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Abstract

Rich descriptions of local image structures are important for higher-level understanding of images
in computer vision. Phase-based representations allow the discrimination of symmetric features,
such as lines, and anti-symmetric features, such as edges, independent of their strength. Meth-
ods to obtain phase information include quadrature filters using the Hilbert transform, spherical
quadrature filters using the Riesz transform, and 2D analytic signals such as the monogenic signal
and signal multi-vector.

This thesis develops a new local image descriptor, called the circular harmonic vector, consisting
of the higher-order Riesz transforms of an image. The circular harmonic vector describes the
symmetries of the local image structure. It extends previous analytic signals, and is formulated in
the context of 2D steerable wavelet frames. Methods are introduced to solve for the parameters of a
general signal model by splitting the circular harmonic vector into model and residual components.
In particular, the super-resolution method, normally used for the resolving of spike trains, can be
applied.

The methods are applied to estimating the parameters of sinusoidal, multi-sinusoidal and half-
sinusoidal phase-based image models. The sinusoidal model describes lines and edges in terms of
amplitude, phase and orientation. Using higher-order Riesz transforms in the circular harmonic
vector gives better parameter estimates, and the residual component is used to develop a new
detection measure for junctions and corners. The multi-sinusoidal model is applied to coral core
x-ray analysis, from which separate reconstruction of features is possible as a result of the wavelet
basis. The half-sinusoidal model is used to obtain the amplitudes and orientations of the line and
edge segments in junctions and corners, with phase discriminating their type.

Finally, a new representation of local image structure through scale is introduced. It describes
the continuous response of the circular harmonic vector response shifted though scale in the form
of a quaternion-valued matrix. The matrix is derived from the higher-order Riesz transforms of
an isotropic wavelet frame given by Fourier series basis functions in the logarithmic frequency
domain. New measures for scale selection are developed, along with a continuous version of phase
congruency that is combined with previous image models to detect and discriminate image features
in an illumination invariant way.
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Chapter 1

Introduction

1.1 Local Image Descriptors

The advent of ubiquitous digital cameras, high-speed computers and fast internet has seen an in-

crease in use of the digital image as a medium for communicating information. Whereas the human

visual system can extract information from images easily, thanks to the resources of a massively

parallel organic computer with millions of years of development, coaxing a normal computer to

perform the same task is not easy, and has spawned an entire field of research known as image

analysis.

Computational image analysis involves the transformation of an image, which typically exists

as a 2D intensity signal, into useful information. This could be identification of a face in passport

photograph, confirmation of the presence of a tumour in a medical imaging scan, or location

of micro-fossils in a sediment sample, for example. Many tasks that humans currently perform

could be automated or augmented by computer vision systems, freeing up human labour for other

endeavours and thus increasing productivity. Research into image analysis is therefore important

for future technological development.

Often the first step in image analysis is to obtain a useful representation of the local image

structure. Local means in a restricted area around a particular location in the image, while structure

refers to the pattern and strength of the variation in pixel intensity in this area. Of particular

interest is representations from which the parameters of local image features can be obtained. Image

features are structures such as lines, edges, corners and junctions, which carry useful information

about the patterns and shapes within an image. For example, edges and corners typically denote

the boundaries of 3D objects as they appear in 2D images, while lines (also called roof edges) and

junctions also indicate structures, such as the blood vessels in a retinal scan. The parameters of

these features could be the orientation of a line, the angle of a corner, the number of line segments

in a junction, and so on. Apart from delivering feature parameters, the local description can also be

used to differentiate between feature types, detect the location of features in an image according to

their strength, or simply augment the original image signal with generic local geometric information.

Information from these local descriptors is fed into higher-level algorithms to perform tasks such

a pattern recognition or image classification. For example, one such set called basic image features

(BIFs) [42] is the input to perform natural character recognition [92] and texture classification
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[20], while the well known scale invariant feature transform (SIFT) [69] has seen wide adoption

and use in image registration (matching areas between two images of the same object but with

different viewpoints) and identifying objects in images. The success of higher-level methods is

partly determined by the local image description that feeds it. It is therefore important to have

a representation of local image structure that provides both a rich description of the features of

interest, and is robust to common image transformations such as noise, illumination, contrast,

rotation, viewpoint and scale, among others.

The achieve these goals, we may employ models of various features. A model is a functional

description of the local image structure that has parameters describing its shape in terms of the

feature components. The models and their parameters are chosen so they encode the information

that is useful for image interpretation. For example, an edge and its orientation, a corner with

variable angle, or a line with width parameters. No one model can encompass all features, but

more general models are useful as they provide information about multiple patterns or features

in the one representation. Obtaining robust estimations of the model parameters requires ap-

propriate measurements of the local image structure. Developing better performing measurement

methods has been the subject of considerable research. Common approaches are based on linear

operators such as filters, non-linear operators such as using mathematical morphology, or more

signal dependent methods such as machine learning. It is desirable that estimated parameters are

either invariant to certain image transformations, or equi-variant, meaning that the value changes

monotonically with a parameter of the transformation. Having a set of model parameters that

give a unique description of the signal and are either invariant or equi-variant achieves a split of

identity [29] of the original signal into parts that can be separately analysed.

1.1.1 Sinusoidal Models

Phase-based representations of local image structure are one of the most useful and widely used

descriptions. The idea is to model the local signal structure as a sinusoid in terms of amplitude,

which represents feature strength, and phase, which represents symmetry, that is, feature type. In

1D the model parameters are given by the analytic signal [39]. In 2D, there is an extra orientation

parameter in the model to describe the direction of symmetry. As such, there are a multitude of

different approaches to estimate the parameters, such as 2D steerable quadrature filters constructed

using the Hilbert transform, [37, 38, 98–100], 2D analytic signals constructed using the Hilbert

transform [10, 12, 13, 114], 2D analytic signals constructed using the Riesz transform [29, 135, 136,

141, 144], and 2D steerable wavelets [94, 117, 123, 124].

The orientation parameter of the sinusoidal model appears as a useful measure for the analysis

of images. Ideally it should be invariant to both illumination (amplitude) and symmetry type

(phase). Exploratory work was performed on estimating the growth direction in coral core x-ray

images and micro-crystal geological images. However, limitations were found in recent 2D analytic

signal and wavelet approaches to generating a sinusoidal model. Addressing these problems was
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the motivation behind this thesis.

Initially the focus was on improving sinusoidal model estimation using higher-order Riesz trans-

forms (RTs) of an image. Later the project evolved into creating a general method of modelling

local image structure. The approach presented in this thesis bridges previous 2D analytic signal

and 2D steerable wavelet approaches into a complete framework for analysis. A rich general ge-

ometric representation of local image structure is developed, called the circular harmonic vector,

which consists of the responses of an image to the higher-order RTs of an isotropic wavelet. The

representation is used to find the amplitude and orientation parameters of line, edge, junction and

corner models, in order to describe a wide range of image features in an illumination and rotation-

ally invariant way. It also features a method of detecting corners and junctions and is extended to

give a continuous representation of image structure over scale.

To place the research in context it is necessary to give an overview of phase-based signal

representations and the development of the RT for use in deriving image models. The following

sections review the different analytic signal and steerable filter approaches to representing local

image structure, with a particular focus on the sinusoidal model. The various drawbacks to each

method are discussed, which then motivates the development of the new framework. Finally, an

overview of each chapter of the thesis is given.

1.2 1D Phase

Phase-based representations of the local structures of both 1D and 2D signals are useful as they

describe both the magnitude (strength) and linear symmetry of the local structure. Linear sym-

metry refers to symmetry of the local signal structure along a particular axis. In 1D there is only

one axis, so the linear symmetry is the symmetry at a point. Thus a 1D signal, f(x), is locally

symmetric at a point of interest located at x = 0 if f(x) = f(−x) in the region around x = 0, and

anti-symmetric if −f(x) = f(−x).

In 2D images, linear symmetry refers to the symmetry along a particular axis. Let us represent

this axis by the orientation vector o = [cos θ, sin θ] and denote the image coordinates as z = [x, y].

An image, f(z), is locally symmetric at a point of interest located at z = 0 along an orientation

θ ∈ [0, 2π) if f(〈z,o〉) = f(−〈z,o〉) and anti-symmetric if −f(〈z,o〉) = f(−〈z,o〉). Note, in this

thesis we shall always assume a local coordinate system where the point of interest is at the centre

of the local area at z = 0.

A cursory look at some typical 1D signals and 2D images shows that the type of linear symmetry

differentiates simple structures. For example, a spike in a 1D signal and a line in an image are

locally symmetric, while a step in a 1D signal and an edge in an image are anti-symmetric (Figure

1.1). A signal that is symmetric at a point is called an even signal, or odd if it is anti-symmetric.

These terms shall be used interchangeably.
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Figure 1.1: Examples of even, symmetric features and odd, anti-symmetric features in both 1D
and 2D.

1.2.1 Analytic Signal

The term phase comes from the definition of the 1D sinusoidal signal given by f(x) = A cos(wx+φ),

where A is the amplitude, w is the frequency, and φ is phase. The instantaneous phase at location

x of this signal is

φ(x) = wx+ θ (mod 2π). (1.1)

The instantaneous phase describes what angle the sinusoid is at in its cycle, and thus the shape of

the sinusoid at that point. For example, a phase of 0 is the peak, π is the trough, and ±π/2 are

the points of maximum change. These also correspond to points of symmetry and anti-symmetry

respectively. Furthermore, the phase is invariant to the amplitude of the sinusoid.

The phase concept can be extended to arbitrary 1D signals that are square-integrable, that is,

f(x) ∈ L2(R). These signals can be represented by a convergent series of sine and cosine functions,

the Fourier series,

f(x) = fe(x) + fo(x), (1.2)

where

fe(x) =
a0
2

+

∞∑
n=1

an cos(nx), (1.3)

fo(x) =
∞∑
n=1

bn sin(nx). (1.4)

Thus we can write the signal in the form of a sinusoid with varying amplitude and orientation,

f(x) = A(x) cos(φ(x)), (1.5)

where A(x) = |fe(x) + ifo(x)| and the phase is given by φ(x) = arg(fe(x) + ifo(x)). The signal is

thus modelled by a sinusoid with given phase and amplitude. Since fe(x) is even, and fo(x) is odd

at the origin, the phase describes how even or odd the signal is at a particular location x.
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1.2.2 Analytic Signal

The analytic signal proposed by Gabor [39] extends this representation to the continuous frequency

domain given by the Fourier transform. It is given by the signal and its Hilbert transform,

fa(x) = f(x) + iH[f ](x), (1.6)

where f(x) is the original signal and H[f ](x) is the Hilbert transform of f(x) given by

H[f ](x) = 1

π
P.V.

∫ ∞

−∞

f(τ)

τ − x
dτ. (1.7)

In the spectral domain the Hilbert transform is a Fourier multiplier,

H[f ](x) F←→ −i ω
|ω|
F [f ](ω), (1.8)

which is very similar to the derivative operator,

D[f ](x) F←→ iωF [f ](ω). (1.9)

The Hilbert transform is equivalent to inverting the amplitude of the negative frequencies of a 1D

signal. The analytic signal can therefore be constructed by setting all of the negative frequencies

to zero. The Hilbert transform can also be thought of as performing a phase shift of π/2 on a

signal, and the analytic signal is often referred to as the original signal being in quadrature with

itself.

Using A(x) = |fa(t)| and φ(t) = arg(fa(t)) it can be expressed in the form of a complex

exponential,

fa(x) = A(x)eiφ(x), (1.10)

and the original signal recovered as f(x) = A(x) cos(φ(x)), where A(x) is called the instantaneous

amplitude, φ(x) is the instantaneous phase, and the derivative of the phase, d
dtφ(x), is defined as

the instantaneous frequency [43], although this measure is not really meaningful [68]. The phase

of the analytic signal therefore represents the signal symmetry at a point, while the amplitude

independently represents the strength of that symmetry.

Thus the analytic signal also provides a sinusoidal model of the local 1D signal structure and

performs a split of identity into instantaneous amplitude, phase and frequency components. This

representation of a signal has found many uses in areas such as radio communications [6] and

quantum mechanics [127]. Interestingly, the Hilbert transform is the only 1D integral operator

that commutes with both translation and dilation [78]. The analytic signal of a simple 1D signal

(Figure 1.2) shows that the amplitude is high at the location of both steps and spikes, while a

phase of −π/2 indicates a rising edge, π/2 indicates a falling edge, and 0 indicates a peak.
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Figure 1.2: Amplitude (blue) and phase (red) of the analytic signal of a 1D signal (black) with
zero mean.

The Hilbert transform has an infinite impulse response and therefore the value of the analytic

signal at a point requires the entire signal to compute. However, normally we are interested in the

amplitude (strength) and phase (symmetry) of the signal in a local area. Typically this is achieved

by localising the analytic signal by first convolving the original signal with a band-pass filter centred

at the frequency (scale) of interest (Figure 1.3). Since this convolution and the Hilbert transform

can be performed efficiently in the Fourier domain, the operations are combined. The set of the

filter and its Hilbert transform is referred to as a quadrature filter pair. The isotropic part of the

quadrature filter is an even function and thus has a high response at the symmetric parts of the

signal, such as roof edges and peaks. The Hilbert transformed part is an odd function and thus

has a high response at the locally anti-symmetric parts, such as steps.

x
0 0.2 0.4 0.6 0.8 1

f(
x
)

-π

-π/2

0

π/2

π

Figure 1.3: Amplitude (blue) and phase (red) of the analytic signal of a 1D signal (black) localised
with a band-pass filter.

It has been shown that the amplitude of the analytic signal is high at locations of common

1D signal features, as well as their 2D image equivalents, and that the phase can be used to

discriminate their type. [83, 84, 100, 128]. The sinusoidal model from the analytic signal therefore

provides a description of local signal structure that is useful for local feature analysis.
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1.3 2D Phase Using the Hilbert Transform

The analytic signal has been shown to be a powerful method of describing local symmetries in a 1D

signal, enabling the identification of features such as steps, peaks, and ramps. Local symmetries

also describe features in higher dimensional signals, in particular 2D images. For example, lines

and edges are analogous to peaks and steps in a 1D signal, while complex features such as crossed

lines or corners can be described by the superposition of multiple components with individual axes

of symmetry.

Extending the phase-based representation of the analytic signal to 2D images is thus an attrac-

tive proposition. For example, multiple amplitude values could describe the strength of a feature

and its components, while multiple phase values could independently describe their shape. How-

ever, in moving to two dimensions there is an additional complexity. Unlike the 1D case, each

symmetry is also associated with a particular direction. For example, at the centre of a local image

structure consisting of two crossed lines, there is the superposition of two symmetric components

with different orientations. This section reviews some of the approaches to 2D phase-based image

representation and their limitations

1.3.1 Intrinsic Dimension

To understand current approaches to generalising the analytic signal we must review the concept

of intrinsic dimension. In 1D, signal symmetry is restricted to one variable; however, higher

dimensional signals may have multiple symmetries in multiple orientations at the same location.

The intrinsic dimension of a signal at a point differentiates between single and multiple symmetries.

It refers to the dimension of the subspace required such that the error between the original signal

and the signal projected onto the subspace is within a certain tolerance [8]. In other words, if we

have a signal of dimension n which can be expressed using m orthogonal basis vectors (0 ≤ m ≤ n),

the intrinsic dimension of the signal is m. This type of signal is often referred to as an imD signal.

For image analysis and feature detection we are interested in the local intrinsic dimension at

each point in an image. For 2D signals this may be defined spatially as [145]:

• i0D - The image is a constant - f(z) = c.

• i1D - The image is constant along one direction and therefore be completely characterised

by its variation along the orthogonal direction - f(z) = f(〈z,o〉) where o = [cos θ, sin θ] and

θ is the orientation.

• i2D - Everything else.

Likewise the intrinsic dimension can be defined in the spectral domain by considering the

Fourier transform of the local signal [61]:

• i0D - The spectrum is predominately at the origin - f̂(ω) = c · δ(ω).
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• i1D - The spectrum is predominately centred upon a line through the origin - f̂(ω) = f̂(ω) ·

δ(s)) where s = [cos θ, sin θ].

• i2D - Everything else.

Note, ω denotes the coordinates of the Fourier domain representation of an image, which can be

expressing polar coordinates [ω, φ] where ω = [ω cosφ, ω sinφ].

i0D features are flat areas in an image (Figure 1.4a), while i1D image features have only one

direction of linear symmetry (Figure 1.4b). From the Fourier slice theorem it can be shown that

the orientation vector o in the above spatial domain definition is equal to the orientation vector s

in the above Fourier domain definition. Thus the orientation of linear symmetry of a signal can also

be estimated from the symmetry of its local spectral representation [9] and therefore represented

by a sinusoidal model (Figure 1.4c). i2D image features have multiple symmetries, for example,

corners and junctions (Figure 1.4c). These features must be represented using more complex image

models, such as multiple sinusoids (Figure 1.4h).

(a) i0D-like (b) i1D-like (c) i1D/i2D-like (d) i2D-like

(e) i0D Signal (f) i1D Signal (g) i1D/i2D Signal (h) i2D Signal

Figure 1.4: Examples of regions in an image with different intrinsic dimensions and the corre-
sponding idealised signal models. Image taken from [118].

The local intrinsic dimension of an image thus can be used to classify image features into

three types. Methods to obtain an estimate of intrinsic dimension include using 1st and 2nd

order differential operators [5]. One recent approach is continuous intrinsic dimension, where local

image structure is described by a point in a triangular space whose vertices corresponding to totally

i0D, i1D or i2D features [28]. Noting that the intrinsic dimension can change with scale [64] we

can consider local intrinsic dimension itself as an important image feature. Indeed the relative

occurrence of i0D, i1D and i2D features in an image can be used to distinguish ‘natural’ images [61].
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1.3.2 2D Quadrature Filters

Early methods developed for modelling local image structure using a sinusoidal model used 2D

quadrature filters. Like the analytic signal, 2D quadrature filters are also constructed with the

Hilbert transform. Consider an image, f(z), that is locally i1D at a point of interest centred at

z = 0. The local structure can be represented as 1D function,

f(z) = f(〈z,o〉) (1.11)

= fi1D(x), (1.12)

where o = [cos θ, sin θ] with θ being the orientation of the local symmetry. According to the

Fourier slice theorem, the Fourier transform of the image patch will have all non-zero coefficients

concentrated along a line through the origin. Therefore, the local image structure can be exactly

modelled as a sum of sinusoids,

f(z) =
∑
k

αk cos(ωk〈z,o〉+ φk), (1.13)

and thus represented, at the point of interest, by a sinusoidal model,

f(z) = A cos (〈z,o〉) + φ) , (1.14)

which is equivalent to the analytic signal representation of fi1D(x), with instantaneous amplitude,

A, and phase, φ. The problem is how to obtain the amplitude, phase and now orientation values.

Many different approaches have been proposed to achieve this goal.

For a 1D signal we use an even and odd (quadrature) pair of filters, with the odd filter given by

the Hilbert transform of the even. The first class of methods developed for 2D images replicates

this process. An even filter that is symmetric along the same axis as the local i1D symmetry is

used,

he(〈ω,o〉) = he(−〈ω,o〉), (1.15)

along with an odd filter given by its Hilbert transform along the same axis.

ho(〈ω,o〉) = he(−〈ω,o〉). (1.16)

The pair of filters are called 2D quadrature filters. In the above equations and the rest of this thesis

h(ω) will be used to denote the Fourier domain representation of a filter.

Using the output of the even and odd filters, the amplitude and phase of the sinusoidal model

of the local image structure can be obtained. However, unless the orientation of the i1D feature is

known beforehand, the problem remains as to what direction to apply the quadrature filter pair.
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Not only that, the orientation of i1D features can vary over an image. One solution used in higher

level methods such as phase congruency [59] is to use a bank of quadrature filters at multiple

discrete orientations. For example, the filter bank used in [58] consists of eight 2D quadrature

filters with orientations separated by 22.5 degrees.

Steerable Filters

The response to a discrete orientation 2D quadrature filter bank is not rotationally invariant. For

example, an i1D feature oriented along the same axis as one of the filters will have a maximal

response for that filter, whereas an i1D feature oriented along an axis in between two filters will

have its energy split between them. For an i1D feature, Bigun and Granlund approached this

problem by finding the eigenvectors of the inertia matrix of the local Fourier domain [9]. The

components of the matrix are obtained from spatial domain filters, and localised by convolution

with a window function. Early edge detection methods use the 1st order derivatives of an isotropic

filter to estimate orientation [16, 109]. However, odd filters only respond to anti-symmetric features,

and thus do not give a measure of phase.

Freeman and Adelson [37, 38] and Perona [98–100] introduced the concept of steerable filters,

which also formed part of Simoncelli’s work on shiftable parameters of wavelet transforms. Shifta-

bility refers to the ability to modulate the components of a particular local image representation

to synthesise the response to a filter or wavelet with respect to a particular parameter value. For

steerable filters this parameter is orientation. Simoncelli’s approach also looked at translation (a

trivial case for linear filters) as well as scale.

A steerable filter is given by the linear combination of a finite set of basis filters. The basis

filters are so called as their contribution can be modulated in order to synthesis the steerable filter

kernel at any orientation, hence the term steerable. In [38], steerable filters are expressed in the

spatial domain as

fθ(r, φ) =
M∑
j=1

kj(θ)gj(r, φ), (1.17)

where fθ(r, φ) is the filter in polar co-ordinates, kj(θ) is an interpolation function, and gj(r, φ)

is a basis filter. Essentially, if a filter fθ(r, φ) can be represented by a finite Fourier series with

maximum order N in the angular dimension, it can be steered by a set of N + 1 basis functions

whose vector of angular Fourier series components span the space of possible vectors of filter Fourier

series components. These angular Fourier series components are known as circular harmonics.

The most common implementation of the basis filter bank for purely odd or even filters is

actually N +1 copies of the original filter at equally spaced orientations over π radians. For filters

with a mixture of odd and even symmetry it is 2N + 1 filters over 2π radians. Alternatively, one

may instead describe a steerable filter by the sum of the 2N +1 circular harmonics. This approach
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is simpler as the interpolation function is simply a complex exponential. That is,

fθ(r, φ) =
N∑

n=−N
einθan(r)e

inφ. (1.18)

Having only non-zero even order circular harmonics results in an even filter, while having only

non-zero odd orders results in an odd filter.

The beauty of steerable filters is that because of the linearity of the operators, the response to

a filter at a particular orientation can be obtained from the same combination of the basis filter

responses [38]. That is, we do not need to construct the steerable filter kernel itself. Furthermore,

from the basis filter responses we can obtain the coefficients of a trigonometric polynomial that

represents the angular response of the steerable filter as it is rotated. The orientation of the

steerable filter that delivers the maximum response corresponds to the maximum of this polynomial.

Owing to the Fourier slice theorem, steerable filters can also be constructed in the Fourier domain

using the same principles.

Limitations

Returning the orientation estimation problem, we should be able to steer a quadrature filter pair

(even steerable filter and its Hilbert transform) to find the optimal orientation at which to obtain

the phase and amplitude of the sinusoidal model. However, there is a catch. In the frequency

domain, the oriented Hilbert transform is a Heaviside step function, which in polar coordinates is

given by

hθ(ω, φ) = 1[θ−π/2,θ+π/2) − 1[−θ−π/2,−θ+π/2), (1.19)

where θ is the orientation of the axis along which it is applied. Because of the sharp transition, the

number of circular harmonic components needed to approximate this function is infinite. Therefore

the approach used in [38, 99] and elsewhere is to approximate the Hilbert transformed part with a

finite number of basis functions. Thus the pair of filters is not in perfect quadrature.

2D quadrature filters offer a local image representation in terms of a sinusoidal model consisting

of amplitude, phase and orientation. However, if only one orientation is considered, then informa-

tion will be lost where is the local image structure is i2D and contains more axes of symmetry.

That is, the original signal cannot be recovered from the signal model parameters. If one instead

uses a filter bank consisting of equally spaced orientations of the 2D steerable quadrature filter

then both recovery of the original signal and steering is possible. However, orientation information

is not explicit and the model parameters obtained from each of the component quadrature filters

are no longer invariant to rotation of the image.
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1.3.3 2D Analytic Signals

Whereas 2D steerable quadrature filters deal primarily with calculating local amplitude and phase

parameters, another branch of research has focussed more on local image representation. These

methods seek to extend the analytic signal to images and higher-dimensional signals by explicitly

creating a higher-dimensional representation in which the original signal forms one dimension,

and transforms of the signal form the other dimensions. In particular, the original signal can be

recovered from any of the dimensions by inverting the transform and thus no information is lost.

The parameters of the sinusoidal image model can then be obtained from the new signal.

Early attempts appear inspired by how the 1D analytic signal can be created using the Heaviside

step (signum) function in the Fourier domain,

fa(x)
F←→ f̂(ω) (1 + i sign(ω)) , (1.20)

meaning that is has no negative frequencies. We shall now review each of these attempts, sum-

marised from the development by Bulow in [10, 12, 13].

Total Complex Signal

The total complex signal is the combination of an image and its total Hilbert transform, which is

the Hilbert transform applied along both x and y axes [114]. In the Fourier domain this is,

fa(z)
F←→ = f̂(ω) (1− i sign(ωx)sign(ωy)) . (1.21)

The amplitude and phase is calculated as the magnitude and argument of fa(z). However, this

has the problem that the spectral signal is not causal, i.e. f̂a(z) 6= 0 when z < 0 [13]. Further-

more, the total Hilbert transform does not perform a π/2 phase shift [29] and is not rotationally

invariant [140].

Partial Analytic Signal

The partial analytic signal is the combination of an image with its partial Hilbert transform along

an orientation vector o = [cos θ, sin θ] [41]. In the Fourier domain this is,

fa(z)
F←→ = f̂(ω) (1 + i sign(〈ω,o〉)) . (1.22)

The amplitude and phase are then calculated as the magnitude and argument of fa(z). However

this only gives a measure of the symmetry along the orientation vector o and is therefore not

rotationally-invariant.



13

Single Orthant Complex Signal

The signal orthant complex signal applies the partial Hilbert transform along both the x-axis and

along the y-axis [44]. In this method all negative frequency components are zero. In the Fourier

domain this is,

fa(z)
F←→ = f̂(ω)((1 + sign(ωx))(1 + sign(ωy)). (1.23)

However the original signal is not recoverable; this requires an entire half plane of the Fourier

spectrum instead of a single orthant. A work-around is to calculate the complex signal for an

adjacent orthant as well, however this leads to two measurements of amplitude and phase which

are difficult to interpret [13].

Quaternionic 2D Analytic Signal

The quaternionic analytic signal is a higher dimensional representation that uses the algebra of

quaternions [45]. We recall that in a 1D signal any point can be described as symmetric or anti-

symmetric, with the real part of the 1D analytic signal as the symmetric part, and the Hilbert

transformed signal as the anti-symmetric imaginary part. The algebra of complex numbers is

adequate for this representation, however for a 2D signal there are more symmetries to be consid-

ered. A 2D signal has a degree of symmetry or anti-symmetry along the x-axis, and can also have

symmetry or anti-symmetry along the y-axis. The quaternionic Fourier transform [10, 23] encodes

these symmetries onto the one real and three imaginary components of a quaternion, enabling the

analysis of the phase for each symmetry.

The quaternionic 2D analytic signal is created by applying the same transform as used in the

single orthant analytic signal applied to the quaternionic Fourier transform (QFT) spectrum,

z = f̂q(ω)((1 + sign(ωx))(1 + sign(ωy)), (1.24)

where f̂q(ω) is the QFT of the signal. Converting back to the spatial domain the signal has four

dimensions,

fa(z) = fee(z) + ifoe(z) + jfeo(z) + kfoo(z), (1.25)

where [i, j, k] ∈ H. An instantaneous amplitude, two i1D phases and a single i2D phase can then

be calculated [10]. The two i1D phases represent the symmetry along the x and y axis, while

the i2D phase is a measure of the overall symmetry of both. Compared to the previous methods,

the instantaneous amplitude of the quaternionic 2D analytic signal is the best [13] however both

amplitude and phase lack rotational invariance [29, 140].

Limitations

Each of the approaches reviewed so far meet Vakman’s three basic properties of the analytic signal

[126]. However, none are rotation invariant and therefore none will correctly determine the phase
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and amplitude of a single arbitrarily oriented i1D feature. The 2D complex signal and total analytic

signal show that using properties of the 1D analytic signal - having the Hilbert transform for the

imaginary component and zero negative frequencies - cannot be used to generate a rotationally

invariant 2D analytic signal. The quaternionic 2D analytic signal hints that a higher dimensional

representation is needed, however it is also rotationally variant.

1.4 2D Phase Using the Riesz Transform

1.4.1 Monogenic Signal

Felsberg and Sommer resolved the rotation variance problems of the early analytic signal attempts,

introducing a rotationally invariant extension called the monogenic signal. Larkin, Bone and

Oldfield separately introduced the spiral quadrature filter transform for the de-modulation of fringe

patterns [62, 63], which is functionally equivalent to the monogenic signal. Their insight was the

identification of the Riesz transform (RT), not the Hilbert transform, as the appropriate operator

to extend the analytic signal to higher dimensions.

The monogenic signal is represented by a three dimensional vector consisting of an image and

its RTs along two orthogonal axes,

fM(z) = [f(z),Rx[f ](z),Ry[f ](z)] (1.26)

The above representation is a vector, but Felsberg’s initial paper [29] uses quaternions to represent

the monogenic signal, and subsequent work (e.g. [135]) uses a geometric algebra embedding.

Geometric algebra contains sub-algebras isomorphic to complex numbers and quaternions [48],

and thus provides a more generalised mathematical framework. For example, a phase shift for

a 1D signal is represented by a rotation in 2D space. However, In this thesis we shall restrict

ourselves to vector algebra for its simplicity and wider comprehension.

Riesz Transform

The Riesz transform, Rx, of a multi-dimensional signal f ∈ L2(RN ) along an axis, x, can be

expressed as a convolution in the spatial domain, or a multiplication in the Fourier domain [29,

115],

Rxf(z)
F←→ i ωx

‖ω‖
f̂(ω), (1.27)

where f̂(ω) is the Fourier transform of f(z) with z = [x, y]. It can be thought of as normalised

derivative operator, similar to the Wirtinger operator [137], but without modification to the mag-
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nitude of the spectrum of f(z). For example, the derivative along the x axis is given by

Dxf(z)
F←→ iωx f̂(ω). (1.28)

For images and other 2D signals, f ∈ L2(R2), the Riesz transforms along the x and y axes can be

combined into a single complex valued operator, the 2D complex Riesz transform (RT) [122, 135]

Rf(z) F←→ ωx + iωy
‖ω‖

f̂(ω) = eiφf̂(ω, φ), (1.29)

where ω and φ are the radial and angular polar frequency domain coordinates given by ω =

[ω cosφ, ω sinφ]. This complex embedding allows for easy rotation of the impulse response by

multiplying by a complex exponential [124],

R{δ}(Rθz) = e−iθR{δ}(z), (1.30)

where Rθ is a matrix that rotates the image axes by θ.

Given a sinusoidal image,

fS(z) = A cos(ωc〈z,o〉+ φ), (1.31)

at a point of interest at z = 0 we may write

fS = A cos(φ). (1.32)

It has been shown by means of the Radon transform [29] that the complex RT of a sinusoidal signal

at the same location is given by

RfS = Aeiθ i sin(φ).

That is, the RT gives a rotationally-invariant estimate of the parameters of a sinusoidal image.

ImageModel

Using this relationship, the monogenic signal also models local image structure as a single 2D

sinusoid [29], as is done for 2D quadrature filters. Assuming a local coordinate system where the

point of interest is located at z = 0, the image model is

fS(z) = A cos(〈z,o〉+ φ), (1.33)
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with sinusoid parameters amplitude, A, phase, φ, and orientation, θ. The parameters are obtained

using the complex RT according to

A = |f + i|Rf || , (1.34)

φ = arg(f + i|Rf |), (1.35)

θ = arg(Rf), (1.36)

where A ∈ R+, φ ∈ [−π/2, π/2) and θ ∈ [0, 2π). For a local representation the responses are

filtered using a isotropic band pass filter (Figure 1.5).

(a) ψ(z) (b) Rxψ(z) (c) Ryψ(z)

Figure 1.5: Isotropic band-pass filter (a) and its 1st order RTs (b,c) used to obtain the monogenic
signal.

The monogenic-signal derived model achieves the desired split-of-identity of the original signal

into invariant and equi-variant parameters [29]. Rotation of the input signal changes the orientation

parameter, but not the amplitude or phase. Scalar addition or multiplication of the local image

patch intensities changes the amplitude, but not the phase or orientation, and a phase shift of the

Fourier spectrum only modifies the phase. Finally, the original signal can be recovered from the

monogenic signal components.

The monogenic signal model was calculated for a the 256 × 256 pixel House image, localised

using a Cauchy filter [11, 107] with peak wavelength 8 pixels and bandwidth factor a = 2 (Figure

1.6). As was observed for the analytic signal, the amplitude is high at the locations of strong image

features [29]. The phase value is a measure of the local symmetry independent of amplitude; phase

values near 0 or φ indicate an even structure, such as a line, and phase values near ±π/2 indicate

an odd structure, such as an edge. The orientation parameter describes the main axis of symmetry

of the local structure [29].

The monogenic signal has been applied to diverse problems such as stereo image matching [25],

image registration [79, 129, 138, 147], segmentation [3, 7], optical flow estimation [27, 34], face

recognition [139], texture classification [146] and medical image analysis [52, 119]. Reconstruction

of images from monogenic phase is more efficient than global phase based reconstruction [141].
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(a) House, f(z) (b) (ψ ∗ f)(z) (c) (Rxψ ∗ f)(z) (d) (Ryψ ∗ f)(z)

(e) Amplitude (f) Phase (g) Orientation

Figure 1.6: Top row: House image and its monogenic signal components localised by the band-pass
filter kernel ψ(z). Bottom row: Sinusoidal model parameters of amplitude, phase and orientation
derived from the responses.

Limitations

Care must be taken when interpreting the sinusoidal model derived from the monogenic signal.

Firstly, the 0th order RT responds to both even and isometric structures, meaning that blobs,

which would not be considered sinusoid-like, also give a large response. Secondly, the 0th order

operator is isotropic, meaning that orientation is only calculated from the 1st-order RT, which only

responds to odd structures. Thus the orientation estimate is poor near the centre of even features

in the presence of noise [26]. This is noticeable in Figure 1.6d as line shaped discontinuities in the

orientation estimate.

1.4.2 Higher-Order Signals

The poor orientation estimate around even structures is a drawback of using the monogenic signal

in practical applications. Two solutions that have been proposed are to average the phase vector

near even structures [26], or to include higher-order RT responses by using an expanded signal

model. These methods include the structure multi-vector [26, 31], 2D analytic signal [136] and the

signal multi-vector [135].
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Higher-order Riesz transform

For 2D images, the higher-order responses are obtained using the n-th order complex RT, given

by [122, 123, 135]

Rnf(z) F←→ einφf̂(ω, φ), (1.37)

where ω and φ are the radial and angular coordinates of the frequency spectrum, respectively. The

0th order RT, R0, is the identity operator. As for the 1st order RT, used in the monogenic signal,

the impulse response is rotated by multiplying by a complex exponential to the same power as the

RT order [124],

Rn{δ}(Rθz) = e−inθR{δ}(z), (1.38)

where Rθ is a matrix that rotates the image axes by θ. The odd and even order RTs of an image

in the spatial domain are in conjugate according to

Rnf(z) = R−nf(z) n even, (1.39)

Rnf(z) = −R−nf(z) n odd. (1.40)

Like the Hilbert transform, the RT has an infinite impulse response and requires the entire

image to compute. To construct a more localised operator, we can combine the RT with isotropic

band-pass filter with enough vanishing moments [124], resulting in a spherical quadrature filter

(SQF) [26, 29]. Figure 1.7 shows an example of some 0th to 3rd order SQFs constructed from the

RTs of an isotropic filter.

R0ψ(z) R1ψ(z) R2ψ(z) R3ψ(z)

real

imag

Figure 1.7: Real and imaginary components of the 0th to 3rd order SQFs constructed with the
higher-order complex RT.

Similar to the Hilbert transform in 1D, the RT of a sinusoidal signal is equivalent to a phase
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shift. Consider an image given by the addition of K 2D sinusoidal signals,

f(z) =
K∑
k=1

Ak cos(w〈z,ok〉+ φk), (1.41)

where o = [cos θ, sin θ], θ ∈ [0, π) is the orientation vector, A ∈ R+ is the amplitude, and φ ∈ [0, 2π)

is the phase of the sinusoid. It has been shown by means of the Radon transform [29, 135] that

the n-th order RT of this signal at the point of interest, z = 0, is

Rnf =


∑
k Ake

inθk cos(φk) n is even,∑
k Ake

inθk i sin(φk) n is odd.
(1.42)

Since the higher-order RT kernels are orthogonal, the responses give separate estimates that can

be used to solve for the sinusoid parameters. For example, for K = 1, amplitude can be found

using any odd and even order. Phase can be estimated in the range [0, π) using the 0th and any

odd order, and in the range [0, 2π) using the 0th and 1st orders. Orientation can be estimated in

the range [0, 2π/n) using the phase value and the n-th order response for n ≥ 1. We note therefore,

that to estimate orientation from even structures, even RTs orders of two or above must be used.

The previously mentioned approaches of the structure multi-vector [26, 31], 2D analytic sig-

nal [136] and signal multi-vector [135] all use the sinusoid estimates from (1.42) to obtain the

parameters of a particular sinusoidal signal model. We shall review each along with some other

local image structure representations using RTs.

Structure Multi-Vector

Felsberg and Sommer proposed the structure multi-vector [26], constructed from the 0th to 3rd

order RT responses. They use a geometric algebra to describe the signal and encode the various

symmetries that are present. The structure multi-vector model consists of two sinusoids at right

angles,

f(z) =
2∑
k=1

Ak cos(〈z,ok〉+ φk), (1.43)

where θ2 = θ1 + π/2. Including higher-order RTs leads to more orthogonal responses than model

parameters (responses to RT orders above zero are complex, and therefore have two dimensions).

The structure multi-vector deals with this by projecting the RT responses on to four complex basis

functions which are then projected on to the five model parameters. Orientation is obtained from

both even and odd RT orders, addressing the orientation problem of the monogenic signal.
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2D Analytic Signal

Wietzke and Sommer proposed the 2D analytic signal [135], constructed from the 0th to 2nd order

RT responses. The model consists of two sinusoids with the same phase,

f(z) =
2∑
k=1

Ak cos(〈z,ok〉+ φ). (1.44)

Parameter estimation begins by solving for the apex angle, θ1 − θ2, from which the rest of the

values are derived. However, there is an issue with the derivation method. When |R2f | > |R0f |

(60) in [135] gives a complex value for the apex angle, violating the model. This occurs for image

structures, such as saddles, where the 2nd order RT response is larger than that of the other orders.

Note, the name “2D analytic signal” is very broad, and shall actually be used to refer to the general

class of all extensions of the analytic signal to 2D in this thesis.

Signal Multi-Vector

Wietzke and Sommer also proposed the signal multi-vector [135], constructed from the 0th to 3rd

order RT responses. The authors use a quaternionic-valued matrix representation to describe the

signal and encode the various symmetries that are present. The signal multi-vector model consists

of two sinusoids without any restriction on the parameters,

f(z) =
2∑
k=1

Ak cos(〈z,ok〉+ φk). (1.45)

As with the structure multi-vector, there are more orthogonal RT responses than parameters

to estimate. The method deals with this by projecting the seven RT responses onto the six

model parameters algebraically. However, again there are problems with the parameter estimation

method. An image structure consisting of two equal amplitude sinusoids with even phases {0, π}

and opposite orientations {−θ, θ} gives R0f = R1f = R3f = 0 and R2f = 2A(ei2θ + e−i2θ) =

2A cos(2θ). ThusR2f is real-valued and the model parameters cannot be found due to having more

unknowns than knowns. The addition of the 4th order RT response may therefore be required.

Furthermore, the method of calculating orientation given by (130-131) in [135] uses only odd-order

RT responses, and thus again the orientation estimate will be poor near even structures in the

presence of noise.

Tensors

Other approaches do not explicitly use a sinusoidal signal model, and instead employ a tensor-based

representation of local signal structure, where the RT is used in place of the traditional derivative

operator. These include the boundary tensor [55, 56] proposed by Köthe and the monogenic

curvature tensor [143] proposed by Zang and Sommer. The boundary tensor uses the 0th to 2nd



21

order RTs to give estimates of phase-invariant edge energy (i1D features) and junction energy (i2D

features). These values are combined to give the boundary energy which is an intrinsic-dimension

invariant measure of feature strength. A mean orientation value is also obtained from the trace

of the tensor. The monogenic curvature tensor [143] consists of an even and odd tensors formed

using the 0th to 3rd order RTs. It gives amplitude, phase and orientation parameters along with a

measure of the local curvature of the signal which can discern i1D and i2D features [142], and the

angle of intersection between two i1D features [112].

Limitations

Apart from the problems with orientation estimation in some of these extensions, the main lim-

itations are that either the image model is constrained or the number of RT orders used in its

estimation is limited in order to have an analytic solution to the model parameters. Furthermore,

the model is assumed to completely represent the local image structure, and thus to recover the

signal from its amplitude, phase and orientation values the parameter estimation function should

ideally be bijective, again restricting the number of RT orders.

1.5 2D Steerable Wavelets

The last approach to phase-based image representation that shall be reviewed is that of 2D steerable

wavelets. The higher-order RT exists as complex exponential multiplier in the Fourier domain.

This is equivalent to the circular harmonic functions (Fourier series angular component) of the

2D steerable filters reviewed earlier. However, typical steerable filters (e.g. [110]) often have a

different radial frequency function depending on the order of the circular harmonic, due to either

definition in the spatial domain, or the use of either wedge functions or derivatives to construct

the higher-order components. However, if the basis filters are defined by circular harmonics of the

frequency response of an isotropic filter in the Fourier domain, they are isomorphic with the set

of RTs of the same filter.

Freeman and Adelson remarked that these kind of basis functions can used to construct steerable

wavelets. Likewise, circular harmonics can be used as the basis functions for Simoncelli’s steerable

pyramid. More recently, after the realisation of the RT as the appropriate generalisation of the

Hilbert transform to higher dimensions, much research has been performed on using the RT to

generate 2D steerable wavelet frames [94, 117, 123, 124].

In addition to steerability, the RT has properties of translation invariance, scale-invariance and

inner-product preservation [29, 124]. Of particular relevance is that the RT is norm-preserving,

‖Rnf‖ = ‖f‖, and invertible, R−n{Rnf}(z) = f(z), if f(z) has zero mean. Thus given a higher

dimensional representation of an image consisting of different order RTs, the original image can be

reconstructed from any of the dimensions. This was one of the properties integral to the monogenic

signal and subsequent 2D analytic signal approaches.
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These properties also allow the generation of steerable wavelets from isotropic wavelet frames

that satisfy three properties [124]. A steerable wavelet frame as it is commonly used in image

processing is a steerable filter bank at multiple scales with the property that the original signal

can be reconstructed using the responses to the filter bank across scales, known as the wavelet

transform coefficients. There is no loss of information when applying the wavelet transform, in

fact the coefficients are often highly redundant [124]. The coefficients are also usually sparse,

meaning that a small number of values can be used to adequately reconstruct a much larger image

[116]. Furthermore, with an appropriate choice of filters the image my be subsampled between

scales [124].

MonogenicWavelet Transform

Initial development surrounding wavelets and the RT was the monogenic wavelet transform pro-

posed by a few different authors working along independent lines [47, 94, 122]. It consists of a

isotropic wavelet frame and its 1st order RT. Held et al. [47] used the output of the transform to

obtain a multi-scale representation of the monogenic signal from which sinusoidal model parameters

could be obtained. Exploiting the reconstruction property of wavelets, they were able to perform

image processing tasks such as brightness equalisation and de-screening by adjusting the model

parameters before reconstructing the image. The process was to perform the transform, project

onto the monogenic signal at each scale, adjust the model parameters making use of the invariant /

equi-variant properties of amplitude, phase and orientation, then reconstruct the monogenic signal

and reverse the wavelet transform. This approach was extended to colour images in [113].

Monogenic Curvelet Transform

The monogenic curvelet transform [117] developed by Storath solves the problem of having to ap-

proximate the Hilbert transformed part of a 2D quadrature filter. Instead of the Hilbert transform

of an even directional wavelet, the RT is used. The pair of filters are then in quadrature in the

sense of the monogenic signal. That is, given an even wavelet oriented along direction θ with

frequency response defined by he(ω), the odd filter is given by ho(ω) = Rθhe(ω) where Rθ is the

non-complex RT along the axis given by θ. The method is applied to curvelets, which have fixed

angular support in the frequency domain and are therefore not steerable, but the principle could

be applied to any even directional wavelet. The pair of the directional wavelet and its RT are

known as monogenic 2D quadrature filters.

1.5.1 2D Steerable Wavelet Frames

Subsequent approaches in [123, 124] extended the monogenic wavelet concept by using higher-order

RTs to create 2D steerable wavelet frames. A framework for their design and use is laid out by

Unser in [124]. This reference collates the developments from previous papers [121, 123, 125] as

well as summarising various applications and is a good reference for the reader.
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Some of the relevant findings shall now be presented. Restating proposition 4.1 from [124], if

h(ω) is a radial frequency profile satisfying the following conditions:

h(ω) = 0, ∀ω > π, (1.46)∑
i∈Z
|h(2iω)|2 = 1, (1.47)

dnh(ω)
dωn

∣∣∣∣
ω=0

= 0, for n = 0, . . . , N, (1.48)

then the isotropic wavelet mother wavelet ψ with spectrum ψ̂(ω) = h(‖ω‖) generates a tight

wavelet frame of L2(R2) whose basis functions, ψi,k = ψi(z − 2ik) with ψi(z) = 2−2iψ(z/2i), are

isotropic with vanishing moments up to order N . In wavelet notation, i is the index of the scale

of the wavelet, while k is the location in the image. The subscript notation is used for location as

some wavelet frames are able to be subsampled between scales, changing the image domain.

Given a primary isotropic wavelet frame {ψi,k}i∈Z,k∈Z2 that satisfies the above conditions, the

higher-order RT can be used create a steerable wavelet frame {ψ(m)
i,k }m∈N+

M ,i∈Z,k∈Z2 of L2(R2) by

[124]

ψ
(m)
i,k =

∑
|n|≤N

um,nRnψi,k, (1.49)

where U is a complex valued shaping matrix of size M × (2N + 1),M ≥ 1. The columns of U

and denoted um and each describes the coefficients of a 2D steerable wavelet. The wavelet is the

sum of the RTs of the primary isotropic wavelet, where the magnitude, |um,n|, modulates the n-th

order RT and the argument, arg(um,n), is its rotation. Exact reconstruction of the image from

these wavelet coefficients is then possible according to

f(z) =
∑
i,k

∑
m

〈
ψ
(m)
i,k , f

〉
ψ
(m)
i,k , (1.50)

so long as UUH is a diagonal matrix whose elements sum to 1. The second condition results in

an energy-preserving partition of the frequency spectrum, creating a Parseval-tight wavelet frame.

A Parseval-tight wavelet frame means that we can invert the wavelet transform to obtain an exact

reconstruction of the original image. Note that while scaling by 2i allows for sub-sampling to create

pyramidal decompositions, alternative partitions that are more narrowly spaced can be used, such

as in [47]. For discrete images if the the second condition is relaxed to

∑
i∈Z
|hi(ω)|2 = 1, (1.51)

then one also obtains a Parseval-tight frame, where i is the scale index of the wavelet. The third

condition requires the primary wavelet to have at least N vanishing moments to account for the

singularity of the RT at the origin, and for the wavelets to have sufficient spatial decay [124, 131].
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If reconstruction or pyramidal decompositions are not of interest, the second condition can be

abandoned, and an image analysed using an isotropic filter bank that preferably satisfies the third

condition. That is, a filter bank consisting of the linear combination of spherical quadrature filters.

Circular Harmonic Frame

The basis of other 2D steerable wavelets are the circular harmonic (CH) wavelets. The CH frame,

{ψni,k}|n|∈NN ,i∈Z,k∈Z2 , is given by the shaping matrix U = I2N+1 [124]. It consists of wavelets given

by the −N -th to N -th order RTs of the primary isotropic wavelet. These wavelets are also known

as CH functions [51]. Each wavelet is given by

ψni,k = Rnψi,k. (1.52)

The CH wavelets have equal norm with frame bounds of 2N + 1. Reconstruction from a wavelet

frame given by the shaping matrix U can be expressed as

f(z) =
∑
i,k

∑
m

〈
ψ
(m)
i,k , f

〉 ∑
|n|≤N

um,nψ
n
i,k. (1.53)

The CH wavelets are the wavelet equivalent of the SQFs previously mentioned (Figure 1.7). As

such, the monogenic signal and other 2D analytic signals can be constructed from their responses.

1.6 Motivation

This thesis research began with a study of the monogenic signal. The sinusoidal model derived

from the monogenic signal appeared to provide a useful representation of an image, particularly

the orientation estimate. At the beginning of the research I was helping to fix the densitometer at

the Australian Institute of Marine Science. It is used to measure the density of coral core slices to

gather historical records of coral growth rate. The best axis along which to take the measurements

is estimated by a human looking at an x-ray of the slice (Figure 1.8a). It was decided to apply

the monogenic signal to estimate the best measurement axis in a more principled way. However,

the aforementioned problem of the orientation estimation being from only odd orders gave a noisy

and unsatisfactory response (Figure 1.8d)

Subsequently, the 2D analytic signal and signal multi-vector were also applied to see if they

gave a better estimate. However the model of the 2D analytic signal cannot represent all parts of

an image, and thus the code provided in [133] would result in divide-by-zero errors. These were

masked by their graceful failure when implemented in the original C code, but MATLAB was not

as forgiven in the ported version. Similarly, the signal multi-vector exhibited the same orientation

estimation problem as the monogenic signal.

Improving the estimation of the sinusoidal model parameters to solve these problems was thus
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(a) Coral (b) Amplitude (c) Phase (d) Orientation

Figure 1.8: Section of coral core image and the amplitude, phase and orientation of the sinusoidal
model given by the monogenic signal.

the initial motivation behind this work. Since higher-order RTs give more estimates of the model

parameters, the focus was on creating a method that could use these extra estimates. In particular,

the following research questions were posed:

1. How can we derive the sinusoidal model of local image structure using higher-

order RTs?

2. How do we account for the extra terms without expanding the model like in

previous approaches?

The first attempt at addressing these questions used the 0th to 2nd order RTs to give an analytic

solution to the sinusoidal model that estimated orientation from even structures as well as odd

[72]. Subsequent work found the parameters by minimising the distance between a vector of RT

responses at a point in an image, and the vector representing the model [73, 74].

Around the start of this research, Unser and others began publishing work on using the RT to

generate steerable wavelet frames. Initially, this began with monogenic wavelets constructed using

the first order RT, and later with 2D steerable wavelet frames constructed from higher-order RTs.

Two methods in the wavelet literature that address the first research problem are the monogenic

curvelet transform [117] and the even and odd harmonic wavelets briefly described in [124]. Re-

cently, Puspoki et al. have been investigating the detection of M -fold (rotationally) symmetric

junctions [104, 105], such as Y and X junctions, and although they do not investigate lines and

edges, it is conceivable that the method could be also applied.

Since the wavelet literature provides a solid mathematical foundation for using higher-order

RTs, it was decided to reformulate the research in this context. However, a number of observations

were made that motivated a new approach:

• 2D steerable wavelet methods tend to be focussed on the tight wavelet frame property. The

wavelets are chosen such that the transform is reversible. For example, the monogenic curvelet

transform necessarily consists of N+1 copies of a steerable wavelet at equally spaced discrete

orientations to have exact reconstruction, whereas to derive the sinusoidal model we need to

find the single best orientation.

• The wavelet frames are generally designed or calculated for specific features or properties.
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What if we want to use a variety of wavelets corresponding to a diverse set of features which

do not form a frame?

• Recovery of the original signal from a higher dimensional representation is a feature of the

monogenic signal, signal multi-vector and other 2D analytical signals. However, simply steer-

ing a wavelet to the best orientation of linear symmetry may deliver the signal model param-

eters, but lose information about i2D structures, and the original signal is not recoverable.

A tiling of the frequency domain using copies of the wavelets at discrete scales and orienta-

tions will form a tight frame, however the wavelet coefficients will no longer be invariant /

equi-variant with rotation.

Not wanting to limit the focus to a sinusoidal model, the scope of the thesis was expanded to

investigate how to derive general signal models using higher-order RTs. This lead to the following

research questions, which are the subject of this thesis:

3. How can we represent local signal structure using higher-order RTs in a principled

way?

4. How can we derive the parameters of a particular image model from this repre-

sentation?

5. How can we use wavelets that correspond to a particular structures of interest

but do not form a frame, and yet still have exact reconstruction?

6. What are the coefficients of wavelets that correspond to common image features?

As a result, a general method of solving local image modelling problems using higher-order RTs

has been developed. The main points of the method are as follows:

• Local image structure is represented as a vector of circular harmonic (CH) wavelet coefficients

(RT responses) that is weighted to give phase invariance. The vector generalises existing

signal vectors such as the monogenic signal.

• Wavelets are created to match particular local image structures of interest and are described

by their weighted CH vector.

• The CH vector is split into model and residual components by correlation with the matched

wavelet CH vector at the optimal orientation.

• The model component is used to describe image structures of interest, from which amplitude,

orientation and phase parameters are obtained.

• The residual component describes the remainder of the local signal structure, and provides

the rest of the information needed for exact reconstruction of the original signal.
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The method and its applications are developed in the following chapters. The research is

exploratory in nature, and is focussed on creating a new framework for local image analysis, not

for a specific problem or application. The layout of the thesis is as follows:

• In chapter two the CH vector is introduced as a primary descriptor of local image structure. A

generic local image model consisting of sets of feature components with different amplitudes

and orientations is proposed. We show how to find the weighted CH vector matched to each

model component. A suite of methods for solving for the amplitude and orientation param-

eters with respect to various model constraints is developed. Each method is demonstrated

on a test image.

• In chapter three we apply the method to solving for the single sinusoidal model used by the

monogenic signal and other quadrature filters. Choice of primary isotropic wavelet, number

of RT orders and CH vector weighting is investigated. The usefulness of the sinusoidal model

is demonstrated for orientation estimation. Furthermore, the residual component, a novel

aspect of this work, is used along with the model component to create a new measure of

intrinsic dimension that can be used for junction and corner detection.

• In chapter four a multi-sinusoidal model is proposed that can describe multiple i1D orien-

tations. The model is applied to the problem of finding the amplitude and orientation of

features consisting of additive i1D or occluded line components. A hybrid wavelet set for

analysing occluded lines is introduced, as well as an order-dependent threshold for classify-

ing by number of components. The method is compared to two recent approaches in the

literature for estimating the orientation of lines. Finally, the multi-sinusoidal model is used

to solve the initial problem that motivated the research, the estimation of growth direction

in coral core X-ray images.

• In chapter five a half-sinusoidal model is introduced. The model can describe features con-

sisting of line and edge segments radiating from a point, such as Y or X junctions. The model

can also be used to design wavelets matched to specific features.

• In chapter six the same principles used to solve for model orientation are applied to finding

the best scale at which to perform analysis. A Fourier series decomposition of the radial part

of the frequency domain is used along with the RT (Fourier series in the angular frequency

domain) to create filters shiftable in both orientation and scale. A quaternionic polynomial

representation of the magnitude of the CH vector through scale is obtained. This gives a

measure of local structure energy from which measures such as the maximum, mean, and

variance of the scale response are found.

• Finally, the last chapter gives an overall summary of the work and outlines future research

directions.
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(a) Coral (b) Amplitude (c) Phase (d) Orientation

Figure 1.9: Section of coral core image and the amplitude, phase and orientation of the sinusoidal
model using up to the 7th order RT.

1.7 Published Work

The following is a list of six conference and one journal papers that were published and the chapters

to which they relate. All were co-authored with my supervisor, Dr. Paul Jackway, except one.

The ideas within the papers were my own and I performed the writing, experiments and content

generation of the material within. Dr. Jackway’s contribution was to review the papers and offer

suggestions for improvements.

1.7.1 Conference Papers

• R. Marchant and P. Jackway, “Generalised Hilbert Transforms for the Estimation of Growth

Direction in Coral Cores,” in 2011 International Conference on Digital Image Computing:

Techniques and Applications, IEEE, 2011, pp. 660–665

Chapters 3 and 4

• R. Marchant and P. Jackway, “Feature Detection from the Maximal Response to a Spheri-

cal Quadrature Filter Set,” in 2012 International Conference on Digital Image Computing

Techniques and Applications (DICTA), Perth: IEEE, 2012, pp. 1–8

Chapters 2 and 5

• R. Marchant and P. Jackway, “Local feature analysis using a sinusoidal signal model derived

from higher-order Riesz transforms,” in 2013 IEEE International Conference on Image Pro-

cessing, IEEE, 2013, pp. 3489–3493

Chapter 3

• R. Marchant and P. Jackway, “Using Super-Resolution Methods to Solve a Novel Multi-

Sinusoidal Signal Model,” in 2013 International Conference on Digital Image Computing:

Techniques and Applications (DICTA), IEEE, 2013, pp. 1–8

Chapter 4

• R Marchant and P Jackway, “Modelling Line and Edge Features Using Higher-Order Riesz

Transforms,” in Advanced Concepts for Intelligent Vision Systems, ser. Lecture Notes in
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Computer Science, vol. 8192, 2013, pp. 438–449

Chapter 5

• R. Marchant, “Scale Adaptive Filters,” in 2015 International Conference on Digital Image

Computing: Techniques and Applications (DICTA), vol. 32, IEEE, 2015, pp. 1–8

Chapter 6

1.7.2 Journal Papers

• R. Marchant and P. Jackway, “A sinusoidal image model derived from the circular harmonic

vector,” Journal of Mathematical Imaging and Vision, 2016

Chapters 2 and 3
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Chapter 2

Circular Harmonic Vector

In this chapter a general framework for local image analysis using higher-order RTs is presented.

Three of the last four research questions proposed in the introduction are addressed: How do

we represent local signal structure using higher-order RTs, how do we derive the parameters of a

particular image model from this description, and how do we still maintain recovery of the original

image?

To achieve these goals, an algebraic framework for both representing the higher-order RT

responses and solving for the model parameters is required. The monogenic signal and signal

multi-vector were formulated using both quaternion and geometric algebras in order to make

explicit their geometrical interpretation. However, the algebras were specific to the number of RT

orders used. Rather than delve into these representations we shall employ a simpler approach using

vector and matrix algebra and leave it to the signal model to describe the geometry.

The proposed solution is to collect the higher-order RT responses into a vector, which forms

a representation of local image structure at a particular frequency scale given by the band-pass

filter used to localise the RT responses. This vector will then be used as the primary unit for

deriving signal model parameters. The parameters are found by splitting the vector into model

and residual components, and minimising the residual. The residual component provides the

necessary information not captured by the model to allow recovery of the original image. In this

way the representation is similar to previous 2D analytic signals, but allows for arbitrary models.

A general approach is presented which will be applied for specific image models in later chapters.

The layout of the development is as follows:

• Introduction of circular harmonic vector as a primary description of the local image structure

that generalises other signal vectors.

• Introduction of a generic local image model and its wavelet response.

• Methods of solving the signal model given various constraints.
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2.1 Circular Harmonic Vector

Previous 2D analytic signals collected up to the 3rd order RT responses into either vector [29] or

matrix [134, 143] forms. This section introduces the CH vector as a representation of local image

structure from any number of higher-order RTs.

2.1.1 Circular Harmonic Frame

In the introduction we reviewed the CH wavelet frame, of which the CH wavelets are a basis for all

other 2D steerable wavelets. The CH frame, {ψni,k}|n|∈NN ,i∈Z,k∈Z2 , is given by the shaping matrix

U = I2N+1 [124] and consists of wavelets given by the −N -th to N -th order RTs of the primary

isotropic wavelet,

ψni,k = Rnψi,k. (2.1)

The CH wavelets have equal norm with frame bounds of 2N + 1.

The CH wavelets are the wavelet equivalents of the SQFs used by Felsberg , Wietzke , Zang and

Sommer [29, 135, 143] to give localised representations of the monogenic single and other signal

models. The set of wavelets in the CH frame includes all orders up to N , and wavelet theory gives

us a rich mathematical basis to perform image reconstruction from the responses. That is, we

can recover the original image from the wavelet coefficients. Formulating answers to the research

questions using a wavelet context as opposed to filter banks is thus an attractive proposition.

However, to begin with we need a higher-dimensional representation of the image that includes

these higher-order RT responses, such as is used in the monogenic signal. It is proposed to collect

the −N -th to N -th order CH wavelet responses into a vector, called a CH vector. Applying the

CH wavelet frame to an image f ∈ L2(R2), the CH vector of correlation coefficients at each scale

and location is given by

fi,k =
[〈
f, ψ−N

i,k

〉
, ...,

〈
f, ψNi,k

〉]T
. (2.2)

Thus the CH vector is a vector of higher-order RT responses up to order N , localised by the

primary isotropic wavelet. The negative RT orders are included in the vector as the corresponding

wavelets are required to synthesise other 2D steerable wavelets.

Because the CH frame bounds are 2N + 1, to obtain exact reconstruction (frame bounds = 1)

the CH vector coefficients must be weighted. Let W be a real-valued diagonal weighting matrix,

W = diag(w), (2.3)

w = [w−N , ..., wN ], (2.4)

where w−n = wn and
∑

|n|≤N w
2
n = 1. The set of weighted CH wavelets {wnψni,k}|n|∈NN ,i∈Z,k∈Z2
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thus have a frame bound of 1. Exact reconstruction is then possible using the weighted CH vector,

Wf, according to

f(z) =
∑
i,k

∑
|n|≤N

(Wfi,k)nwnψni,k. (2.5)

Thus like the monogenic signal and signal multi-vector, the CH vector is a higher-dimensional

representation of an image from which the original image can be recovered.

2.1.2 CH Vector Local Descriptor

It is proposed that the CH vector is a local descriptor of image structure. Properties of the vector

such as the individual CH wavelet responses and the magnitude of the vector describe different

aspects of this. Each are discussed in the following sections. The i and k wavelet scale and location

indices are dropped for clarity where appropriate, and one can assume that the CH vector at a

point of interest is being referred to.

Channel Amplitude

The amplitude of the n-th component, |fn|, represents the magnitude of the n-th order rotational

symmetry of the local image structure.

This can be seen in Figure 2.1, which shows the 0th to 8th order CH wavelet responses for

the Board image using a log-Gabor primary isotropic filter with wavelength 24 and σ = 0.6. The

Board image was taken from [86]. See [11] for a reference on filters such as the log-Gabor.

It can be observed that:

• The 0th order is isotropic and responds to both isotropic and even structures (lines).

• The 1st order responds to odd structures (edges), as do subsequent odd-ordered wavelets.

• The 2nd order responds to even structures (lines), as do subsequent even-ordered wavelets.

However it does not respond to T junctions, X junctions or corners.

• The 3rd order responds to edges, slightly off centre of corners and T junctions, but not to

the X junctions.

• The 4th order responds to both the T and X junctions.

• Higher orders are more complex in their response, but also respond to features where the

wavelet order is a multiple of the rotational symmetry of the feature.

Essentially, if a feature consists of either multiple line segments (or edge segments) radiating

from a point, and the angle between two segments is a close to a multiple of 2π/n, then the n-th

order CH wavelet will respond to that feature. Thus corners, T junctions or X junctions whose
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Board image

0 1 2

3 4 5

6 7 8

Figure 2.1: 0th to 8th order CH wavelet responses for the Board image using a log-Gabor filter
with wavelength 24 and σ = 0.6. Brightness: magnitude of response, colour: angle of the response.
For the 0th order, colour represents negative (red) or positive (blue) response.
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line segments are close to π/2 radians apart, require the 4th order CH wavelet for analysis. This

explains why the signal multi-vector model fails for two sinusoids at right angles with a phase of

0. The structure is that of an X junction and thus requires the 4th order to discriminate from a

blob (0th order). However, only up to the 3rd order is used in the derivation of that model.

Higher-order RT kernels are orthogonal and have more axes of symmetry. Correlation of the CH

wavelets with an image therefore gives independent measurements of the strength and orientation

of the symmetries present in the local image structure. Signal models that involve extra symmetries

therefore need high enough order RTs to be able to discriminate the features. This equates to a

larger CH vector.

Channel Orientation

The argument of the n-th component, arg(fn), represents the orientation offset of the n-th order

symmetry.

This can be also be seen in Figure 2.1:

• The 0th order is isotropic and thus indicates the sign of the local structure compared to

surrounding pixel values.

• The 1st order estimates the orientation of odd structures (edges) over [0, 2π).

• The 2nd order estimates the orientation of even structures (lines) over [0, π).

• Subsequent odd orders estimate the orientation of odd structures (edges) over [0, 2π/n).

• Subsequent even orders estimate the orientation of even structures (lines) over [0, 2π/n).

• Higher orders also give an orientation estimate for features where the wavelet order is a

multiple of the rotational symmetry of the feature.

Thus higher-orders can be used to augment the orientation estimate of the lower orders. These

extra estimates will be put to use in the next chapter, where they are applied to solving for the

sinusoidal model.

Vector Norm

The norm of the CH vector, ‖Wf‖, is a measure of local energy.

The norm of the CH vector is high at the location of image features, as shown for the Board

image in Figure 2.2 for different values of N . In the examples, the vector has been weighted so that

all the odd orders have the same weight, all even orders have the same weight, and the 0th order

weighting is
√
2 times higher than the other even orders, due to the inclusion of negative orders in
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N = 1 (monogenic signal) N = 2 (boundary tensor) N = 3 (signal multi-vector)

N = 4 N = 5 N = 7

N = 9 N = 13 N = 21

Figure 2.2: CH vector magnitude of the Board image for different values of N using a log-Gabor
filter with wavelength 24 and σ = 0.6. The CH vector was weighted to match that of the monogenic
signal, boundary tensor and signal multi-vector.

the vector. Using this weighting scheme, the norm for N = 1 is the same as the monogenic signal

amplitude, the norm for N = 2 is the same as the boundary tensor [56] magnitude, and the norm

for N = 3 is the magnitude of the signal multi-vector.

For N = 1 there are locations near the T and X junctions where the response is quite low,

as indicated by ‘holes’ in the energy image. These locations do not respond to either the 0th or

1st order CH wavelets. Adding the 2nd order (boundary tensor) improves the response, and by

N = 7 the response to boundary objects (lines and edges) appears more uniform. However, as

N increases further, the magnitude begins to smear along the direction of the lines. This is due

to the increasing size of the CH wavelets, meaning a higher response is possible further from the

feature. The change from holes in the magnitude to smearing suggests an ideal range of N when

using the CH vector norm as a boundary measure.

Weighting

Weighting each order differently also allows us to control how each order contributes to the mag-

nitude of the CH vector. In particular, the sets odd and even orders can be weighted equally so
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that the magnitude is phase invariant. This is covered in the next chapter.

Comparing CH Vectors

One may wish to compare different image structures using their corresponding CH vectors. A

simple measure is the distance between the vectors,

d(Wf,Wg) = ‖Wf−Wg‖. (2.6)

However, the distance varies with the magnitude of the vectors and thus the strength of the local

structure. It is often desirable to compare structures by shape alone. The normalised weighted

CH vector,

Wf
‖Wf‖ , (2.7)

gives an illumination-invariant description of the local image structure. That is, it describes its

shape separately to its strength. Therefore to introduce illumination invariance we may normalise

the vectors,

dnorm(Wf,Wg) =
∥∥∥∥ Wf
‖Wf‖ −

Wg
‖Wg‖

∥∥∥∥ , (2.8)

or use the angle difference between them,

γ = cos−1 〈Wf,Wg〉
‖Wf‖‖Wg‖ . (2.9)

Rotation

The CH vector can be steered and its magnitude is invariant to rotations.

Rotation of the image causes a rotation of the CH vector components (1.30). For rotation of

the image axes by θ, the CH vector is given by

f(Rθz) = S−θf(z), (2.10)

where f(z) is the image CH vector, and

Sθ = diag
[
e−iNθ, ..., eiNθ] (2.11)

is a diagonal rotation matrix. Since the rotation matrix components are unitary-magnitude com-
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plex exponentials we have

‖f(Rθz)‖ = ‖S−θf(z)‖, (2.12)

and thus the CH vector magnitude is invariant to rotations. This result is important in that it

performs a split of identity of the original image. That is, we can represent the CH vector as a

magnitude component (strength) times a normalised vector (shape) that can be separately rotated,

SθWf = ‖Wf‖ × Sθ
Wf
‖Wf‖ . (2.13)

Scale

By using a wavelet frame, scale is implicit in the representation and the scale of the basis wavelet,

i, indicates the size of the local structure under consideration.

Wavelets

Other 2D steerable wavelets are described by their CH vector. In a steerable wavelet frame, each

wavelet CH vector corresponds to one of the columns of the shaping matrix U. Therefore we may

write the correlation of the image and a wavelet as the correlation of the wavelet CH vector, um,

and the image CH vector, f. That is,

〈
ψ
(m)
i,k , f

〉
= uHmfi,k, (2.14)

and thus the vector of coefficients for a particular wavelet frame is given by UHf. The response to

a set of 2D steerable wavelets rotated to a particular orientation θ can therefore be obtained by

rotating the CH wavelet responses according to SθUHfi,k.

Thus wavelets in the 2D steerable wavelet frames in [124] can be represented by their CH

vectors. However, in [124] wavelet frames are designed for specific applications and weighted to

give exact reconstruction, whereas in the approach developed in this thesis, the CH wavelet frame

is used so that the response to any steerable wavelet can be investigated. Thus weighting is applied

to make the CH wavelet frame tight and can be adjusted, rather than fixed according to a specific

set of wavelets.

Generalisation

The CH vector is isomorphic with previous 2D analytical signals

• The components of monogenic signal, structure multi-vector, 2D analytic signal, monogenic

curvature tensor, boundary tensor and signal multi-vector can all be obtained from the CH

vector with N ≤ 3.
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• The CH vector with N = 1 and weighting vector w = [1/2, 1/
√
2, 1/2] has a magnitude

√
2

times amplitude of the monogenic signal. The sinusoidal model parameters are obtained from

the CH vector as

A =
√
2‖Wf‖, (2.15)

φ = arg(f0 + i |f1|), (2.16)

θ = arg(−i f1). (2.17)

• The CH vector with N = 2 and weighting vector w =
√

[1/2, 1, 1, 1, 1/2] /4 has a magnitude

equal to the square root of the boundary tensor energy (see [55, 56]).

Since the CH vector can represent previous 2D analytic signals, many of the observations made

for those signals can be similarly applied. For example, detection using the boundary tensor is

possible using the CH vector with N = 2, and the multi-sinusoidal model of the signal multi-vector

can be derived from the CH vector with N = 3.

Summary

The CH vector provides a description of the symmetries of the local image structure up to order

N . Its magnitude describes strength separately to the shape, which is described by the normalised

vector.

2.2 General Signal Model

The initial motivation behind this research was to use higher-order RTs to model local image

structure as an oriented sinusoid,

f(z) = A cos(〈z,o〉+ φ), (2.18)

as is performed when using 2D quadratic filters and the monogenic signal. However, the scope was

expanded to develop a general signal model that could represent a wide range of common image

features, such as corners and junctions. Examples of some common features are shown in Figure

2.3. Many can be described as the sum of individual components at a particular orientation. For

example, a line is a single line component at one orientation (Figure 2.3a), an X junction is two

line components at two orientations (Figure 2.3b) and a T junction is three line segments at three

orientations (2.3d).

To investigate such features we need:

1. A general image model that can be used to represent these common types of structures.

2. A set of steerable wavelets that respond to the different model components.
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3. A method of estimating the amplitude and orientation of each model component from the

wavelet responses.

(a) Line (b) Additive Lines (c) Occluded Lines (d) T Junction

(e) Edge (f) Additive Edges (g) Chequer Edge (h) Corner

Figure 2.3: Examples of various image features that can be represented by lines and edges.

This approach is used in many existing methods of modelling local image structures, particularly

for corners and junctions. For example, 2D steerable quadrature filters have been used for a

phase-invariant estimate of multiple local orientations [37, 38, 99, 111] and one-sided quadrature

filters have been used for junction parametrisation [50, 80]. Other methods use a pair of steerable

wedge filters defined in the spatial domain, such as [110]. This approach has been expanded by

Muhlich and others in [86, 88, 91], who steer sets of wedge filters with common orientations chosen

to match the constraints of a particular structure. The method is called multi-steerable matched

filters (MSMFs). For example, one can steer the combination of a single wedge filter and two wedge

filters fixed 180 degrees apart to analyse a T junction. The idea being that if the model is known

beforehand, the wedge filters can be fixed in number and angular relation.

The proposed method shares a similar sentiment to that of the MSMFs, in that different

constraints are added to the model. However, unlike MSMFs structures of interest are not restricted

to those which respond to a wedge, and instead 2D steerable wavelets are used as the measurement

kernels. Furthermore, the following novel aspects are added to the approach:

4. The model parameters will be derived beginning with the CH vector representation of local

image structure.

5. The CH vector will be split into model and residual vectors, for which the latter represents

the part of the image that is not represented by the model, and solved by minimising the

residual.

These latter points differentiate the method from previous approaches in the steerable filter

and wavelet literature. Like 2D analytic signals, a general description of the local image structure
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is used, rather than beginning with a representation that is specific to one model. Specifically, the

approach is to treat the vector of 2D steerable CH wavelet responses (CH vector) as the primary

descriptor of local image structure. Then given a set of wavelets that match the components of

particular signal model, the CH vector is split into model components that describe the structures

of interest, and a residual component that describes the remainder. The model parameters are

solved by minimising the residual CH vector magnitude.

This section introduces a general image model that describes common image structures, such

as those in Figure 2.3. The subsequent sections detail how to solve for the parameters of the image

model using the CH vector, given various constraints.

2.2.1 Proposed Model

All of the feature examples in Figure 2.3 can be described by the superposition of individual

components rotated around a point located at the centre of the feature. A general image model is

proposed for these kinds of features. It consists of the linear combination of K structures of interest,

{uk(z)}k∈NK
, with individual strengths (amplitudes), {λk}, and rotated to different orientations,

{θk}, plus a residual component, fε(z). At a point of interest, z = 0, the model is given by

f(z) =
K∑
k=1

λkuk(Rθkz) + fε(z). (2.19)

For example, this general model for a T junction (Figure 2.3d), could consist of straight line and

line-segment components and thus K = 2, or alternatively line-segment components and K = 3.

T junctions with different angles or amplitudes could be represented by same model, except with

different orientation or amplitude parameters.

A more expansive image model consists of the linear combination of K sets of one or more (Mk)

image structures. The structures within each set have a common orientation, {θk}, but different

amplitudes {λk,m}. This model generalises the previous one, however both are introduced to aid

the understanding of later derivations. The model is,

f(z) =
K∑
k=1

Mk∑
m=1

λk,muk,m(Rθkz) + fε(z). (2.20)

An example of this kind of model is the two-sinusoidal model of the signal multi-vector,

f(z) =
2∑
k=1

Ak cos(〈z,ok〉+ φk), (2.21)

which can be written as multiple even and odd components

f(z) =
2∑
k=1

λk,1 cos(〈z,ok〉)− λk,2 sin(〈z,ok〉), (2.22)
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where the scalars λk,1 = Ak cos(φ) and λk,2 = Ak sin(φ) are related to the sinusoid amplitude and

phase. In fact, an amplitude and phase-vector representation can be given for a general set of

features as

Ak =

(∑
m

λ2k,m

)1/2

, (2.23)

φk =
[λk,1, ..., λk,Mk

]

Ak
. (2.24)

The image structure in the first model, or the sets of image structures in the second, can be different

or the same. These constraints will be explored later in the chapter.

Previous 2D analytic signals assume that the local image structure can be completely repre-

sented by the model. However, this limits both the number of RTs and the types of structures

that can be represented. Adding the residual component removes this constraint, by representing

the part of the structure that is not well-modelled. This allows us to use arbitrary features as

the model components. Furthermore, we can compare the energy of the residual with that of the

model to give an illumination invariant measure of how well the local structure is modelled. This

will be demonstrated in later chapters.

2.2.2 General Solution

Solving the general model is possible using the CH vector. Typically this involves correlating the

local image patch with wavelets designed to match the components of the model. However, in the

proposed approach the CH vector describing the local image patch is split into vectors describing

the model components plus a residual vector. The residual vector is then minimised to solve for

the model parameters.

A 2D steerable wavelet, ψum , can be represented by the normalised weighted CH vector Wum
where

ψum
=
∑

|n|≤N

um,nRψ, (2.25)

and

Wum = Wf/‖Wf‖, (2.26)

where f is the CH vector at the centre of the feature. For example, for a Y junction we would

calculate the weighted CH vector at the position where the three line segments meet then normalise

it.

Consider the set of K 2D steerable wavelets, {ψ(k)}k∈NK
, that match the particular set of image

structures we are interested in. These shall be referred to as model wavelets. Let {Wuk}k∈NK

be the corresponding set of weighted and normalised CH vectors. For the first general model, the
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local image structure CH vector, Wf, can be written as the sum of individually scaled and rotated

versions of each model wavelet CH vector, plus the residual component, Wε. The relationship for

a particular scale i and location k is

f(z) =
K∑
k=1

λkuk(Rθkz) + fε(z)
CH←→ Wf =

∑
k

λkSθkWuk + Wε. (2.27)

Since we can reconstruct the image exactly from the CH vector, the image can be expressed as the

sum of separate model and residual reconstructions,

f(z) = fψ(z) + fε(z), (2.28)

where fψ(z) is the part synthesised from the model wavelets,

fψ(z) =
∑
i,k

K∑
k=1

∑
|n|≤N

λki,k(Sθi,kWuk)n, wnψni,k, (2.29)

and fε(z) is the residual image synthesised from the residual wavelets,

fε(z) =
∑
i,k

K∑
k=1

∑
|n|≤N

(Wεi,k)nwnψ
n
i,k. (2.30)

The residual component is the missing part of the local structure that is not correlated with the

wavelets but is needed for exact reconstruction of the image.

To solve the model, we shall choose values of λk and θk that minimise the residual component

at each scale and location, so that the model wavelets explain as much of the image as possible.

Since the CH wavelets {ψn}|n|∈NN
are orthogonal, the L2-norm of the residual wavelet ψεi,k is

proportional to the `2-norm of the residual vector Wεi,k [124]. Therefore

‖ψε‖ ∝ ‖Wε‖ (2.31)

∝

∥∥∥∥∥Wf−
K∑
k=1

λkSθkWuk

∥∥∥∥∥ . (2.32)

Letting λ = [λ1, ..., λK ] and θ = [θ1, ..., θK ], the linear scale and rotation parameters that minimise

the residual are given by

λ,θ = arg min
λ,θ

∥∥∥∥∥Wf−
K∑
k=1

λkSθkWuk

∥∥∥∥∥. (2.33)

Once this equation has been solved we may compare the model and residual vectors to give a
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measure of how well the model represents the local image structure,

γ = tan−1 ‖Wε‖
‖
∑
k λkSθkWuk‖

(2.34)

= sin−1 ‖Wε‖
‖Wf‖| , (2.35)

where γ = 0 means the structure CH vector is completely represented by the model CH vectors.

The second general model consisting of sets of features will be considered later in the chapter.

2.3 Least-Squares With Global Orientation

Finding an exact solution for the residual minimisation equation is difficult due to the non-linearity

from having different orientation parameters. By introducing some constraints, particularly by

having a single orientation values, we can simplify the equations so that an exact solution can

be found. In this section we shall explore the solutions for different constraints, starting with

the general solution for wavelets with a single orientation and finishing with multiple sets. For

simplicity and without loss of generality, we drop the weighting matrix W, that is Wf → f, so

that the equations are easier to read.

2.3.1 Single Orientation Constraint

The first constraints we shall introduce are:

• The set of model wavelet CH vectors is linearly independent. This sets an upper level on the

number of model wavelets that can be used to 2N + 1.

• The wavelets are all rotated to the same orientation, that is θp = θq ∀p, q ∈ NM .

This equates to a single set of M wavelets (K = 1) with a single orientation θ and different

amplitudes. The model equation reduces to

f(z) =
M∑
m=1

λmum(Rθz) + fε(z)
CH←→ Wf =

∑
m

λmSθWum + Wε, (2.36)

and thus the equation to solve is

λ, θ = arg min
λ,θ

∥∥∥∥∥Wf−
∑
m

λmSθWum

∥∥∥∥∥. (2.37)

To solve this we begin by collecting all the normalised model CH vectors into the columns of a

2N + 1×M matrix U, that is

U = [u1, ...,uM ] , (2.38)
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and rewrite the model equation to solve as

λ, θ = arg min
λ,θ

‖f− SθUλ‖ (2.39)

= arg min
λ,θ

‖S−θf−Uλ‖. (2.40)

For a fixed value of θ, this becomes the classic linear least-squares problem. Using the properties

‖a‖2 = 〈a,a〉 = aHa and (AB)H = BHAH , and since SθSHθ = IN and S−θ = SHθ , we have

min
λ,θ
‖S−θf−Uλ‖ = min

λ,θ
fHSθSHθ f− 2λHUHSHθ f + λHUHUλ (2.41)

= min
λ,θ
− 2λHUHSHθ f + λHUHUλ. (2.42)

At the minimum, the derivative with respect to λ will be 0, which gives

0 = −2UHSHθ f + 2UHUλ, (2.43)

λ = (UHU)−1UHSHθ f (2.44)

= U+SHθ f, (2.45)

where U+ is called the pseudo-inverse of U. To solve for θ we substitute back into (2.42) to get

min
θ
‖S−θf−Uλθ‖ = min

θ
− 2λHθ UHSHθ f + λHθ UHUλθ (2.46)

= min
θ
−2fHSθ(U+)HUHSHθ f + fHSθ(U+)HUHUU+SHθ f. (2.47)

Since UU+ is Hermitian, (U+)HUH = (UU+)H = UU+ and U+U = IM . The above equation

simplifies as follows

min
θ
‖S−θf−Uλθ‖ = min

θ
−2fHSθUU+SHθ f + fHSθUU+UU+SHθ f (2.48)

= min
θ
−2fHSθUU+SHθ f + fHSθUU+SHθ f (2.49)

= max
θ

fHSθUU+SHθ f (2.50)

= max
θ
〈UHSHθ f,U+SHθ f〉. (2.51)

Since each of the terms in the inner product are a function of θ we let

λ(θ) = U+SHθ f, (2.52)

δ(θ) = UHSHθ f, (2.53)

which gives

max
θ
〈UHSHθ f,U+SHθ f〉 = max

θ

∑
m

δm(θ)λm(θ). (2.54)
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Each of these functions are trigonometric polynomials with order 2N , that is

λm(θ) =
∑

|n|≤N

u+mn
w2
nfne

−inθ, (2.55)

δm(θ) =
∑

|n|≤N

ūmnw
2
nfne

−inθ. (2.56)

We must thus find the maximum of the trigonometric polynomial

p(θ) =
∑
m

δm(θ)λm(θ), (2.57)

which has degree 4N . One method to find the maximum is by finding locations where the root is

zero. The derivative of the polynomial is

p′(θ) =
d

d(eiθ)
p(θ) (2.58)

=
∑

|n|≤N

−inpne−inθ, (2.59)

where pn are the coefficients of the polynomial. Using root finding we obtain up to 4N candidate

values of θ,

θ = {θ : p′(θ) = 0, θ ∈ [0, 2π)}. (2.60)

Substituting each θ back into p(θ) we choose the value that gives the maximum

θmax = arg max
θ∈θ

p(θ), (2.61)

from which λm(θmax) and δm(θmax) can be calculated for each wavelet to give the amplitude of

each model component.

OrthonormalWavelets

If instead the wavelets are orthonormal, then UHU = I2N+1 and thus the pseudo-inverse is simply

U+ = UH . Therefore λm(θ) = δm(θ) and the trigonometric polynomial to find the maximum of

becomes

p(θ) =
∑
m

λ2m(θ). (2.62)

Each of the image models explored in the later chapters are orthonormal, and this reduction will

apply.
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Range

Because of the multiplication of λ and δ in (2.57), it is possible to have both positive and negative

values of λ. A negative value means that the wavelet, and thus the feature component, has been

inverted. This can be useful in many situations. For example, consider a wavelet that is matched

to a positive line feature. A large negative value for λ indicates a strong correlation with the

inverse, a negative valued line feature.

However, in other situations only positive values of λ would be desired, such as if the line

features were all positive. One would then solve

θ = arg max
θ∈θ

p(θ) s.t. λm(θ) >= 0. (2.63)

For a single component to the model (M = 1) the positive constraint is equivalent to solving for

the maximum of

p(θ) = λ1(θ), (2.64)

and the solution is easily obtained. However for more than one component, the solution is more

complicated. The non-linearity of the condition means that the best solution does not necessarily

correspond to one of the maxima of p(θ). Fortunately a model consisting of multiple components

with the same polarity at a single orientation is not needed to analyse lines, edges, corners or

junctions. Note, a model consisting of multiple components with the same polarity and each with

different orientations is solved in a different manner later in the chapter. Note, that for a single

component with either positive or negative amplitude one does not need to solve for the maximum

of λ1(θ)2. Instead one can find the roots of λ1(θ) and pick the result that maximises |λ1(θ)|. This

halves the degree of the polynomial and thus reduces computation time.

Example

The approach is demonstrated on the Board image (Figure 2.1). A set of four wavelets were chosen

to model the image (Figure 2.4) by their additive combination at a single common orientation.

The wavelets roughly correspond to line, corner, T junction and X junction features, which are

present in the test image. Their construction is detailed in later chapters.

The shapes of the pseudo-inverse wavelets, corresponding to CH vectors of the columns of U+H

(Figure 2.4), are quite different to their corresponding feature wavelets. Since large values for

both δm(θ), corresponding to the model wavelets, and λm(θ), corresponding to the pseudo-inverse

wavelets, will give a higher value for p(θ), we can infer that the pseudo-inverse wavelets help

discriminate the model wavelets from each other. For example, the pseudo-inverse wavelet for the

X junction (m = 4) consists of only the left segment, a component that all the other model wavelets

lack.
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m = 1 m = 2 m = 3 m = 4 m = 5

um

ū+
m

Figure 2.4: Set of model wavelets (top row) and the corresponding wavelets from the columns of
the pseudo-inverse of U+H (bottom row), for N = 7.

The resulting values for the amplitude of each model component, δm (Figure 2.5), show there

is a high response to the line-like wavelet at lines, the corner-like wavelet at corners, and the X

junction wavelet at the line intersections. Curiously, while the T junction wavelets respond to

the lines, the response is not high at the actual T junction locations. Indeed, the pseudo-inverse

wavelet for the T junction has a large negative response at the locations of T junctions, meaning

that this feature is actually being subtracted in the model formulation. Note, the polarity of the

edge response, δ2, flips between positive and negative values in some locations because a positive

edge at 0 degrees is the same as a negative edge at 180 degrees. Thus where the local signal

structure is edge-like both solutions are possible.

m = 1 m = 2 m = 3 m = 4 m = 5

δm

λm

Figure 2.5: Test image response to the model wavelets from Figure 2.4 (top row) and their pseudo-
inverse (bottom) from Figure 2.4. Red: positive response, blue: negative response.

The model norm is large at the location of features that are similar to the model wavelets

(Figure 2.6a), while the residual norm is large where the features are not similar (Figure 2.6b).

The model orientation gives an estimate of the feature orientation (Figure 2.6c); it is shown modulo

π due to the aforementioned flipping of the edge orientation.
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Figure 2.6: Model and residual vector magnitudes along with the global orientation estimate for
the wavelet set in Figure 2.4.

Investigating the negative response to the T junction further, at the centre of the left-side T

junction, the model CH vector is given by

34.1u1 + 1.6u2 + 1.1u3 − 24.1u4 + 26.0u5, (2.65)

with orientation θ = 3 radians clockwise. One would expect the T junction to be modelled by the

T junction wavelet with a slight counter-clockwise rotation corresponding to θ = −0.15 radians.

If we construct the wavelet corresponding to the model CH vector it looks very much like a T

junction. However, it is made up of a line, X junction and a flipped and inverted T junction, as

shown in Figure 2.7:

+ + + + =

Figure 2.7: Model components of the left T junction solved using the wavelet set in Figure 2.4.

Therefore while the method may give the absolute minimum of the residual norm at this

location, large λ values for the each wavelet suggest the model is being over-fit. Indeed from a

image interpretation point-of-view, we would prefer a single large value for the T junction wavelet,

rather multiple combinations of wavelets with a slightly better fit.

2.3.2 Regularisation

A common approach to prevent over-fitting is by introducing a penalty term on the magnitude of

the coefficient vector, in our case λ. The model becomes

λ, θ = arg min
λ,θ

(‖f− SθUλ‖2 + α‖λ‖p) , (2.66)

where p indicates the type of norm used. Three types are:

• p = 0 : used in Akaike information criterion (AIC) [2]. It is equal to the number of non-zero

elements of λ.
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• p = 1 : used in methods such as LASSO [120]. It tends to give sparser values for λ, meaning

that there are fewer non-zero components.

• p = 2 : known as Tikhonov regression or ridge regression. It tends to reduce the values of all

parameters, rather than select for only a few, as a vector with many small coefficients tends

to have a smaller `2 norm than one with a single large coefficient.

We shall investigate `2 and a `1-like regularisation for the model estimation problem.

`2 regularisation

Using `2 regularisation the problem becomes

λ, θ = arg min
λ,θ

(
‖f− SθUλ‖22 + α‖λ‖22

)
(2.67)

= arg min
λ,θ

−2λHUHSHθ f + λHUHUλ+ αλHλ. (2.68)

Following the same procedure as before, at the minimum the derivative with respect to λ will

be 0, which gives

0 = −2UHSHθ f + 2UHUλ+ αλ, (2.69)

λ = (UHU + αI)−1UHSHθ f. (2.70)

Letting U+
α = (UHU + αI)−1UH , for a fixed orientation θ we have

min
θ
−2λHθ UHSHθ f + λHθ UHUλθ + αλHθ λθ (2.71)

= min
θ
−2fHSθ(U+

α )
HUHSHθ f + fHSθ(U+

α )
HUHUU+SHθ f + αfHSθ(U+

α )
HU+

αSHθ f. (2.72)

Since UU+ is Hermitian, (U+)HUH = (UU+)H = UU+ and U+U = IM . The above equation

simplifies to

max
θ
−fHSθ(U+

α )
HUHSHθ f− αfHSθ(U+

α )
HU+

αSHθ f (2.73)

= max
θ
〈UHSHθ f,U+

αSHθ f〉 − 〈U+
αSHθ f,U+

αSHθ f〉. (2.74)

Since each of the terms in the inner product are a function of θ we let

λ(θ) = U+
αSHθ f, (2.75)

δ(θ) = UHSHθ f, (2.76)
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and as before, the polynomial to maximise to solve for θ is thus

p(θ) = max
θ

∑
m

δm(θ)λm(θ). (2.77)

The response to the Board image using the same set of wavelets as before, but this time using

`2 regularisation with α = 0.1 was calculated (Figure 2.8). In contrast to using no regularisation,

the T junction wavelet (m = 4) now has a positive response at the locations of the T junctions.

m = 1 m = 2 m = 3 m = 4 m = 5

δm

λm

Figure 2.8: Test image response to the model wavelets from Figure 2.4 (top row) and the wavelets
from the columns of the pseudo-inverse, U+H

α (bottom row), using `2 regularisation with α = 0.1.
Red: positive response, blue: negative response.

The model norm (Figure 2.9a), residual norm (Figure 2.9b) and orientation estimate (Figure

2.9c) appear unchanged.
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Figure 2.9: Model and residual vector magnitudes along with the global orientation estimate for
the wavelet set in Figure 2.4 using `2 regularisation with α = 0.1.

Investigation the left-side T junction shows the model CH vector is given now by

13.52u1 − 1.4u2 + 0.8u3 + 18.9u4 + 3.8u5, (2.78)

with orientation θ = 3 radians. The T-junction response is now mainly comprised of the line

wavelet and the T-junction wavelet (Figure 2.10). The earlier problem where the response was

made up of line, X junction and a flipped and inverted T junction wavelets has been resolved by

using regularisation.
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+ + + + =

Figure 2.10: Model components of the left T junction solved using the wavelet set in Figure 2.4 at
`2 regularisation with α = 0.1.

`1 penalty

Using `1 regularisation the problem becomes

λ, θ = arg min
λ,θ

(
‖f− SθUλ‖22 + α‖λ‖1

)
. (2.79)

However, due to the `1 norm this is no longer a linear system of equations. One can use `1 solving

methods such as basis pursuit denoising [18] to find the values of λ for a fixed orientation θ, however

this does not extend to all orientations.

Instead we shall use the `1 norm to choose between multiple similar solutions to the non-

regularised problem. The process is the same as solving the unregularised problem

λ, θ = arg min
λ,θ

‖f− SθUλ‖22, (2.80)

except when we obtain a set of candidate points for θ

θ = {θ : p′(θ) = 0, θ ∈ [0, 2π)}, (2.81)

we choose the point using the `1 norm as follows

θ = arg max
θ∈θ

(p(θ)− α‖λ(θ)‖1) . (2.82)

This approach is not true `1 regularisation, it simply weights the solutions according to the sum

of the components.

The response to the Board image using the same set of wavelets as before, but this time using

the `1 penalty with α = 2 (Figure 2.11) shows the `1 penalty also resolves the over-fitting problem,

as the T junction wavelet (m = 4) has a positive response at the locations of the T junctions.

The response to the corner, T, and X wavelets (Figure 2.11 bottom row) is lower around the line

areas compared to the `2 norm, resulting in more a more localised response for the T junction

in particular. Using the `1 penalty thus resolves the over-fitting problem while improving the

semantic description of the junctions.

The model norm (Figure 2.12a) and residual norm (Figure 2.12b) appear unchanged from the

`2 case. However, the orientation estimate (Figure 2.12c) has noisy regions in the low strength

magnitude areas, due to the penalty term being larger than the polynomial value at that point.
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m = 1 m = 2 m = 3 m = 4 m = 5

δm

λm

Figure 2.11: Test image response to the model wavelets from Figure 2.4 (top row) and the wavelets
from the columns of the pseudo-inverse, U+H

α (bottom row), using an `1 penalty term with α = 2.
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Figure 2.12: Model and residual vector magnitudes along with the global orientation estimate for
the wavelet set in Figure 2.4 using an `1 penalty α = 2.

At the centre of the left-side T-junction, the model CH vector using the `1 penalty is given by

13.2u1 − 1.6u2 + 1.2u3 + 23.5u4 + 0.9u5, (2.83)

with orientation θ = 3 radians. The T junction response is mainly comprised of the line wavelet

and the T-junction wavelet (Figure 2.13). The earlier problem where the response was made up

of line, X junction and a flipped and inverted T junction wavelets has been also been resolved by

using the `1 penalty.

+ + + + =

Figure 2.13: Model components of the left T junction solved using the wavelet set in Figure 2.4 at
`2 regularisation with α = 2.

2.3.3 Summary

This section has developed the tools needed to solve for the parameters a set of wavelets with

common orientation, by choosing values that give the lowest residual. Using regularisation relaxes

the problem so that solutions with a fewer number of high amplitude components can be found.



53

The examples given used a set of five wavelets, and the ratio of their amplitudes can be considered a

multi-dimensional phase descriptor. In the following chapters, sets consisting of only two wavelets

with common orientation will be used, where the phase value is a scalar given by their ratio.

2.4 Maximal Response

2.4.1 Single Wavelet, Single Orientation

In the last section we saw how penalising the large coefficient vectors gave feature strengths that

were sparser. Taking this to the extreme, we can represent the local image structure by choosing

from a set the single wavelet that has the maximum correlation with the structure. For example,

if the local signal structure resembles a line, only the line-wavelet will have a non-zero coefficient.

The optimisation problem becomes

λ,θ = arg min
λ,θ

‖Wf− λkSθkWuk‖ such that ‖λ‖0 = 1. (2.84)

As there will be only one non-zero coefficient for both λ and θ we may instead write this as

λ, θ, k = arg min
λ,θ,k∈NK

‖Wf− λSθWuk‖, (2.85)

where k is the wavelet type index. Solving this problem is easy, we find λ and θ for each wavelet

individually and then choose the k for which λ is a maximum. Each wavelet from Figure 2.4

responds maximally to different features in the test image (Figure 2.14).

k = 1 k = 2 k = 3 k = 4 k = 5

λk

Figure 2.14: Test image response to the model wavelets from Figure 2.4 individually.

At each location of the test image the pixel is classified according to which wavelet gives the

maximum response (Figure 2.15a). The class k clearly differentiates each of the feature types, and

the absolute value of λ is high at the location of these features. Interpretation of the orientation

must be made in the context of the feature class. The wavelets have been purposely aligned along

their main axis of symmetry so that the orientation values can be compared. This is why there is a

smooth transition from the line orientation to the edge orientation and so on. Design of a wavelet

set should follow this principle in general.

The residual norm is large adjacent to the features as previously observed, but also at locations

in between line and edge features. We can infer that locations that are half-line / half-edge are not

well represented by either type and because only one wavelet is allowed in this model the residual
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will be high. In contrast, the approach of the previous section uses a model consisting of more

than one wavelet and can represent combinations of structures, therefore the residual is reduced.
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Figure 2.15: Test image classification, model and residual vector norm along with the global
orientation estimate for the maximal response to the set of CH wavelets in Figure 2.4.

2.4.2 Single Wavelet Set, Single Orientation

To reduce the residual we can instead use the maximal response to different sets of wavelets, where

the combination of wavelets within a set represent feature components. For example, we may have

one set consisting of the line and edge wavelets, and another consisting of the junction wavelets.

Local signal structure would then be represented by a combination of wavelets from whichever set

gives the lowest distance. This is represented by

λ, θ, k = arg min
λ,θ,k∈NK

‖Wf− SθWUkλk‖, (2.86)

where {Uk}k∈NK
is a set of matrices representing different sets of wavelets, with their CH vectors

as columns. The solution is to solve the equation for each individual set of wavelets, and choose

the k that corresponds to the minimum residual. Solving for each set uses the method from Section

2.3 and therefore can also use regularisation.

To demonstrate, two wavelet sets were created. The first consists of the line and edge wavelets

from Figure 2.4 with m = 1 and m = 2 respectively, and the second consists of the corner, T
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Set 1 (k = 1) Set 2 (k = 2)

m = 1 m = 2 m = 1 m = 2 m = 3

λm

γm

Figure 2.16: Test image response for each of the model wavelets from Figure 2.4 divided into a line
and edge wavelet set (Set 1) and a corner, T and X junction set (Set 2).

junction, and X junction wavelets from Figure 2.4 with m = 1, m = 2 and m = 3 respectively.

The responses for each wavelet (Figure 2.16) differ from previous examples in Section 2.3 in that

the corner and junction set also have large responses at the locations of lines, as the line wavelet

is no longer in the set.

However, when compared to the previous example using maximal response to single wavelet,

by using sets of wavelets the residual is no longer high around half-line and half-edge features

(Figure 2.17c) and the model norm is smoother (Figure 2.17b), while classification is about the

same (Figure 2.17a). This shows some image features are best represented by the combination of

more than one wavelet.

The purpose of this example is to illustrate that neither collecting all the wavelets into one

set with a common orientation (Figure 2.5) or treating all the wavelets individually (Figure 2.15)

may be the best approach to local image modelling. Often one must combine complementary

wavelets into the same set. In terms of models, a good example is the analysis of a honeycomb

pattern. One could use a set of line and edge wavelets to describe the cell boundaries, and a set

of Y junctions to describe the points where the boundaries of adjacent cells meet. The set of odd

and even sinusoidal wavelets are one example that will be developed in Chapter 3 and the set of

line-segment and edge-segment wavelets are another that will be developed in Chapter 5.

2.4.3 Multiple Wavelet Sets, Multiple Orientations

The previous example constrained the problem to representing the local image structure by a single

wavelet or single wavelet set that gave the maximum response for a single orientation. This allowed

for least-squares solutions featuring multiple different wavelets. Now we consider the case where

the local signal structure is comprised of multiple wavelets at multiple orientations,

Wf =
K∑
k=1

λkSθkuqk + Wε, (2.87)
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Figure 2.17: Classification model and residual vector magnitudes along with the global orientation
estimate using the maximal response to two sets of wavelets. The first set contains a line and edge
wavelet, the second contain a corner, T junction and X junction wavelet.

or multiple wavelet sets at multiple orientations

Wf =
K∑
k=1

SθkUqkλk + Wε, (2.88)

where qk is the index of the wavelet set. The latter is the most general model. For example,

consider a corner, T junction and an X junction. A corner could be modelled by two line-segments

at 90 degrees, a T junction by a line and a line segment, and an X junction by two lines. Different

model components, and thus different wavelets, at different orientations are therefore required.

Furthermore, the wavelets do not have to be linearly independent and can even be multiple copies

of the same wavelet at different orientations.

Iterative Solution

The solution to these types of problems is made possible by having the residual vector. The idea

is to first model the structure using the best wavelet or wavelet set, then repeat the process using

the remaining image structure as represented by the residual. Thus the method is iterative.

To begin with, we calculate the maximal response as in the previous section and choose the
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best wavelet set out of Q sets to choose from,

λ1, θ1, q1 = arg min
λ,θ,q∈NQ

‖Wf− SθWUqλ‖, (2.89)

then calculate the residual component from the result.

Wε1 = Wf− Sθ1WUq1λ1. (2.90)

The process is repeated for the remaining wavelet sets up to K iterations, using the residual vector

from the previous iteration instead of the original CH vector,

λ2, θ2, q2 = arg min
λ,θ,q∈NQ

‖Wε1 − SθWUqλ‖, (2.91)

· · · (2.92)

λK , θK , qK = arg min
λ,θ,q∈NQ

‖WεK−1 − SθWUqλ‖. (2.93)

Two set of wavelets, line and edge (set 1), and line segment and edge segment (set 2), shown in

Figure 2.18, were used to model the Board image for K = 2 iterations. Each location in the image

was classified for each iteration according to the set that gave the maximum response (Figure

2.19). Line and edge features had a maximal response to set 1 and a low residual after the first

iteration, indicating that one component is enough to model them. Corner junctions had a high

response to set 2 for two iterations, meaning that two line/edge-segment components are required

to model them. T junctions had a high response to set 1 and then set 2, while X junctions had

a high response to set 1 for two iterations. This shows that we can both describe features using

different model components in the same model as well as differentiate them according to which

model wavelets give high responses.

Set 1 (k = 1) Set 2 (k = 2)

m = 1 m = 2 m = 1 m = 2

Figure 2.18: The sinusoidal (line and edge) wavelets developed in Chapter 3 (set 1), and the
half-sinusoidal (line segment and edge segment) wavelets developed in Chapter 5 (set 2).

2.4.4 Identical Wavelet Sets, Multiple Orientations

If instead of choosing from Q different sets of wavelets, we can simplify the previous model to

simply have K copies of the same set of wavelets. An example would be to model the T junction
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k = 1 k = 2

‖Wfk‖

‖Wεk‖

Figure 2.19: Result of modelling the test image with the two sets of wavelets in Figure 2.18. Top
row: model norm for each iteration, coloured according to the individual wavelet with the largest
response from the set with the largest response. Green: line wavelet, yellow: edge wavelet, pink:
line segment wavelet, red: edge segment wavelet. Bottom row: residual norm.

using multiple copies of a line-segment at different strengths and orientations,

Wf =
∑
k

SθkWUλk + Wε, (2.94)

where WU is the matrix of wavelet CH vectors.

This type of model is what will be predominately used in the rest of this thesis. The general idea

of analysis using the same wavelet set is used by, for example, Perona [98], Freeman [36], Michaelis

and Sommer [80] and Simoncelli and Farid [110] to parametrise junctions. They steer a filter or

filter pair and find peaks in the orientation response to determine the amplitude, orientation and

number of components. Where the proposed approach differs is we have the residual component

that describes the part of the signal that isn’t well modelled, and thus an iterative method of

solving for the both the amplitude and orientation parameters.

Iterative Solution

The iterative approach to solving this is the same as for different wavelet sets. First we find the

parameters corresponding to the minimum distance,

λ1, θ1 = arg min
λ,θ

‖Wf− SθWUλ‖, (2.95)
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then repeat the process using the residual,

λ2, θ2 = arg min
λ,θ

‖Wε1 − SθWUλ‖, (2.96)

· · · (2.97)

λK , θK = arg min
λ,θ

‖WεK−1 − SθWUλ‖.

Roots Solution

The traditional approach [36, 80, 98, 110] is to find peaks in the angular response of the wavelet

set. In the context of the CH vector, recall that the polynomial we must find the maximum of is

p(θ) =
∑
m

λm(θ)δm(θ). (2.98)

The roots of the derivative polynomial p′(θ) give up to 4N possible candidates for the orientation,

{θi}. We choose the values that satisfy the following conditions:

1. p′(θi) = 0: The derivative polynomial evaluates to 0.

2. p′′(θi) < 0: The second derivative polynomial evaluates to a negative value, meaning the

point is at a local maximum.

From the candidate set we choose the θi that give the K largest values of p(θ), ordered from largest

to smallest. Then λ and δ are calculated for each wavelet in the set. In contrast to the iterative

process, this method only requires the polynomial roots to be calculated once. Finding the roots of

a large polynomial is computationally expensive. In MATLAB, the in-built roots method, which

uses the eigenvalues of the companion matrix, was the fastest implementation that could be found.

Even so, the time taken to process an entire 512 × 512 image is in the order of seconds (Table 2.1).

Others methods were implemented, such as the Durand-Kerner and Bairstow methods, however

these were slower. Therefore the number of root finding operations is an important distinction

between the iterative and roots methods.

Four components (K = 4) of the line-segment and edge-segment (half-sinusoidal) wavelet set

(Figure 2.18) were used to describe the test image. The parameters we solved using both the

iterative and roots methods (Figure 2.20). The third component (k = 3) of the model highlights

interesting differences between the each method. Firstly, the roots method still has a response at

the location of lines and edges whereas the iterative method does not. Secondly, the response at

the centres of the junctions is lower for the roots method. This means model components given by

the iterative method better describe these locations than the roots method.

Finally, one can also classify each pixel according to the number of components above a certain

threshold (Figure 2.21). The iterative method appears to better classify the regions near corners.



60
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roots

Figure 2.20: Norm of each model component of the test image found using the line-segment /
edge-segment wavelet set (Figure 2.18) for four components, using either the iterative or roots
methods.
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Figure 2.21: Classification of the test image using the line-segment / edge-segment wavelet set at
up to four orientations. Points are classified by the number of model components with amplitude
greater than 0.4 times the first model component amplitude. Brightest is the magnitude of the
combined four model vectors.

2.4.5 Summary

This section has developed two methods of solving image models using multiple sets of wavelets at

multiple orientations. The iterative method makes use of the residual component solve the model

piece by piece. The roots method solves all the components at once, but is limited to models

using multiple copies of the same component (wavelet set). These two methods will be referred

to throughout the thesis. The test image response (Figures 2.21 and 2.20) suggests the iterative

method gives slightly better parameters than the roots method for the second wavelet set in Figure

2.18.

It was necessary to introduce the line/edge (sinusoidal) and line-segment/edge-segment (half-

sinusoidal) wavelet sets to provide good examples of the different types of maximal response models.

The sinusoidal wavelets are developed properly in Chapters 3 and 4 and the half-sinusoidal wavelets

in Chapter 5. The performance of the iterative and roots methods are tested for each wavelet set

in these chapters.
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2.5 Super-Resolution

Both the iterative method and root finding method allow us to obtain the parameters of a single

wavelet set at K orientations. A recently developed method called super-resolution can also be

applied when solving a model that uses a single wavelet or two orthogonal wavelets that meet certain

criteria. Using super-resolution to solve for multiple wavelet orientations is a novel application of

the method, and the connection does not appear to have been made before. One reason may be

that it is a recent development. The other is that it also solves for model parameters by minimising

the norm of residual vector, and thus lends itself to the CH vector approach.

2.5.1 Overview

Discrete basis pursuit denoising [18] is a method for finding sparse approximations of signals from

a dictionary of elements. That is, finding a sparse solution for the least-squares problem,

min
x
‖x‖1 subject to ‖y−Ax‖22 ≤ δ. (2.99)

In the above, y can be thought of as a discrete signal, A as a matrix whose columns represent

model components, and x as a vector of their amplitudes. The idea is to find the smallest number

of model components such that norm of the residual signal, ‖y−Ax‖, is below a certain threshold.

A CH vector model where all the components are fixed in orientation could thus be solved using

the same method, that is,

min
λ
‖λ‖1 subject to ‖Wf−WUλ‖22 ≤ δ, (2.100)

where Wf is the weighted image CH vector, WU is a matrix whose columns are the model wavelet

CH vectors, and λ is a vector of their amplitudes. The restriction to a fixed orientation makes

this approach limited in application regarding local feature analysis, as orientation is on of the

parameters needed to represent features.

With some coaxing the method was applied to estimating the orientations of a model consisting

of one component at different amplitudes and discrete orientations. The problem takes the form,

min
λ
‖λ‖1 subject to ‖Wf−Θλ‖22 ≤ δ. (2.101)

The matrix consists of columns of the model wavelet CH vector, Wu, at discrete orientations over

the range [0, 2π). For example, if we wished to find the orientation of the components to within one

degree, the matrix would have 360 columns consisting of the model wavelet CH vector rotated in

one degree increments. Solving the problem thus gives a sparse solution for λ where the positions

of the non-zero elements correspond to the orientations of the model wavelets, and their values to

the amplitudes.



62

Solving the problem by making it discrete seemed inelegant. A search of the literature to find

a continuous variation of the basis pursuit denoising algorithm was performed, and the recently

developed method of the super-resolution of complex spike trains [14, 15] was discovered.

2.5.2 Super-Resolution

Super-resolution involves finding the location and amplitude of spikes in a complex spike train,

from the low-frequency Fourier series components of that signal [15] which may be corrupted by

noise [14]. Restating the problem from [14, 15], let x(θ) be a signal composed of the superposition

of K complex-valued spikes with amplitudes {αk}k∈NK
∈ C, at locations {θk}k∈NK

∈ [0, 2π). That

is,

x(θ) =
K∑
k=1

αkδ(θ − θk). (2.102)

Now let FN be the operator that maps a signal to a vector of its −N -th to N -th Fourier series

coefficients. That is,

{FNx(θ)}n =

∫ 2π

0

x(t)e−inθφ dφ (2.103)

=

K∑
k=1

αke
−inθk . (2.104)

Letting x = FNx(θ) be this vector, the position and amplitude of the spikes can be estimated by

solving

min
α,θ
‖x̃(θ)‖TV subject to ‖FN x̃(θ)− x‖1 = 0, (2.105)

where x̃(θ) is the estimated spike train, and ‖x̃(t)‖TV is the total-variation norm, which can be

interpreted as the generalization of the `1 norm to the real line [14]. For this problem, it is

equivalent to ‖α‖1 with the constraint that each element in the set of orientations θ is unique.

If instead y(θ) is a complex-valued spike train corrupted by noise, that is, y(θ) = x(θ) + η(θ),

with Fourier series coefficients given by y = FNy(θ), the super-resolution method estimates the

values of the spike train by solving

min
α,θ
‖x̃(θ)‖TV subject to ‖FN x̃(θ)− y‖1 < δ, (2.106)

where x̃(θ) is the estimated spike train and δ is a parameter that relaxes the problem to account

for the noise. For an unknown signal, y(θ), that we assume is a noisy complex-valued spike train,

δ also relaxes the problem for situations where the signal cannot be properly modelled by a spike

train. In this case, δ accounts for the non-spike part of the signal.

For an ideal spike train with no noise and δ = 0, total variation minimisation will give a unique



63

and therefore exact solution, to arbitrarily small precision, so long as the minimum separation be-

tween spikes is greater than 4π/N for complex valued spikes, or 3.74π/N for real valued spikes [15].

The minimum separation is the smallest distance between any set of spike locations and is given

by [15]

δ(θ, θ′) = inf
(θ,θ′)∈Θ:θ 6=θ′

|θ − θ′|. (2.107)

Note this is the wrap-around distance, that is, the distance between 0 and 2π would be 0.

Numerical simulations in [15] suggest that this separation constraint may be as low as 2π/N

when there is a low number of spikes compared to N . Furthermore, for real spikes all of the same

sign, the minimum distance is much smaller. The maximum number of spikes that can be resolved

is N [15]. Importantly, the super-resolution problem does not need to be made discrete. It can be

solved directly from the Fourier coefficients via a semi-definite program, of which the mathematical

basis is developed in [15] along with links to example MATLAB code.

Recovery of the original spike train is possible even when spikes are close together, as shown

in Figure 2.22. The example consists of four spikes recovered from five Fourier series components.

The first two spikes are close together with only one corresponding local maxima in the low-pass

response. If the position of the spikes were estimated simply by looking at the local extrema, only

one spike would be found at this location, using super-resolution both spikes are found.
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Figure 2.22: A complex-valued spike train shown with the signal reconstructed using just the first
five Fourier series coefficients, and the spike train estimated from these coefficients.

2.5.3 Application to Model Orientation Estimation

Consider the low-pass response given by the sum of the first N Fourier series components of a

unit-valued spike. If we think of this function as a model signal, then the super-resolution problem

can be though of as finding the positions and amplitudes of the sum of these model components

that make up the signal being analysed. Replace position with orientation, and we find that the

super-resolution method can be applied to solve for CH vector models consisting of one or two

wavelets at multiple orientations, with a few constraints.

To begin with, consider the model consisting of a single wavelet Wu at different orientations



64

and amplitudes,

Wf =
K∑
k=1

λkSθkWu + Wε. (2.108)

An individual order of the image CH vector would therefore be given by

wnfn =
K∑
k=1

λke
−inθkwnun + wnεn. (2.109)

Letting gn = fn/un, this may be written as

gn =
K∑
k=1

λke
−inθk + εn/un. (2.110)

This is equivalent to the n-th Fourier series coefficient of a complex-spike train,

x(θ) =
∑
k

λkδ(θ − θq), (2.111)

which has been corrupted by ‘noise’. In this case, noise also means non-model components of the

local image structure, that is, the residual. With the problem in this form we may then obtain the

amplitudes and orientations by solving the super-resolution equation

min
λ,θ
‖x̃(θ)‖TV subject to ‖FN x̃(θ)− g‖1 < δ,

where g is the CH vector adjusted above.

There are a few caveats with this approach:

• It is assumed that the model wavelet has all non-zero components, un, otherwise gn would

be undefined. An exception is the sinusoidal wavelets covered in Chapter 4.

• It is also assumed the signal can be reasonably modelled by our choice of wavelet. If it cannot,

there is no guarantee the signal will be angularly band-limited in the same way the wavelet

is. Thus if for some model CH vector, Wu, un is small, gn = fn/un can be potentially quite

large.

• Since we divide by the wavelet coefficients, any weighting is also divided out and thus there

is no point considering different weightings.

2.5.4 Noise Component

The choice of δ is important for solving the spike train parameters, as no solution is possible if

δ is lower than the actual noise level [14]. When δ is set too low, no solution is returned. As δ

is increased past some threshold, a high number of spikes are returned (Figures 2.23a and 2.23c),
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as the extra components are required to meet the norm constraint. Increasing δ further relaxes

the problem and reduces the number of spurious spikes returned (Figure 2.23b), however as δ

approaches ‖f‖ the number of spikes reduces to zero (Figure 2.23c).
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(a) Solution for δ = 0.02× ‖f‖2
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Figure 2.23: Example solutions for a four-spike train with added noise and N = 17 for different
values of δ. Solid line: real component, dashed line: imaginary component.

For a local image model, the error component consists of both actual noise and structures that

are not well represented by the model. Therefore we must choose

δ ≥ ‖ε′‖, (2.112)

where ε′n = εn/un. Therefore δ needs to be set higher at locations in the image where non-model

structures are present, making estimating the actual value of δ difficult, even if the type and

amount of noise is known. To account for this, δ is first initialised to a low value and then

gradually increased until a solution is found. Typically, this solution will have a large number of

spikes. To reduce the number of spikes we may

• Choose spikes with amplitude above a threshold.

• Combine nearby spikes with orientation separation below a threshold.

To reduce the number of spikes below a maximum, K, as dictated by the model we may

• Increase δ until K spikes remain.

• Choose the K largest amplitude spikes.

• Combine nearby spikes until K spikes are left.
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Combining spikes is preferred, as it seeks to incorporate information from the lower valued

spikes, rather than discarding them as is the case with increasing δ or thresholding the amplitude.

For example, In some cases two spikes are returned very close together when there is only one spike

in the original signal. Increasing δ requires repeated application of the super-resolution algorithm

and thus increases computational load. However, combining spikes requires few operations. The

procedure is:

1. Solve for λ and θ using a small value of δ such as 0.05× ‖f‖2, increasing if necessary.

2. Choose the element of λ with the largest magnitude, |λk|.

3. Find all elements of θ which differ from θk by less than a separation threshold, inclusive of

θk. Let J be the set of their indices.

4. Calculate a new orientation value using vector averaging,

β =
∑
j∈J
|λj |eiθj ,

θnew = arg(β).

5. Calculate a new complex amplitude by projecting the real and imaginary parts of the old

components onto a new vector,

<(λk) =

〈∑
j∈J Re(λj)eiθj , β

〉
|β|

,

=(λk) =

〈∑
j∈J Im(λj)e

iθj , β
〉

|β|
.

6. Remove the remaining components with indices in the set J; θj∈J\k and λj∈J\k from θ and

λ, respectively.

7. Repeat until no more components can be removed.

Combining spikes gives a similar result to increasing δ for the example eight-spike train signal

in Figure 2.24. The solution using a low δ results in multiple smaller spikes corresponding to the

actual spikes. Once δ is increased to 0.6×‖f‖ a close approximation with the same number of spikes

is reached (Figure 2.24b). Keeping δ low but using spike combining also achieves similar results

albeit with two small extra components (Figure 2.24c). The procedure of combining components

that are nearby in orientation can be applied to the normal multiple orientation CH vector models

as well.

2.5.5 Orientation Separation

As mentioned previously, theoretical results in [15] give a minimum separation between complex-

valued spikes of 4π/N , and real-valued spikes of 3.74π/N , while the minimum separation is almost
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(c) Solution for δ = 0.05‖f‖2, spikes combined for sepa-
ration < π/N

Figure 2.24: Comparison between increasing δ (b) and spike combining (c) for a noisy spike train
(a) with N = 9.

zero if the spikes are the same sign. This equates to being about to resolve up to N/4 spikes,

thus when applied to local image modelling, one would need up to the 8th order RT to calculate a

model with two wavelets (K = 2). However, numerical simulations in [15] suggest that the mini-

mum separation may be as low as 2π/N , meaning that up to N/2 spikes can be resolved. The N/2

limit also applies to real-valued spikes of the same sign, as there need to be at least two unknowns

per spike [15]. In later chapters the orientation separation will be investigated for specific models

that can be solved for using the super-resolution method.

2.6 Computation Speed

2.6.1 Root Finding

Apart from the super-resolution method, minimising the residual vector `2 norm is common to all

the methods presented. The main problem to solve in each is finding the value of θ corresponding

to the maximum of the trigonometric polynomial,

p(θ) =
∑
m

δm(θ)λm(θ), (2.113)

where δm(θ) and λm(θ) are the angular response polynomials of the m-th wavelet in a set and its

pseudo-inverse, respectively. There are two parts to solving this

1. Polynomial multiplication: Multiplying δm(θ) and λm(θ) results in another trigonometric

polynomial with twice the number of coefficients. The multiplication can be implemented by
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convolving two discrete signals made up of the coefficients of each polynomial.

2. Root finding: The common method of finding the location of the maximum is to find the

roots of the derivative of the polynomial.

The convolution and root finding operations make up most of the computational load when

implementing the method (Table 2.2). The time is dependent on the size of the CH vectors (N)

and the type of model:

• Models with a single wavelet can be solved for without squaring the polynomial. The solution

is given by finding the maximum and minimum values of

p(θ) = λ(θ) (2.114)

which requires no convolution operation and root finding on a smaller 2N degree polynomial.

• Models with a single wavelet where the degree of the polynomial can be reduced to p(nθ)

require less operations.

• Models with multiple wavelets in a set require one convolution for each wavelet, and root

finding is performed on a 4N degree polynomial.

• Models with multiple wavelets in a set where the degree of the polynomial can be reduced to

p(nθ) require less operations. An example is the sinusoidal model in the next chapter, which

can be expressed as p(2θ).

• Models with K copies of the same wavelet or wavelet set require K root finding operations

using the iterative method, but only one when using the roots method.

Root finding is computationally expensive. For example, a two-wavelet set with N = 7 requires

finding the roots of a degree 28 polynomial which takes approximately 21.2 seconds using MATLAB

roots on a single core of a 2.5Ghz Intel Core i7 processor for a 256 by 256 pixel image (Table 2.2).

As a consequence, a variety of different root finding algorithms were investigated for implementation

in MATLAB. However, none were faster than the inbuilt MATLAB roots function. Instead a

different approach was investigated. Each order of the polynomial is an estimate of the location of

the maximum. An iterative process was developed to make a rough approximation of the location

of the maximum using each estimate, and is described in the next section.

2.6.2 Quick Approximation

A quick approximation method for finding the maximum of a trigonometric polynomial was devel-

oped. Consider a trigonometric polynomial of degree 2N given by

p(θ) =
∑

|n|≤N

cne
inθ. (2.115)
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The argument of n-th coefficient cn gives an estimate of θ in the range [0, 2π/n), and therefore

n possible estimates for θ over the entire range [0, 2π), while the magnitude of cn is the strength

of each estimate. We can think of these as representing n equiangular complex vectors for each

positive order |n| ∈ NN ,

bnm
= δ(n)|cn| exp

(
i2πm+ arg(cn)

n

)
, (2.116)

where m ∈ Nn−1 is the index of the estimate, and δ(n) is a weighting function reflecting that

higher orders are more sensitive to orientation changes and are therefore better estimates.

Next we choose one vector from each order and sum them to give a combined vector,

vm =
N∑
n=1

bnmn
, (2.117)

where m ∈M(N) and

M(N) = {M (N)
n ∈ Nn−1 | n = [1, ..., N ]} (2.118)

is the set of all possible indices of the estimates up to order N . There are thus N ! combinations

we can create. Out of these N ! we choose the vmN
with the greatest magnitude. Its argument is

the final estimate for θ.

θ = arg vm where m = max
m∈MN

|vm|. (2.119)

However, N ! possible combinations to search through becomes very large for large N , and defeats

the purpose of a quick algorithm.

Instead, the following hybrid scheme is proposed. Firstly, all combinations are calculated for

each of the first q orders, giving q! vectors, from which the q vectors with the largest magnitude

are chosen. For each of these q vectors, the vectors for the next order are added and the combined

vector with the largest magnitude is kept. The number of vectors remains at q. This is repeated

for the remaining orders, giving q final vectors, from which θ is chosen as the argument of the

vector with largest magnitude. Using δ(n) = n2 for the order weighting function was found to give

good results.

The performance of the approximation method depends on the type of model and the distri-

bution of the features in the image. For example, if a structure in an image is represented by

two components of similar magnitude, the polynomial will have two peaks with similar amplitude

and thus the approximation method is more likely to pick the incorrect maximum. To get an idea

of the error, orientation was calculated using the sinusoidal model (Chapter 3) for the first scale

of the Pentagon image using N = 7, equal weighting, and using either MATLAB roots or the

approximation method (Figure 2.25). The error between the approximation and the roots method
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was calculated, and split into two classes depending on whether the local structure had a larger

model component or larger residual component. Over half the errors in the model class were below

0.01 degrees, and increasing q gave only a marginal improvement in error, while for the residual

class the errors were higher, but still mostly less than 3 degrees. Increasing q reduced the number

of large errors (above 30 degrees). These errors were due to structures that could be modelled with

two components of similar magnitude.
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Figure 2.25: Histogram of sinusoidal model orientation errors using the quick approximation
method for the Pentagon image with N = 7 and equal weighting. Errors are divided into two
classes: errors where the model norm was larger than the residual norm (a), and the opposite (b).

Computation time for the approximation method versus MATLAB roots was calculated for

a 256 × 256 pixel image. The model parameters were solved using each method on a single core

of a 2.5Ghz Intel Core i7 processor. Two different models were experimented for: a single model

component resulting in a 2N degree polynomial (Table 2.1), and a two-wavelet set resulting in a

4N degree polynomial (Table 2.2). For both model types, the approximation method was over 100

times faster for q = 1; however, jumping from q = 4 to q = 5 resulted in a significant slow down.

The time complexity for the initial q estimates and the subsequent search is O(q!+q
∑N
q+1 k) which

makes q > 5 longer than the MATLAB roots method and therefore impractical. Choosing q = 3

is a good trade off between speed and accuracy.

N poly. deg. conv. roots proposed method
q = 1 q = 2 q = 3 q = 4 q = 5

2 4 0.0 4.5 0.0 0.0 0.0 0.0 0.0
3 6 0.0 4.9 0.0 0.0 0.1 0.1 0.1
5 10 0.0 6.2 0.0 0.1 0.2 0.7 3.4
7 14 0.0 8.3 0.1 0.1 0.3 0.9 5.1
9 18 0.0 10.6 0.1 0.1 0.3 1.3 6.7
11 22 0.0 14.2 0.1 0.2 0.5 1.6 7.9
13 26 0.0 17.2 0.1 0.2 0.4 1.7 8.8

Table 2.1: Single wavelet model convolution and orientation solving time (seconds) for the MAT-
LAB roots method versus the proposed approximation method for q ∈ [1, ..., 5], for the 256 × 256
Pentagon image.

A K-component model requires K polynomial maximum finding operations using the iterative

approach but only one with the roots approach. However, the quick approximation technique can

be used with the iterative method as it only needs to find a single maximum, where as the roots
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N poly. deg. conv. roots proposed method
q = 1 q = 2 q = 3 q = 4 q = 5

2 8 0.1 5.4 0.0 0.1 0.1 0.1 0.1
3 12 0.1 7.2 0.1 0.1 0.2 0.2 0.2
5 20 0.2 12.9 0.1 0.1 0.4 1.6 7.6
7 28 0.2 21.2 0.1 0.2 0.6 2.1 10.8
9 36 0.4 38.7 0.1 0.2 0.6 2.6 13.6
11 44 0.4 65.0 0.2 0.3 0.8 3.5 17.1
13 52 0.6 87.6 0.2 0.4 0.9 4.4 20.4

Table 2.2: Two wavelet model convolution and orientation solving time (seconds) for the MATLAB
roots method versus the proposed approximation method for q ∈ [1, ..., 5], for the 256 × 256
Pentagon image.

method needs to find K local maxima and thus the approximation cannot be used. This makes

the combination of the quick approximation and the iterative method a faster implementation, and

has been used in most of the examples in the rest of this thesis. A quick approximation method

that can find multiple local extrema is the subject of future work.

Quartic Solvers

The location of the maximum of a degree 4 polynomial can be found analytically using a quartic

solver. The small number of operations involved means the operation takes less than 0.1 seconds for

a 256 × 256 pixel image. For larger N , and thus larger degree polynomials, the quartic solver can

still be used by only considering the first two orders of the polynomial. Note, this is not the same

as limiting the number of RT orders when a multiple wavelet set is used, as since the polynomial

to solve for is the sum of square of the two angular response polynomials for each wavelet, all RT

orders are used to calculate the first three coefficients that are input into the quartic solver.

2.6.3 Super-Resolution

The MATLAB implementation of the super-resolution method in [15] is extremely slow but consis-

tent. The time to calculate the parameters of a four-spike signal ranged from 2.7 seconds for N = 4

to 2.8 seconds for N = 13. This suggests there is a large computational load in setting up the

semi-definite program as the actual order only increases the time slightly. Note this is for solving

a single model, that is, one pixel in the image. Therefore, using the super-resolution method on a

whole image would be impractical. Instead it is better to apply it at particular points of interest.

Speeding up the semi-definite program for small N would be a worthwhile endeavour but is outside

the scope of this thesis.
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2.6.4 Implementation

In digital signal processing the RT is implemented using the discrete Fourier transform (DFT). In

the continuous frequency domain we have the negative and positive order RT responses related by

Rnf(z) = R−nf(z) for even n, (2.120)

Rnf(z) = −R−nf(z) for odd n. (2.121)

However, this does not hold when the RT is implemented using the DFT of discrete images with

even width or height. For example, let F [i, j] = DFT{f [z]} where f [z] is a discrete image of

size M ×N pixels. When M and N are odd, all the values of F [i, j] (except for F [0, 0]) are in a

conjugate pair with F [M−i,N−j]. When either M or N are even there is an extra row or column of

coefficients corresponding to wavelength 2 pixels with no conjugate pair. This asymmetry means

the conjugate symmetry relationship above no longer holds, and the trigonometric polynomials

used to solve the model parameters (2.56) are not real valued.

Two solutions are proposed:

• The image can be resized to have odd dimensions. However, this is only possible if no wavelet

sub-sampling is required.

• The extra row or column in the DFT matrix with no conjugate pair is set to 0 before

calculating the RT. The row or column is added back in during reconstruction.
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2.7 Summary

This chapter developed the the CH vector, a new higher-dimensional representation of local image

structure. It builds on previous 2D analytic signals such as the monogenic signal and signal

multi-vector by adding extra higher-order RT components. The magnitude of the CH vector is

a measure of the strength of the local signal structure that is invariant to rotation, while the

normalised CH vector is a description of the shape of the structure that is invariant to illumination

changes. The CH vector thus achieves the same split of identity common to the previous 2D

analytic signal representations.

In previous approaches, the local image structure was completely represented by the image

model, restricting the type of model and the number of orders of RT that could be used. The

CH vector allows one to use a generic local image model consisting of sets of one or more com-

ponents with different amplitudes and orientations. A method to solve for the model parameters

was developed, whereby the CH vector is split into model and residual vectors and the residual

component is minimised. Adding the residual component allows the use of arbitrary model CH

vectors and any number of RT orders while still maintaining the ability to recover the original

signal. The method is formulated in the context of wavelets; correlation of the image CH vector

with the model CH vector is equivalent to correlation of image with the model wavelet. In this

sense the method bridges the two approaches to local image analysis - 2D analytic signals and 2D

steerable matched wavelets.

The residual component is a useful representation of the part of the local image structure that

is not well modelled. The ratio of the residual vector magnitude to the model vector magnitude is

therefore an illumination invariant measure of how well the model explains the structure. Having

the residual vector also led to development of an iterative method of solving for multiple model

components. The method enables the analysis of local image structure with different sets of model

wavelets, even if they are not linearly independent. Another novel aspect is the application of the

super-resolution method to solving for copies of one or two model components at different orienta-

tions, however it is computationally expensive. Even solving for orientation using polynomial root

finding takes a significant amount of time. To address this, a quick approximation method was

developed so that using the CH vector to solve models is fast enough to be employed in practical

applications. This is necessary if the method is going to be widely adopted.

The CH vector representation is more useful than the tensor or geometric algebra represen-

tations of previous 2D analytic signals, as it admits any number of RT orders. These previous

approaches have shown that the energy of phase-invariant descriptors is a good measure for the

presence of image features, and this chapter has demonstrated that the CH vector magnitude is

also high at the location of features. In Chapter 6 the shape of the local image structure, as

represented by the normalised CH vector, will also be investigated for general feature detection.

The specific image models used in some of the examples given in this chapter are developed in
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the next three chapters. The matched CH wavelets are derived for each model, and the relation-

ship between number of RT orders, N , and the ability to accurately resolve model parameters is

explored.
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Chapter 3

Single Sinusoidal Model

In this chapter we turn our attention to the initial problem of obtaining a phase-based representa-

tion of local image structure using a sinusoidal model derived from higher-order RT responses. The

sinusoidal model can be used to parametrise lines and edges (Figure 3.1) and distinguish them from

junctions and corners. The framework introduced in the previous chapter details the mathematical

basis from which the sinusoidal model parameters can be found. The process is

• Create a model of the local image structures of interest.

• Derive the set or sets of matched wavelets.

• Calculate the parameters of the model using the appropriate method.

We shall also explore different weighting schemes, particularly those that make the magnitude

of the CH vector phase-invariant. The advantage of having a description of the non-model part

of the local image structure will be made clear in the latter part of the chapter, where we use the

residual to develop a new representation of intrinsic dimension.

This chapter deals with a single sinusoidal model. Preliminary attempts at deriving the model

can be found in [72, 74] and much of this chapter is based on work that has been published in [76].

3.1 Model

3.1.1 Multi-Sinusoidal Model

The monogenic signal models local image structure as a single sinusoid,

f(z) = fS(z) (3.1)

= Ak cos(〈z,ok〉+ φk), (3.2)
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(a) Line (b) Additive Lines (c) Occluded Lines (d) T Junction

(e) Edge (f) Additive Edges (g) Chequer Edge (h) Corner

Figure 3.1: Examples of various image features. Lines (a) and edges (e) are well-modelled by the
single sinusoidal model. Non-sinusoidal features (b-d,f-h) give a high residual component.

with amplitude, A, phase, φ, and orientation vector, o = [cos θ, sin θ]. The structure multi-vector,

2D analytic signal and signal multi-vector use a model consisting of two sinusoids,

f(z) =
2∑
k=1

Ak cos(〈z,ok〉+ φk)︸ ︷︷ ︸
fS(z)

, (3.3)

with various constraints on the parameters. To generalise this model, an expanded multi-sinusoidal

signal model consisting of K oriented sinusoids with differing amplitude, phase and orientation

plus a residual component is proposed. The local image structure at a point of interest, z = 0, is

modelled by

f(z) =
K∑
k=1

Ak cos(〈z,ok〉+ φk)︸ ︷︷ ︸
fS(z)

+ fε(z), (3.4)

where fS(z) is a single sinusoidal model component and fε(z) is the residual.

In this chapter, the model shall be restricted to a single sinusoid, that is, K = 1, and multiple

sinusoids will be discussed in the next chapter. The single sinusoidal model is

f(z) = A cos(〈z,o〉+ φ)︸ ︷︷ ︸
fS(z)

+ fε(z). (3.5)

Adding the residual component allows for the inclusion of higher-order RT responses up to any

order, as it then becomes possible to choose model parameters that satisfy the RT sinusoidal
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response equations,

Rnf =

Ae
inθ cos(φ) +Rnfε, n is even,

Aeinθ i sin(φ) +Rnfε, n is odd,
(3.6)

for arbitrary images. In contrast, the monogenic signal [29], 2D analytic signal [136] and signal

multi-vector [135] require the image to be completely represented by the model, limiting the number

of RT orders that can be used. The task now is to choose appropriate values of amplitude, phase

and orientation using the methods described in the previous chapter.

3.1.2 Matched Wavelets

We must first create a set of 2D steerable wavelets that are matched to the particular structure of

interest. In this case, the proposed model is represented by a purely sinusoidal image given by

fS(z) = A cos(ω0〈z,o〉+ φ), (3.7)

where o = [cos θ, sin θ] and ω0 is the sinusoid frequency.

Thus we must find the wavelet that matches the sinusoid for a particular amplitude, A, phase,

φ and orientation, θ. Let {ψn}|n|≤N be the set of CH wavelets up to order N , generated from

an isotropic wavelet ψ. For simplicity, let the sinusoid frequency be located at the centre of the

wavelet passband h(ω) such that |h(ω0)| = 1. The value of the sinusoid CH vector fS at the origin

is therefore given by

fSn = 〈fS, ψ
n〉 (3.8)

= R−n(fS ∗ ψ)(0) (3.9)

=

Ae
−inθ cos(φ), n is even,

Ae−inθ i sin(φ), n is odd.
(3.10)

The sinusoidal image CH vector can be written as a function of amplitude, phase and orientation,

fS(A,φ, θ) = ASθ cosφ se +ASθ sinφ so, (3.11)

where se and so are orthogonal CH vectors given by

sen = 1 if n even, 0 otherwise, (3.12)

son = −i if n odd, 0 otherwise. (3.13)

The vector se has only even orders and therefore represents an even wavelet, while so has only odd

orders and therefore represents an odd wavelet. The sinusoidal image CH vector is thus given by
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the linear combination of these two wavelet vectors, rotated to the same orientation.

Thus to describe a sinusoid we require a wavelet set consisting of two matched wavelets that

correlate with the even and odd parts of the signal. Setting orientation to 0, the two matched

wavelets for a given weighting matrix W are

Wfe = seW/
√
We, (3.14)

Wfo = soW/
√
Wo, (3.15)

where We and Wo are the sum of the even and odd weights respectively,

We =
∑

n even,|n|∈NN

w2
n, (3.16)

Wo =
∑

n odd,|n|∈NN

w2
n. (3.17)

The model sinusoidal CH vector can be expressed as the scaled and rotated sum of the model

wavelet CH vectors

WfS(A,φ, θ) = λeSθWfe + λoSθWfo, (3.18)

where

λe =
√
WeA cosφ, (3.19)

λo =
√
WoA sinφ. (3.20)

An example of the two types of model wavelets is shown in Figure 3.4, generated from a Simoncelli-

type primary wavelet for different values of N . The wavelets for N = 1 are the monogenic signal

wavelets. As N increases the wavelets elongate along the axis perpendicular to the sinusoid orien-

tation.

3.1.3 Solution

The proposed sinusoidal model of an arbitrary image, f , with the point of interest located at z = 0,

and localised by an isotropic wavelet, ψi, is

(f ∗ ψi)(z) = A cos(〈z,o〉+ φ)︸ ︷︷ ︸
fS

+fε(z). (3.21)
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Using the sinusoidal model wavelets previously derived, we may now write the image CH vector as

the sum of model and residual components,

Wf = WfS(A,φ, θ) + Wε (3.22)

= λeSθWfe + λoSθWfo + Wε. (3.23)

The model parameters are solved for by minimising the residual, ‖Wε‖. Since the model vectors

are orthonormal and have the same orientation the solution is given by the model for solving a

wavelet set with a single orientation from Section 2.4.2. Orientation is thus given by the maximum

of the polynomial

θ = max
θ

λe(θ)
2 + λo(θ)

2, (3.24)

where

λe(θ) = WfHe SHθ Wf (3.25)

= 〈Wf,SθWfe〉, (3.26)

λo(θ) = 〈Wf,SθWfo〉. (3.27)

The polynomial p(θ) = λe(θ)
2 + λo(θ)

2 has degree 4N . However, since fe only has non-zero even

orders and fo only has non-zero odd orders, p(θ) will only have non-zero even coefficients. Therefore

it can be written as a degree 2N trigonometric polynomial in 2θ,

p(2θ) = λe(θ)
2 + λo(θ)

2. (3.28)

Solving for θ therefore gives estimates in the range [0, π). The solution method employed

depends on the maximum order, N . When N = 1, the only possible values for W where We =Wo

are w0 = 1/
√
2 and w1 = 1/2. The resulting wavelets are the monogenic wavelets [124] and the

sinusoidal model parameters can be derived analytically without root finding, as follows:

A =
√
2‖Wf‖, (3.29)

φ = arg(f0 + i |f1|), (3.30)

θ = arg(−i f1). (3.31)

where φ ∈ [0, π) and θ ∈ [−π, π). Note that for a sinusoidal model, a rotation of π radians

is equivalent to a sign change of the phase. For example, a sinusoid with {φ = π/2, θ = 0} is

equivalent to one with {φ = −π/2, θ = π}. Therefore two ranges for phase and orientation can be

used interchangeably for the model: one can either restrict orientation to the half circle, or restrict
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phase to the half circle. To change between the two representations we have

φ[0,π) = |φ[−π,π)|, (3.32)

θ[−π,π) =

θ[0,π) if φ[−π,π) > 0,

θ[0,π) − π if φ[−π,π) ≤ 0,

(3.33)

and

θ[0,π) = θ[−π,π) (mod π), (3.34)

φ[−π,π) =

φ[0,π) if θ[−π,π) ≥ 0,

−φ[0,π) if θ[−π,π) < 0.

(3.35)

When comparing model parameters, the interaction between phase and orientation should be taken

into account. For example, an even sinusoid with φ = 0, and θ = 0 is the same as one with θ = π.

In these cases a double angle representation, such as 2φ[0,π) or 2θ[0,π), is useful.

For larger N , finding the maximum typically involves finding the roots of the derivative of

p(2θ). The roots are candidate values for the orientation which corresponds to the maximum. For

N = 2, the polynomial has degree 4 and the roots can be solved for analytically using a quartic

solver. For larger orders a numerical solution is required in most cases. The resulting value is

within the range [0, π). The quick approximation method from Section 2.6.2 can also be used.

Once θ has been found, we have

A cosφ =
λe(θ)√
We

, (3.36)

A sinφ =
λo(θ)√
Wo

, (3.37)

and thus amplitude and phase are given by

A =

√
λe(θ)2

We
+
λo(θ)2

Wo
, (3.38)

φ = arg
(
λe(θ)√
We

+ iλo(θ)√
Wo

)
, (3.39)

where A ∈ R+ and φ ∈ [−π, π). Finally, the residual vector is given by

Wε = Wf−WfS(A,φ, θ). (3.40)

One of the advantages of using the CH wavelets, as opposed to other steerable basis functions,

is that we may synthesise the image from the CH vector responses. Furthermore, we may split the

image into two parts by synthesising separately from the model and residual coefficients, according
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to

f(z) = fS(z) + fε(z), (3.41)

where

fS(z) =
∑
i,k

∑
|n|≤N

(WfSi,k)nwnψ
n
i,k, (3.42)

fε(z) =
∑
i,k

∑
|n|≤N

(Wεi,k)nwnψ
n
i,k. (3.43)

3.1.4 Example Solution

The sinusoidal model was calculated for the first four scales of the pyramidal decomposition of the

Pentagon image (Figure 3.2). The CH wavelet frame used to obtain the CH vector was generated

using a Simoncelli-type isotropic wavelet [101] and the 0th to 7th order RTs. Each scale was

subsampled by two, and the odd and even orders were each equally weighted such that We = Wo

(3.60). The amplitude at each scale is high at the location of linear features, indicating these are

well described by the sinusoidal model. The phase value describes the symmetry of the image

structure, independently of the amplitude. The orientation shows the main axis of symmetry

regardless of the phase or amplitude values. Thus the split of identity property [29] of phase-based

image representations is preserved.

Reconstruction was performed using the model component for each scale (Figure 3.2g), as

well as separate reconstruction from all the model (Figure 3.2h) and residual components (Figure

3.2i). Reconstruction from the model appears to act like a wide-band rotation-invariant line and

edge filter. In contrast, the residual reconstruction contains features which have multiple axes of

symmetry, such as corners and junctions, therefore these are not well represented by a sinusoidal

model.

3.2 Method Parameters

Three choices must be made when applying the model:

• The primary isotropic basis filter, ψ(ω), from which to construct the CH vector.

• The number of RT orders, N , in the CH vector.

• The values for the weights, W, of the CH vector..
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(a) Original Image (b) Isometric Wavelet Response (4 scales + low-pass)

(c) Amplitude (d) Phase

(e) Orientation (f) Norm of residual

(g) Model Reconstruction for each scale (h) Model Reconstruction (i) Residual Reconstruction

Figure 3.2: Decomposition of a 256 × 256 pixel version of the Pentagon image into amplitude,
phase, orientation and residual components over four scales using a pyramidal Meyer wavelet
scheme and N = 7.
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3.2.1 Choice of Basis Filter

To construct CH wavelet frames, the primary isotropic basis filter must have at least N vanishing

moments [124]. Wavelets such as the Simoncelli [101], Papadakis [106], Meyer [21] and variance

optimised wavelets (VOW) in 1D [95] and 2D [96] satisfy these conditions; however, they contain

discontinuities in the frequency domain that lead to a slow decay in the spatial domain [131]. In

contrast, a smooth wavelet such as the second Meyer wavelet in [21] may be a better choice.

For filter banks, the basis filter should also have the minimum number of vanishing moments

and a smooth frequency profile to ensure fast decay. The log-Gabor filter [32] is often used for

quadrature filters, as it is possible to construct large bandwidth frequency response with zero

mean. In [11] it is shown that the difference-of-Gaussian (DoG) and Cauchy (h(ω) = nc ω
ae−σω)

quadrature (Hilbert transform) filters are better for edge detection [11]. However, the DoG filter

has only one vanishing moment and a large minimum bandwidth, while the number of vanishing

moments of the Cauchy filter is dependent on its bandwidth. The log-Gabor filter has infinite

vanishing moments and thus remains an suitable choice for RT derived filters. An extension on

the log-Gabor filter is

h(ω) = exp
(
−
∣∣∣∣ loga(ω/ω0)

a loga(σ)

∣∣∣∣) , (3.44)

where increasing a gives a more compact frequency response and shorter tail. The normal log-Gabor

filter is given by a = 2. The -3dB bandwidth in octaves is

β = 2 log(σ) a
√
a log(2)/

√
log 2. (3.45)

Figure 3.3 shows the formulas, frequency response and sinusoidal wavelet constructed for differ-

ent basis filters. It can be observed that the filters with sharp transitions have more oscillations

further from the centre. The log-Gabor filter is the smoothest due to its long tail.

3.2.2 Effect ofN

Higher-order CH wavelets have a higher order of rotational symmetry. Therefore, increasing N

increases the complexity of the local signal structure that the CH vector can represent. However,

higher-order CH wavelets also have a larger spatial extent, increasing the size of the local image

patch under consideration. This is because the magnitude of the radial frequency response remains

constant due to the RT.

The model wavelets thus also increase in size with increasing N . An example of the two

types of sinusoidal model wavelets for different values of N is shown in Figure 3.4. The even

monogenic wavelet (N = 1) has no directionality, hence the problem with resolving orientation

near even structures. As N increases, the wavelets become elongated along the axis perpendicular

to their orientation, becoming more orientation selective due to a narrower angular profile but only
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Filter h(ω) Spectrum Wavelet

log-Gabor
(original) exp

(
− log2(ω/ω0)

2 log2(σ)

)

log-Gabor
(extended) exp

(
−
∣∣∣ loga(ω/ω0)
a loga(σ)

∣∣∣)

Cauchy nc ω
ae−a

ω
ω0

where nc = 1
ωa

0 e
−a

Simoncelli

{
cos(π2 log2( ωω0

)) ω0

2 ≤ ω < 2ω0

0 otherwise

Papadakis



√
1−cos(10ω−3π/2)

2
3
5ω0 ≤ ω < ω0

1 ω0 ≤ ω < 6
5ω0√

1+cos(5ω−3π/2)
2

6
5ω0 ≤ ω < 2ω0

0 otherwise

VOW



(
1
2 +

tan( 3
4+

2
3 log2(

ω
ω0

))

2 tan( 3
4 )

) 1
2

ω0

2 ≤ ω < ω0(
1
2 −

tan( 3
4+

2
3 log2(

ω
2ω0

))

2 tan( 3
4 )

) 1
2

ω0 ≤ ω < 2ω0

0 otherwise

Meyer (v1)


sin(π ω

ω0
− π

2 )
ω0

2 ≤ ω < ω0

cos(π2
ω
ω0
− π

2 ) ω0 ≤ ω < 2ω0

0 otherwise

Meyer (v2)


2
√
2 log22( 2ωω0

) ω0

2 ≤ ω <
ω0√
2√

1− 8 log42( ωω0
) ω0√

2
≤ ω <

√
2ω0

2
√
2(2− log2( 2ωω0

)2
√
2ω0 ≤ ω < 2ω0

0 otherwise

Figure 3.3: Different filters (top section) and wavelets (bottom section) along with their formulas.
A plot of the radial frequency response is shown for wavelength 8 pixels (ω0 = π/4) along with the
even sinusoidal wavelet for N = 13. Parameters used were σ = 0.7 for the log-Gabor filter, σ = 0.7
and a = 4 for the log-Gabor (extended) filter, a = 8 for the Cauchy filter.
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Phase N = 1 N = 3 N = 7 N = 13

even
φ = 0

odd
φ = π

2

Figure 3.4: Sinusoidal matched wavelets for different N , phase, φ, and θ = π/3. The top row shows
the even wavelets, and the bottom row shows the odd wavelets. Different phases are obtained by
a linear combination of both. For N = 1 the even wavelet has no directionality.

responding to longer linear features.

Noise

To quantify the effect of increasing N on sinusoidal model accuracy, the amplitude, phase and

orientation were calculated for a zero-mean, 512 × 512 pixel sinusoidal image with different levels

of additive white Gaussian noise. An all-pass basis filter was used and the CH vector was weighted

using the phase-invariant equal weighting scheme (3.60). The mean error in estimated model pa-

rameters was compared to the phase of the sinusoid for 3dB signal-to-noise ratio (SNR) (Figure

3.5). Increasing N decreased the average error for all parameters. However, both the amplitude

and phase errors appear to reach a plateau around N = 13, after which increasing N gives little

improvement. The orientation estimate though was particularly improved, with a ten times re-

duction in error between N = 3 and N = 13. As expected, the orientation error is high for the

monogenic signal (N = 1) at even locations, regardless of noise. For a SNR greater than 3dB, the

errors vary proportionally with the noise standard deviation.

Qualitative Image Results

The effect of increasing N for was compared for the Pentagon image (Figure 3.6) with the sinusoidal

model calculated using a log-Gabor primary filter with wavelength 8 pixels, σ = 0.65, and N ∈

{1, 3, 7, 13, 21}. For the monogenic signal (N = 1), the amplitude is large and the phase is the

same for both isometric features (blobs) and lines, and thus they cannot be differentiated from

the model parameters alone. As N increases, the model becomes more selective for longer linear

features due to the increasing elongation of the model wavelets. This is particularly noticeable

going from N = 7 to N = 21, as the roof edges are no longer broken up. Blobs also have a reduced

amplitude response; those in the lower right quadrant have almost disappeared by N = 13 and

instead the amplitude is large only at the location of linear features. Likewise, the residual norm
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(f) Orientation error

Figure 3.5: Average model error for a sinusoidal image with added Gaussian noise (SNR: 3dB) for
different N compared to the original image phase (first column). Average model error for φ = 0
(solid lines) and φ = π/2 (dashed lines) for different amounts of noise (second column). The
phase-invariant equal weighting scheme was used.

is large at the location of corners and junctions which have multiple linear symmetries.

The orientation estimate also becomes smoother with increased N , and eventually larger fea-

tures begin to dominate. In contrast, the orientations of curved lines appear to become more

disjoint. The increased size of the wavelet, and thus local image patch, means curves are less

well modelled by a sinusoid at larger N . The residual norm image confirms this, showing a larger

magnitude for curved structures as N increases. Overall, less of the image is well described by

the sinusoidal model with larger N , and the residual norm increases for most locations. The effect

can be seen in the separate reconstructions from the model and residual components, with more

of the structure identifiable in the residual reconstruction. A qualitative assessment suggests that

for this image, N = 7 provides a good balance between resolution of linear features and too much

energy in the residual component.
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N Amplitude Phase Orientation Residual
Norm

Sinusoidal
Recon.

Residual
Recon.

1
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Figure 3.6: Sinusoidal model parameters for the second scale of the Pentagon image for different
values of N . Also shown is reconstruction from the sinusoidal model, and reconstruction from the
residual component, using four scales and not including the low-pass response.

Computation Time

Since the orientation is obtained using a polynomial, p(2θ), with degree 4N, the computation times

given in Table 2.2 apply to the sinusoidal model.

3.2.3 Choosing Weights

The weighting matrix scales each RT order in the image CH vector, and therefore different weight-

ings affect the CH vector magnitude and values of the model parameters for a given image struc-

ture. The choice of weights determines the angular profile of the sinusoidal model wavelets and

the phase-invariance of the CH vector magnitude.
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The magnitude of the CH vector of a purely sinusoidal image is given by

‖WfS(A,φ, θ)‖ = A‖ cosφWSθ se + sinφWSθ so‖ (3.46)

= A

√
cos2 φWe + sin2 φWo (3.47)

=

A
√
We, φ = 0, π

A
√
Wo, φ = ±π/2.

(3.48)

If We 6=Wo the magnitude of the CH vector is affected by the phase. If we choose We =Wo = 1/2,

the odd and even components are each weighted equally and the magnitude is invariant to phase.

That is,

‖WfS(A,φ, θ)‖ = A/
√
2. (3.49)

This is desirable as it preserves the invariance properties of previous approaches. For example,

the monogenic signal vector magnitude is invariant to phase. If instead each individual order

is weighted equally, then We 6= Wo, and the effect is subtle but noticeable as an increase in

magnitude at the location of odd features for odd N , and even features for even N , although the

effect diminishes with increasing N (Figure 3.7).

(a) Board image (b) Each order weighted equally (c) Phase-invariant weighting,
We =Wo

Figure 3.7: CH vector magnitude of the second scale of the Board image (a) using all orders equally
weighted (b) and odd and even orders equally weighted, for N = 3.

The weighting also determines the angular response of the model wavelets in the frequency

domain, which is given by the trigonometric polynomial

hu(θ) =
∑

|n|≤N

wnune
−inθ, (3.50)

where Wu is the weighted model wavelet CH vector. For the sinusoidal model wavelets to be

useful to estimate the orientation of even structures in θ = [0, π) then at least w0 and w2 should

be non-zero. Likewise, to estimate orientation in odd structures over θ = [0, 2π) then at least w1

should be non zero.

To pick the coefficients of W it is proposed to maximise the energy of the angular response of

the sinusoidal wavelets inside of a window h(θ) by adapting the method described in [103, 105,
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124] for designing prolate spheroidal wavelets. Each sinusoidal wavelet is 2nd order rotationally

symmetric or anti-symmetric and therefore has its angular response concentrated at two points π

radians apart. The same energy window can be used for each. Let v(2θ) be a positive window

function, symmetric at both θ = 0 and θ = π. That is,

v(θ) = v(−θ), (3.51)

v(θ) = v(θ − π), (3.52)

and let u(θ) describe the angular response of a wavelet, u, that is

u(θ) =
N∑

n=−N
unune

−inθ. (3.53)

Then the energy within the window is given by [103, 105, 124]

E[w] =

∫ π

−π
u(θ)2v(θ) dθ (3.54)

=

N∑
n′=−N

N∑
n=−N

ūn′un

∫ π

−π
v(θ) dθ (3.55)

= uHVu, (3.56)

where Vn,n′ =
∫ π
−π e

i(n−n′)θv(θ) dθ since uHu = 1.

Two types of orthogonal symmetric functions that fit this window are an even function with

extrema of the same sign at 0 and π, and an odd function with extrema of opposite signs at 0

and π, where u(θ) = −u(θ − π). The eigenvectors corresponding to the largest two eigenvalues

of V thus describe the even and odd wavelets in the sinusoidal model. Let u1 and u2 be these

eigenvectors. Each either has only odd orders, or only even orders. The final weighting is given by

the absolute value of each order scaled by
√
2, since both are of unit norm. That is,

wn =
|u1n + u2n |√

2
, (3.57)

and thus ‖w‖ = 1 and the weighting matrix is thus W = diag(w).

A simple window function consists of two rectangular functions with angular width B separated

by π,

v(θ) = rect
(
θ

B

)
+ rect

(
θ + π

B

)
. (3.58)
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The values of V for this function are

Vn,n′ =


2B, n− n′ = 0,

2 sin(B(n−n′))
n−n′ , n− n′ is even,

0, n− n′ is odd,

(3.59)

where B is the width of the rectangle in radians. When B approaches 0 the set of even components

become each equally weighted, as do the odd, so that We = Wo. This equal weighting scheme is

given by

wn =


1√

2(N+1)
if (N − n) is even

1√
2N

if (N − n) is odd.
(3.60)

Figure 3.8 shows an example of even and odd angular profiles for different values of B and

N = 7. For smaller B, the angular response has a narrower peak but larger oscillations. For larger

B, the response is smoother and wider, but less orientation selective. To quantify the amount of

oscillation, an experiment was performed to measure the ratio of the energy under the side lobes

to the total energy, for different values of N and B. The ratio was less than 0.1% (indicating

small oscillations) when B > 5.64/N − 6.57/N2. For N = 7 this equals approximately 0.21π. The

quantity 5.64/N − 6.57/N2 will be referred to as B0.1 later in this thesis, and the window width

can be adjusted as a multiple of this value in order normalise the design of the wavelets across

different values of N .
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(b) Odd wavelet (φ = π/2)

Figure 3.8: Angular response of odd and even sinusoidal model wavelets (N = 7) for different
window widths, B (shown in legend).

An example of the even and odd sinusoidal wavelets with B as a multiple of B0.1 is shown in

Figure 3.9. As the width is increased, the angular variations in the wavelet shape also decrease,

however, the wavelets are also less elongated and therefore less orientation selective.

Repeating the noisy sinusoidal image experiment with different values for B it was found that

the equal weighting scheme (B u 0) gave the best results (Figure 3.10). The error increase is

likely due the narrowness of the main lobe combined with the even distribution of noise energy

in the side lobes negating their effect on the response. However, in natural images the local
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Multiple of B0.1
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2

Figure 3.9: Effect of weights chosen using the windowed energy minimisation method on the odd
and even sinusoidal wavelets for N = 13. The window width is shown as a multiple of B0.1.

image structure can have multiple discrete elements. In that case, it may be advantageous to have

smaller oscillations (higher value of B) so that the extra parts interfere less with the main response.

Furthermore, if one wished to model using multiple sinusoids, a larger B may be helpful to reduce

the correlation between the model wavelets at different orientations.
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(c) Orientation error

Figure 3.10: Average model error for a sinusoidal image with a small amount of added Gaussian
noise (SNR: 37dB) for different N and different weightings obtained using the windowed energy
minimisation method with B as a multiple of B0.1.

3.3 Intrinsic Dimension

The advantage of a sinusoidal model is the parametrisation of the local image structure into

amplitude, phase and orientation values, which can be analysed separately. Deriving the model

starting with the CH vector is different to other quadrature filter type methods in that we are left
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with a residual vector that describes the non-model part of the local image structure. From the

split into model and residual components a representation of the local intrinsic dimension can be

developed.

Intrinsic dimension describes the linear symmetry of the local image structure. Flat areas with

constant intensity are intrinsically 0D (i0D) as they can be described by a single value. Linear

features, such as lines and edges, are intrinsically 1D (i1D), as they vary along a single axis and

can be represented by a 1D function. More complex structures, such as corners and junctions,

have multiple symmetries and are intrinsically 2D (i2D) [29, 61, 142, 145]. The strict definition is,

f(x) ∈


{i0D} if f(z) = constant,

{i1D} if f(z) = f(〈z,o〉),o = [cos θ, sin θ],

{i2D} otherwise.

(3.61)

However, typical images do not have perfectly linear structures and are often corrupted by noise,

meaning that most structures would be classified as i2D. Instead, a continuous representation of

intrinsic dimensionality is necessary, which in turn requires a local structure descriptor that is

able to discriminate classes. A classic example is the structure tensor [9, 35] whose eigenvalues

describe the strength of the local symmetry along two main axes. If only one eigenvalue is large,

the local structure is i1D, if both are large it is i2D, otherwise it is i0D. This the basis behind

the popular Harris corner detector [46]. In [28] a continuous representation was introduced that

plots the eigenvalues onto a bounded triangle, whose barycentric coordinates give a probability of

belonging to each class. The representation can be applied to the output of other descriptors that

discriminate between i1D and i2D structures.

A drawback of the structure tensor is that it is only computed from 1st-order derivatives and

therefore can have a double response for roof edges (thick lines) [56]. A improvement proposed was

the boundary tensor [56], which gives a boundary energy value consisting of line / edge (i1D) and

junction (i2D) energies, using the 0th to 2nd-order RTs. In fact, the boundary energy is equal to

the square of the CH vector norm for N = 2 with weighting w =
√
[1/2, 1, 1, 1, 1/2]/4. Likewise,

the boundary tensor i1D energy measure roughly corresponds to the energy of the sinusoidal model

vector, and the boundary tensor junction energy to the energy of the residual vector for the same

weighting and N . The monogenic curvature tensor [112] uses the same basis functions as the

boundary tensor but adds phase and curvature measurements to give a richer description of the

local structure.

The sinusoidal model appeared more descriptive of i1D structures and the residual component

was higher around i2D locations for larger N for the Pentagon image (Figure 3.6). This suggests

the model and residual components can be used to discriminate between these classes. There-

fore we shall use the proposed sinusoidal model calculated using higher-order RTs to develop a

representation of intrinsic dimension.
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3.3.1 Model Response

The first step is to determine the sinusoidal model response to an i1D structure. Consider an

image, f , that is locally i1D at a point of interest centred at z = 0 when filtered by an isotropic

wavelet, ψ. The local structure can be represented as 1D function,

(f ∗ ψ)(z) = fi1D(x), (3.62)

where x = 〈z,o〉 and o = [cos θ, sin θ] with θ being the orientation of symmetry. According to the

Fourier slice theorem, the Fourier transform of the image patch will have all non-zero coefficients

concentrated along a line through the origin. Therefore, the local image structure can be exactly

modelled as a sum of sinusoids,

(f ∗ ψ)(z) =
∑
k

αk cos(ωkx+ φk), (3.63)

which can also be expressed as a single sinusoid,

(f ∗ ψ) = A(x) cos (φ(x)) , (3.64)

which is equivalent to the analytic signal representation of fi1D(x), with local amplitude, A, and

phase, φ. It follows that the overall RT responses are given by the sum of the RT responses of the

individual sinusoids, and thus

Rn(f ∗ ψ)(z) =

A(x)e
inθ cos(φ(x)) n is even,

A(x)einθ i sin(φ(x)) n is odd.
(3.65)

The magnitudes of all the even order responses are equal, as are all the odd order responses. Let

fi1D be the CH vector generated for this image structure at z = 0, using ψ as the primary isotropic

wavelet. The structure is completely described by the sinusoidal model, that is,

fi1D = fS(A,φ, θ) (3.66)

= ASθ(cosφ se + sinφ so). (3.67)

It follows that the magnitude of the residual component is zero

min
A,φ,θ

‖ε‖ = min
A,φ,θ

‖fi1D − fS‖ (3.68)

= 0, (3.69)

which means that an i1D signal can be completely reconstructed from the sinusoidal model wavelets

rotated to the same orientation.
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3.3.2 Complex Exponential Representation

Since the sinusoidal model can completely represent an i1D signal, it follows that the residual

component represents the other parts of the local structure with a different shape or orientation.

The ratio of residual vector norm to the model vector norm is therefore a measure of where the

overall local structure lies on a i1D to i2D scale. Furthermore, it is invariant to the magnitude of

the local structure (CH vector norm). We can represent this relationship in the form of a complex

exponential, d0, given by

d0 = ‖WfS‖+ i‖Wε‖ (3.70)

= ‖Wf‖eiγ0 , (3.71)

where γ0 = tan−1 ‖Wε‖
‖WfS‖ is the angle representing the ratio between ‖Wε‖ and ‖WfS‖.

While it is possible to have a zero residual response, it is not possible to have a zero sinusoidal

model response, as the model wavelets will always positively correlate with some part of the local

image structure. This means that the upper bound of possible values of γ0 will always be less

than π/2, and can change according to the number of orders and weighting scheme. For a purely

sinusoidal signal, we have Wf = WfS and ‖Wε‖ = 0, and therefore γ0 = 0 is the lower bound.

By finding this upper bound, we can adjust γ0 so that the range is always [0, π/2) regardless

of weighting, and by extension, N . Consider an image CH vector, f, that is zero for every order

except for n, and without loss of generality let f|n| = 1. Calculating the sinusoidal signal model

for a weighting scheme, W, we obtain

‖WfS‖ =


2w2

n/
√
We n 6= 0, even

2w2
n/
√
Wo n 6= 0, odd

w2
n/
√
We n = 0.

(3.72)

Since ‖Wε‖ =
√
‖Wf‖2 − ‖WfS‖2,

γ0 =


tan−1

√
We

2w2
n
− 1 n 6= 0, even

tan−1
√

Wo

2w2
n
− 1 n 6= 0, odd

tan−1
√

We

w2
n
− 1 n = 0.

(3.73)

The upper bound, γmax, is the maximum value of γ0 in the above equation for all n. Note that as

N increases, wn tends to get smaller, and therefore γmax gets closer to π/2. The rescaled intrinsic

dimension representation is thus

d1 = ‖Wf‖eiγ1 (3.74)

where γ1 =
γ0
γmax

π

2
. (3.75)



95

3.3.3 i2D Detection

The norm of the residual component is large around corners and junctions (Figure 3.6). Thus the

next step is to use the i2D part of the intrinsic dimension representation as a corner and junction

detector, in the same way the junction energy is used for the boundary tensor [56]. The proposed

detection measure is thus the imaginary part of the intrinsic dimension:

deti2D(d) = ={d} (3.76)

= ‖Wf‖ sin(γ). (3.77)

However, common i2D features can have a large i1D component. For example, a T junction will

give a large sinusoid amplitude representing the top bar that a ‘Y’ junction will not. The angle,

γ1, will therefore be different at the centre of these two junctions. To compensate we shall rescale

γ1 using a sigmoidal function so that the angle values are closer together. The new representation

is

d2 = ‖Wf‖eiγ2 , (3.78)

where γ2 = π/2η(2γ/π, h, s) which is a sigmoidal function given by the regularised incomplete

gamma function as follows

η(x, h, s) =

Iγ(x, s, s/h− s)) h ≤ 0.5

1− η(1− x, 1− h, s) h > 0.5

(3.79)

with x ∈ [0, 1] and h ∈ [0, 1]. The gamma function was chosen because the slope and position of

the curve can be easily manipulated and the output values cover the complete range from 0 to 1. In

the above equation, h roughly corresponds to the halfway point, that is, for x = h, g(x, h, s) = 0.5.

Increasing the value of s increases the steepness of the slope of the function at this point (Figure

3.11).

Rescaling γ1 improves the detection location for a slanted chequer feature (Figure 3.12). Be-

cause the centre of the feature is less i2D than the surrounding areas it results in an off-centre

detection. After scaling γ1, the energy is more centred and thus the detected location is brought

closer to its true position.

3.3.4 Corner and Junction Response

The intrinsic dimension representation, d2, was calculated for 15 corner and junction features using

N ∈ {2, 3, 7, 13}, and sigmoidal function parameters h = 1/3 and s = 2.4, and is shown in Figure

3.13. A depiction of intrinsic dimension using the structure tensor is given for comparison, using

the largest eigenvalue as the i1D component, the smallest as the i2D component, and γmax = π/4.
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Figure 3.11: Sigmoidal function created from the incomplete gamma function for halfway values
(h) of 0.1 (red), 0.5 (black) and 0.9 (blue) and slope values (s) of 1 (solid line) and 8 (dotted line).

Image d1 d2 deti2D(d1) deti2D(d2)

i1D i2D

Figure 3.12: Intrinsic dimension representation and i2D detection measure before and after rescal-
ing γ1 for N = 7. In the 2nd and 3rd images, brightness corresponds to ‖d‖ and colour to γ. The
actual feature centre is indicated by a plus; the maximum of the detection measure is indicated by
a cross.

The images are 128 x 128 pixels in size, and were constructed from either line or wedge segments

radiating from the centre pixel, followed by some Gaussian blurring. A log-Gabor filter with

wavelength 32 pixels and σ = 0.6 was used to localise the model response, and a Gaussian filter

with σ = 6 was used for the structure tensor. Brightness is equal to ‖d2‖ which is the same as the

norm of the image CH vector. Colour describes γ2, with blue indicating i1D and red indicating

i2D. An iso-luminant colour map from [60] was used to ensure correct perception.

The magnitude of the responses appear phase-invariant, as both line and edge features have

similar patterns of magnitude and intrinsic dimension angle. It can be observed that for smaller N

both the magnitude and the extent of the i2D region is concentrated more towards the centre of the

features, due to the smaller size of the wavelets. However, for smaller N there are also regions of

low magnitude near the centre of features with more than two segments. This is particularly visible

in the fifth and sixth images for N = 2. As N increases, the magnitude becomes more uniform,

showing that a larger N is required for boundary estimation of complex features. However, this

also causes a smearing of the magnitude response along the direction of line and edge segments,

particularly noticeable in the seventh image as well as in Figure 3.2. Again this is due to the

increased size of the wavelets.
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N

Image 2 3 5 7 13 21 S

i1D i2D

Figure 3.13: Examples of image features along with their intrinsic dimension representation from
the CH vector for different N along with that of the structure tensor (S). Brightness represents
magnitude, ‖d2‖, colour represents angle, γ2. The centre of the feature is indicated by the plus
symbol, an the location of the detection point is indicated by the cross symbol.
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Apart for the single line segment image, detection position improves with increasing N (Figure

3.13). Figure 3.14 shows the range of detection position errors for the same set of features for

different N , compared to those using the boundary tensor junction energy and Harris corner

detector from the structure tensor. The filter sizes were the same as for Figure 3.13. As N

increases, the position error decreases, and appears to plateau after about N = 11. Detecting

the actual centre of an i2D feature is important for methods that use steerable filters to find the

orientation of component line or edge segments, such as in [86] and [70]. If the position is off-centre

the calculated orientations can be affected. Therefore, applying the proposed detection measure

using larger N should be useful for these methods.

Method
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 B S
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Figure 3.14: Range of detection location errors (pixels) for the feature set in Figure 3.13 using the
sinusoidal model method for different N (numbered), compared to the boundary tensor (B) and
the Harris corner detector from the structure tensor (S). The large outlier for higher values of N
is due to the single line segment feature.

3.3.5 Test Set Evaluation

To gauge the repeatability of the detector under different image transformations, a grey-scale

version of the test set from [81] was used. The test set has seen popular use for the evaluation of

local descriptors and interest point detectors, such as in [4, 82, 108]. It consists of eight subsets

of images, each with an original image and five or six transformed images. The transforms are

viewpoint change (subset: graffiti, bricks), scale and rotation (subset: boat, bark), blur (subset:

bikes, trees), illumination (subset: cars) and JPEG compression (subset: ubc).

The sinusoidal model was calculated over four scales using a log-Gabor filter with σ = 0.6 and

wavelength {4, 8, 16, 32} pixels. The i2D detection measure, without angle rescaling, for each scale

was added together to give a final detection score. Adding the scores was found to give better

results than choosing the maximum from each scale. Candidate detection points were chosen as

the locations of the local maxima in a 3 pixel radius area. Computational load was almost wholly

taken up with calculating the sinusoidal model, and thus the time to calculate the detections was

approximately four times longer than that given in Table 2.2 for each N . An example of a pair of

images from the viewpoint graffiti set along with their intrinsic dimension representation for the

first scale and the top 100 detections is shown in Figure 3.15.

The detections from the original image in each subset were compared to each of the trans-

formed images. Any points that were not within the common area to each image were discarded.
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(a) First image in Graffiti test set (b) Intrinsic dimension representation of (a)

(c) Second image in Graffiti test set (d) Intrinsic dimension representation of (b)

(e) Matched detections (green) and unmatched (cyan) between the first image
(circle) and the second image (cross).

Figure 3.15: Example of the top 100 detections matched between the first and second images of
the Graffiti test set from from [81].
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(a) Viewpoint (graffiti, bricks)
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(b) Scale and Rotation (boat, bark)
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(c) Blur (bikes, trees)
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(d) Illumination (cars)
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(e) JPEG Compression (ubc)
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(f) Noise (100 points, all subsets)

Figure 3.16: Average i2D detection repeatability for different values of N (shown in legend) and
number of detection points, evaluated for various image transformations (a-e) and additive Gaus-
sian noise (f) using the test set from [81].

Each detection point was considered matched if there was a corresponding detection point in the

transformed image within a distance of three pixels. However multiple correspondences were not

allowed. Repeatability was calculated as the average of the fraction of matched points in the first

image and the fraction of matched points in the transformed image, as in [4]. These values were

then averaged for each transformation type to give an overall score. The results are shown in

Figures 3.16a - 3.16e. Different levels of Gaussian noise were also added to the original image from

each subset and the repeatability calculated. The results for the top 100 points averaged across

all subsets is shown in Figure 3.16f.

The repeatability varied with increasing N , the type of transformation and number of points.

For the viewpoint, scale and rotation, and illumination subsets, the middle range value of N = 7

had the highest repeatability for smaller numbers of points, whereas low range N values had

the highest repeatability for larger numbers of points. For the blur subsets, any increase in N

reduced the scores dramatically, and N = 2 gave the best results. In contrast, increasing N

increased repeatability consistently for the JPEG subset, for less than 300 points. This is due to

the increased size of the wavelets averaging out the block-like compression artefacts. Repeatability

increased with N for the noise experiment for the same reason.
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Using a value of N = 7 appears to give the best all-round score. Qualitative analysis of the

detection images revealed that for larger values of N , detection of curved lines started to increase,

due to the lower correlation with model wavelets because of their increased size. Using N = 7

appears to be a good compromise between having enough RT orders to discriminate more complex

junctions and corners from i1D features, yet having compact enough model wavelets to follow the

curved lines in the image sets. It was also found that if only one scale (wavelength = 8 pixels) is

used, repeatability remains generally the same except for a slight decrease in the blur subset. This

shows that performing detection at a single scale is sufficient to capture most of the interest points

in the test set, and has the benefit of reducing computation time.

Contour-based corner detectors along with the Harris-Laplace [82] and Laplacian-of-Gaussian

[64] detectors were tested in [4] on the same set of images. The results for N = 7 and 200 points

were compared to that of the best detector in each subset in [4]. For our detection method,

repeatability was approximately 20% better for the viewpoint subset, 15% better for the scale and

rotation subset, same for the blur and JPEG subsets, and 20% worse for the illumination subset.

3.4 Reconstruction

The other advantage of the proposed approach is its wavelet embedding. We can reconstruct

the image from either its model or residual components. Reconstructing an image from only the

sinusoidal model components acts like a wide-band linear (i1D) filter, while reconstructing from

only the residual components filters for i2D areas. This interesting effect was shown in Figure 3.6

where the Pentagon image was reconstructed from four wavelet scales for different values of N .

Increasing N resulted in the model reconstruction becoming more selective towards larger linear

features, due to the increased size of the wavelets. Taking this concept further, reconstruction

can be performed after manipulation of the model parameters to achieve various image processing

tasks.

The process is:

1. Calculate the sinusoidal model components at each scale,

2. Adjust the amplitude, orientation or phase parameters.

3. Recreate the model CH vector using the adjusted parameters.

4. Reconstruct the image.

Examples using amplitude and orientation are presented in this section.

3.4.1 Amplitude

Modulating the model amplitude can also be used to enhance the image. For example, Figure 3.17a

shows an image of a retina, with linear features that correspond to blood vessels. These features
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were enhanced by multiplying the sinusoidal model amplitude for the first two (high frequency)

scales by four and reconstructing (Figure 3.17b). If instead both the model and residual parts for

the first two scales are amplified (Figure 3.17c), the non-linear parts of the image are also enhanced,

which leads to a noisier reconstruction in this case. The residual components and low-pass channel

were included in the reconstruction.

(a) Retina image (b) Model enhanced (c) Both enhanced

Figure 3.17: Retina image (a) with linear features enhanced (b) and all features enhanced (c) for
the first two scales.

3.4.2 Orientation

Figure 3.18a shows an x-ray image of a slice of Porites coral. The horizontal features are the

hollow tubes along which the coral organisms grow, while the vertical lines are yearly growth rings

[72]. The task is to split the image into horizontal and vertical components. To do this we can

reconstruct from only the model components with θ ∈ [π/4, 3π/4] to isolate the tubes (Figure

3.18b), and reconstruct from the remaining model components to isolate the growth rings. Fine

features in the growth rings are maintained which would have been otherwise lost if using filters

at different scales. Images like this may benefit from analysis with a two-sinusoidal signal model

and this is explored further in the next chapter. The low-pass component was not included in the

reconstruction.

(a) Coral x-ray (b) Horizontal recon. (c) Vertical recon.

Figure 3.18: Coral x-ray image (a) reconstructed separately from horizontal (b) and vertical (c)
model components.
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3.5 Summary

In this chapter we have introduced a novel sinusoidal signal model constructed from higher-order

RTs. Previous 2D analytic signal approaches to modelling image structure as a sinusoid [29, 135]

only used up to the 3rd order RT. The model consists of a sinusoidal and a residual component.

The sinusoidal component describes the strength (amplitude), symmetry (phase) and orientation of

i1D features. The residual component describes the remaining local image structure, and therefore

has a high magnitude at the location of i2D features. Increasing the number of RT orders improves

the estimation of model parameters, especially orientation.

A method of weighting the CH vector to ensure phase-invariance of the vector magnitude was

also proposed. Phase invariance is important when using the CH vector magnitude as a boundary

energy measure. The benefit of having a residual component in the model led to the development

of a novel measure of intrinsic dimension. The complex intrinsic dimension measure can be used

for boundary detection (amplitude), i1D detection (real part) and i2D detection (imaginary part).

Tests on a common feature detection image set showed i2D detection performance on par with

other contemporary methods.

Many methods that use the monogenic signal for phase and orientation estimation should be

improved using this approach. In particular, simply adding the 2nd order RT gives an estimate

of the orientation from even structures and is quick to compute as the orientation parameters can

be found analytically using quartic solvers. Even with the 2nd order RT an intrinsic dimension

representation is possible.
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Chapter 4

Multi-Sinusoidal Signal Model

The previous chapter demonstrated that lines and edges are i1D structures that are well represented

by a single sinusoidal model. The large residual component of the model at junctions and corners

indicates they are i2D structures with multiple orientations of symmetry. Therefore, alternative

image models are required to represent these more complex features.

This chapter develops the multi-sinusoidal image model that was introduced at the start of the

previous chapter. It consists of the addition of multiple sinusoids at different amplitudes, phases

and orientations plus a residual component. The model can represent features consisting of the

addition of i1D components, such as crossed-line junctions, as well as give phase-invariant estimates

of the multiple orientations of symmetry that may be present in the local image structure.

The chapter layout is as follows:

• The matched wavelets for the model components are developed.

• The iterative, roots and super-resolution methods of solving for the model parameters are

investigated to see the effect of number of RT orders on model error. Super-resolution is

particular effective in resolving sinusoidal components close in orientation.

• A procedure for junction classification is introduced. In particular, the difference between

additive lines and occluded lines is investigated, as occluded lines are common in many images

but do not match an additive model.

• The model is compared to two contemporary methods for orientation estimation of two

crossed lines.

• The usefulness of having extra sinusoids in the model is demonstrated on the original mo-

tivating problem of estimating orientation in coral core x-ray images. The model combined

with the multi-scale CH wavelet method is ideally suited to this problem as the images consist

of multiple i1D features at different orientations and scales.

Preliminary work on solving a multi-sinusoidal model using RTs and analysing coral x-ray

images has been published in [75] and [72], respectively.
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4.1 Multi-sinusoidal signal model

We now consider a multi-sinusoidal signal model consisting of K oriented sinusoids with differing

amplitude, phase and orientation plus a residual component. This model was briefly introduced in

Section 3.1.1, it models local image structure at a point of interest, z = 0, as

f(z) =
K∑
k=1

Ak cos(〈z,ok〉+ φk)︸ ︷︷ ︸
fS(z)

+ fε(z), (4.1)

where fS(z) is a single sinusoidal model component with amplitude A, phase φ, and orientation θ

where o = [cos θ, sin θ], and fε(z) is the residual component. Higher-order RTs give more estimates

of the sinusoid parameters. Since the individual sinusoidal components in the model are linearly

combined, we may write

Rnf =


∑
k Ake

inθk cos(φk) +Rnfε, n is even,∑
k Ake

inθk i sin(φk) +Rnfε, n is odd.
(4.2)

For this model we have to find multiple values of amplitude, phase and orientation. To do this we

find the CH vectors matched to the sinusoidal model component and apply either the iterative or

roots method to solve for their values.

4.1.1 Matched Wavelets

As derived in the last chapter, the single sinusoidal CH vector can be written as a function of

amplitude, phase and orientation,

fS(A,φ, θ) = ASθ cosφ se +ASθ sinφ so, (4.3)

where se and so are orthogonal CH vectors given by

sen = 1 if n even, 0 otherwise, (4.4)

son = −i if n odd, 0 otherwise. (4.5)

Setting orientation to 0, the two matched wavelets for a given weighting matrix W are

Wfe = seW/
√
We, (4.6)

Wfo = soW/
√
Wo, (4.7)
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where We and Wo are the sum of the even and odd weightings respectively,

We =
∑

n even,|n|∈NN

w2
n, (4.8)

Wo =
∑

n odd,|n|∈NN

w2
n. (4.9)

The model single sinusoidal CH vector can thus be expressed as the scaled and rotated sum of the

model wavelets,

WfS(A,φ, θ) = λeSθWfe + λoSθWfo, (4.10)

where

λe =
√
WeA cosφ, (4.11)

λo =
√
WoA sinφ. (4.12)

Since the multi-sinusoidal signal model is a linear combination of single sinusoids, we may write

them as the sum of rotated single sinusoidal CH vectors,

Wf =
K∑
k=1

WfS(Ak, φk, θk) + Wε (4.13)

=
K∑
k=1

Sθk (λekWfe + λokWfo) + Wε. (4.14)

4.2 Solution

The model consists of a single wavelet set at multiple orientations and thus can be solved for

using the iterative or roots method for the single wavelet set, multiple orientation model in Section

2.4.2. Furthermore, the model can be solved by the super-resolution method by adding the second

wavelet to the first as an imaginary component.

4.2.1 Iterative Method

The iterative method begins by solving for one sinusoid using the image CH vector, as is done for

the single sinusoidal model.

[A1, φ1, θ1] = arg min
A,φ,θ

‖Wf−WfS1
‖. (4.15)
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The second sinusoid is solved by using the residual component. Let Wε1 = Wf −WfS1
be the

first residual component. The second sinusoid is given by

[A2, φ2, θ2] = arg min
A,φ,θ

‖Wε1 −WfS2
‖. (4.16)

From this we obtain the second residual Wε2 = Wf−WfS2
, and the process is repeated for each

of the K sinusoids in the model, that is

[Ak, φk, θk] = arg min
A,φ,θ

‖Wεk−1 −WfSk
‖. (4.17)

Note that iterative solving does not guarantee an overall optimum as the individual CH vectors are

not orthogonal. However, it does guarantee that the residual component decreases in magnitude

with each iteration since

‖Wεk‖2 = ‖WfSk
‖2 + ‖Wεk+1‖2. (4.18)

4.2.2 Roots Method

The roots method solves for all of the sinusoids at one time. Recall that the polynomial to solve

for the sinusoidal model is

p(2θ) = λe(θ)
2 + λo(θ)

2. (4.19)

For a single sinusoid, we find the root of the derivative of p(2θ) that gives the maximum value

of the polynomial. For multiple sinusoids we find the set of roots where the second derivative of

p(2θ) is negative, meaning that they correspond to peaks in the angular response. Given the set of

roots, {θk}, the amplitude and phase values are then found by evaluating λe(θk) and λo(θk). The

final step is to order the sinusoids in descending order of amplitude, as is inherently done in the

iterative method, as this enables a consistent interpretation of the model.

There are some differences between output of the roots and iterative methods.

• There is no guarantee that the residual component using K roots will decrease if K is

increased.

• The quick approximation method (Section 2.6.2)of estimating the location of the maximum

of a trigonometric polynomial cannot be used, and normal root finding procedures must be

employed.

• The number of large components may be different.

An example of the last difference is shown in Figure 4.1 for the angular response polynomial

of a feature consisting of two closely oriented sinusoids. The iterative process returns two large

sinusoidal components. However, the roots method can only return components where there are
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peaks, and therefore returns one. This property can be taken advantage of in both ways. The

iterative procedure could be used resolve components that are closer together in orientation, while

the roots process guarantees one only gets components at maxima of the response.
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Figure 4.1: Sinusoidal angular response polynomial (a) and the angle response of the first two model
components returned using the iterative method (b-c) and the roots method (d-e) for N = 9

4.2.3 Super-Resolution

In Section 2.5 the super-resolution method was introduced to solve models consisting of a single

wavelet at multiple orientations. The method can be extended to solve for the multi-sinusoidal

model as well. Weighting has no effect with the super-resolution method, therefore we express the

model CH vector as

f =
K∑
k=1

fS(Ak, φk, θk) + ε (4.20)

=
K∑
k=1

λekSθkse + λokSθkso + ε (4.21)

=
K∑
k=1

Ak cosφkSθkse +Ak sinφkSθkso + ε. (4.22)

Let sφ = cosφ+ i sinφ. Since se + so is a vector of all ones, substituting this in gives

f =
K∑
k=1

AsφSθk(se + so) +As̄φSθk(se + so) + ε (4.23)

=
K∑
k=1

A

2
sφSθk +

A

2
s̄φSθk + ε. (4.24)



109

An individual order of the CH vector is thus

fn =
K∑
k=1

Ak
2
sφk

e−inθ +
Ak
2
s̄φk

e−inθ + ε. (4.25)

Therefore the model CH vector can be rewritten as the Fourier series of a spike train

f = FNx(θ) + ε, (4.26)

where

x(θ) =
K∑
k=1

(
Ak
2
sφk

δ(θ − θk) +
Ak
2
s̄φk

δ(θ − π − θk)
)
. (4.27)

Each sinusoid corresponds to a conjugate pair of spikes. The complex amplitudes of the spikes,

Ak/2sφk
and Ak/2s̄φk

, are given by the amplitude and phase of the sinusoid components. The

spikes are located at θk and π+ θk respectively, and these locations correspond to the orientations

of the sinusoids. Crucially, the double spike representation means that all the orders are non-zero

and thus the super-resolution method can be used.

Let α = {Ak/2sφk
}k∈NK

be the set of all the complex amplitudes. Then we can find {Ak} and

{θk} using the super-resolution method by minimising the residual component

min
α,θ
‖x̃(θ)‖TV subject to ‖FN x̃(θ)− f‖1 ≤ δ (4.28)

and it follows that ‖ε‖1 ≤ δ. The resulting spikes are in conjugate pairs at θ and θ+π, so we only

need to consider the spikes with a location smaller than π. If αk is the complex amplitude of one

of these spikes, the corresponding amplitude and phase of the sinusoid components are given by

Ak = 2|αk|, (4.29)

φk = arg(αk). (4.30)

4.2.4 Example Image

The multi-sinusoidal model for K = 2 was calculated for the Pentagon image, obtained using the

first scale of a Meyer wavelet decomposition with N = 13 using the iterative method, and is shown

in Figure 4.2. The values of the amplitude and residual norm images are all on the same scale

and can be directly compared. The amplitude of the second sinusoid is large at the locations of

the cross-like junctions on the roof of the pentagon, indicating at least two strong components of

linear symmetry. It can be observed that at locations where the first sinusoid favours the features

perpendicular to the main pentagon shape, the second sinusoid will represent the main shape. For

example, the blue dots in the large orange area in the lop left quadrant of the first orientation

image are orange in the second image. The example shows that extra sinusoidal components are
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needed to represent multiple linear symmetries.

k Ak φk θk ‖Wεk‖

1

2

0 π/2 π 3π/2 2π

Figure 4.2: Decomposition of the first scale of a 256 × 256 pixel version of the Pentagon image into
two sinusoidal model components using the second Meyer wavelet, N = 13 and phase-invariant
equal weighting.

4.3 Model Accuracy

Given more than one linear symmetry component, we wish to know how many RT orders are

needed to resolve their parameters accurately. In this section we shall investigate the differences

in model accuracy between each solution method for different values of N and weighting. The

iterative and roots methods are treated separately to the super-resolution method, owing to the

latter not using weights.

4.3.1 Iterative and Roots Method

Accuracy of the model estimation using the iterative and roots methods was compared for K = 2

sinusoids for different values of N and weighting. In particular, the orientation difference between

the two sinusoids was varied to see the effect on the model estimation, and thus no noise was

added.

A set of 100 test CH vectors was constructed from the addition of two sinusoid CH vectors with

amplitude ratio randomly varying between 0.5 and 1.5 and uniformly distributed random phase.

The orientation difference was then varied from 2.5 to 90 degrees in 2.5 degree increments, for a

total of 3600 test vectors. That is,

Wf = WfS1
(A1, φ1, θ1) + WfS2

(A2, φ2, θ2). (4.31)



111

The model parameters were solved for using either the iterative or roots method to give two

estimated single sinusoidal model CH vectors f′S1
and f′S2

. Since the order of the estimated model

components does not necessarily match that of the original model, the estimated components were

paired with the original model components such that there was a minimum distance between CH

vectors. The amplitude, orientation and phase error were calculated for each pair, and averaged

over the 100 test vectors for each orientation using the following formulas:

Aerror =
∑
k

|Ak −A′
k| /K, (4.32)

φerror =
∑
k

|arg(cos(φk − φ′k) + i sin(φk − φ′k))| /K, (4.33)

θerror =
∑
k

|arg(cos(2θk − 2θ′k) + i sin(2θk − 2θ′k))| /2K. (4.34)

The double angle is used in the calculation for θ since the methods return φ over the entire circle,

but θ only over the half-circle.

Effect ofN

The effect of N was investigated using the phase-invariant equal weighting scheme (B u 0) (Figure

4.3). For both methods, the error is greatest when the orientation separation is close to 0. This

is due the orientation selectivity of the wavelets as when the sinusoids are close together they

interfere and are instead perceived as a single sinusoid. The iterative method is better at resolving

closely oriented sinusoids, due to the ability to discern two components from a single wider peak

as demonstrated in Figure 4.1.

Increasing N increases the orientation selectivity, and thus a higher N can be seen to result

in smaller orientation differences being resolved with less error. When applying the model, the

expected minimum orientation difference of feature can therefore be used to guide the choice of

N . As a rough guide, when the orientation difference is above π/N for the iterative method, or

1.5π/N for the roots method, the errors appear to plateau. Furthermore, increasing N reduces

the error floor at larger orientation differences, and the error floor for the iterative method is lower

than the roots method. This is due to the iterative method removing components from the model,

and therefore removing the effect of the angular oscillations of that component on the estimates

for subsequent components.

A common approach to multiple component estimation with steerable filters is to find the

maxima of the response polynomial, that is, the roots method. These results show that the

iterative approach, made possible by having the residual vector, gives better parameter estimates

for a sinusoidal model.
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Figure 4.3: Average error of the estimated model parameters for two sinusoids with varying ampli-
tude, random phase, and varying orientation separation for different values of N (shown in legend),
using the iterative and root solvers.

Effect of Weighting

In the previous chapter it was shown that adjusting the weights could be used to reduce the

oscillations in the angular response of the wavelets, at the expense of orientation selectivity (main

lobe width). It was remarked that reducing the oscillations would reduce the correlation between

wavelets in a multi-sinusoidal model. To test this theory, the same test was performed as above,

except with a fixed value of N = 13 and the weighting varied instead (Figure 4.4). The weights were

calculated using the energy maximisation method with the window width B chosen as a multiple

of the constant, B0.1 = 5.64/N − 6.57/N2. A factor of 0 is equivalent to the equal weighting used

in the previous experiment.

As expected, increasing B increases the minimum orientation difference before the errors begin

to plateau. That is, the ability to accurately resolve sinusoids close in orientation is reduced due

to the wider angular response profile. However, past this point, increasing B decreased the error

floor by orders of magnitude thanks to the reduced oscillations.

The same experiment was conducted with different values of added Gaussian noise. As the noise

was increased the error floor also increased. After the noise CH vector magnitude was greater than

approximately 0.15 times the image CH vector magnitude the noise floor for all weightings was

approximately the same. Therefore in higher noise images using B = 0 remains a good choice for

the weighting.
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Figure 4.4: Average error of the estimated model parameters for two sinusoids with varying am-
plitude, random phase, and varying orientation separation for different values of B as a multiple
of B0.1 (shown in legend) and N = 13, using the iterative and root solvers.

4.3.2 Super-Resolution Method

A similar experiment testing the accuracy of the model was performed using the super-resolution

method, albeit with a reduced number of vectors due to the increased computation time of the

method. Two sets of CH vectors were created, one set consisting of two equal amplitude sinusoids

with the same phase of 0 and one set with two equal amplitude sinusoids with opposite phases

of 0 and π. Essentially this corresponds to having spikes with the same or different sign. The

orientation difference was then varied from 2.5 to 90 degrees in 2.5 degree increments, for a total

of 72 test vectors. Since the super-resolution method does not use a weighting scheme, only the

accuracy of the model estimation versus N was investigated.

Numerical experiments involving spike trains in [15] suggest a orientation separation as small

as 2π/N may be enough to guarantee finding an exact result. However, those results used single,

uncorrelated spikes, where as the sinusoids in the model are represented as a pair of spikes. Results

of the test (Figure 4.5) show that when both phases are 0, the separation required is approximately

π/2N , while for opposite phases it is approximately π/N . These values are one quarter and half

of the experiment in [15]. After these thresholds, the error is practically zero.

In contrast, the previous two methods have a much larger separation threshold after which

the average error stays relatively constant. Therefore the super-resolution method can be used

to resolve sinusoidal model components that are close in orientation using a smaller value of N .
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Unfortunately, the large computation time of the MATLAB code from [15] (Section 2.6.3) currently

limits the practical application of the super-resolution method as it is infeasible to model an entire

image.
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Figure 4.5: Average error of the estimated model parameters for two sinusoids with unit amplitude,
phase of {0, 0} or {0, π/2}, and varying orientation separation for different values of N (shown in
legend), using the super-resolution method.
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4.4 Junction Analysis

In this section the multi-sinusoidal model is applied to the task of analysing multiple-line and

multiple-edge features. Additive line (Figure 4.6b) and additive edge features (Figure 4.6f) can be

modelled using multiple sinusoids as they can be expressed as a sum of i1D features. Occluded

line (Figure 4.6c) features require the CH wavelets to be of a certain size. Other features (Figures

4.6d, 4.6g and 4.6h) are better modelled by line and wedge segments, which is the focus of the

next chapter.

(a) Line (b) Additive Lines (c) Occluded Lines (d) T Junction

(e) Edge (f) Additive Edges (g) Chequer Edge (h) Corner

Figure 4.6: Examples of various image features. Lines and edges are well-modelled by a single
sinusoid (a, e). Additive lines and edges are well modelled by a superposition of sinusoids (green
- b, f), occluded lines have an extra component in the centre (yellow - c), and others are better
modelled using line-segment or wedge-segments (e, f, g).

4.4.1 Feature Response

Additive i1D Features

To begin with we shall find the model response to multiple additive i1D features. A line or an

edge is a i1D structure which varies along one axis of symmetry. Locally it can be represented as

a sum of sinusoids with the same orientation,

fi1D(z) = fi1D(〈z,o〉)

=
∑
k

Ak cos(wk〈z,o〉+ φk),

where o = [cos θ, sin θ], and can be modelled completely by a single sinusoidal model. That is,

fi1D(z) = A(z) cos(〈z,o〉+ φ(z)).
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A feature consisting of the addition of a line, edge or any combination i1D features can be locally

represented as the sum of i1D signals,

f(z) =
∑
k

fi1D(〈z,ok〉),

and therefore by the multi-sinusoidal model as

f(z) =
∑
k

Ak(z) cos(〈z,ok〉+ φ(z)).

The RT responses to this type of feature are therefore

Rnf(z) =


∑K
k=1Ak(z)einθk cos(φk(z)) n is even,∑K
k=1Ak(z)einθk i sin(φk(z)) n is odd.

from which the CH vector of the feature can be obtained. Note that within the local area of this

type of feature, the amplitude and phase of the model components vary between locations, but the

orientation remains the same. This is important as it means that the model can be evaluated at

locations other than the centre of the feature and still return the correct orientation.

Occluded Lines

While lines may be i1D features, often crossed lines in an image are not additive but instead

occluded. For example, the intersection of the black lines in Figure 4.7 is same shade of black, not

a darker shade. Additive lines are more like crossed lines drawn by a highlighter, where multiple

strokes result in a darker colour.

Figure 4.7: Example of an occluded crossed line feature.

Therefore we must investigate the CH vector response of occluded line features, which shall be

defined as the superposition of lines of the same sign. Instead of modelling these feature as the

addition of i1D components, we model them as the maxima (or minima) of the their intensity. For

positive valued lines (white on black) the model is

f(z) = max
k∈K
{flinek(z)}, (4.35)
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and the sinusoidal model for this structure becomes

f(z) = max
k∈K
{Ak(z) cos(〈z,ok〉+ φ(z))}. (4.36)

The maximum operator will always result in a value for f(z) that is less than the equivalent

additive model, that is

max
k∈K
{Ak(z) cos(〈z,ok〉+ φ(z))} ≤

K∑
k=1

Ak(z) cos(〈z,ok〉+ φ(z)), (4.37)

and thus we may write the occluded model as the additive model minus a non-negatively valued

occlusion function focc(z)

f(z) =
K∑
k=1

Ak(z) cos(〈z,ok〉+ φ(z))− focc(z). (4.38)

The normalised CH vector at the centre of two occluded line features (Figure 4.8) was investi-

gated using a log-Gabor filter with σ = 0.65. The differences between the magnitude and angle of

each CH vector component (RT order) and the ideal additive version of the feature were calculated

for different filter wavelengths. The magnitude is expressed in relative terms in Figure 4.8b and

4.8e. For example, a value of 2 means the occluded vector component has twice the magnitude

of the ideal component, whereas a value of 1 is equal. The amplitude errors are larger for both

smaller wavelets (smaller wavelength) and lower orders. In particular, the 0th order CH wavelet

response is always lower in magnitude than the ideal version, and the angle error indicates that it

has the wrong sign for the smaller wavelengths.
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(f) Angle error

Figure 4.8: Differences in the magnitude (b,e) and angle (c,f) of each CH vector order (shown in
legend) between an ideal additive multiple line feature and a non-zero width occluded line feature
(a,d).

The occluded error component, focc(z), in the previous equation is fixed in size. Therefore
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increasing the wavelength increases the size of the wavelet and thus reduces the magnitude of the

response to the error component. Likewise, higher-order CH wavelets have a larger spatial extent

with more energy concentrated further from the centre. These observations lead to the following

proposed strategies to deal with occluded lines:

• Increase the number of orders N . Including higher orders increases the size of the

wavelet and therefore reduces the occluded error response.

• Increase the wavelength of the primary filter. The examples in Figure 4.8 suggest a

minimum wavelength of two to four times the line width is necessary.

• Remove lower order components. The lower order CH wavelets are the smallest in

spatial extent and most affected by the occluded error. By setting their weighting to 0,

we reduce the influence of the error. The remaining weights must be adjusted such that

We = Wo to ensure the amplitude is remains phase-invariant. Note this means the image

CH vector is also weighted the same way.

Removing Lower Orders

An example of wavelets constructed by removing the lower orders is shown in Figure 4.9 for N = 13,

numbered according to the minimum non-zero order. For example, 2 indicates the 0th and 1st

order components were weighted to 0. Removing lower orders attenuates the centre of the wavelet

but also reduces its linear appearance and increases the amplitude of oscillations outside the main

lobe. It appears that lower orders are not required to estimate the model over the full orientation

range, as if there are enough higher orders the interference effects still produce a wavelet with a

single directional axis.

Minimum non-zero order

0 2 4 6 8

even

odd

Figure 4.9: Even and odd order sinusoidal wavelets with the lower RT orders set to zero for N = 13
and phase-invariant equal weighting. The number indicates the minimum non-zero order.

The effect of removing lower orders was investigated by finding the model parameters for an

occluded two line feature (such as Figure 4.8a) with orientation difference ranging from π/36 to

π radians. The model was calculated for N = 13, phase-invariant equal weighting, the iterative

method and using a log-Gabor filter with σ = 0.65 and wavelength twice the width of the line.
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The response to a single line feature with the same line width was used to normalise the results

(Figure 4.10). Note that for a single occluded line feature, the residual is zero.
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(d) Residual magnitude

Figure 4.10: Amplitude, phase and orientation errors long with the residual norm for an occluded
two line feature solved using the iterative method and wavelets with the lower orders removed. The
minimum non-zero order is shown in the legend. The CH vector was calculated using a log-Gabor
primary filter with wavelength twice the line width and σ = 0.65, and N = 13.

The amplitude, phase and orientation errors are lowest for the both normal sinusoidal wavelets

with no orders removed, and the wavelets with the 0th and 1st order removed (using 2nd order

and above). In particular, amplitude errors for the two line occluded feature were larger than

for two additive features (Figure 4.3), but the phase and orientation errors were almost the same.

However, if the filter wavelength is reduced to be the same as the line width (not shown), phase and

orientation errors are introduced. This suggests that phase and orientation of occluded features

can be found reasonably accurately for filter wavelengths twice the line width and above.

Setting any more than the second order to zero gives phase and orientation errors at certain

orientation differences. This can be explained by the increase in amplitude of the off-axis oscillation

of the angular response giving a large off-axis response. Thus rather than isolating a single line,

the maximum response actually occurs when the crossed lines of the feature are at the same angle

difference as two side lobes. Removing the 0th and 1st orders is of benefit in reducing the residual

norm slightly, shown as a proportion of the image CH vector norm in Figure 4.10. Where this is

of benefit is:

• The model vector explains more of the image CH vector.

• The effect of the occluded part of the feature is reduced for subsequent iterations.

• The residual is closer to the ideal residual of zero, meaning that thresholding based on the

residual may be more accurate.
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While removing lower orders has some advantages, the CH vector is intended to be a primary

descriptor of local image structure and removing the 0th and 1st order removes information about

isotropic local image structures (blobs). Therefore, a hybrid system is proposed where the CH

vector is weighted normally and the first sinusoidal component found using the normal sinusoidal

wavelets with no lower orders removed. Then subsequent sinusoids are found using the sinusoidal

wavelets with the 0th and 1st orders removed. The results for the hybrid scheme (Figure 4.10)

show the approach works in that the residual component remains lower while the parameter errors

remain the same. A hybrid approach is only possible using the iterative solving method, and thus

by having the residual component.

Other Types

Some features are not well described by a sinusoidal model. The chequer pattern in Figure 4.6f

is defined by edges; however, it is an even structure that does not respond to odd order RTs.

As a result, the corresponding model has multiple components that do not match the orientation

of the edges, and thus analysis is not straight-forward. The corner feature (Figure 4.6g) has a

similar problem. In contrast, the T junction (Figure 4.6e) generates sinusoid components with the

same orientation as the lines; however, there are extra components to compensate for the half-line

segment not continuing through the centre. Features such as these are better modelled by multiple

lines or edges radiating from a point, which is the subject of the next chapter.

4.4.2 Classification

When calculating the multi-sinusoidal model one of the choices will be how many sinusoidal compo-

nents to include in the model. This is particularly relevant to the problem of classifying junctions

according to the number of significant i1D components they contain. In fact, the problem is com-

mon to any model featuring multiple components and it is worth while exploring several strategies.

MaximumComponent

The first approach is to only include model components where the amplitude is greater than a

certain fraction, δ ∈ [0, 1], of the maximum component’s amplitude. That is

class(f) = card{k |λk > δ × λmax, k ∈ NK}, (4.39)

where λmax is the amplitude of the maximum component. Since models can have multiple parts to

a single component, such as the even and odd parts of the sinusoid component, consider λk to be

the magnitude of the CH vector corresponding to the k-th component of the model. This approach

is invariant to the strength of the local image structure, however is does not take into account the

amplitudes of the other components when setting the threshold.
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K-adjustable Threshold

It was thought that an improved approach might be to set the threshold as a proportion of the

the CH vector magnitude. However, this approach is not invariant to the number of components.

For example, consider a feature constructed of K components with unit norm and thus λk = 1.

We have

K∑
k=1

λ2k ≥ ‖Wf‖2 (4.40)

and thus

√
K ≥ ‖Wf‖ (4.41)

for k ∈ NK . Therefore, the threshold needs to depend on 1√
K

. A classification method taking this

into account is

class(f) = max
k∈NK

λk > δ × ‖Wf‖/
√
k where k ∈ Nk, λk > λk+1. (4.42)

In detail, if the k-th component has an amplitude greater than δ/
√
k times the CH vector norm,

then the first k sinusoids will also be above the threshold. We choose the largest k for which this

holds true.

4.4.3 Applying The Model

The procedure to apply the multi-sinusoidal model for junction analysis is:

1. Choose a method: The iterative and root methods are fast enough to be applied to an

entire image. The iterative method gives better results but takes K times longer when using

MATLAB roots to find the maximum. However, the iterative method can make use of the

quick approximation method from Section 2.6.2 which is faster. This is the recommended

approach. The super-resolution method is computationally expensive but gives the best

results, it is only feasible when applied at selected points in the image. In this case, either

the iterative or roots methods can be used to location possible junctions.

2. Choose N : Larger N gives a smaller separation constraint allowing for lines or edges with

closer orientation to be resolved, as well as better noise performance. The disadvantages

are increased computation time and increased kernel size. The experiments in Section 4.3

give a guide as to what value of N to choose in order to resolve features with a certain

minimum orientation separation between components. If this is not known, as a general

guide choose N ≥ 6K for the iterative method, N ≥ 8K and roots method, and N ≥ 4K for

the super-resolution method, for useful results.
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3. Choose W : The equal weighting scheme (B u 0) gives the best model estimate when i1D

features are close in orientation. However, using the energy maximisation method with a

larger window width, (as a multiple of B0.1) reduces oscillations in the angular response of

the wavelet and improves estimates where i1D features have a larger orientation difference.

A larger value of B is best employed with larger values of N to maintain the orientation

selectivity of the wavelets.

4. Calculate Model: Obtain the CH vector at the desired locations and scales in the image

and evaluate the model. The hybrid scheme may be used to reduce the residual vector

magnitude.

5. Detect junctions: Detection of candidate junction locations can be performed using the

intrinsic dimension measure as described in Section 3.3.3. When using the super-resolution

method, restricting the analysis to candidate locations will speed up computation dramati-

cally.

6. Analysis: Classify the local image structure according to the model parameters. Phase

indicates either even (line) or odd (edge) structures along the corresponding orientation,

while the number of large amplitude components corresponds to the number of lines or edges

present.

4.4.4 Example Image

An example of junction classification for a test image is shown in Figure 4.11. The original image

(340 × 340 pixels) consists of occluded crossed lines forming junctions of two, three or four lines.

The analysis procedure described in the previous section was applied. The multi-sinusoidal model

was found at a single scale using a log-Gabor filter with ω = 8 and σ = 0.65, N = 13, equal

weighting, and using the iterative process with hybrid wavelets. Locations of the junctions were

detected using the local maximum of the i2D junction measure in a 3 pixel radius. Outer edge

junctions were excluded from the analysis.

At each detected location the multi-sinusoidal model was used to classify the junction using the

K-adjusted method with a threshold of δ = 0.5. The model components are shown as lines in Figure

4.11b where the length and orientation of the lines corresponds to the amplitude and orientation

of the model components respectively. The lines are coloured according to the classification of the

junction. All the junctions are classified correctly with a mean orientation error of 0.008 radians.

For some junctions, the detection location is not at the crossing point of the lines yet the

model is still accurate. This highlights the advantage of the phase-based representation given by

sinusoidal models. The symmetry measure (phase) is split from the amplitude and orientation,

and thus it does not matter if the detection point is at the centre of the line (even symmetry) or

at the edge of the line (odd symmetry). Therefore, if one is mainly interested in the orientation

of component structures then the detection point does not have to be at the exact centre of the
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(a) Test Image (b) Classification

Figure 4.11: Test image and resulting junction classification using the multi-sinusoidal model with
N = 13. Red: two lines, orange: 3 lines, purple: four lines.

structure, as is required for other approaches such as multi-steerable matched filters [86].

The classification accuracy of the K-adjusted method compared to the maximum method was

found for varying with threshold values, using both normal (Figure 4.12a) and hybrid wavelets

(Figure 4.12b). For both wavelet types, the K adjusted method has a wider area of 100% correct

classification, and a larger area under the curve. The probability of choosing a good threshold is

thus higher with this method. The hybrid wavelets also result in a higher classification rate over a

wider range of threshold values. This example suggests that hybrid wavelets are a better approach

to classifying occluded crossed line junctions.
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Figure 4.12: Classification accuracy for different thresholds using the maximum and K-adjusted
thresholding methods for the image in Figure 4.11, and either normal sinusoidal wavelets (a) or
the hybrid-wavelets (b).

4.5 Experiment: Orientation Estimation

A common problem in image analysis is the estimation of the angles of the individual line or edge

features present in a corner or junction feature. For example, these angles can be used for camera

calibration [90] or source separation, shown in the latter part of this chapter. The multi-sinusoidal

model is suited to the parametrisation of crossed lines. In this section, the model using the iterative,
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roots or super-resolution methods is compared with two recent approaches, multi-steerable matched

filters [86] and mixed orientation parameters [85], for the analysis of crossed line orientation. An

overview of different approaches to multiple orientation estimation is described below.

Multi-Steerable Matched Filters

Steerable wedge-shaped filters are asymmetric kernels that can be used to detect junctions and

corners [110, 132]. Wedge filters are constructed from polar basis functions in the spatial domain

that have been windowed to restrict their spatial extent. The filter is steered through 2π radians

to find peaks in the angular response [110]. Whereas a symmetric steerable filter has one peak for

a line, a wedge filter will have two. Wedge filters can be designed to respond to lines or edges or

both, and are also sensitive to initial location.

Multi-steerable matched filters (MSMFs) extend the wedge filter paradigm by considering mul-

tiple wedge filters matched to the structure of interest [86, 88, 91]. For example, a T junction

would require three wedge filters, crossed lines would require two pairs of wedge filters fixed π

radians apart, and corners a single variable angle wedge. Initial orientations of feature components

are estimated using a crude sampling of the angular response. These orientations are then used to

solve for the model parameters using a damped least-squares algorithm (Levenberg–Marquardt)

[86]. Different models can be tested and the most representative chosen.

Mixed Orientation Parameters

Mixed orientation parameters (MOP) is a method to analyse additive i1D structures with two

orientations [85], additive and occluded i1D structures with two or more orientations [1, 89], and

corners and junctions [87]. Rather than estimate orientation at a single location, MOP incorporates

the estimates at each point in the neighbourhood of the feature of interest. Higher-order tensors

are calculated at each point, with the order depending on the maximum desired orientations in

the model. For example, if there were up to four orientations, the fourth order tensor would be

used. Singular value decomposition is performed on a matrix of all the tensors (expressed as a

row) in the local neighbourhood. The result corresponding to the smallest singular value is the

tensor with the minimum difference to the set of tensors in a least-squares sense; that is, the most

representative tensor. The orientations are then obtained from eigenvectors of this tensor (in a

diagonal matrix).

Steerable Filters

Estimating multiple orientations with symmetric steerable filters involves rotating an appropriated

designed filter and looking for peaks in the response [38, 100]. The filter can be designed to match

a specific structure of interest [50], or 2D quadrature filters can be used to give a response to both

lines or edges. The multi-sinusoidal model from the CH vector falls into the family of 2D steerable

filter and wavelet methods. However, the iterative approach to solving for the model parameters
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differs from other steerable filter methods in that the CH vector is used as a starting point and

each component is found by minimising the residual vector iteratively, rather than simply choosing

the peaks in the angular response (roots method). The method results in better model estimation,

due to the removal of the effects of wavelet side lobes after every iteration and the ability to resolve

more closely oriented components.

Applying the super-resolution method to solve for the model parameters is a new approach.

Although it may remain a novelty thanks to its enormous processing time, it solves the entire model

at once, similar to MSMFs. However, unlike MSMFs it does not require any initial orientation

estimates and thus is not sensitive to local maxima. Often steerable filters are created using

higher-order derivatives and can also be expressed as the sum of complex basis functions, where

the derivatives have been combined into a single complex operator called the Wirtinger operator

[137]. The Wirtinger operator is the derivative form of the RT, and thus many methods that use

derivatives can be modified to use RTs. In particular, RT tensors [54] could be used for the MOP

method.

One important concept to note is that the magnitude of the response of the RT to a sinusoid or

i1D signal is the same among all even higher-order RTs, and among all odd higher-order RTs. With

derivative-based steerable filters, the magnitude changes with order. The super-resolution model

also requires the magnitude of the higher-order responses to be the same for i1D components. The

assumption of a spike train hinges of the ability to project i1D signals, which exist as lines in the

2D spectrum, on to 1D spikes. If the response was not the same across orders then the projection

would need to be weighted according to the response, requiring the radial part of the spectrum of

the i1D feature to be known. Thus the use of the RT enables these approaches.

Experimental Results

The performance of the iterative, roots and super-resolution methods was compared to the MSMF

and MOP methods for multiple orientation estimation. A synthetic image of two crossed lines

was created with the orientation separation ranging from 5◦ to 90◦ in 5◦ increments, and with

different amounts of additive Gaussian noise. The orientations of the lines were estimated using

the following methods:

• Multi-sinusoidal model calculated for N ∈ {7, 13}, K = 2, using a log-Gabor filter with

ω ∈ [22, 12] respectively and σ = 0.65. The wavelength of the filter was chosen so that the

spatial extent of the filter kernel would be approximately the same as that for the MSMF

method. The model was evaluated using the iterative, root and super-resolution methods.

Spikes within 5 degrees were combined for the super-resolution method (Section 2.5).

• MOP using a second-order tensor evaluated over 48× 48 and 12× 12 pixel windows centred

on the image feature.

• MSMF created using 28 orders, wedge angle 20◦ and radius 24 pixels. The Levenburg-
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Marquardt solver was used with initial parameters set to the maxima of the angular response

sampled at 10◦ spacings. A crossed line model was assumed, and thus two pairs of wedges

were used whose components were spaced 180◦ radians apart.

An example of a noisy additive crossed line feature and the MSMF and sinusoidal model wavelets

corresponding to the ideal response are shown in Figure 4.13.

(a) Line feature (b) MSMF (N=28) (c) CH (N = 7) (d) CH (N = 13)

Figure 4.13: Noisy line feature and the MSMF and sinusoidal model wavelets corresponding to the
ideal response at the centre

The estimated orientation error was calculated for different amount of Gaussian noise with

σ ∈ [0, 0.01, 0.1, 1] and is shown in Figure 4.14. The super-resolution method is more accurate

than all the other methods, except for MOP with no noise and very small separation. Using

N = 13 orders instead of N = 7 improves the error for all the CH vector methods, and both the

iterative and the roots method with N = 13 have better performance than the 28-order MSMF

except for a small separation. As expected, the iterative method outperforms the roots method

by a small margin. The MSMF method assumes a double line model and for small separations

returns two model components even if only a single orientation was detected, which explains the

better small-separation performance.

Orientation separation
0 π/8 π/4 3π/8 π/2

A
v
e
ra

g
e
 o

ri
e
n
ta

ti
o
n
 e

rr
o
r

10
-4

10
-2

10
0 MSMF(28)

MOP(48)
MOP(12)
SR(7)
SR(13)
I(7)
I(13)
R(7)
R(13)

(a) No noise
Orientation separation

0 π/8 π/4 3π/8 π/2

A
v
e
ra

g
e
 o

ri
e
n
ta

ti
o
n
 e

rr
o
r

10
-4

10
-2

10
0 MSMF(28)

MOP(48)
MOP(12)
SR(7)
SR(13)
I(7)
I(13)
R(7)
R(13)

(b) Gaussian noise, σ = 0.01

Orientation separation
0 π/8 π/4 3π/8 π/2

A
v
e
ra

g
e
 o

ri
e
n
ta

ti
o
n
 e

rr
o
r

10
-4

10
-2

10
0 MSMF(28)

MOP(48)
MOP(12)
SR(7)
SR(13)
I(7)
I(13)
R(7)
R(13)

(c) Gaussian noise, σ = 0.1

Orientation separation
0 π/8 π/4 3π/8 π/2

A
v
e
ra

g
e
 o

ri
e
n
ta

ti
o
n
 e

rr
o
r

10
-4

10
-2

10
0 MSMF(28)

MOP(48)
MOP(12)
SR(7)
SR(13)
I(7)
I(13)
R(7)
R(13)

(d) Gaussian noise, σ = 1

Figure 4.14: Orientation estimation errors for a two-line feature, using the half-sinusoidal model
solved with iterative (I) and roots (R) methods and line-segment model solved using super-
resolution (SR) method for N ∈ {7, 13}, compared to MSMF with N = 28 and MOP.
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MOP performs very well at low noise levels and small separations. The ability to resolve orien-

tations with small separations is due to estimates being made at many pixel locations, especially

away from centre of the junction where the lines are more spatially distinct. However, errors for

the MOP method rapidly increase with increasing noise. One explanation is that pixels were being

included in the window that were not part of the line feature, but reducing the window to 12× 12

pixels did not improve the results. Pre-filtering the image around the scale of the features to reduce

noise should improve the MOP performance.

The results show that solving for crossed line orientation using the CH vector and either the

iterative or roots methods is on par or better than MSMFs and MOP, two of the most recent

methods from the literature. Using super-resolution gives superior performance compared to all

methods, especially for small orientations. It is remarked in [28] that it is perhaps better to average

the output of smaller, simpler filter kernels at many pixel locations, like as is performed with MOP,

rather than use the the output of a single large, complex filter, like as is performed with steerable

filters. Indeed, construction of the structure tensor [35] uses local averaging of the derivative to

give an estimate of local orientation. A combined approach where the CH vector is averaged over

an area before solving for the model parameters may therefore improve orientation estimation,

although one would need to take the phase of the local symmetry into account, as CH vectors of

linear structures with opposite phases would cancel out. This is the subject of future research.

4.6 Application: Measuring Coral Growth Orientation

We now have the tools to tackle the original problem that motivated this research, the biological

image analysis task of estimating growth orientation in coral core x-ray images. Initial work on this

problem was previously published in [72]. Subsequently, the method has been updated, making

use of the CH vector with higher-order RTs instead of only the 0th to 2nd order RT, estimating

orientation over multiple scales instead of a single scale, and splitting the image into polyp and

growth ring images using wavelet reconstruction.

4.6.1 Overview

The Great Barrier Reef is the largest reef system in the world, comprised of over 2900 individual

reefs and stretching along 2600 km of the coast of Queensland [49]. It is an important cultural icon,

and supports extensive fishing and tourism industries. As such the health of the reef ecosystem is

important, and is the subject of much research in the biological sciences. One proxy for reef health

is coral growth rate, a function of the rate and density of extension to its calcareous skeleton.

Results from a long running Porites coral (Figure 4.15) core sampling program conducted by the

Australian Institute of Marine Science [19] have shown a decrease in Great Barrier Reef coral

growth rate over fifteen years until 2009. [22].

To measure the growth rate, a cylindrical core is removed from the coral and sliced into planar
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Figure 4.15: Porites coral colony with brightly coloured Christmas-tree worms on the surface.

sections approximately 7mm thick. The density along the length of the coral is then measured

every 0.25mm using a gamma ray densitometer [17]. Alternating high and low density growth

bands (similar to tree rings) delineate the measurements into years enabling the estimation of

yearly calcification rate [67]. However a limitation of the densitometer instrument is that it is

restricted to measuring along a straight line. As a result, the coral section is x-rayed to determine

the major growth axis along which the best measurements would be taken. Two drawbacks to this

method are that the major growth axis is determined by eye, and it is often not parallel with the

varying direction of coral growth along the sample. These methodological limitations may lead to

inaccuracies in the estimation of growth rate.

Two dimensional coral x-ray images consist primarily of i1D features at different scales and

orientations (Figure 4.16). There are small lines corresponding to the hollow coral polyp tubes,

and larger perpendicular lines corresponding to the varying density of the yearly growth bands.

This makes analysis scale dependent and difficult using standard methods. In this section we

shall estimate the local orientation of line patterns in the x-ray images using the multi-sinusoidal

signal model and CH vector method. The model is calculated across multiple scales, from which

an orientation estimate is obtained by combining that from the small polyp lines and the larger

growth rings.
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Figure 4.16: Coral x-ray image COB71A_1 with smaller horizontal and larger vertical i1D com-
ponents.

4.6.2 Method Overview

The previous work on this problem [72] used a single sinusoidal model obtained from the 0th to

2nd order RTs applied at a single scale corresponding to the polyp lines. These smaller features

were used to obtain the orientation estimate. Reviewing this work, some issues and their solutions

have been identified:

1. Adding the 2nd order RT gave a much improved orientation estimate compared to the mono-

genic signal. However, it was still quite noisy, especially in low intensity areas of the image,

and thus required median filtering. Adding higher-order RTs may therefore improve the

estimate.

2. At some locations in the image the response to the vertical growth rings was stronger than

for the horizontal polyp lines. This resulted in the sinusoidal model being oriented along the

vertical lines, and thus the orientation estimate being off by approximately 90 degrees. Using

the multi-sinusoidal model with two sinusoids should model these locations better, as one

sinusoid will correspond to the polyp lines and one will correspond the growth rings (Figure

4.16).

3. The growth rings are perpendicular to the horizontal polyp lines, however only the polyp

lines were used for the orientation estimate. Combining orientation estimates from multiple

scales will allow us to use the growth rings as well.

The proposed improved method to obtain the orientation estimate is

1. Segment the coral from the background.

2. Calculate the multi-sinusoidal model at multiple scales using the CH vector method with

iterative solving.

3. Identify the two main global orientations (polyps and growth rings) and classify each sinusoid

component accordingly.

4. Create two multi-scale orientation estimates, one from polyps and one from the growth rings,

and combine them.
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4.6.3 Segmentation

The coral images appear on a uniform light background. We wish to segment the coral from

the background for two reasons. The first is to identify coral pixels so only these are used in the

orientation estimate. The second is to change the intensity of the background pixels to more closely

match that of the coral. A light background creates a strong edge feature at the boundaries of the

coral, which dominates the orientation estimate in the area. By making the background a similar

colour and smoothing the edge, this effect can be reduced.

Each pixel in the image, f(z), is classified as coral if its intensity differs from the background

intensity by more than a threshold. The background intensity is calculated as the mode of the

pixel values on the border of the image.

m(z) =

1 |f(z)−mode(background)| > threshold,

0 otherwise.
(4.43)

The resulting binary mask is morphologically closed using a radius 3 disk-shaped structuring

element to fill any internal holes, then morphologically eroded by a radius 9 disk to bring the edges

of the mask away from the edges of the coral.

A new background image, b(z), that is the same size as the original image is created by repli-

cating the mean value of each unmasked image column then smoothing with a Gaussian filter with

σ = 3. The background of the coral image (masked area) is replaced with this new background

and the edge of the transition is also smoothed using a Gaussian filter with σ = 3 to create a new

image f′(z),

f ′(z) = f(z) ·ms(z) + b(z)× (1−ms(z)), (4.44)

(4.45)

where ms(z) = m(z)∗ g(z; 3) and g(z;σ) is a Gaussian filter with variance σ2. The adjusted image

(Figure 4.17c) has a much smoother transition from the edge to the background, and therefore

the edges of the coral sample will have less effect on the orientation estimate of the i1D features

within.

4.6.4 Multi-Sinusoidal Model

There are two dominant i1D features that make up most of the local image structure, therefore

we shall use a multi-sinusoidal model with K = 2 sinusoids. This means at least N = 4 RT orders

are required for the CH vector. For this application N = 7 was chosen as a trade off between

orientation selectivity (high N) and accuracy of reconstruction using model components (low N).

Reconstruction accuracy for a given N is explored in Section 5.8 in the next chapter. For the

primary isotropic filter we later wish to reconstruct the image so a wavelet frame is necessary.
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(a) COB71A_3 x-ray image

(b) Blurred coral area mask

(c) Adjusted image ready for processing

Figure 4.17: Original coral x-ray image (a), the smoothed mask (b) and the background filled
image to reduce edge effects (c) which will be used for processing.

As such, the second Meyer type wavelet is used (Figure 3.3) due it its smoother transition in the

frequency domain and thus faster spatial decay. Finally, the model is solved using the iterative

method.

The model was calculated for five scales (Figure 4.18). Most of the energy of the horizontal

polyp lines appears in the first sinusoid of the first and second scales, while most of the energy

of the vertical growth rings appears in the first sinusoid in the second to fifth scales. However,

we notice that there are still high amplitude vertical patches in the second sinusoid for the first

and second scales. Furthermore, in the forth and fifth scales the second sinusoid also has high

amplitude in certain areas. In locations where there are horizontal ridge lines, the first sinusoid

in the fifth scale represents these features instead of the vertical growth lines, which are instead

picked up by the second sinusoid. These results validate the choice of a multi-sinusoidal model, as

the model is representing both the fine details of the vertical growth rings, and the broad details

of the horizontal ridges, that otherwise would be relegated to the residual in a single sinusoidal

model. Most of the energy for the polyp tubes is in scales one to three, and most of the energy for

the growth rings is in scales ones to five.

4.6.5 Orientation Classification

The next step to classify each sinusoid in the model as belonging either the polyp tubes class

(horizontal), the growth rings class (vertical) or neither. The average orientation of the polyp



132

i k = 1 k = 2
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0 π/2 π 3π/2 2π

Figure 4.18: Multi-sinusoidal signal representation of the first five scales of the coral image. Bright-
ness represents amplitude A, as log(A+ 2); colour represents orientation.

tubes appears to change over the length of the sample and must be adjusted for. The image is

split into nine sections along the horizontal axis. The orientation estimates for both sinusoids, all

scales, and locations within both the coral segment and the section, are collected for each set,

θs = {(θi(z))k | k ∈ [1, 2], i ∈ [1, ...5],m(z) = 1, z ∈ section(s)}, (4.46)

where i is the scale index, k is the sinusoid component index, s is the section index and m(z) is

the mask. k-means clustering is performed to estimate the two predominant orientations for each

set. The orientation closest to π/2 (horizontal) corresponds to the polyp tubes, while the other

corresponds to the growth rings. Figure 4.19 shows the combined histogram of the orientations

from all the sets along with their class for the example image in Figure 4.17. There is some overlap

between the classes due to the changing average orientation as we move horizontally through the

image.

0 π/4 π/2 3π/4 π

×10
4

0

2

4

6

8

10

1 - polyp tubes 2 - growth rings

Figure 4.19: Histogram of orientation for the polyp tube and growth rings classes.

The multi-sinusoidal model is now split into two single sinusoidal models corresponding to each

class according to the orientation parameter. Generally, each sinusoid will belong to a different
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class. However, if the both have same class, only the largest amplitude sinusoid will be used, and

the amplitude of the other sinusoid is set to zero. That is, at a particular scale and location the

model parameters are given by

{A,φ, θ}class =


{A,φ, θ}1 if θ1 ∈ θclass,

{A,φ, θ}2 if θ1 /∈ θclass and θ2 ∈ θclass,

{0, 0, 0} otherwise,

(4.47)

where class ∈ {polyp, growth ring}.

An example of the process is shown in Figure 4.20. At the first scale, the first sinusoid (largest

amplitude) mainly belongs to the polyp class, while the second sinusoid mainly belongs to the

growth ring class. For scales three and four this is reversed. At the second scale the classes are

more evenly split. Again this shows the advantage of a multi-sinusoidal model, as without the

second sinusoid all the orientation information in the θ2 rows would be lost.

4.6.6 Combined Orientation

The orientations for each scale are averaged over I scales to give a final measurement for each class.

To do this the amplitude and orientation are expressed as a complex exponential using the double

angle representation. The double angle is used because orientation is defined over the half-circle,

and thus 0 and π actually represent the same angle. The average representation is

mclass =
1

I

I∑
i=1

(Ai)classe
i2(θi)class (4.48)

where i is the scale index. The overall orientation estimate for each class is then given by the

argument

θclass = arg(mclass)/2. (4.49)

The addition of the first I scales is different for each class (Figure 4.21). For the example

image, the combined estimate for the polyp class does not appear to change significantly until the

addition of the fifth scale, as this scale includes the large horizontal ridges present in the image.

The effect can be seen as a change in orientation in the light-green section on the right side of the

image between the fourth and fifth scales in Figure 4.21. Since the polyps are small features we

shall only use the first three scales to construct the estimate. All five scales appear to improve the

estimate for the growth ring class and so all will be used.

The estimates for each class are combined, again by taking the average (Figure 4.21). Because

the growth ring orientation is perpendicular to the polyp orientation, it is rotated by 90 degrees
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i θ class = polyp class = growth ring

θ1

1 θ2

θclass

θ1

2 θ2

θclass

θ1

3 θ2
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θ1

4 θ2

θclass

θ1

5 θ2

θclass

0 π/4 π/2 3π/4 π

Figure 4.20: Assignment of first (θ1) or second (θ2) sinusoid to either the polyp or growth ring
classes, for the first five scales.
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I class = polyp class = growth ring
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Figure 4.21: Average orientation estimate for each class, calculated using the first to I-th scale.
As more scales are used the orientation estimate improves.

to match. That is,

mcombined(z) = mpolyp(z) + (mring(z) · eiπ), (4.50)

θcombined(z) = arg(mcombined(z))/2, (4.51)

and finally the estimate is smoothed using a Gaussian filter with σ = 3

msmooth(z) = mcombined(z) ∗ g(z; 3), (4.52)

θsmooth(z) = arg(msmooth(z))/2. (4.53)

The combination of each estimate and the smoothed result is shown in Figure 4.22. The vertical

line in the ring estimate is an artefact of the image. Figure 4.23 shows the estimate super-imposed

on the original coral image. A quiver plot is drawn over the image in order to make a qualitative

assessment of the accuracy of the estimation as there is no ground truth.
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θpolyp
(I = 3)

θring + π/2
(I = 5)

combined

smoothed

0 π/4 π/2 3π/4 π

Figure 4.22: Average polyp and growth ring orientations, combined then smoothed.

0 π/4 π/2 3π/4 π

Figure 4.23: Final orientation estimate super-imposed over the original coral image as using colour
(top) and a quiver plot (bottom). The quiver plot image was used to make a qualitative assessment
of the estimation accuracy by comparing the arrows to the polyp tube lines.
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4.6.7 Reconstruction

One of the advantages to using wavelets is that we can reconstruct images from the model com-

ponents. Adjustment of the model parameters before reconstruction can be used as a method of

image processing and modification, as was demonstrated in the last chapter. We shall reconstruct

from the polyp and growth ring models to create two separate images of the coral that isolates

each feature type. The model CH vector used for reconstruction for each class, at a particular

scale and location, is given by

(WfS)class = WfS(A,φ, θ)class (4.54)

where

WfS(A,φ, θ) =
A√
2

SθW (cosφ fe + sinφ fo) . (4.55)

Reconstruction of both classes was performed for the example image using the first five wavelet

scales. The original image has been clearly decomposed into polyp and growth ring features (Figure

4.24). In particular, the fine details of the growth rings are preserved where they are present in

the image. This would not be possible if a simple smoothing filter had been used to removed the

fine polyp features.

However, there are some noisy elements in the reconstruction, particularly for the growth ring

class (Figure 4.25b). This effect is due to the reconstruction from all components in the class,

even those sinusoidal CH vectors with orientations quite different to the orientation estimate. To

compensate we can smooth perpendicular to the global orientation estimate axis by modulating

the sinusoidal components according to their deviation from the growth orientation at the point.

Various metrics could be used for the modulation. We shall use the power of the cosine of the

angle difference between the model component orientation and the smoothed orientation estimate.

That is,

Wf′S(A,φ, θ) = WfS(A,φ, θ)× | cos(θ − θest.)|α. (4.56)

Increasing the power increases the amount of smoothing (Figure 4.25). Another method that also

works well is to use the angular response of the wavelets themselves to determine the modulation,

Wf′S(A,φ, θ) = WfS(A,φ, θ)× 〈WfS(A,φ, θ),WfS(A,φ, θest.)〉. (4.57)

4.6.8 Optimal Sampling Axis

Armed with the orientation estimate we can now determine the optimal axis along which to mea-

sure the coral density. Using the density versus distance measurements, coral calcification rate is
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(a) Polyp class

(b) Ring class

Figure 4.24: Reconstruction of the coral x-ray image from the polyp and growth ring classes of
model components, using the first five scales.

(a) Polyp (b) Growth ring

(c) Polyp smoothed (α = 8) (d) Growth ring smoothed (α = 8)

(e) Polyp smoothed (α = 32) (f) Growth ring smoothed (α = 32)

Figure 4.25: Effect of orientation smoothing on the reconstruction using the cosine of the angle
difference between the component orientation and the overall orientation estimate raised to the
power of α.
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calculated as

calcification rate = density(x) · extension rate(x), (4.58)

where x is the distance along the axis in the direction of growth. Extension rate is given by

extension rate =
∆x

∆t
, (4.59)

where t is time and is determined by locating the positions of the yearly growth rings.

These measurements must be taken along the direction of growth, which varies along the

length of the coral sample. However, due to the construction of the densitometer, measurements

are restricted to being taken along a straight line, and thus the local growth orientation will

differ from the orientation along which the measurements are taken. This means the distance

travelling along the measurement axis will be greater than the actual growth length, resulting in

over-estimation of the extension rate.

For an angle of α radians between the measurement axis and the local orientation axis, the

extension rate will be

extension rate(α) = ∆x sec(α)
∆t

. (4.60)

The error is thus

error(α) = extension rate(α)− extension rate(0)
extension rate(0)

(4.61)

= sec(α)− 1. (4.62)

For small angle differences the error is negligible. However if the measurement axis goes through

areas of large deviation the error will be high. It is important to note that the error is always

positive, and therefore does not average out. Instead, the extension rate, and thus the calcification

rate, can be corrected by multiplying by cos(α) to compensate.

The best measurement axis is defined as the straight line path through the image that minimises

the square of this error. A rough search was performed using 36 different start positions and 36

different end positions for a total of 1296 paths, and the path with the minimum average error was

chosen as the major growth axis (Figure 4.26a). Local minima (high density) of the values of the

reconstructed growth ring image along the major growth axis are used to delineate the series into

years. The error approaches 40% in some locations of the example image (Figure 4.26b).

The major growth axis and corresponding estimation error were calculated for 12 coral core

x-ray samples consisting of three slices from four cores (Figure 4.27). Errors were up to 40% in

some samples, and the majority of errors occurred in the growth bands of the older years, which

are further from the surface of the coral.
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(a) Ring image showing best path and local minima

(b) Extension rate error

Figure 4.26: Image reconstructed from the growth ring model components (a) showing the esti-
mated major growth axis (white line) and the positions of greatest density (white crosses), and the
error calculated from the orientation estimate along this axis (b). Vertical dotted lines delineate
the estimated yearly growth rings.

4.6.9 Interpretation

Application of the multi-sinusoidal model provides an estimate of local coral growth orientation

from both polyp and growth ring features. It gives a more principled way of finding the major

growth axis compared to subjective human estimation by eye. The objective is to measure density

along a line as close as possible to the actual orientation. However, where this is not possible,

measurements of extension and calcification rate can be compensated using the error estimate

given by the cosine of the local orientation angle and the major growth axis angle.

The error is always positive, that is, it leads to an over-estimation of the calcification rate

(Figure 4.27). It is interesting to note that higher errors are tend to be in the older growth bands.

This may be due to the method of obtaining the cores. The angle of drilling into the coral is a

judgement made by the diver using the surface appearance of the coral. However, coral do not

grow out in perfect straight lines, and thus the deeper into the coral the more likely the growth

axis is different from the drilling axis. This is particularly noticeable in the COB71A-3 sample

used in the previous examples.

Calcification rates reported in [22] range from 1.5 to 1.75 g/cm2, and extension rates from 1.25 to

1.42 cm/yr, over the core record from 1900 to 2009. Thus the estimation errors shown in Figure 4.27

are around the same magnitude as the reported changes in calcification rate. Therefore application

of the growth estimation technique we have presented may lead to more accurate findings. The

errors are also only calculated along the plane of the core slice. It may be that the actual growth

axis has a component in the orthogonal plane as well, further exacerbating the errors. A further

improvement would be to estimate the orientation along the orthogonal plane, perhaps using the

length of the polyp tube lines as a proxy.
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Sample Estimation Error

COB71A-1

COB71A-2

COB71A-3

MYR032A-1

MYR032A-2

MYR032A-3

TNT05B1-1

TNT05B1-2

TNT05B1-3

TNT05B4-1

TNT05B4-2

TNT05B4-3

Figure 4.27: Error estimates for 12 coral core samples. COB71A-3 was used in the previous
examples in this section. Vertical dotted lines delineate the estimated yearly growth rings.
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4.7 Summary

This chapter developed the multi-sinusoidal image model, consisting of multiple sinusoids with

different amplitude, phase and orientation plus a residual component. The model can be solved

using either the iterative, roots or super-resolution methods. The roots method is the typical

approach to analysing local orientation or features with steerable filters. It simply looks for peaks

in the angular response polynomial. The iterative method is made possible by starting with the CH

vector and having the residual component. It can resolve sinusoidal components closer together in

orientation. The super-resolution method gives the best estimation of the model parameters for a

given N , but is very slow using the current implementation and therefore impractical for analysing

an entire image.

The multi-sinusoidal model can be used for multiple orientation estimation, and is on par or

out-performs the contemporary MSMF and MOP methods for the estimation of the orientation of

two crossed lines. A two sinusoidal model was applied to the problem of estimating the growth

direction in coral core x-rays. The general method can be adapted to multi-scale orientation

estimation for any image.

Previous 2D analytic image models [135] used up to two sinusoidal components. This approach

extends the model to have any number of components by adding more RT orders. One aspect that

has not been explored is to constrain the model. For example, we might constrain a two-sinusoidal

model to have the components are right-angles, as is performed for the structure multi-vector in

[26]. In this case the wavelet set is expanded to incorporate the different phase permutations

(Figure 4.28).

(a) φ = [0, 0] (b) φ = [0, π] (c) φ = [π/2, π/2] (d) φ = [π/2,−π/2]

Figure 4.28: Set of wavelets for finding the parameters of a two-sinusoidal model with each com-
ponent at right-angles, for N = 13.
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Chapter 5

Half-Sinusoidal Model

5.1 Introduction

Junctions and corners are i2D features that are not well-represented by a single sinusoidal model.

The multi-sinusoidal model can be used to model i2D features that are composed of the rotation and

addition of i1D components, such as crossed lines. However, other junction and corner structures

that look similar are not well-modelled by the multi-sinusoidal model either. For example, the

chequer pattern in Figure 5.1g is comprised of edge-like features, but it is actually an even structure

that does not respond to odd order RTs. As a result, the corresponding multi-sinusoidal model

has multiple components that do not match the orientation of the edges. The corner feature

(Figure 5.1h) and T junction (Figure 5.1d) only deliver sinusoids with the correct orientation close

to the centre point, after which the residual remains large, resulting in extra high amplitude model

components to compensate for the one-sided segments.

(a) Line (b) Additive Lines (c) Occluded Lines (d) T Junction

(e) Edge (f) Additive Edges (g) Chequer Edge (h) Corner

Figure 5.1: Examples of various image features. Junctions and corner features (green) are better
modelled using line-segment or wedge-segments rather than a combination of sinusoids.

The use of steerable filters to analyse junctions and corners is an established technique. Both
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Perona [98] and Freeman and Adelson [38] demonstrated using 2D steerable quadrature filters

for multiple orientation analysis. However, like the multi-sinusoidal model, these give a double

response to line or edge segment features and therefore cannot distinguish them from crossed

lines. Improving on quadrature filters, Michaelis and Sommer [80] constructed a pair of elongated

one-sided odd and even filters using Gaussian derivatives to properly analyse both line and edge-

segment junctions. Simoncelli and Farid [110] applied steerable wedge filters constructed using

windowed circular harmonics in the spatial domain for the same purpose. However, their filters

are not frequency selective and a wedge shape is not the best operator to analyse lines as it becomes

larger with distance.

Jacob and Unser [50] also designed a steerable filter using higher-order Gaussian derivatives

to analyse single wedge-shaped features, such as Figure 5.1h. The corner angle is calculated from

the basis filter coefficients; however, the method does not analyse multiple wedge-like features

such as Figure 5.1g. Mota et al. [85] proposed the MOP technique, discussed in Section 4.5, for

analysing corners and junctions. However, the orientation estimate is obtained using derivatives

in the local area, and thus is only given over the half-circle range, [0, π). This means one cannot

distinguish between features consisting of either a line or a line-segment at the same orientation,

such as Figures 5.1b, 5.1d, 5.1f and 5.1g. Subsequent work on the same approach by Muhlich

and Aach [87] also suffers from this restriction. Muhlich and Aach proposed a better alternative,

the MSMFs discussed in Section 4.5. MSMFs are steerable wedge filters constructed in the same

manner as Simoncelli and Farid’s [110]. However, if the number of feature segments is known

beforehand, then multiple wedge filters are steered together so that interference effects caused by

closely orientated segments are taken into account.

Some methods have been created specifically using the RT. Zang and Sommer [144] proposed

the phase of the monogenic curvature signal as a measure of how line-like or edge-like an intersection

is, as well for calculating its angle [112]. Puspoki and Unser [104] designed 2D steerable wavelets

to detect the location and overall orientation of segment-type junctions. However, the application

is constrained to only junctions where the orientation separation between components is equal,

and the junction components are either all line segments or all edge segments. They have recently

introduced other wavelets designed to detect specific features [103], such as T junctions, similar in

concept to Marchant and Jackway in [73].

In this chapter, a model for parametrising both junction and corner features is proposed. These

features shall be described by multiple line segments or wedges radiating from a point. Wedge

features can be considered as consisting of two edge segments, with multiple wedges defined by

their adjoining edges. For example, Figure 5.1f could be described by four edge segments radiating

from the centre, while Figure 5.1d appears as three line segments radiating from the centre.

As a result, a combined line and edge segment model is developed. In this model, wavelets

matched to archetypal line and edge segments are solved for as a set with a single orientation

parameter (see Section 2.4.2). The amplitude and orientation of the set is invariant to the feature
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type - line or edge segment - which is instead described by a phase parameter. The model shall be

called the half-sinusoidal model, for which the multi-sinusoidal model of the previous chapter is

a special case corresponding to two half-sinusoidal components constrained to be mirrored pairs.

The approach is similar to that proposed by Michaelis and Sommer [80] except that higher-order

RT responses within the presented CH vector framework are used.

The chapter layout is as follows:

• The half-sinusoidal model is introduced and the wavelets matched to line-segment and edge-

segment archetypes are derived.

• Experiments on the effect of RT orders (N) and weighting in resolving feature segments are

performed.

• Use of the model for junction analysis is discussed with particular attention to occluded

line-segment junctions.

• The validity of the model as a general image descriptor is compared to the sinusoidal model,

with application to orientation estimation.

• The half-sinusoidal wavelets are used to construct junction specific wavelets.

Preliminary work on solving a half-sinusoidal model using RTs has been published in [70, 73].

5.2 Line-Segment Feature

5.2.1 Model

We shall define a line-segment feature as an image structure that can be represented by K line

segments of different strengths {Ak ∈ R}k∈NK
and orientations {θk ∈ [0, 2π)}k∈NK

radiating from

a point. Let a single line segment oriented at 0 radians and radiating from the point z = 0 be

represented by the function fL(z). The local image structure can be modelled as line-segment

feature consisting of multiple additive line segments plus a residual component,

f(z) =
K∑
k=1

AkfL(Rθkz) + fε(z), (5.1)

where Rθ is an matrix that rotates the image axes by θ. The image CH vector can therefore be

written according to the model as

Wf =
K∑
k=1

AkSθkWuL + Wε, (5.2)

where WuL is the weighted normalised CH vector of the wavelet matched to an ideal line segment.
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5.2.2 Matched Wavelet

The line-segment matched wavelet will now be found from the RT integral equations. Consider an

idealised line segment consisting of a zero-width line. In polar coordinates, z = [r cos θ, r sin θ], an

ideal line segment with amplitude, Ak, and orientation, θk, can be written as

fL(Ak,θk)(r, θ) = Ak
δ(θ − θk)

r
(5.3)

and an ideal line-segment feature is thus given by

K∑
k=1

Ak
δ(θ − θk)

r
. (5.4)

Let ψ be a suitable primary isotropic wavelet with N or more vanishing moments and frequency

response given by h(k), where k is the radial part of the polar coordinates of the spectrum,

ω = [k cosφ, k sinφ]. The spatial domain expression of the n-th order CH wavelet Rnψ is

Rnψ =
1

2π

∫
ω∈R2\Bε(0)

(
ωx + iωy
‖ω‖

)n
h(k) ei〈ω,z〉 dω,

or in polar coordinates,

Rnψ =
1

2π

∫ ∞

0

h(k)

{∫ 2π

0

einφeikr cos(φ−θ)dφ

}
k dk, (5.5)

where ω = [k cosφ, r sinφ]. Substituting φ′ = φ− θ we have

Rnψ =
1

2π
einθ

∫ ∞

0

h(k)

{∫ 2π

0

einφ′
eikr cos(φ′)dφ′

}
k dk.

The Bessel function is defined as

Jn(k) =
1

2π

∫ 2π

0

eik sin φe−inφ dφ (5.6)

or with a change of variable as

Jn(k) =
(−i)n

2π

∫ 2π

0

eik cos φe−inφ dφ. (5.7)

Substituting in the Bessel function we arrive at

Rnψ =
1

(−i)n
einθ

∫ ∞

0

h(k)J−n(kr) k dk.

And finally, since J−n(k) = (−1)nJn(k) for n ∈ N+

Rnψ = (−i)neinθ
∫ ∞

0

h(k)Jn(kr) k dk.



147

As expected, the CH wavelet spatial domain expression is polar separable with an angular part

depending on θ, and a radial part depending on both the RT order, n, and the primary wavelet

frequency response, h(k). The n-th order CH wavelet response to a ideal line segment fL with

amplitude A and orientation θ′ is given by their correlation,

〈fL(A,θ′),Rnψ〉 = (fL(A,θ′) ∗ R−nφ)(0) (5.8)

=

∫ 2π

0

∫ ∞

0

A
δ(θ − θ′)

r

{
(−i)ne−inθ

∫ ∞

0

h(k)Jn(kr) k dk

}
r dr dθ (5.9)

= A(−i)ne−inθ′
∫ ∞

0

∫ ∞

0

h(k)Jn(kr) k dk dr. (5.10)

Since
∫∞
0
Jn(kr)dr = 1/k for k ≥ 0 we have

〈fL(A,θ′),Rnψ〉 = A(−i)ne−inθ′
∫ ∞

0

h(k) dk. (5.11)

So long as
∫∞
0
h(k) dk is finite, the magnitude of the response for each order is equal. Using the

conjugate relation between the negative and positive CH orders (1.40), the CH vector corresponding

to the ideal line segment is thus

fL(A, θ) = cA
[
(−i)|−N |e−iNθ, ..., (−i)|N |eiNθ′

]T
(5.12)

= cASθ
[
(−i)|−N |, ..., (−i)|N |

]T
, (5.13)

where c =
∫∞
0
h(k) dk is a constant depending on the isotropic basis wavelet. It follows that WuL,

the normalised CH vector for an ideal line segment orientated 0 degrees, is for a weighting matrix

W given by

WuL =
WfL

‖WfL‖
(5.14)

=
[
w−N (−i)|−N |, ..., wN (−i)|N |

]T
. (5.15)

This line segment CH vector can now be used to solve the multiple line-segment image model

in (5.2).

5.3 Wedge-Segment Features

We shall define a wedge segment feature as an images structure that can be represented by K

wedge segments of different strengths {Ak ∈ R+}k∈NK
, each having two edges with orientations

{θk,1, θk,2 ∈ [0, 2π)}k∈NK
radiating from a point. Let the wedge segment be represented by the

function fW(θ1,θ2)(z) with the segment edges radiating from the point z = 0. The local image

structure can be modelled by a wedge-segment feature consisting multiple wedge segments plus a
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residual component,

f(z) =
∑
k

AkfW(θk,1,θk,2)(z) + fε(z), (5.16)

where the wedge feature is given by

fW(θ1,θ2)(r, θ) =

1 where θ ∈ [θ1, θ2),

0 otherwise.
(5.17)

The image CH vector can therefore be written as

Wf =
K∑
k=1

AkWfW(θk,1,θk,2) + Wε, (5.18)

where WuW is the weighted normalised CH vector matched to the wavelet matched to the ideal

wedge segment.

5.3.1 Matched Wavelet

The wedge-segment matched wavelet will now be found from the RT integral equations. Using the

same primary isotropic wavelet, ψ, as before, the correlation of the wedge segment with the n-th

order CH wavelet is given by

〈AfW(θ1,θ2),R
nψ〉 =

∫ 2π

0

∫ ∞

0

AfW(θ1,θ2)

{
(−i)ne−inθ

∫ ∞

0

h(k)Jn(kr) k dk

}
r dr dθ (5.19)

= A(−i)n
∫ θ2

θ1

e−inθ dθ

∫ ∞

0

∫ ∞

0

h(k)Jn(kr) k dk r dr. (5.20)

The integrals involving k and r do not yield readily. Integrating with respect to r first does not

converge [40] while integrating with respect to k first requires a function for h(k) with an analytical

expression for its integral. For example, if h(k) represents the Cauchy kernel (Figure 3.3), then

the double integral can be evaluated for certain N [40].

Instead consider the Bessel function recurrence relation for n ∈ N,

2n

x
Jn(x) = Jn−1(x) + Jn+1(x). (5.21)

Substituting x = kr and rearranging we get

Jn(kr) =
kr

2n
Jn−1(kr) +

kr

2n
Jn+1(kr). (5.22)

Now consider the integral

∫ ∞

0

∫ ∞

0

h(k)Jn(kr) dk dr. (5.23)
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It is similar to the integral we need to solve, but without the extra k and r terms that make the

integral difficult. It simplifies to

∫ ∞

0

∫ ∞

0

h(k)Jn(kr) dk dr =

∫ ∞

0

h(k)

k
dk (5.24)

which importantly does not depend on the order, n. Using the recurrence relation we can also

write this integral as

∫ ∞

0

h(k)

k
dk = (5.25)

1

2n

∫ ∞

0

∫ ∞

0

h(k)Jn−1(kr) k dk r dr +
1

2n

∫ ∞

0

∫ ∞

0

h(k)Jn+1(kr) k dk r dr. (5.26)

For simplicity define

D =

∫ ∞

0

h(k)

2k
dk (5.27)

hn =

∫ ∞

0

∫ ∞

0

h(k)Jn(kr) k dk r dr. (5.28)

Substituting into the previous recurrence relationship we simplify to

2D =
1

n
hn−1 +

1

n
hn+1. (5.29)

Since h(k) represents a primary isotropic filter kernel with zero mean, the 0th order response to a

wedge function is also 0 (5.20), and therefore h0 = 0. Thus we may write

2D = h0 + h2 (5.30)

= h2, (5.31)

which relates the even orders to the odd orders,

2D = h1/2 + h3/2, (5.32)

h2 = h1/2 + h3/2. (5.33)

Now we shall relate the odd orders to each other. A wedge with angles θ1 = 0 and θ2 = π is an

edge oriented at θ = π/2. From the sinusoidal model we know that the magnitude of the response

of odd order CH wavelets to an edge is the same. That is,

〈fW(−π/2, π/2),Rnψ〉 = Ae−inπ/2i sin(−π/2) (5.34)

= A(−i)n+1. (5.35)
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Then from (5.20) and (5.28) we may write, for odd n,

A(−i)nhn
∫ π/2

−π/2
e−iθ dθ = A(−i)n+1, (5.36)

and thus

iAh1
∫ π

0

e−i(θ−π/2) dθ = iAhn
∫ π

0

e−in(θ−π/2) dθ, (5.37)

h1

∫ π

0

eiθ dθ = hn

∫ π

0

einθ dθ, (5.38)

−2ih1 =
−2i
n
hn, (5.39)

nh1 = hn, (5.40)

for odd values of n. Substituting in to (5.33) we find for all n that

hn = nh1 (5.41)

= nD (5.42)

which relates the responses for each order. For an ideal wedge segment the correlation with a

particular order CH wavelet is thus

〈AfW (θ1,θ2),R
nψ〉 = A(−i)nhn

∫ θ2

θ1

e−inθ dθ (5.43)

= A(−i)n
(
−i(e−inθ1 − e−inθ2)

n

)
nD (5.44)

= A(−i)n+1D
(
einθ1 − einθ2

)
. (5.45)

Using the conjugate relation between the negative and positive CH orders (1.40), the CH vector

corresponding to the wedge is thus

AD (Sθ2 − Sθ1)
[
(−i)|−N+1|, ..., (−i)|N+1|

]T
. (5.46)

It follows that WuW, the normalised CH vector for an ideal line segment orientated 0 degrees, is

for a weighting matrix W given by

WuW =
WfW

‖WfW‖
(5.47)

=
(Sθ2 − Sθ1)

[
w−N (−i)|−N+1|, ..., wN (−i)|N+1|]T∥∥∥(Sθ2 − Sθ1)
[
w−N (−i)|−N+1|, ..., wN (−i)|N+1|

]T∥∥∥ . (5.48)

The wedge segment CH vector can be used to solve the multiple wedge-segment image model

in (5.18) if the wedges are constrained to have a fixed orientation.
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5.3.2 Edge Segment

In the previous equation (5.48), the wedge segment CH vector is expressed as the difference between

a vector rotated to θ1 and the same vector rotated to θ2, which are the orientations of the wedge

edges. We shall call this vector oriented at 0 degrees the edge segment vector uE. An edge segment

vector at orientation θ is thus given by

fE(A,θ) = ASθ
[
(−i)|−N+1|, ..., (−i)|N+1|

]T
. (5.49)

In the above equation, fE0 , the 0-th order response to the to edge segment, is non-zero and set to

−i. The actual value could be anything, since for a wedge feature the edge segment vector are of

equal and opposite amplitudes and thus the 0-th order components cancel out.

However, the value does have an effect on the corresponding edge wavelet and the CH vector

that represents it. If the 0-th order is set to 1 or −i for example, then the normalised matched CH

vector is simply given by

WuE =
WfE

‖WfE‖
(5.50)

= WfE. (5.51)

Interestingly, for this edge wavelet the CH vector weights are −i times that of the line wavelet.

However, it also means that the 0-th CH wavelet is imaginary, and thus the response to the edge

wavelet has an imaginary part which is undesirable. If the 0-th order is set to 0, then the normalised

matched CH vector is given by

WuE =
WfE

‖WfE‖
(5.52)

= WfE/
√
WE, (5.53)

where

WE = 1− w2
o. (5.54)

For this edge wavelet the CH vector values are −i times that of the line wavelet only if the line

wavelet 0-th order is also set to 0. When solving using iterative and root finding methods one

should set the 0th order of the edge wavelet to 0. When solving using super-resolution it must be

set to −i.

An alternative, more general expression for the wedge CH vector model (5.18) is to represent

it by its edges. That is, the sum of K rotated and scaled edge segment CH vectors

Wf =
K∑
k=1

AkSθkWuE + Wε, (5.55)
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where Ak ∈ R can be both positive and negatively valued and is constrained by

K∑
k=1

Ak = 0. (5.56)

Thus using the edge-segment CH vector we are able to solve wedge image models with arbitrary

orientations.

5.4 Half-Sinusoidal Signal Model

We shall combine both the line-segment and edge-segment into a single representation that models

the local image structure as copies of the additive combination of a line-segment and edge-segment

pair at multiple amplitudes and orientations. That is

Wf =
∑
k≤K

λLk
SθkWuL + λEk

SθkWuE. (5.57)

We can express this in amplitude, phase and orientation parameters according to

Wf =
K∑
k=1

Ak cosφkSθkWuL +Ak sinφkSθkSθk ,WuE (5.58)

where

Ak = |λLk
+ iλEk

|, (5.59)

φk = arg(λLk
+ iλEk

). (5.60)

The amplitude parameter, Ak, thus represents feature strength separately to the phase pa-

rameter, φk, that represents feature type, that is, line segment or edge segment. An example of

the wavelets corresponding to different values of φ is shown in Figure 5.2. The model shall be

called the half-sinusoidal model, as the even sinusoidal wavelet may be constructed from two equal

amplitude line-segments orientated 180 degree apart, corresponding to K = 2, φ1 = φ2 = 0 and

θ1 = 0, θ2 = π, and the odd sinusoidal wavelet from two opposite amplitude edge-segments ori-

ented 180 degrees apart, corresponding to K = 2, φ1 = π/2, φ2 = −π/2 and θ1 = 0, θ2 = π. The

half-sinusoidal model can therefore represent i1D features, edge-segment and line-segment corners,

and edge-segment and line-segment junctions. That is, all of the example features in Figure 5.1.

(a) 0 (b) π/4 (c) π/2 (d) 3π/4 (e) π (f) −3π/4 (g) −π/2 (h) −π/4

Figure 5.2: Example of half-sinusoidal kernels for different phase values and N = 12
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5.5 Model Solution

Each of the three models, line-segment, edge-segment and half-sinusoidal, may be solved using the

iterative or roots methods, while the only the line-segment and edge segment models can be solved

using the super-resolution method. This is because unlike the odd and even sinusoidal wavelets,

the line-segment and edge-segment wavelets are not orthogonal with rotation.

Iterative and Roots Methods

The procedure for solving the half-sinusoidal model using the iterative or roots methods is similar to

that performed for the multi-sinusoidal model. The orientation is given by the maximum (iterative)

or local maxima (roots) of the polynomial

p(θ) = λL(θ)
2 + λE(θ)

2, (5.61)

where λL(θ) and λL(θ) are the angular responses of a line segment or edge segment respectively.

Recall that the odd and even sinusoidal model CH vectors have either non-zero odd or non-zero

even orders, and thus the polynomial to solve is only degree 2N . In contrast, the half-sinusoidal

model components have all non-zero orders, and therefore the polynomial to solve will be degree

4N . Thus for the same size CH vector, solving the half-sinusoidal model is more computationally

intensive. Note that the 0th order of the edge wavelet must be real for the above polynomials to

be real valued and thus calculation using root finding to work properly.

If using only the line-segment or edge-segment model, we can instead solve the simpler 2N

degree polynomials λL(θ) or λE(θ), respectively (Section 2.6.1). Furthermore, if one wishes to

limit the line-segment model to having either only positively or negatively valued components,

then the solution may be found by only considering possible orientations at which the polynomial

values match the desired sign (Section 2.3.1).

Super-resolution

The super-resolution method can only be applied to either the line-segment or edge-segment models,

and not the half-sinusoidal model. The image CH vector for the line-segment model is given by

Wf =
K∑
k=1

AkSθkWuL + Wε. (5.62)

Because all the components are non-zero, the super-resolution method is valid. As the method

divides out any weighting, we may write this as

f =
∑
k≤K

AkSθkuL + ε (5.63)
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and thus

fn = Ake
−inθ(−i)|n| + ε. (5.64)

Letting gn = fn/(−i)|n|, the coefficients gn are equal to the Fourier series coefficients of a spike

train given by

x(θ) =
∑
k

Akδ(θ − θk) (5.65)

which can then be solved for using the super-resolution method.

Likewise the CH vector for the edge-segment model is given by

Wf =
K∑
k=1

AkSθkWuE + Wε. (5.66)

The super-resolution method can be only applied if the components are all non-zero, therefore we

use the version of the edge wavelet where the 0th order is set to −i. As the method divides out

any weighting, we may write this as

f =
∑
k≤K

AkSθkuE + ε (5.67)

and thus

fn = Ake
−inθ(−i)|n+1| + ε. (5.68)

Letting gn = fn/(−i)|n+1|, the coefficients gn are equal to the Fourier series coefficients of a spike

train given by

x(θ) =
∑
k

Akδ(θ − θk) (5.69)

which again can be solved for using the super-resolution method.

Unfortunately, the super-resolution method cannot be applied directly to the half-sinusoidal

model as the line and edge wavelets are not orthogonal for all orientations, unlike the even and odd

sinusoidal wavelets. This means that a line segment wavelet will respond to an edge segment feature

at a certain orientation offset, resulting in spurious components in the spike train representation.

5.5.1 Example

The half-sinusoidal model was calculated for the first scale of the Pentagon image, for K = 4

components and N = 13 RT orders, using the iterative method and the second Meyer wavelets

(Figure 5.3). The sinusoidal model is shown for comparison on the bottom row. We observe that
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line and edge features require two line or edge segment components to represent, as indicated by

the strong amplitudes of both the first and second components at the location of i1D features.

Because an i1D feature presents two peaks in the angular response of a half-sinusoidal compo-

nent, the orientation and phase estimates flip by π radians between some locations, depending on

the relative strength of each model component. The normal sinusoidal model appears to provide a

better description at these locations. However, two half-sinusoidal components appear better able

to represent sharp curves than a single sinusoidal model component. This is shown by locations

along the curve in the lower right quadrant of the image having a high residual for the sinusoidal

model, but not for two components of the half-sinusoidal model.

5.6 Model Accuracy

This section follows a similar development to Section 4.3 in the previous chapter. Each solution

method shall be investigated for the ability to resolve two model components with varying orien-

tation, for different values of N and CH vector weighting. The weighting shall be based on the

sinusoidal model scheme with We = Wo, to ensure the CH vector norm is still phase-invariant.

Finding the error with respect to N gives us an idea of how many RT orders to choose when

performing analysis.

5.6.1 Iterative and Roots Method

Accuracy of the half-sinusoidal model estimation for the iterative and roots methods was tested

using a CH vector consisting of K = 2 half-sinusoidal components. The orientation difference

between each was varied to see the effect on errors in the parameter estimation, and thus no noise

was added.

Two sets of CH vectors were constructed:

• Addition of two line-segment vectors with amplitude ratio randomly varying between 0.5

and 1.5 and orientation difference varied from π/36 to π in 36 increments. This CH vector

represents the response to a line-segment corner with a variable angle. It is equivalent to two

half-sinusoidal components with A1/A2 ∈ [0.5, 1.5] and φ1 = φ2 = 0.

• Addition of two edge-segment vectors with opposite amplitudes, amplitude ratio randomly

varying between -0.5 and -1.5, and difference in orientation varied from π/36 to π in 36

increments. This CH vector represents the response to a wedge-type corner with variable

angle. It is equivalent to two half-sinusoidal components with A1/A2 ∈ [0.5, 1.5] and φ =

[π/2,−π/2].

The vectors are represented by two half-sinusoidal components, WfH as follows:

Wf = WfH1
(A1, φ1, θ1) + WfH2

(A2, φ2, θ2). (5.70)
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Half-sinusoidal model
k Amplitude Phase Orientation Resid. norm

1

2

3

4

0 π/2 π 3π/2 2π

Sinusoidal model
k Amplitude Phase Orientation Resid. norm

1

0 π/4 π/2 3π/4 π

Figure 5.3: First four components of the half-sinusoidal model of the first scale of the Pentagon
image using N = 13, compared to the sinusoidal model (bottom row).
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The model parameters were solved for using either the iterative or roots method to give two

estimated half-sinusoidal model CH vectors f′H1
and f′H2

. Since the order of the estimated model

components does not necessarily match that of the original model, the estimated components were

paired with the original model components so that there was minimum distance between their CH

vectors. The amplitude, orientation and phase error were calculated for each pair, and the errors

calculated according to the mean difference (amplitude) and mean angular difference (phase and

orientation) (Figure 5.6), as follows

Aerror =
∑
k

|Ak −A′
k| /K, (5.71)

φerror =
∑
k

|arg(cos(φk − φ′k) + i sin(φk − φ′k))| /K, (5.72)

θerror =
∑
k

|arg(cos(θk − θ′k) + i sin(θk − θ′k))| /K. (5.73)

The first test set was used to evaluate the line-segment only model and the second test set was

used to evaluate the edge-segment only model as well (Figures 5.7 and 5.8). Since there is no phase

parameter due to only one wavelet in each model, only the amplitude and orientation errors were

calculated.

Effect ofN

The effect of N was investigated using the phase-invariant equal weighting scheme (B u 0) for the

half-sinusoidal model (Figure 5.6). For both methods, the error is greatest when the orientation

difference is close to 0. Both methods are able to accurately estimate the parameters of line-segment

features at a smaller orientation separation than for edge-segment features. This is because a

small-angle wedge segment correlates with the line-segment wavelet as well, leading to a single

peak in the response (Figures 5.4 and 5.5).

IncreasingN increases the orientation selectivity of the wavelets, allowing for smaller orientation

differences to be resolved with less error. Furthermore, increasingN reduces the error floor at larger

orientation differences. The line-segment corner was able to be resolved at smaller orientation

differences than the edge segment (wedge) corner. As a rough guide, one can resolve orientation

differences larger than 2π/(N + 4) for line segment features, and 4π/(N + 4) for edge segment

features using the half-sinusoidal model.

The effect of N was also investigated for solving the line-segment feature using on the line-

segment model (Figure 5.7) and the edge-segment feature using the edge-segment model (Figure

5.8). For the line-segment feature, using only line-segments in the model instead of the full half-

sinusoidal model improved the amplitude and orientation estimates slightly. For the edge-segment

feature, using only edge-segments in the model instead of the full half-sinusoidal model improved

the amplitude and orientation estimates considerably. These results suggest that one should use

the edge-segment only model to more accurately parametrise edge-segment features such as corners
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Figure 5.4: Line-segment wavelet (a), edge-segment wavelet (b) and combined (c) angular response
polynomials for a two line-segment feature with components spaced 0.2π radians apart.
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Figure 5.5: Line-segment wavelet (a), edge-segment wavelet (b) and combined (c) angular response
polynomials for a two edge-segment feature (wedge) with components spaced 0.2π radians apart.

and junctions when using smaller N .

Effect of Weighting

To test the effect of weighting for the half-sinusoidal model, the same features were modelled as

for the previous half-sinusoidal experiment except with a fixed value of N = 13 and the weighting

varied instead (Figure 5.9). The weights were calculated using the energy maximisation method

for the sinusoidal wavelet with the window width B chosen as a multiple of the constant, B0.1 =

5.64/N − 6.57/N2. The reason this weighting was used rather than one designed specifically for

the half-sinusoidal wavelet is for a consistent approach to weighting when using either model. A

factor of 0 is equivalent to the equal weighting used in the previous experiment.

As expected, increasing B increases the minimum orientation difference before the errors begin

to plateau. That is, the ability to accurately resolve model components close in orientation is

reduced, due to the wider angular response profile. In contrast to the multi-sinusoidal model,

past this point increasing B does not decrease the error floor until close to π radians. The same

experiment was conducted with different values of added Gaussian noise. As the noise was increased

the error floor also increased. After the noise CH vector magnitude was greater than approximately

0.15 of the image CH vector magnitude the noise floor for all weightings was approximately the

same. Therefore in higher noise images using B = 0 remains a good choice for the weighting.

5.6.2 Super-Resolution Method

The effect of N on solving the line-segment and edge-segment models was also tested with the

super-resolution method. The effect of weighting was not tested as weights are not used with this

method, and there is no phase error comparison because the restriction to only line segment or edge

segment types means no phase value is obtained. Numerical experiments involving spike trains
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Figure 5.6: Average error of the estimated half-sinusoidal model parameters for an ideal two
line-segment or two edge-segment feature with unit amplitude versus orientation difference for
different values of N (shown in legend), using the iterative and root solvers.



160

Line-Segment Feature
Prm. Iterative Root

A

Orientation difference
0 π/4 π/2 3π/4 π

E
rr

o
r

0

0.2

0.4

0.6

0.8

1

 3
 5
 7
 9
11
13

Orientation difference
0 π/4 π/2 3π/4 π

E
rr

o
r

0

0.2

0.4

0.6

0.8

1

 3
 5
 7
 9
11
13

θ

Orientation difference
0 π/4 π/2 3π/4 π

E
rr

o
r

0

0.2

0.4

0.6

0.8

1

 3
 5
 7
 9
11
13

Orientation difference
0 π/4 π/2 3π/4 π

E
rr

o
r

0

0.2

0.4

0.6

0.8

1

 3
 5
 7
 9
11
13

Figure 5.7: Average error of the estimated line-segment model parameters for an ideal two line-
segment feature versus orientation difference for different values of N (shown in legend), using the
iterative and root solvers.
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Figure 5.8: Average error of the estimated edge-segment model parameters for an ideal two edge-
segment feature versus orientation difference for different values of N (shown in legend), using the
iterative and root solvers.
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Figure 5.9: Average error of the estimated half-sinusoidal model parameters for an ideal two
line-segment or two edge-segment feature with unit amplitude versus orientation difference for
different weighting parameters B as a factor of B0.1 (shown in legend), for N = 13 using the
iterative and root solvers.
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in [15] suggest a orientation separation as small as 2π/N may be enough to guarantee finding

an exact result. The results in Figure 5.10 show that for the line segment feature (equivalent to

spikes of the same sign), the minimum orientation separation required is less than π/(N+1), while

for the edge segment feature (spikes of opposite signs) a separation of approximately π/(N − 1)

is needed. Above these values the error is practically zero. In contrast, the iterative and roots

methods require a much larger separation threshold until the error floor is reached. Therefore the

super-resolution method can be used to resolve line or edge-segment model components that are

close in orientation with a smaller value of N . However, as for the multi-sinusoidal model, the large

computation time makes the super-resolution method impractical to apply to an entire image.
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Figure 5.10: Average error of the model parameters for either an ideal two line-segment or two
edge-segment feature with unit amplitude and varying orientation difference for different values of
N (shown in legend), using the super-resolution method.
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5.7 Junction Analysis

As the half-sinusoidal model encompasses both line-segments and edge-segments, we shall focus on

application of that particular model to the task of analysing multiple-line-segment and multiple-

edge-segment features.

5.7.1 Feature Response

Additive Segment Features

The response to both additive ideal line-segment features and edge-segment features has been

derived earlier in the chapter. However, one of the assumptions of the line-segment model was of

an ideal line with zero width. The difference between the ideal response and the response to a

non-zero width line was tested for a line segment with a rounded end and a line segment with a

square end. The normalised CH vector at the centre of each feature was found using a log-Gabor

filter with σ = 0.65. The differences between the magnitude and angle of each vector component

and the ideal additive version of the feature were calculated for different filter wavelengths, and

the magnitude is expressed in relative terms (Figure 5.11). For example, a value of 2 means the

occluded vector component has twice the magnitude of the ideal component, whereas a value of 1

is equal.

The amplitude errors are larger for both smaller wavelets (smaller wavelength) and lower orders.

In particular, the 0th order CH wavelet has a large error for the rounded line segment, and does

not reach the correct value until the filter wavelength is approximately 16 times the line width.

All the other orders reach approximately the correct value when the filter wavelength is four times

the line width or more. In contrast, a normal fixed width line feature (two line segments 180

degrees apart) is completely modelled by the sinusoidal model. These results show that the filter

wavelength should be at least twice the line width for the actual line-segment vector to be similar

in angular component to the ideal line-segment model vector.

Occluded Line Segment

As for the crossed line features in the previous chapter, often line segment features in an image

are not additive but instead occluded (Figure 5.12). Instead of modelling occluded features as the

addition of line-segment components, we shall model them as the maxima (or minima) of the their

intensity. For positive valued lines (white on black) we assume

f(x) = max
k∈NK

{fL(Ak,θk)(z)}. (5.74)
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Figure 5.11: Differences in the magnitude (b,e) and angle (c,f) of each CH vector order (shown
in legend) between an ideal line-segment and either a rounded (a) or square (d) non-zero width
line-segment.

Figure 5.12: Example occluded line-segment feature.

The maximum operator will always result in a value that is less than the equivalent additive model,

that is ,

max
k∈K
{fL(Ak,θk)(z)} ≤

K∑
k=1

fL(Ak,θk)(z), (5.75)

and thus we may write the occluded model as the additive model minus a non-negatively valued

occlusion function focc(z)

f(x) =
K∑
k=1

fL(Ak,θk)(z)− focc(z). (5.76)

The different between the response of two occluded line-segment features consisting of two or

three line segments and the ideal model for the same amplitude and orientation parameters was

investigated (Figure 5.13). As before, the amplitude errors are larger for both smaller wavelets

(smaller wavelength) and lower orders. In particular, both the 0th and 1st order CH wavelets differ

greatly in magnitude and angle from the response of the ideal feature when the filter wavelength is
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below twice the line width. The angle of each RT order response was correct when the wavelength

of the filter was greater than twice the line width. This gives a rough minimum bound on the

filter size to use for analysing occluded line junctions to ensure reasonably accurate parameter

estimation.
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Figure 5.13: Differences in the magnitude (b,e) and angle (c,f) of each CH vector order (shown in
legend) between an ideal multiple line-segment feature and a non-zero width line-segment feature
(a,d).

The occluded error component, focc(z), changes size depending on the angles between the line

segments. Potential strategies to deal with occluded line segments are the same as those for the

multi-sinusoidal model:

• Increase the number of orders N : Including higher orders increases the size of the

wavelet and therefore reduces the influence of the larger occluded errors in the lower orders.

• Increase the size (wavelength) of the primary filter: The examples in Figure 5.13

suggest a minimum wavelength of at least twice the line width is necessary.

• Remove lower order components: The lower order CH wavelets are the smallest in

spatial extent and most affected by the occluded error. Therefore we reduce the overall error

by setting their weights to 0.

• Combine estimates over multiple scales: Good features tend to have the same shape

over multiple scales. This will be investigated in the next chapter.

Removing Lower Orders

An example of wavelets constructed by removing the lower orders is shown in Figure 5.14 for

N = 13, numbered according to the minimum non-zero order. For example, 2 indicates the 0th

and 1st order components were weighted to 0. Removing lower orders attenuates the centre of the
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wavelet but also reduces its linear appearance and increases the amplitude of oscillations outside

the main lobe.

Minimum order RT

0 1 2 3 4

even

odd

Figure 5.14: Line-segment and edge-segment wavelets with the lower RT orders set to zero for
N = 13 and phase-invariant equal weighting. The number indicates the minimum non-zero order.

The effect of removing lower orders was investigated by finding the model parameters for an

occluded two line-segment feature (such as Figure 5.13a) with orientation difference ranging from

π/36 to π radians. The model was calculated for N = 13, phase-invariant equal weighting, the

iterative method and using a log-Gabor filter with σ = 0.65 and wavelength twice the width of

the line (Figure 5.15). The response to a single line-segment feature with the same line width was

used to normalise the results. Note that in contrast to the sinusoidal model for a line feature, the

residual component for a single non-zero width line-segment feature is not zero.
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Figure 5.15: Amplitude, phase and orientation errors along with the residual norm for an occluded
two line-segment feature solved using the iterative method and wavelets with the lower orders
removed. The minimum non-zero order is shown in the legend. The CH vector was calculated
using a log-Gabor primary filter with wavelength twice the line width and σ = 0.65, and N = 13.

The amplitude, phase and orientation errors are lowest for the both the normal half-sinusoidal

wavelets with no orders removed, and the wavelets with the 0th and 1st order removed (using 2nd
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order and above) (Figure 5.15). Ideally, the residual should be zero, meaning that the model is

completely representing the feature. Zeroing the 0th and 1st orders showed some benefit in the

slight reduction of the residual norm (shown as a proportion of the image CH vector norm). A

hybrid system was also trialled, where the normal half-sinusoidal wavelets were used for the first

iteration and the wavelets with the 0th and 1st orders removed for the second. This scheme gave a

small improvement, reducing the residual magnitude where the orientation difference was smaller

and occluded component larger. Note, a hybrid approach is only possible using the iterative solving

method.

5.7.2 Off-Centre Response

One may ask if there is any benefit in using the half-sinusoidal model if one is only interested in the

analysis of purely line-segment or purely edge-segment features, especially since the experiments

on model error versus orientation separation showed that using a line or edge-segment model

matched to the corresponding line or edge-segment feature gave lower errors (Figures 5.7 and 5.8)

compared to using the half-sinusoidal model (Figure 5.6). The advantage of having both line and

edge-segments in the model is for off-centre parametrisation. The segment model proposed in this

chapter and other approaches such as MSMFs assume the point of analysis is at the centre of the

junction. However, detection examples in Section 3.3.4 showed that the proposed i2D detector

along with the Harris corner detector and boundary tensor do not necessarily detect the centre of

a junction.

Performing analysis at an off-centre point leads to errors in the model parameters. Figure

5.16 shows an example for a Y junction feature. The average difference between the amplitude

and orientation of the Y junction segments and the calculated model parameters was found for

each point in the image, using either the line segment model (Figures 5.16b and 5.16c) or the

half-sinusoidal model (Figures 5.16d and 5.16e). The errors in the local area are much reduced for

the half-sinusoidal model, especially for the orientation estimate. The inclusion of the edge-segment

thus improves parameter estimation if the feature is modelled off centre, making analysis less reliant

on perfectly detecting the centre location.
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Figure 5.16: Error in parameter estimation of a Y junction (a) according to analysis location when
using the line-segment model (b,c) compared to the half-sinusoidal model (d,e).

5.7.3 Classification Procedure

To demonstrate the usefulness of the half-sinusoidal model, junction classification was performed

on the Lab and Flintstones test images (Figures 5.18a and 5.18b). The Lab image has many corner

features that should be well modelled by the edge-segment part of the model, while the cartoon

appearance of the Flintstones image has different regions of fairly constant colour bordered by dark

lines, and thus the junctions between regions have both line and edge characteristics.

The procedure followed was the same for each image:

1. Primary filter: A log-Gabor filter with wavelength 8 pixels and a wide bandwidth given by

σ = 0.5 was selected. The log-Gabor filter has a smooth frequency profile and thus a smooth

spatial decay, and we are not interested in reconstruction.

2. CH vector: A value of N = 13 was used to construct the CH vector. According to the

results in Figure 5.6 this should allow features with components differing in orientation by

more than π/8 radians (22.5 degrees) to be resolved. The phase-invariant equal weighting

scheme was used.

3. Intrinsic dimension: The sinusoidal model was obtained from the CH vector, and the
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model norm and residual norm were used to construct the intrinsic dimension representation

from Chapter 3. The intrinsic dimension angle was adjusted with the sinusoidal function

from Section 3.3.3 with parameters h = 0.5 and s = 2 (Figures 5.18c and 5.18d).

4. Detection: Possible corners and junctions were detected as local maxima of the i2D detec-

tion score in an 8 pixel radius. Points with a score less than 0.2 times the maximum score

were removed (Figures 5.18e and 5.18f).

5. Parametrisation: The half sinusoidal model was calculated using up to K = 4 components.

Each detection point was then classified according to the invariant classification thresholding

method introduced in Section 4.4.2 using a threshold of 0.5. Figures 5.19a and 5.19b show

the classifications. The length of each line is proportional to the corresponding amplitude of

the component. The colours of the lines indicate the classification.

6. Post processing: Some of the junctions have multiple close together line components, for

example the three circular ‘pacman’ shapes in the foreground of the Lab image in Figure

5.19a. Since when using N = 13 the errors increase below an orientation separation of π/8

radians, any components with differences lower than this threshold were combined using

the spike combining method from Section 2.5.4. The post-processed classification results in

Figures 5.19c and 5.19d show a qualitative improvement in parameter estimation.

For a final comparison the same process was followed for each image, except only using the

edge-segment wavelet for the Lab image (Figure 5.19e) and only the line-segment wavelet for the

Flintstones image (Figure 5.19f). Some corners appear to have better classification in the Lab

image, but the angle of the components deviates slightly from that found with the half-sinusoidal

model. For the Flintstones image, junctions that have both line and edge characteristics are handled

correctly by the half-sinusoidal model, but poorly parametrised if only the line-segment wavelet is

used. This is particularly noticeable in the upper section of the Flintstones image, repeated below

in Figure 5.17. We can observe that the parametrisation using the line-segment only model does

not match the line segment components in the image.

(a) Parametrisation using half-sinusoidal model

(b) Parametrisation using line-segment model

Figure 5.17: Difference in parametrisation of features that have both line and edge characteristics
using the half-sinusoidal model (a) and the line-segment model (b). Orange: two segments, yellow:
three segments, purple: four segments.
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(a) Lab image (b) Flintstones image

(c) Intrinsic dimension (d) Intrinsic dimension

(e) i2D detections (f) i2D detections

Figure 5.18: i2D junction and corner detection for the Lab and Flintstones images using a log-Gabor
filter (wavelength = 8, σ = 0.5) and N = 13.
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(a) Normal parametrisation (b) Normal parametrisation

(c) Parametrisation after orientation combining (d) Parametrisation after orientation combining

(e) Parametrisation using only the edge-segment (f) Parametrisation using only the line-segment

Figure 5.19: Classification and parametrisation of the detection junction and corner locations using
the half-sinusoidal model (a,b), the half-sinusoidal model with orientation combining (c,d) or either
the edge-segment (e) or line-segment (f) models. Orange: two segments, yellow: three segments,
purple: four segments.
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5.7.4 Experiment: Orientation Estimation

Accurate estimation of the orientation of the individual line or edge segments that are present in a

corner or junction feature is used in applications such as camera calibration [90]. The half-sinusoidal

model is suited to the parametrisation of corners and junctions. To evaluate its performance, a

similar experiment to Section 4.5 of the previous chapter was performed for a corner junction

consisting of two line segments instead of a crossed line feature.

A synthetic image consisting of two line-segments was created with the orientation separation

ranging from 5◦ to 180◦ in 5◦ increments, and with different amounts of additive Gaussian noise.

The junction parameters were solved for using the half-sinusoidal model and iterative and roots

solvers, or the line-segment model using the super-resolution method, and compared to the results

of the MSMF method. The MOP method was not applicable as it only estimates orientation over

the half circle, and therefore cannot distinguish between acute angle corners and obtuse angle ones.

The specifics of each method used are as follows:

• Half-sinusoidal model calculated for N ∈ [7, 13], K = 2, using a log-Gabor filter with ω ∈

[22, 12] respectively and σ = 0.65. The wavelength of the filter was chosen so that the spatial

extent of the filter kernel would be approximately the same as that for the MSMF method.

The model was evaluated using the iterative and roots methods.

• Line-segment model using the same parameters above but evaluated using the super-resolution

method.

• MSMF created using 28 orders, wedge angle 20◦ and radius 24 pixels. Levenburg-Marquardt

solver was used with initial parameters set to the maxima of the angular response sampled

at 10◦ spacing. A two line-segment model was assumed and the method constrained to two

wedges.

An example of a noisy additive crossed line feature and the MSMF and sinusoidal model

wavelets corresponding to the ideal response are shown in Figure 5.20.

(a) Line feature (b) MSMF (N = 28) (c) CH (N = 13)

Figure 5.20: Noisy line feature and the MSMF and half-sinusoidal model wavelets corresponding
to the ideal response at the centre.

The estimated orientation error was calculated for different amount of Gaussian noise with

σ ∈ [0, 0.01, 0.1, 1] and is shown in Figure 5.21. Unlike for the crossed line experiment in the
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previous chapter, the super-resolution method and MSMF method perform equally well and it is

the iterative method followed by the roots methods that give lower errors overall. This is explained

by the sensitivity of the MSMF method and the super-resolution method to centre position, where

even a single pixel shift in the centre location will change the estimates by a couple of degrees.

In contrast, the iterative and roots methods are used with the half-sinusoidal model, which is less

sensitive to off-centre analysis (Figure 5.16). The MSMF authors propose finding the centre to

sub-pixel accuracy and interpolating the orientation estimates in a 3 × 3 pixel region, presumably

to improve the accuracy [86]. Using the half-sinusoidal model this is likely not required.
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(d) Gaussian noise, σ = 1

Figure 5.21: Orientation estimation errors for a line-segment corner, using the half-sinusoidal
model solved with iterative (I) and roots (R) methods and line-segment model solved using super-
resolution (SR) method for N ∈ {7, 13}, compared to MSMF with N = 28.

Michaelis and Sommer [80] mention that it would be beneficial to be able to use both line-

segments and lines in the one model. This concept is the novel aspect of MSMFs compared to a

normal wedge-filter approach, as with MSMFs one can add constraints to the wedge orientations

to better estimate the orientations of the segments of a T junction, for example. We note that the

same idea is easily achieved using the CH vector by solving using two sets of wavelets, that of the

sinusoidal model and that of the half-sinusoidal model, using the iterative method. In fact, one

could use combinations of any sets of wavelets, for example a line-segment and corner, if there was

a practical application.

5.8 Image Representation

Both the multi-sinusoidal model and half-sinusoidal model are useful for representing various types

of junctions and corners, but what about an image as a whole? If the CH wavelets are constructed

from a suitable isotropic wavelet frame then we can reconstruct the image exactly from the model

and residual components. Therefore to see how well either model represents the image as a whole,
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it is proposed to reconstruct an image from only the first K model components of the first four

scales plus the low pass component, and compare the reconstructed result to the original image.

The peak signal-to-noise ratio (PSNR = 20 log10(255/MSE), where MSE is the mean square error)

will be used as the comparison measure, as it is commonly used in the wavelet denoising literature

(for example [102]) to compare the performance of different algorithms.

If we solve using the iterative method we are guaranteed that increasing the number of model

components decreases the magnitude of the residual component, that is ‖Wεk+1‖ < ‖Wεk‖. This

in turn should increase the accuracy of the reconstruction from the model components. A visual

example is given for the multi-sinusoidal model in Figure 5.22 and half-sinusoidal model in Figure

5.23. It shows reconstruction of the Pentagon image for different numbers of model components

and N using four scales of a Simoncelli wavelet decomposition with subsampling.

We can make the following qualitative observations:

• Lower numbers of RT orders (N) gives a better reconstruction.

• Increasing the number of model components gives a better reconstruction.

• There is less smearing of the image along linear components, such as the pentagon walls,

when using the half-sinusoidal model.

The first observation makes sense when we consider that a Parseval-tight wavelet frame can be

constructed by a set ofN+1 odd or even sinusoidal wavelets, or 2N+1 line-segment or edge-segment

wavelets, at equally spaced orientations around the half-circle or circle, respectively [124]. The

second is explained by the residual decreasing with each extra model component. The third

observation is due to the ability of the half-sinusoidal model to better represent a wider range of

features. For example, a corner with two segments will be described by the multi-sinusoidal model

has having two sinusoids along the same orientation, however there will still be a large residual as

the segments are not i1D signals.

An experiment was performed to measure the average PSNR of the reconstruction for both

models on grey-scale versions of four image sets:

1. Common test images such as Lena, Barbara and Lab. (15 images)

2. Aerial images of roads from the USC-SIPI dataset (http://sipi.usc.edu/database/). (15

images)

3. Texture images also from the USC-SIPI dataset. (21 images)

4. A selection of natural images from the BSD500 data set [77]. (10 images)

Example images are shown in Figure 5.24.

The PSNR results (Figure 5.25) confirm the previous observations that both decreasing orders

and increasing the number of components improves the reconstruction. The reconstruction was
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N K = 1 K = 2 K = 3 K = 4

3

11

19

Figure 5.22: Pentagon image reconstruction from the multi-sinusoidal model with K components,
using four scales of the Simoncelli wavelet different numbers of and RT orders, N .

N K = 1 K = 2 K = 3 K = 4

3

11

19

Figure 5.23: Pentagon image reconstruction from the multi-sinusoidal model with K components,
using four scales of the Simoncelli wavelet different numbers of and RT orders, N .



176

best for the aerial image set, followed by the common and natural images, then the texture set.

We can infer that the aerial photographs contain many i1D line and edge features which are well

described by the two models, while the texture images contain more i2D components that respond

to neither. Textures may be better described using the entire CH vector as a feature descriptor

rather than projecting onto a particular model. The results also give a general guide as to what

can be achieved if performing wavelet de-noising using the model components. For example, when

using one sinusoid component and N = 7 the PSNR lies between 24dB and 27dB, thus any further

improvement would require inclusion of the residual component.

For a single component, the sinusoidal model gives a better reconstruction. while for two or

more components, the half-sinusoidal model is better. The difference is due to the model shape.

To represent an i1D structure we only need one sinusoid, whereas for the half-sinusoidal model we

need two. This can be seen back in Figure 5.3 where there is still a high residual component at the

location of lines and edges when using just one half-sinusoidal component. However, when using

two half-sinusoidal components both i1D features and corners are well modelled, and thus the

reconstruction is better than for two sinusoids. Therefore, when using the half-sinusoidal model,

at least K = 2 components should be derived.

5.8.1 Orientation Estimation

One of the advantages of the sinusoidal model is that it gives a phase-invariant estimate of the

main linear symmetry of the local image structure. For example, the sinusoidal model orientation

estimated using a log-Gabor filter (wavelength 8, σ = 0.5) and N = 7 (Figure 5.26b) for the Tree

Rings image (Figure 5.26a) is smooth with few discontinuities and appears to match the orientation

of the curved rings. In the absence of a ground truth, having a similar smoothness to the features

in the image is a good indication of accuracy. The first and second component of the half-sinusoidal

model also gives an estimate of the local orientation of i1D features. Since their estimate is over

[0, 2π) instead of [0, π) for the sinusoidal model, they are expressed modulo π (Figures 5.26c and

5.26d) for i1D orientation estimation. However, the estimate is less smooth with discontinuities not

present in the original features. At every i1D-like location there are two possible orientations along

the rings, clockwise or anti-clockwise, that the first component could match most strongly to. The

discontinuities occur where the estimate flips between each direction and because the curvature of

the local feature means the change in angle is less than π radians.

However, by averaging the two estimates we can obtain a combined estimate of the orientation

over [0, π),

θav = arg
(
A1e

iθ1 +A2e
i(θ2+π)

)
modπ, (5.77)

where A and θ are the individual amplitude and orientation parameters of the two-component

half-sinusoidal model. The average appears to be much smoother that the individual estimates
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(a) Common (b) Aerial

(c) Texture (d) Natural

Figure 5.24: Example images from each test set.
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(d) Natural images

Figure 5.25: Average PNSR for the images in each test set reconstructed usingK model components
for the sinusoidal model (solid line) versus the half-sinusoidal model (dashed line) and different
values of N .
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(Figure 5.26e), although not as good as the sinusoidal model. Neither model gives a good estimate

at the very centre of the rings though, likely because the wavelets are too large. At a larger scale,

the models see curved features as i1D features or line/edge segments. When the radius of curvature

of the feature is around the same magnitude of the wavelet, the structure deviates too much from

this assumption for a good estimation.

We can also calculate a measure of the difference between the two orientations,

θdiff = arg(cos(θ1 − θ2) + i sin(θ1 − θ2)). (5.78)

The difference for the Tree Rings image is shown in Figure 5.26f as θdiff. Values below π/2 have

been truncated, such as in the pink region at the centre. Thus the two-component half-sinusoidal

model gives an orientation estimate of both i1D features and the curved features, as well as an

indication of the curvature with the angle difference. However, the angle difference appears to vary

with number of RT orders used, and is therefore not a consistent measure.

One could consider that applying the sinusoidal model, or other orientation estimation methods

such as MOPs and the structure tensor, as also performing an averaging of the curve orientation

in the local area. The half-sinusoidal approach is novel in that it explicitly averages two segment

components. The model is therefore useful for performing both orientation estimation and junction

analysis in the one operation. However, as a general junction or corner detector the residual of the

sinusoidal model is a more straight forward measure than using the half-sinusoidal model, because

the residual of a two-component half-sinusoidal model is low for both i1D features and i2D corner

features and thus requires further analysis of the component orientations.
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(a) Tree Rings image (b) Sinusoidal model

(c) 1st half-sinusoidal component (d) 2nd half-sinusoidal component

(e) Average half-sinusoidal (f) Difference between half-sinusoidal component
orientation

Figure 5.26: Sinusoidal model orientation (b) compared to the first (c), second (d) and averaged (e)
half-sinusoidal model components. The difference between the orientations of each half-sinusoidal
component are shown in (f).
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5.9 Feature Sets

An advantage of the line and edge segment wavelets is that they can be used to construct more

complex wavelets matched to specific junctions. For example, adding three line segment wavelets

spaced 2π/3 radians apart in orientation gives a wavelet matched to a Y junction. Thus rather

than deriving matched wavelets for a particular feature or angular response profile, we can find

the half-sinusoidal model parameters for the feature and used the resulting model CH vector to

construct the wavelet. This is equivalent to adding constraints to the model.

Table 5.1 shows the CH vectors for various features created from the addition of either the line

or edge segment wavelet for N = 4. The shape of the wavelets depends on the number of RT orders

used. Some examples of common features and the corresponding wavelets for different values of N

are shown in Figure 5.27. The following observations can be made:

• As N increases, the overall size of the wavelets increase, however the individual segments have

the same narrow angular profile. This increases the orientation selectivity of the wavelets.

• Features with n-th order rotational symmetry require at least the N -th order CH wavelet to

discriminate the feature from an isotropic blob. This can be seen for the Y and X junctions

in particular. It gives a visual example of why the signal multi-vector, which only uses up

to the 3rd order RT, cannot be used to determine the angle of two perpendicularly crossed

lines despite having two sinusoidal components in the model.

• Features with higher-order symmetry often require the addition of more than one RT order

to improve their shape. For example, the shape of the wavelet corresponding to the chequer

feature is the same for N ∈ {2, 3, 4}, and changes every 2 + 4k orders, where k is a positive

integer. This must be taken into account when performing experiments as N would need to

be varied enough to change the wavelet.

5.9.1 Example

In [73] Marchant and Jackway used line, edge, Y, T, X and blob matched wavelets with N = 4 to

analyse the junctions of a bee-wing image. A similar approach was applied to the dragonfly wing

shown in Figure 5.28a. Wavelets corresponding to each of these features with equal amplitude line

or edge segments were used. The procedure followed to analyse the image was

1. CH vector: The CH vector was calculated over three scales of a log-Gabor filter (wavelength

∈ {8, 16, 32}, σ = 0.65). Three scales were used in order to capture the different junction sizes

and because according to the principle of phase congruency [58], which shall be discussed in

the next chapter, good features tend to have the same shape over multiple scales.

2. Feature modelling: The amplitude and orientation response for each feature wavelet was

obtained for each scale. An illumination invariant detection score was calculated by dividing
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Feature N = 2 N = 3 N = 4 N = 7 N = 11 N = 15

Figure 5.27: Matched wavelets constructed using the half-sinusoidal wavelets for for common image
features and different values of N .
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Feature f−4 f−3 f−2 f−1 f0 f1 f2 f3 f4 ‖f‖

Line Segment: 1 i -1 -i 1 -i -1 i 1
√
9

Line: θ = [0, π] 2 0 -2 0 2 0 -2 0 2
√
20

‘Y’: θ = [π6 ,
5π
6 ,−

π
2 ] 0 3 0 0 3 0 0 3 0

√
27

‘T’: θ = 0, π,−π/2] 3 1 -1 1 3 -1 -1 -1 3
√
33

‘X’: θ = [π4 ,
3π
4 ,−

π
4 ,−

3π
4 ] -4 0 0 0 4 0 0 0 -4

√
48

Edge Segment: i -1 -i 1 0 -1 i 1 -i
√
9

Edge: θ = [0, π] 0 -2 0 2 0 -2 0 2 0
√
16

Corner: θ = [0, π2 ] 0 -1+i -2i 1+i 0 -1+i 2i 1+i 0
√
16

Chequer: θ = [0, π2 , π,−
π
2 ] 0 0 -4i 0 0 0 4i 0 0

√
32

Blob: 0 0 0 0 1 0 0 0 0 1

Table 5.1: CH vectors for different feature archetypes for N = 4 with no weighting.

the the model CH vector norm by the image CH vector norm for each feature type and scale,

detm,i =
‖Wfm,i‖
‖Wfi‖

, (5.79)

where m is the feature type index, and i is the scale index.

3. Detection score: A final detection score was calculated by summing the individual scale

scores for each type. Again, summing over multiple scales instead choosing the maximum

scale refines the detection points to good features whose energy is spread across the spectrum.

The measure is

detm =

3∑
i=1

detm,i. (5.80)

4. Classification: Each point was then classified according to the type which gave the maxi-

mum detection (Figure 5.28b),

score = max
m

detm, (5.81)

class = arg max
m

detm. (5.82)

5. Detection locations: Candidate junction locations were chosen as the largest score in a

local 5 pixel radius area from only the pixels that were classified as a Y, T, or X junction

feature. This can be done simply by zeroing the score at the location of the other classes

and using the local maxima. It is a crucial aspect of this method. The other features are

necessary to discriminate each type of structure, however we cannot use the local maxima

without accounting for class otherwise we would miss detections of the junctions due to

adjacent higher scores corresponding to the uninteresting features (line, edge, blob).
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6. Post-processing: Detection locations where the sum of the model vector norm,

3∑
i=1

‖Wfm,i‖, (5.83)

was below a noise threshold were removed (Figure 5.28c).

One problem with the wavelet set used was that many of the T junctions in the image consist

of a heavy line for the bar and a light line for the stem. This resulted in these locations being

classified as lines instead of T junctions. To compensate, the T junction was adjusted to give a

higher score for these features by reducing the amplitude of the stem component by half. The

detection was particularly improved along the edges of the wings (Figure 5.28d).

5.9.2 Wavelet Selectivity

Adding extra RT orders does not necessarily improve the detection performance using feature-

matched steerable wavelets (Figure 5.27). Increasing N causes the wavelets to become more orien-

tation selective due to their increased spatial extent. This is beneficial for obtaining more precise

orientation estimates, but in practical applications it can lead to worse detection performance. In

the Dragonfly example, increasing N from 4 to 13 resulted in much fewer junctions being correctly

classified. This is because the junctions in the image do not always exactly match the archetypal

features. For example, the stem of a T junction may not be perpendicular to the bar, and thus

will not correlate with the bar segment of the archetypal T junction wavelet with components at

right angles.

Recent approaches to detecting rotationally symmetric junctions, such as Y and X junctions,

and junctions with specific angular profiles, such as T junctions, using CH wavelets have been pro-

posed by Puspoki et al. in [105] and [103], respectively. They also add extra CH orders to increase

the orientation selectivity of the wavelets and consequently the detection performance under noise

conditions. Their approach is very similar to that proposed above, and thus will also suffer from

the aforementioned problem of detecting semantically similar but warped junctions. Indeed, most

of the experimental results in [103] are constrained to be perfectly rotationally symmetric.

Paradoxically, it seems that instead of increasing N , using just enough RT orders to be dis-

criminative and combining detection scores over multiple scales is a better approach to detecting

junctions with variable orientation components. Another approach would be to use wedge filters

as their angular profile can be adjusted so that features with a wider range of segment orientations

will still have a high correlation. A third alternative is go back to using the half-sinusoidal model.

It allows for more orientation selective wavelets by using higher-order RTs, but since they can

be individually rotated they will still match junctions with varying angles. A plausible scheme is

therefore to check if the half-sinusoidal model components fall within certain orientation ranges

that match the features of interest. This is the subject of future work.
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(a) Dragonfly image

(b) Classification (colour) and detection score (brightness) for each feature type.

(c) Junctions classified as either Y (red), T (orange) or X (blue).

(d) Junctions classified as either Y (red), T (orange) or X (blue) using an alternative T junction wavelet.

Figure 5.28: Dragonfly image junctions classified using a feature wavelet set consisting of line,
edge, Y junction, T junction, X junction and blob wavelets for N = 4.
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5.10 Summary

The main theoretical contributions in this chapter is the derivation of the RT response to a line-

segment and edge-segment feature. Line and edge segments do not have straight-forward frequency

domain representations like for the sinusoidal model, so the derivation was performed in the spatial

domain. It is interesting to note that the integral along a line radiating from the centre of a CH

wavelet is the same regardless of order.

The wavelets corresponding to both feature types were combined into a half-sinusoidal model.

The advantage of this model is that it provides a phase-based representation of junctions and cor-

ners, where amplitude describes the strength of the segments, orientation describes their direction,

and phase describes whether they are a line or an edge segment. A further advantage is that off-

centre estimation of junctions is improved compared to using a single line-segment or edge-segment

wavelet type. This is a problem for other techniques such as MSMFs.

The half-sinusoidal model can be solved for using either the iterative or roots methods. How-

ever, using the super-resolution method restricts the model to exclusively either line-segment or

edge-segment components. The advantage is that one may resolve model components closer in

orientation than when using the iterative or roots methods. An interesting new application is the

use of the two-component half-sinusoidal model as an alternative to the sinusoid model for the

orientation estimation of i1D features. The estimate is given by the average of the two model ori-

entation parameters, while their difference is an indication of how curved the local image structure

is.

Using these line and edge segment archetypes, other more complex features can be constructed.

However, the improved orientation selectivity with increasing N may actually give worse results

if the actual features do not match the exact orientations of the archetypes. In these situations

calculating the half-sinusoidal model and classifying based on the model parameters may be a better

approach. Another possible application of the half-sinusoidal model is analysis of the chequer edge

pattern in Figure 5.1 using a pair of odd quadrature wavelets, shown in Figure 5.29.

(a) Odd-odd wavelet (b) Even-odd wavelet

Figure 5.29: Odd quadrature wavelet pair for the analysis of chequer patterns, for N = 11.
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Chapter 6

Scale Harmonic Wavelets

6.1 Introduction

One of the early decisions in the image processing pipeline is the scale at which image analysis

should be performed. For example, when applying Canny’s famous edge detector [16] one must

first choose the variance of the Gaussian filter with which to smooth the image. Likewise, in the

previous chapter, we saw that the wavelength of a log-Gabor filter should be at least twice the

width of a line-segment for junction analysis with the CH vector. However, features can occur at

many different sizes in an image, or over a continuous range of scales, such as in the Dune image in

Figure 6.1. The dunes in the distance appear at both coarse and fine scales, while the line features

corresponding to ripples in the sand become continuously smaller towards the centre of the image.

Figure 6.1: Dune image consisting of features with continuously varying scale.

A multi-scale approach to the analysis of an image is therefore useful. One may wish to evaluate

a range of scales and chose the best one at which to perform analysis, or combine the response

from multiple scales, to achieve a degree of scale invariance. For example, when applying the i2D

feature detection method in Chapter 3, the sum of the response over four scales was used, while

in Chapter 4, five scales were used to obtain the orientation estimates for coral core analysis.

A common approach to scale selection is to choose the best scale using the set of responses to

a discrete filter bank. The best scale being the one that gives the maximum response according to
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a particular measure. Lindeberg proposed a method of automatic selection using the determinant

of the Hessian matrix of normalised derivatives [64], and investigated other differential entities for

scale selection and image matching in [65] and [66], respectively. Fdez-Valdivia et al. [24] used

the response to 2D Gabor filters as a measure, and Kadir and Brady [53] used a saliency score

given by the entropy of the local image patch. Selection of the appropriate scale is a crucial aspect

one of the most popular feature descriptors, the scale-invariant feature transform (SIFT) [69]. It

locates features by finding the maximum response to the difference of Gaussian operator over many

discrete scales, usually three or four per octave.

One problem with using discrete filter banks is that they are centred at specific frequencies (or

scales). Thus if the main frequency component of a structure of interest lies between two filter

channels, its energy will be split across them. For image processing operations that rely on the

magnitude of the filter response this may cause issues, such as the energy of a desired feature falling

below a detection threshold. The obvious approach is to use more finely spaced scales, however

this increases the number of filtering operations that must be performed.

Along with filters that are steerable in orientation, Simoncelli [111] and Perona [99] also in-

troduced filters that are shiftable in scale. The same steerable principle applies, a set of complex

exponential functions in the radial frequency domain deliver a set of basis filters, which can be

linearly combined to approximate a filter dilated to a particular scale. Ng and Bharath [93] applied

this idea to estimate the coefficients of the scale basis filters from a set of discrete responses. In this

way they were able to obtain a continuous trigonometric polynomial representation of the energy

of a the response to a steerable quadrature filter across scale, and thus select the best scale as that

which corresponds to the maximum of the polynomial.

In this chapter a method of scale selection and scale adaptive analysis using the CH vector is

presented. Instead of derivative based measures such as the determinant of Hessian, we shall use

the energy of the CH vector as the measure for selecting the optimal scale. The development of

the method is as follows:

1. A wavelet frame that can be used to approximate a filter shifted through scale, using the

principles in [99], is constructed.

2. The frame is augmented with higher-order RTs to create a steerable wavelet frame. The

responses from the wavelets are collected into a quaternionic matrix that represents the

continuous CH vector response shifted through scale.

3. The polynomial representing the CH vector energy is used for scale selection and the gener-

ation of other statistics that give information about the scale response. Other measures for

picking the best scale are proposed.

4. The CH vector scale response is used to develop a continuous version of phase congruency.

The work in this chapter is preliminary in nature but has been included in the thesis due to the
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novel approach. Earlier work on some sections has been published in [71]; however, it neglected

the connection with Perona’s deformable kernels [99].

6.2 Scale Harmonic Wavelet Frame

The goal of this development is to create a continuous representation of the CH vector through

scale. To do this we need a suitable primary isotropic wavelet frame from which the higher-order

RTs can be added to give a steerable wavelet frame. In this section, we shall generate a primary

isotropic wavelet frame from the Fourier series basis functions of an interval in the logarithmic

frequency domain, similar to the filters proposed in [99]. The advantage of these wavelets is that

they can approximate other isotropic wavelets, which can then be shifted through scale by steering

the basis filter responses, much the same as how 2D steerable wavelets can be steered through

orientation using the CH wavelet responses.

6.2.1 Concept

To begin with, consider a simple isotropic filter bank consisting of a 2D low-pass filter with fre-

quency response, l(ω), and a high-pass filter, h(ω), where ω = |ω| and ω is the Fourier domain

coordinates. The filter bank is a simple Parseval-tight wavelet frame with infinite vanishing mo-

ments, and is compactly supported such that h(ω) is 0 below a certain frequency. That is,

l(ω)2 + h(ω)2 = 1, (6.1)

dnh(ω)
dωn

∣∣∣∣
ω=0

= 0, for n ∈ N, (6.2)

l(ω) = 0 ∀ω > ωc, (6.3)

h(ω) = 0 ∀ω < ωc/2, (6.4)

where ωc is the cut-off frequency. Below that, the high pass filter spectrum tapers down to 0 at

ωc/2. An example of this type of filter bank based on Simoncelli’s wavelets is [101],

h(ω) =


cos
(
π
2 log2

(
ω
ωc

))
, ωc/2 < ω ≤ ωc,

1, ω > ωc,

0, ω ≤ ωc/2,

(6.5)

l(ω) =
√

1− h(ω)2, (6.6)

which we will use for the rest of the chapter.

Next, a set of 2M + 1 complex-valued basis wavelets is constructed by multiplying the high
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pass filter response by a complex exponential in the logarithmic frequency domain,

hm(ω) = h(ω) ejmr, (6.7)

where m ∈ [−M, ...,M ]. Note, that j is used instead of i for the imaginary number, as i will be

used for the complex RT later. The parameter r is a scaled and shifted logarithmic frequency value

given by.

r = π
log2(ω)− rc

rw
, (6.8)

rc = log2(ωc/2), (6.9)

rw = log2(
√
2π)− rc, (6.10)

such that r = 0 corresponds to the low frequency cut-off, ω = ωc/2, and r = π corresponds to

highest valid frequency in the discrete image spectrum, ω =
√
2π. An octave bandwidth in the

normal frequency domain corresponds to a bandwidth of π/rw in this scaled and shifted logarithmic

domain. To convert from the logarithmic frequency, r, to wavelength, the following formula is used,

λ = 2
−
(
τ
π rw+rc

)
. (6.11)

The functions that generate these basis wavelets are thus the first M Fourier series functions of

the subspace L2(r), r ∈ [0, 2π). The logarithmic frequency domain is used because image features

tend to be distributed logarithmically, and thus it is common to partition the spectrum as such.

For a discrete 2D image, the minimum wavelength in the Fourier domain is
√
2, so the above

complex filters will only perform n/2 cycles within the image spectrum. The spectrum of the first

six basis wavelets are shown in Figure 6.2 for a cut-off frequency of ωc = 2π/32 (wavelength 32).

Given that

l(ω)2 +
∑

|m|≤M

|hm(ω)|2 = 1, (6.12)

the set of wavelets also form a tight wavelet frame for a discrete image or image with no frequencies

above
√
2π. Such an image shall be assumed for the remainder of the development. The frame

bounds are 2M + 1, and there is 2M + 1 redundancy; however, they cannot be sub-sampled.

These basis wavelets shall be called scale harmonic (SH) wavelets. We can collect the response

of an image to the set of SH wavelets into a scale harmonic (SH) vector, similar to the CH vector.

It is expressed by a convolution as

g(z) =
[
(f ∗ ψM )(z), ..., (f ∗ ψ−M )(z)

]
, (6.13)
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Figure 6.2: Real (blue) and imaginary (red) radial frequency spectrum of the first to sixth order
basis filters, hm(ω), for M = 11 and ωc = 2π/32. Dotted black line: Primary low pass frequency
response, solid black line: primary high pass frequency response.

or in the wavelet notation with k as the location index,

gk =
[〈
fk, ψ

−M
k
〉
, ...,

〈
fk, ψ

−M
k
〉]
, (6.14)

where the wavelets are defined as

ψm(z) F←→ hm(ω). (6.15)

For exact reconstruction the frame must be Parseval tight. Let V be a weighting matrix,

V = diag(v) (6.16)

= [v−M , ..., vM ] , (6.17)

where ‖v‖ = 1. Reconstruction of the original image is then possible from the weighted SH vector

plus the low-pass response,

f(z) = (f ∗ ψlow)(z) +
∑

k

∑
|m|≤M

(Vgk)mvmψ
m
k . (6.18)



191

Note, that unlike normal wavelet frames, there is no scale parameter.

6.2.2 Approximating Isotropic Wavelets

Just as one can use the Fourier series to approximate other functions, we can linearly combine

these SH basis wavelets to approximate other isotropic wavelets. In the Fourier domain this is

expressed as

hc(ω) =
M∑

n=−M
cmh

m(ω) (6.19)

where c ∈ C2M+1, cn = c̄−m is a complex coefficient vector which defines the new wavelet frequency

response hc(ω). Two methods are proposed to choose the coefficients:

• Finding the Fourier series coefficients of the desired filter function in the logarithmic frequency

domain.

• Maximising the energy inside the envelope of a desired filter function in the logarithmic

frequency domain.

Fourier Series

Let v(ω) be an ideal filter function with centre frequency ω0 ∈ [ωc,
√
2π). One set of SH wavelet

coefficients for the filter approximation are the Fourier series coefficients of v(r),

cm =

∫ 2π

0

v(r)e−jmr dr, (6.20)

where r is the logarithmic frequency. A simple ideal filter is a rectangular function with width α

and centre τ on the logarithmic frequency scale. Thus for

v(r) =

1 where r ∈ [τ − α, τ + α],

0 otherwise,
(6.21)

we have

cm =

∫ τ+α

τ−α
e−jmr dr (6.22)

= e−jmτ 2 sin(αm)

m
. (6.23)

Alternatively, this filter can be expressed as a filter centred at r = 0 and shifted up in frequency

by the scale parameter, τ . In this case, we may write

vm =
2 sin(αm)

m
(6.24)
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and multiply by e−jmτ to shift the filter through scale.

EnergyMaximisation

Using the same filter function we can instead maximise the energy within the window, applying

the maximisation technique used in [105] for rotationally symmetric wavelets. Let v(r) be the ideal

filter function, and hc(r) be the frequency spectrum of the filter approximation generated using

the coefficients c. The energy functional in the logarithmic frequency domain is

E[v] =

∫ 2π

0

hc(r)
2v(r) dr (6.25)

=
∑

|m′|≤M

∑
|m|≤M

c̄m′cm
∫ 2π

0

v(r) dr (6.26)

= cHVc (6.27)

where Vm,m′ =
∫ 2π

0
ei(m−m′)rv(r) dr. Since cHc = 1, choosing c as the eigenvector of V with

the largest eigenvalue gives the coefficients with maximum energy within the window. As for the

Fourier series approximation, we can instead find the coefficients of c when the filter is centred at

τ = 0 and multiply by e−jmτ to shift through scale. Increasing the number, M , of basis filters

gives a better approximation of the desired filter function (Figure 6.3). In particular, enough basis

functions are needed to reduce oscillations outside the window; 15 are needed for the one octave

window, and seven for a two octave window, when ωc = 2π/64. Note that using a window width

of two octaves gives a filter of approximately one octave bandwidth using the energy minimisation

method and M = 11. This type of filter shall be used in the remainder of this chapter.

The basis filter generating functions have only m/2 periods within the spectrum, as due to

their periodicity the filter spectrum approximation will wrap-around the interval and thus a buffer

is needed. For example, a filter centred near the start of the interval wraps around to the end of

the interval, as shown in Figure 6.4. However, because of the buffer, the wrap-around part of the

response lies in the region from r = π to r = 2π which is outside of the valid frequency domain of

a discrete image and therefore does not affect the result. For approximations which are practically

zero outside of a limited support, such as the examples in Figure 6.3, the number of periods within

the frequency spectrum could be increased by changing the scaling of r in (6.10). This would mean

a lower number of basis filters would be needed to achieve a similar approximation. If too few

basis filters are used, the wrap-around part of the spectrum will infringe into the image domain,

resulting in high frequency components being included with a low frequency filter, and vice-versa.

6.2.3 Isotropic Scale Response

All the operations to approximate a filter in the frequency domain using SH wavelets are linear.

Therefore we can approximate a filter, and therefore filtering of an image, using the same linear

combination of the SH wavelet responses. This is an important distinction between this method and
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Figure 6.3: Spectrum of a filter (black line) with centre frequency ωc = 2π/8 constructed using the
energy minimisation method different values ofM and a window width of one or two octaves (dotted
blue line). A two octave window results in a filter with approximately one octave bandwidth.

a discrete filter bank. Normally, to calculate the response to M discrete filters, M inverse Fourier

transform operations are required. With the SH wavelet frame, any number of filter responses can

be approximated from M SH wavelets, and still only M + 1 inverse Fourier transform operations

are required. (The negative orders are simply the conjugate of the positive).

From the SH wavelet responses we may obtain a polynomial representation of the response to a

filter through scale, for a particular location in the image. Let v be the coefficients corresponding

to the band pass filter profile centred at τ = 0. The coefficients of the filter shifted to scale τ are

therefore given by Sτv, where Sτ is the same rotation matrix used in previous chapters,

Sτ = diag
[
e−jMτ , ..., ejMτ

]
. (6.28)

Normalising such that ‖v‖ = 1 we see that these coefficients are a good choice for the scale

weighting matrix V. Due to the linearity of the operations, the filter response at scale τ is easily
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Figure 6.4: Spectrum of a filter constructed for M = 11 with window width 2π/rw shown on the
scaled and shifted logarithmic frequency domain. The filter response wraps around but does not
extend into the valid part of the image spectrum, ω ∈ [ωc/2,

√
2π], which is the interval r ∈ [0, π].

calculated from the SH wavelet responses, g, as

〈f, ψv(τ)〉 =
∑

|m|≤M

(SτVg)m. (6.29)

This can be written as a trigonometric polynomial in τ ,

p(τ) =
∑

|m|≤M

vmgme
jmτ , (6.30)

which represents the continuous response to the isotropic filter as it is shifted through scale. The

filter is therefore shiftable in the scale parameter τ .

An example of filter responses for the Dunes image using M = 11 and ωc = 2π/64 is shown in

Figure 6.5. Different sized features are isolated at different scales. The dunes in the background of

the image appear in the larger scales, whereas the ripples in the sand appear in the smaller scales

depending on their size.

6.3 Scale Circular Harmonic Wavelet Frame

The magnitude of the scale response given by the SH wavelets gives an idea of the scale at which

the local image structure is strongest. However, the SH basis wavelets are isotropic and so any

filter approximated by their linear combination is also isotropic. Therefore the scale response

only represents the magnitude of even, symmetric image structures, such as lines, and not odd,

anti-symmetric structures such as edges, and thus is not phase invariant.

To perform scale selection we need a measure that also responds to anti-symmetric features,

and thus odd wavelets are needed to augment the isotropic response. The CH vector gives a

representation of local image structure at a particular scale, and with appropriate weighting the

CH vector magnitude is a measure of local energy that is invariant to phase. Higher-order RTs of

a suitable primary isotropic wavelet frame also form a 2D steerable wavelet frame if they match

the constraints in [124]. Since the SH wavelets meet these conditions, a new set of 2D steerable

wavelets can be created from their RTs. This gives us a representation of the CH vector through

scale, from which the CH vector energy is a phase-invariant measure that can be used for scale
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Figure 6.5: Response to an isotropic filter evaluated at discrete scales corresponding to the centre
frequency ω0, using the SH wavelets for M = 11, ωc = 2π/64 and window width 2π/rw.

selection.

6.3.1 Adding Higher-Order Riesz Transforms

The CH vector for each SH basis wavelet is given by the higher-order RTs of the wavelet. Since

both the SH and CH wavelets are complex valued, an alternative representation is required to

differentiate the complex part of the SH wavelet and the complex part of the CH wavelet. A

quaternionic representation shall be used. Quaternions are an extension of the complex number

system consisting of three imaginary components, i, j and k, where

i2 = j2 = k2 = ijk = −1 (6.31)

We shall let the complex part of the RT be represented by i, and the complex part of the SH

wavelets be represented by j. Then the CH vector using the SH wavelet indexed by m as its

primary wavelet is

Wfm =
[〈
f, w−Nvmψ

−N,m,〉, ..., 〈f, wNvmψN,m〉]T , (6.32)
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where ψn.m is a quaternion-valued wavelet given by the RT of the SH wavelet,

ψn,m = Rnψ0,m F←→ einθhm(ω) (6.33)
F←→ einθejmrh(r). (6.34)

Collecting the CH vectors for each SH basis wavelet into the columns of an N ×M matrix we have


〈
f, w−Nv−Mψ

−N,−M〉 · · ·
〈
f, w−NvMψ

−N,M〉
...

. . .
...〈

f, wNv−Mψ
N,−M〉 · · ·

〈
f, wNvMψ

N,M
〉
 (6.35)

which can be written as

WFV, (6.36)

where W is the weighting matrix of the CH vector, V is the weighting matrix of the scale basis

wavelets and defines the shiftable filter, and F shall be called the scale circular harmonic (SCH)

matrix,

F =


〈
f, ψ−N,−M〉 · · ·

〈
f, ψ−N,M〉

...
. . .

...〈
f, ψN,−M

〉
· · ·

〈
f, ψN,M

〉
 . (6.37)

Since the weighted SH wavelets form a primary isotropic wavelet frame, the wavelets of the SCH

matrix also form a steerable wavelet frame according to the conditions in [124], with (2M + 1)×

(2N +1)+1 redundancy. Due to the wavelets being in conjugate, only (M +1)× (N +1) filtering

operations need to be made when implementing the method.

Using this representation, the response to a 2D steerable wavelet, Wu, rotated by θ and shifted

in scale by τ is given by

p(θ, τ) =
∑
n

∑
m

(
SθWuH WFV Sτ

)
n,m

(6.38)

=
∑
n

∑
m

wnūnwnFn,mvme
inθejmr. (6.39)

This is a real-valued trigonometric polynomial in two variables. The range of orientation values is

θ ∈ [0, 2π) and the range of scale values that fall within the image spectrum is τ ∈ [0, π).

An example of this bivariate polynomial for the line-segment wavelet from the previous chapter

is shown for the labelled points in Figure 6.6, using M = 11 and N = 13, and the phase-invariant

equal weighting scheme with window width of B0.1. The scale parameter τ has been converted to

wavelength using (6.11). Both the shape, scale and intensity of the features is clearly observed in

the polynomial images. For example, three peaks are observed in the response for the Y junction
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at point 2, and its maximum is at a wavelength of approximately 8 pixels. On the other hand, the

T junction at point 4 has its peak around a wavelength of 16 pixels.

(a) Beewing image
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Figure 6.6: Visual representation of the bivariate polynomial given by SCH matrix response for a
line-segment feature, at four points on the Bee-wing image. Red represents a positive line-segment
response, blue is negative. The SCH matrix was calculated using the same parameters as the
previous figure.

6.3.2 Energy Response

In Section 2.1.2 we saw how the magnitude of the CH vector is a measure of the strength of the

local image structure which is rotationally invariant. If it is weighted such that We = Wo the

measure is also phase-invariant. Therefore the magnitude of the CH vector shifted through scale

gives a phase-invariant measure of strength of the local image structure through scale. Thus the

CH vector magnitude is a measure that can be used for scale selection.

Each column of the SCH matrix represents the CH vector obtained from the m-th order SH

wavelet. Each row represents the coefficients of complex-valued (in i) trigonometric polynomial (in

τ) describing the response to n-th order CH wavelet as it is shifted through scale. We can write

the latter polynomial as

fn(τ) =
∑
m

(WFVSτ )n,m (6.40)

=
∑
m

wnFn,mvme
jmτ . (6.41)

The polynomial that represents the energy (square of magnitude) of the CH vector, which shall

be denoted A2(τ), is therefore given by the sum of squares of the magnitude of the individual CH
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orders,

A2(τ) =
∑

|n|≤N

|fn(τ)|2i , (6.42)

where |.|i means the absolute value with respect to the complex number i, for example |aeibcejd|i =

acejd. Rewriting the CH wavelet scale response we get

|fn(τ)|2i =

∣∣∣∣∣∑
m

wn<i{Fn,m}vmejmr + i
∑
m

wn=i{Fn,m}vmejmr

∣∣∣∣∣
2

(6.43)

=

(∑
m

wn<i{Fn,m}vmejmr

)2

+

(∑
m

wn=i{Fn,m}vmejmr

)2

(6.44)

which is the addition of two real-valued degree 4M trigonometric polynomials in ejτ . The functions

<i and =i give the real and imaginary parts with respect to i, for example, <i{eiaejb} = cos a ejb.

When implementing the algorithm in MATLAB for example, it is necessary to split the CH vector

into real and imaginary parts as only complex number arithmetic is supported.

Adding each of the 2N + 1 polynomials from each CH wavelet order gives the CH vector

energy polynomial, A2(τ), which is thus another degree 4M polynomial. Unfortunately, to obtain

a polynomial representation for the CH vector magnitude would require the square root of A2(τ)

to be obtained algebraically. This has no solution in most cases, so we shall work with the CH

vector energy instead.

Image Example

The CH vector magnitude was calculated at different frequencies and for different numbers of RT

orders (N), using M = 11 scale basis filters with cut-off frequency ωc = 2π/64 and filter window

width 2π/rw (Figure 6.7). It is observed that the sand dune features in the distance have a high

magnitude for long wavelengths, while the edges of the sand dunes have a large magnitude across

a wide range of wavelengths. The ripples in the foreground respond to different scale values in

proportion to their size. The magnitude thus provides a clue as to which scale the local structure

should be analysed, although at some locations it appears that more than one scale would be

appropriate.

Increasing N appears to smooth the response, and reduces the chequer-pattern that can be seen

for N = 1. This pattern is particularly noticeable around the i2D features on the left horizon of

the image for ω0 = 2π/16. Their regular nature does not appear in the original image, suggesting

that it is an artefact of having too few RT orders. The energy for N = 1 is that of the monogenic

signal vector, and the same effect can also be seen in the monogenic signal examples in previous

chapters. As seen for the magnitude examples in Section 2.1.2 and the i2D detection in Section

3.3.3, adding extra RT orders gives a better local energy estimate. The CH vector energy therefore

provides an alternative measure for selecting the best scale at which to apply analysis.
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Figure 6.7: CH vector magnitude evaluated at discrete scales corresponding to the centre frequency
ω0, compared to N , using the SCH matrix with M = 11, ωc = 2π/64 and window width 2π/rw.
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6.4 Scale Selection

6.4.1 Local Energy Statistics

The SCH matrix formed by the response of the SH wavelets and their RTs allows us a phase-

invariant continuous measure of the CH vector energy, and thus local structure strength, over

scale. An obvious statistic to calculate for scale selection is the scale at which the energy response

polynomial is at a maximum. This is the same procedure that was used with the polynomial

representation of quadrature filter energy in [93]. It is given by

τmax = arg max
τ∈[0,π)

A2(τ) (6.45)

The maximum can be calculated by finding the roots of the derivative of this polynomial, then

choosing the root that gives to the maximum.

However, we may also calculate some other statistics of the distribution analytically. These also

give useful descriptions of the scale response that go beyond a simple “best scale”. For example,

we may wish to know if the energy is spread across a wide range of scales, if there are actually

two scales at which the responses are high, or if the response is skewed towards one end of the

frequency spectrum. These measures are given by the various moments of the energy polynomial,

as described below.

Total Energy

The total energy is integral of the response,

Aenergy =

∫ b

a

A2(τ) dτ, (6.46)

which can be evaluated analytically. The integration limits a and b give the range of scale over

which to calculate the statistic. An integration range of [0, π] corresponds to the valid domain of

the discrete image frequency spectrum.

Mean Scale

The mean scale (first moment) of the energy distribution is given by

τmean =

∫ b

a

τ
A2(τ)

Aenergy
dτ. (6.47)

Unlike the scale maximum, the mean scale does not require root finding, and can be evaluated

analytically.
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Variance

Using the mean scale we can calculate the energy distribution across scale. The variance (second

moment) is given by

σ2
τ =

∫ b

a

(τ − τmean)
2 A

2(τ)

Aenergy
dτ. (6.48)

Lindeberg notes that strong features have their energy spread across scale [65], and this is one of the

requirements behind phase-congruency based feature detection [58]. Therefore we expect variance

to be higher at the locations of image features, although this assumes a uni-modal distribution.

Skewness and Kurtosis

Normalised skewness (how lopsided the distribution is) and kurtosis (a measure of its peakiness)

are given by the third and fourth moments normalised by the variance according to

(σ(k)
τ )2 =

∫ b

a

(τ − τmean)
k A

2(τ)

Aenergy

1

σk
dτ, (6.49)

with k = 3 and k = 4 respectively.

Bi-modality

Sarle’s coefficient is a measure of how bi-modal a distribution is. It is given by the skewness and

kurtosis as

β =
(σ

(3)
τ )4 + 1

(σ
(4)
τ )2

, (6.50)

where a value of 0 indicates a purely uni-modal response, while a value of 1 indicates a purely

bi-modal response.

Integration Limits

The range of scales included when calculating the statistics is determined by the integration limits

a and b. Choosing a = 0 and b = π includes all the scales from the lower frequency cutoff, ωc/2,

to the maximum frequency,
√
2π. Increasing a excludes longer wavelengths, as does increasing

the cutoff frequency, ωc. Likewise, reducing b removes high frequencies from the calculation, and

thus decreases the influence of small features. Using a = π/rw starts the integration from ω = ωc,

where the high pass magnitude first reaches 1, and choosing b = −π log2(ωc)/rw sets the upper

limit of integration to ω = 0.5 which is wholly contained within the spectrum. Thus choosing these

values excludes the part of the scale response which tapers, if so desired. However, using the full

integration range of [0, π] when calculating the mean scale appears to give better results for high

frequency areas.



202

Example

The statistics were calculated for the Beewing2 image (Figure 6.9a) to give an idea of the scale

distribution of image features such as lines and edges (Figure 6.9b). The SCH matrix was ob-

tained using ωc = 2π/64, M = 11, filter width 2π/rw, N ∈ {1, 3, 7}, and weighted using the

phase-invariant equal weighing scheme.

The average energy is high around both strong odd and strong even image features, such as

lines and edges, demonstrating phase invariance. The vein patterns on the bee wing are correctly

identified as being at a fine scale, as are the small blob like textures. Both the variance and the

bi-modality coefficient are very high in the textured areas of the bee wing cells. This is due to there

being both a high frequency response to the texture, and another large low frequency response to

the cell area (Figure 6.8d). The veins also have a reasonable scale variance and they are the only

image feature with a large negative skewness. This is due to a large high-frequency response with

a long tail down into the low frequencies (Figure 6.8b). In contrast, the edge features have a more

uniform distribution of energy (Figure 6.8c). These results suggest that the scale response may be

useful in discriminating line, edge and blob feature types.

(a) Beewing2 Image
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Figure 6.8: CH vector energy scale response for three points on the Beewing2 image. The SCH
matrix was calculated using M = 11, N = 7, ωc = 2π/64 and window width 2π/rw. Scale
maximum (red circle), mean scale (blue cross) and one standard deviation either side of the mean
(blue plus) are also shown.

6.4.2 Scale Selection

When analysing an image using a particular image model we may also wish to identify the best

scale. As when solving for orientation, the scale that gives the maximum response is an obvious

choice. However, there is an added complexity in finding the solution, as the maximum response

now depends on both the model wavelet orientation as well as the scale. Therefore we must search

over the entire bivariate trigonometric polynomial, as represented by the SCH matrix, in both θ
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(b) Beewing2 statistics

Figure 6.9: Image statistics calculated for the Beewing2 image from the CH vector magnitude scale
response for different values of N . From top to bottom row: Square root of scale energy, scale
maximum, mean scale, variance, skewness, square root of kurtosis, bi-modality coefficient. The
SCH matrix was calculated using M = 11, ωc = 2π/64 and window width 2π/rw.
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and τ . That is, the best scale and orientation are given by

θ, τ = arg max
θ,τ

∑
n

∑
m

(
SθWuH WFV Sτ

)
n,m

. (6.51)

Experiments in Section 2.6.2 showed that solving for the maximum of a normal univariate

trigonometric polynomial is time consuming due to the root finding required. For bivariate poly-

nomials more advanced methods must be employed, for example [97]. It is likely that these methods

would be even more involved, although it is difficult to determine the increase in time required

due to the lack of available MATLAB implementations. Furthermore, in the case of models with

multiple components, the scale that gives the maximum response to a single model component may

not necessarily be the best choice. For example, if the response at another scale could be modelled

as multiple components, but with individually smaller amplitudes, that may be more desirable as

the model would be more descriptive and have a lower residual.

CH Vector Energy

Instead of searching for maximum in both scale and orientation, we shall instead use the statistics

of CH vector energy scale response, A2(τ), to select the best scale. The typical approach is to use

the scale at which the measure is a maximum, which is τmax when using the CH vector energy.

However, the scale maximum, and thus the energy, can be discontinuous in many locations, such

as for the Pentagon image in Figure 6.10b. This is due to the bi-modality of the scale response

(Figure 6.10f) combined with the non-linearity of picking a maximum.

Mean Scale

An alternative therefore is the mean scale, τmean. Since the operations to derive the mean scale

are all linear, it gives a continuous estimate and is faster to compute compared to root finding

for the scale maximum. However, a comparison of the CH vector energy calculated at the mean

scale (Figure 6.11b) and the scale maximum (Figure 6.11a) for the Pentagon image, shows that at

locations on the edge of the pentagon the energy is very low when using the mean scale, whereas

one would expect a high magnitude due to the edge feature present. These locations have a high

bi-modality coefficient (Figure 6.10f), and thus the low response is explained by the mean scale

actually lying between two or more peaks of the scale response.
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Figure 6.10: Image statistics calculated for the Pentagon image using the CH vector magnitude
scale response and N = 7. The SCH matrix was calculated using M = 11, ωc = 2π/64 and window
width 2π/rw. λmax is the wavelength corresponding to τmax, λmean is the wavelength corresponding
to τmean.

(a) A(τmax) (b) A(τmean) (c)
∫ τmean+σ
τmean−σ An(τ)/2σ

Figure 6.11: CH vector magnitude evaluated at the scale maximum (a), the mean scale (b), and
using mean scale averaging (c), for N = 7. The SCH matrix was calculated using M = 11,
ωc = 2π/64 and window width 2π/rw.



206

Mean Scale Averaging

The existence of a single best scale is implicit in the idea of scale selection. However, this is not

necessarily the case. To give an example, consider the SCH matrix polynomial of the response to

a line-segment wavelet, along with the CH vector magnitude response, obtained at the centres of

three junction features in the Pentagon image shown in Figure 6.12. Analysis of each response

shows that the interpretation is scale dependent:

• The first point is located at the edge of the pentagon (Figure 6.12a) where the mean scale

gives a low magnitude response (Figure 6.11). We see that the distribution of energy is

bi-modal (Figure 6.12c), and the mean scale does indeed lie between two peaks where the

magnitude is lower. The scale maximum is at the larger scale peak, where τ ≈ 0.5π. The

two blue peaks in the SCH polynomial (Figure 6.12b) at this scale indicate the CH vector

evaluated at this point would be modelled as two negative line-segments. However, there

is another peak at τ = 0.75π. Evaluated at this point we would end up with two positive

line-segments in the model.

• At point 2 (Figure 6.12a) the scale maximum and mean scale coincide. The feature in the

image appears as four positively valued line-segments radiating from a point. The SCH

polynomial (Figure 6.12d) shows that the line-segment response remains coherent over a

wide range of scales at the orientations of the feature components. However, at the scale

maximum (and mean scale) there is a negative response at an orientation of approximately

π/8 which is larger in magnitude than the positive response at π/2. In this case, a single

scale does not take into account the larger spread of energy of the feature components that

indicates that positive line-segments are more semantically correct.

• At point 3 (Figure 6.12a) the scale maximum is at τ = 0.75π; however, the majority of

the energy is below this scale (Figure 6.12g). The corresponding junction in Figure 6.12a

resembles a T junction consisting of two thin line segments and one thick segment. The SCH

polynomial shows that there are three peaks in the line segment response corresponding to

each of these components, however one peaks at approximately τ = 0.5π while the other two

are at the scale maximum. Evaluating the CH vector are either of these scales would likely

deliver the wrong model.

• At point 4 (Figure 6.12a) the majority of the energy is concentrated at the scale maximum

is at τ = 0.55π (Figure 6.12i). Of all the example features this point is best represented by

the response at a single scale.

It is clear that a single scale does not always adequately represent the underlying features

present, and therefore may not deliver the expected parametrisation when feature components

have different sizes. Furthermore, a single scale does not take into account the coherence of energy
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Figure 6.12: Visual representation of the bivariate polynomial given by SCH matrix response to
a line-segment feature at points 1 (b), 2 (d), 3 (f) and 4 (h) in the Pentagon, along with the CH
vector energy scale response at points 1 (c), 2 (e), 3 (g) and 4 (i). In the polynomial representation,
red represents a positive line-segment response and blue is negative response. In the CH vector
energy polynomial, a red circle is scale maximum, a blue cross is mean scale, and the blue plus
indicates one standard deviation either side of the mean scale.
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with orientation through scale that we see in both the Pentagon (Figure 6.12) and Beewing (Figure

6.6) SCH polynomials. This similarity over scale indicates a good feature.

As an alternative to evaluating the CH vector at the scale maximum or mean scale, it is

proposed to instead average the CH vector over a range of scales. The statistics given by the CH

magnitude can be used to choose the averaging interval. An analytically derived approach is to

centre the interval at the mean scale and set its width based on the variance. A large variance

indicates a more spread-out response, and thus that the averaging interval should be wide.

This process shall be referred to as mean scale averaging, where each RT order of the new

average CH vector is given by the integral of its scale response over a certain interval,

f̄n =

∫ τmean+cσ

τmean−cσ

fn(τ)

2cσ
(6.52)

where σ is the standard deviation from the energy statistics and c is a constant. Using this approach

with c = 1, the magnitude of the CH vector is now high at the edges of the Pentagon image (Figure

6.11c) compared to magnitude at the mean scale (Figure 6.11b). Qualitatively, the energy also

appears to larger at the locations of image features than the energy given by the scale maximum

(Figure 6.11a). However, some parts of the Pentagon are reduced in magnitude. Investigation of

these locations finds that the scale response is narrow (Figure 6.12i) or that the CH vector changes

shape.

6.4.3 Model Estimation

After the CH vector has been constructed from the response at either the scale maximum, mean

scale, or using mean scale averaging, it can be used for image analysis as usual. An example

of the single sinusoidal model of the Pentagon image calculated using each method is shown in

Figure 6.13. Again, we notice that the amplitude and residual norm are discontinuous for the scale

maximum case, while the mean scale has areas of low amplitude due to bi-modal distributions, also

resulting in poor estimates of orientation in these locations. The scale maximum appears to have

the smoothest orientation estimate, followed by the mean scale averaging. In particular, we notice

that mean scale averaging picks up the cross-bars on the pentagon roof along with their orientation,

and that the residual norm for this approach appears to correspond best to the locations of i2D

features such as the corners of the pentagon and the cross-bar junctions on the roof.

These approaches show that the scale that gives the maximum response is not necessarily the

best scale for modelling image features. In the case of the sinusoidal model, mean scale averaging

appears to give model parameters that are semantically more similar to the features as they appear

in the image. Another advantage is that mean scale averaging can be calculated analytically.
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type An(τmax) An(τmean)
∫ τmax+σ

τmax−σ An(τ)/2σ
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Figure 6.13: Amplitude, A, phase, φ, orientation, θ, and residual norm, ‖Wε‖, of the sinusoidal
model of the Pentagon image, calculated at the scale maximum, mean scale, and using mean scale
averaging, for N = 7. The SCH matrix was calculated using M = 11, ωc = 2π/64 and window
width 2π/rw.
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6.5 Orientation Statistics

Development of the concepts regarding statistics of the scale response led to a further idea not

covered in the previous chapters: Can we derive useful statistics of the angular response of a

wavelet, as given by the correlation with the CH vector. For example, the mean orientation could

be a useful measure in place of the orientation maximum that is used to solve for model parameters.

In this section, the circular moments are investigated for this purpose.

6.5.1 Circular Moments

Consider an image model consisting of a set of wavelets at a single orientation. This is the general

model used where there is only one orientation parameter, such as for the single sinusoidal model.

It is given by

f(z) =
∑
m

λmum(Rθz) + fε(z)
CH←→ Wf =

∑
m

λmSθWum + Wε, (6.53)

where um(z) are the individual model components and Wum are their CH vectors. The angular

response is given by the degree 4N polynomial (Section 2.3)

p(θ) =
∑
m

δm(θ)λm(θ) (6.54)

from which we normally choose the θ that gives the maximum of p(θ).

The polynomial p(θ) represents the energy of the response to the wavelet set as it is rotated

through 2π radians. The orientation maximum is one statistic that we have used throughout this

thesis, however the statistics used for the scale distribution could similarly be applied to orientation.

The orientation energy, analogous to Aenergy for the scale response, is given by the zeroth moment,

θav = m0 (6.55)

=

∫ 2π

0

p(θ) dθ (6.56)

= 2πc0, (6.57)

where cn is the n-th coefficient of p(θ). Note, there are 2N + 1 coefficients {c−n, ..., cn}. However,

calculating the mean orientation using the standard formula,

θmean =

∫ 2π

0

θ
p(θ)

θav
dθ (6.58)

for an angular response centred at 0 radians would give θmean = π which is not the desired result.

Instead, circular statistics [33] must be employed. The circular mean of the angular response
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polynomial is given by the first trigonometric moment,

m1 =

∫ 2π

0

p(θ)e−iθ dθ (6.59)

= c1, (6.60)

from which θmean = arg(c1). The normalised circular variance is then obtained as the ratio of the

amplitudes of the zeroth moment and the first moment,

σ2
θ = 1− |m1|

m0
. (6.61)

Thus the circular moments give information about the angular response distribution that can be

found analytically.

6.5.2 Application to the Sinusoidal Model

The single sinusoidal model is a good candidate for the using the mean orientation, as it consists of

a one component at a single orientation. The first two moments of the angular response polynomial

(in 2θ) of the sinusoidal wavelet pair were compared to the sinusoidal model parameters for the

second scale of the Pentagon image (Figure 6.14). We notice that:

• The square root of the zeroth circular moment (Figure 6.14a) is approximately proportional

to the CH vector magnitude (Figure 6.14d).

• The square root of the absolute value of the first circular moment (Figure 6.14b) is approxi-

mately proportional to the sinusoidal model amplitude (Figure 6.14e).

• The circular variance is low at the location of i1D features (Figures 6.14c) similar to the

normalised residual magnitude (Figure 6.14e).

• The mean orientation (Figure 6.14g) is approximately equal to the sinusoidal model orienta-

tion (Figure 6.14h) at the location of i1D features.

The similarity in orientation between the moments and model makes sense when we consider

that i1D features have a single main orientation with a unimodal angular distribution, therefore

the location of the orientation maximum will be similar to the centre of the distribution (the mean

orientation). The circular variance confirms this observation, as the difference between the two

orientation estimates (Figure 6.14i) is only large where the variance is large. The circular variance

may be a good measure for the half-sinusoidal model as well, as it will be large where there are

multiple component responses.

We now have some proxy measures for the sinusoidal model amplitude and orientation. If we

are mainly interested in i1D locations, these measurements give reasonable approximations that

are much faster to compute, since the operations are linear and thus root finding is not required.
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Figure 6.14: Circular moments of the second scale of the Pentagon image compared to the pa-
rameters of the sinusoidal model for N = 7. From top left: square root of 0th circular moment
(a), square root of absolute value of 1st circular moment (b), circular variance (c), CH vector
norm (d), sinusoidal model amplitude (e), normalised residual norm (f), sinusoidal orientation (g),
mean orientation (h), and different between each orientation estimate (i). The SCH matrix was
calculated using M = 11, ωc = 2π/64 and window width 2π/rw.
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However, using the iterative approach to solve the multi-sinusoidal model, or any model with

multiple components at different orientations, relies on accurately locating each component in

turn. Therefore using the moment approximations is not feasible for models with components at

multiple orientations. The circular variance is similar to the normalised residual magnitude (Figure

6.14f) and thus can be used to discriminate i1D and i2D locations. It provides an alternative to

calculating the sinusoidal model parameters for a measure of intrinsic dimension.

Another interesting observation is that the mean orientation is continuous, owing to its linear

construction. This can be seen along the lines joining each of the five roof sections of the pentagon

(Figure 6.14h). In contrast, as we move across this boundary the change in the sinusoidal model

orientation (Figure 6.14g) is abrupt where the adjacent roof becomes the stronger feature. The

smoothness of the mean orientation may be of benefit if one is using measures such as the orientation

gradient and requires a bound on the energy of the measure.

Note, that the moments for the sinusoidal model are calculated on p(2θ), that is, using the

double angle polynomial, because the normal polynomial has only non-zero even orders (Section

3.1.3). If for example, a 3rd order rotationally symmetric Y junction model was used then it

would be calculated on p(3θ), or p(4θ) for a symmetric X junction. If this is not performed, the

first moment will be zero. Circular moments give a fast approximation of single component model

parameters.

6.5.3 Scale Response

The linear construction of the circular moments means that we may also derive their scale response

from the CH vector scale response. This provides two new measures that can be used for scale

selection. The zeroth moment can be used in place of the CH vector energy, and the first moment

can be used in place of a single model component amplitude, which does not have a polynomial

scale response expression.

The scale response for the zeroth moment is given by multiplying the individual order CH

polynomials as

p0(τ) =
∑
m

∑
|n|≤N

(wnum,nwnfn(τ))× (w−num,−nw−nf−n(τ)) (6.62)

which results in a degree 4N polynomial. A complex-valued polynomial representing the q-th

moment is given by

pq(τ) =
∑
m

N∑
n=−N+q

(wnum,nwnfn(τ))× (wN−qum,N−qwN−qfN−q(τ)) (6.63)

for which the squared magnitude, which is a real-valued polynomial with degree 8N, is given by

|pq(τ)|2i = <i(pq(τ))2 + =i(pq(τ))2. (6.64)
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Again, because the sinusoidal model angular response is only over the half circle, to calculate the

first circular moment for its response one would use q = 2 in the above equations. Likewise, for an

n-th order rotationally symmetric model one would use q = n.

In regards to the sinusoidal model, the absolute value of the first circular moment is large at the

location of i1D features. Thus we can use its scale response to select the best scale for the analysis

of lines and edges. The mean scale and scale energy were calculated using the traditional CH vector

magnitude, the zeroth moment, and the magnitude of the first moment squared (Figure 6.15). The

scale energy and the mean scale are different for the first moment due to the selectivity for i1D

features, while there is little difference for the zeroth moment and the CH vector magnitude.

A2(τ) m0(τ) |m1|2(τ)

λmean

  0   2   4   8  16  32  64 128

√
Aen

Figure 6.15: Mean scale (top row) and square root of the scale energy, (bottom row) calculated
using the CH vector energy, A2(τ), zeroth circular moment m0(τ), and absolute value of the first
circular moment squared, |m1|2(τ), scale response polynomials. The SCH matrix was calculated
using M = 11, ωc = 2π/64 and window width 2π/rw.
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6.6 Vector Congruency

The SCH matrix polynomials shown for various junctions in Figures 6.6 and 6.12 each demonstrated

a similar response to a line-segment wavelet over multiple scales. For example, the polynomial at

a Y junction in the Beewing image (point 2, Figure 6.6), repeated below in Figure 6.16, shows a

similar response from a wavelength of 4 pixels to a wavelength of 64 pixels. These examples suggest

the shape of the local image structure, as described by the CH vector, is similar at multiple scales

at the location of good features.

Orientation
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Figure 6.16: Visual representation of bivariate polynomial for SCH matrix response to a line-
segment wavelet, at point 2 on the Beewing image in Figure 6.6.

Phase congruency is a method of feature detection that relies on a similar concept. It detects

features by their similarity in phase through scale, as phase is an illumination invariant measure

of symmetry, and thus shape. This section develops a new measure similar to phase congruency

that uses the CH vector as the shape descriptor.

6.6.1 Phase Congruency

The analytic signal describes local 1D signal structure using a sinusoidal model, where the ampli-

tude (energy) is high at the presence of features [83, 84, 100] and the phase can be used to classify

their type [128]. Morrone and Owens proposed that the local energy is high at the locations of fea-

tures because the Fourier components are all in phase, and thus constructively interfere [84]. The

notion of the phase of multiple sinusoids being coherent is called phase congruency. For example,

the Fourier series basis sinusoids at the edges of a square wave or the peaks of a triangle wave all

have the same phase (Figure 6.17). These locations therefore have high phase congruency.

However, detection using local amplitude varies with illumination and contrast. Kovesi devel-

oped an alternative method of detecting features using phase congruency from quadrature filters

[58]. Instead of using local energy or Fourier series components, it was found that at the location

of features the phase of a sinusoidal model remained relatively constant over multiple scales. Based

on this observation, a phase congruency measure was developed.

Given the analytic signal complex exponential representation, fa(x) = A(x)eiφ(x), calculated

using a set of quadrature filters at different scales, the illumination and contrast invariant measure
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Figure 6.17: First four Fourier series components (grey lines) of a square and triangle wave. Based
on Figure 1 in [58].

of phase congruency is given by [58]

PC(x) =
‖
∑
i fai(x)‖∑

i ‖fai(x)‖
(6.65)

=
‖
∑
iAi(x)e

iφi(x)‖∑
iAi(x)

, (6.66)

where i is the scale index. The measure is the ratio of the amplitude of the sum of analytic signal

exponentials divided by the sum of the amplitudes. If the phase is similar for all scales then these

values will be equal and the phase congruency measure will be 1. A value of 0 is the lowest possible

value and indicates all the exponentials completely cancel out. An example is shown in Figure 6.18.

If the individual responses (solid lines) have the same phase (angles) the sum of their individual

lengths would match the length of their sum and give a phase congruency score of 1. If instead the

phases were different, the sum of their individual lengths would be more than the length of their

sum, and the phase congruency score would be less than 1.

imag

real
fa1

fa2

fa3

∑
fai

Figure 6.18: Three analytic signal vectors and their sum. The phase of each representation is the
angle of the arrow and the amplitude is the length. When all the phases are equal, the length of
the individual vectors and the length of their sum are the same.

The phase congruency concept was extended to 2D by using quadrature filters at multiple

orientations [58]. In the 2D case, there are multiple phase values each corresponding to a particular
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orientation. So instead of a complex exponential, a vector consisting of each component of the

quadrature filter pair responses was used. That is, for eight discrete orientations the vector would

have 16 components [57]. Letting Φ(x) represent this vector, the phase congruency measure is

similar to the 1D case,

PC(x) =
‖
∑
iΦi(x)‖∑

i ‖Φi(x)‖
, (6.67)

and the final version of the measure proposed in [58] is

PC(x) =
W ({Φi(x)})b‖

∑
iΦi(x)‖ − T c∑

i ‖Φi(x)‖+ ε
, (6.68)

where {Φi} is a set of phase vectors at different scales, W penalises the measure if the amplitude

of the phase vectors is not spread across scales, T is a noise threshold and ε is a small value to

prevent numerical calculation errors.

2D phase congruency using quadrature filters at discrete scales and orientations has been shown

to detect image features in an illumination and phase invariant manner [58]. It can be made specific

to detecting corners and junctions using the second circular moments of the discrete orientation

response [59]. A subsequent approach used the 2D Hilbert transform of the local image patch [130]

to generate the phase vectors. Felsberg [30] used the phase of the monogenic signal to detect lines

and edges and Zang [142] used the phase values given by the monogenic curvature signal to detect

i2D features. In this section a new measure of phase congruency is developed that uses the CH

vector as the phase vector in (6.67).

6.6.2 Discrete CH Vector Phase Congruency

The overall concept behind phase congruency is that the shape of a feature remains relatively

constant over a wide range of scales. The CH vector is a representation of local image structure

(shape) and its components are orthogonal. Therefore, it is proposed to substitute the CH vector

for the phase vector (6.67) to obtain a new congruency measure of how similar the local image

structure is through scale, and thus detect features.

The basic congruency measure using the CH vector is thus

PC =
Ptotal

Psum
(6.69)

where

Ptotal =

∥∥∥∥∥∑
i

Wfi

∥∥∥∥∥ (6.70)

Psum =
∑
i

‖Wfi‖. (6.71)
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Phase congruency is typically calculated from the response to one or more quadrature filters

at discrete scales. Phase congruency using the CH vector can similarly be obtained using the RTs

of a discrete filter bank or a wavelet decomposition. However, we may also use the SCH matrix

by simply evaluating the CH vector at a set of discrete scales given by {τi}. The amplitude of the

sum of CH vectors is then

Ptotal =

∥∥∥∥∥∑
i

Wf(τi)

∥∥∥∥∥ (6.72)

=

 ∑
|n|≤N

∣∣∣∣∣∑
i

fn(τi)

∣∣∣∣∣
2
1/2

, (6.73)

and the sum of amplitudes is

Psum =
∑
i

‖Wf(τi)‖ (6.74)

=
∑
i

 ∑
|n|≤N

|fn(τi)|2
1/2

, (6.75)

where Wf(τ) is obtained from the SCH matrix using (6.41). An advantage of using the SCH matrix

is that the CH vectors at any number of discrete scales can be calculated without additional filtering

operations.

Discrete phase congruency using the SCH matrix was calculated for the Lab image (Figure

6.19a) for M = 11, ωc = 2π/32 and a filter window width of 2π/rw. The results are shown in

Figure 6.20 for either 5, 10 or 20 evenly spaced discrete scales from the frequency interval [wc, π]

and a maximum RT order (N) of either 1,3 or 7. In the result images, the brightness of a pixel

is proportional to its congruency score, while the colour indicates the value of Ptotal, which is the

sum of CH vector magnitudes and thus a rough measure of the strength of the underlying image

structure. This representation will be used for the congruency images in the rest of this section.

The Lab image was chosen as test image because it contains many features of different strengths

and orientations and varying illumination across the image. We can observe that the mean scale

is high (small feature size) and the variance is high (energy spread across scales) at the locations

of features, in Figures 6.19b and 6.19c respectively.

Using the CH vector gives high phase congruency scores at the location of image features

such as lines and edges. Furthermore, the score is high for both strong (yellow) and weak (blue)

image structures. This illustrates the illumination and contrast invariant nature of the measure.

Increasing N improves the results in some locations. For example, for N = 1 the score at each of

the centre corner features in the three “pacman” shapes (Figure 6.20) is low, while for N = 3 it is

high. Increasing N appears to smear the response due to the larger size of the wavelets, but also

reduces the amount of noise, as does increasing the number of scales. In this image, most of the

noise is due to quantisation of the pixel values from compression.
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(a) Lab image (b) Mean scale (c) Variance
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Figure 6.19: Mean scale (b) and variance (c) of the CH vector energy scale response for the Lab
test image (a). The SCH matrix was calculated using M = 11, N = 3, ωc = 2π/32 and window
width 2π/rw.

6.6.3 Continuous CH Vector Congruency

The SCH matrix provides a continuous representation of the CH vector response over scale. There-

fore, rather than evaluating phase congruency at many discrete points, we can integrate the CH

vector polynomial over a scale interval. In this case, the equations are

Ptotal =

∥∥∥∥∥
∫ b

a

Wf(τ)

∥∥∥∥∥ (6.76)

=

 ∑
|n|≤N

∣∣∣∣∣
∫ b

a

wnfn(τ)

∣∣∣∣∣
2
1/2

(6.77)

and

Psum =

∫ b

a

‖Wf(τ)‖ (6.78)

=

∫ b

a

√
A2(τ) (6.79)

where a and b give the range of scale to integrate. Choosing a = 0 and b = π corresponds to the

frequency spectrum from ωc/2 to
√
2π.

The value of Ptotal can be calculated analytically, as it is possible to find an expression for the

integral of a trigonometric polynomial. For example,

∫ b

a

p(θ) =

∫ b

a

∑
|n|≤N

cne
inθ (6.80)

=

c0θ + ∑
|n|≤N\0

cn
in
einθ

b
a

(6.81)

= c0(b− a)
∑

|n|≤N\0

cn
in

(einb − eina). (6.82)
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Figure 6.20: Discrete phase congruency calculated from the CH vector scale response for different
numbers of scales and N . The scales were equally space to cover the interval [0, π] and the SCH
matrix was calculated using M = 11, ωc = 2π/32 and window width 2π/rw.
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Note that if the integration limits are simply 0 and 2π the exponential terms cancel out and the

equation simplifies to

∫ 2π

0

p(θ) = 2πc0. (6.83)

However, finding the value of Psum involves calculating the square root of A2(τ), and thus cannot

be found analytically unless A2(τ) can be expressed as the square of a polynomial, which is unlikely

as it consists of the sum of other polynomials. A new measure of continuous phase congruency

is therefore proposed, which is able to be computed analytically from the SCH matrix. The new

measure shall be referred to as continuous vector congruency and is given by

V C =
Vtotal

Vsum
. (6.84)

The expression for Vtotal is similar to that of Ptotal (6.77), except that the integral is divided by the

integration range before squaring,

Vtotal =

∥∥∥∥∥ 1

b− a

∫ b

a

Wf(τ)

∥∥∥∥∥ (6.85)

=

 ∑
|n|≤N

∣∣∣∣∣ 1

b− a

∫ b

a

wnfn(τ)

∣∣∣∣∣
2
1/2

. (6.86)

Similarly, the expression for Vsum differs from Psum (6.79) in that the square of the CH vector

magnitude polynomial is used, as this has an analytic expression,

Vsum =

(
1

b− a

∫ b

a

‖Wf(τ)‖2
)1/2

(6.87)

=

(
1

b− a

∫ b

a

A2(τ)

)1/2

. (6.88)

Thus vector congruency can be calculated analytically from the SCH matrix. A discrete version of

is also possible and is given by

Vtotal =

 ∑
|n|≤N

∣∣∣∣∣1I
I∑
i=1

wnfn(τi)

∣∣∣∣∣
2
1/2

(6.89)

Vsum =

(
1

I

I∑
i=1

A2(τi)

)1/2

. (6.90)

Vector congruency differs subtly from phase congruency. For a CH vector scale response where

the normalised vector Wf(τ)/‖Wf(τ)‖ is constant and only the magnitude, ‖Wf(τ)‖, changes,

phase congruency will give the maximum value of 1. However, vector congruency will only give a

result of 1 if both the vector and its magnitude are constant. To illustrate, consider a simple 1D



222

descriptor evaluated at three scales that gives the values {1, 1, 0}. Phase congruency gives Ptotal =

2, Psum = 2 and thus PC = 1. Whereas vector congruency gives Vtotal = 2/3, Vsum =
√
2/3 and

thus a lower value of V C =
√
2/3 ≈ 0.82.

This difference is not necessarily bad. The simple formula for phase congruency in (6.69) does

not account for the spread of energy across the scale spectrum. Indeed if the amplitudes are zero

for all except one of the discrete scales, the phase congruency measure will still be 1. In practical

terms this means a single large response at one scale is enough to give a high phase congruency

score. This was the reason Kovesi [58] included a spread weighting, W , in (6.68), to penalise the

score if the energy was not spread across scale. A similar penalty is thus built in to the vector

congruency measure by way of its construction, while still remaining illumination invariant.

Continuous vector congruency using the SCH matrix was calculated for the Lab image for

M = 11, ωc = 2π/32, a filter window width of 2π/rw, and over the interval τ ∈ [0, π]. The

results are shown in Figure 6.21 for a maximum RT order (N) of either 1,3 or 7. As with phase

congruency, vector congruency gives high scores at the location of image features, such as lines and

edges, regardless of the strength of the local image structure. Thus it has the same illumination

and contrast invariant nature as phase congruency. Likewise, increasing N appears to smear the

response but also reduces the amount of noise, however the effect is less pronounced. The main

difference between the measures is that vector congruency has a lower score in the flat regions

of the image. These regions correspond to areas of low variance in Figure 6.19, meaning that

the energy is not spread across scale. This highlights the aforementioned difference where vector

congruency inherently penalises a lack of spread of energy.

(a) N = 1 (b) N = 3 (c) N = 7

Figure 6.21: Continuous vector congruency calculated from the CH vector scale response for differ-
ent values of N . The integration limits were [0, π] and the SCH matrix was calculated using
M = 11, ωc = 2π/32 and window width 2π/rw.

6.6.4 Interval, Noise and Weighting

When implementing Kovesi’s final version of the phase congruency measure [58], shown in (6.68),

four aspects must be decided upon,

• The phase vector that is used to describe the local image structure.
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• The scales at which the phase vector is calculated.

• A noise threshold that attenuates the score in regions where the magnitude of the phase

vector is low.

• A weighting function to penalise the score if there is insufficient energy spread across scales.

In the proposed CH vector congruency, the phase vector is the CH vector given by the SCH

matrix, and we must decide on the number of SH basis wavelets (M), RT orders (N), cut-off

frequency (ωc), and filter window width. Instead of the number of discrete scales, the integration

limits must be chosen. Furthermore, we can expand the basic vector congruency equation to

include terms for noise and energy spread weighting to

V C =
W (Wf(τ))bVtotal − T c

Vsum + ε
(6.91)

where b·c is a function that sets negative values to zero.

Regarding the SCH matrix, the first choice to make is the filter width. Using the energy

approximation method a filter of approximately one octave is given by a window width of 2π/rw
(Figure 6.3). The cut-off frequency sets the minimum frequency (maximum wavelength) that is

used in the calculations, and determines the value of rw (6.10). It should be set low enough to

include the desired range of feature scales. Values of 2π/32 and 2π/64 have been used in the

examples, for images ranging from 256 × 256 to 512 × 512 pixels. The number of SH orders (M)

should be set high enough to reduce the oscillations outside the filter window to an acceptable

level (Figure 6.3). The number of RT orders must be large enough to adequately discriminate the

interesting features in the image but not too large to cause smearing of the response. A value

between N = 3 and N = 7 is recommended. Using N = 1 (the monogenic signal) showed artefacts

at the location of i2D features (Figure 6.7).

In the remainder of this section the effects of integration limits, noise thresholding and energy

spread weighting will be demonstrated.

Integration Limits

The range of scales included in the vector congruency measure is determined by the integration

limits a and b. Choosing a = 0 and b = π includes all the scales from the lower frequency cutoff,

ωc/2, to the maximum frequency,
√
2π. For a maximum vector congruency of 1 the vector must be

the same across all the scales. Therefore if lower frequencies (longer wavelengths) are included, the

local area for which the congruency is calculated increases, and the response will tend to towards

larger features. Increasing a excludes longer wavelengths, as does increasing the cutoff frequency,

ωc. Likewise, reducing b removes high frequencies from the calculation, and thus decreases the

response of small features. Using a = π/rw starts the integration from ω = ωc, where the high

pass magnitude first reaches 1, and choosing b = −π log2(ωc)/rw sets the upper limit of integration
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to ω = π which is wholly contained within the spectrum. Choosing these values excludes the part

of the scale response which tapers.

Removing high frequencies ([a, b] = [0, π/2]) suppresses noise but results in a less localised

congruency response (Figure 6.22a). Removing low frequencies ([a, b] = [π/2, π]) increases the

score for smaller features and noisy locations but is more localised (Figure 6.22b). Changing the

limits from the valid frequency range, [a, b] = [0, π], to the entire range, [a, b] = [0, 2π], appears

to give little change in the result (Figure 6.22c). The integral of the squared polynomial over

this interval is simply 2π times the 0th order. Since finding the entire square of a trigonometric

polynomial requires (n+ 1)2 multiplications, but finding only the 0th order requires only 2n+ 1,

using integration limits of [a, b] = [0, 2π] will speed up the congruency calculation.

The previous example (Figure 6.21) showed that increasing N reduced noise but caused a

smearing of the response. In this example (Figure 6.22), also with a larger N , we see that by

restricting the integration range to the higher frequencies the smear is much reduced and the score

is more consistent at the expense of increased noise. Thus one may restrict vector congruency to

the higher frequencies in order to account for the increased size of the wavelets when using larger

N .

(a) Lower frequencies, [0, π/2] (b) Higher frequencies, [π/2, π] (c) Entire range, [0, 2π]

Figure 6.22: Continuous vector congruency calculated from the CH vector scale response for N = 7
and different integration limits (shown in brackets). The SCH matrix was calculated using M = 11,
ωc = 2π/32 and window width 2π/rw.

Noise Thresholding

The noise seen for the high frequency interval (Figure 6.22) is due to low strength image structures

(blue colour). Therefore it can be removed by increasing the noise threshold, T , in (6.91) above

zero. Setting the threshold to the median value of Vtotal gives good results for the high frequency

range (Figure 6.23).

SpreadWeighting

Even though the vector congruency has an inherent penalty for non-uniform spread, we may wish

to further penalise features with a small energy spread. Kovesi [58] used a spread measure given
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(a) Lower frequencies, [0, π/2] (b) Higher frequencies, [π/2, π] (c) Valid range, [0, π]

Figure 6.23: Continuous vector congruency calculated from the CH vector scale response for N = 7,
different integration limits (shown in brackets), and noise threshold set to the median of Vtotal.
The SCH matrix was calculated using M = 11, ωc = 2π/32 and window width 2π/rw.

by the average amplitude of each scale divided by the maximum amplitude. A sigmoidal function

was used to create the weighting function, W in (6.68), which is then multiplied with the phase

congruency score.

A similar approach is possible with vector congruency. We can divide the total energy, Aenergy,

of the CH vector magnitude scale response by the value at the scale maximum and the integration

range,

sen =
1
b−a

∫ b
a
A2(τ) dτ

‖Wf(τmax)‖2
(6.92)

and use this as the input into a sigmoidal function to create the weighing term. Unlike the sigmoidal

function in [58], the function from Section 3.3.3 shall be used as it delivers values over the full

range from 0 to 1. Alternatively, the variance, skewness and kurtosis measures give information

the shape of the energy distribution that could be used. For example, by dividing the variance

by its maximum possible value we obtain a value between 0 and 1 that can also be fed into the

sigmoidal function to create the weighting term.

svar =
8σ2

τ

(b− a)2
(6.93)

Figure 6.24 shows an example of the weighting along with its congruency output using the same

SCH parameters as the previous example, and either the energy spread measure using the maxi-

mum, sen, or using the variance, svar. The sigmoidal function parameters used were cutoff = 0.45,

slope = 4, and cutoff = 0.2, slope = 2, respectively. For each method the response from noise in

the flat areas is reduced.

6.6.5 Models

Neither phase congruency nor vector congruency discriminate between types or features. Lines,

edges, corners and junctions all give large congruency scores. An extension proposed by Kovesi [59]
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(a) Spread penalty (sen) (b) Spread penalty (svar)

(c) Vector congruency (sen) (d) Vector congruency (svar)

Figure 6.24: Spread weighting calculated from the scale maximum (a) and the normalised variance
(b) of the CH vector energy response for N = 7. Sigmoidal function cutoff and slope were [0.45, 4]
and [0.2, 2], respectively. Continuous vector congruency calculated using integration limits [0, π]
and multiplied by the spread weighting from the scale maximum (c) and the normalised variance
(d). The SCH matrix was calculated using M = 11, ωc = 2π/32 and window width 2π/rw.

used circular moments of the discrete angular response given by a set of orientated quadrature filters

to detect i2D features. Another proposed by Zang [142] used the phase of the monogenic curvature

signal as the shape descriptor to also detect i2D features. In this section, vector congruency is

combined with modelling from the previous chapter, and a new method of detecting i1D and i2D

features is developed.

To begin with, consider the numerator of the vector congruency equation,

Vtotal =

∥∥∥∥∥ 1

b− a

∫ b

a

Wf(τ)

∥∥∥∥∥ , (6.94)

(6.95)

and let

Wf = 1

b− a

∫ b

a

Wf(τ) (6.96)

be the average CH vector over the integration range. This vector can be split in model and residual

components, where the model part represents the particular structure of interest. That is,

Wf = Wfmodel + Wε. (6.97)
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Vector congruency can then be calculated using either the model component or residual component

individually to give a congruency score related to those features.

V Cmodel = ‖Wfmodel‖/Vsum, (6.98)

V Cresid = ‖Wε‖/Vsum. (6.99)

Sinusoidal Model

The sinusoidal model and residual vector magnitudes were calculated using the average CH vector,

Wf, and compared to vector congruency (6.99) using the same vectors (Figure 6.25). The model

magnitude obtained from the average CH vector is high at the locations of i1D features, however

the value varies depending on the strength of the feature. In contrast, the model vector congruency

score is high at the location of i1D features regardless of their amplitude. This is shown in Figure

6.25b where bright blue lines indicate high congruency but low strength. A similar observation can

be made for the residual component, where i2D features with weak strength give a similar vector

congruency score to those with strong strength (Figure 6.25d).

Combining the model and residual components using either the average CH vector (Figure

6.25e) or vector congruency (Figure 6.25f) gives a measure of intrinsic dimension. As before, the

strength of the normal intrinsic dimension measure varies with the strength of the local image

structure, whereas the vector congruency version is normalised. This may improve i2D feature

detection where illumination varies over an image.
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(a) Sinusoidal (i1D) (b) Sinusoidal (i1D) VC

(c) Residual (i2D) (d) Residual (i2D) VC

(e) Intrinsic Dimension (f) Intrinsic Dimension VC

Figure 6.25: Sinusoidal model magnitude (a), residual magnitude (c) and intrinsic dimension (d)
calculate using the average CH vector (left column), compared to the same measurements (b,d,f
respectively) calculated using vector congruency (right column) with integration limits [0, π]. The
SCH matrix was calculated using M = 11, ωc = 2π/32 and window width 2π/rw.
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6.7 Summary

This chapter introduced a new local image descriptor called the SCH matrix, which describes the

CH vector over a continuous range of scale as well as orientation. The matrix is given by the

responses to a wavelet frame. The frame is constructed from an isotropic scale shiftable wavelet

frame, based on the principles of Perona’s deformable kernels [99], augmented with its higher-order

RTs to create a 2D steerable wavelet frame, according to Unser’s conditions in [124].

We are able to derive a polynomial expression for the CH vector energy scale response through

linear combination of the matrix components. One may select the scale that gives the maximum

energy using this novel measure. Other statistics can be derived analytically, such as the mean

scale and variance, to give further insight into the scale distribution of features. From the matrix

we are also able to describe the response to a wavelet in both orientation and scale as a bivariate

polynomial. Inspired by the mean scale statistics, the 0th and 1st circular moments of the wavelet

angular response were proposed as new measures for scale selection. The argument of the first

circular moment is a measure of mean orientation, and is a faster alternative to solving for the

orientation maximum using root finding. One may also average the CH vector over a variable scale

interval, such as either side of the mean scale, as an alternative to limiting analysis to a single

scale.

Finally, a new continuous version of phase congruency called vector congruency was introduced.

It is constructed by the integration of the SCH matrix polynomial over a particular scale interval.

Calculating the numerator of the vector congruency equation is similar to mean scale averaging of

the CH vector magnitude, except that the scale interval is fixed. Indeed if we replace the CH vector

magnitude in the numerator with the response to a wavelet, vector congruency gives an illumination

invariant detection measure. This was demonstrated for the sinusoidal model and its residual to

give an i1D and i2D detector, but could be modified for any feature. It is important to remember

that the vector congruency results do not depend on the strength of the local image structure, only

on the coherence of the CH vector through scale. This makes the measure illumination invariant.

Since the CH vector scale polynomials can be added, subtracted, multiplied, integrated and

differentiated algebraically, any algorithms that use these operations will also result in a continuous

polynomial function. Division (polynomial inverse) and square root operations are not possible

except in special cases, so algorithms that use these will need to be evaluated at discrete scales. A

continuous representation of filter responses is still of benefit, however, as it allows for evaluation

at any number of arbitrary scales without the need for more filtering. By using integration limits of

[0, 2π], many of the integral operations can be sped up, as integration of a trigonometric polynomial

over this range is simply equal to 2πc0, where c0 is the 0th order coefficient. Note that this does

not mean that only the 0th order SH wavelet is used. The scale response polynomial, A2(τ), is

given by the square of the scale response polynomial for each order RT, and therefore all SH orders

contribute to the value of the coefficient.
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One idea that is implicit in the previous chapters of this thesis and other wavelet based detection

and orientation estimation methods, for example [55, 86, 104, 142], is that the components of

junction features are of a similar scale, and thus there is a best scale at which to analyse them.

However, feature energy is spread over a range of scales and feature components can have their

maximum response at different scales, as many of the examples in this chapter showed. This implies

that a single scale may not be sufficient to capture all the information necessary for analysis. The

SCH matrix therefore is a useful descriptor for analysing these types of features, and applying it

to these problems is the subject of future work.
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Chapter 7

Conclusion

7.1 Contributions

This thesis has developed a complete framework for local image analysis using higher-order RTs.

Many different tasks that would normally be performed using different methods, such as local image

representation, interest point detection, feature parametrisation and phase-independent energy

measurement, can be achieved starting with the CH vector.

There are several novel concepts which underpin this approach:

• Collecting higher-order RTs responses into the CH vector are a crucial aspect of the method.

The CH vector generalises previous 2D analytic signals and gives information about the

symmetries of the local image structure up to a certain order. The normalised CH vector is

an illumination invariant description of shape, while the magnitude is a measure of the local

energy. Rather than start with a set of wavelets specific to a feature or problem, the CH

vector is a general descriptor that provides information on a wide range of common image

structures.

• Models are solved by splitting the CH vector into model and residual components and choos-

ing the parameters that minimise the residual magnitude. This allows us to use arbitrary

wavelets that are suited to the image analysis task at hand, rather than designed for the

tight frame property. It also allows for weighting to be treated separately to wavelet shape.

• The inclusion of a residual component enables the novel iterative method of solving for model

parameters. In previous approaches the orientations of model components were found from

the local maxima in the angular response (the roots method in previous chapters). The

iterative method accounts for the side lobe oscillations of the wavelets, and thus allows more

closely oriented feature component to be resolved. The iterative method also allows for the

wavelets to be modified between iterations. For example, one can use both sinusoidal and

half-sinusoidal components in the one representation.

Using the CH vector method, three models were developed that can describe common image

features.
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• The first model was the sinusoidal model used by the monogenic signal and other 2D quadra-

ture approaches. Whereas previous 2D analytic signal were limited in the number of RT

orders used, the CH vector approach meant that higher-order RTs could be used to both get

estimates from even structures and to tune the wavelets towards larger i1D structures. The

benefit of the residual component was again demonstrated with a new method of junction

and corner detection that is a general extension of the previous approaches of the boundary

tensor and monogenic curvature tensor.

• The sinusoidal model was extended to a multi-sinusoidal model. This model allows for

multiple orientation estimation up to any order by adding more higher-order RTs. One

particular application is the analysis of images with multiple additive i1D patterns, such as

coral core x-rays. The wavelet basis is useful for this model, as one can separate an image

into different orientation classes by reconstructing from different model components.

• A half-sinusoidal model was also developed to analyse line-segment and edge-segment junc-

tions in the one model. This model is more general than the previous two as it is able to

represent both i1D and i2D features equally well. Furthermore, wavelets matched to specific

features can be created by considering the CH vector given by the half-sinusoidal model with

set parameters.

Thus we have a primary descriptor of image structure, a method of detecting points of interest,

and three models that describe common image features, all derived from the 2D analytic signal

that is the CH vector. The models have the illumination and rotation invariances of the monogenic

signal and previous approaches, and with appropriate weighting the CH vector magnitude is also

phase invariant. It was found that increasing the number of RT orders increased the size of the

wavelets and thus their orientation selectivity. However, it also increased the size of the image patch

under consideration. It was also found that one needs at least the 4th order RT to distinguish two

crossed lines from an isotropic blob.

One of the most useful results is that one can calculate the sinusoidal model analytically from

both odd and even structures using the 0th to 2nd order RTs and a quartic solver. Many applica-

tions currently use the monogenic signal as a quick method of calculating local orientation. Simply

adding the 2nd order RT should improve these methods will little increase in processing time.

In the last chapter the CH vector was extended to the SCH matrix, which describes the CH

vector over scale. The scale of image analysis is an important parameter that is often picked

through trial and error or using some previous knowledge given by a human operator. From the

SCH matrix a continuous representation of the CH vector magnitude and other measures such as

circular harmonics can be derived. This allows for automatic scale selection in the same CH vector

framework that will be used for detection and modelling. In contrast, other methods will perform

scale selection using measures, such as the determinant of Hessian, that may not be related to the

operators used for subsequent analysis.
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The framework allows the description of local image structure using models with parameters

that are invariant or equi-variant with illumination, rotation and scale.

7.2 Future Work

The sinusoidal model and multi-sinusoidal model are specific to line and edge features, while

the half-sinusoidal model is a more general representation. Further work would be to investigate

models and their corresponding wavelets which are more specific to certain feature types, such those

suggested for chequer patterns (Figure 5.29) or sinusoids at fixed angles (Figure 4.28). Thanks to

the residual vector and the iterative method, images could then be analysed using a dictionary of

different models, or combination thereof.

A second research direction is the use of the CH vector as a texture descriptor. Other descrip-

tors that encode low order rotational symmetry have proved successful for texture classification

[20], character recognition [92] and object recognition [42]. Preliminary work has shown that

k-means clustering of the normalised CH vector, rotated using the sinusoidal model orientation,

automatically classifies regions in an image by shape. The challenge is to learn the feature CH

vectors that are most discriminative.

One of the more interesting observations from this research is that features occur over a range

of scales, and that feature components can have different scales. It suggests that a single scale may

not provide enough information to adequately describe a feature. To compensate one may include

information from multiple scales, such as in the last chapter where we averaged the CH vector

around the mean scale. Another approach could be to use an image model that includes a scale

parameter for the model components, such as

f(z) =
K∑
k=1

λkuk(Rθ(2
ikz)) + fε(z), (7.1)

where ik is the dilation (scaling) factor for the k-th model component uk(z). Estimating the

model components then involves estimating both the orientation and scale parameters from the

SCH matrix. To estimate the components, a quick approximation method like from Section 2.6.2,

would need to be developed for a bivariate polynomial, as would an iterative method that takes

into account the spread of energy of a feature component.
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7.3 Code Repository

It is hoped the CH vector framework finds wide use within the image analysis community. To help

this process a MATLAB repository of functions and examples is available at:

https://github.com/geometrikal/ch-vector
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