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Abstract 

Species distribution models (SDMs) frequently project substantial declines in the 

spatial extent of climatically suitable habitat in response to scenarios of future 

climate change. Such projections are highly disconcerting. Yet, considerable 

variation can occur in the direction and magnitude of range changes projected by 

different SDM methods, even when predictive performance is similar. In this study, 

we assessed whether particular methods have a tendency to predict substantial loss 

or gain of suitable habitat. In particular, we asked, “are 14 SDM methods equally 

likely to predict extreme changes to the future extent of suitable habitat for 220 

Australian mammal species?”. We defined five non-mutually exclusive categories of 

‘extreme’ change, based on stability or loss of current habitat, or the dislocation of 

current and future habitat; a) no future habitat (range extinction), b) low stability of 

current habitat (≤ 10% remains), c) no gain of habitat in new locations, d) all future 

habitat is in new locations (i.e. completely displaced from current habitat) and e) 

substantial increase in size of habitat (future habitat is ≥ 100% larger than current). 

We found that some SDM methods were significantly more likely than others to 

predict extreme changes. In particular, distance-based models were significantly less 

likely than other methods to predict substantial increases in habitat size; Random 

Forest models and Surface Range Envelopes were significantly more likely to predict 

a complete loss of current habitat, and future range extinction. Generalised Additive 

Models and Generalised Linear Models rarely predicted range extinction; future 
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habitat completely disjunct from current habitat was predicted more frequently than 

expected by Classification Tree Analysis and less frequently by Maxent. Random 

Forest generally predicted extreme range changes more frequently than other SDM 

methods. Our results identify trends among different methods with respect to 

tendency to predict extreme range changes. These are of significance for climate-

impact assessments, with implications for transferability of models to novel 

environments. Our findings emphasise the need to explore and justify the use of 

different models and their parameterisations, and to develop approaches to assist 

with optimisation of models. 

 

Highlights 

● Species distribution models frequently predict substantial range shifts due to 

climate change 

● Frequency of predictions of extreme range changes varies across SDM 

methods 

● Random Forest was more likely than other methods to predict extreme range 

changes 

● Distance-based models never predicted substantial increases in range size 
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Introduction 

Contemporary anthropogenic climate change has already resulted in shifts in the 

range margins of numerous, diverse taxa (Melles et al., 2010; Chen et al., 2011; 

Garroway et al., 2011; Rubidge et al., 2011), and paleoecological data suggest that 

range shifts were the norm during previous episodes of climate change (Birks, 1989; 

Huntley, 1990; Graham, 1992; Willis & MacDonald, 2011). Understanding the extent 

to which species distributions may shift in response to climate change over the 

course of this century and beyond may assist in identifying species vulnerable to 

climate change, prioritising conservation efforts, and developing optimal adaptation 

and land management plans.  

 Correlative species distribution models (SDMs) are frequently used to 

examine the potential for changes to the distribution and quality of habitat under 

scenarios of future climate (Franklin, 2010). This approach is based on the 

assumption that the location of populations reflects the environmental preferences 

and tolerances of a species (Guisan & Thuiller, 2005). Models of this relationship, 

based on the observed subset of those populations, can then be used to assess the 

suitability of a region, for a particular species, under current, past or future climate. 

Such climate change experiments assume that relationships inferred from historical 

data remain consistent under a changing climate (Maraun, 2015).   

 Predictions of broad-scale changes in species’ distributions in response to 

climate change have contributed to substantial concern regarding the fate of 
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biodiversity in a warming world (e.g. Thomas et al., 2004; Ben Ras Lasram et al., 

2010; Sauer et al., 2011; Ihlow et al., 2012; Ochoa-Ochoa et al., 2012; Warren et al., 

2013). Numerous studies indicate that, under climate change, a sizeable proportion 

of species will be faced with an absence of suitable habitat (range extinction), or 

future habitat that is completely disjunct from current habitat. For example, ~24% of 

Mexican amphibian species are at risk of losing all habitat by 2080 (Ochoa-Ochoa et 

al., 2012), while habitat for nearly 12% of the world’s Chelonian species may lie in 

areas currently unsuitable (Ihlow et al., 2012). Depending upon the scenario of 

greenhouse gas emissions, 11–19% of 1,541 seed plants in Alberta, Canada, were 

predicted to lose > 90% of current habitat by 2080 (Zhang et al., 2015). Similarly, an 

analysis of 2,954 species across North and South America predicted the loss of all 

existing habitat for at least 10% of species by 2071–2100 (Lawler et al., 2009). In 

one of the largest studies to date, Warren et al. (2013) estimated that after 

accounting for dispersal, 2 –6% of 5,382 animal species would lose 

≥ 90% of current habitat. Hence, predictions by SDMs indicate that 

t he  r a t e  of  ext i nc t i on i n t he  21st century may exceed estimates of historical 

extinction events from the fossil record. However, there is on-going debate as to the 

accuracy of SDMs and whether they will over- or under-estimate range changes and 

extinction (see review by Bellard et al., 2012). 

In recent years the number of methods for fitting SDMs has increased 

considerably (Elith & Graham, 2009; Elith & Leathwick, 2009; Franklin, 2010), and 
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now includes distance-based or profile models (e.g. BIOCLIM, Nix, 1986; Booth et 

al., 2014), statistical models that can fit complex non-linear relationships (such as 

Generalised Additive Models) and machine-learning techniques (Elith et al., 2008; 

Elith & Leathwick, 2009). These methods differ in complexity, data requirements and 

ease of use, and their characteristics have been well-described elsewhere (e.g. 

Syphard & Franklin, 2009; Franklin, 2010; Xinhai & Wang, 2013).  

SDM method choice is influenced by access to software, data availability (e.g. 

presence only or presence/absence records), user ability and the particular goals of 

the study (Segurado & Araújo, 2004; Elith & Leathwick, 2009; Ahmed et al., 2015), 

although different disciplines and geographic regions have traditionally utilized 

different techniques (Elith & Leathwick, 2009). However, identification of the most 

appropriate SDM method is complicated by a number of factors, and multi-model 

comparisons have repeatedly concluded that there is no single ‘best’ method (Elith et 

al., 2006; Diniz Filho et al., 2010). 

Several studies have suggested that SDM methods with high flexibility in 

modelling complex species-environment relationships may outperform simpler 

methods (Elith et al., 2006; Tsoar et al., 2007; Li & Wang, 2013). For instance, 

machine-learning algorithms (such as Random Forests, Maxent and Boosted 

Regression Trees) frequently outperform regression-based approaches (e.g. 

Multivariate Adaptive Regression Splines and Generalised Linear Models) (Bucklin 

et al., 2015, but see Guillera-Arroita et al., 2015). Others caution the use of complex 

methods: while these may predict observed occurrence patterns well, they may 
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result in overfitting, and hence may not necessarily predict an acceptable 

representation of the species’ potential distribution (Diniz-Filho et al., 2010; Li & 

Wang, 2013). Models with high predictive accuracy for the data used in their 

calibration may also demonstrate poor transferability (or generality); that is, their 

performance may decline when projected onto different geographic regions 

(Heikkinen et al., 2012) or time periods (Fronzek et al., 2011). The Random Forest 

model, for example, generally has high predictive capacity as determined by AUC 

(the area under the receiver-operating characteristic curve) calculated on data 

similar to those used for model-fitting (Coetzee et al., 2009; Virkkala et al., 2010; Yen 

et al., 2011). However, this model has been shown to have lower transferability than 

other SDM methods, such as Generalised Linear Models (Heikkinen et al., 2012; 

Crimmins et al., 2013).  

Different SDM methods may also have similar predictive performance (e.g. as 

quantified by the AUC or True Skill Statistic [TSS]; Allouche et al., 2006) yet 

generate very different predictions of suitable habitat (Beaumont et al., 2009; 

Parviainen et al., 2009; Syphard & Franklin, 2009). These differences can be 

magnified when models are projected onto alternative climate scenarios (for which 

there is also no ‘best’ choice), with different SDMs varying in the magnitude and 

direction of predicted changes (Pearson et al., 2006; Beaumont et al., 2007; 

Beaumont et al., 2008). Model performance can also be influenced by a species’ 

characteristics and its distribution data (Syphard & Franklin, 2009; Dobrowski et al., 

2011; García-Callejas & Araújo, 2015), selection of predictor variables (Barbet‐
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Massin & Jetz, 2014) and geographic location (Engler et al., 2011). As such, the 

choice of SDM method constitutes the primary source of variation in predictions of 

species’ future distributions (Buisson et al., 2010; Garcia et al., 2012). 

These factors have led to the current trend to combine multiple models into 

‘ensembles’ (Araújo &  New, 2007, Beaumont et al., 2009, Marmion et al., 2009b; 

Grenouillet et al., 2011; Garcia et al., 2012; Xinhai & Wang, 2013). Ensemble 

modelling experiments can then be used to distinguish regions of model consensus 

(i.e. where most models agree that the environment is suitable/unsuitable) from 

regions where there is disagreement. A number of studies have found that 

ensembles outperform individual models (Marmion et al., 2009a; Yen et al., 2011; 

Grenouillet et al., 2011; Crossman et al., 2012), however, the use of ensembles can 

still be problematic (Elith et al., 2010; Rapacciuolo et al., 2012; Crimmins et al., 

2013) as errors/biases in individual SDMs may lead to incorrect conclusions being 

drawn from the ensemble. 

While previous studies have assessed sources of variation in SDM output 

(e.g., Dormann et al., 2008; Nenzen & Araujo, 2011; Watling et al., 2015), less 

attention has been given to whether particular SDM methods are biased towards 

predicting substantial loss or gain of suitable habitat, and if so, why. Therefore, in 

this study, we explored ‘extreme’ range changes predicted by 14 SDM methods 

incorporated into the R packages biomod2 (Thuiller et al., 2012) and dismo (Hijmans 

et al., 2011). In particular, we asked whether these SDM methods predicted 

‘extreme’ range changes with equal frequency. We defined five non-mutually 
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exclusive categories of extreme change, based on stability or loss of current habitat 

or the dislocation of current and future habitat: a) no future habitat (range extinction), 

b) low stability of current habitat (i.e.  ≤ 10% of current habitat remains, although 

future habitat may be predicted in new locations), c) no gain of habitat in new 

locations (future habitat is identical to, or a subset of, current habitat), d) all future 

habitat is in new locations (future habitat does not overlap with current habitat), and 

e) substantial increase in size of habitat (i.e. future habitat is at least twice the size of 

current habitat). We modelled future habitat suitability for 220 mammal species 

across Australia and compared the proportion of predictions from each SDM method 

that calculated these extreme range changes. 

 

Methods 

Species records 

For this study, we focused on native terrestrial mammal species in Australia, as their 

distributions are generally well known and their taxonomy has been resolved. 

Occurrence records for the 338 extant mammal species recorded on the National 

Species List (NSL) were downloaded from the Atlas of Living Australia (ALA, 

www.ala.org.au). The ALA aggregates species records from a wide array of 

providers including the major museums across the country and maintains the NSL. 

We applied a number of filters before downloading data, requiring that records be 

resolved to species-level, observations were made after January 1950, and were 

http://www.ala.org.au/
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georeferenced. Observations were discarded if the referenced location was 

classified by ALA as an environmental outlier. After downloading, records were 

aggregated to a spatial resolution of 5 × 5 km, and reduced to a maximum of one 

record per species, per cell. We excluded species for which there were fewer than 

ten occurrence records, since models fit with so few data may be unreliable 

(Stockwell & Peterson 2002; Hernandez et al., 2006; van Proosdij et al. 2016). This 

left 220 species with between 10 and 7,137 records that, when combined, spanned 

the breadth of the continent (Supplementary Information Table S1). These species 

belong to seven orders: Chiroptera (bats, n = 54 species), Dasyuromorphia 

(carnivorous marsupials, n = 46), Diprotodontia (e.g. kangaroos, wallabies, possums, 

n = 66), Monotremata (platypus, echidna, n = 2), Notoryctemorphia (marsupial mole, 

n = 1), Peramelemorphia (omnivorous marsupials such as bandicoots and bilbies, n 

= 5) and Rodentia (native rats, n = 46) (Supplementary Information Table S1). 

  

Current climate data 

Eight bioclimatic variables for the current period (1950-2000) were derived using 

ANUCLIM 5.1 (Houlder et al., 2000), at a resolution of 5 × 5 km. These variables 

were selected due to their influence on the physiological and distributional limits of 

vertebrates, and included annual mean temperature (T), temperature seasonality 

(TS), maximum temperature of the warmest month (Tmax), minimum temperature of 

coldest month (Tmin), annual precipitation (Pr), precipitation seasonality (PS), 

precipitation of the driest quarter (Pdry) and precipitation of wettest quarter (Pwet). 
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We recognise that there are correlations among these data. We have elected to 

utilise a common set of variables to provide consistency between models, thereby 

aiding direct comparisons. For multi-species studies such as ours where, combined, 

the target species cover a broad geographic region it is unlikely that a common set of 

predictor variables that are uncorrelated across all species can be identified. 

Generating distinct subsets for individual species would be worthwhile but is 

computationally challenging. 

 

 

Future climate data 

We utilised future climate data developed by Reside et al. (2013), for the 30-year 

period centred on 2055 and based on the RCP8.5 greenhouse gas concentration 

trajectory (the highest of the four Representative Concentration Pathways presented 

in the Intergovernmental Panel on Climate Change’s Fifth Assessment Report, with 

radiative forcing exceeding 8.5 Wm-2 by 2100, see Moss et al., 2010). We chose two 

global climate models (GCM) for comparison, which represented contrasting futures 

based on similarity to Australia’s current climate in terms of average temperature and 

precipitation. In doing so, our aim was to take account of the existing variability in 

future climates and test the SDM methods with the output from two GCMs that 

represent the range of this variability. Of the 18 GCMs we examined, the National 

Centre for Atmospheric Research’s Community Climate System Model v 3.0 (NCAR-

CCSM3; Collins et al., 2004) was the most similar to current temperature and 
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precipitation (averaged across the continent), whereas the Max Planck Institute for 

Meteorology’s atmospheric general circulation model (MPI-ECHAM5; Roeckner et 

al., 2006) extrapolated the most for temperature and was among the most different 

for precipitation.  

 

Species distribution models 

To explore variability across alternate SDM methods, we used an ensemble of 14 

algorithms included in the R packages dismo v1.0-5 (Hijmans et al., 2011) and 

biomod2 v3.1-64 (Thuiller et al., 2012). These represent the gamut of approaches 

used by ecologists and conservation practitioners, and include (i) three regression-

based approaches (Generalised Linear Models [GLM, McCullagh and Nelder, 1989], 

Generalised Additive Models [GAM, Hastie et al., 1990], Multivariate Adaptive 

Regression Splines [MARS]), (ii) four machine-learning methods (Artificial Neural 

Networks [ANN, Lek & Guégan, 1999], Random Forests [RF, Breiman, 2001], 

Boosted Regression Trees [BRT, included in both packages, Friedman, 2001; Elith 

et al., 2008], and Maxent [Phillips et al., 2006]), (iii) two classification schemes 

(Classification Tree Analysis [CTA, Brieman et al., 1984], Flexible Discriminant 

Analysis [FDA, Hastie et al., 1994]), and (iv) four distance-based or profile methods 

(Surface Range Envelope [SRE], BIOCLIM [Nix, 1986; Busby, 1991], Domain 

[Carpenter et al., 1993], Mahalanobis [Mahal, Farber & Kadmon, 2003]). Of the 

above, biomod2 was used to fit models GLM, GAM, MARS, ANN, RF, CTA, FDA 

and SRE and the first implementation of BRT (denoted from now as BRTbio); 
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BIOCLIM, Domain, Mahal and the second implementation of BRT (denoted as 

BRTdis) were derived from dismo. Maxent was implemented separately via the 

command line. Characteristics of each algorithm, in the context of species 

distribution modelling, have been described in detail elsewhere (Elith et al., 2006; 

Phillips et al., 2006; Phillips & Dudik, 2008; Elith et al., 2011; Hijmans & Elith, 2013; 

Xinhai & Wang, 2013), and default settings are listed in Supplementary Information 

Table S2.  

We ran most models with their default settings (Supplementary Information 

Table S2). Maxent was run with threshold features disabled, while “fadebyclamping” 

was enabled for its predictions. Note also that the two BRTs differed in their 

implementation, with the dismo function using a cross-validation procedure to 

estimate the optimal number of boosting trees. Further, BRTdis has a default tree 

complexity of 1 (meaning that it fits only additive terms) while in BRTbio (where 

complexity is referred to as interaction.depth) this value is 7. As such, BRTbio allows 

up to seven-way interactions, and can thus fit models of far greater complexity. 

Similarly, SRE (biomod2) and BIOCLIM (dismo) are different modifications of Nix’s 

(1986) original BIOCLIM. This model is a straight-forward boxcar or parallelepiped 

approach, whereby the species envelope is bounded by the minimum and maximum 

values for all presences (or adjusted to exclude outliers) (Booth et al., 2014). The 

default setting for this model (SRE) in biomod2 excludes values above the 97.5th 

percentile, and below the 2.5th percentile for each variable, preventing these from 

setting the tolerance boundaries for the species (Thuiller et al., 2012). As such, 
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predictions are binary (suitable/unsuitable). In contrast, in dismo’s BIOCLIM a 

greater range of percentiles are calculated, with the assumption that areas closer to 

the median are more suitable (Hijmans et al., 2011), and allowing for output that is 

continuous. 

 

Background data: Absence data were unavailable for this study, and it is highly likely 

that occurrence records sourced from natural history collections contain sampling 

biases. One approach to reducing the impact of these biases is to utilise background 

data that have the same sampling distribution as the occurrence records (i.e. target-

group background) (Elith & Leathwick, 2007; Phillips & Dudik, 2008). Hence, 

background data comprised the occurrence records for all mammals. We note, 

however, that this approach may also inflate accuracy measures for species with 

narrow distributions, due to high specificity (see Lobo et al., 2008). 

 

Model calibration and performance: The predictive performance of models was 

assessed by the True Skill Statistic, TSS. In the context of SDMs, TSS is a 

threshold-dependent measure based on sensitivity (Se) and specificity (Sp), or the 

probability that the model correctly predicts true presences and true absences, 

respectively (Allouche et al., 2006; Liu et al., 2009). Specifically, TSS = Se + Sp − 1. 

Values therefore range from -1 to 1, with values below 0.4 indicating poor model 

discrimination between occurrence and background locations (i.e., Se and Sp are, 

on average, less than 0.7) and values close to 1 indicating excellent discrimination. 
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We used ten-fold cross-validation to estimate out-of-sample predictive performance. 

For each species, this entailed splitting model-fitting data into ten subsets of 

approximately equal size (i.e., folds), fitting each model to nine of the ten folds, and 

predicting to the tenth. This process was repeated until each fold had been used 

nine times for fitting and once for testing. TSSwas calculated for the predictions to 

each test fold, with the average of the ten TSSs values used to estimate the 

performance of the final model (see below). 

 

Final models: Models were calibrated with all available occurrence data and 

projected onto current climate and two climate futures for 2055 (described above). 

Continuous predictions were converted to binary layers indicating suitable/unsuitable 

habitat, with threshold values chosen to maximise the sum of sensitivity and 

specificity (equivalent to maximising TSS) as this threshold tends to well reflect the 

modelled species’ prevalence (Jimenez-Valverde & Lobo, 2007).  Further, this 

threshold is less sensitive to modelling method, and has been demonstrated to 

produce less variation across the output of multiple models than most other 

thresholds (Nenzen & Araujo, 2011). Models with an average cross-validated TSS 

below 0.4 were removed from further analyses, since these are considered to have 

low accuracy (see BIOMOD manual from Thuiller et al. 2012). 

 

Statistical Analyses 
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Changes in habitat suitability predicted by SDM methods can be summarised as the 

proportion of current habitat (cH) that remains suitable in the future (i.e. is ‘stable’), 

and the proportion of future habitat (fH) that is located in areas currently unsuitable 

(i.e., ‘gain’ of new habitat). Based on these definitions of stability and gain, we 

assessed five non-mutually exclusive categories of extreme changes to the spatial 

configuration of suitable habitat. When graphed along these two axes models may 

predict a number of extreme outcomes (Fig. 1). For the purposes of this study, we 

categorised extreme to include the following, although we note that ‘extreme’ may be 

context dependent: 

a) No fH (i.e. range extinction); 

b) Low stability of cH (< 10% of cH remains stable, although gains may occur 

elsewhere); 

c) No gain of new habitat (i.e. fH is entirely contained within cH; this excludes 

predictions that meet criterion (a) of no fH); 

d) All fH is gain (i.e. all fH is in previously unsuitable areas); and 

e) fH is at least double the size of cH. 

 

For each of the above, we tested the null hypothesis that all 14 SDM methods 

used in this study predict that extreme scenario with equal frequency. Under the null 

hypothesis, the expected frequency of extremei, predicted by SDMj, was calculated 

as the number of predictions made by SDMj as a fraction of the total number of 

predictions (i.e. made by all 14 SDMs), multiplied by the total number of instances of 
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extremei. Chi-squared Goodness-of-fit tests were used to assess the null hypothesis. 

When p < 0.05, we calculated the standardised residuals (��) of the contingency table 

to identify for which SDM(s) the observed frequency (fo) deviated significantly from 

the expected (fe).  A larger �� means a greater difference between fo and fe, and 

provides an indication of the contribution of the SDM method to the significance of 

the Chi-squared test. For any SDM method with |��| > 2, fo differs from fe at a 

significance level of p < 0.05. Negative and positive �� indicate that fo is less than or 

greater than fe, respectively (Sheskin, 2004). 

Scatterplots of stable habitat versus habitat gain were created to reveal any 

patterns amongst this relationship across either SDM method or taxonomic order. All 

statistics were calculated in R v. 3.1.2 (R Development Core Team, 2014). 

 

Results 

SDM predictive power 

We calibrated 3,080 models (220 species × 14 SDM methods), of which 160 

returned errors and were excluded from further analysis. These were primarily CTA 

(133 models) and ANN (28). In each case, the model failed due to a single value 

being predicted (i.e. all presences or all absences), resulting from the model being 

unable to discriminate between these. For the remaining 2,920 models, predictive 

performance measured using TSS averaged 0.784 (SD = 0.158), although this 

varied considerably across the 14 algorithms (Fig. 2a). Classification methods 
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generally had poorer performance, in terms of TSS, than machine learning 

techniques (ranging from mean TSS for CTA 0.537 ± S.D. 0.240 to mean TSS for RF 

0.997 ± S.D. 0.008). 

We excluded from further analyses 226 models (7.7%) that did not meet the 

TSS threshold of 0.4. Of these, 68 were modelled by Mahal and 24 by CTA. In 

contrast, all RF models, and all but one GBA and Maxent model exceeded the 

threshold. Hence, the number of projections in our final analysis was 2,694 (Table 2). 

Among the five mammal taxonomic orders, mean TSSvalues were lowest for 

Notoryctemorphia, which is represented here by a single species (0.634 ± 0.183), 

and highest for Diprotodontia (0.822 ± 0.137) and Peramelemorphia (0.829 ± 0.107) 

(Supplementary Information Fig. S1).  

 In general, distance-based methods tended to predict a larger area of current 

habitat than other SDM methods, with projections by Mahal being, on average, two 

orders of magnitude greater (3.03 × 106 ± 2.27 × 106 km2), than those from RF (3.55 

× 104 ± 7.16 × 104 km2) (Fig. 2b).  

 

Predictions of future distributions - overview 

SDM methods differed in how frequently they projected extreme range changes. 

Across all species, SDM methods and climate futures, changes to the overall area of 

suitable habitat were right skewed, with 66.3% of models predicting declines to the 

area of fH relative to cH (median change = -25.3% [10:90th percentiles: -90 to 

121.8%]). Only 6.3% of models predicted that the area of fH would be similar to that 
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of cH (i.e. within 5%) while 4.2% predicted there to be no suitable habitat in the 

future (extreme a). At the other end of our spectrum of extremes, 11.5% of models 

predicted that the area of fH would be at least double that of cH (extreme e), and 

more than half of these (7.7%) predicted the area of suitable habitat to triple. 

Of course, range changes comprise a mix of contraction of cH and expansion 

into new areas (i.e. ‘gain’). Total loss of cH was projected for ~9% of models, 

with an additional 10% predicting that ≤ 10% of cH would remain by 

2050 (extreme b). Approximately 5.6% of projections reported no gain in fH (extreme 

c) while 5.4% predicted that all fH would lie in currently unsuitable areas (extreme d).  

Projections onto ECHAM5 (which was the least similar to current conditions) 

predicted greater and more variable changes in range size than projections onto the 

CCSM3 climate (ECHAM5: median -38.7% [10-90th percentile; -94.8%, 167.4%]; 

CCSM3: median -11.6% [10-90th percentile; -80.5%, 84.1%]). 

 Four mammal orders were represented by > 5 species (Chiroptera, 

Dasyuromorphia, Diprotodontia, Rodentia). For Chiroptera, < 1% and 2% of 

projections predicted no fH (CCSM3 and ECHAM5) while 12.8% and 21.6% 

predicted range area to more than double. Across the models for Diprotodontia, 6% 

predicted no fH, while 7.1% predicted fH to double (ECHAM5). Current suitable 

habitat was predicted to decline substantially (> 90%) for 27% of Rodentia models 

while 17% predicted fH to double (ECHAM5). 

 

Do SDM methods project extreme spatial changes with equal frequency? 
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We assessed the hypothesis that the 14 SDM methods were equally likely to project 

particular range changes, i.e. fe (expected frequency) of a given extreme equals the 

number of projections of that extreme by SDMi as a fraction of all SDM projections. 

In total, 5,388 projections of future distributions were analysed (2,694 for each 

climate future). The total number of models with sufficient predictive capacity (TSS ≥ 

0. 4) varied across algorithms, resulting in fe ranging from 0.023 (CTA) to 0.082 (RF) 

(Table 1).  

Chi-squared test statistics ranged from 49.3 to 297.6 for the five categories of 

extreme change and were significant to at least p = 0.0001 (Table 3). This 

demonstrates that the 14 SDM methods are unequally represented in each category 

(Supplementary Information Table S2). Across the five categories, RF was frequently 

the most under- or over-represented method.  

 

a) No future habitat (fH) 

Of the 2,694 models projected onto both climate futures (ECHAM5 and CCSM3), 

144 (5.3%) and 80 (3.0%) predicted total loss of fH, respectively. RF accounted for 

approximately half of these, making it significantly more likely than the other methods 

to return this result (�� = 12.85, 16.13 for ECHAM5 and CCSM3, respectively), 

although SRE was also significantly over-represented in the ECHAM5 climate future 

(�� = 5.04). In contrast, MARS, Mahal and BRTdis were significantly under-

represented (�� -2.187 to -3.13) with 0-3 projections each within this category. 
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Observed frequencies for ANN, BIOCLIM, CTA, Domain and BRTbio did not differ 

significantly from expected (|�|� < 2) (Fig. 3). 

b) Low stability of current habitat (cH)  

Current suitable habitat was projected to decline in size by at least 90% for 575 

(21.3%) and 318 (11.8%) models under the ECHAM5 and CCSM3 future climates, 

respectively. Again, RF was significantly over-represented in both future climates, 

comprising 17.7 and 30.5% of these projections (�� = 8.38; 14.54). Indeed, over 40% 

of RF projections fell into this category. CTA was also over-represented, with 33.3% 

(�� = 3.46; CCSM3) and 41.3% (�� = 5.03; ECHAM5) of the 63 CTA models predicting 

extensive loss of cH. In comparison, BRTdis, GLM, MARS and Maxent were 

significantly under-represented, with between 2.9-13.4% of their projections falling 

into this category (with �� ranging from -2.52 to -4.051). Observed frequencies of both 

FDA and GAM did not differ significantly from expected for either climate future. 

c) No gain of new habitat 

This category, in which ~2% of projections fell, denotes models for which fH is 

entirely contained within areas currently classified as suitable. Significantly under-

represented in this category were projections from BIOCLIM (�� = -2.32; -2.13, 

ECHAM5 and CCSM3 respectively) and SRE, (�� ranging from -2.30 to -2.11), while 

GLM was over-represented (�� = 3.44, 3.61, ECHAM5 and CCSM3, respectively). 

Under the ECHAM5 climate future, ANN and Maxent were also over-represented, 

while FDA was for CCSM3. BRTdis, CTA, GAM, BRTbio and Mahal did not differ from 

expected for either climate future. 
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d) All fH is gain 

For ECHAM5 and CCSM3, respectively, 231 (8.6%) and 105 (3.9%) models 

projected that all fH would lie in areas currently classified as unsuitable, that is, that 

suitable habitat by 2055 would be completely disjunct from current habitat. Again, RF 

was significantly over-represented in both climate futures (�� = 5.56, 9.06), as was 

CTA (�� = 6.36, 6.16) and, to a lesser extent, BRTbio (�� = 2.20, 3.74). These three 

algorithms combined accounted for 38% (CCSM3) and 62% (ECHAM5) of the 

projections that fell into this category. Mahal, MARS and Maxent were significantly 

under-represented (with �� ranging from -2.29 to -3.80), while the frequencies for 

ANN, BIOCLIM, Domain, and GAM did not differ from expected. 

e) fH is, at least, double the size of cH  

This category consisted of 13.9% (ECHAM5) and 9.1% (CCSM3) of projections. 

There was substantial variation across SDMs in the frequency with which their 

projections fell within this category. For instance, none of the models fitted using the 

four distance-based methods (BIOCLIM, Domain, Mahal, SRE) were included in this 

category for either climate future (�� between -3.82 and -5.61). However, BRTbio (�� = 

6.36, 4.96) and RF (�� = 6.13, 6.10), and to a lesser extent FDA and GAM, were 

significantly over-represented. Indeed, for both BRTbio and RF, 29% of their 

projections under the ECHAM5 climate future predicted cH to at least double in area. 

BRTdis, CTA and Maxent were the only models for which fo did not differ significantly 

from fe. These patterns are clear in scatterplots of the proportion of cH remaining 

stable versus the proportion of fH in new habitat: distance-based methods have few 
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points in the upper-right quadrant in contrast to RF (Supplementary Information Fig. 

S2). 

 

Consistency of patterns across taxonomic orders 

For each SDM, we visually assessed consistency in projections of stability and gain 

of new habitat across the various mammal orders. Within SDMs, the relationship 

between stability and gain was generally consistent across taxonomic orders 

(Supplementary Information Fig. S2). For some SDMs, there was an apparent 

negative relationship between these variables, which was most pronounced for 

distance-based methods (BIOCLIM, Domain, Mahal, SRE). When comparing GCMs, 

there were no clearly discernible differences in these relationships, though retention 

of existing suitable habitat in some cases appeared to be greater for CCSM3 than for 

ECHAM5 (which presented a climate future more different to current conditions than 

CCSM3).  

 

Discussion  

Species distribution models differ significantly from one another in the frequency with 

which they project extreme changes to the future size and configuration of suitable 

habitat. These changes (such as the total loss of current suitable habitat, future 

habitat that is completely disjunct from current habitat, and substantial increases in 

the future size of habitat) are extreme from a spatial perspective only – this does not 
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mean that such outcomes are rarely projected. To the contrary, approximately one-

quarter of our model predictions fell into at least one category of extreme. 

 

Which SDM methods projected extreme range changes more (or less) frequently 

than others, and why? 

Such dramatic changes to the size of species’ climatically suitable habitat, due to 

climate change projected to occur in coming decades, is disconcerting. Yet, this 

outcome has been projected for numerous species across a multitude of studies 

(e.g. Ihlow et al., 2012; Ochoa-Ochoa et al., 2012; Warren et al., 2013; Krause et al., 

2015). However, our results demonstrate that the frequency with which such extreme 

range changes are projected may be related to the choice of SDM. For instance, we 

found that RF projected substantial range loss for almost half of the 220 species 

studied - a frequency significantly at odds with other SDM methods. Similarly, CTA 

and SRE were significantly more likely to project loss of current habitat (cH), while 

CTA and RF frequently projected future habitat (fH) to be located in areas currently 

unsuitable. In stark contrast to the other methods, the four distance-based 

approaches (BIOCLIM, Domain, Mahal, SRE) never projected extreme increases in 

the area of suitable habitat.  

These results are a function of how a model fits the species-environment 

relationship and selects from competing, and potentially correlated, predictors. It may 

also be a function of model parameterisation and the details of extrapolation to 

environments beyond those represented by the training data.  
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The goal of SDM studies is to describe accurately and precisely the species-

environment relationship and, frequently, to project this relationship onto data for 

other time periods or geographic regions. Given the same input data, the outputs of 

competing methods will differ because their fundamental approaches to describing 

the species-environment relationship and capturing interactions among variables, as 

well as their parameterisation and ability to interpolate/extrapolate, also differ (Merow 

et al., 2014). For example, BIOCLIM, a simple boxcar approach, generally sets a 

species’ environmental tolerance to the most extreme values in the training records, 

making this method very sensitive to outliers or insufficient sampling of the 

environment. Interactions between variables are not considered; all variables are 

weighted equally and extrapolation beyond the environmental envelope is not 

possible. Further, all areas within the envelope are deemed equally suitable, 

although note that the dismo version of BIOCLIM calculates a greater range of 

percentiles from the training data, with the assumption that grid cells closer to the 

50th percentile are more suitable (Hijmans et al., 2011).  

In contrast, machine learning methods, such as Maxent and RF, can identify 

non-linear species-environment relationships and may be more efficient at modelling 

complex patterns, possibly leading to more accurate predictions than GLMs or GAMs 

(Thibaud et al., 2014). Unless model complexity is managed, however (e.g., with 

regularisation; Warren et al. 2011), machine learning techniques are prone to 

describing noise in the training data, leading to poor generality. 
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Therefore, the extent to which a model can estimate realistic response curves 

is critical, and errors may result in models that are under- or over-fitted (for a 

description of simple and complex response curves from different methods, see 

Table 1 in Merow et al., 2014). Simplistic models that fail to capture the underlying 

relationship are said to under-fit. These models have low variance, in that they can 

reproduce the result consistently, but are highly biased, i.e. model-fitting data are 

poorly predicted. Conversely, over-fitting occurs when noise or random error within 

the data is described by the model (Radosavljevic & Anderson, 2014), generating 

unrealistically complex response curves. In this instance, the model may describe 

the occurrence pattern accurately (i.e., it has low bias, and hence high predictive 

performance, with respect to model-fitting data), but transferability to other locations 

or time periods may not be equally high. Both under- and over-fitting may lead to 

poor predictions across space and time (Merow et al., 2014).  

Of interest is the propensity for RF to report very high TSS or AUC values 

while also projecting extreme range changes (also see Guo et al., 2015). Previous 

studies have found this model to interpolate accurately but extrapolate or transfer 

poorly (e.g., see Wenger & Olden, 2012). This model produces very jagged 

response curves that may fit data well but are biologically unrealistic, and are 

unlikely to transfer (Wenger & Olden, 2012). 

Typically, the predictive performance of a model is measured by splitting data 

into training and test sets. However, the two subsets are rarely independent (Veloz 

2009; Radosavljevic & Anderson, 2014). Hence, performance measures derived 
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from them may be optimistic, and fail to reflect the performance of a model when it is 

projected onto environmental data from different regions or time periods. Crimmins 

et al. (2013) used five SDM methods to model the distributions of 145 plant species. 

Models calibrated and tested using cross-validation procedures, where 25% of data 

were randomly selected and withheld from calibration, were compared to models 

tested with temporally independent data. They found that, as with other studies (e.g. 

Grenouillet et al., 2011; Bucklin et al., 2015; Guo et al., 2015), RF returned the 

highest AUC values when tested with non-independent data (i.e. via cross-validation) 

(mean ~0.98). However, for all models, AUC values were lower when tested with the 

independent data, with RF the second lowest (mean ~0.77) indicating poor 

transferability. This was primarily the result of high rates of false positives (median 

~33%), with one-quarter of RF models having an FP rate of 1.0. Similarly, Heikkinen 

et al., (2012) assessed the interpolation and extrapolation ability of 10 SDM methods 

against spatially independent data. Interpolation accuracy was highest for RF, 

Maxent and BRTbio. Extrapolation proved more difficult for all methods, particularly 

RF and MARS.  

The way in which the fitted functions of a model are constrained during 

extrapolation will also influence its performance when doing so (Elith & Graham, 

2009). For instance, Maxent by default utilises a ‘clamping’ approach whereby the 

response to environmental variables beyond their calibration range is kept at a 

constant value (Elith & Graham, 2009). Similarly, CTA, BRTdis and RF extrapolate at 

a constant value from the most extreme environmental value (Elith & Graham, 2009). 
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GLMs with cubic and quadratic functions continue the fitted trend beyond the most 

extreme environmental value, which can cause unrealistic results, although options 

do exist to control extrapolation (Elith & Graham, 2009). Stohlgren et al. (2011) note 

that restricting extrapolation by CART and Maxent can greatly reduce gain of habitat 

in new locations, and suggest that bounding techniques be included in best practices 

for SDMs. In contrast to the above models, distance-based measures tend not to 

extrapolate to conditions outside their training data, instead assuming these 

conditions are unsuitable (e.g. see Pearson et al., 2006).  

An additional consideration is multicollinearity. We used the same eight 

variables for each SDM but the direction and magnitude of collinearity among these 

varies spatially and temporally. For instance, across northern Australia, the driest 

months are generally in winter while to the south they are in summer. The 

consequences of collinearity depend on the method, but in general, the accuracy 

and precision of estimated coefficients (and thus partial response curves) are lower 

for correlated predictors than for uncorrelated predictors. Further, small changes in 

values of the input data can result in large changes in the model. This can lead to 

unreliable projections onto alternate climate scenarios, particularly if correlations 

change in direction (Elith et al., 2010).  

 

Implications for projections of potential range shifts 

How sensitive are projections of range changes to model selection and 

parameterisation? Our results demonstrate that the frequency with which extreme 
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range changes are predicted can vary significantly across SDM methods. To an 

(unknown) extent, this may be due to the choice of model settings as can be seen by 

comparing the results for BRTbio and BRTdis. The frequency with which these 

methods projected extreme range changes differed substantially. For instance, while 

BRTbio was significantly more likely than expected to project substantial declines to 

cH and that fH would be mostly disjunct from cH, BRTdis had the opposite response, 

being significantly less likely than other methods to project these extremes. Further, 

BRTbio frequently projected fH to be at least double the size of cH, while BRTdis was 

unlikely to project no fH. 

To date, there is little guidance on approaches to parameterising SDMs 

(although see Merow et al., 2014), and for some studies parameterisation of each 

model for each species may be prohibitively time-consuming or, in the case of small 

or biased datasets, may be unreliable (Phillips & Dudik, 2008). Hence, default 

settings for numerical model parameters are typically relied upon, with the 

assumption that they are appropriate as they were previously tested on large 

datasets and were found to perform well (e.g., see Elith et al., 2006; Phillips & Dudik, 

2008).  

Many of the settings used in the R packages for SDMs are the program’s 

default values (e.g., as with FDA within biomod2; pers.comm. W. Thuiller), while 

others may be the result of trial and error by package authors. For example, within 

biomod2, the default value for the maximum number of iterations used by ANN was 

200. This value was derived experimentally and is the result of a trade-off between 
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computing time and efficiency (pers.comm. W. Thuiller). Similarly, default settings for 

Maxent were selected based on assessments across diverse datasets (Phillips & 

Dudik, 2008). Default settings, however, should be used with caution, since they do 

not always result in optimal models (e.g., Moreno-Amat et al., 2015). Further, 

experimentally derived settings are usually optimised according to their ability to 

accurately predict independent test data rather than their accuracy when projecting 

to other locations or time periods. However, the purpose that model settings are 

tuned for is not necessarily the purpose for which the models are being used. That 

is, a model with high predictive performance based on current distributional data may 

not be particularly effective at predicting the effects of climate change, and so default 

values, or “best practices”, may not be applicable depending on the application of the 

model.  

Systematic evaluations of alternative values of settings for individual 

algorithms are rarely undertaken. In their review of the SDM literature, Hallgren and 

Mackey (2014) found that the majority of SDM studies do not provide values for 

algorithm configuration options, and when available the justifications for these values 

were usually minimal. The overall lack of documentation of the rationale for values 

for model configuration options has the potential to be of concern. Without knowing 

how sensitive a model - and model output - is to these values, then arbitrarily 

assigned values and the lack of a tested range of suitable values could lead, in an 

unpredictable manner, to erroneous and/or unrealistic model results (Hallgren and 

Mackey, 2014). Optimisation of most models is possible, however, comparisons 



 
 

32 

 

within and between models undergoing optimisation may be complex (Merow et al., 

2014). Further, optimisation has generally not been automated within SDM packages 

(but see BRTdis) hence, large multi-species studies may be limited to default settings. 

  

Conclusion 

Crucially, our study shows that model selection and parameterisation will influence 

inferences of the likelihood of species facing extreme changes to the distribution of 

suitable habitat as climate changes. To summarise, we found that compared to other 

models, distance-based measures are significantly less likely to project massive 

increases to the size of suitable habitat, while SRE is highly likely to project no future 

habitat; CTA projects substantial loss of current habitat and that future habitat will be 

disjunct from current habitat more frequently than expected, while Maxent predicts 

these outcomes less frequently than expected; RF frequently projects extreme range 

changes – indeed this model is the least likely to project stability of current habitat 

under alternative climate scenarios.  

For some models, these patterns may be influenced by parameterisation, the 

impact of predictor collinearity on the model, and the way in which models 

extrapolate beyond the training data. A comprehensive sensitivity analysis of the 

predictions of SDM methods to their settings would provide valuable guidance on 

setting sensible parameter values for the models. Future developments in coding to 

automate optimisation procedures (similar to BRTdis) will greatly assist with fine-
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tuning models used for multi-species studies rather than relying on a ‘one-size-fits-

all’ approach. 
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Table 1. Number of models per SDM method. 220 mammal species were 
modelled using 14 SDM methods. Projections with TSS values < 0.4 were excluded 
from further analyses, leaving from 63 to 220 species modelled by each method. For 
a given method, the expected frequency of each type of extreme change in habitat 
area (see Table 2) is equal to the proportion of all models (2,694) that were fit using 
that method. 

SDM 
No. of 

models 
Expected 

Frequency 
ANN 178 0.066 
BIOCLIM 209 0.078 
BRTbio 219 0.081 
BRTdis 214 0.079 
CTA 63 0.023 
Domain 208 0.077 
FDA 186 0.069 
GAM 215 0.080 
BRTbio 219 0.081 
GLM 201 0.075 
Mahal 152 0.056 
MARS 205 0.076 
Maxent 219 0.081 
RF 220 0.082 
SRE 205 0.076 
Total 2,694 1.000 
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Table S3 is going here in final version.  
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Table 3. Chi-squared statistic for each of the ‘extreme’ range change 
categories assessed. The statistic is reported for two climate futures (ECHAM5 and 
CCSM3). cH = current habitat; fH = future habitat. In all instances, p < 0.0001. df = 
13. 

 

 χ2 statistic 
Extreme range change ECHAM5 CCSM3 
No fH 230.9 282.8 
Low stability of cH 154.8 297.6 
No gain of new fH  72.3 49.3 
All fH is gain 147.4 163.0 
fH at least double size of cH 217.1 164.9 
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Figures  

 

Figure 1.  Changes in habitat suitability projected by species distribution models can 

be summarised along two axes: ‘Proportion stable’ (i.e. proportion of the area of 

current habitat [cH] projected to remain suitable in the future) and ‘Proportion gained’ 

(i.e. proportion of the area of future habitat [fH] projected to occur in currently 

unsuitable regions). Based on these two axes we calculated the number of 

predictions from 14 SDM methods that fell into the following categories: a) no fH 

(Prop. stable = 0, Prop. gained = 0); b) low stability of cH (Prop. stable ≤ 0.1, 

Pr op. gained > 0); c) no gain of new habitat (Prop. stable > 0; Prop. gained = 0); d) 

all fH is currently unsuitable (Prop. stable = 0, Prop. gained > 0); and e) substantial 

increase in area of fH compared to cH (fH ≥ 2cH). 

 

Figure 2. Box-and-whisker plot of AUC and size of current habitat projected for 220 

Australian mammal species by 14 SDM methods. SDM methods can be broadly 

placed into one of four categories: distance-based, classification, regression, and 

machine learning. The dotted line in 2A indicates the TSS threshold (0.4) below 

which models were excluded due to poor predictive performance. 

 

Figure 3. Proportional change in size of suitable habitat for Australian mammals 

under two climate futures. 14 SDM methods were calibrated for 220 species. Models 

with poor performance (TSS < 0.4) were excluded from these analyses, resulting in 

63–220 species being modelled per SDM method (see Table 1). Data are presented 

on a cube-root scale. 
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Figure 4. Standardised residuals from Chi-squared goodness-of-fit tests.  Chi-

squared tests were used to assess whether 14 SDM methods vary from each other 

in the frequency with which they project five categories of extreme changes to the 

size of habitat for 220 Australian mammal species, under two climate futures. 

Standardised residuals can be used to identify which SDM method contributed the 

most to the significance of the Chi-squared test.  Here, residuals more extreme than 

±2 indicate that the observed frequency of the SDM methods differed significantly 

from expected (p < 0.05). This threshold is represented by the two dotted lines. 

Figure 1 describes the categories of extreme range changes. 
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Table S1. 220 native Australian mammal species, their taxonomic order, and 

number of occurrence records used to model habitat suitability. 

Order Species 
No. 

Records 
Chiroptera  
 Chaerephon jobensis 211 

 Chalinolobus dwyeri 308 
 Chalinolobus gouldii 3,532 
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 Chalinolobus morio 2,326 
 Chalinolobus nigrogriseus 373 
 Chalinolobus picatus 303 
 Falsistrellus tasmaniensis 642 
 Hipposideros ater 135 
 Hipposideros diadema 27 
 Hipposideros stenotis 35 
 Kerivoula papuensis 264 
 Macroderma gigas 167 
 Macroglossus minimus 68 
 Miniopterus australis 739 
 Miniopterus schreibersii 1,411 
 Mormopterus beccarii 125 
 Murina florium 11 
 Myotis macropus 596 
 Nyctimene robinsoni 102 
 Nyctophilus arnhemensis 130 
 Nyctophilus bifax 186 
 Nyctophilus geoffroyi 3,301 
 Nyctophilus gouldi 1,724 
 Nyctophilus timoriensis 281 
 Nyctophilus walkeri 85 
 Pipistrellus adamsi 86 
 Pipistrellus westralis 39 
 Pteropus alecto 431 
 Pteropus conspicillatus 89 
 Pteropus poliocephalus 999 
 Pteropus scapulatus 643 
 Rhinolophus megaphyllus 906 
 Rhinonicteris aurantia 105 
 Saccolaimus flaviventris 724 
 Scoteanax rueppellii 611 
 Scotorepens balstoni 849 
 Scotorepens greyii 829 
 Scotorepens orion 703 
 Scotorepens sanborni 43 
 Syconycteris australis 125 
 Tadarida australis 2,401 
 Taphozous australis 24 
 Taphozous georgianus 375 
 Taphozous hilli 98 
 Taphozous kapalgensis 18 
 Vespadelus baverstocki 302 
 Vespadelus caurinus 180 
 Vespadelus darlingtoni 1,221 
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 Vespadelus douglasorum 34 
 Vespadelus finlaysoni 327 
 Vespadelus pumilus 827 
 Vespadelus regulus 1,386 
 Vespadelus troughtoni 129 
 Vespadelus vulturnus 2,422 

Dasyuromorphia  
 Antechinomys laniger 285 

 Antechinus adustus 21 
 Antechinus agilis 893 
 Antechinus bellus 114 
 Antechinus flavipes 1,301 
 Antechinus godmani 25 
 Antechinus leo 15 
 Antechinus minimus 175 
 Antechinus stuartii 1,296 
 Antechinus subtropicus 13 
 Antechinus swainsonii 736 
 Dasycercus cristicauda 62 
 Dasyuroides byrnei 20 
 Dasyurus geoffroii 140 
 Dasyurus hallucatus 446 
 Dasyurus maculatus 2,724 
 Dasyurus viverrinus 629 
 Ningaui ridei 373 
 Ningaui yvonneae 264 
 Phascogale calura 64 
 Phascogale pirata 34 
 Phascogale tapoatafa 650 
 Planigale gilesi 197 
 Planigale ingrami 221 
 Planigale maculata 366 
 Planigale tenuirostris 210 
 Pseudantechinus bilarni 73 
 Pseudantechinus macdonnellensis 201 
 Pseudantechinus ningbing 40 
 Sarcophilus harrisii 1,336 
 Sminthopsis aitkeni 10 
 Sminthopsis bindi 37 
 Sminthopsis butleri 21 
 Sminthopsis crassicaudata 1,628 
 Sminthopsis dolichura 350 
 Sminthopsis gilberti 85 
 Sminthopsis griseoventer 127 
 Sminthopsis hirtipes 125 
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 Sminthopsis leucopus 174 
 Sminthopsis longicaudata 28 
 Sminthopsis macroura 1,234 
 Sminthopsis murina 823 
 Sminthopsis ooldea 364 
 Sminthopsis psammophila 46 
 Sminthopsis virginiae 168 
 Sminthopsis youngsoni 303 

Diprotodontia  
 Acrobates pygmaeus 1,041 

 Aepyprymnus rufescens 418 
 Bettongia gaimardi 421 
 Bettongia penicillata 65 
 Bettongia tropica 26 
 Burramys parvus 21 
 Cercartetus caudatus 21 
 Cercartetus lepidus 157 
 Cercartetus nanus 398 
 Dactylopsila trivirgata 88 
 Dendrolagus bennettianus 25 
 Dendrolagus lumholtzi 60 
 Gymnobelideus leadbeateri 28 
 Hemibelideus lemuroides 53 
 Hypsiprymnodon moschatus 71 
 Lasiorhinus latifrons 467 
 Macropus agilis 729 
 Macropus antilopinus 239 
 Macropus bernardus 56 
 Macropus dorsalis 84 
 Macropus eugenii 112 
 Macropus fuliginosus 3,412 
 Macropus giganteus 3,139 
 Macropus parma 218 
 Macropus parryi 182 
 Macropus robustus 3,117 
 Macropus rufogriseus 2,503 
 Macropus rufus 5,081 
 Onychogalea fraenata 18 
 Onychogalea lunata 27 
 Onychogalea unguifera 441 
 Petauroides volans 1,713 
 Petaurus australis 1,356 
 Petaurus breviceps 3,031 
 Petaurus gracilis 63 
 Petaurus norfolcensis 786 
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 Petrogale assimilis 59 
 Petrogale brachyotis 230 
 Petrogale concinna 38 
 Petrogale godmani 28 
 Petrogale herberti 24 
 Petrogale inornata 38 
 Petrogale lateralis 308 
 Petrogale mareeba 33 
 Petrogale penicillata 367 
 Petrogale persephone 11 
 Petrogale purpureicollis 21 
 Petrogale rothschildi 34 
 Petrogale sharmani 11 
 Petrogale xanthopus 207 
 Petropseudes dahli 93 
 Phascolarctos cinereus 3,258 
 Potorous longipes 19 
 Potorous tridactylus 562 
 Pseudocheirus peregrinus 2,377 
 Pseudochirops archeri 79 
 Pseudochirulus cinereus 15 
 Setonix brachyurus 68 
 Spilocuscus maculatus 12 
 Thylogale billardierii 821 
 Thylogale stigmatica 242 
 Thylogale thetis 330 
 Trichosurus caninus 601 
 Trichosurus vulpecula 5,153 
 Vombatus ursinus 3,994 
 Wallabia bicolor 3,025 

Monotremata  
 Ornithorhynchus anatinus 2,389 

 Tachyglossus aculeatus 7,135 
Notoryctemorphia  
 Notoryctes typhlops 105 
Peramelemorphia  
 Isoodon macrourus 1,085 

 Isoodon obesulus 1,106 
 Macrotis lagotis 632 
 Perameles gunnii 498 
 Perameles nasuta 1,410 

Rodentia  
 Conilurus penicillatus 107 

 Hydromys chrysogaster 960 
 Leggadina forresti 392 
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 Leggadina lakedownensis 157 
 Mastacomys fuscus 126 
 Melomys burtoni 592 
 Melomys capensis 21 
 Melomys cervinipes 431 
 Mesembriomys gouldii 215 
 Mesembriomys macrurus 12 
 Notomys alexis 1,020 
 Notomys amplus 14 
 Notomys aquilo 16 
 Notomys cervinus 64 
 Notomys fuscus 134 
 Notomys mitchellii 348 
 Pseudomys apodemoides 169 
 Pseudomys australis 91 
 Pseudomys bolami 262 
 Pseudomys calabyi 33 
 Pseudomys delicatulus 453 
 Pseudomys desertor 505 
 Pseudomys fumeus 54 
 Pseudomys gracilicaudatus 106 
 Pseudomys hermannsburgensis 1,858 
 Pseudomys higginsi 104 
 Pseudomys johnsoni 43 
 Pseudomys nanus 479 
 Pseudomys novaehollandiae 208 
 Pseudomys occidentalis 28 
 Pseudomys oralis 84 
 Pseudomys pilligaensis 46 
 Pseudomys shortridgei 43 
 Rattus colletti 152 
 Rattus fuscipes 2,657 
 Rattus leucopus 71 
 Rattus lutreolus 1,186 
 Rattus sordidus 57 
 Rattus tunneyi 518 
 Rattus villosissimus 308 
 Uromys caudimaculatus 131 
 Xeromys myoides 14 
 Zyzomys argurus 582 
 Zyzomys maini 35 
 Zyzomys pedunculatus 26 
 Zyzomys woodwardi 44 
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Table S2. Settings used in biomod2, dismo and Maxent. 

 

Algorithm Description of modelling options 
adopted in BIOMOD 

Function arguments 

Artificial neural 
networks (ANN) 

5-fold cross-validation to find best 
size and decay parameters. Initial 
random weights = 0.1, maximum 
number of iterations = 200. 

NbCV = 5 
size = NULL 
decay = NULL 
rang = 0.1 
maxit = 200 

BIOCLIM — — 

Boosted Regression Tree 
(biomod2 
implementation; BRTbio) 

Bernoulli error distribution, 
interaction depth of 7, learning 
rate of 0.001, bag.fraction of 0.5, 
5-fold cross-validations to select 
optimal number of trees with a 
maximum of 2500 trees fitted to 
the data. 
  

distribution = 'bernoulli' 
n.trees = 2500 
interaction.depth = 7 
n.minobsinnode = 5 
shrinkage = 0.001 
bag.fraction = 0.5 
train.fraction = 1 
cv.folds = 3 
keep.data = FALSE 
verbose = FALSE 
perf.method = 'cv' 

Boosted Regression Tree 
(dismo implementation; 
BRTdis) 

Bernoulli error distribution, 
interaction depth of 1, learning 
rate of 0.01, bag fraction of 0.75, 
10-fold cross-validations to select 
optimal number of trees with a 
maximum of 10,000 trees fitted to 
the data. 
  

offset = NULL 
fold.vector = NULL 
tree.complexity = 1 
learning.rate = 0.01 
bag.fraction = 0.75 
site.weights = rep(1, nrow(data)) 
var.monotone = rep(0, 
length(BRT.x)) 
n.folds = 10 
prev.stratify = TRUE 
family = "bernoulli" 
n.trees = 50 
step.size = n.trees 
max.trees = 10000 
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tolerance.method = "auto" 
tolerance = 0.00 
keep.data = FALSE 
plot.main = TRUE 
plot.folds = FALSE 
verbose = TRUE 
silent = FALSE 
keep.fold.models = FALSE 
keep.fold.vector = FALSE 
keep.fold.fit = FALSE 

Classification tree 
analysis (CTA) 

5-fold cross-validation. method = 'class' 
parms = 'default' 
cost = NULL 
control = list(xval = 5, 
minbucket = 5, minsplit = 5, cp = 
0.001, maxdepth = 25) 

DOMAIN — — 

Flexible discriminant 
analysis (FDA) 

Linear regression method used 
for optimal scaling, via function 
‘polyreg’. 

method = 'mars' 

Generalised Additive 
Model (GAM) 

Algorithm = ‘GAM_mgvc’ with 
cubic spline smoother, with 4 
degrees of freedom. Logistic link 
function and a binomial error 
distribution of the response. Note 
that GVC (Generalised Cross 
Validation) will automatically 
choose the number of knots to 
balance simplicity against 
explanatory power. 

algo = 'GAM_mgcv' 
type = 's_smoother' 
k = -1 
interaction.level = 0 
myFormula = NULL 
family = binomial(link = 'logit') 
method = 'GCV.Cp' 
optimizer = c('outer','newton') 
select = FALSE 
knots = NULL 
paraPen = NULL 
control = list(nthreads = 1, 
irls.reg = 0, epsilon = 1e-07, 
maxit = 200, trace = FALSE, 
mgcv.tol = 1e-07, mgcv.half = 15, 
rank.tol = 1.49011611938477e-08, 
nlm = list(ndigit=7, gradtol=1e-
06, stepmax=2, steptol=1e-04, 
iterlim=200, 
check.analyticals=0), optim = 
list(factr=1e+07), newton = 
list(conv.tol=1e-06, maxNstep=5, 
maxSstep=2, maxHalf=30, 
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use.svd=0), outerPIsteps = 0, 
idLinksBases = TRUE, scalePenalty 
= TRUE, keepData = FALSE, 
scale.est = fletcher) 

Generalised Linear 
Model (GLM) 

Logistic link function and a 
binomial error distribution of the 
response. Linear and quadratic 
terms with no interaction level. 
Stepwise procedure using the AIC 
criterion to select the most 
significant terms. 

type = 'quadratic' 
interaction.level = 0 
myFormula = NULL 
test = 'AIC' 
family = binomial(link = 'logit') 
mustart = 0.5 
control = glm.control(epsilon = 
1e-08, maxit = 50, trace = FALSE) 

Mahalanobis (Mahal) — — 

Multivariate Adaptive 
Regression Spline 
(MARS) 

Two-way interactions, cost per 
degree of freedom change = 2, 
forward stepwise stopping 
threshold = 0.001. 

degree = 2 
nk = NULL 
penalty = 2 
thresh = 0.001 
prune = TRUE 

Maxent Linear, Product, Quadratic and 
Hinge features used; 10-fold 
cross-validations. 

cat('java -mx2048m -jar 
',maxent.jar, ' -e ',bkgd.data, ' 
-s ',occur.data, ' -o 
',maxent.dir, ' nothreshold 
nowarnings novisible 
nowriteclampgrid nowritemess 
writeplotdata -P -J -r -a \n', 
sep="", file=shell.file)) 

Random Forest (RF) Classification RF, number of 
predictors to be chosen randomly 
at each node = �𝑝𝑝 where p is 
number of variables. Number of 
trees grown = 500.  

do.classif = TRUE 
ntree = 500 
mtry = 'default' 
nodesize = 5 
maxnodes = NULL 

Surface Range Envelope 
(SRE) 

Quantile of extreme 
environmental variable to be 
removed from envelope. 

quant = 0.025 
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Table S3. Habitat suitability under current and future climates (ECHAM5 and 

CCSM3) was modelled for 220 native Australian mammal species, using 14 SDM 

methods. Number of species for which SDM predictive power was equal to or greater 

than TSS 0.4 is given. Expected frequency is the proportion of the total number of 

models (2,694) that a given SDM method accounts for. Also given is the number of 

predictions in each of the five categories of extreme range changes that we 

assessed, i.e. a) no fH, b) low stability of cH, c) no gain of new fH, d) all fH is gain 

and e) fH is at least double the size of cH. (cH = current habitat; fH = future habitat). 

   No. predictions in each category of extreme range 
change 

   MPI-ECHAM5 NCAR-CCSM3.0 

SDM No. of 
species 

Expected  
frequenc

y 
a b c d e a b c d e 

ANN 178 0.066 4 21 1
5 10 13 1 19 7 5 4 

BIOCLI
M 209 0.078 17 61 0 23 0 5 22 0 7 0 

BRTbio 219 0.081 10 53 6 28 64 3 43 4 19 41 
BRTdis 214 0.079 3 26 4 8 34 1 11 2 3 15 
CTA 63 0.023 6 26 1 20 9 2 21 2 12 5 
Domain 208 0.077 10 37 0 15 0 3 9 2 5 0 

FDA 186 0.069 0 37 6 17 38 1 18 1
0 1 28 

GAM 215 0.080 4 42 3 11 50 4 18 2 3 36 

GLM 201 0.075 4 27 1
2 7 29 3 12 1

1 4 28 

Mahal 152 0.056 1 30 4 5 0 0 4 5 0 0 
MARS 205 0.076 1 18 0 3 47 0 6 1 0 23 

Maxent 219 0.081 3 22 1
2 3 27 2 7 8 1 18 

RF 220 0.082 54 10
2 1 42 63 4

7 97 0 34 46 

SRE 205 0.076 27 73 0 39 0 8 31 0 11 0 

Sum 2,694  14
4 

57
5 

6
4 

23
1 

37
4 

8
0 

31
8 

5
4 

10
5 

24
4 

 

 

   No. predictions in each category of extreme range change 
   MPI-ECHAM5 NCAR-CCSM3.0 
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SDM No. of 
species 

Expected  
frequenc

y 
a b c d e a b c   

ANN 178 0.066 4 (9.5) 21 (38) 
15 

(4.2) 
10 

(15.3) 
13 

(24.7) 1 (5.3) 19 (21) 7 (3.6)     
BIOCLI
M 209 0.078 17 

(11.2) 
61 

(44.6) 0 (5) 
23 

(17.9) 0 (29) 5 (6.2) 
22 

(24.7) 0 (4.2)     

BRTbio 219 0.081 10 
(11.7) 

53 
(46.7) 6 (5.2) 

28 
(18.8) 

64 
(30.4) 3 (6.5) 

43 
(25.9) 4 (4.4) 

 
 

 
 

BRTdis 214 0.079 3 (11.4) 
26 

(45.7) 4 (5.1) 8 (18.3) 
34 

(29.7) 1 (6.4) 
11 

(25.3) 2 (4.3)   
 
 

CTA 63 0.023 6 (3.4) 
26 

(13.4) 1 (1.5) 20 (5.4) 9 (8.7) 2 (1.9) 21 (7.4) 2 (1.3) 
 
   

Domain 208 0.077 10 
(11.1) 

37 
(44.4) 0 (4.9) 

15 
(17.8) 0 (28.9) 3 (6.2) 9 (24.6) 2 (4.2)     

FDA 186 0.069 0 (9.9) 
37 

(39.7) 6 (4.4) 
17 

(15.9) 
38 

(25.8) 1 (5.5) 18 (22) 
10 

(3.7)   
 
 

GAM 215 0.080 4 (11.5) 
42 

(45.9) 3 (5.1) 
11 

(18.4) 
50 

(29.8) 4 (6.4) 
18 

(25.4) 2 (4.3)   
 
 

GLM 201 0.075 4 (10.7) 
27 

(42.9) 
12 

(4.8) 7 (17.2) 
29 

(27.9) 3 (6) 
12 

(23.7) 11 (4)   
 
 

Mahal 152 0.056 1 (8.1) 
30 

(32.4) 4 (3.6) 5 (13) 0 (21.1) 0 (4.5) 4 (17.9) 5 (3)     

MARS 205 0.076 1 (11) 
18 

(43.8) 0 (4.9) 3 (17.6) 
47 

(28.5) 0 (6.1) 6 (24.2) 1 (4.1)   
 
 

Maxent 219 0.081 3 (11.7) 
22 

(46.7) 
12 

(5.2) 3 (18.8) 
27 

(30.4) 2 (6.5) 7 (25.9) 8 (4.4)   
 
 

RF 220 0.082 54 
(11.8) 102 (47) 1 (5.2) 

42 
(18.9) 

63 
(30.5) 

47 
(6.5) 97 (26) 0 (4.4) 

 
 

 
 

SRE 205 0.076 27 (11) 
73 

(43.8) 0 (4.9) 
39 

(17.6) 0 (28.5) 8 (6.1) 
31 

(24.2) 0 (4.1)     
Sum 2,694  144 575 64 231 374 80 318 54   

 

 

Figure S1. Box-and-whisker plot of AUC and size of current habitat projected for 220 
Australian mammal species belonging to seven taxonomic orders. Projections were 
made using 14 SDM methods. The dotted line indicates the TSS threshold (0.4) 
below which models were excluded due to poor predictive performance. 
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Figure S2. 
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