i) isolate a common

coral-associated bacterium with antimicrobial activity and identify the compound(s)

responsible for the activity; (ii) evaluate the susceptibility of the coral pathogens Vibrio

coralliilyticus and Vibrio owensii to the isolated compound; (iii) determine the effect that
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thermal stress might have on its production; and (iv) investigate the natural abundance

of the antimicrobial compound in coral extracts.

MATERIALS AND METHODS
Bacterial isolation
Healthy colonies of the corals Pocillopora damicornis, Acropora millepora and Montipora

aequituberculata (one colony per species) were collected in November 2011 from Davies

Reef, Great Barrier Reef, Australia (latitude, 18�51′S; longitude, 147�41′E, Great Barrier
Reef Marine Park Authority permit G12/35236.1) and maintained in aquaria for six days

at the Australian Institute of Marine Science (Townsville, Queensland, Australia). Five

replicate coral fragments (approximately 25 mm in length, containing 60–70 polyps) were

collected from each colony and washed in sterile artificial seawater (ASW) to remove

loosely attached microbes. Tissue slurries were produced by airbrushing (80 lb/in2) each

coral fragment into 5 mL of ASW to remove coral tissues and associated microbes. These

tissue slurries were homogenized to break down tissue clumps, and a dilution series was

plated immediately on bacteriological agar (1%) in 1 L ASW supplemented with 0.3%

casamino acids and 0.4% glucose (Hjelm et al., 2004). After two days of incubation at

28 �C, single colonies were transferred into Marine Broth (MB; Difco, BD, Franklin Lakes,

NJ) and grown overnight. Liquid cultures were re-plated on minimal marine agar and the

procedure was repeated until pure cultures were obtained.

Well diffusion assay with bacterial isolates
Fifty bacteria isolated from the coral tissue slurries of the three species (A. millepora = 16,

P. damicornis = 17, M. aequituberculata = 17) were tested for growth-inhibitory

activity against the known coral pathogens Vibrio coralliilyticus P1 (LMG23696) and

V. owensiiDY05 (LMG25443) in a well diffusion agar assay. In brief, the Vibrio strains were

seeded into two different batches of minimal marine agar (after the agar temperature

cooled to 40 �C). Following solidification, wells (diameter 5 mm) were cut into the agar

and loaded with 20 mL of overnight cultures (108 cells/mL) of the test isolates grown in

MB (28 �C, 170 rpm). Plates were incubated at 28 �C and monitored every 24 h for a

period of 72 h for inhibition zones. Phaeobacter strain 27-4 was used as a positive

antagonistic control on each plate because of its broad spectrum inhibitory activity

against Vibrio (Bruhn, Gram & Belas, 2007; Hjelm et al., 2004).

DNA extraction, gene sequencing genomic analyses
One strain, P12 isolated from Pocillopora damicornis, produced the strongest

growth-inhibitory activity against the two target Vibrio strains. High molecular weight

genomic DNA from P12 was extracted using a miniprep phenol-chloroform based

extraction. Briefly, 5 mL of overnight liquid culture of P12 (108 cells/mL) were spun in a

micro-centrifuge (10,000 rcf) for 2 min. The pellet was then resuspended in 567 mL of

TE buffer, 30 mL of 10% SDS and 3 mL of 20 mg/mL proteinase K. The tube was

shaken thoroughly and incubated for 1 h at 37 �C. One hundred microliters of 5 M NaCl

was subsequently added and the sample thoroughly mixed before adding 80 mL of
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CTAB/NaCl (10% CTAB in 0.7 M NaCl). The solution was incubated for 10 min at 65 �C,
extracted with an equal volume of phenol/chloroform/isoamyl alcohol and centrifuged for

10 min (10,000 rcf). The supernatant was then extracted with an equal volume of

chloroform/isoamyl alcohol and centrifuged again for 10 min. The aqueous phase was

transferred to a new tube, DNA precipitated with equal volume of ice-cold isopropanol,

washed with 70% ethanol and dried.

The near complete 16S rRNA gene of the strain was PCR amplified with bacterial

specific primers 63F and 1387R, as outlined in Marchesi et al. (1998). Amplified PCR

products were visualized by electrophoresis on 1% agarose gel stained with ethidium

bromide. The amplified DNA was dried in a vacuum centrifuge (Savant DNA 120) and

sequenced (Macrogen, Inc., Seoul, Korea). The 16S rRNA gene sequence of isolate P12 was

used for phylogenetic comparisons and Maximum Likelihood trees were constructed

using the ARB software.

We produced a draft genome assembly of P12. A paired-end library was prepared using

the Illumina Truseq protocol (Illumina, San Diego, CA, USA), with an insert size of

169 bp and a read size of 150 bp. The library was sequenced on an Illumina MiSeq

instrument at Monash University (Melbourne, Australia). The genome was assembled

with the SPAdes assembler (v2.4.0) (Bankevich et al., 2012) and annotated with the Prokka

software (v1.5.2) (Seemann, 2014). The presence of the genes involved in DMSP

metabolism (dmdA, dddD, dddL, dddP, dddY, dddQ, dddW) and TDA production

(tdaA-tdaH) was investigated by searching for homologs of the corresponding genes

using reciprocal best blast hits.

DMSP metabolic capabilities of the isolate P12
Two different minimal media were used to examine the DMSP metabolic capabilities

of P12: a modified marine ammonium salt medium (MAMS) (Raina et al., 2009)

lacking a carbon source, and a modified basal salt medium lacking a sulfur source

(Fuse et al., 2000) (25 g of NaCl, 0.7 g of KCl, 0.05 g of KH2PO4, 1 g of NH4NO3, 0.2 g of

MgCl2·H2O, 0.02 g of CaCl2·2H2O, 0.005 g of FeEDTA, 1 g of Tris, 5 g of sodium

succinate, 1.35 g of glucose in 1 L of distilled water). DMSP was added to both media

(1 mm), acting either as the sole carbon or sulfur source. Five milliliters of each culture

media were inoculated in triplicate with single P12 colonies and incubated at 28 �C for

six days. Negative controls containing only the basal media and DMSP were used to

account for possible chemical breakdown of DMSP. Bacterial growth was assessed via

optical density measurement (NanoDrop, Thermo Fisher, Waltham, MA, USA). DMSP

metabolism was assessed by 1H Nuclear Magnetic Resonance spectroscopy (NMR).

Methanol (CH3OH; 40 mL) was added to each culture tube, the mixture shaken

vigorously and sonicated for 10 min before being dried in vacuo using a rotary evaporator

(Buchi, Flawil, Switzerland). The dried extracts were resuspended in a mixture of

deuterium oxide (D2O; 250 mL) and deuterated methanol (CD3OD; 750 mL) (Cambridge

Isotope Laboratories, Andover, MA, USA). A 750-mL aliquot of the particulate-free

extract was transferred into a 5-mm Norell tube (Norell Inc., Landisville, NJ, USA) and

analyzed immediately using quantitative NMR (Tapiolas et al., 2013).
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Preparation of crude extracts for antagonist assays
An overnight culture of P12 (8 mL) was used to inoculate 4� 250 mL of MB (total culture

volume = 1 L). Bacterial cells were incubated for two days at 28 �C (120 rpm); the

culture broth was then acidified to pH 2 with sulphuric acid before being exhaustively

extracted with ethyl acetate (3 � 1.5 L). The extract was washed three times with MilliQ

H2O and dried in vacuo using a rotary evaporator (Buchi). The dried extract was then

weighed and resuspended in CH3OH (which was chosen for its ability to solubilize a wide

range of compounds, its volatility and its innocuity in small volume towards both

V. coralliilyticus and V. owensii) and tested in well-diffusion assays to confirm the

extraction of the antimicrobial compound(s).

Purification and characterization of active compound
Purification of the crude extract was carried out using solid phase extraction on a reversed

phase C18 flash vacuum column (Septra C18-E, Phenomenex, Torrance, CA, USA).

Eleven fractions were eluted sequentially with 20, 40, 60, 80 and 90% CH3OH in H2O and

100% CH3OH, followed by 20, 50 and 100% dichloromethane (CH2Cl2) in CH3OH,

40% hexane in CH2Cl2 and finally 100% hexane. Each fraction was dried and resuspended

in CH3OH (1 mg mL-1). Well diffusion assays were prepared as described above. On

each plate, test wells were inoculated with 20 mL of each chromatographic fraction, or

20 mL of CH3OH as a control, and Vibrio growth monitored. The most active faction

(80% CH3OH) presented an intense yellow color. Fine orange-red needles were

crystallized from this active fraction to yield compound 1 (2.1 mg, 1.7% dry weight of

organic extract).

NMR and FTMS analysis
Identification and structural elucidation of compound 1 was achieved using liquid

chromatography–mass spectrometry (LC-MS), NMR, and Fourier Transform mass

spectrometry (FTMS). Likewise these techniques were used to monitor for the presence of

compound 1 in extracts and fractions. LC-MS analyses were performed on a Thermo

Fisher Scientific Ultra High Performance Liquid Chromatography system connected to an

LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA).

Samples were separated on a ACQUITY UPLC BEH RP-C18 column (130 Å, 1.7 mM,

2.1 � 100 mm, solvents A = aqueous 0.1% formic acid and B = acetonitrile, gradient

elution 80% A: 20% B for 0.5 min ramped up to 100% B over 10 min, then held for 4 min,

400 mL) and detected by positive mode electrospray ionisation using two different m/z

ranges: 150–1,500 and 170–400. 1H and 13C NMR spectra of compound 1 were acquired

in a 5 mm 509-UP Norell NMR tube on a Bruker Avance 600 MHz NMR

spectrometer (Bruker, Germany) with a TXI cryoprobe using standard Bruker pulse

sequences. NMR spectra were referenced to residual 1H and 13C resonances in deuterated

chloroform (CDCl3). High resolution mass spectra of compound 1 were measured with a

Bruker BioApex 47e FTMS fitted with an Analytica of Branford ESI source; ions were

detected in negative mode within a mass range m/z 200–1,000 via direct infusion at

120 mL h-1.
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Temperature-dependent activity
The antimicrobial activity of P12 grown at 32 �C (upper limit of coral thermal tolerance)

was compared to that of the control incubated at 28 �C. The two cultures were grown

overnight in MB at the two different temperatures, and their densities were determined by

flow-cytometry (BD Accuri C6, Beckman Coulter, Brea, CA, USA). Cell numbers were

normalized prior to inoculation into agar wells, and their activities against the two

pathogens were compared using well-diffusion assays as described above. The same

procedure was repeated with compound 1: two vials containing equal concentrations

(2 mM of 1 in CH3OH) were incubated overnight at 28 or 32 �C and their antimicrobial

activities compared using the well diffusion assay.

Preparation of coral extracts
The coral species Montipora aequituberculata, M. turtlensis, Pocillopora damicornis,

Acropora millepora, and Porites cylindrica (one colony each; 500 g of dry skeleton

per species) were collected in July 2012 from Orpheus Island, Great Barrier Reef, Australia

(latitude, 18�35′S; longitude, 146�20′E, Great Barrier Reef Marine Park Authority permit

G12/35236.1). Coral tissues were airbrushed (80 lb/in2) into 0.2 mM filtered seawater

(FSW) (total volume = 500 mL), acidified to pH 2 with sulphuric acid and the solution

exhaustively extracted with equal volumes of ethyl acetate (3 � 750 mL). The combined

organic layers were partitioned with MilliQ H2O, dried and tested in well-diffusion assays,

as previously described for the bacterial isolate extracts. The extracts of those coral

species that exhibited antimicrobial activity were subsequently fractionated as described

above for the crude extract from P12 and tested in well-diffusion assays. The active

fractions were analyzed using 1H NMR, FTMS and LC-MS.

RESULTS
Isolate P12: antimicrobial production, taxonomy and metabolic
capabilities
A total of 50 coral-associated bacterial isolates were obtained from tissue slurry

homogenates of the three coral species. Twelve of the 50 strains tested against the two

pathogenic Vibrios (V. coralliilyticus and V. owensii) inhibited their growth in well

diffusion assays. The bioactive isolate that exhibited the strongest in vitro activity

against both pathogens, isolate P12, originated from Pocillopora damicornis and

produced growth inhibition zones of 5 mm (±0.07 mm, n = 20) against V. owensii and

2 mm (±0.09 mm, n = 20) against V. coralliilyticus. The activity of P12 was

temperature-dependent (Figs. 1A and 1B) and was significantly reduced when grown at

32 �C compared to 28 �C (Unpaired T-Test, n = 20, df = 38, t = 30.61, �p < 0.001 for

V. owensii and n = 20, df = 38, t = 10.49, �p < 0.001 for V. coralliilyticus; Fig. 1C). Based on

its bioactivity, the isolate P12 was selected for bioassay-guided fractionation.

According to its 16S rRNA gene sequence (NCBI accession number: KX198136),

isolate P12 is an alphaproteobacterium belonging to the Rhodobacteraceae family and

the Pseudovibrio genus. Its most closely related species is Pseudovibrio denitrificans

(100% identity to the type strain; Fig. 2). Like other P. denitrificans strains
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(Enticknap et al., 2006), P12 colonies formed brown mucoid colonies when grown on

Marine Agar. The brown color was absent when the strain was grown on minimal marine

agar, with colonies appearing white. This strain was able use DMSP as either a sole

carbon or sole sulfur source (Fig. 3). The complete utilization of DMSP from the liquid

media after 2–3 days of incubation, as well as the presence of its metabolic byproduct

dimethylsulfide (DMS), were confirmed by 1H NMR. However acrylate, another possible

byproduct of DMSP metabolism, was not observed.

Among the seven different DMSP degradation pathways currently identified (Moran

et al., 2012), the full DMSP cleavage pathway (dddD, dddB, dddC, dddT, dddR; Table 1),

involved in the conversion of DMSP into DMS without formation of acrylate (Todd et al.,

2007) (Table 1), was identified in P12. We also identified possible orthologs for the

demethylation pathway (dmdA, dmdB, dmdC and dmdD) used by marine bacteria to

assimilate sulfur from DMSP, though these gene have low sequence identity to the genes
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Figure 1 Representative well diffusion assays of (A) Pseudovibrio sp. P12 and (B) pure TDA,

incubated at two different temperatures (28 and 32 �C) and then inoculated onto agar plates with

embedded Vibrio owensii ((-) Negative control). (C) Comparison of the radius of inhibition zones

between the two temperature treatments for both Pseudovibrio sp. P12 (Unpaired T-Test, n = 20, df = 38,

t = 30.61, �p < 0.001 for V. owensii and n = 20, df = 38, t = 10.49, �p < 0.001 for V. coralliilyticus) and pure

TDA (2 mM, Unpaired T-Test, n = 20, df = 38, t = -0.94, p = 0.355 for V. owensii and n = 20, df = 38, t =

0.632, p = 0.531 for V. coralliilyticus).
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originally identified in Ruegeria pomeroyi DSS-3 (Howard et al., 2006; Reisch et al., 2011)

(Table 1). The presence of these two gene pathways corroborates the 1H NMR

measurements: the observed production of DMS without acrylate formation following

DMSP metabolism (DddD pathway); and the ability to use DMSP as sole sulfur source

(DmdA pathway) (Table 1).

Identification of antimicrobial compounds produced by P12
Well diffusion assays revealed that the crude extract from P12 retained the antimicrobial

properties of the strain against both Vibrio species. Purification of the active fractions

using reverse phase liquid chromatography yielded compound 1: optically inactive

orange-red crystals; 2.1 mg (1.7% dry weight); IR (film) �max 3,420, 1,660, 1,280 cm-1;

UV (PDA, CH3OH) �max 512 nm; 1H NMR spectrum (600 MHz, CD3Cl): � 7.12, 7.44,

7.45 and 16.7; 13C NMR (150 MHz, CD3Cl): � 120.3, 132.0, 136.0, 138. 7, 149.5, 168.7,

171.7, and 183.5; HRESIMS m/z found 210.9534 (calculated for C8H3O3S2
- 210.9529,

� 2 ppm). Combined spectroscopic techniques revealed that compound 1 was

tropodithietic acid (TDA) (Brinkhoff et al., 2004; Penesyan et al., 2011) (Fig. 4A).

Orthologs for 11 genes involved in TDA biosynthesis (Geng et al., 2008) were present in

the Pseudovibrio sp. P12 genome (Table 1). The biosynthesis of TDA correlated with

production of the yellow-brown pigmentation in the culture medium and antimicrobial

activity, similar to that previously reported (Brinkhoff et al., 2004; Bruhn et al., 2005;

Porsby, 2010). Both coral pathogens were highly sensitive to TDA, with the pure

compound still visually inhibiting their growth at 0.5 mg/mL (2.35 mM; Fig. 4B). In

contrast to the decrease in antimicrobial activity exhibited by Pseudovibrio sp. P12 after

incubation at 32 �C, TDA activity was not affected by exposure to this temperature

(Unpaired T-Test, n = 20, df = 38, t = -0.94, p = 0.355 for V. owensii and n = 20, df = 38,

t = 0.632, p = 0.531 for V. coralliilyticus; Figs. 1B and 1C).

Investigating the presence of TDA in coral samples
All of the extracts derived from the coral species investigated exhibited antimicrobial

activity against the two pathogens, with the inhibition zones for P. cylindrica,

P. denitrificans FO-BEG1 [FR716549]

P. denitrificans F71059 [HQ908691]

P. denitrificans DN34 [AY486423]

P. ascidiaceicola [AB175663]

P. japonicus [AB246748]

P. axinellae [JN167515]
Phaeobacter sp. 27-4

P. sp. P12
67

99

0.01

Isolate NW001 [AF295099]

P. strain JE062 [DQ097238]

Figure 2 Maximum likelihood phylogenetic tree based on 16S rRNA gene sequences showing the

isolate used in this study (P12 in red) and closely associated Pseudovibrio spp. Note: the strain

FO-BEG1 has been fully sequenced. Phaeobacter sp. 27-4 (AJ536669) was used as outgroup. Maximum

parsimony bootstrap values (10,000 replicates) are given when different from 100. The scale bar indicates

the number of substitution per nucleotide position.
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M. aequituberculata, M. turtlensis and P. damicornis ranging from 3–5 mm in radius

whilst the inhibition zones for A. millepora were much smaller (1 mm on average).
1H NMR, LC-MS and FTMS analyses of the extracts and the active fractions of all coral

�

3.0 2.9 2.83.13.23.33.43.53.6 ppm

Pseudovibrio sp.

Vibrio coralliilyticus

Control

Pseudovibrio sp.

Vibrio coralliilyticus

Control

3.0 2.9 2.83.13.23.33.43.53.6

B

A

ppm

a

a

Figure 3 1H NMR spectra showing DMSP utilization as (A) the sole carbon source and (B) the sole

sulfur source in minimal media at the end of a six-day incubation. The “control” lines in all cases are

the growth medium (with no bacterial inoculation). The black and green spectra show the results from

inoculation with Pseudovibrio sp. P12 and V. coralliilyticus (negative control), respectively. In both cases,

the DMSP signals (within the three boxes, see Tapiolas et al. (2013)) disappeared in the Pseudovibrio

treatment and remain unchanged between the no-bacteria control and the V. coralliilyticus treatment. In

the case of DMSP as a sole sulfur source, Pseudovibrio consumed the DMSP and other carbon sources

present and produced secondary metabolites (appearance of new signals). a: solvent peak (methanol).
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species did not confirm the presence of TDA. The purified TDA could be detected by

LC-MS in femtomolar concentrations when the coral fractions were artificially spiked,

indicating that this lack of detection was not due to preferential ionization. Thus, TDAwas

Table 1 Orthologous genes involved in DMSP degradation and TDAbiosynthesis in Pseudovibrio sp.
P12 genome. Accession numbers available in NCBI (http://www.ncbi.nlm.nih.gov/genbank/).

Gene Function Percent of identity (%) Accession number

DddD L-carnitine dehydratase 70a KM819464

DddT BCCT transporter 70a KM819465

DddB Alcohol dehydrogenase 70a KM819466

DddC Methylmalonate-semialdehyde dehydrogenase 56a KM819467

DddR Transcriptional regulator, LysR family protein 53a KM819468

DmdA Aminomethyl transferase family protein 24b KU521525

DmdB Acyl-CoA synthetase 30b KU521526

DmdC MMPA-CoA dehydrogenase 43b KU521527

DmdD MTA-CoA hydratase 32b KU521528

Alma1 Hypothetical Alma1 ortholog 99c KU521524

tdaA Transcriptional regulator, LysR family protein 66d KU760700

tdaB Glutathione S-transferase domain protein 67d KU760701

tdaC Prephenate dehydratase 67d KU760702

tdaD Acyl-CoA thioester hydrolase 81d KU760703

tdaE Acyl-CoA dehydrogenase 69d KU760704

tdaF Phosphopantothenoylcysteine decarboxylase 72d KU760705

cysI Sulfite reductase hemoprotein beta-component 76e KU760706

malY Cystathione beta-lyase 68e KU760707

paaI Phenylacetate-CoA oxygenase 59f KU760708

paaJ Phenylacetate-CoA oxygenase, PaaJ subunit 73g KU760709

paaK Phenylacetic acid degradation oxidoreductase 57g KU760710

Notes:
Percent of similarity compared to:
a Marinomonas sp. MWYl1 (Todd et al., 2007);
b Ruegeria pomeroyi DSS-3 (Reisch et al., 2011);
c Pseudovibrio sp. FO-BEG1 (Alcolombri et al., 2015);
d Phaeobacter inhibens (Brock, Nikolay & Dickschat, 2014);
e Nesiotobacter exalbescens;
f Rhodopseudomonas palustris;
g Stappia stellulata.

Figure 4 (A) Tropodithietic acid (TDA). (B) Dilution series of pure TDA, showing zones of growth

inhibition against Vibrio coralliilyticus: ((1) 500 mg/mL, (2) 50 mg/mL, (3) 5 mg/mL, (4) 500 ng/mL,

(5) 50 ng/mL, (6) 5 ng/mL, (7) 500 pg/mL, (8) 50 pg/mL, (-) negative control with solvent only).
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either not present in the coral fractions tested or in concentrations below the LC-MS

detection threshold.

DISCUSSION
While previous studies have identified corals as a source of bacteria with antimicrobial

activity (Radjasa et al., 2008; Sulistiyani et al., 2010), this study represents the first

isolation and identification of an antimicrobial compound produced by a reef building

coral-associated bacterium with activity against coral-associated pathogens. TDA was

characterized from a pure culture of Pseudovibrio sp. P12 previously isolated from corals

and strongly inhibited the growth of two coral pathogens. Although we could not confirm

the presence of this molecule in the corals tested, TDA has the capacity to provide

protective antimicrobial properties to the coral host and prevent colonization by invasive

bacterial species.

The strain P12 strongly inhibited the growth of Vibrio coralliilyticus and V. owensii, two

coral pathogens causing white syndrome (a collective term describing rapidly

progressing tissue loss, exposing band-like areas of white skeleton) (Ben-Haim et al., 2003;

Sussman et al., 2008; Ushijima et al., 2012; Willis, Page & Dinsdale, 2004). Vibrio

coralliilyticus exhibits antimicrobial resistance to a wide range of commercial antibiotics

and is also resistant to the activities of a large number of coral-associated bacteria

(Rypien, Ward & Azam, 2010; Shnit-Orland & Kushmaro, 2009; Vizcaino et al., 2010). Its

resistance to commercial antibiotics is considerably greater than that of other marine

pathogens such as V. parahaemolyticus or V. vulnificus, and may contribute to its

competitive advantage within the coral holobiont, as well as its ability to infect corals

(Vizcaino et al., 2010). However, whilst V. coralliilyticus is resistant to many coral-

associated bacteria, its growth was strongly inhibited by the strain P12, emphasizing its

antimicrobial capabilities.

The isolate P12 belongs to the bacterial genus Pseudovibrio (Shieh, Lin & Jean, 2004),

and is ubiquitously found in association with healthy sponges (Enticknap et al., 2006;

Thiel & Imhoff, 2003; Webster & Hill, 2001) and corals (see Table 2). Pseudovibrio are

thought to be involved in symbiotic relationships with various organisms; they are

vertically transmitted in large densities by adult sponges to their larvae (Enticknap

et al., 2006) and their presence is required for the growth of the sulfur-oxidizing

bacteria Beggiatoa in culture (Bondarev et al., 2013). Furthermore, their genome is

organized similarly to that of Rhizobia, a well-characterized symbiotic bacterium

(Bondarev et al., 2013; Enticknap et al., 2006; Kennedy et al., 2009). The full genome

sequences of Pseudovibrio FO-BEG1 (KEGG genome T01669; isolated from a Caribbean

coral, and sharing 100% sequence similarity with P12 based on its 16S rRNA gene

sequence) reveal the presence of genes involved in host-cell adhesion, interactions with

eukaryotic cell machinery, and production of secondary metabolites (Bondarev et al.,

2013), further suggesting that this bacterium is involved in symbiotic relationships with

its hosts.

The Pseudovibrio genus is also known for its antimicrobial properties, especially against

human pathogens such as Mycobacterium tuberculosis, Bacillus cereus, Yersinia
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enterocolitica, Listeria monocytogenes or methicillin-resistant Staphylococcus aureus

(O’Halloran et al., 2011; Sulistiyani et al., 2010). To date, three active compounds have

been isolated from different Pseudovibrio strains: heptylprodigiocin in tunicate-associated

P. denitrificans Z143-1 (Sertan-de Guzman et al., 2007), pseudovibrocin in P. denitrificans

strain PaH3.28 (Vizcaino, 2011) and TDA from red alga-associated P. ascidiaceicola

D323 (Penesyan et al., 2011). In the present study, we isolated TDA from P12, a strain

closely related to P. denitrificans. The ability of P12 to produce TDAwas further supported

by the the presence of the genes essential for TDA biosynthesis in the genome of strain

P12 (Geng et al., 2008). TDA inhibits the growth of a wide range of marine pathogens

(Bruhn, Gram & Belas, 2007; Bruhn et al., 2005) and is produced almost exclusively by

bacteria from the Roseobacter clade, especially the genera Phaeobacter, Silicibacter, and

Ruegeria (Brinkhoff et al., 2004; Bruhn et al., 2005; Geng & Belas, 2010; Geng et al., 2008;

Wilson et al., 2016) that are commonly associated with DMSP-producing dinoflagellates

(Miller et al., 2004; Wagner-Döbler & Biebl, 2006) and reef-building corals (Bourne

et al., 2013; Littman et al., 2009; Raina et al., 2009).

Many members of the Roseobacter clade, including coral-associated isolates, have been

implicated in sulfur cycling (Miller et al., 2004; Moran, González & Kiene, 2003; Raina

et al., 2010). Interestingly, TDA contains two sulfur atoms (C8H4O3S2) and Pseudovibrio

sp. P12 was able to use DMSP either as sole carbon or sole sulfur source, a common

trait among Alphaproteobacteria and especially the Roseobacter clade (Bruhn et al., 2005;

Wagner-Döbler & Biebl, 2006). Bacteria from this clade preferentially metabolize DMSP

rather than sulphate (SO4
2-), despite the latter being between 106–107-fold more

abundant in seawater (Geng & Belas, 2010; Kiene et al., 1999). Based on genomic and

chemical analyses, DMSP metabolism in P12 can occur via two likely routes: the cleavage

Table 2 Summary of Pseudovibrio isolated or sequenced from corals, accession numbers are displayed when available.

Host Location Method Reference Accession numbers

Acropora palmata Panama Amplicon Sunagawa, Woodley & Medina (2010) GU118050, GU118108, GU119014

Porites astreoides Panama Amplicon Sunagawa, Woodley & Medina (2010) GU118050, GU118108, GU119014

Acropora cervicornis Panama Amplicon Sunagawa, Woodley & Medina (2010) GU118050, GU118108, GU119014

Montastrea franksi Panama Amplicon Sunagawa, Woodley & Medina (2010) GU118050, GU118108, GU119014

Tubastraea coccinea China Amplicon Yang et al. (2013) JF925014

Pseudopterogorgia americana Puerto Rico Isolated Vizcaino et al. (2010) GQ406787, GQ406798, GQ391966, GQ406786

Platygyra carnosus Hong Kong Isolated Chiu et al. (2012) JF411474, JF411466, JF411439, JF411464

Oculina patagonica Israel Isolated Koren & Rosenberg (2006) DQ416557, AY654776

Montastrea anularis Florida Isolated Rypien, Ward & Azam (2010) FJ952798, FJ952774, FJ952804

Sinularia sp. Indonesia Isolated Sulistiyani et al. (2010) NA

Acropora almata Florida Isolated Ritchie (2006) DQ530540

Sarcophyton sp. Java Isolated Sabdono & Radjasa (2006) NA

Oculina patagonica Israel Isolated Nissimov, Rosenberg & Munn (2009) NA

Lobophytum sp. Taiwan Isolated Chen et al. (2012) JQ342682, JQ342695, JQ342696, JQ342697

Hard coral Florida Isolated Bondarev et al. (2013) CP003147

Notes:
NA, not available.
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pathway (encoded by dddD, (Todd et al., 2007)) that releases the climate-regulating

molecule DMS, and the demethylation pathway (encoded by dmdA, (Howard et al., 2006))

by which the bacterium can retain the sulfur contained in DMSP molecules.

The biosynthetic pathway of TDA has not been fully elucidated (Brock, Nikolay &

Dickschat, 2014). Both labelling (Cane, Wu & Van Epp, 1992; Thiel et al., 2010) and genetic

dissection (Geng & Belas, 2010) studies have shown that its aromatic skeleton is derived

from phenylacetyl-CoA produced by the shikimate pathway. However, the sulfur donor

allowing the incorporation of the two sulfur atoms into the TDA molecule has not been

clearly identified. It has been proposed that sulfur originating from DMSP metabolism

might be used to synthesize TDA (Bruhn, Gram & Belas, 2007; Bruhn et al., 2005; Geng &

Belas, 2010; Porsby, 2010; Wagner-Döbler & Biebl, 2006). For example, DMSP increases

TDA synthesis two-fold in comparison to other sulfur sources (Geng & Belas, 2010),

suggesting that DMSP is a preferred source of sulfur for TDA biosynthesis. Even though

other sources of sulfur, such as the amino-acids cysteine and methionine present in

artificial media like Marine Broth, might be used to synthesize TDA (Geng & Belas, 2010),

DMSP is by far the most readily available reduced sulfur source in the marine

environment (Simó, 2001). It is therefore likely that in DMSP-rich environments, such as

reef-building corals, DMSP metabolism provides the sulfur needed to produce TDA via

the demethylation pathway (Howard et al., 2006).

The presence of TDA in extracts derived from five coral species (Montipora

aequituberculata,M. turtlensis, Pocillopora damicornis, and Porites cylindrica) could not be

confirmed. Three possibilities can explain this lack of detection: (i) TDA is not

synthesized in corals; (ii) TDA is present in corals in concentrations below the detection

limit of our instruments (which would imply that this compound has a very limited

role in coral defense); and (iii) our sampling effort was not sufficient. Indeed, we only

sampled one colony per species, from a location more than 100 km away from the site

where the TDA-producing bacteria was isolated and without prior characterization of the

bacterial communities present in the colony sampled. Given that TDA-producing

Roseobacters are among the first bacteria to colonize the surface of marine microalgae and

corals (Apprill et al., 2009; Dang & Lovell, 2000; Miller et al., 2004) and can be highly

abundant in some coral species (Raina et al., 2009), it would be premature to rule out

possible TDA biosynthesis in corals.

The activity of P12 against V. coralliilyticus sharply decreased at elevated

temperatures (32 �C), however, the activity of the purified TDA did not. This reveals

that the loss of antimicrobial activity observed for P12 at 32 �C is not due to thermal

sensitivity of TDA but likely to a decrease in its production. Our results are in line with

previously reported decline in the antibacterial activity of other TDA-producing

Roseobacter with temperature increase (Bruhn et al., 2005). Clear links have previously

been identified between warm thermal anomalies and outbreaks of white syndromes

(Bruno et al., 2007; Heron et al., 2010; Maynard et al., 2011). If indeed TDA is

synthesized in vivo, a decrease in its production during anomalously high seawater

temperatures could facilitate pathogen outbreaks in corals following thermal stress,
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especially since the virulence of some disease-causing bacteria (i.e. V. coralliilyticus)

increase at 32 �C (Sussman et al., 2008).

This study demonstrates that a common coral-associated bacterium, Pseudovibrio

sp. P12, produces TDA, a potent antimicrobial compound that inhibits the growth of

marine and coral pathogens, including V. coralliilyticus. The bacterium can use DMSP as

a sole sulfur or carbon source and potentially as a precursor in the biosynthesis of TDA.

The production of TDA by Pseudovibrio sp. P12 is greatly reduced at temperatures

causing thermal stress in corals, potentially providing a window of opportunity for the

growth of pathogens. These results provide additional evidence for the integral role of

DMSP in structuring healthy, coral-associated bacterial communities and suggest that

these DMSP-metabolizing communities may contribute to the prevention of coral

diseases.
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