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ABSTRACT 

Groundwater is a major source of water in many parts of the world. Due to 

anthropogenic activities it is subjected to various sources of contamination. Effective 

groundwater pollution management and remediation relies on accurate identification of 

unknown pollution source characteristics.  The pollution source should be defined in 

terms of location, flux magnitude, and time of release. The source identification 

procedure is a challenging task due to uncertainties in model definition, parameter 

estimation, hydrogeologic parameters and field measurements. Availability of adequate 

data is vital due to the nature of the contaminant source identification procedure; 

however, acquiring accurate and extensive field measurement data is a very costly and 

time intensive task. The source identification procedure remains a challenging task due 

to sparse measurement data, uncertainties in model definition, parameter estimation, 

and field measurements. Therefore the source identification problem is often 

characterized by very little information, and is considered an ill-posed, complex, and 

non-unique inverse problem. 

In the recent past, the contaminant source identification problem has been 

addressed using different approaches. The linked simulation-optimization approach is 

capable of incorporating complex real-life scenarios and large study areas. In this 

approach, the numerical flow and transport simulation models are linked to an 

optimization model. A typical optimal source identification model minimizes the 

difference between estimated pollutant concentration and measured contamination 

values at monitoring locations. Due to the complex nature of the contaminant source 

identification process, various issues are needed to be addressed in the proposed 
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methodologies in order to achieve an acceptable level of accuracy in recovering 

contaminant source histories. This study focuses on improving the accuracy and 

efficiency of contaminant source identification procedures in the presence of 

hydrogeologic parameter and measurement, uncertainties. This study specifically 

focuses on the following issues:  

i. The utilized simulation model should include an accurate description of the 

study area in terms of hydrogeologic parameters. The uncertainty in 

hydrogeologic parameter values must be quantified and incorporated into the 

contaminant source identification methodology. 

ii. Often the recorded concentration measurements are erroneous. The 

measurement error/uncertainty is required to be explicitly incorporated into the 

optimal source identification objective functions. 

iii. Selection of the monitoring locations for measuring concentrations is vital for 

accurate source identification, and efficient selection of these locations can 

increase the accuracy of recorded source histories. Therefore, an optimal 

monitoring network is required to be designed, intended to reduce uncertainty 

and increase efficiency in recovering source release histories.  

This study focuses on improving the accuracy and efficiency of contaminant 

source identification/characterization procedures in the presence of hydrogeologic 

parameter, and measurement, uncertainties. The main features of this study are:  

i) The hydrogeological parameter uncertainty is incorporated in the optimal 

source identification methodology, using a new parameter for uncertainty 

quantification based on various realizations of the flow field. The new 
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parameter, called the Coefficient of Confidence (COC), is estimated for 

each available contaminant observation data and incorporated into the 

optimal source identification model. Although such quantification cannot be 

designated as fuzzy quantification, in a strict sense, it differs from the crisp 

approach generally adopted in earlier developed methodologies for source 

characterization. This approach can actually eliminate the possibility of 

incorporating additional uncertainties due to inappropriate use of so called 

expert judgments. Adaptive simulated Annealing (ASA) is used as the 

optimization algorithm. 

ii) A two-objective contaminant source identification model is developed 

which can improve the accuracy of recovered source histories using 

erroneous contaminant measurement data. Non-dominated Sorting Genetic 

Algorithm (NSGA) II is used as the optimization algorithm. 

iii) A new optimal monitoring network design methodology is developed using 

redundancy reduction and uncertainty reduction objective functions. This 

new two-objective monitoring network design model is solved using 

NSGA-II and integrated into the source identification methodology by 

sequential implementation of the optimal monitoring network design, and 

solution of the optimal source identification model, in order to increase the 

efficiency of both methodologies. 

This study includes the following steps. An ASA based simulation-optimization 

source identification model is developed which is externally linked with numerical flow 

and transport simulation models. To address the hydrogeologic parameter uncertainty in 
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the source identification model, an uncertainty quantification method is developed. The 

hydraulic conductivity uncertainty is quantified using a quantification parameter based 

on various realizations of the flow field, and using a new parameter called the 

Coefficient of Confidence (COC). Incorporating the estimated COC values in the 

contaminant source identification methodology results in the uncertainty-based linked 

simulation optimization model for contaminant source identification. The performance 

of this proposed methodology is evaluated for both illustrative and experimental 

contaminated aquifers. Obtained solution results show that the proposed methodology 

is capable of recovering source release histories more accurately compared with those 

obtained using earlier developed crisp methodologies in which the hydrogeologic 

parameter uncertainty is not considered explicitly. 

In the next stage of this thesis, a two-objective optimal source identification 

methodology is developed which focuses on measurement error/uncertainty. Two-

objective optimal contaminant source identification models can improve the accuracy 

of estimating the recovered source histories using erroneous contaminant concentration 

measurement data. NSGA-II is linked to the flow and transport simulation models to 

determine the contaminant source characteristics.  

When the measurements are erroneous, the source identification problem 

becomes non-unique. Therefore, various solutions with a possibility of being the true 

source characteristics may be achieved. When the contaminant concentrations are 

erroneous, it is not possible to match all the observed and simulated concentrations. In 

the two-objective approach, the first objective function is normalized using observed 

concentrations. Therefore, this objective function emphasizes matching smaller 
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observed concentrations (for larger objective function improvement); however, the 

second objective function, which is not normalized, tries to match the high 

concentrations. Therefore, the two-objective approach generally finds the possible 

solutions as a Pareto-front.  

The performance of the developed methodology using two different objectives for 

optimal source characterization is evaluated for an illustrative study area considering 

both point and distributed contaminant sources. The obtained solution results 

demonstrate that the two-objective model is capable of finding more accurate source 

characteristics in the presence of measurement error, compared with those obtained 

using each objective function separately in a single-objective model. 

In the next step, a new sequential monitoring network design methodology is 

developed which selects new monitoring locations based on sequential characterization 

of pollutant sources and feeds back new measurement information from the newly 

designed and implemented monitoring network. Integrated source identification and 

monitoring network design sequences are carried out to reach an acceptable level of 

accuracy in characterization of the contaminant source properties. A new two-objective 

monitoring network design model is proposed which minimizes the uncertainty in 

recovered source histories and minimizes the redundancy in measured contaminant 

concentrations.  

The performance of the integrated sequential contaminant source identification 

and monitoring network design methodologies are evaluated using illustrative data, and 

data from real-life contaminated groundwater aquifers. Performance evaluation results 

show that the developed methodologies can improve the accuracy of recovered 
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contaminant source histories in the presence of uncertainty, and provides insight into 

the reliability of recovered source histories. The new sequential monitoring network 

design methodology can reduce the cost and time required to achieve relatively 

accurate characterization of polluted aquifers. 
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1. INTRODUCTION 

Widespread contamination is a major threat to beneficial use of groundwater. Often 

contamination of groundwater aquifers results from failure to adequately safeguard 

stored chemicals, and is caused by the impact of these chemicals released into the water 

bodies. Other sources and pathways of groundwater contamination also exist, including 

industrial wastes, mine wastes, pesticides, etc. 

In polluted groundwater systems, the existing contamination released by past 

activities must be identified and characterized. The characterization process includes 

finding the source locations among potential sources and retrieving their pollutant 

release histories. This approach allows “Potential Responsible Parties” (PRVs) to use 

the identified contaminant source characteristics along with flow and transport 

simulation models to (1) convince regulators that the existing contamination does not 

exceed the regulation thresholds and no remediation is required; or (2) develop 

effective remedial plans that satisfy the cost constraints and have appropriate reliability 

and consideration of risk. Therefore, the accuracy in characterization of contaminant 

sources is of great interest to PRVs and regulators; however, groundwater systems are 

subject to various sources of uncertainty, and acquiring data in polluted aquifers is a 

costly and time-consuming procedure. Therefore, this study aims to improve the 

accuracy in recovered contaminant source histories in existing polluted aquifers using 

available hydrogeological and contaminant concentration measurement information 

with their inherent uncertainties. 
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1. 1. Unknown groundwater contaminant source characterization 

The identification of the contaminant sources plays an important role in modeling of 

subsurface water and reduces the long-term remedial cost. The source identification 

problem deals with the spatial and temporal variations of the location, activity duration, 

and the injection rate of the pollutant sources and is mostly inferred from the available 

sparse and sometimes erroneous concentration measurements at the site. Mainly source 

identification includes a simulation problem, such as groundwater flow and pollutant 

transport models, used to estimate past phenomena or predict future scenarios. The 

estimated values are then compared with observed values. Availability of adequate and 

accurate measurement data is vital for determining the structure of source identification 

procedure; however, acquiring adequate and reliable field measurement data is a cost- 

and time-intensive task, often making the source characterization process difficult. 

The lack of sufficient hydrogeologic parameter information results in uncertain 

groundwater flow and solute transport models. The hydrogeological properties of a 

polluted aquifer have significant influence on the temporal and spatial properties of 

contamination plumes. Therefore, this study focuses on addressing hydrogeological 

parameter value uncertainty in polluted aquifers. In most of the previous contamination 

source identification methods (Jha & Datta, 2013; Mahar & Datta, 2001), the effect of 

hydrogeological parameter uncertainty has been incorporated in the performance 

evaluation data; however, these uncertainties were not formally or explicitly quantified 

in these proposed methodologies.  

The other important source of uncertainty in contaminant source identification 

problems is the measurement error/uncertainty associated with the measured 
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contaminant concentrations over space and time. In most of the previous studies, 

measurement error was not considered explicitly in the methodology. Jha and Datta 

(2013) synthetically added noise to the measured concentrations, to test the method for 

realistic scenarios. A random quantity based on a specified uniform distribution 

represented the measurement error. They demonstrated that their single-objective 

optimal source identification methodology performed satisfactorily when up to 10% 

measurement error exists. 

Most of previously developed optimal groundwater contaminant source 

identification models are single-objective optimization algorithms. As a result of 

erroneous measurement data, and the necessity of using optimization procedures, the 

optimal source identification problem may be ill-posed and non-unique (Datta, 2002). 

Therefore, smaller objective function values do not always mean accurate identification 

of contaminant sources and accurate reconstruction of release histories. A more robust 

approach would be to incorporate parameter and measurement uncertainties in the 

proposed methodologies themselves by using appropriate objective functions.  

1. 2. Monitoring network design dedicated to contaminant source 

identification 

The contaminant source characteristics are identified by minimizing the difference 

between the observed and estimated contaminant concentrations at monitoring locations 

and times. Effective selection of observation points plays a critical role in accurate 

source identification. An improper monitoring network will result in wasted time and 

money utilized for site data collecting, providing inaccurate or irrelevant information 

for the optimal source identification. 
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Optimal design of the monitoring network is necessary due to uncertainty in 

predicting the movement of plumes in the groundwater system, and budgetary 

limitations. Often the contaminated study area is large and there are many potential 

locations to drill and collect groundwater samples. On the other hand, installation and 

sample collections are very costly and this limits the number of monitoring locations. 

Moreover, groundwater contamination problems are mostly long-term problems. The 

release of contaminants can begin many years before actual detection of contaminants 

in groundwater aquifer, while the source release may have stopped or continued at the 

time of measurement data collection. Therefore, groundwater contamination monitoring 

can be a very long and time-consuming process.  

An efficient contaminant monitoring network can substantially decrease the 

number of required monitoring wells based on budgetary limitations. It can also reduce 

the required contaminant monitoring locations by selecting appropriately located 

monitoring wells. 

In the past various optimal monitoring network design objective functions have 

been proposed. The monitoring wells can be selected in order to reduce uncertainty and 

increase the accuracy in the contaminant source characterization process, considering 

budgetary limitations as constraints.  

1. 3. Sequential monitoring network design and optimal 

contaminant source identification 

Satisfactory characterization of contaminant sources is difficult without a sufficient and 

appropriately designed monitoring network. Design of groundwater contamination 

detection monitoring networks ideally requires information about the sources and the 
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expected distribution of contaminant plumes corresponding to location and time. 

Therefore, a coupled and iterative sequential source identification and dynamic 

monitoring network design framework is required to improve the efficiency of the 

designed networks. Preliminary identification of unknown sources, based on limited 

concentration data from initially existing arbitrarily located wells, provides initial rough 

estimates of the source fluxes. These preliminary identified source fluxes are then 

utilized for designing an optimal monitoring network for the first sequence. Both 

processes are repeated i.e., the sequential identification of sources and the subsequent 

design of the monitoring network and this provides the new concentration measurement 

feedback information for improved source identification in the following sequence. 

This sequence may be repeated few times depending on the characteristics of the study 

area. In the absence of adequate and reliable measurements from the field, this 

sequential process may be the most appropriate.  

Sequential optimal monitoring network design, coupled with the optimal source 

identification process can provide vital feedback information for the contaminant 

source identification model and efficient source characterization process. Moreover, 

this sequential process can decrease the required contaminant monitoring time which 

reduces the associated costs and efforts as well. As a consequence, the decision makers 

and environmental managers may be able to decide and implement management plans 

and remedial strategies faster, utilizing  reliable information. 

1. 4. Research objectives 

Most of the previously proposed methodologies for groundwater contaminant source 

characterization have paid very limited or, no consideration to the specific sources of 
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uncertainty in the groundwater contamination modeling and prediction. This study aims 

to incorporate the hydrogeologic parameter uncertainty (specifically hydraulic 

conductivity), and contaminant measurement error explicitly in the contaminant source 

identification and monitoring network design methodologies. The ultimate aim is to 

increase the accuracy in recovered contaminant source histories using available sparse 

and erroneous/ uncertain information about the contaminated aquifer study area. 

The specific objectives of this study are: 

i. Development and evaluation of a methodology for quantification of 

hydrgeologic uncertainties in a contaminated aquifer  

ii. Development of a linked simulation-optimization based contaminant source 

characterization methodology, incorporating quantification of uncertainties in 

estimation of hydraulic conductivity, utilizing Adaptive Simulated Annealing 

(ASA) as the optimization algorithm.  

iii. Performance evaluation of the developed methodology using synthetic aquifer 

data (using simulated measurements)  

iv. Performance evaluation of the developed source characterization methodology 

using measurement data from an experimental aquifer study area for 

quantification of hydrogeologic uncertainty in groundwater source 

characterization  

v. Development of a two-objective simulation-optimization based contaminant 

source characterization methodology, utilizing Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) considering measurement error  
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vi. Development of a two-objective optimal monitoring network design model 

dedicated to reduce uncertainty in the contaminant source identification process 

and to reduce redundancy in contaminant monitoring 

vii. Development of a methodology integrating sequential monitoring network 

design and optimal contaminant source characterization incorporating 

uncertainty, and monitoring redundancy reduction objectives  

viii. Performance evaluation of the integrated sequential monitoring network 

design and source characterization methodology using synthetic (simulated) 

hydrgeologic and concentration data.  

ix. Performance evaluation of the sequential monitoring network design and source 

characterization methodologies utilizing hydrgeologic and concentration data 

from a real-life contaminated aquifer. 

1. 5. Organization of the thesis 

This thesis comprises of eight chapters including an introduction. Chapter 2 is devoted 

to the review of literature related to the areas discussed in this study. 

Chapter 3 presents a new developed methodology to quantify hydrogeologic 

uncertainty in contaminant source identification methodology. It is followed by the 

performance evaluation of the methodology in an illustrative study area. 

Chapter 4 includes the performance evaluation of the methodology discussed in 

Chapter 3 for a real experimental contaminated study area. Chapter 5 introduces a new 

two-objective contaminant source identification methodology using a NSGA-II-based 

linked simulation-optimization model. This new proposed source identification 

methodology aims to reduce the effect of contaminant measurement error on the 
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accuracy of recovered source histories. The performance evaluation of this developed 

methodology for an illustrative study area is also presented in this chapter. 

Chapter 6 presents a new integrated sequential monitoring network design and 

source characterization methodology aimed at: reducing uncertainty in contaminant 

source identification methodology, and also reducing the redundancy in the designed 

contaminated monitoring network. Performance evaluation of this developed 

methodology for an illustrative study area is presented.  

Chapter 7 includes the performance evaluation of the integrated sequential 

monitoring network and source identification methodologies for a real-life 

contaminated urban aquifer. Chapter 8 presents a summary and conclusions of the study 

contained in this thesis. 

The next chapter contains a brief review of some of the representative and 

important literature relevant to this study. 
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2. LITERATURE REVIEW 

This chapter provides a brief review of the representative literature relevant to 

contaminant source identification, monitoring network design and uncertainty in these 

two areas. A part of this chapter has been published in the following journal paper: 

Amirabdollahian, M., & Datta, B. (2013). Identification of contaminant source 

characteristics and monitoring network design in groundwater aquifers: an overview. 

Journal of Environmental Protection, 4(5A), 26-41.  

To generate information about the pollutant source characteristics, when 

groundwater contamination is detected at user-end wells, three main issues should be 

studied. First, the optimization algorithm utilized to minimize the objective function 

representing the differences in measured and simulated concentrations should be 

evaluated. Second, measurements to be obtained, and the most appropriate monitoring 

locations should be decided. Design of an efficient monitoring network instead of 

arbitrary selection of monitoring locations plays a critical role in the efficiency and 

reliability of source characterization. Finally, as the actual observation values are 

collected in the field, where as simulated values are obtained as solution results of 

mathematical or numerical ground water flow and solute transport models, the 

uncertainty in hydrogeological parameter estimates should be studied in detail. 

This Chapter discusses the background and review of literature on identification 

of source characteristics, design of monitoring network, the integration of source 

characterization with monitoring network design along with incorporation of 

uncertainties. 
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2. 1. Identification of contaminant source characteristics 

The most important pollutant source properties which should be addressed in an 

identification procedure are: The source release history; source locations; and, source 

fluxes. 

One approach for source identification consists of solving the differential 

equations backwards in time (inverse problem). The random walk particle method 

(Bagtzoglou et al., 1991, 1992), the quasi-reversibility technique (Skaggs & Kabala, 

1995), the minimum relative entropy method (Woodbury & Ulrych, 1996), the 

Bayesian theory and geostatistical techniques (Snodgrass & Kitanidis, 1997) and 

genetic algorithm (Aral et al., 2001; Mahinthakumar & Sayeed, 2005), are some 

examples of this approach.   

Wagner (1992) developed an inverse model for simultaneous parameter 

estimation and contaminant source characterization. Skaggs and Kabala (1994), by 

using the Tikhonov Regularization (TR), changed the ill-posed problem of contaminant 

source identification to a well-posed minimization problem solved backwards in time. 

Liu and Ball (1999) tested Skaggs and Kabala (1994)’s method at a low permeability 

site at Dover Air Force Base, Delaware. Skaggs and Kabala (1995) applied a more 

computationally efficient and easier to use method called Quasi-Reversibility (QR) to 

the previous problem; however, the results showed that the advantages of the QR 

method come at the expense of accuracy.   

An inverse problem approach based on statistical inference, was applied to the 

same problem as Skaggs and Kabala (1994), by Woodbury and Ulrych (1996). 

Neupauer et al. (2000) evaluated the relative effectiveness of TR and Minimum 
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Relative Entropy (MRE) methods in reconstructing the release history of conservative 

contaminant in a one-dimensional domain. Snodgrass and Kitanidis (1997) developed a 

probabilistic method for source release history estimation that combines the Bayesian 

theory with geostatistical techniques. 

A different approach for identification of source characteristics is simulation-

optimization. It couples the forward time contaminant simulation model with 

optimization techniques. This approach avoids the problem of stability associated with 

formally solving the inverse problem but the iterative nature of simulation models 

usually requires increased computational effort. Many techniques were proposed 

utilizing coupled simulation-optimization, and a few representative ones are discussed 

here. 

2.1.  1. Response matrix 

The response matrix approach utilized unit responses of system in the form of a 

response matrix. Gorelick et al. (1983) used the response matrix approach in the 

identification of pollution source models using a linear programming optimization 

model. Datta et al. (1989) developed an expert system using statistical pattern 

recognition techniques to identify groundwater pollution sources. Stochastic dynamic 

programing was used for optimal pattern classification. The flow and transport 

processes were simulated using the response matrix approach. 

The two limitations of the response matrix approach are: it is based on the 

premise that the superposition principle is approximately valid in terms of flow and 

contaminant transport in the aquifer; and the aquifer parameters must be known and the 
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simulation model must be used to generate the response matrix prior to running the 

source identification model (Mahar & Datta, 2001). 

2.1.  2. Embedded optimization 

This approach identified and characterized a pollutant source by solving an 

optimization model that embeds the governing equations of the physical process of 

flow and transport as constraints. Mahar and Datta (2001) used a nonlinear optimization 

model embedding the governing equations for flow and transport processes, to identify 

pollutant source characteristics as well as to estimate aquifer parameters. Finite 

difference discretization of flow and solute transport equations formed the binding 

constraints. They showed that the embedding methods need large computer storage and 

computational time, for large aquifers. Gorelick et al. (1983) concluded that numerical 

difficulties are likely to arise for large-scale problems using the embedding technique. 

2.1.  3. Linked simulation-optimization 

To conduct unknown pollutant source characterization in large-scale aquifers and real 

areas, linked simulation-optimization methodology was proposed. In this methodology 

the numerical models for simulation of the flow and transport process are internally 

linked to the optimization algorithm. Chadalavada et al. (2011a) presented an overview 

of the pollution source identification simulation-optimization approaches. 

The linked simulation-optimization model is an efficient and effective technique 

to characterize the contaminant sources by internal linkage between flow and 

contaminant transport simulation models and the selected optimization technique (Aral 

et al., 2001; Datta et al., 2009; Mahar & Datta, 2001). This methodology can solve 
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contaminant source problems in fairly large study areas. Moreover, utilizing the 

evolutionary optimization algorithms simplifies the linking process. Examples of the 

evolutionary optimization algorithms include: Genetic Algorithm (GA) (Singh & Datta, 

2006), Tabu Search (TS) (Yeh et al., 2007), Simulated Annealing (SA), Adaptive 

Simulated Annealing (ASA) (Amirabdollahian & Datta, 2014) and differential 

evolution algorithm (Gurarslan & Karahan, 2015). Yeh (2015) and Datta and Kourakos 

(2015) presented an overview on various optimization methods coupled with simulation 

techniques utilized for groundwater quantity management, and quality management, 

respectively.  

Aral et al. (2001) formulated a source identification model which minimized the 

residuals between the simulated and measured contaminant concentrations at 

observation sites. They observed that the effect of measurement errors on identification 

of source locations is very small but it highly affects the accuracy of recovered release 

histories. Singh and Datta (2006) used GA for unknown source characterization in the 

case of different levels of data availability and concentration measurement errors. The 

utilized GA objective function was to minimize the weighted sum of absolute 

differences between observed and simulated concentrations subject to upper and lower 

bonds for source fluxes. To increase the computational efficiency of GA, 

Mahinthakumar and Sayeed (2006) combined GA with local search approaches. Results 

indicated that hybrid optimization methods, combining an initial global heuristic 

approach with a subsequent gradient-based local search approach, are very effective in 

characterizing contaminant sources. 
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Datta et al. (2009, 2011) were able to combine linked simulation-optimization 

with classical nonlinear optimization. Datta et al. (2009) were successful in combining 

the identification of an unknown pollution source and estimation of hydrogeologic 

parameters. Jha and Datta (2011) proposed a linked simulation-optimization method 

which incorporated Simulated Annealing (SA) based methodology to characterize 

pollutant sources and used SA to define the source locations, fluxes and duration. They 

compared the SA results with the GA based solution. Jha and Datta (2013) 

demonstrated that an ASA-based contaminant source identification algorithm is 

computationally efficient in terms of execution time and accuracy. Jha and Datta 

(2015b) presented an application of the linked simulation-optimization based 

methodology to estimate the release history from spatially distributed sources of 

pollution at an illustrative abandoned mine-site. 

In recent years, surrogate models have been used to approximate the original, 

computationally expensive simulation models. A surrogate model is simpler, 

considerably faster to run, and is generally derived from the response surface generated 

from the original simulation model. A popular technique to generate surrogate models 

is based on Artificial Neural Network (ANN). Singh et al. (2004) used the feed forward 

multilayer ANN to identify unknown pollution sources and simultaneously estimate 

aquifer parameters. The proposed methodology was also tested for the missing data 

scenario where part of the concentration observation data was missing (Singh & Datta, 

2007). Moreover, Genetic Programming (GP) can be used as a surrogate model for 

simulation of groundwater and contaminant transport processes. GP-based models are 

simpler and more efficient compared with conventional surrogate models and ANN 
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models (Sreekanth & Datta, 2011). Datta et al. (2014) improved the efficiency of the 

linked simulation-optimization methodologies using GP-based surrogate models. Datta 

et al. (2013) addressed the use of GP surrogate models for identifying unknown 

contaminant source characteristics and monitoring network design feedback 

methodology. Koohpayehzadeh Esfahani and Datta (2015) developed a trained GP-

based surrogate model to replace the flow and biochemical transport simulation models 

in order to reduce computation time. In addition to surrogate models, parallel 

processing capabilities have been utilized in a number of applications to solve large-

scale optimization models for groundwater source identification problems (Mirghani et 

al., 2009). 

2. 2. Monitoring network design 

Optimal design of the monitoring network is necessary due to uncertainty in predicting 

the movement of plumes in the groundwater system, and budgetary limitations. A 

comprehensive review of monitoring network design is reported in Loaiciga et al. 

(1992), ASCE Task Committee (2003) and U.S. EPA. (2005). 

A range of different considered objectives of monitoring network design models 

reported in the literature include: maximizing detection (Meyer & Brill, 1988; Meyer et 

al., 1994; Yenigül et al., 2005); Minimizing the number of wells (Li & Chan Hilton, 

2007; Meyer et al., 1994); minimizing undetected concentrations (Cieniawski et al., 

1995; Datta & Dhiman, 1996; Dhar & Datta, 2007; Mahar & Datta, 1997); minimizing 

the estimation variance (Bogardi et al., 1985; Loaiciga, 1989; McKinney & Loucks, 

1992; Nunes et al., 2004; Passarella et al., 2003; Woldt et al., 1992); minimizing the 
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uncertainty in terms of square root of estimation variance (Kollat & Reed, 2007b; Reed 

& Minsker, 2004); variance reduction with Kalman filter approach (Herrera & Pinder, 

2005; Zhang et al., 2005); minimizing the monitoring cost (Dhar & Datta, 2007; Kollat 

& Reed, 2007b; Reed et al., 2000; Reed & Minsker, 2004; Wu et al., 2005; Wu et al., 

2006); squared deviation of estimated concentration from actual measured 

concentrations (Kollat & Reed, 2007b; Reed et al., 2000; Reed & Minsker, 2004); 

minimizing mass estimation error (Montas et al., 2000; Reed & Minsker, 2004; Wu et 

al., 2005; Wu et al., 2006) and minimizing the error in locating plume centroid (Montas 

et al., 2000; Wu et al., 2005; Wu et al., 2006). 

Different optimization algorithms used earlier include: integer programming 

(Hudak, 1998; Hudak et al., 1995; Mahar & Datta, 1997); mixed integer programming 

(Datta et al., 2008; Dhar & Datta, 2007; Loaiciga, 1989); simulated annealing 

(Mugunthan & Shoemaker, 2004; Nunes et al., 2004); simple genetic algorithm 

(Cieniawski et al., 1995; Mugunthan & Shoemaker, 2004; Reed et al., 2000; Wu et al., 

2005; Wu et al., 2006; Zhang et al., 2005) and ant colony optimization (Li & Chan 

Hilton, 2007). 

Meyer et al. (1994) used simulated annealing to solve the multi-objective integer 

programming of optimal monitoring network design. The system uncertainty was 

incorporated using Monte-Carlo simulation.  Datta and Dhiman (1996) used a mixed-

integer programming algorithm which was linked to a flow and transport model using a 

response matrix approach. To incorporate the uncertainty in solute transport simulation, 

a random error was added to response matrix elements. These random errors follow a 

uniform distribution where the variance is controlled by a degree of uncertainty.  



17 

 

Hudak (2001) tested the mass transport simulation model for seven contaminant 

detection-monitoring networks under a 40-degree range of groundwater flow directions. 

Reed and Minsker (2004) demonstrated the use of high-order Pareto optimization on a 

Long-Term Monitoring (LTM) application. Mugunthan and Shoemaker (2004) 

identified a cost-effective sampling design for long-term monitoring of groundwater 

remediation under multiple monitoring periods and uncertain flow conditions. Dhar and 

Datta (2007) proposed chance-constrained single and multi-objective nonlinear 

optimization models which were capable of designing an optimal time-variant 

groundwater quality monitoring network. Probability theory was used to define chance 

constraints with associated reliabilities. Chadalavada and Datta (2008) utilized two-

objective functions to design an effective monitoring network. The first objective 

function aims to minimize the summation of all positive deviations between simulated 

contaminant concentrations and specified low threshold. The second one minimizes the 

estimated variance of pollutant concentrations at various unmonitored locations. Dhar 

and Datta (2009) presented a methodology based on a linear mixed-integer formulation 

incorporating kriging spatial interpolation technique for global optimal design of water 

quality monitoring. Dhar and Datta (2010) formulated a logic-based mixed-integer 

linear optimization model to develop a model solution for optimal design of 

groundwater monitoring network. In the developed methodology the monitoring 

redundancy reduction has been considered.  

Bashi-Azghadi and Kerachian (2010) located monitoring wells in order to 

identify pollution sources using a multi-objective method. The objective functions of 

the multi-objective optimization model were minimizing the monitoring cost, i.e. the 
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number of monitoring wells, maximizing the reliability of contamination detection and 

maximizing the probability of detecting an unknown pollution source. 

An uncertainty-based optimization model was used by Chadalavada et al. (2011b) 

to design an optimal monitoring network in a real aquifer in South Australia. The 

model located the monitoring wells at locations where the spatial estimation variance is 

large.  

Prakash and Datta (2014) and Datta et al. (2013) presented GP-based monitoring 

factors for design of an optimal monitoring network to improve the accuracy of 

pollutant source identification. These methodologies used trained GP models to 

calculate the impact factor of the sources on the candidate monitoring locations. 

Jha and Datta (2014, 2015a) developed a methodology using Dynamic Time 

Warping (DTW) distance as a cost function in the linked simulation–optimization 

model to design a monitoring network. The objective of monitoring network design 

was to efficiently estimate contaminant source characteristics including the starting 

time of release of an unknown magnitude of pollution from sources. Performance of the 

developed methodology was evaluated with data obtained from a real aquifer. 

2. 3. Integration of sequential contaminant source characterization 

and monitoring network design 

Satisfactory characterization of contaminant sources is difficult without concentration 

measurement data from an efficient monitoring network. Determination of well-located 

monitoring positions requires information about the sources, and the distribution of the 

contaminant plume corresponding to location and time. Therefore coupled and iterative 
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sequential source identification and dynamic monitoring network design framework is 

required. The preliminary identification of unknown sources, based on limited 

concentration data from existing arbitrary located wells, provides the initial rough 

estimation of the source fluxes. These identified source fluxes are then utilized for 

designing an optimal monitoring network for the first stage. Both processes are 

repeated by the sequential identification of sources, and design of the monitoring 

network which provides feedback information in the form of new concentration 

measurements.  

Mahar and Datta (1997) presented a methodology combining an optimal ground-

water quality monitoring network design and an optimal source-identification model. In 

the first step, using an embedding nonlinear optimization model, preliminary 

identification of contaminant sources was obtained. In the next step, an integer 

programming formulation-based monitoring network design model selected the 

monitoring wells in subsequent time periods. In the last step, simulated concentrations 

at new monitoring wells were also perturbed to show measurement errors. The new 

concentration measurement data obtained from the designed monitoring well locations 

were utilized for more accurate identification of source characteristics in sequential 

steps. Comparing results shows that where there is no uncertainty, using an existing 

monitoring network for source identification results in acceptable source flux estimates, 

but updating the monitoring network is preferable. In the presence of uncertainty, the 

existing monitoring network did not show acceptable results and update of the network 

was found to be beneficial. 
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Datta et al. (2008) proposed a methodology which is an improvement on the 

combined source identification and monitoring network design model presented by 

Mahar and Datta (1997). They used the trimmed mean concentration incorporated in 

the monitoring network design. Dokou and Pinder (2009) addressed the issue of 

identifying and delineating Dense Non-aqueous Phase Liquids (DNAPLs) at their 

sources. In this research the iterative process of source identification and monitoring 

network design was proposed, based on combining water quality information (hard 

data) with expert knowledge (soft data). The authors assumed the hydraulic 

conductivity as an uncertain model parameter. The utilized search strategy includes a 

Monte-Carlo stochastic groundwater flow and transport model, a predetermined set of 

potential source locations, and a Kalman filter that updates the simulated contaminant 

concentration field using contaminant concentration data. The updated plume was 

compared with the simulated contaminant concentration fields that emanate from each 

individual potential source using a technique rooted in fuzzy set theory. The three-

dimensional extension and field application of this method were tested by Dokou and 

Pinder (2011). 

Singh and Datta (2010) proposed a kriging linked SA model for the spatial and 

temporal estimation of contaminant plumes. In their proposed sequential simulation 

optimization model, the optimal monitoring network is designed based on the objective 

function of minimizing the contaminant mass estimation error. The new selected 

monitoring wells generate feedback information for the SA optimization model to 

estimate the pollutant concentration plume more accurately. Prakash and Datta (2015) 

demonstrated the application of an optimization-based methodology for 
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characterization of unknown pollution sources, integrating sequential and iterative 

design of the optimal monitoring network. The performance of the methodology was 

evaluated by application to a contaminated aquifer site in New South Wales, Australia. 

2. 4. Parameter uncertainty in ground water systems 

Water resources systems are inherently uncertain and relevant available information is 

mostly imprecise. Solution of groundwater flow and transport models requires the 

knowledge of various soil hydraulic parameters as well as the determination of 

boundary conditions, which are subject to different sources of uncertainty. Spatial 

variations in hydraulic conductivity play a critical role in transport of contaminants in 

groundwater systems, and heterogeneity controls the spread of the contamination 

plume. Considerable hydraulic conductivity data are required to obtain a reasonable 

degree of confidence in simulation of site behaviour (Smith & Schwartz, 1981). In real-

life, limited hydraulic conductivity measurement data are generally available as inputs 

to the flow and transport simulation models. This lack of data may lead to substantial 

non-random uncertainty in the source identification process.  

In water resources systems two distinct sources of uncertainty exist. Aleatory 

uncertainty, which describes the inherent variation associated with the physical system 

or the environment under consideration which is studied by the stochastic approach. 

This source of uncertainty is presented as random imprecision and the mathematical 

representation commonly used is a probability distribution; however, not all 

uncertainties are random and can be objectively quantified. Besides randomness, there 

exists another kind of uncertainty called fuzziness or epistemic uncertainty due to 



22 

 

imprecise or incomplete data, and subjectivity of opinion and judgment. This non-

random uncertainty can be reduced with the acquisition of additional information (Ross 

2005).  

The main approach in quantifying uncertainty in scientific models, for a long 

time, has been the probabilistic approach. This approach assumes the input parameters 

to be random variables having a specific probability distribution function (PDF). Thus 

the outcome from the model becomes a random variable having its own PDF. Various 

researchers have used this method to quantify uncertainty, e.g. air quality modeling 

(Sax & Isakov, 2003; Smith et al., 2000; Yegnan et al., 2002), surface water quality 

modeling (Carroll & Warwick, 2001; Warwick & Cale, 1986), and ground water 

quality modeling (Copty & Findikakis, 2000; Russo & Bouton, 1992). 

Freeze et al. (1992) considered two sources of uncertainty in the hydrologic site 

investigation framework: 1) geological uncertainty; and 2) parameter uncertainty. They 

utilized the search theory and Bayesian updating to calculate the data worth and regret 

objective functions for prior and preposterior evaluations, respectively. Tiedeman and 

Gorelick (1993) studied the model parameter uncertainty in the design of a clean-up 

strategy in a contaminated system. Using nonlinear simulation-regression analysis 

which linked the ground water flow model to a nonlinear weighted least-square 

regression model, the parameter values and their uncertainty (mean, standard deviation, 

and coefficient of variation) were estimated. Abrishamchi et al. (2005) incorporated 

model parameter uncertainty in river water quality modeling using first order reliability 

analysis. They also determined the key factors affecting water quality modeling 

parameters. 
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Geostatistical methods also were widely used to incorporate hydrogeologic 

parameter uncertainty. Sequential Gaussian Simulation (SGS) is one of the 

geostatistical methods to simulate multivariate Gaussian random fields (Deutsch & 

Journel, 1998). Mugunthan and Shoemaker (2004) generated multiple realizations of 

equally probable stochastic hydraulic conductivity fields using SGS. Moreover, the 

Monte-Carlo simulation, as a stochastic approach, has been used for groundwater 

contamination risk assessment (Li et al., 2007). The Monte- Carlo method was used by 

Dokou and Pinder (2009, 2011) to incorporate hydraulic conductivity uncertainty in 

characterization of Dense Non-aqueous Phase Liquids (DNAPLS) sources. 

Within the stochastic approach, where uncertain parameters are treated as random 

variables, it is necessary to obtain a PDF or a Cumulative Distribution Function (CDF) 

for the uncertain input parameters. First of all, an appropriate type of PDF function has 

to be chosen. There are quite a lot and not all will be suitable for the treated problem. 

Other sources of uncertainty in using probabilistic method are: lack of data; and, 

inaccuracy in derivation of mean, variance and (auto-) correlation structure of data 

(Schulz & Huwe, 1997). Variability of the random kind cannot be reduced with 

additional information, although it can be quantified. Besides randomness, there exists 

another kind of uncertainty referred to as fuzziness, epistemic, and non-random 

uncertainty due to imprecise or incomplete data, and subjectivity of opinion and 

judgment. 

Parameter uncertainty is generally epistemic or non-random. This uncertainty is 

due to lack of knowledge about the correct values for the input parameters, and is 

reducible in groundwater contamination problems by acquiring more data which is a 
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costly and time consuming process. OHagan and Oakley (2004) argued that although 

probability theory is perfect, it is not adequate for characterizing non-random 

uncertainty. The elicitation of non-random uncertainty using PDF tools introduces more 

uncertainty into the system. Alternative methods have been introduced to characterize 

this type of uncertainty in water resources problems. Random set and fuzzy set theories 

and fuzzy rule-based theories are some of the approaches available for subjective 

knowledge characterization. 

Zadeh (1965) introduced fuzzy set theory which provides a mathematical 

framework to deal with uncertainty that is caused by imprecise information rather than 

by randomness. Incorporation of fuzzy information in the geostatistic field was first 

introduced by Bardossy et al. (1988). Fuzzy kriging (Bardossy et al., 1990a; Bardossy 

et al., 1990b) and using variogram parameters and fuzzy regression techniques 

(Bardossy et al., 1990c) are helpful tools to overcome the problem of insufficient 

numbers of measurements as well as the combination of hard and soft data. 

In the fuzzy uncertainty evaluation approach, membership functions are used 

instead of PDFs. Schulz and Huwe (1997) utilized fuzzy set theory to express 

uncertainty of model parameters of steady-state water flow in unsaturated soils and to 

incorporate this uncertainty in the modeling procedure. Dou et al. (1997) introduced 

uncertainty in dispersivity and flow velocity in analytical and numerical 1D and 2D 

solute transport process, using fuzzy membership functions.  

Schulz and Huwe (1999) mapped uncertainty in soil hydraulic proprieties and 

boundary conditions on soil water pressure output values. This model used the fuzzy 

membership function concept and nonlinear optimization method to construct output 
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membership functions to estimate the degree of uncertainty in water pressure values in 

different depths in a multi-layer soil. In the work of Abebe et al. (2000), PDFs of input 

parameters were used by two uncertainty analysis methods, Monte-Carlo Simulation 

(MCS) and Fuzzy Alpha-Cut (FAC), to construct the distribution of the output 

(contamination concentration) and the corresponding uncertainty. Results show that in 

the case of output cumulative frequency distributions, the two methods are identical. 

While comparing PDFs, more variability in MCS and more consistency in FAC 

approaches were observed; however, when enough data for building PDF of uncertain 

parameter is not available, considering a probabilistic method, much available 

information may be lost too. For instance for hydraulic conductivity with a trapezoidal 

membership function (Figure 2.1), assuming uniform distribution function would waste 

some of the expert knowledge.(Schulz & Huwe, 1997). 

The fuzzy rule-based approach has been used in solute transport studies (Dou et 

al., 1999) and for assessing an aquifers’ pollution potential (Cameron & Peloso, 2001; 

Dixon et al., 2002). In the work of Dixon (2005), the Geographic Information System 

(GIS), Global Positioning System (GPS), remote sensing data and fuzzy-rule based 

models were incorporated to generate the sensitivity and vulnerability of contaminant 

potential maps. Results showed that fuzzy-rule based models are capable of producing 

comparable results with 40% fewer variables than crisp logic- based method. 



26 

 

 

Figure 2.1 Trapezoidal fuzzy membership function compared with normal distribution 
function 

 

Li et al. (2007) developed an Integrated Fuzzy-Stochastic Risk Assessment 

(IFSRA) approach to quantify the probabilistic and fuzzy uncertainties associated with 

general risk in subsurface contaminant concentration in a petroleum-contaminated site 

in North Canada. In this study the hydrologic input parameters were considered as 

probabilistic uncertain parameters. The environmental and health risk levels were 

assumed to be fuzzy in nature. Ayvaz (2007) identified the zone structure and 

associated transmissivity values for a 2D heterogeneous isotropic aquifer using Fuzzy 

C-Means (FCM). Yang et al. (2010) developed an Integrated Simulation-Assessment 

Approach (ISAA) to systematically tackle multiple uncertainties associated with 

hydrocarbon contaminant transport in subsurface areas and assessment of carcinogenic 

health risk. The fuzzy vertex analysis technique and the Latin Hypercube Sampling 

(LHS) based stochastic simulation approaches were combined into a fuzzy-Latin 

Hypercube Sampling (FLHS) simulation model. FLHS was used to predict contaminant 

transport in the subsurface under coupled fuzzy and stochastic uncertainties. 
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Many previous contaminant source identification practices do not formally 

address the uncertainty in the information, models and solutions, and many considered 

these problems as deterministic ones. In contrast to the traditional view of science 

where uncertainty represents an undesirable state, a state that must be avoided at all 

costs, engineers must accept and incorporate some level of uncertainty. One reason 

should be obvious: achieving high levels of accuracy costs significantly in terms of 

time or money, or both. Also the more complex a system is, the more uncertain or 

inexact is the information that is used to characterize that system. It seems intuitive that 

engineers should balance the degree of accuracy in a problem with the associated 

uncertainty in that problem. 

An appropriate approach must be selected for incorporation of input parameter 

uncertainty in a contaminant source identification process. In the absence of adequate 

measurement data, the probabilistic approach is suitable for treating input parameter 

uncertainty (epistemic uncertainty). Utilizing fuzzy and random set theories requires 

reliable expert judgment to construct the input parameter membership functions; 

however, three challenges may limit the use of these methods. First, access to reliable 

sources of expert judgment is not always available, and reliability evaluation of 

available expert knowledge is difficult. Second, in practice the elicitation of expert 

judgment into membership functions by analysts adds more uncertainty. The expert true 

function is unknown to the analyst, and usually experts are unfamiliar with the process 

of representing their knowledge in the form of functions. Finally, many of the 

challenging problems feature information from several experts that might be 
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contradictory in places. Combining several judgments and eliciting a consensus from 

them can add more uncertainty (OHagan & Oakley, 2004).  

In most of the available studies, different aspects of model parameter uncertainty 

are analyzed separately. Because of existing interactions among different pollutants and 

groundwater flow, this may cause considerable bias in model calibration and 

groundwater flow and contaminant transport simulations. Recently some researchers 

have paid great attention to simultaneous analysis of different sources of uncertainty in 

modeling and simulation. Markov chain Monte-Carlo analysis is one of the 

probabilistic methods used to consider different sources of uncertainty and their 

interactions. Improvements in Markov chain Monte-Carlo methods for posterior 

exploration include the use of several chains to better sample the full posterior 

distribution and evolutionary algorithms that include some degree of selection among 

chains. Shojaei et al. (2015) simultaneously analyze the uncertainties in inputs and 

parameters of a river water quality simulation model using Markov chain Monte-Carlo 

method. They show the interactions among the input parameters should be taken into 

account for uncertainty analysis of water quality simulations. 

In groundwater problems, model parameters are measured at a limited number of 

locations of the aquifer study area and an interpolation method is required to estimate 

the parameters for the entire study area. Selection of appropriate interpolation methods 

for the conversion of discrete samples into continuous maps is a controversial issue in 

environmental research and is one of the sources of uncertainty in groundwater flow 

and contaminant simulations. Mirzaei and Sakizadeh (2016) analyzed the suitability of 

three interpolation methods for the discrimination of groundwater with respect to the 
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Water Quality Index (WQI). Three spatial interpolation methods including Ordinary 

Kriging (OK), Empirical Bayesian Kriging (EBK), and Inverse Distance Weighting 

(IDW) were compared for modeling the groundwater contamination. The selection of a 

suitable interpolation technique, and interpolation parameters, are problem specific and 

require special attention to reduce uncertainty. 

2. 5. Measurement error/ uncertainty 

The characteristics of contamination sources, including location, duration of activity 

and release fluxes, are identified using available sparse and often erroneous 

contaminant concentration measurements collected in the field. Generally, for the 

purpose of source characterization, the simulated concentrations (using candidate or 

possible source characteristics) are compared with uncertain field measurements to 

obtain the best fit. Therefore, the reliability of the information required for accurate 

estimation of unknown contaminant source characteristics becomes questionable. 

The analysis and incorporation of uncertainty is gaining extensive attention, since 

uncertainties can affect decisions made regarding policies, management, regulations 

and program evaluations in Hydrogeologic and Water Quality (H/WQ) models (Harmel 

& Smith, 2007). Measurement uncertainty or error is one of the sources of uncertainty 

associated with H/WQ models. The measurement error/uncertainty relates to the errors 

associated with the information collected from the field (Beven, 2006). 

The measurement data are used for calibration, validation and evaluation of 

model performance. The presence of measurement uncertainty has been commonly 

acknowledged in the evaluation of model performance. Common sources of errors in 
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measuring streamflow and water quality data in small watersheds were studied by 

Harmel et al. (2006). Various field-scale methods have been proposed in the literature 

for reduction and quantification of measurement uncertainty related to flow and 

transport characteristics, such as Integral Pumping Tests (IPTs) (Jarsjö et al., 2005); 

however, errors inherently exist in measured data even when strict assurance and 

quality control guidelines are followed (Beven et al., 2012). In groundwater 

contamination problems, measurement uncertainty may exist in collecting the field 

parameter values or observed contaminant concentrations.  

The goodness of fit for calibrated H/WQ models is estimated using various 

coefficients of efficiency indicators such as Nash-Sutcliff coefficient, index of 

agreement, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Each 

indicator is designed to measure particular properties of the fitted H/WQ models 

(Harmel & Smith, 2007). Therefore, in groundwater contaminant source identification 

problems, it is important to select the appropriate goodness of fit indicator, to be able to 

find accurate source characteristics. Mahar and Datta (2001) found optimal source 

characteristics by minimizing the difference between estimated and observed temporal 

and spatial contaminant concentrations collected at monitoring locations. Their selected 

objective function, which was analogous to the goodness of fit indicator, was 

normalized using measured concentration values. Many subsequent studies have 

utilized the same objective function to find optimal source characteristics 

(Amirabdollahian & Datta, 2014; Jha & Datta, 2011; Mahar & Datta, 2001; Singh & 

Datta, 2006). Sum of the squared differences between the estimated and observed 

concentrations, and contamination mass estimation error, can be used as goodness of fit 
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indicators (Kollat & Reed, 2007a). The first is the non-normalized version of the one 

used by Mahar and Datta (2001), and the second involves comparing the total mass 

release by candidate source characteristics and the total mass estimated by observed 

concentrations at monitoring locations. Another strategy involves finding the degree of 

similarity between the estimated and measured concentration plumes (Dokou & Pinder, 

2009). In this method, the observed contaminant concentrations are interpolated and/or 

extrapolated to find the observed contaminant plume, and then it is compared with the 

simulated plume obtained using candidate source characteristics.  

Jha and Datta (2015b) use Dynamic Time Warping (DTW) distance as an 

objective function in the linked simulation–optimization model to design a monitoring 

network to efficiently estimate contaminant source characteristics. Using DTW, 

dissimilarity or distance between a test pattern and a set of reference patterns was used 

as a measure of comparison. 

In addition to goodness of fit indicator, the utilized search algorithm capabilities 

have substantial effect on the effectiveness of the source identification procedure. In the 

previous studies various optimization methods/algorithms have been applied, such as: 

Nonlinear optimization model (NLP2) (Mahar & Datta, 2001), Genetic Algorithm (GA) 

(Singh & Datta, 2006), Simulated Annealing (SA) (Jha & Datta, 2011), and Adaptive 

Simulated Annealing (ASA) (Amirabdollahian & Datta, 2014; Jha & Datta, 2013).  
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3. HYDROGEOLOGICAL UNCERTAINTY QUANTIFICATION 

IN THE GROUNDWATER SOURCE IDENTIFICATION 

PROCEDURE 

3. 1. Introduction 

The contents of this chapter have been submitted for review and possible publication in 

Water Resources Management journal. Part of the literature review in general relevant 

to this chapter has been covered in Chapter 2 under the general heading of 

Identification of Contaminant Source Characteristics and Parameter uUcertainty in 

Groundwater Systems. 

Effective groundwater pollution management and remediation depends on 

accurate and realistic characterization of the unknown groundwater pollution sources. 

This remains a challenging task. One issue which needs attention is the uncertainties 

associated with the source characterization process. The characteristics of contaminant 

sources are identified using available field hydrogeologic parameter values and sparse 

and sometimes erroneous contaminant concentration measurements collected at the 

monitoring locations (Chadalavada & Datta, 2008; Datta et al., 2013). In this chapter, a 

new methodology based on uncertainty quantification is proposed to incorporate the 

uncertainty in available field hydraulic conductivity values in the contaminant source 

identification process.  

In the linked simulation-optimization approach, the simulation models (flow and 

transport) are linked externally to the optimization model. Solution of flow and 

transport processes requires knowledge of various soil hydraulic parameters including 
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hydraulic conductivity. Spatial variations in hydraulic conductivity play a critical role 

in transport of contaminants in groundwater systems, and heterogeneity controls the 

spread of the contaminant plume. Considerable hydraulic conductivity data are required 

to obtain a reasonable degree of confidence in simulation of site behaviour (Smith & 

Schwartz 1981). In real life, limited hydraulic conductivity measurement data are 

generally available as input to the flow and transport simulation models. This lack of 

data may lead to substantial non-random uncertainty in the source identification 

process.  

An appropriate approach must be selected for incorporation of input parameter 

uncertainty in contaminant source identification process. Therefore, in this study a new 

methodology is introduced to quantify non-random uncertainty in a hydraulic 

conductivity field using sparse available data without fitting a PDF, or incorporating 

subjective expert judgment. A new parameter (Coefficient of Confidence) is introduced 

to represent quantification of parameter uncertainty based on random field realizations. 

Although such quantification cannot be designated as fuzzy quantification, in a strict 

sense, it differs from the crisp approach generally adopted in earlier developed 

methodologies for source characterization. This approach can eliminate the possibility 

of incorporating additional uncertainties due to inappropriate use of so-called expert 

judgments.  

The aim of this research is to present a new methodology to quantify existing 

uncertainty in the available hydraulic conductivity data. The results of the 

quantification process are to be incorporated into the linked simulation-optimization 

source identification process to improve the accuracy of the estimated contaminant 
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source characteristics. Throughout this chapter, “uncertainty” refers to the “non-random 

or epistemic uncertainty”.  

In this study, first, the ASA optimization technique is linked to the flow and 

transport simulation models. Then a progressive method is introduced to quantify the 

level of confidence for each simulated concentration value based on the uncertainty in 

the available hydraulic conductivity values. An illustrative application of the proposed 

methodology using a heterogonous flow field is presented. The performance of the 

proposed methodology is also evaluated incorporating contaminant measurement error, 

to establish the potential applicability of the proposed methodology. Then, the 

reliability of contaminant source identification procedure is discussed. Finally, the 

proposed methodology is tested in the light of the SGS method, which is commonly 

used in uncertain groundwater contamination problems. Some of the issues associated 

with the SGS approach, in the context of this chapter, are also discussed. 

3. 2. Contaminant source identification methodology 

The pollutant source characteristics that must be addressed in an identification 

procedure are: (1) source locations; (2) source release history (initiation and duration); 

and, (3) source flux magnitudes. The proposed methodology has two major 

components: Linked simulation-optimization model, and uncertainty quantification 

module. These components are described below. 

3.2 .1 . Linked simulation-optimization model 

The linked simulation-optimization model is solved using ASA algorithm. SA 

approaches the optimization model like a bouncing ball which bounces over mountains 



35 

 

from valley to valley. The SA controlling parameter is Temperature (T), which mimics 

the effect of fast-moving particles in a hot object like molten metal. The initial high T 

value allows the ball to bounce over all mountains to access any valley. Like the 

cooling process of metal, as the T decreases and reaches relatively colder states, the 

height of the ball bounce decreases and it settles gradually in the deepest valley. To 

reach the optimal solution, many parameters must be tuned, such as probability density 

function, acceptance probability density function and the reannealing temperature 

schedule. ASA is a variant of SA in which the automated reannealing temperature 

schedule and random step selection make the algorithm less sensitive to the user-

defined parameters. Using ASA also eliminates the need for several trial executions of 

the model, to adjust the optimization parameters (Ingber, 1996). 

For completeness, we briefly describe the formulation of the linked-simulation 

optimization source identification framework. More details can be found in Mahar and 

Datta (2001). Based on the available background information about the site, the set of 

potential contaminant source locations is assumed to be known. The optimization 

model estimates the optimal contaminant fluxes associated with each potential source 

location at each stress period. The objective function minimizes the weighted sum of 

normalized differences between temporal and spatial observed and simulated 

concentrations subject to upper and lower bounds on source fluxes. The optimal source 

identification model is defined by the objective function 3-1, subject to the constraints 

3-2 and 3-3. 

2 2

1 1
( ) / ( )

nk nob
k k k k
iob iob iob iob

k iob
Min F Cest Cobs Cobs 

 

    (3-1) 
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Subject to: 

( , , , , , , ) 1,...,i i i iCest f D HC x y z q i N   (3-2) 

max0 1,...,iq q i N    (3-3) 

Where nk, nob and N are the total number of concentration observation time periods, 

available monitoring locations and candidate source locations, respectively. k
iobCest and 

k
iobCobs are the concentrations estimated by the simulation model and observed 

concentrations at observation location iob and at the end of time period k, respectively. 

D, HC and θ are the dispersion coefficient, hydraulic conductivity and porosity, 

respectively. xi, yi, zi and qi are the Cartesian coordinates of candidate contaminant 

source i, and the contaminant release flux for candidate location i, respectively. maxq is 

the upper bound for contaminant release fluxes. k
iob  is the Coefficient of Confidence 

(COC) assigned to monitoring location iob at the end of time period k. COC is 

estimated based on the level of uncertainty in the hydraulic conductivity field. 

The constraint set 3-2 represents the flow and contaminant transport simulation 

models and it couples the simulation model and optimization algorithm. Eq. 3-3 limits 

the candidate contaminant flux values, at each potential location, to an upper bound. In 

Eq. 3-1, α is a constant which is sufficiently large, to prevent any individual term in Eq. 

3-1 becoming indeterminate due to the observed value of concentration becoming very 

small. Adding this parameter variable also prevents domination of the obtained solution 

by deviation between measured and simulated concentrations corresponding to low 

concentration measurement values (Mahar & Datta, 2001). Figure 3.1 shows a 
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schematic representation of the linked simulation-optimization source identification 

process using an uncertainty-based ASA optimization algorithm. 

3.2.1. 1 . Groundwater Flow and Transport Simulation Models 

Groundwater Flow simulation model used in this study is MODFLOW-2000 (Zheng et 

al. 2001). MODFLOW is a computer program that numerically solves the three-

dimensional ground water flow equation for a porous medium by using a finite-

difference method. The partial differential equation for transient groundwater flow 

utilized in MODFLOW is given by the following equation (Zheng & Bennett 2002): 

( ) ( ) ( )xx yy zz s
h h h hK K K W S

x x y y z z t
      

   
      

 (3-4) 

where Kxx, Kyy, and Kzz are the hydraulic conductivities (L/T) along the x, y, and z 

coordinate axes which are assumed to be parallel to the principal axes of hydraulic 

conductivity, respectively. H, SS and t are the potentiometric head (L), the specific 

storage of the porous material (L-1), and time, respectively. W is the volumetric flux per 

unit volume representing sources and/or sinks of water, where W<0 for flow moving 

out of the ground-water system, and W>0 for flow moving in (T-1). When combined 

with boundary and initial conditions, Eq. 3-4 describes transient three-dimensional 

groundwater flow in a heterogeneous and anisotropic medium, assuming the principal 

axes of hydraulic conductivity are aligned with the coordinate directions.  

The contaminant transport simulation model which is used in this study is chosen 

as MT3DMS (Zheng & Wang 1999). The partial differential equation describing three-

dimensional transport of contaminants in groundwater can be written as follows (Zheng 

& Bennett 2002): 
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i
j k j p

j k j i p

qC CD u C R
t x x x  

   
   

   
   (3-5) 

where C is the solute concentration in groundwater (ML-3); t is the time (T); j, k are the 

Cartesian coordinates along axes; uj is the groundwater velocity in three dimensions 

(LT-1); Dj,k is the dispersion coefficient tensor (L2T-1); qi is the flux of contaminant 

concentration for source i (MT-1); and 
1

NR

p
p

R


 are chemical reaction terms (ML-3T-1). 

The MT3DMS transport model uses a mixed Eulerian-Lagrangian approach to 

the solution of the three-dimensional advective-dispersive-reactive equation (Zheng & 

Wang 1999). The groundwater velocity values (uj), estimated by the flow model, are 

used by the transport model to estimate concentration values. The estimated 

concentrations (C) are transferred to the optimization model to evaluate the objective 

function value. 
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Figure ‎3.1 Schematic diagram of uncertainty-based contaminant source identification 
methodology 
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3.2 .2 . Uncertainty quantification 

Generally, a predesigned or arbitrary sampling network is utilized to collect field 

hydrogeologic data for groundwater management purposes. The constructed 

contaminant source histories are sensitive to hydraulic conductivity values (Datta et al., 

2009) and spatial variation in hydraulic conductivity is a critical factor controlling 

contaminant mass transport process (Smith & Schwartz, 1980). Confidence in predicted 

spatial and temporal contaminant concentration can be evaluated considering this 

variability. In real-life scenarios, there may be no other option except to use the 

available sparse hydraulic conductivity data. Therefore, to describe mass transport 

adequately, this spatial and temporal uncertainty must be quantified. Smith and 

Schwartz (1981) suggested that there is a complex relationship between the uncertainty 

in transport predictions, and the number of available hydraulic conductivity 

measurements. In order to quantify uncertainty in predicted spatial and temporal 

contaminant concentrations, the following items must be addressed.  

1- Number and spatial distribution of available field measurements; 

2-  The hydraulic conductivity field variability and spatial correlation between 

available measurements; 

3-  The flow field properties including boundary and initial conditions and 

properties of available sinks and sources; 

4- The location, initial time, activity duration, and fluxes of contaminant sources. 

In contaminant source identification procedure, the characteristics of contaminant 

sources are unknown (item 4 in the above list). Therefore, a coupled procedure is 

required to simultaneously quantify the uncertainty in contaminant concentration 
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predictions, and identify sources of contamination. In the proposed methodology, as 

shown in Fig. 3.1, the computation of the COC values relating to each estimated spatial 

and temporal contaminant concentration is incorporated in the optimal source 

identification model. 

3.2.2. 1 . Interpolation Technique 

The MODFLOW simulation model numerically simulates flow process in the aquifer. 

In this simulation the aquifer study area is discretized into cells, and a hydraulic 

conductivity value must be specified for each cell; however, the hydraulic conductivity 

measurements are available at a finite number of locations only. Therefore, an 

interpolation technique is required to interpolate available measurement values through 

the entire aquifer.  

The Inverse Distance Weighting (IDW) method is utilized in this study for 

interpolation of available hydraulic conductivity measurements. Many available 

interpolation techniques require prior information about the statistical properties of 

data. For instance, Kriging requires a carefully selected sample variogram and 

appropriate log-transformation of the data. To acquire accurate statistical properties of 

data, a substantial number of measurements is required. In this study the assumption is 

that the number of available hydraulic conductivity measurements is limited and not 

adequate to accurately estimate the statistical properties of hydraulic conductivity 

distribution for the entire aquifer. Therefore, using statistical interpolation methods 

with limited amounts of available data may lead to an inaccurate interpolated field.  



42 

 

In the IDW method, the value of variable Z at an unsampled location x0, *
0( )Z x , 

is estimated based on data from the surrounding locations, ( )iZ x , as Eq. 3-6.  

*
0

1
( ) ( )

n

i i
i

Z x w Z x


  (3-6) 

where wi are the weights related to each ( )iZ x value and n is the number of closest 

sampled data points used for interpolation purposes. The weights are estimated using 

Eq. 3-7. 

1

1/

1/

p
i

i n
p

i
i

dw
d






 (3-7) 

where di is the distance between the estimated point and the sample point,  and p is the 

exponent parameter. Prior decisions must be made about the optimal exponent, and the 

number of closest neighbours is to be specified in the interpolation. Using the IDW 

method facilitates interpolation of the hydraulic conductivity field, specifically if 

limited measurement data are available. Cross-validation is used to estimate the optimal 

exponent value. Each value from the measurement data set is eliminated in turn, and 

estimated utilizing information regarding the rest of the data (Goovaerts, 1997). The 

exponent value that results in minimum discrepancy between available measurement 

data and the interpolated values at corresponding locations is selected as the optimal 

exponent value. 

The IDW method uses a predefined number of closest sample points for 

estimation. The weightage assigned to each sample point is proportional to the distance 

between the estimated point and sample points. In this way the quantity and spatial 
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variability of available sample data are considered in the interpolation method without 

any prejudgment about the spatial-correlation between sampled data. To select suitable 

number of closest points (n), spatial structure of data is considered. The spatial auto-

correlation of available measurement data is the correlation among values of single 

variables attributable to their relatively close locational positions. Moran’s I (Moran, 

1950) is an indicator of spatial auto-correlation that is applied to zones or points with 

continuous variable associated to them. It compares the value of the variables at any 

location with the value at other locations using Eq. 3-8. 

,
1 1

2
,

1 1 1

( )( )

( )( ( )

m m

i j i j
i j

m m m

i j i
i j i

N W X X X X
I

W X X

 

  

 







 
 (3-8) 

where Xi is the variable at the particular location. Xj, X and m are the variable values at 

another location, the mean of all available data, and total number of available data, 

respectively. Wi,j is the weight applied based on distance between locations i  and j and 

is estimated using Eq. 3-9. 

,
1
1/i j

ij

if i j
W

d if i j


 


 (3-9) 

where dij is the distance between points i and j. The spatial auto-correlation varies 

between the limits, -1.0 and +1.0. If nearby areas are more alike, the spatial auto-

correlation is positive. Negative autocorrelation, on the other hand, describes patterns in 

which neighbouring areas are not alike, and random patterns exhibits zero spatial auto-

correlation. Therefore, when Moran’s I is large, the suitable number of closest points 

utilized in IDW interpolation would be small; however, for field data with a small value 
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of spatial auto-correlation, a high value of n needs to be considered to maintain 

randomness.  

3.2.2. 2 . Coefficient of Confidence (COC) 

In the crisp contaminant source identification model, the model parameters are 

generally assumed to be known without any associated error (Jha & Datta, 2012; Sun, 

1994). In field applications, however, uncertainty is associated with the hydrogeologic 

parameter values. Even with the idealized assumption that the numerical groundwater 

flow and contaminant transport simulation models are able to provide accurate 

solutions of the equations governing the physical processes, uncertain hydrogeologic 

input values result in inaccurate concentration predictions.  

In the uncertainty-based source identification model, Eq. 3-1 shows the 

formulation of objective function where 
k
iob  is the COC. It represents the degree of 

confidence assigned to the predicted (estimated) contaminant concentration at each 

monitoring location, at each time period. In crisp formulation all monitoring locations 

and time periods are treated equally, therefore the k
iob  values correspond to a value of 

one; however, in the uncertainty-based formulation, less weight is assigned to locations 

or time steps at which the predicted concentration is less accurate due to uncertainty in 

the hydraulic conductivity field. Eq. 3-10 defines the coefficient of uncertainty for 

monitoring location iob at time period k. 

,( ( , , , , , , ) 1,..., , 1,..., )

k k
k iob iob

iob k
iob

k k
iob iob r r i i i i

Cest CestnF
Cest nn

where Cestn average Cest f D K x y z q i N r R






   

(3-10) 
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where k
iobCest is the concentration estimated by the simulation model at monitoring 

location iob and at time period k. This is the same value utilized in the objective 

function (Eq. 3-1) as the predicted concentration. At this stage, the hydraulic 

conductivity field generated by the IDW interpolation method with the n number of 

closest points is utilized in the flow simulation model. n is selected based on the 

estimated sample spatial auto-correlation value (Eq. 3-8). k
iobCestn  is the average 

concentration estimated at the same location iob and time period k. For the purpose of 

estimating k
iobCestn , R realizations of the hydraulic conductivity field are considered.  

Each field realization (Kr) is generated utilizing the IDW interpolation algorithm and nr 

number of closest neighbours included in the interpolation (nr<n). Then, the flow and 

transport models utilize the generated hydraulic conductivity realization to estimate

,
k
iob rCest . The variable nn is specified as a small numerical value which prevents 

division by zero at the locations where the estimated concentration is zero or very near 

to zero.  

In hydraulic conductivity fields with high values of spatial auto-correlation, the 

selected number of closest points (n) is small. Therefore, the field realizations utilized 

in Eq. 3-10 will be nearly identical. In random fields with low spatial auto-correlation, 

the coefficient of uncertainty is able to adequately quantify the uncertainty in predicted 

concentrations. The COC ( k
iob ) is estimated as follows. 

0.1 (1 * 0.1)
1 *

k
k iob
iob k

iob

if U F
U F else


  

 


 (3-11) 
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where U is a normalizing factor selected based on trial and error. The U value is 

selected in such a way that the estimated COC values will be distributed over the range 

[0.1,1]. The quantity 1 * k
iobU F  would be very small or negative when the coefficient 

of uncertainty is very large. Since, it is useful to use all available measurement data for 

the purpose of characterizing sources, the minimum COC is considered to be 0.1; 

however, other suitable values may be specified. 

3.2.2. 3 . Reliability of Source Identification Results 

The reliability of the identified source characteristics is an important issue that needs to 

be addressed for estimations with uncertainty. The reliability of an uncertainty-based 

model can be estimated using the calculated COC values. Using the identified optimal 

contaminant source fluxes obtained as solutions, the COC values corresponding to 

available contaminant monitoring data are estimated. The larger the COC value, the 

smaller the uncertainty level. Therefore, reliability in an ordinal scale can be estimated 

using obtained COC values. Eqs. 3-12, 3-13 and 3-14 are utilized to estimate this 

reliability. 

1 2Re 0.5( )liability     (3-12) 

where 

1 1 1( ) ( )F p COC       
1

1 1; ( )F   (3-13) 

2 2 2( ) ( )F p COC      1
2 2; ( )F   (3-14) 

where F represents the CDF and p is the PDF of estimated COC values. Φ1 and Φ2 are 

values in the range (0.5,1). 1( )p COC   and 2( )p COC  represent the probabilities 

that the COC value is less than or equal to η1 and η2, respectively. 
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The reliability value represents the proportion of contaminant monitoring data 

that has a higher contribution to the identification of contaminant source characteristics 

in relation to all available observed contaminant data. 

3. 3. Performance evaluation 

The performance of the proposed methodology is evaluated for a three-dimensional 

illustrative groundwater aquifer study area shown in Fig. 3.2. The study area is 1500 m 

by 1000 m and the aquifer depth is 30 m. It is discretized into 30 rows, 20 columns and 

two layers. The top, bottom and left side boundaries have a specified head, and the 

right-hand side boundary has variable head boundary conditions. The triangular signs 

show the location of active extraction wells (sinks). The candidate contaminant source 

locations are shown by square signs. Two of them are actual and one is a dummy. The 

numbers show the location of nine monitoring wells. It is assumed that the contaminant 

fluxes are constant in every stress period. The study period is divided in to five stress 

periods. Table 3.1 shows the length of stress periods and the extraction wells and 

contaminant sources’ properties. 

For this evaluation purpose, it is assumed that all the aquifer hydrogeologic 

parameter values are known without any error except hydraulic conductivity (K). The 

aquifer porosity, longitudinal dispersivity, ratios of horizontal to longitudinal and 

vertical to longitudinal dispersivity, and specific storage are 0.25, 35 (m), 0.1, 0.01, and 

0.2 (m-1), respectively.  
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3.3 .1 . Hydraulic conductivity field 

Performance of the developed methodology is evaluated using synthetic hydraulic 

conductivity data. The advantage of using synthetic data is that the actual source 

characteristics and hydrogeologic data are known for evaluation purpose, which allows 

for reliable testing of uncertainty-based source identification methodology.  

 

 

 

 

 

 

 

Figure ‎3.2 Plan view of the illustrative groundwater aquifer study area 

This information is, however, not known to the source identification model. First, 

the actual hydraulic conductivity field is generated, which represents the real field with 

no associated hydrogeologic uncertainty. Second, a limited number of hydraulic 

conductivity measurement points are selected and utilized to generate the uncertain 

hydraulic conductivity field. 
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Table ‎3.1 Characteristics of the Contamination Sources and extraction wells. 

 Location Stress Period 

 Row Column Layer 
1 

183 
days 

2 
183 days 

3 
183 
days 

4 
183 
days 

5 
2196 
days 

Contamination 
Source 

 
Flux (kg/day) 

12 11 1 70 90 35 20 20 

15 15 1 Dummy Source 

20 13 1 95 85 75 50 0 

Extraction 
well 

Flow rate (L/day) 

22 7 1 100 

23 16 1 500 

 

3.3.1. 1 . Actual Flow Field 

A realistic presentation of the porous medium can include a hydraulic conductivity field 

distributed as a Log-normal function through space (Freeze, 1975). The methodology 

performance evaluation is carried out using randomly generated hydraulic conductivity 

values throughout the study area. The study area is divided into grids, each 50 m by 50 

m for the purpose of specifying hydraulic conductivity values (including points located 

on the boundaries). For each location, two HC values corresponding to 10 m and 20 m 

depth are generated to produce a three-dimensional model. Truncated Latin Hypercube 

Sampling (LHS) is utilized to produce more efficient estimates than those obtained 

from random sampling of the distribution function. In the LHS, the probability 

distribution function is divided into non-overlapping, equal-probability intervals.  

The sample is taken from each interval and permuted in a way that the correlation 

of the field is accurately presented (Dokou & Pinder, 2009). To be more realistic and 

avoid the values that are located at the tails of the frequency distribution function, the 

sampling is truncated to the values which are in the (0.6 Y , 1.4 Y ) range. Y  is the 
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mean value. For the values located at a depth of 10 m, the mean and standard deviation 

of the log-normal distribution function are 20 m/day and 15% of the mean (3 m/day), 

respectively. The log-normal distribution function utilized for 20 m depth has a mean 

value of 15 m/day, and the standard deviation is 0.15 times the mean value (2.25 

m/day). The actual hydraulic conductivity field is generated using Ordinary Kriging 

(OK) interpolation technique (Cressie, 2015). Fig. 3.3, shows the HC values for the 

aquifer first layer. 

 

 

 

 

 

3.3.1. 2 . Uncertain Flow Field 

In most field applications, a limited number of measurements are available. In this 

illustrative example, to show the uncertain flow field, hydraulic conductivity values are 

assumed known at locations along the horizontal and vertical axes, at intervals of 300 m 

and 250 m (including locations situated on the boundaries) respectively, and at depths 

of 10 m and 20 m. These 60 locations represent actual sampling points. The 

corresponding HC value is assigned to these points using the actual hydraulic 

conductivity field generated in the previous section. Reducing the number of points 

Figure ‎3.3 The actual hydraulic conductivity field, first layer (unit is m/day). 
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with known HC values by 95 percent, the available hydraulic conductivity field 

becomes uncertain. Using the cross-validation technique, the optimal IDW exponent 

value is 2. The low spatial auto-correlation (I = 0.052) shows a lack of autocorrelation 

and randomness in the available measurement data. Therefore, a large number of 

closest points must be utilized in the IDW method. Fig. 3.4 shows the interpolated 

hydraulic conductivity field for the first layer using IDW method and 60 closest points 

(n=60). 

To identify the characteristics of contaminant sources, nine contaminant 

concentration monitoring locations are selected. Only for performance evaluation 

purposes, monitoring concentration data are generated using the flow and transport 

simulation model and the actual hydraulic conductivity field (Fig. 3.3) to represent the 

distribution of the actual contamination plume; however, in field applications these 

observed concentration measurement data are to be collected from the site. 

 

 

 

 

 

 

For objective function evaluation (Eq. 3-1), the flow simulation model has only 

limited hydraulic conductivity data and therefore, the uncertain flow field (Fig. 3.4) is 

Figure ‎3.4 The uncertain hydraulic conductivity field generated by limited 
number of measurement data, first layer (unit is m/day). 
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utilized. In order to estimate the coefficient of uncertainty and COC assigned to each 

spatial and temporal monitoring datum, four realizations of the hydraulic conductivity 

field are generated using 15 (25%), 30 (50%), 45 (75%) and 60 (100%) values as the 

number of closest neighbors included in the IDW interpolation.  

3. 4. Results and discussion 

The characteristics of contaminant sources are identified using both crisp and 

uncertainty-based models, for comparison purposes. Tables 3.2-3.4 show some of the 

solution results.  In the following tables, for presentation purpose only, the uncertainty-

based models utilizing the uncertainty quantification parameter (COC) are designated 

‘Fuzzy model’ to distinguish it from the Crisp model (without any quantification of 

uncertainty). As shown in Table 3.3, both uncertainty-based and crisp contaminant 

source identification models are able to identify the location of the dummy contaminant 

source by estimating zero flux values for all stress periods. To examine the capability of 

both models in terms of accuracy in estimating source fluxes, the Normalized Absolute 

Error of Estimation (NAEE%) is estimated using Eq. 3-15 (Jha & Datta, 2013). 

1

1

(%) 100

N
i i
est act

i
N

i
act

i

q q
NAEE

q







 




 (3-15) 

where N is the number of stress periods and i
estq and i

actq are the estimated and actual 

source fluxes for stress period i, respectively. Table 3.5 shows the NAEE% values 

obtained for sources 1 and 3. The uncertainty-based model improves the accuracy of 

results at both source locations 1 and 3 by 7.9 and 48.8 percent, respectively. Utilizing 
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the uncertainty-based model, substantial improvement is observed at source location 3, 

where inadequate hydraulic conductivity information leads to approximately 22 percent 

error in identified source characteristics when using the crisp model. Table 3.6 shows 

the estimated COC values corresponding to nine monitoring locations at three sampling 

times, 366, 732 and 1830 days, utilizing the final uncertainty-based model estimated 

source fluxes. The utilized U value (Eq. 3-11) is 20. 

 

Table ‎3.2 Characterization of the Contamination Source 1 

Contamination 
Flux (kg/day) 

Stress Period 

1 2 3 4 5 

Actual 70.0 90.0 35.0 20.0 20.0 

Estimated using 
Crisp Model 

77.4 89.8 31.2 20.9 18.4 

Estimated using 
Fuzzy Model 

76.2 89.9 30.6 19.8 18.1 

 

 

Table ‎3.3 Characterization of the Contamination Source 2 

Contamination 
Flux (kg/day) 

Stress Period 

1 2 3 4 5 

Actual 0.0 0.0 0.0 0.0 0.0 

Estimated using 
Crisp Model 

0.0 0.0 0.0 0.1 0.0 

Estimated using 
Fuzzy Model 

0.0 0.0 0.0 0.0 0.0 
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Table ‎3.4 Characterization of the Contamination Source 3 

Contamination 
Flux (kg/day) 

Stress Period 

1 2 3 4 5 

Actual 95.0 85.0 75.0 50.0 0.0 

Estimated using 
Crisp Model 

89.9 61.6 54.0 32.1 0.0 

Estimated using 
Fuzzy Model 

90.0 73.6 72.1 34.8 0.0 

 

Table ‎3.5 Normalized Absolute Error of Estimation (%NAEE) and improvement 

 Crisp Model Fuzzy Model Improvement % 

Source 1 5.9 5.4 7.9 

Source 3 22.1 11.3 48.8 

 

Table ‎3.6 Coefficient of Confidence (COC) 

Monitoring 
Location 1 2 3 4 5 6 7 8 9 

366 day 0.83 0.98 0.71 0.72 0.83 0.48 0.47 0.72 0.90 

732 day 0.71 0.90 0.10 0.78 0.82 0.44 0.10 0.92 0.83 

1830 day 0.10 0.10 0.10 0.10 0.92 0.10 0.10 0.10 0.88 

 

Table 3.6 shows that it is difficult to identify a pattern in the assigned COC 

values based on the relation among the active source locations, contaminant source 

fluxes, simulation time step, and uncertain hydraulic conductivity fields. These 

relations appear to be complex. For example, monitoring location 9 is very near to 

source 1. Based on the two generated hydraulic conductivity fields (Figs. 3.3 and 3.4), 

the uncertainty in the vicinity of monitoring location 9 is small. Both fields show 
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approximately the same hydraulic conductivity value for the given distance between 

monitoring location 9 and contaminant source 1. Furthermore, the contaminant plume 

at this location is mainly resulting from source 1, and no superimposition of 

contamination injected by other sources has occurred at this location. Therefore, the 

COC assigned to this location is near to 1.00 for all time steps.  

For monitoring location 1, which is close to source 3, a similar explanation for 

COC is valid; however, since this location is about 100 m away from source 3 and the 

hydraulic conductivity field is uncertain between these two locations (Figs. 3.3 and 3.4) 

the COCs are smaller than the values assigned to location 9. The contaminant injection 

from source 3 stopped after two years. Therefore the contaminant concentration at 

monitoring location 1, after 1830 days is very small and near to zero. To prevent 

domination of the model by uncertainty at this location, the computed COC (at 1830 

days) is the smallest possible value (0.10). 

3.4 .1 . Error in concentration measurement data 

In field applications, a level of measurement error is often associated with contaminant 

concentrations measured at monitoring wells. To evaluate the performance of 

uncertainty-based source identification models for realistic scenarios, different levels of 

random concentration measurement errors are incorporated. Synthetically generated 

noise is added to the available error free monitoring data using Eq. 3-16.  

pert obs ud obsC C S C     (3-16) 
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where Cpert, Cobs and Sud are perturbed concentration values, error free concentration at 

monitoring locations and a uniform random number between -1 and +1, respectively. β 

is a fraction between 0 and 1.0 and illustrates the level of measurement error. 

Perturbed monitoring data, which represent the erroneous contaminant 

concentration measurement data are utilized by the uncertainty-based as well as the 

crisp models to characterize sources of contamination. Model performance is evaluated 

using three different levels of monitoring measurement error as low (β=0.10), moderate 

(β=0.15), and high (β=0.20). Five sets of statistically uniform random noises are added 

to error-free contaminant measurement data for each level of monitoring measurement 

uncertainty. Table 3.7 shows the average NAEE% values associated with the solution 

results obtained by both uncertainty-based and crisp models considering uncertain 

hydraulic conductivity field and erroneous monitoring data. 

Table ‎3.7 Performance Evaluation for uncertain monitoring measurement data 

NAEE(%) 
Low (β=0.10) Moderate (β=0.15) High (β=0.20) 

Crisp Model Fuzzy Model Crisp Model Fuzzy Model Crisp Model Fuzzy Model 

Source 1 19.4 14.2 19.8 20.0 22.2 23.5 

Source 3 27.2 18.8 27.6 21.6 30.1 23.3 

 

Using erroneous measurement data, both the models are able to identify the 

source locations accurately by specifying zero and near zero fluxes for the dummy 

source location. The crisp model NAEE% values for all three levels of measurement 

errors are relatively similar; however, for source 1, the uncertainty-based solution 

results show smaller NAEE% values in the case of small contaminant concentration 

measurement errors. Reconstructed source release histories with erroneous 
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measurement data illustrate that for low, moderate and high levels of measurement 

error, NAEE% associated with the source 3, obtained by using the uncertainty-based 

model, are smaller than the corresponding values estimated using the crisp model. 

3.4 .2 . Reliability estimation 

To demonstrate the reliability of estimating the unknown source characteristics, three 

hydraulic conductivity sampling scenarios are considered as described below. 

Scenario 1- Sampling locations are specified along the horizontal and vertical 

axes at intervals of 600 m and 250 m respectively, and at depths of 10 m and 20 m. The 

points that are located on the right and left aquifer boundaries are not selected; however 

points on the top and bottom boundaries are included in the sampling network. 

Hydraulic conductivity values are specified at 20 locations.  

Scenario 2- The sampling locations are specified along the horizontal and 

vertical axes at intervals of 300 m and 250 m respectively, and at depths of 10 m and 20 

m. Hydraulic conductivity values are known at 60 locations. The locations situated on 

aquifer boundaries are selected. This is the same scenario discussed earlier in the 

performance evaluation section. 

Scenario 3- The sampling locations are specified along the horizontal and 

vertical axes at intervals of 300 m and 200 m respectively, and at depths of 10 m and 20 

m. The locations situated on the aquifer boundaries are selected. Hydraulic conductivity 

values are specified at 72 locations.  

The contaminant source fluxes are estimated using the uncertainty-based source 

identification model. Selected n values (Eq. 3-6) for scenario 1, 2 and 3 are 20, 60 and 

72, respectively. The n values are selected based on the computed value of Moran’s I 
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(Eq. 3-8). Table 3.8 shows the estimated NAEE% values for scenario 1, 2 and 3 using 

crisp and uncertainty-based source identification models. The uncertainty-based source 

identification model results in improvement of the NAEE% values in nearly all 

considered scenarios. Only in scenario 3 for source 3, no improvement is achieved 

using an uncertainty-based model and nearly the same contaminant fluxes are 

estimated. In all scenarios, both models were able to correctly identify the dummy (not 

actual) source. 

Table ‎3.8 Normalized Absolute Error of Estimation (%NAEE) for three scenarios 

  Crisp Model Fuzzy Model Improvement % 

Scenario 1 
Source 1 7.2 6.1 17.7 

Source 3 24.1 9.6 60.1 

Scenario 2 
Source 1 5.9 5.4 7.9 

Source 3 22.1 11.3 48.8 

Scenario 3 
Source 1 6.2 5.3 13.5 

Source 3 6.5 6.6 - 

 

Figure 3.5 shows the CDF for estimated COC values using the optimal source 

characteristics obtained as solutions. Notably the CDF for scenario 3 differs 

substantially from CDFs for scenarios 1 and 2. For example, for specific Φ1 and Φ2 

values of 0.6 and 0.8, the η1 and η2 values are (0.39, 0.72, 0.87) and (0.66, 0.86, 0.95), 

respectively for the three scenarios. These η1 and η2 values are utilized in Eq. 3-12 to 

estimate the reliability of the source identification model results. Therefore, it is evident 

that scenario 3, which has the largest values, results in the largest reliability. The 

reliability values are 0.52, 0.79 and 0.91 for scenarios 1, 2 and 3, respectively (Eqs. 3-

12, 3-14). Therefore, identified results estimated for scenario 3 have the highest 
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reliability and the ones estimated in scenario 1 have the lowest reliability. In real-life 

problems, the actual contaminant source fluxes are unknown. Therefore, the NAEE% 

values are only relevant to the performance evaluation purpose and cannot be estimated 

in real contamination problems where source characteristics are not known; however, 

the measure of reliability introduced in Eq. 3-12 is estimated using outcomes of the 

uncertainty-based source identification model. Thus it can be used to estimate a 

measure of source characterization reliability, in real-life groundwater contamination 

problems where the actual contaminant source characteristics are unknown. 

 

Figure 3.5 CDF of estimated COC values 

3.4 .3 . Sequential Gaussian simulation method 

The Sequential Gaussian Simulation (SGS) method is a geostatistical method for 

generation of multiple equally likely realizations of spatially correlated data (Deutsch & 

Journel, 1998). SGS has been widely used in uncertain groundwater contamination 
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problems. This method transforms data into a Gaussian distribution, and then it 

performs variogram modelling on the data. It selects the grid nodes at random, and 

krigs the value at that selected location. In the case of a log-normally distributed 

hydraulic conductivity field, the logs of conductivity values are Gaussian. Therefore 

SGS is applicable for generation of multiple realizations. Note that the longstanding 

log-normality assumption of hydraulic conductivity may not be correct in all cases 

(Mathon et al., 2010). 

In this section we aimed to use multiple realizations generated by SGS to quantify 

uncertainty in the field hydraulic conductivity parameter, and ultimately to decrease the 

uncertainty in identified source characteristics. SGS requires the sample variogram to 

be estimated using available sparse data points. Also an adequate number of 

realizations must be considered to realistically represent actual uncertainty. Utilizing 60 

hydraulic conductivity sample locations (scenario 2), Figure 3.6 shows the optimized 

sample and model variograms (Deutsch & Journel, 1998) estimated using natural 

logarithm of available sparse hydraulic conductivity data. The nugget, sill, and range 

values of the selected exponential model variogram are 0.00, 0.07, and 546.65, 

respectively. Considering the complexity of flow and transport simulation models and 

that a single run may take several seconds, 20 hydraulic conductivity realizations are 

generated in this study using open source MATLAB code mGstat V 0.99 (2004). The 

coefficients of uncertainty are estimated using Eq. 3-17 and Eq. 3-11 calculates 

corresponding COCs. 
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here ,
k
iob nrCest , and NR are the estimated concentration at monitoring location iob 

and time period k using nrth SGS generated hydraulic conductivity realization, and total 

number of realizations (here equals 20), respectively. 
k

iobCestnr is the average 

concentration estimated at the same location iob and time period k using all SGS 

generated realizations. The variable nn is specified as a numerical value which prevents 

division by zero at the locations where the estimated concentration is zero or very near 

to zero. The appropriate value for nn depends on the relative magnitudes of the actual 

concentration values.  

The performances of the methodology based on the SGS generated realizations 

and uncertainty-based source identification are analyzed for two different aspects as 

discussed below. First, SGS utilized the variogram selected based on sparse available 

information. Fig. 3.7 shows the selected variogram based on the actual hydraulic 

conductivity field (Fig. 3.3). The selected variogram based on the natural logarithm of 

actual data is exponential and the nugget, sill, and range values are 0.00, 0.077, and 

190.93, respectively. Note that this evaluation is not possible in real-life problems, 

when the actual field is unknown. Comparing Figs. 3.6 and 3.7 shows that the model 

variogram used in the SGS method is not an accurate estimation of actual field 

characteristics. Therefore utilizing SGS for uncertainty quantification adds extra 

uncertainty to the model. Solution results obtained using the SGS uncertainty-based 

source identification model and error-free concentration measurements, show that 
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NAEE% for source 1, and 3 are 8.3, and 37.0 percent, respectively. In comparison, 

corresponding NAEE% values using SGS uncertainty-based source identification, and 

crisp source identification indicate 40.6 and 67.1 percent increase in estimation errors. 

Therefore using SGS-uncertainty-based source identification model in fact introduces 

additional uncertainty to the already uncertain groundwater contaminant source 

identification problem.     

 

Figure ‎3.6 Scenario 2’s Variogram 
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Figure 3.7 Actual hydraulic conductivity field variogram 

Second, in general the computational cost associated with evolutionary 

optimization techniques, e.g. ASA, is high. In linked simulation-optimization source 

identification models, complex flow and transport simulation models must be executed 

for each iteration of the optimization procedure and repeated many times. This 

increases the computational cost substantially. Due to enormous computational costs 

associated with the solutions of the model, it is vital to limit the number of simulation 

model executions and incorporate a limited number of realizations coupled with the 

optimization model; however, using the SGS method, multiple realizations must be 

evaluated. In this study, 20 realizations are utilized for the characterization of 

contaminant sources, which is a small number compared with earlier applications of 

SGS (Mugunthan & Shoemaker, 2004). For the illustrative study area, the running 

times of crisp, uncertainty-based, and SGS uncertainty-based source identification 
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models are approximately 27, 57, and 560 hours, respectively. Therefore, because of 

computational costs using the SGS approach becomes prohibitive. 

The SGS method is a useful tool for risk reduction in contaminant plume 

characterization and delineation, and for monitoring network design problems. Utilizing 

SGS may be preferred where the aim is to design a model that shows acceptable 

performance in all perturbations of the model, the spatial correlation is known, and a 

limited number of model simulations is required. 

The performance evaluation results presented here are based on a limited set of 

uncertainty scenarios. Moreover, there are other possible sources of uncertainty in 

relation to the flow and transport simulation processes, i.e. hydrogeologic 

conceptualization (recharge, inter-basin flows, degrees of confinement, fractures and 

faults, and so on). Finally, the effect of uncertainty in hydraulic conductivity, combined 

with the other hydrogeologic parameter uncertainties, must be explicitly studied.  

Moreover, the developed methodology and the performance evaluation consider 

uncertainties in only one hydrogeological parameter, i.e. hydraulic conductivity. These 

evaluation results demonstrate the relevance of the proposed methodology; however, 

this methodology must further include other hydrogeological parameter uncertainties, 

and other types of uncertainties in modelling and predicting the contaminant transport 

process in an aquifer, to improve the efficiency of contaminant source identification 

process. 
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3. 5. Conclusion 

Lack of information about field hydrogeologic parameters results in non-random 

uncertainty in estimated contaminant concentrations using flow and transport 

simulation models. Inaccurate simulation results decreases the efficiency of the linked 

simulation-optimization based contaminant source identification process. In this study, 

the uncertainty in hydraulic conductivity parameter values is quantified. The proposed 

measure of uncertainty is incorporated in the linked simulation-optimization 

contaminant source identification models. The aim is to improve the accuracy of 

estimated contaminant source characteristics by considering the uncertainty in the 

available hydraulic conductivity data. Multiple realizations of hydraulic conductivity 

fields were generated using the IDW method with different sets of interpolation 

parameters. Utilizing simulated concentrations in these realizations, the COC is 

estimated for each available spatial and temporal contaminant concentration monitoring 

data. Incorporating the COC in the source identification process increases the accuracy 

of recovered contaminant source characterization. The efficiency of uncertainty-based 

source identification compared with the crisp model is more evident in locations with 

large hydraulic conductivity uncertainty. This efficiency also appears to prevail even 

with errors in measured contaminant concentration monitoring data. 

For evaluation purposes, the reliability of the source characterization procedure is 

obtained using the estimated CDF of COC values. This reliability measure can be 

utilized in assessing the accuracy of recovered contaminant source characteristics in 

polluted groundwater aquifers.  
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The accuracy of solution results and the computational efficiency of the proposed 

methodology are compared with those obtained using the SGS method, which is a 

probabilistic approach. In contaminant source identification problems, probabilistic 

methods result in a substantial increase in computational costs. Moreover, the 

variogram selected based on available sparse hydraulic conductivity data, utilized in the 

SGS method, may not be a suitable representation of the entire field variogram. 

Therefore, the SGS method may add more uncertainty to the already uncertain source 

identification model. Performance evaluation results provide insight into the inter-

relation between errors in the source identification process and available spatial 

hydraulic conductivity values. The proposed methodology is potentially useful in 

quantifying parametric uncertainty, when precise information is not available.  The 

scope of this study was limited to only one hydrogeologic parameter. It only illustrates 

the utility of the proposed uncertainty quantification method, without complicating the 

basic issues involved. The potential applicability of the proposed methodology was also 

demonstrated. 

In the next chapter, the performance of the proposed uncertainty-based 

contaminant source identification model is evaluated for an experimental contaminant 

study area. 
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4. VERIFICATION OF DEVELOPED METHODOLOGY FOR 

QUANTIFICATION OF HYDROGEOLOGIC UNCERTAINTY 

IN GROUNDWATER SOURCE IDENTIFICATION 

PROCEDURE USING DATA FROM AN EXPERIMENTAL 

SITE 

4. 1. Introduction 

In this chapter the application of the methodology presented in chapter 3 for 

hydrogeologic uncertainty quantification in contaminant source identification procedure 

is tested for a real-life contaminated aquifer study area.  

The performance of the proposed methodology is evaluated using data recorded 

in an experimental site set up in Botany Sands contaminated aquifer located in New 

South Wales (NSW), Australia (Beck, 2000). Bromide was utilized as the conservative 

tracer for measuring the resulting spatial and temporal concentrations. 

First a brief review of the background of the problem and the calibration of the 

flow and transport simulation models are presented. Next, the hydraulic conductivity 

uncertainty is quantified using the proposed methodology and the uncertainty-based 

contaminant source identification methodology is applied for this site. Finally the 

solution results are presented and the potential applicability of the proposed 

methodology in a real-life contaminated aquifer is discussed.  
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4. 2. Methodology 

The pollutant source characteristics which are required to be addressed in a 

contamination source identification procedure are: (1) source locations, (2) source 

release history (time), and (3) source injection concentration magnitudes. The proposed 

methodology for characterization of unknown groundwater contamination sources 

using uncertain hydrogeological parameter values has two major components: a linked 

simulation-optimization contamination source identification model, and an uncertainty 

analysis module. These components are described below. 

4.2 .1 . Linked simulation-optimization contamination source identification 

model 

Application of an effective and efficient optimization model requires careful definition 

of objective function and possible constraints, and selection of an appropriate 

optimization algorithm. Therefore, in this section, first the objective function and 

constraints are defined. Then, the selected optimization algorithm and the linked 

simulation-optimization method are discussed. 

4.2.2 .1 . Contamination Source Identification Formulation 

The formulation of the contaminant source identification model is described in section 

3.2.1. The objective function is defined by Eq. 3-1, and the constraint sets are defined 

by Eqs. 3-2 and 3-3. The utilized groundwater flow and pollutant transport simulation 

models are MODFLOW and MT3DMS. 
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4.2.2 .2 . Linked Simulation-Optimization Algorithm 

The linked simulation-optimization model is solved using the ASA. ASA is a variant of 

SA in which, the automated reannealing temperature schedule and random step 

selection make the algorithm less sensitive to the user-defined parameters. Unlike SA, 

using ASA eliminates the need for several trial executions of the model, to adjust the 

parameters (Ingber, 1996). 

In this study, the flow and transport simulation models are externally linked to the 

optimization algorithm, constituting the linked simulation-optimization source 

identification model (Datta et al., 2009). First, based on the available site information, 

potential contaminant source locations are selected. Second, the optimization algorithm 

generates the candidate contaminant concentrations associated with each potential 

source location at each stress period.  Third, the simulation models estimate the 

contaminant concentration ( k
iobCest ) at monitoring locations (iob) and time steps (k). 

Then, for each set of candidate source characteristics, the estimated contaminant 

concentration values are transferred back to the optimization model to calculate the 

corresponding objective function. Finally, this process evolves to reach the optimal 

contaminant release histories for the potential source locations (Amirabdollahian & 

Datta, 2013). 

4.2 .2 . Hydrogeological parameter uncertainty analysis 

Generally, a predesigned sampling network is utilized to collect field hydrogeological 

data for groundwater management purposes. The constructed contaminant source 

histories are sensitive to Hydraulic Conductivity (HC) values (Datta et al. 2009). 
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Spatial variations in HC values are a critical factor controlling the contaminant mass 

transport. Therefore, this study focuses on the HC uncertainty in contaminated 

groundwater aquifers. 

In real-life polluted sites, to accurately describe the mass transport process, the 

spatial and temporal uncertainties in available measured HC values must be quantified. 

The confidence in the estimated spatial and temporal contaminant concentration values 

can be evaluated considering the variation and availability of the field HC values and 

using the flow and transport simulation models. 

As discussed in Chapter 3, in a crisp contamination source identification model, it 

is generally assumed that the model parameters are known without any associated 

uncertainty (Sun, 1994). Therefore all the estimated or predicted concentrations ( k
iobCest  

in Eq. 3-1) are assumed to be accurate and can have the same contribution to the 

estimation of the contamination source characteristics. In the crisp source identification 

model, k
iob  is implicitly assumed as 1.0; however, uncertain hydrogeological input 

values result in inaccurate concentration estimations. When the hydrogeological 

parameter uncertainty exists, 
k
iob  is the Coefficient of Confidence (COC). It represents 

the degree of confidence assigned to the predicted (estimated) contaminant 

concentration at each monitoring location, and time and estimated using Eqs 3-10 and 

3-11.  

The U in Eq. 3-11 is a relaxation factor. When U is very small, the estimated 

COC values are always one or very near to one. Therefore, the objective function (Eq. 

3-1) would be the same as the crisp situation and the effect of parameter uncertainty 
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would not be properly considered. On the other hand, when U is large, the optimization 

algorithm would try to find the source release concentrations which result in the larger 

coefficient of uncertainty (Eq. 3-10) values and smallest COC values to minimize the 

objective function. In other words the priority of the optimization algorithm would not 

be the matching of the estimated and observed concentrations. Thus the suitable value 

for U should be selected based on the range of estimated coefficients of uncertainty 

values, by trial and error. In this chapter this trial and error procedure is discussed in 

detail. 

4. 3. Performance evaluation 

The performance of the proposed methodology has been evaluated using measurement 

data from a contaminated experimental site set up in the Botany Sands Aquifer (BSA) 

located to the south of Sydney CBD, New South Wales (NSW), Australia (Beck, 2000).  

Although the BSA is considered to be homogenous on a regional scale, on the 

micro scale the aquifer can be highly heterogeneous. In contaminated sites, detailed HC 

and contaminant distribution information are necessary to delineate solute movement 

(Fu et al., 2015). Heterogeneity becomes increasingly important as the scale of the 

system decreases and more attention must be given to the micro hydrogeological 

studies. 

Various hydrological, hydrogeological and hydrochemical data were collected at 

this experimental site, during a small-scale natural gradient experiment carried out to 

examine the effect of heterogeneity on the solute transport (Jankowski & Beck, 2000). 

The details of the study area and the tracer test experiment are described below; 
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however, few obvious inconsistencies in the recorded measurement data were corrected 

before the raw data were used for this evaluation purpose.   

4.3 .1 . Study area 

The northern part of the BSA is located approximately 3-5 km south of the Sydney 

CBD, Australia (Fig. 4.1). The BSA was the earliest groundwater resource used to 

supply water for Sydney and has been utilized since the 19th century (Beck, 2000). In 

the early 20th century commercial and industrial developments on the northern shore of 

Botany Bay commenced. These developments, which include oil storage and refinery 

facilities, airport and a variety of chemical, industrial and commercial manufacturing 

and storage facilities, resulted in contamination of the groundwater. As the result of 

present and past land uses, lack of effluent management, treatment and disposal, 

statutory controls (in the early years after World War II), a long history of 

contamination exists in this area. Since detection of groundwater contamination, 

various combinations of investigations, management, remediation and groundwater 

consumption restrictions have been utilized to control the negative effects of 

contamination in this area.  

The BSA mainly consists of unconsolidated sands, clays and peaty sediments. 

The thickness of the sediments varies from zero at the northern rim of the basin, in 

Centennial and Moore Parks (Fig 4.1), to approximately 80 m in southern parts. 

Distinct hydraulic boundaries between different geological units produce variations in 

HC values from 1.8 m/day to 50 m/day. Variations in hydraulic properties are closely 

related to lithological units including quartz sand, silty/peaty sand, and sandy/peaty 

clay. 
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Figure 4.1 Location of Botany Sands Aquifer and Eastlakes Experimental Site 
(Jankowski & Beck, 2000) 

4.3 .2 . The experimental site 

Spatial heterogeneity associated with site physical properties, especially hydraulic 

conductivity (HC), dominates the solute and contaminant transport processes. 

Therefore, numerical modelling, tracer experiments and laboratory experiments are 

required to study the effect of the HC heterogeneity in micro scale. A tracer test was 

carried out at the Eastlakes experimental (ELE) site, located adjacent to the Lachlan 

Ponds in the middle of the northern part of the BSA, in Daceyville, NSW, Australia 

(Beck, 2000). The site was first established in 1992 with a three-dimensional network 

of piezometers installed on a 7m × 11m grid. The hydrogeological and chemical 

heterogeneity was measured at 815 sampling points (Evans, 1993) with a horizontal and 

vertical spacing of 1m and 150mm-200mm, respectively (Fig 4.2).  
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Figure 4.2 Location of piezometers, injection wells and sampling points in the 
Eastlakes Experimental site (Jankowski & Beck, 2000) 

The geological investigations of the ELE site were carried out by two continuous 

sand cores. Using the geological information gathered during 1992-93 by Evans (1993), 

the composite geological section through the ELE site was prepared. Fig. 4.3 shows the 

composite geological cross-section along line D (Fig. 4.2) through the site. Five distinct 

lithological units were discovered as Sand, Waterloo Rock, Organic Silt and Sand 

Bands, Peat, and Silty Sand. Since the low permeable peat layer is located between 5m 

to 6m above sea level (asl), the ELE area is an unconfined aquifer. Existence of various 

soil types and grain size distribution should result in variation in the HC. Moreover, the 

deposition environment also has significant influence over the HC distribution. 

The aquifer is in hydraulic continuity with the pond, which provides fixed head 

boundaries for the experiments. Therefore, the east (at injection wells) and west 
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boundaries are fixed head and the north and south ones are variable head boundaries. 

The initial head distribution follows the contours in Fig. 4.2 with the regional hydraulic 

gradient of 1:240 (from east to west). 

 

Figure ‎4.3 Composite geological cross-section along line D through the Eastlakes 
Experimental site (Jankowski & Beck, 2000) 

The main source of recharge to the ELE site is direct rainfall, as it is located in 

the open-space area. The average annual rainfall recorded at Centennial Park and 

Sydney Airport are 1236mm and 1083mm, respectively.  Yu (1994) estimated the 

monthly average recharge for the northern part of the BSA between 1986 and 1993. 

These values vary between 0 mm and 515 mm per year with a mean average monthly 

recharge of 68.4 mm. Therefore, for the ELE site flow model, the average recharge is 

considered to be 68.4 mm/month.  
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The variability of HC was measured by multilevel piezometers in lines C, D and 

E with vertical spacing of 150mm-200mm (Evans, 1993). HC was recorded at 455 

locations and the minimum, mean and maximum values were 1.5 m/day, 14.6 m/day, 

and 50 m/day respectively. The collected data is not normally distributed and is skewed 

towards the lower conductivity values. Variations of more than 50 m/day over less than 

50 cm, were present in some parts of the study area.  

In order to find the HC values for the entire study area, the IDW interpolation 

method is utilized. The suitable number of the closest sampled data points used for the 

interpolation purpose (n) is selected using the spatial structure of data.  

The spatial auto-correlation of available measurement data is the correlation 

among values of a single variable attributable to their relatively close locational 

positions. Moran’s I (Moran, 1950) is an indicator of spatial auto-correlation which is 

applied to zones or points with continuous variable associated to them and estimated 

using Eq. 3-8. 

The spatial auto-correlation varies between -1.0 and +1.0. If nearby areas are 

more alike, the spatial auto-correlation is positive. The negative autocorrelation 

describes patterns in which neighbouring areas are unlike and random patterns exhibit 

zero spatial auto-correlation. The Moran’s I coefficient for the available HC values 

from the ELE site is 0.021 which is small and close to zero. Therefore, although BSA is 

homogenous on a regional scale, the ELE site is a highly heterogeneous system on the 

micro scale. The data are not spatially auto-correlated, thus n=3 (Eq. 3-6) is selected for 

the IDW interpolation method. Figs. 4.4-a and 4.4-b shows the variation in HC in the 

third layer of the ELE site. These distributions are estimated using the IDW method 



77 

 

with n=3 and n=455. Here 455 is the total number of available HC measurements. The 

heterogeneous nature of the study area is evident in the contrast between the 

interpolated HC fields, as shown in figs. 4.4a and 4.4b. 

Evans (1993) had measured the HC using constant-head method at three locations 

within the ELE site. Comparing the averaged value measured by the multilevel 

piezometers and the constant-head method, demonstrates that the multilevel 

piezometers underestimate the true HC as they were measured in non-equilibrium 

conditions. Therefore, by calibration of the flow model, the values shown in Fig. 4.4 are 

increased by 20% for the modelling purposes, to better represent the real flow field. In 

the calibration process all the HC values were increased uniformly without changing 

the heterogeneity pattern of the study area. The resulted HC field is used to estimate the 

head distribution and to ultimately estimate the contaminant concentrations ( k
iobCest ) at 

different monitoring locations and times. Since the HC measurements were taken along 

lines C, D, and E, in Fig. (4.4), the heterogeneity is presented along these lines; 

however, there is no measurement out of the central region of the site. Therefore, the 

distribution shown in Fig. (4.4) may not be a good representation of the real field 

conditions, where no measurement is available. The background hydrochemical 

conditions of the natural groundwater prior to tracer injection was recorded using 88 

groundwater samples collected along the central line D. 



78 

 

 

(a) 

 

(b) 

Figure ‎4.4  Hydraulic Conductivity distribution in Eastlakes Experimental site using a) 

n=3 and b) n=455. (unit is m/day) 

N 

Line C 

Line D 

Line E 
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4.3 .3 . Tracer test 

This section briefly outlines the details of the tracer test conducted in the site (Beck 

(2000). A total of 300 litres of tracer solution was prepared which included Boron (B), 

Bromide (Br), Chloride (Cl), and Lithium (Li) as the conservative tracers and Cadmium 

(Cd), Copper (Cu), Potassium (K), Nickle (Ni), Lead (Pb) and Zinc (Zn) as the reactive 

solutes. Table 4.1 summarises the injection concentrations in the tracer solution. 

Table ‎4.1 Injection concentration of the tracer solution solutes 
Solute B Br Cd Cl Cu K Li Ni Pb Zn 
Concentration 
(mg/l) 110.1 186.0 53.2 741.8 56.4 106.9 123.7 54.8 51.3 51.4 

 

Three injection wells (sources C, D, and E) were developed for one day using a 

combination of pumping, surging and recharging methods, to ensure that a good 

interaction between the wells and the aquifer was achieved. Five 20-litre batches of 

solution were injected in each well over a half-hour period starting at 13:00 on 2 July 

1996. Care was taken to maintain low injection flow rates into the wells to ensure 

significant increases in the hydraulic heads of the injection wells did not occur. 

Excessive hydraulic heads in the injection wells would force some of the tracer up-

gradient of the injection wells and cause higher hydraulic gradient than would occur 

under natural gradient conditions. 

The contaminant concentrations sampling was started two days after tracer 

injection (4 July 1996). This was followed by sampling solute concentrations every two 

days after injection. The samples were collected along lines B, C, D, E and F (Fig. 4.2) 

at different elevations.  
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4.3 .4 . Bromide (Br) transport simulation model implementation 

In this study, the Bromide (Br) concentration measurement data from the experimental 

test site are utilized to validate the proposed methodology. The Br concentrations were 

analyzed using ion selective electrodes and ion chromatography (Beck, 2000). 

Chemical analysis of the natural groundwater prior to tracer test did not show any 

detectable background concentration of Br. Therefore, the background concentration 

was specified as zero in the transport simulation model.  

Br is classified as a conservative tracer. Therefore, the two important components 

of the transport simulation are advection and dispersion. The dispersion coefficient was 

estimated by Beck (2000) using graphical method based on the concentration versus 

time plots. In this study, an averaged value of 0.03 m is selected for longitudinal 

dispersivity and the ratio of horizontal transverse dispersivity to longitudinal 

dispersivity, and ratio of vertical transverse dispersivity to longitudinal dispersivity are 

0.4 and 0.1, respectively. 

For the flow and transport simulation purposes, the study area is divided into four 

layers. Each layer has different hydrogeologic properties and therefore, the study area 

incorporates hydrogeologic heterogeneity. Layer one is between the groundwater level 

and the top of the silty sand layer (Fig. 4.3). Layer two is from the top of the silty sand 

soil layer to 7.6 m asl. Layer three is between 7.6 m asl to 7 m asl. Layer four is 

between 7 m asl and the study area bed which is specified as the peat layer. The cell 

size on the plan view is 1 m by 1 m. Fig. 4.5 shows the three-dimensional view of the 

ELE site model. The three injection sources are located in layer three. Owing to the 

small scale of this study area, the parameter estimation and numerical computation 
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errors have noticeably negative effects on the accuracy of the flow and transport 

simulation models. In order to reduce these negative effects in this study, layer three is 

dedicated to the contaminant monitoring procedure and the inter-layer hydraulic 

conductivity is not modeled. The injection sources are located within this layer and the 

observed concentrations located within this layer are utilized for the source 

identification procedure. Layers 1-4 porosities are 0.39, 0.41, 0.36, and 0.41, 

respectively.  

In the numerical flow simulation model MODFLOW, the Layer Property Flow 

(LPF) package is used. Unlike the Block Center Flow (BCF) method, the LPF model 

calculates the conductance for a water table bearing model cell based on the water table 

position instead of the center of the cell. Dynamically following the water table can 

substantially increase the accuracy of flow calculations (Clemo, 2003). The advection 

term in the numerical transport simulation model MT3DMS is solved using Method Of 

Characteristics (MOC). The MOC method uses a conventional particle tracking 

technique based on a mixed Eulerian- Lagrangian method for solving the advection 

term, whilst the dispersion and sink/source mixing terms are solved by finite difference. 

The main advantage of the MOC technique is that it is virtually free of numerical 

dispersion; however, other methods such as the Third-order total Variation Diminishing 

(TVD) method exhibits minor numerical dispersion and minor oscillation in the 

concentration fronts (Schlumberger Water Services, 2011). As a result of the small 

scale of the ELE site, minimizing the numerical dispersion has a drastic effect on the 

estimated contaminant concentrations in the site. 
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Figure ‎4.5 The Discretized model and contaminant injection locations for the ELE site 

 

4.3 .5 . Recovering the contamination source histories 

In this section the proposed method is utilized to find the contamination source 

injection concentrations using the Br concentrations collected 2, 4, 6, and 8 days after 

the tracer injection. In total, 19 Br concentration measurements are used for the 

performance evaluation. The 100 litres of tracer is injected in each well over a half-hour 

period. Therefore, in the flow model, the injection locations are specified as flow 

injection wells with 4.8 m3/day flow rate. Although care was taken to maintain a very 

low flow rate during tracer injection, because of the small scale of the study area even 

this flow rate changes the hydraulic field. Therefore, it must be considered in the flow 

model.  

In this performance evaluation exercise, the specified potential contamination 

source locations include the three actual source locations and another dummy source 

location. One potential source location is added to the source identification model 

which is not actual (dummy), and is located along line G aligned with other three actual 

sources. A dummy source location is introduced as a potential source location in order 

to examine the performance of the methodology in finding the location of actual 
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sources among specified potential locations. The injection flow rate in the other three 

source locations changes the flow system, therefore for the dummy source, a lower flow 

rate (1 m3/day) is specified in the MODFLOW. This will diminish the effect of non-

actual source on the hydraulic head distribution of the study area. The decision 

variables in the source identification problem are the four Br injection rates at four 

potential locations, and the duration of the study period is 8 days. The specified upper 

and lower bounds for contaminant release concentrations, maxq and minq  in Eq. 3-3, are 

1000 mg/l and 0 mg/l, respectively. 

This experimental tracer test may appear to be simple compared with most real-

life aquifer contamination problems; however, since the study area is small (7m × 11m) 

and the study period is short (8 days), the HC uncertainty has a substantial negative 

effect on the accuracy of the contaminant source identification procedure. To 

demonstrate this, the crisp source identification procedure is used to retrieve the source 

release histories. In the crisp method, it is assumed that there is no uncertainty 

associated with the HC distribution. Therefore, in the objective function, k
iob  value is 

1.0 for all the monitoring locations and times. The retrieved Br injection concentrations 

are presented in Table 4.2. 

In order to quantify the HC uncertainty, multiple realizations of the flow field are 

required. In this study, three more realizations (in total R=4) are generated. The IDW 

method with n=3, 6, 9, and 12 is utilized to interpolate the available measured HC 

values and generate realizations. The number of realizations and corresponding n 

values are selected based on the nature of available uncertain hydrogeological 
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parameter values and computational resources. In this study area, the estimated spatial 

auto-correlation of measured HC values is small. The scale of the study area is small 

too. Therefore, the selected n values for realization generation are small, compared with 

the number of available HC measurements. For each realization, the transport 

simulation model must be executed to find the contaminant concentrations at 

monitoring locations and times ( ,k r
iobCest ) for each iteration of the optimization 

algorithm. Thus the selected number of realizations depends on the available 

computational resources and also the degree of heterogeneity and uncertainty in the 

system. More realizations will result in better quantification of the available 

uncertainty, while substantially increasing computational time. The selected nn value 

(Eq. 3-5) is 0.001.  

4. 4. Results 

The estimated Br injection rates at four potential source locations using the uncertainty 

based (loosely designated as Fuzzy in the following tables) source identification 

methodology with different U values are presented in Table 4.2. The Br release 

concentrations at sources are shown in mg/l. These concentrations must be multiplied 

by a constant volume flow rate (4.8 m3/day) specified as a given magnitude in the flow 

model to obtain the source fluxes.  Evaluating the performance of the proposed 

methodology in recovering accurate source injection histories, the Normalized Absolute 

Error of Estimation (%NAEE) is determined using Eq. 3-15. 

Smaller NAEE% values mean that the utilized source identification algorithm is 

able to recover source injection concentration histories with smaller associated 
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estimation errors. The NAEE% values corresponding to each source identification 

method are presented in Table 4.2. Without considering the effect of HC uncertainty, 

the NAEE% associated with the crisp methodology is 54%. Therefore, the crisp method 

exhibits the largest error compared with the HC uncertainty quantification based 

(fuzzy) models. This demonstrates the necessity in considering the effect of 

hydrogeological uncertainty for recovering source injection contamination 

concentrations. 

Table ‎4.2 Retrieved Br injection concentrations at potential source locations 
 

 
Br Injection Concentration (mg/l) 

Actual Crisp Fuzzy 
U=0.1 

Fuzzy 
U=0.3 

Fuzzy 
U=0.5 

Fuzzy 
U=0.7 

Fuzzy 
U=0.8 

Fuzzy 
U=0.9 

Fuzzy 
U=1 

Fuzzy 
U=5 

Fuzzy 
U=10 

Source 
C 186 127 111 8.2 11 8 9 10 65 126 137 

Source 
D 186 89 135 163 160 171 170 160 179 91 93 

Source 
E 186 39 40 162 170 171 170 186 128 30 40 

Source 
G 0 0 0 0 0 0 0 0 0.1 0 0 

%NAEE - 54% 48% 40% 39% 37% 37% 36% 33% 55% 51% 
 

In this proposed methodology, in order to compute the COC values Eq. 3-11 is 

utilized. In this equation the appropriate U value should be selected based on trial and 

error. Therefore, the uncertainty based method with various U values is utilized to find 

source injection histories. In Table 4.2, the smallest estimated NAEE% values are 

associated with U=0.3-1. In the ELE site, Br contamination problem, utilizing the 

uncertainty based (fuzzy) source identification methodology with appropriate U value 

results in about 37% error, and 32% improvement in accuracy compared with the crisp 
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methodology. All methods were able to identify the non-actual (dummy) source 

location. 

4. 5. Discussions 

In this study, the tracer test in the ELE site is utilized for performance evaluation 

of the proposed methodology. Therefore, the actual location and injection histories (

( )t
i estq  ) are known and the estimated NAEE% values using Eq. 3-15 can be utilized to 

find the appropriate U value; however, in real-life aquifer contamination problems, the 

source locations and the injection rates associated with them are unknown and it is not 

possible to estimate and use %NAEE values. In application to a real contaminated 

aquifer,   the suitable U value is to be identified using estimated COC ( k
iob ) values. 

Fig. 4.6 presents the estimated COC associated with different U values. For each U, 19 

COCs are estimated corresponding to 19 Br concentration measurements (monitoring 

data). The source injection concentrations, estimated as the optimal solutions of the 

uncertainty-based source identification procedure, presented in Table 4.2 are used to 

estimate COC using Eqs. 3-10 and 3-11. When U=0.1, a large number of COC values 

are close to 1. Therefore, 0.1 seems too small for this study area. On the other hand, 

when U is large, in this study area U=5 and 10, the optimization algorithm tries to find 

source histories which can minimize the estimated COCs. Therefore, in Fig. 4.6 for 

U=5 and 10 (shown along the top axis) a large number of COC values are 0.1, which 

corresponds to the smallest possible value in Eq. 3-11. Therefore, these U values are 

too large for the uncertainty quantification purposes. 
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Figure ‎4.6 Estimated Coefficients Of Confidence (COC) for different U values 

The Br injection histories in sources D and E were recovered with a high level of 

accuracy by the uncertainty-based (fuzzy) source identification model; however, a large 

error is associated with the Br release history estimated for source C. Moreover, the 

crisp method found a better estimate of the injection concentration at this source 

location, compared with the uncertainty-based method. The reason could be related to 

the HC uncertainty in the study area. In Fig. 4.7 the difference between the average HC 

values of the three realizations and the HC values shown in Fig. 4.4 is presented. Fig. 

4.7 is a representative of the HC uncertainty in this field. The counters show that there 

is some level of uncertainty associated with the area around source C. The 

contaminants move along the natural gradient which is from east to west, thus the 

uncertainty on the left side of the sources affects the accuracy of the estimated 

contaminant concentrations. As the result of this uncertainty, the COCs estimated for 

the monitoring locations along line C, are lower than other monitoring locations. 

Therefore, matching the estimated and observed Br concentrations along lines D and E 
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has a higher importance in the uncertainty-based source identification objective 

function. 

 

Figure ‎4.7 Hydraulic Conductivity uncertainty in Eastlakes Experimental site, unit is 
m/day 

The area surrounding source C is a high permeability area with large HC values 

(Fig. 4.4) compared with the neighboring areas. In this area the number of closest 

sample data points for the interpolation purposes has a noticeable effect on the 

estimated HC field. As fuzziness or uncertainty  can be reduced with the acquisition of 

additional information (Oberkampf et al., 2004; Ross, 2005), additional HC 

measurements in this area can reduce the associated uncertainty.  

In this study, the uncertainty in HC values is characterized in the micro scale. 

Although large number of HC measurements are available (455), using the interpolated 

HC values when n=455 does not appropriately characterize the micro heterogeneity and 
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instead results in an averaged flow field. Considering the small scale of the study area, 

using all available HC measurements will result in a smooth HC field, in the scale of 

this study. By using only a small subset of the data available (n=3, 6, 9, and 12), the HC 

uncertainty is magnified in the micro scale. Table 4.3 shows the estimated contaminant 

source fluxes using crisp source identification model and HC field generated using 

n=455. The NAEE% value is 136% which demonstrates that IDW with n=455 does not 

truly characterize the actual HC field and associated uncertainty. 

Table ‎4.3 Retrieved Br injection concentrations at potential source locations obtained 
using all available HC measurements 

 Br Injection Concentration (mg/l) 
Source C Source D Source E Source G 

Actual 186 186 186 0 
Estimated 109 90 18 364 

 

4. 6. Conclusions 

This study presents a methodology to quantify hydrogeological parameter uncertainty 

to accurately estimate contamination release histories in polluted aquifers. The 

performance of the developed methodology is evaluated using actual measurement data 

from an experimental contaminated aquifer study area. The evaluation and remediation 

of contaminated aquifers requires accurate identification of the contaminant source 

locations and their release histories. In order to find the contaminant source 

characteristics, the groundwater flow and pollutant transport simulation models are 

utilized to optimally estimate the contaminant concentration in the study area, using 

potential source characteristics. Then the estimated concentrations are compared with 

the actual observed concentrations collected as monitoring data. The linked simulation-
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optimization framework is utilized to search for the pollution source characteristics 

which exhibit the best match between the estimated and observed contaminant 

concentrations in the site. In order to obtain reliable solutions, the simulation models 

must be provided with reliable hydrogeological parameter values. In real-life scenarios, 

usually high levels of uncertainty and variability are associated with the available 

hydrogeological parameter values. In this study the effect of uncertainty in 

hydrogeological parameter values on the accuracy of flow and transport models 

estimates are quantified.  

The proposed methodology also provides insight to the relation between the 

errors in flow and transport simulation models and variability in hydrogeological 

measurement data.  Tracer test results at the ELE Site, located in Botany Sands Aquifer, 

Australia, are used to evaluate the performance of the proposed methodology. In this 

study area the hydrogeological heterogeneity in the micro scale, specifically the 

hydraulic conductivity, has substantial effect on the transport of pollutants. Ten tracers 

have been injected into the groundwater systems. Their movement under natural 

gradient was monitored by measuring concentrations in the groundwater at various 

locations and times after injection. Among available tracer information, Bromide is 

chosen as a typical conservative element.  

The ASA-based linked simulation-optimization methodology was utilized to 

characterize the pollution sources using concentrations measured after tracer injection. 

The solution results demonstrate that the proposed methodology recovered pollution 

source characteristics more accurately compared with the methodologies which do not 

consider the effect of hydrogeological parameter uncertainty. In this ELE site, for the 
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Br contamination problem, utilizing the uncertainty quantification (fuzzy) based source 

identification methodology with appropriate U value results in about 33% improvement 

in accuracy compared with the crisp methodology. All methods were able to find the 

non-actual (dummy) source location. 

The developed methodology provides the decision makers with a tool to 

incorporate the hydrogeological parameter value uncertainty for accurate identification 

of contaminant release histories in real-life study areas. Moreover, these solution results 

may be used to find the locations where available field data does not sufficiently 

characterize the flow field. Therefore, these solution results can help in identifying 

locations where additional hydrogeologic information may be collected to reduce 

uncertainty in the flow and transport simulation models. 

The next chapter presents the development and evaluation of a new methodology 

potentially useful for increasing the accuracy of the contaminant source identification 

process utilizing uncertain contaminant concentration measurements. 
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5. CONTAMINANT SOURCE IDENTIFICATION USING 

UNCERTAIN CONCENTRATION MEASUREMENTS 

5. 1. Introduction 

The methodology presented in this chapter aims to use a two-objective approach to 

improve the accuracy of optimally estimating pollutant source characteristics in the 

presence of measurement error/ uncertainty. 

In this chapter, a two-objective linked simulation-optimization approach is 

developed, which addresses the uncertainties associated with erroneous measurements 

utilized for groundwater contaminant source identification. The aim is to obtain a trade-

off between two single objectives each of which may not be an ideal objective function 

separately, where uncertainties exist.  

A three-dimensional transient flow and transport process in a contaminated site 

with point and distributed contaminant sources is modeled for the performance 

evaluation of the proposed methodology based on the two objectives of source 

characterization. The performance is evaluated for various degrees of uncertainties. The 

purpose is to compare the results with the performance obtained using single objective 

optimal source identification in the presence of concentration measurement error.  

5. 2. Two-objective linked simulation-optimization methodology 

Application of an effective and efficient optimization model requires careful definition 

of objective functions and possible constraints, and selection of an appropriate 

optimization algorithm. Therefore, in this section, the objective functions and 

constraints of a proposed two-objective optimization model for unknown groundwater 
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contaminant source characterization is presented. Then, the selected optimization 

algorithm and the linked-simulation optimization algorithm are discussed. 

5.2 .1 . Two-objective contaminant source characterization methodology 

formulation 

The optimal recovery of contaminant source release histories generally involves 

examining a set of candidate source characteristics to determine the set which results in 

the best pollutant plume with respect to the observed contaminant concentrations. 

Therefore, it can be defined as an optimization model, in which the objective functions 

are expressed as measures of the goodness of fit between the observed concentrations, 

and the simulated concentrations corresponding to the candidate solutions. The two 

objectives of the optimization model for optimal characterization of contaminant 

sources under uncertainty are defined by Eqs. 5-1 and 5-2, and the constraints are 

defined by the constraints set  5-3 and 5-4. 

1
1 1

100
k knk nob
iob iob

k
k iob iob

Cest Cobs
F Minimize

Cobs  


 


  (5-1) 

2
1 1
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iob iob

k iob
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 

   (5-2) 

Subject to 

( , , , , , , ) 1,..., ; 1,...,k t
iob i i i iCest f D HC x y z q i N t T    (5-3) 

min max 1,..., ; 1,...,t
iq q q i N t T     (5-4) 
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where nk, nob, N and T are the total number of concentration observation time periods, 

available monitoring locations, candidate source locations and pollutant injection stress 

periods, respectively. k
iobCest and k

iobCobs  are the concentrations estimated by the 

simulation model and observed concentrations at observation location iob and at the 

end of time period k, respectively. η is a constant which is sufficiently large to prevent 

any individual term in (5-1) becoming indeterminate due to the value of any observed 

concentration becoming very small. D, HC and θ are the dispersion coefficient, 

hydraulic conductivity and porosity, respectively. xi, yi, zi and t
iq are the Cartesian 

coordinates of candidate contaminant source i, and the contaminant release flux for 

candidate location i during stress period t, respectively. maxq ,  minq  are the upper and 

lower bounds for the contaminant release fluxes, respectively. 

Both objectives minimize the difference between the observed and estimated 

concentrations. The first objective minimizes the normalized difference between the 

estimated and measured concentrations at monitoring locations and times. The second 

objective does not use any normalizing factor. The estimated contaminant 

concentrations are calculated using flow and transport simulation models (first 

constraint, Eq. 5-3). The flow and transport simulation models are externally linked to 

the optimization algorithm, forming a linked simulation-optimization source 

identification model (Datta et al., 2009). In this way, for each set of candidate source 

characteristics, the simulation models estimate the contaminant concentration at 

monitoring locations (iob) and at time steps (k). Then these estimated values are 

transferred back to the optimization model to calculate the corresponding objective 

function value (Amirabdollahian & Datta, 2013). In this study, for the groundwater 
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flow simulation purpose, MODFLOW-2000 (Zheng et al. 2001) is utilized. 

MODFLOW is a computer program that numerically solves the three-dimensional 

transient groundwater flow equation. The contaminant transport process is simulated 

using MT3DMS (Zheng & Wang 1999). MT3DMS is a computer program that 

numerically solves the three-dimensional transient multi-spacious contaminant 

transport equation in ground water systems. Readers are referred to Chapter 3 for more 

information on the governing equations describing the flow and transport processes. 

Eq. 5-4 represents the second constraint which limits the source release fluxes to 

specify upper and lower bounds. In this study, the locations of sources are unknown 

and are decision variables. Therefore the source flux lower bound is set to 0. The non-

actual or dummy and inactive sources must be correctly identified by zero release 

fluxes for all stress periods.  

Generally, a contaminant source identification problem is considered as well 

posed, if the following conditions are satisfied (Tikhonov & Arsenin, 1978): 

1. A solution exists, 

2. The solution is stable, 

3. The solution is unique. 

In groundwater contamination problems, the propagation of contaminant starts 

from one or more sources, thus certainly a solution exists for the problem. The 

groundwater simulation models utilized in this study are proven to be stable and 

convergent (Jha & Datta, 2013). In order to ensure that the source identification 

problem has a unique solution, uncertainties in the modeling process (model, 

parameters, and measurement uncertainties) must not be present and the unknown 
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parameters should be piecewise constant (Sun, 1994). In this study, the following 

idealized assumptions are considered: 

1. There is no model uncertainty; i. e. the governing equations and utilized 

numerical models used for simulation of groundwater flow and transport are 

able to simulate the exact natural process in forward runs. 

2. The unknown variables are piecewise constant; e.g. the unknown fluxes 

are constant in every stress period. 

However, the parameter values and/or observed concentrations are measured 

or/and recorded erroneously. Therefore, the uniqueness criterion is not satisfied and the 

contaminant source identification using uncertain measurement data is an ill-posed 

problem. The non-uniqueness in model identification means that the information 

available to define the model does not allow a single or unambiguous solution to the 

identification problem. This indicates that multiple models might give equally 

acceptable fits to the observation data (Beven, 2006). Therefore, it is vital to select a 

source identification model which will find multiple sets of source characteristics 

providing equally acceptable fits with the erroneous observation data. This is the reason 

a two-objective model was selected to obtain the Pareto-optimal solution instead of a 

single so called “optimum” solution. 

In groundwater contaminant source characterization problems, even when there is 

no error associated with the inputs, there may not be a unique solution. Also, only if the 

global optimum solution is found, it represents the exact solution to the source 

identification problem. Non-uniqueness in the system response may even then, 

introduce alternate optimal solutions, although each globally optimal (Datta, 2002). In 
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the optimal contaminant source identification process, this global optimum represents 

the actual contaminant source characteristics. Therefore, by feeding actual source 

characteristics in the forward simulation run, the estimated concentrations ( k
iobCest ) 

equal observed concentrations ( k
iobCobs ) and both 5-1 and 5-2 result in zero value. Thus, 

in the case of no uncertainty, the proposed model reduces to a single objective one, and 

utilizing either objective functions should, ideally, return the global optimum; however, 

in an ill-posed problem, there is no unique answer to the problem. Despite this fact, 

many modelers have concentrated on the search for a single “optimum” but at the risk 

of avoiding important issues of model acceptability and uncertainty (Beven, 2006).  

In this study, the aim is to find a set of possible solutions which shows acceptable 

performance in terms of two objective functions obtained as a solution. This set is 

called the Pareto-optimal or non-dominated front. In the two-objective source 

identification model, the search algorithm first searches for the source characteristics 

which result in better (non-dominated) performance, considering both objectives. 

Finally it reaches a point (in the decision space) where it is not possible to improve both 

objectives at the same time. For example, for the sake of simplicity, we assume there 

are two available observed concentrations 1
1Cobs =1 and 1

2Cobs =100. The best 

estimations of concentrations found so far are 1
1Cest =0.8 and 1

2Cest =80 (using set X1 of 

source characteristics). The search algorithm is not able to further improve the result 

with respect to both objective functions. However, there is a set of source 

characteristics (X2) which will result in 1
1Cest =0.7 and 1

2Cest =87. Substituting these 

values in Eqs. 5-1 and 5-2, the F1 and F2 values corresponding to X1 values are 39.82 
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and 20.20, and corresponding to X2 values are 42.7 and 13.3, respectively. Therefore, 

X2 is superior to X1 considering objective 2 (13.3< 20.2) which conflicts with objective 

1 (42.7> 39.82). This demonstrates the tradeoff between the two objectives and the 

sacrifice necessary in one objective function value in order to achieve improvement in 

the other objective function value, for a Pareto-optimal or, non-dominated solution.  It 

represents a vector optimization problem, for which a single optimal solution cannot be 

identified without further preference ordering of the Pareto-optimal solutions. 

5.2 .2 . Two-objective contaminant source identification process 

The two important components of the methodology are demonstrated in this section as, 

the selected optimization algorithm and the linked simulation-optimization process. The 

evolutionary optimization methods (such as GA, SA and ASA) are well suited for 

finding solutions to various types of optimization problems since they ideally do not 

make any assumption about the mathematical characteristics of the objective function. 

Moreover, due to the nature of these algorithms, it is much simpler to link the 

optimization procedure to the numerical simulation models such as physical flow and 

contaminant transport processes. In this study, a Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) (Deb, 2002) is linked to the numerical flow and transport 

simulation models to determine the contaminant source characteristics. 

There are two goals in two-objective optimization: 1) fast convergence to the 

Pareto-optimal set, and 2) maintaining diversity in solutions of the Pareto-optimal set. 

NSGA-II (Deb, 2002) is a fast multi-objective optimization method based on the GA. 

In this method, elitism is observed since it is proven that elitism can significantly 

speedup the performance of GA, by preserving the good solutions from one generation 
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to the next, once they are found. Moreover, a crowding distance comparison approach 

is included in this algorithm, which preserves the diversity in the Pareto-optimal set. 

For details, readers are referred to Deb (2002). 

In the proposed linked simulation-optimization based source identification 

methodology, the population of candidate source characteristics is generated by the 

algorithm contained in NSGA-II. Then the corresponding objective values are 

estimated using the concentrations estimated by MODFLOW and MT3DMS numerical 

simulation models, which are linked externally to the optimization model. Then the 

population is sorted based on the non-domination. Next, a new population is generated 

using selection, crossover and mutation operators. This process is continued until the 

specified stopping criteria are satisfied. Figure 5.1 demonstrates the schematic diagram 

of the NSGA-II linked simulation-optimization procedure. 

5. 3. Performance evaluation 

Performance of the proposed methodology is evaluated and compared with the 

performance of the single objective ASA-based linked simulation optimization 

contamination source identification (Jha & Datta, 2013). ASA is an improved variant of 

SA optimization search algorithm, by automating the adjustment of parameters 

controlling the temperature schedule and random step selection. ASA performance is 

less sensitive to user-defined parameters compared with SA.  The efficiency of the 

ASA and GA-based contaminant source identification models were compared in Jha 

and Datta (2013). Their single objective models aimed to optimize the same objective 

function defined in Eq. 5-1. They tested both the ASA and GA based models using 
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error free and erroneous concentration observation data and hydrogeological parameter 

values. They concluded that the source characteristics identified by ASA are closer to 

actual source characteristics when compared to the results obtained by GA, even when 

measurement and parameter uncertainty exists. Moreover, ASA is computationally 

more efficient than GA. Based on these considerations, the authors selected ASA as the 

efficient optimization algorithms to solve a single objective source identification model. 

The ASA-based single objective model solutions are compared with the solution results 

obtained using the NSGA-II algorithm.  

5.4 .1 . Study area 

An illustrative study area is used to evaluate the performance of the proposed 

methodology. The synthetic concentration measurement data, obtained using simulation 

models with specified physical parameters, facilitates the evaluation of the 

methodology under known uncertainty conditions, without having to consider the 

unknown reliability of the field data. This is necessary and applicable only for 

performance evaluation purposes. 
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Figure ‎5.1 Schematic diagram of the NSGA-II based linked simulation-optimization 
contamination source identification procedure 
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Figure 5.2 shows the plan view of the illustrative three-dimensional study area 

measuring 3350m × 2490m × 60m and consisting of two unconfined layers. The 

boundary to the north is a no-flow boundary and the remaining ones are specified head 

boundaries corresponding with the average stage of the rivers located at these 

boundaries. It is assumed the primary influx to the system is through recharge due to 

rainfall. Also, there are creeks in the area, and two water extraction wells are assumed 

to be present (shown by filled circles in Figure 5.2). The flow condition is transient. 

There are two active point contaminant sources and one landfill (distributed 

contaminant source). A snap shot of the contamination plumes is shown in Figure 5.2. 

The cell marked with a star is a potential pollutant source location and numbers show 

the contaminant monitoring locations. 

The monitoring locations are selected arbitrarily. Monitoring locations 1-10 are 

approximately 10 m below the ground surface (layer one) and locations 11-14 are about 

30 m below the ground (layer two). The field hydro-geological parameters are given in 

Table 5.1. 

The study period is eight years which is divided into four equal-length stress 

periods of two years each. All sources are considered as potentially active in all stress 

periods and the pollutant flux from each of the sources is assumed to be constant over a 

specified stress period. In the source identification model three potential sources are 

specified, only two of them being actual sources. The dummy (not actual) source is 

introduced to evaluate the accuracy of the proposed methodology in correctly 

identifying actual sources.  
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Figure 5.2 The study area. 

The source identification decision variables include four variables corresponding 

to each stress period for all the potential point sources. There are 12 decision variables 

specifying the point sources and one decision variable which specifies the landfill 

leachate during the study period. The contaminant concentration monitoring data are 

collected every six months.  

Since, this is an illustrative study area, the actual contaminant source fluxes are 

known for performance evaluation purposes. Initially, error-free concentration 
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measurements at the designated monitoring locations and time intervals are generated 

using the simulation models (MODFLOW and MT3DMS). 

Table 5.1 Hydrogeologic parameters for the study area. 

Parameter Unit Value 
Number of Cells in x-direction - 42 
Number of Cells in y-direction - 60 
Number of Cells in z-direction m 2 
Horizontal Hydraulic Conductivity m/d 8 
Vertical Hydraulic Conductivity m/d 3 
Specific Storage 1/m 0.2 
Porosity - 0.2 
Longitudinal Dispersivity m 20 
Horizontal Transverse Dispersivity m 2 
Vertical Transverse Dispersivity m 1 
Initial contaminant concentration ppm 0 
Diffusion Coefficient - 0 
Upper and Lower Bounds for 
Source Fluxes 

Kg/d 0-100000 

 

5.4 .2 . Error in concentration measurement data 

 In order to study the effect of contaminant concentration measurement error, the 

synthetically generated (simulated) concentration measurement values are perturbed 

using Eq. 5-5. 

, (1 )k k k
iob error free iob iobCobs Cobs e   (5-5) 

where ,
k
error free iobCobs is the error-free concentration measurements at monitoring 

location iob and time k. k
iobe  is a measurement error factor for monitoring location iob 

and time k, which is randomly generated using a Gaussian probability distribution. To 

generate the concentration measurements with random measurement errors the mean 

and standard deviation of the erroneous concentration measurements are required 
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(Harmel & Smith, 2007). The error-free concentration measurement represents the 

mean, and the standard deviation,  is estimated using Eq. 5-6. 

,
k
error free iobCobs    (5-6) 

where   is a fraction between 0 and 1.0 used to generate various degrees of 

measurement errors. 

5.4 .3 . Error in field hydrogeological parameter values 

Solution of the flow and transport processes requires the knowledge of various soil 

hydrogeologic parameters. Considering one of the field hydrogeologic parameters, 

spatial variations of Hydraulic Conductivity (HC) plays a critical role in transport of 

contaminants in groundwater systems. Considerable amounts of hydraulic conductivity 

data are required to obtain a reasonable degree of confidence in simulations of site 

behaviour. In real-life, generally very limited amounts of HC measurement data are 

available as inputs to the flow simulation model. Therefore, the flow model uses 

averaged values to generate the head distribution. This may lead to substantial 

uncertainty in the source identification process.  

In order to test the performance of the proposed methodology under parameter 

uncertainty, the observed contaminant concentrations are generated using a 

heterogeneous non-uniform HC field; however, in the source identification program, 

the flow simulation model uses an average value of HC.  

A realistic presentation of a porous medium can include a HC field with several 

heterogeneous layers. In these cases, the HC is measured at a limited number of 

locations. Then an interpolation method is required to find the entire HC field. Ordinary 
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Kiriging (OK) (Cressie, 1988) is a geostatistic interpolation method which depicts the 

spatial auto-correlation of the measured sample points using a variogram. It krigs the 

measured HC value to the entire field using a model variogram.  

In this study, to generate the heterogonous non-uniform HC field, a limited 

number of values are generated as measured HC values at specific locations. Following 

the work of Freeze (1975), these values are generated randomly using a log-normal 

distribution. Then OK with a known model variogram is used to define the entire HC 

field.  

5.4 .4 . Performance evaluation criteria 

Evaluating the performance of the contamination source identification approaches in 

identifying accurate source flux histories, the errors in estimating source fluxes are 

calculated. Average Normalized Absolute Error of Estimation (%ANAEE) is the 

measure of errors in estimation of source fluxes, as presented in Eq. 5-7. 
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 




 (5-7) 

where ( )t
i estq  and ( )t

i actq are the estimated and actual contaminant source fluxes at 

potential source location i and stress period t, respectively. Smaller %ANAEE values 

mean that the utilized source identification algorithm is able to recover source fluxes 

with less associated error. The results of both two-objective and single-objective 

approaches after 50,000 times of simulation model execution are reported, to have a fair 
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comparison between the performances of the two methods. The population size for 

NSGA-II is 50, thus it is executed for 100 generations. Note that ASA is not a 

population-based simulation algorithm. 

The final solution results of NSGA-II are obtained as a non-dominated or, Pareto-

front. Any of the points located on the Pareto-front can be chosen to be the optimum 

result; however, further considerations are necessary in order to select one solution to 

the problem, as estimates of contaminant source release histories. Therefore, the rule in 

Eq. 5-8 is utilized choosing a single solution from the Pareto-front. An averaging 

criterion is utilized to obtain the single solution based on the non-dominated set 

identified. The method is explained below.   

1 1
1 3

2 2
1 3

1
1 0 1,...,50

2

FOBJ FOBJ
i

i i
FOBJ FOBJ

i

Q fobj Q
IF AND THEN ELSE i

Q fobj Q
 

  


  


 

 (5-8) 

where 1ifobj , 1FOBJ  and 2ifobj , 2FOBJ  are  the ith final (non-dominated) objective 

function value and a vector containing all the final objective function values of the 

resulting Pareto-front associated with objective 1 and 2, respectively. 1
1
FOBJQ , 1

3
FOBJQ  

and 2
1
FOBJQ , 2

3
FOBJQ  are the first and third quartiles of the non-dominated objective 

function values for objectives 1 and 2, respectively. i  is a flag which shows if the 

decision variable values associated with the ith point on the Pareto-front (i=1,…,50 as 

number of solutions in the non-dominated front is the same as population size) is used 

to estimate a single outcome for the NSGA-II. The average decision variable value 

corresponding to the Pareto-front points with flag 1, is the single outcome of the 

NSGA-II based method. Figure 5.3 is used to demonstrate the procedure for estimating 
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a single solution to the problem using the Pareto-front. The continuous and dashed lines 

show the first and third quartiles of the non-dominated objective function values 5-1 

and 5-2, respectively. The flag values for points inside the square are 1 and for the rest 

of the points are 0. 

 

 

 

 

 

5. 4. Results 

In this section, the results of utilizing the following three approaches are presented and 

compared. 

Method 1 (M1): The two-objective NSGA-II-based source identification approach 

using objectives 1 and 2 (Eqs. 5-1 and 5-2). 

Method 2 (M2): Single-objective ASA-based source identification approach using 

objective 1 (Eq. 5-1). 

Method 3 (M3): Single-objective ASA-based source identification approach using 

objective 2 (Eq. 5-2). 

2
1
FOBJQ

2
3
FOBJQ

1
1
FOBJQ

1
3
FOBJQ

1i 

Figure 5.3 An example of Pareto-front and the region used to find a single 
solution of the two-objective NSGA-II based approach. 
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5.4 .1 . Error-Free pollutant concentration measurements 

M1, M2, and M3 are utilized to find source characteristics, initially using error-free 

contaminant measurement data. The results are recorded after 50,000 simulations, and 

are presented in Table 5.2.  

Table 5.2 Contaminant source identification outcomes. 

 Error Free Erroneous,  =0.1 Erroneous,  =0.2 

 M1 M2 M3 M1 M2 M3 M1 M2 M3 
%ANAEE 38.1 36.8 37.7 48.2 68.1 45.7 60.1 107.7 53.9 

Objective Function 1 9 8 - 1.9E+4 1.6E+4 - 2.1E+4 1.7E+4 - 

Objective Function 2 1 - 1 756 - 440 1.1E+3 - 1.0E+3 

 Erroneous,  =0.3 Erroneous,  =0.4 Erroneous,  =0.5 

 M1 M2 M3 M1 M2 M3 M1 M2 M3 
%ANAEE 50.1 93.3 56.0 61.5 85.2 69.9 89.1 120.5 97.3 

Objective Function 1 2.1E+4 1.7E+4 - 2.3E+4 1.8E+4 - 8.2E+5 2.0E+4 - 

Objective Function 2 1.8E+3 - 1.5E+3 1.8E+3 - 1.6E+3 2.6E+3 - 2.4E+3 

 

The %ANAEE associated to M1 is 38.1%, which is almost the same as the values 

obtained by M2 (36.8%) and M3 (37.7%). All approaches showed acceptable 

performance with respect to the landfill. Theoretically, all utilized methods should be 

able to find the actual source fluxes; however, the source 1’s retrieved fluxes seem too 

far from the actual values. Monitoring point 13 is the only location which is able to 

capture release contaminants from source 1 and also is located too far from this source. 

Therefore, the inappropriate selection of monitoring locations with respect to source 1 

is the main reason for inaccuracy in retrieving the release fluxes at source 1. Since the 

final objective function values related to all three methods are almost zero, 50,000 

algorithm simulations seems to be an appropriate number to reach the near-optimal 
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result by these methods. The estimated values for objectives 1 and 2 associated with the 

50th and 100th generation of M1 are presented in Figure 5.4. The scatter plot shows that 

the proposed approach does not result in a two-objective Pareto-front, and the search 

algorithm is converging toward a single optimum solution, in the case of error-free 

measurement data. This is expected, as the two objective functions considered here, 

may lose their conflicting nature when the idealistic scenario of error-free contaminant 

measurements is assumed to prevail.   

 

Figure 5.4 The two-objective NSGA-II source identification results using error free 
measurement data. 

5.4 .2 . Erroneous pollutant concentration measurements 

For the illustrative study area, the erroneous measured concentrations are generated 

using Eq. 5-5. Different levels of error intensity were added to the error-free 

measurement data. The error level intensity is controlled by the fraction  in Eq. 5-7, 

which defines the standard deviation of the random normally distributed error values. 

The results obtained using M1, M2, and M3 associated with  =0.1,  =0.2,  =0.3, 
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=0.4, and  =0.5 error intensities, respectively, are presented in Table 5.2. Figure 5.5 

shows the objective 1 and 2 values associated with the 100th generation of the solution 

results estimated by M1. 

5.4 .3 . Parameter value uncertainty 

For the performance evaluation purpose, the HC values are assumed to be known at 

three locations, denoted by stars as shown in Figure 5.6. At each location, HC values 

are known at two elevations, corresponding to two layers of the study area. HC values 

are generated randomly using a log-normal distribution with mean of 20 m/day and 

standard deviations of 0.2.  In total 6 values (3 locations x 2 layers) are generated 

analogous to the measured HC values in the field. Using OK, the known values are 

interpolated throughout the study area. The model variogram is spherical with a range 

of 1000, sill of 4.5, and nugget of 0 (Cressie, 1988). Figure 5.6 illustrates the HC 

contours in the first layer of the study area.  

The contaminant observation data are generated using the heterogeneous non-

uniform field. Then measurement errors are added to the generated contamination 

observations using Eq. 5-5 and  =0.3. M1, M2 and M3 are utilized to find the 

contaminant source characteristics using these erroneous contaminant observation data. 

Note that in the simulation model linked to the optimization algorithm, the study area is 

considered homogenous with HC equals 20 m/day. The solution results are presented in 

Table 5.3. 
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(a) 

(b) 

Figure 5.5 The two-objective NSGA-II source identification results using erroneous 
measurement data; a)  =0.1,  =0.2,  =0.3, and  =0.4, b)  =0.5 
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Figure 5.6 Hydraulic conductivity counters. Unit is m/day 

5. 5. Discussion 

Comparing the estimated %ANAEE values, M1 and M3 converged to source 

characteristics with similar associated %ANAEE values when using erroneous 

concentration measurement data with low error levels ( =0.1 and  =0.2); however, for 

the cases with moderate to high error levels ( =0.3 and  =0.4), M1 delivers relatively 

more accurate results (smaller %ANAEE) compared with M3.  

M1 (using two-objective NSGA-II approach) performs better compared with M2 

in all cases associated with erroneous measurements. Objective 1 (Eq. 5-1) uses the 

observed concentration value to normalize the objective function. In the case of 

uncertainty, often it is not possible to find a solution which satisfies all the observed 

values. Having the observed concentration in the denominator (Eq. 5-1), the 

optimization algorithm based on this equation tends to match smaller concentrations 

     HC sampling location;    Water extraction well;          Creek;          Specified head                   
boundary;       Landfill    



114 

 

(larger objective function improvement). This is more evident in the results associated 

when  =0.5 (Table 5.4). Most of the fluxes estimated by M2 are zero or very low, 

since the algorithm tries to only match very low observed concentrations. 

Table ‎5.3 The estimated contaminant source release fluxes in the presence of parameter 
and concentration measurement uncertainties 

 %ANAEE Objective 
function 1 

Objective 
function 2 Source 

Flux (kg/day) ×103 
Stress 
Period 

1 

Stress 
Period 

2 

Stress 
Period 

3 

Stress 
Period 

4 

M1 58.0 2.5E+4 1.3E+3 

1 67 34 57 70 
2 58 27 16 0.3 
3 0 0 3 1 
Landfill 20 

M2 128.8 2.0E+4 - 

1 62 12 67 99 
2 2 8 25 0.2 
3 0 0 3 35 
Landfill 7 

M3 69.5 - 1.4E+3 

1 8 14 48 70 
2 75 22 15 0.2 
3 0.1 0 0 0.5 
Landfill 25 

 

Moreover, in the case of low measurement error levels ( =0.1 and  =0.2), the 

%ANAEE associated with M1 is 5% and 11% respectively larger than the 

corresponding value estimated by M3. By examining the %ANAEE values, it can be 

concluded that using M1 in the case of low measurement errors is not advantageous 

compared with the single-objective approach The estimated %ANAEE obtained using 

M1 is 41% and 79% i.e., smaller than the estimated values obtained by using M2. 

Moreover, the two-objective approach results are delivered as a Pareto-front. In order to 

compare the results with the single-objective methods, Eq. 5-8 is used to find a single 
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solution. The Pareto-front contains some solutions with individually larger and smaller 

%ANAEE values compared with the values reported in Table 5.2.  

Figure 5.7 presents the %ANAEE values estimated for the 100th generation of the 

results obtained by M1 in the form of a box-whisker plot. Fifty individuals are in each 

generation. Figure 5.7 shows the maximum, 1st quartile, median, 3th quartile and 

minimum errors associated with these 50 possible contaminant source characteristics 

obtained from the last generation of M1. In this figure, the black dots show the values 

presented in Table 5.2 for the two-objective approach M1. As the results for M1 

presented in Table 5.2 are averaged values, the Pareto-front actually contains solutions 

with smaller %ANAEE than the one presented in Table 5.2. For instance, in the case of 

 =0.2 the smallest estimated %ANAEE obtained using M1 is 52.03% which is smaller 

than 53.93% reported for M3 in Table 5.2. Therefore, the actual performance of the 

two-objective approach may not be accurately presented in the results shown in Table 

5.2. 

 

 

 

 

 

 

 

Figure 5.7 The box-whisker plot of the %ANAEE values associated with the 100th 
generation of M1 
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Table ‎5.4 The contamination source release fluxes 

 Source 
Flux (kg/day) ×103 

Stress Period 
1 

Stress 
Period 2 

Stress Period 
3 

Stress Period 
4 

Actual 

1 50. 60 15. 0.5 
2 70. 30 10 0 
3 0 0 0 0 
Landfill 20 

Erroneous 
 =0.5 
M1 

1 59 51 79 44 
2 26 12 19 0.3 
3 6 2 3 23 
Landfill 8 

Erroneous 
 =0.5 
M2 

1 3 63 70 54 
2 0 0 0.1 0.7 
3 0 0 29 2 
Landfill 0 

Erroneous 
 =0.5 
M3 

1 4 46 97 95 
2 45 28 17 0 
3 5 0 0.9 4 
Landfill 13 

 

Actual aquifers are often heterogonous and non-uniform. Therefore, the proposed 

methodology was tested in a heterogeneous and non-uniform hydraulic conductivity 

field. Adding the parameter value uncertainty to the contaminant concentration 

measurements uncertainty, should result in more uncertainty in the source identification 

procedure. Applying three approaches (M1-M2-M3), the estimated %ANAEE values 

are 58.0%, 128.8%, and 69.5% for M1, M2, and M3, respectively. Therefore, in the 

case of parameter uncertainty the two-objective approach demonstrates better 

performance in retrieving contaminant source fluxes. 

The box-whisker plots are representative of levels of non-uniqueness or/and 

possibly the ill-posed nature associated with this illustrative source characterization 

problem. The range between maximum and minimum %ANAEE can be used as a 
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measure of the non-uniqueness in the problem. These values can also represent the ill-

posed nature of the inverse problem to a certain extent. The measured concentrations 

are perturbed using randomly distributed errors (Eq. 5-4). Therefore, the trend in level 

of uncertainty shown in Figure 5.5 does not correlate very well with the error levels 

shown along the horizontal axes of Figure 5.7. 

Results with associated relatively small %ANAEE exist in the Pareto-front. In real 

life contamination problems, the actual contaminant source fluxes are unknown. 

Therefore, it is not possible to find the best solution (on the Pareto-front) using 

%ANAEE. In this study uncertainty is attributed to the lack of knowledge about the 

correct values for the measurements, and this uncertainty is reducible in contaminated 

groundwater sites by acquiring more data. In addition the problems due to non-

uniqueness and ill-posed nature of the source characterization inverse problem can be 

addressed by designing efficient and effective concentration measurement networks in 

the field. This is an important issue that must be addressed, and this illustrative problem 

highlights the need for proper and efficient contaminant concentration measurement 

network designs to improve the accuracy and reliability of the source characterization. 

Therefore, as an extension to this study, a systematic and dedicated monitoring network 

design methodology is discussed in the next chapter.  This methodology may lead to 

reduction in the uncertainty and help to find more accurate solutions on the Pareto-

front. 
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5. 6. Conclusions 

Accurate identification of contaminant source characteristics is required for effective 

and efficient pollution management and efficient design of contamination remediation 

strategies. The contaminant concentrations collected at monitoring locations are used to 

identify the contaminant sources in terms of location, activity duration, and source 

release fluxes; however, there are often various sources of error associated with the 

measured contaminant concentrations which are called uncertainty. The presence of 

such uncertainties which cannot be easily quantified using specified probability 

distribution functions, has an adverse effect on the accuracy of the contaminant source 

characterization process.  

Generally, contaminant source fluxes are retrieved using a linked simulation-

optimization approach which aims to minimize the difference between observed and 

simulated concentrations. The simulated concentration is estimated using candidate 

source characteristics and the linked flow and transport simulation models. In this 

study, a two-objective approach is proposed. The first objective minimizes the 

normalized difference between the estimated and measured concentrations at 

monitoring locations and times. The second objective does not use any normalizing 

factor. NSGA-II is utilized as an efficient multi-objective optimization algorithm.  

Ideally, when there is no associated error, there is a unique solution to the source 

identification procedure. Therefore, the two-objective approach should converge to a 

single solution using error-free measurements. This solution is the same solution 

obtained by the single objectives being used one at a time. The solution to a source 

identification problem is non-unique and to a certain extent ill-posed. Therefore, 



119 

 

various solutions, each with a possibility of being the true source characteristics, may 

be achieved. When the contaminant concentrations are erroneous, it is not possible to 

match all the observed and simulated concentrations, and the non-uniqueness problem 

becomes more evident. In the two-objective approach, the first objective function is 

normalized using observed concentrations. This objective function emphasizes 

matching smaller observed concentrations (larger objective function improvement). The 

second objective function, which is not normalized, tries to match the high 

concentrations. The two-objective approach can find the possible solutions as a Pareto-

front. 

The performance of the proposed methodology was evaluated for an illustrative 

study area. The two-objective solution results are presented as an optimum Pareto-front. 

To be able to compare the performance of the two-objective and single-objective 

methods, the solutions which are located between the first and third quartile of 

objective functions 1 and 2 values, on the final Pareto-front, are averaged. It is 

demonstrated that the resulting single solution obtained by the two-objective approach 

has the capability to retrieve the source fluxes more accurately in the case of moderate 

to high measurement error levels.  

In real-world problems, actual aquifers are often heterogeneous and non-uniform. 

In real life, generally very limited amounts of hydrogeological data are available as 

inputs to the simulation models. The models simulating the physical processes are often 

based on averaged values. To test the performance of the proposed methodology in real 

fields, the method has been applied to a contaminated aquifer with heterogeneous and 

non-uniform hydraulic conductivity values. It is demonstrated that in heterogeneous 
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fields, the two-objective approach is able to find more accurate source characteristics 

compared with single-objective approaches while using erroneous contamination 

measurement data. These evaluations also highlighted the need for appropriate design 

of contaminant concentration monitoring network which can improve the source 

characterization results.  

In the next chapter, a new contaminant monitoring network design methodology 

is presented. This proposed methodology is designed for increasing the accuracy and 

reducing uncertainty in the contaminant source characterization process. 
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6. SEQUENTIAL MONITORING NETWORK DESIGN 

METHODOLOGY INCORPORATING UNCERTAINTY AND 

REDUNDANCY REDUCTION FOR IMPROVED 

CONTAMINANT SOURCE IDENTIFICATION 

6.1. Introduction 

The characteristics of contaminant sources are identified using available sparse and 

often erroneous contaminant concentration measurements collected in the field. These 

measurements are obtained using an arbitrary or predesigned monitoring network 

(Amirabdollahian & Datta, 2013). Due to the complexity of contamination movement 

in the groundwater and the large scale of the contaminated sites, data collecting can be 

very difficult and costly. Therefore, it is vital to design contaminant monitoring 

networks. In this chapter a new monitoring network design methodology is presented 

which has two aims: (1) minimize uncertainty in recovered contaminant source 

characteristics; and (2) reduce redundancy in collected contaminant observation data. 

One of the difficulties in identification of contaminant sources is uncertainty. 

There are various sources of uncertainty associated with the available field 

hydrogeological data, flow boundary condition, site geological properties,  etc. The 

measurement error in contaminant observation data is another source of uncertainty 

which makes the contaminant source characterization process more difficult. One of the 

objectives of the proposed monitoring network design approach is to reduce the effect 

of these uncertainties and improve the accuracy of recovered source characteristics.  
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Moreover, drilling observation wells and collecting and analyzing the 

contaminated groundwater involve costs. Also, maximum coverage of the 

contamination plume should be provided using the fewest possible monitoring 

locations. Therefore, the second objective of the proposed monitoring network design is 

to minimize the redundancy in captured information using a predefined number of 

monitoring locations. The number of monitoring locations is explicitly selected based 

on the budgetary constraints. 

Since the pollution transport process is dynamic in time and space, a sequential 

monitoring network design and optimal contaminant source characterization approach 

is required. The initial contaminant source characteristics are estimated using 

contaminant observation data collected at initial arbitrary existing monitoring locations. 

The two-objective source characterization methodology presented in Chapter 5 is 

utilized. The set of source characteristics identified as the near optimal values are used 

to design a monitoring network. Sequentially, the new selected monitoring locations are 

used in addition to existing ones to collect additional contaminant observation data, 

once the new monitoring wells are implemented. A better estimation of contaminant 

source characteristics is obtained by using newly collected and available observation 

data from the designed monitoring network. 

In this chapter, first the proposed objective functions related to the uncertainty 

and redundancy reduction are presented. Next, the Non-dominated Sorting Genetic 

Algorithm II (NSGAII, (Deb, 2002)) optimization algorithm is utilized to find optimal 

monitoring locations among potential locations for each sample collection time is 

briefly discussed. The sequential monitoring network and contaminant source 
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characterization methodology is then presented.  It is followed by discussion of the 

performance evaluation results for an illustrative contaminated groundwater aquifer 

study area. 

6.2. Methodology 

The proposed sequential contaminant source identification and monitoring network 

design methodology has three important components. The first two components are 

related to the uncertainty and redundancy reduction objective functions. The third 

component constitutes of the sequential procedure of designing and implementing the 

monitoring network while utilizing the new measurement data in the form of feedback 

information.  

6.2. 1. Uncertainty reduction objective function for monitoring network 

design 

The first proposed objective function in designing the monitoring network is to reduce 

uncertainty in estimated contaminant source characteristics. The methodology 

presented in this chapter is integrated with the contaminant source identification 

methodology presented in Chapter 5. Therefore, the monitoring network design is 

performed using available preliminary information about the contaminant sources. The 

vector containing the contaminant source characteristics are presented in Eq. 6-1. 

1 2 p

1 2 t
p 1,p 1,p s,p

Q ( q ,q ,...,q ) p 1,...NP

q ( q ,q ,...,q ) s 1,..,NS, t 1,...,ST

 

  
 (6-1) 

where pq is pth set of available estimate of source release fluxes. NP is the total number 

of available set of estimated contaminant release fluxes. t
s ,pq  is the pth estimated release 



124 

 

flux at candidate source location s and stress period t. NS and ST are total number of 

candidate source locations and stress periods, respectively. Q is the vector containing 

all available estimates of contaminant release fluxes. In this chapter vector Q is the 

result of initial execution of the source identification model; however, if some initial or 

prior information is available about the contaminant sources, they can be incorporated 

as Q for the purpose of monitoring network design. 

The first monitoring network design objective function implicitly aims to reduce 

the uncertainty in the identified contaminant source characteristics using Eqs. 6-2 to 6-

4. The chosen locations are such that the summation of the deviations between the 

temporal average concentration value and the estimated concentration at a specific time 

and location is maximized.  

 
NP 2p ave

i ,k i ,kN NT
p 1

i
i 1 k 1

Cest Cest
Objective function1:OBJ1 Max( X )

NP 1


 







  (6-2) 

Subject to: 

, ( , , , )p
i k pCest f D K q  (6-3) 

1

N

i Monitoring
i

X Max


  (6-4) 

where N and NT are the number of candidate monitoring locations and monitoring 

design time steps, respectively. ,
p

i kCest  is the estimated concentration at monitoring 

location i and at time k using pq  as candidate solutions for the source characteristics.

,
ave
i kCest is the estimated concentration at monitoring location i and time k, averaged over 

all possible sets of source release histories. iX  is a flag which has a value of one when 
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the candidate location i is selected, otherwise it is zero. Eqs. 6-3 and 6-4 are constraints. 

Constraint 6-3 represents the groundwater flow and transport process simulation.  Eq. 

6-4 limits the total number of selected monitoring locations to MonitoringMax . MonitoringMax

is generally selected based on the budgetary constraints.  

Objective function 1 focuses on locations where the standard deviation of 

estimated concentrations would be maximum. By selecting the monitoring locations 

based on this objective function, the source identification model would be able to 

differentiate between candidate source characteristics pq , in order to obtain an optimal 

solution. The resulting choice of the optimal monitoring network would reduce 

uncertainty in prediction of plume movement and improve the reliability of estimated 

contaminant source characteristics. 

6.2. 2. Redundancy reduction objective function for monitoring network 

design 

Redundancy in monitoring network design results in economic inefficiency of the 

monitoring process. Therefore, redundancy reduction is an important factor in selecting 

monitoring locations in contaminated aquifers (Dhar & Datta, 2010). The second 

objective function is aimed at reducing redundancy in the designed monitoring 

network. 

The proposed objective function incorporates the Inverse Distance Weighting 

(IDW) method for spatial interpolation of concentration measurements. The spatial 

interpolation is required to estimate the concentration at all unmonitored locations. The 

choice of interpolation scheme is an important factor. Since the number of available 
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monitoring locations is limited and spatial measurement data are sparse, a geostatistical 

interpolation scheme is not a suitable option. Therefore the IDW method is selected in 

this study. In this interpolation method, the interpolated values are dependent on the 

distance between monitored and unmonitored locations. The details of IDW method are 

presented in Chapter 3. The redundancy reduction objective function is defined below: 

 
N NT NP 2p p

i i ,k i ,k
i 1 k 1 p 1

Objective function2 :OBJ2 Min( (1 X ) Cest C int )
  

     (6-5) 

Subject to: 

, ,
1

, ,

,
1

int (1 )

TotalN
p

l i l k
p p l
i k i i k i TotalN

l i
l

w Cest
C X Cest X

w





  



 (6-6) 

2
, 1/ ( , )l i i lw d x x  (6-7) 

, ( , , , )p
i k pCest f D K q  (6-8) 

1

N

i Monitoring
i

X Max


  (6-9) 

where ,int p
i kC is the interpolated contaminant concentration at potential monitoring 

location i and time k using candidate source characteristics solutions pq , which is 

estimated by Eq. 6-6. Constraints 6-6 and 6-7 basically represent the IDW interpolation 

method. When a monitoring location i is selected ( 1iX  ), the interpolated 

concentration is the same value as the estimated concentration; however, the spatial 

interpolation method is utilized for estimating the concentrations at potential 

monitoring locations which are not selected ( iX =0). The estimated concentrations at 
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newly selected and existing monitoring locations are interpolated to compute the 

concentration at those potential monitoring locations which are not selected as optimal 

locations. TotalN is the total number of monitoring locations including the newly 

selected and existing ones. ,l iw  is a coefficient estimated based on the inverse distance 

of potential monitoring locations i and l. ix and lx are the three-dimensional coordinates 

of potential monitoring locations i and l, respectively. 

Objective function 2 aims to select monitoring locations that provide better 

interpolated values for unselected locations among all potential monitoring wells. In 

more detail, the estimated concentrations (using the transport simulation model) at all 

potential monitoring wells are compared with interpolated values at unselected well 

locations. Minimizing objective function 2 ensures that the selected monitoring wells 

can relatively provide (through interpolation) accurate information about unselected 

wells. The redundancy reduction objective function ensures that the selected 

contaminant observation information at monitored locations provides acceptable 

coverage for the unmonitored locations. This objective function aims to minimize the 

possibility of having redundant contaminant observation information from the designed 

monitoring network.  

6.2. 3. Sequential two-objective monitoring network design methodology 

The proposed monitoring network design methodology has a two-objective 

optimization framework. The objective functions are defined as Eqs. 6-2 and 6-5. The 

constraints are defined as Eqs. 6-3 and 6-4 and Eqs. 6-6 to 6-9. The flow and transport 

simulation models are linked to the monitoring network design model using constraints 
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6-3 and 6-8. In this chapter MODFLOW (Zheng et al., 2001) and MT3DMS are used as 

the three- dimensional flow and contaminant transport simulating models. The Pareto-

front of the optimal monitoring network designs (non-dominated solutions) are found 

using NSGA-II (Deb, 2002) which is a fast multi-objective optimization method based 

on the GA. In this method, elitism is observed since it is proven that elitism can 

significantly speedup the performance of GA, by preserving the good solutions once 

they are found. Besides this, a crowding distance comparison approach is included in 

this algorithm, which preserves the diversity in the Pareto-optimal set.  

In the sequential contaminant source identification and monitoring network 

design methodology, the estimated source fluxes using source identification model are 

used as feedback into the monitoring network design model. Figure 6.1 shows a 

schematic diagram of the proposed sequential methodology.  

The contaminant source identification model first estimates the source fluxes 

using initial available concentration observation data. The forward contaminant 

transport simulation model is utilized to predict future contaminant concentration 

distribution using estimated source fluxes. Next the proposed monitoring network 

design methodology is utilized to find the suitable monitoring locations for the next 

monitoring time step. When the new monitoring network is designed, the contaminant 

concentration observation data are collected at the newly selected locations and the 

existing ones. The source identification model is executed again using all available 

observed concentration data, and if the stopping criteria are satisfied, the optimal 

contaminant source characteristics are achieved. Otherwise a monitoring network is 

designed for the next monitoring time step and the sequential process continues.  
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Figure 6.1 Schematic diagram of sequential contaminant source identification and 
monitoring network design methodology 

The sequential process described earlier adds additional information to both 

source identification and monitoring network design models. The accuracy of estimated 

source fluxes improves by adding additional optimally selected monitoring location and 

thereby utilizing concentration measurement  data from these selected locations. On the 

other hand, sequential improved estimates of the source fluxes result in better 

prediction of future contaminant plume distribution, and consequently enhance  the 
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utility of the designed monitoring network. Therefore, in the sequential feedback 

methodology, both source identification and monitoring network design models benefit 

from additional concentration measurements obtained as feedback information from the 

designed monitoring networks, thus sequentially resulting in improved contaminant 

source characteristics estimates. 

6.3. Performance evaluation of the proposed methodology 

The proposed methodology is evaluated using an illustrative three-dimensional 

contaminated aquifers and synthetic hydrogeologic data. Using an illustrative study 

area helps to evaluate the performance of the developed methodology properly by 

eliminating the possibility of attributing the results to any subjective unknown such as 

quality of the input data, without quantification. In the illustrative study area, all 

properties including geology, boundary conditions, and hydrogeologic parameter values 

of the study area are assumed to be known for this performance evaluation purpose 

only. The performance evaluation is conducted using both error-free and erroneous 

synthetic contaminant concentration measurement data, in order to evaluate the 

potential applicability of the methodology in real contamination problems. In the next 

chapter, the proposed sequential contaminant source identification and monitoring 

network design methodology is evaluated for a real-life contaminated urban aquifer 

site.  

6.3. 1. Study Area 

Details of the illustrative study area are described in Chapter 5 and shown in Figure 5-

2. The three-dimensional study area consists of two unconfined layers. There is a creek 
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and two extraction wells in the area. Two active point contaminant sources and one 

landfill as a distributed source are included in the model. The initial study period is 

eight years which is divided into four stress periods. All sources are active during these 

four stress periods and the pollutant flux from each of the sources is assumed to be 

constant over a specified stress period. In order to evaluate the model performance one 

dummy (not actual) source is also introduced as a potential source. Therefore, the 

source identification decision variables are the contaminant fluxes at three potential 

source locations for each stress period and the release flux at the landfill. In total there 

are 13 decision variables. 

Fourteen arbitrary locations are selected to represent the initial arbitrary 

monitoring network. Monitoring locations 1-10 are approximately 10 m below the 

ground surface (layer one) and locations 11-14 are approximately 30 m below the 

ground surface (layer two). Estimates for the contaminant release fluxes are identified 

using the contaminant source identification methodology presented in Chapter 5.  

6.3. 2. Optimal monitoring network 

The main purpose of this section is to evaluate the performance of the proposed source 

identification and monitoring network design methodology. A more rigorous 

application to a real contaminated aquifer site is described in the next chapter. This 

performance evaluation with synthetic data is limited to one sequence only. The 

solution results are discussed to show the possibility of using this methodology for 

improving the source characterization, compared with an arbitrary network for 

concentration measurement. The monitoring network design model is solved in each 

design sequence to find optimal monitoring locations for the next sampling time steps. 



132 

 

The study period is extended for another one year (in total the study period is nine 

years). The contaminant observation data are assumed to be collected every six months. 

Thus, the monitoring network methodology is utilized to find the suitable sampling 

locations for the next six-month and 12-month sampling times.  

There are 20 potential monitoring wells (n=20). Table 6.1 shows the locations of 

the potential monitoring wells. The potential monitoring locations are located in both 

the first and second layers. MonitoringMax  is specified as 5. The proposed two-objective 

monitoring network design model is executed to find the five most suitable monitoring 

locations out of 20 potential ones. The optimum NSGA-II parameters including 

population size and maximum number of generations are 100 and 500, respectively. 

The best set of NSGA-II parameters is selected using sensitivity analysis. The stopping 

criterion is the maximum number of generations.  

6.3. 3. Linked simulation-optimization model for identification of unknown 

source fluxes using designed monitoring network 

The aim of designing a suitable monitoring network is to increase the efficiency of the 

contaminant source identification model in recovering the unknown source release 

histories. Introducing additional relevant contaminant concentration observation data to 

the source identification model will improve the accuracy of estimated source release 

fluxes; however, it is expected that when the observed concentrations are collected at 

optimal monitoring locations, the accuracy of estimated source fluxes is substantially 

improved compared to those obtained using an arbitrary monitoring network. 
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Table ‎6.1 Potential monitoring well locations. 

Well ID 1 2 3 4 5 6 7 8 9 10 

Layer 1 1 1 1 1 1 1 1 1 1 

Row 25 30 26 33 33 20 27 35 33 24 

Column 21 25 14 25 30 51 29 29 34 35 

Well ID 11 12 13 14 15 16 17 18 19 20 

Layer 1 1 1 1 2 2 2 2 2 2 

Row 17 29 27 29 32 34 29 31 23 25 

Column 35 35 49 43 30 31 29 38 42 36 

 

To evaluate the performance of the proposed methodology, the unknown 

contaminant release fluxes are estimated using the two-objective source identification 

model presented in Chapter 5. The objective functions and constraints are defined by 

Eqs. 5-1 to 5-4. Concentration measurements from the optimal designed monitoring 

network are used to estimate the pollution sources flux histories. These evaluation 

results are compared with the recovered source release histories, estimated using five 

arbitrary monitoring networks. For each arbitrary monitoring network, five monitoring 

wells are selected randomly from the specified potential well locations. Because in this 

section the performance of the proposed methodology is evaluated using illustrative 

study area, the observed aquifer responses are simulated using MODFLOW and 

MT3DMS simulation models, along with appropriate initial and boundary conditions. 

In real-field applications the aquifer responses are monitored using collected 

contaminated water samples from the selected monitoring wells. 

In the next stage of the evaluation, the performance of the proposed methodology 

is tested in the presence of concentration measurement errors. The simulated 
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concentration using MODFLOW and MT3DMS models are perturbed to represent the 

effect of random measurement error.  

In order to study the effect of contaminant concentration measurement error, the 

synthetically generated (simulated) concentration measurement values are perturbed 

using  Eq. (6-10). 

, (1 )k k k
iob error free iob iobCobs Cobs e   (6-10) 

where ,
k
error free iobCobs is the error free concentration measurements at monitoring location 

iob and time k. k
iobe  the is measurement error for monitoring location iob and time k, 

which is randomly generated using a Gaussian probability distribution.  The mean and 

standard deviation of the erroneous concentration measurements are required (Harmel 

& Smith, 2007). The error-free concentration measurement represents the mean, and 

the standard deviation. For erroneous data,  , is estimated using Eq. 6-11. 

,
k
error free iobCobs    (6-11) 

where   is a fraction between 0 and 1.0, which is used to generate various degrees of 

measurement errors. 

The improved efficiency of the source identification model is evaluated, when 

using sequential concentration measurements from designed monitoring network, and 

when measurement error exists. The linked simulation-optimization model is solved 

using perturbed concentration measurement data and the solution is compared with the 

results obtained using error-free measurement data. 
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6.4. Results and Discussion 

The two-objective optimal monitoring network design model is solved and Figure 6.2 

shows the Pareto-optimal front. The Pareto-optimal front includes the optimal networks 

with respect to both objective functions 1 and 2. The population size is 50. As shown in 

Figure 6.2, there are only 12 different Pareto-optimal results in the final generation of 

the NSGA-II optimization model. It is seen that as the value of OBJ2 decreases, the 

value of OBJ1 decreases and vice versa; however, the objective is to minimize OBJ2, 

while maximizing OBJ1. This essentially shows the conflicting nature of the two 

objective functions and their trade-offs. Based on the defined objective functions 1 and 

2, better monitoring network design results in maximum values for objective function 1 

and minimum values for objective function 2; however, any point on the Pareto-optimal 

front can be selected as a suitable design for monitoring network based on the decision 

maker’s criteria.  

In this study, both the objective functions Eqs. 6-2 and 6-5 are considered to be 

equally important. Although a compromise solution is not based on quantitative 

assignment of equal weights to the two conflicting objectives, it is obvious from the 

Pareto optimal solution shown in Figure 6.2, the point shown with the arrow in Figure 

6.2 can be selected to represent a compromise optimal solution. This is based on the 

fact that at this location further small marginal reduction in objective function 2 

(minimization) will result in comparatively large marginal sacrifice in objective 

function 1 (maximization). Therefore this particular solution is a good candidate for 

selection to represent the optimal monitoring network design. The objective function 1 

and 2 values corresponding to this point are 139.5 mg/l and 720090 mg/l, respectively. 
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The resulting optimal monitoring locations are wells 9, 11, 12, 14 and 17. Figure 6.3 

shows the contaminant concentration at these wells for the next six-month and 12-

month sampling times.  These concentration values shows an increasing trend with 

time, and appears to be relevant to source identification as well, as the measured 

concentrations are substantial.  

 

Figure ‎6.2 Optimal monitoring network design Pareto-front. 

Selected Design 
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Figure ‎6.3 Error-free contaminant concentration (mg/l) 

In order to evaluate the utility of the monitoring network design methodology for 

efficient contaminant source identification, the linked source identification model 

(presented in Chapter 5) is solved to find contaminant source characteristics, by 

utilizing nine years of contaminant concentration measurement data collected at 14 

initial arbitrary monitoring locations, and additional one year of concentration data 

collected at five newly selected monitoring wells and existing arbitrary ones. The 

concentrations measured in the next 6 and 12 months after initial source identification 

are used as feedback information to improve accuracy in the next sequence of the 

source identification process. 

The source identification model presented in Chapter 5 is also based on a two-

objective optimization model. An NSGA-II optimization algorithm with population size 

50 and 100 maximum number of generations is selected. The stopping criterion is the 

maximum number of generations. The decision variables are contaminant release flux 
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for each source location i and stress period j, qi,j ;i=1,2,3 and j=1,…,4, and qdistributed  

which is the contaminant flux released from the distributed source. Therefore, there are 

13 decision variables. The solution results are in the form of a Pareto-optimal front. To 

be able to compare the estimated source fluxes using designed monitoring network and 

five arbitrary selected monitoring networks, the estimated value for each decision 

variable is averaged over all members of the last generation (Pareto-front) of the 

NSGA-II source identification optimization model.  

Figure 6.4 shows the estimated source release fluxes using the five selected 

monitoring locations in the designed monitoring network (shown as MN in Figure 6.4) 

and those obtained by using five arbitrary monitoring networks (RM1, RM2, RM3, 

RM4, and RM5), with error-free concentration measurement data. 

 
Figure ‎6.4 Recovered source histories using error-free measurement data and the 

designed and arbitrary monitoring networks. 

In Figure 6.4, the actual release source fluxes are shown along with the   initial 

and estimated ones. The initial source release fluxes are the estimated values in the 



139 

 

previous sequence of solving the source identification model (Q in Eq. 6-1). It is used 

as the initial population in the source identification models. As expected, almost all 

estimates of source fluxes show improvement when compared with the initial values 

utilizing each of the networks MN and RM1-RM5. This is a direct result of adding 

more information to the source identification model; however, the improvement is 

greater when using the designed monitoring network (MN). Normalized Absolute Error 

of Estimation (NAEE%) (Eq. 3-15) is estimated for each source and reported in Table 

6.2. In (Eq. 3-15) the denominator is the summation of actual source release fluxes. 

Actual release fluxes for the dummy (not actual) source is zero for all stress periods. It 

is not possible to estimate NAEE% for the dummy source. In Table 6.2, the error 

associated with the dummy source (source 3) is the summation of the absolute 

difference between the actual release flux (zero) and the estimated ones over all four 

stress periods. 

Table ‎6.2 Source release flux estimation error using different monitoring networks. 

 Initial MN RM1 RM2 RM3 RM4 RM5 Average 
increase 

NAEE% 
Source 1 108 29 63 77 64 65 67 36 

NAEE% 
Source 2 76 70 96 78 79 81 78 12 

Error (mg/s) 
Source 3 3.9E4 1.3E4 1.9E4 1.5E4 1.7E4 2.7E4 2.4E4 1.2E4 

NAEE% 
Distributed 
Source 

70 11 41 17 18 36 33 18 

 

As shown in Table 6.2, estimation errors associated with sources one, three and 

the distributed source improved compared to the initial estimates, by adding more 
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contaminant observation data to the source identification model using both designed or 

arbitrary monitoring networks; however, for all sources the improvement is more 

substantial when using the optimally designed monitoring network.  

Therefore, using a designed monitoring network instead of arbitrary selected 

monitoring locations can improve the efficiency of the source identification model. 

Also, the designed monitoring network has a direct positive effect on the costs 

associated with the contaminated site investigation. Moreover, utilizing a designed 

monitoring network can shorten the long process of contaminated site investigation 

plan. For instance, in this illustrative study area, in the current sequence of source 

identification and monitoring network design models, the NAEE% associated with the 

distributed source is 11% which is an acceptable identification tolerance. Therefore, 

any remediation or management plan related to this source can be taken after this 

sequence of model executions; although, by using an arbitrary monitoring network 

design, more sequences of model execution are required to achieve acceptable 

accuracy. Just as a reminder, each sequence of model solution requires another 12 

months (every six-month) contaminant observation data in addition to installing five 

more monitoring locations, which is time consuming and costly. For source 2, utilizing 

the arbitrary monitoring networks resulted in increased source flux estimation error 

compared with the initial solution estimate. This can be related to the location of newly 

selected monitoring locations with respect to source 2, and also the superimposition of 

contamination plumes released from other sources. For source 2, utilizing the designed 

monitoring network reduced the source flux estimation error compared with the initial 

ones. 
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In order to evaluate  the applicability of the proposed methodologies when 

measurement error exists, three different sets of erroneous measurement data are 

randomly generated at the newly selected monitoring locations and existing ones 

(monitoring locations 1-14) using Eqs. 6-11 and 6-12. The observed concentrations 

associated with the next 6 and 12 months monitoring times are perturbed and the 

observation data collected in the first eight years are unaffected. For all three sets of 

erroneous measurement data   is 0.5. The linked simulation-optimization source 

identification model is solved using the erroneous measurements. The estimated source 

release fluxes and the associated estimation errors are shown in Figure 6.5 and Table 

6.3, respectively.  

 

Figure ‎6.5  Recovered source histories using error-free and erroneous measurement 
data collected at the designed monitoring networks 
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Table ‎6.3 Source release flux estimation error using error-free and erroneous 
measurement data. 

 Initial Error 
Free 

Erroneous 
1 

Erroneous 
2 

Erroneous 
3 

Average 
increase 

NAEE% Source 1 108 29 61 61 82 39 
NAEE% Source 2 76 70 78 76 76 7 
Error (mg/s) Source 3 3.9E4 1.3E4 1.9E4 4.8E4 2.2E4 1.7E4 
NAEE% Distributed Source 70 11 41 51 43 34 

 

As expected and also based on the results presented in Table 6.3 and Figure 6.5, 

the source release histories are recovered more accurately when there is no 

measurement error; however, in real contaminated aquifer cases, the measurement error 

is one of the most common sources of error in characterization of contaminant sources. 

On average, using erroneous concentration data results in 39%, 7%, and 34% more 

error (in terms of NAEE%) in estimated source fluxes for sources 1, 3 and distributed 

respectively, compared with the case where the error-free measurement data are utilized 

to characterize the sources. With respect to source 2 which is the non-actual or dummy 

one, the average estimate of flux utilizing the erroneous measurement data increased 

the source flux estimation error by 1.7E4 mg/s (1.5E3 kg/day) compared to the release 

flux estimated using the error-free measurement data.  

In order to examine the advantage of utilizing the designed monitoring network 

compared with the arbitrary selected ones, the average source flux estimation error 

using error-free measurement data collected at arbitrary monitoring locations is 

compared with the estimated source fluxes using error-free measurement data, collected 

at the designed monitoring network. The comparison is shown in the last column of 

Table 6.2. Comparing the corresponding average increase in errors presented in the last 
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column of Table 6.2 and 6.3, even in the case of measurement errors, the designed 

monitoring network is more efficient than the arbitrary ones (using error-free 

measurement) for sources 2. The estimation errors for sources 1 and 3 are relatively 

similar in both cases. It is expected that adding measurement error to the data collected 

at arbitrary monitoring locations will increase the corresponding source flux estimation 

error. For the distributed source estimation, measurement error has a significant effect 

on the accuracy of estimated source flux. This may also stem from the number of 

monitoring locations capturing the contaminant released from this source.  

6.5. Conclusion 

In this chapter a two-objective monitoring network design methodology is proposed 

which is used sequentially with the linked simulation-optimization source identification 

model. The monitoring network design objectives are to reduce uncertainty in 

recovered source histories and to reduce redundancy in selecting the location of 

contaminant observation wells.  By selecting the monitoring locations based on the first 

objective function, the source identification model would be able to differentiate 

between possible source releases histories. The second objective function ensures that 

the selected monitoring well locations are able to provide acceptable coverage of 

information for the unmonitored locations. An NSGA-II optimization model is used to 

find the optimal Pareto-front of the monitoring network designs. 

The performance evaluations show that the proposed methodology is capable of 

efficiently identifying the unknown contaminant source characteristics including 
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locations and release fluxes.  A well-designed monitoring network can substantially 

increase the efficiency of the contaminant source identification model 

Using the sequential source identification and monitoring network design 

methodology, the initial estimates of contaminant source release histories are used as 

feedback into the monitoring network design methodology. The sequential process adds 

additional information to both source identification and monitoring network design 

models in the form of feedback information. The accuracy of estimated source fluxes 

improves by adding additional optimally selected monitoring location and observation 

data. On the other hand, improved estimates of the source fluxes result in better 

prediction of future contaminant plume distribution, and consequently improve the 

utility of the designed monitoring network.  

The performance of the proposed methodology is evaluated for an illustrative 

contaminated study area utilizing synthetic data. Five monitoring locations are 

optimally selected out of 20 available potential locations using the proposed two-

objective monitoring network design methodology. To show the utility of the proposed 

methodology, the linked simulation-optimization source identification model is solved 

using the new optimally designed monitoring network and five randomly generated 

arbitrary monitoring networks. The solution results show that utilizing the designed 

monitoring network increases the accuracy and efficiency of the source identification 

model solutions compared to those obtained with the arbitrary selected locations. To 

evaluate the performance of the designed monitoring network in the presence of 

measurement error, the estimated concentrations are perturbed using generated random 

normally distributed error terms. The linked simulation-optimization source 



145 

 

identification model is solved using erroneous observation data and the results are 

compared with the estimated source fluxes using error-free observation data. The 

proposed methodology also exhibits acceptable performance in the presence of 

measurement error which shows the utility of this method in real-field conditions.  

In the next chapter the proposed sequential source identification and monitoring 

network design methodology is evaluated for a real-life contaminated aquifer. 
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7. APPLICATION OF THE DEVELOPED SEQUENTIAL 

SOURCE IDENTIFICATION AND MONITORING NETWORK 

DESIGN METHODOLOGIES TO FIELD DATA 

7.1. Introduction 

In this chapter, the proposed sequential contaminant source identification and 

monitoring network design methodologies presented in the previous chapter are tested 

for a real urban contaminated study area located in New South Wales, Australia. Due to 

confidentiality requirements, some information related to the location of this site is not 

included. 

A brief review of the background of the problem and the calibrated flow and 

transport simulation models are presented. The sequential source identification and 

monitoring network design methodology are then applied for this site. Finally the 

solution results are presented and the applicability of the proposed methodology to a 

real-life contaminated aquifer is discussed. 

7.2. Background of the problem 

The selected polluted aquifer is part of a suburban town located at the Upper 

Macquarie Groundwater management area (Jha & Datta, 2015a; Prakash & Datta, 

2015) in New South Wales. The detected pollution in this area is BTEX which was first 

detected as vapour pollution in the basement of buildings. BTEX is an acronym for 

benzene, toluene, ethylbenzene, and xylenes. 
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The investigation regarding the extent and intensity of pollution started in 

October 2006 by installing extensive monitoring wells in the polluted aquifer region. 

The wells have been used to monitor and record groundwater contaminant 

concentrations and the groundwater hydraulic heads. In the course of time, more 

monitoring wells were added. BTEX components consists of some of the Volatile 

Organic Components (VOC) found in petroleum derivatives such as petrol (gasoline) 

("BTEX Definitions," 2015). Although there was no systematic procedure in selecting 

the location of these monitoring wells, they are mainly located close to potential 

sources of contamination such as petrol stations and fuel storage tanks. 

The concentration monitoring data were collected at different times during the 

investigation period from October 2006 to July 2011. Using the collected concentration 

data, the preliminary identified source of pollution was a leaking underground storage 

tank located at a petrol station; however, more contaminant sources may exist. 

Moreover, the activity duration of this source in addition to the release flux at different 

times is unknown. 

The aim of this study is to find the location of any other potential source of 

contaminants and release history (including activity duration and release fluxes) 

associated with each source. The contaminant observation data were collected at 75 

wells, however the aim of this study is to find optimal source histories using relatively 

limited concentration measurement data. Therefore the aim is to establish that it is 

possible to characterize the sources with a planned monitoring network design without 

utilizing a large set of monitoring wells, some of which may be redundant. This fewer 

number of monitoring wells compared with the number of wells implemented earlier 
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for monitoring can establish the fact that a much less costly monitoring plan can be 

sufficient. It is postulated that the large number of monitoring wells results in 

redundancy in monitoring. Moreover the concentration measurement data were 

collected approximately every three months during the investigation period (October 

2006 to July 2011); however, one of the other aims of this study is to shorten the 

investigation period for the scenario present in the site, utilizing the proposed 

methodologies. It may be noted that with some concentration measurements missing 

and also some wells installed later during the investigation period, this problem 

becomes more challenging. 

The aim of this study is to show that a more efficient and less costly monitoring 

network can be implemented, while utilizing the proposed sequential contaminant 

source identification and monitoring network design methodology (Chapter 6). A 

limited number of monitoring locations (from the available monitoring wells) were 

selected using the two-objective monitoring network design. The contaminant source 

identification model utilizes the contaminant concentration data at these selected 

locations to identify contaminant source characteristics. The identified source 

characteristics were used to design the monitoring network for the following sequences 

of model executions. The process was repeated until acceptable convergence in 

identified source characteristics was achieved. 

7.3. The simulation model of the aquifer study area 

The utilized simulation models for groundwater flow and contaminant transport process 

were MODFLOW (Zheng et al., 2001) and MT3DMS (Zheng & Wang, 1999). The 
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calibrated flow and transport models developed by Prakash (2014); Prakash and Datta 

(2015) were used in this study. For completeness, the characteristics and properties of 

the utilized flow and transport simulation models are briefly explained in the next two 

sections. For more information, readers may refer to Prakash and Datta (2015). 

7.3 .1 . Groundwater flow modeling of the study area 

Groundwater Modeling System (GMS) 7.0 software was utilized to develop the 

calibrated MODFLOW flow model. Figure 7.1 shows the “investigation area” which 

measures 608 m by 864 m. The impermeable bed of the aquifer is approximately 164 m 

below the ground surface.  

 

 

 

 

 

 

 

 

Figure ‎7.1 Plan view of the study area. (Investigation area is marked) 
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7.3 .1. 1 . Model Area 

Since there were no distinct geological formations to be used as the natural boundary 

conditions of the investigation area, a much larger area (measuring 2.187 km by 2.426 

km) was considered for calibration of the flow model. The larger area is called the 

“model area”. Figure 7.2 shows the model area. The Macquarie River forms the 

constant head boundary condition at the western side of the “model area”. The other 

boundaries were modeled as constant head boundary conditions where the hydraulic 

head at other boundaries was estimated by Puech (2010).  

 

 

 

 

 

 

 

 

 

The ground topography is from south-east towards the river in the west. The 

ground elevation ranges from 292 mAHD to 251 mAHD. The limited number of 

available bore-hole logs divides the geology of the model area into three distinct layers. 

Figure ‎7.2 Plan view of the “model area” (Prakash, 2014). 
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The top, middle and bottom layers are comprised of tertiary alluvium, quaternary 

alluvium and bedrock, respectively. The thickness of layers varies from one point to 

another and is estimated by interpolating available point data from bore-hole logs. 

Rainfall and river are the two main sources of recharge in the model area. The 

average catchment rainfall is 583 mm/year in the wet season. Since the model area is 

largely suburban area, only 10% of rainfall was assumed to contribute as recharge and 

the rest was considered as surface runoff. Recharge was considered to be uniform 

throughout the model area. 

The study period was from 1 January 1995 until 31 December 2012 and was 

divided into 18 stress periods of one year each. For the groundwater flow model 

MODFLOW transient simulation model was used. The flow model physical and 

hydrogeological properties are listed in Table 7.1 (Prakash, 2014). 

There are eight extraction wells in the model area. The extraction rates were 

variable for each stress period and they were estimated based on the total annual 

extraction rate for all wells reported by the City Council and the long-term extraction 

rates were derived from Puech (2010).  

The flow model was calibrated using available hydraulic head measurements 

obtained at 31 observation locations. The calibration period was from October 2006 to 

July 2011. The calibration targets were set to be within 1m from observed hydraulic 

heads with a confidence level of 90%. The boundary conditions were adjusted to 

achieve satisfactory calibration results. 
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Table ‎7.1 The physical and hydrogeological properties of the model area 

Parameter Unit Value 

Maximum length of study area m 2187.1 

Maximum width of study area m 2425.6 

Grid spacing in x-direction, ∆x m 21.87 

Grid spacing in y-direction, ∆y m 21.08 

Number of layers in z-direction  
3 (layers’ thickness are 
adjusted based on the 

geology) 

Kxx (Layer 1, Layer 2, Layer 3) m/day 12.37, 16.24, 0.001 

Kyy (All layers) m/day 0.2 

θ (All layers) dimensionless 0.27 

Longitudinal Dispersivity (Dx) m 12 

Traverse Dispersivity (Dt) m 6 

Horizontal Anisotropy dimensionless 1.5 

Specific Yield Sy (All layers) dimensionless 0.1 

Specific Storage Ss (All layers) m-1 0.000006 

 

7.3 .1. 2 . Investigation Area 

The hydraulic head measurements are available within the investigation area. 

Therefore, the calibrated simulation model for the “model area” is a well-calibrated 

simulation model for the “investigation area”. The model for the investigation area was 

derived from the calibrated model using GMS 7.0 regional to local feature. Refined grid 

size was selected for the investigation area and it was discretized into 75 rows, 50 

columns and three layers. Figure 7.3 shows the plan view of the investigation area. All 
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geological, hydraulic and hydrogeological information were transferred to the 

investigation area flow model. The boundary conditions were considered to be time 

varying specified head boundary conditions. The values of time varying specific heads 

at boundaries of the investigation area were imported for the calibrated model of the 

model area. 

7.3 .2 . Pollutant transport simulation model in the investigation area 

The three-dimensional transient pollutant transport model was developed using 

MT3DMS module within GMS 7.0. The transport of the petrochemical pollutant BTEX 

was simulated within the investigation area. The pollutant sources were modeled as 

point sources using the well feature in MODFLOW and MT3DMS. The pollutant 

sources were considered as injection wells in the flow model and a relatively small flow 

rate (1 m3/day) was assigned to them. The small flow rate ensured that the pollutant 

sources did not have any significant effect on the flow regime of the study area. In the 

transport simulation model, the injection concentration for each source must be 

determined and assigned. The initial concentration of BTEX in the aquifer was zero. 

All the transport parameters are shown in Table 7.1. The transport simulation model 

used the flow field generated by the flow model to estimate contaminant concentrations 

in the investigation area over time. 

7.4. Performance evaluation of the proposed sequential source 

identification and monitoring network design methodologies 

In this section the source identification methodology (Chapter 5) and the monitoring 

network design methodology (Chapter 6) are sequentially used to find the contaminant 
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source characteristics. Based on the preliminary available information, there are two 

potential sources of contaminants in the area. In total, 74 contaminant observation wells 

are available and 63 wells are located within the investigation area. These wells have 

been installed at different investigation stages and the contaminant concentration 

measurements have been carried out at various time stages. In general, the monitoring 

times are at every three months interval; however, many concentration measurements 

are missing during a number of time periods or, the collection of samples has been 

discontinued after few monitoring stages at some monitoring locations. 

In Figure 7.4, the red marks show the potential source locations, and the available 

monitoring wells are shown by green dots. The blue line shows the boundary of the 

investigation area. The contaminant observation period was between October 2006 and 

July 2011. The study period was between January 1995 and January 2013 and was 

divided into 18 stress periods of one year each. The performance evaluation had two 

parts. First the source identification methodology was applied to find an estimate of 

contaminant source fluxes using an arbitrarily selected monitoring network. Next, the 

monitoring network design methodology selected the optimal contaminant monitoring 

network. This process was continued sequentially until satisfactory optimal source 

characteristics were obtained. 
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Figure ‎7.3 Plan view of the discretized investigation area. 

7.4. 1. Contaminant Source Identification Model 

The two-objective contaminant source identification model (Chapter 5) was used to 

estimate the contaminant source histories. The potential contaminant points source 1 

and 2 are located at cell (1,17,29), and (1,16,24), respectively. In this chapter the 

location of points are reported as layer number, row number and column number.  The 

study period is divided into 18 stress periods each of 1 year (1 January 1995 – 1 

January 2013); however, based on the available contaminant observation data, the 
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contaminant sources may be active in 10 stress periods (1 January 1999- 1 January 

2009). Therefore, the source identification decision variables are the BTEX release 

from each source at ten different stress periods. There are 20 decision variables and 

these correspond to two potential source locations and 10 stress periods (Si,j i=1,..2 and 

j=1,…,10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Potential Source Location 
     Monitoring Locations 

Figure ‎7.4 Plan view of the investigation area and the monitoring and potential source 
locations. 
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The aim of this study is to evaluate the sequential source identification and 

monitoring network methodologies. Therefore, at each sequence of model execution, 

the monitoring network for the next monitoring time step was designed. The 

monitoring locations for the first sequence were selected arbitrarily as the initial 

monitoring locations.  

The two-objective source identification model was executed using available 

BTEX concentration measurements collected at the monitoring locations. An NSGA-II 

optimization algorithm was utilized to solve the source characterization problem. The 

population size and maximum number of generations were 50 and 100, respectively. 

The stopping criterion for optimization was the maximum number of generations. The 

maximum and minimum possible source fluxes specified were 0 and 100 g/s, 

respectively. 

7.4. 2. Monitoring network design model 

The estimated source fluxes were used as feedback to design the monitoring network 

for the next sequence of model execution. At each sequence of model execution, three 

new monitoring locations were selected for the next monitoring time step. The potential 

monitoring locations were the available contaminant observation wells installed in the 

investigation area; however, at some monitoring wells, the observed concentrations 

were not reported at some of the monitoring times. Therefore, for each monitoring 

design sequence, those locations with no observed concentration were taken out of the 

potential locations. Moreover, few potential monitoring locations could not capture any 
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information regarding the identification of contaminant sources. They were either very 

far from the potential source locations or, are installed where the contaminants cannot 

reach them regardless of the source characteristics. Therefore, to make the evaluation 

process more efficient, these locations are also eliminated from the list of potential 

source locations. For the elimination process, it was assumed that both sources were 

active with the highest possible release flux (100 g/s). Then the transport model was 

used to predict BTEX concentration at all potential monitoring wells. The locations 

which exhibited zero concentration were located out of possible contaminant plumes 

and did not have any substantial effect on the source identification process. 

The two-objective monitoring network design methodology (Chapter 6) was 

utilized. An NSGA-II optimization algorithm was applied. The population size and 

maximum number of generations were 100 and 100, respectively. The stopping 

criterion was the maximum number of generations. 

7.5. Results  

The three arbitrarily selected initial monitoring locations were MW02, MW05, and 

MW18, located at (1,20,26), (1,22,26), and (1,21,28), respectively. The monitoring time 

was January 2009. Figure 7.5 shows the concentration breakthrough of the selected 

monitoring locations 
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7.5 .1 . First sequence 

The source identification model was executed to find the contaminant release fluxes at 

potential sources using contaminant observation data collected at the three initial 

arbitrary locations. Three observed concentrations collected in January 2009 were 

utilized. The NSGA-II optimization model is utilized. Initially, the optimization 

stopping criterion was set at 100 generations; however, due to the very limited number 

of observed concentrations, the optimization algorithm converged after nine 

generations. Figure 7.6 shows the Pareto-front related to the final generation after the 

first sequence of source identification process. 
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Figure ‎7.5 Breakthrough curves at monitoring locations utilized in the source 
identification procedure 
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In figure 7.6, the source identification linked simulation-optimization algorithm 

converges to one set of source fluxes (not a  Pareto-front). Having one optimal solution 

for the two-objective source identification model is due to the very limited number of 

observed concentrations (three) in the first sequence. The estimated optimal source 

fluxes are presented in Table 7.2.  

7.5 .2 . Second sequence 

The monitoring network for the next monitoring time step (April 2009) had to be 

designed. Three new monitoring locations were selected using the two-objective 

monitoring network design model. The vector containing all available estimates for the 

release histories (Q), corresponds to figure 7.6, was estimated in the first sequence. The 

monitoring network was selected based on the uncertainty and redundancy reduction 

objective functions (objective 1 and 2, respectively). Likewise using the method 

explained earlier, the monitoring locations which could not capture any information (in 
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Figure ‎7.6 Objective function values related to the final generation of the source 

identification model for the first sequence 
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April 2009) in addition to already selected monitoring locations (in sequence one) were 

eliminated from the list of potential monitoring locations. In the monitoring network 

design procedure, in total there were 40 potential monitoring locations from which 

three were selected as observation wells for April 2009. Monitoring wells M15, M17 

and M19 located at cells (1,24,28), (1,18,24), and (1,17,26) were selected. 

The contaminant observation concentrations data were recorded in April 2009 at 

monitoring locations M02, M05, M18 (already existing) and M15, M17, and M19 

(newly selected) wells. The observed concentrations in July 2009 in addition to the 

concentrations collected in January 2009 (already existing) were utilized in the source 

identification model to improve the accuracy of the source flux estimation. In the 

second sequence, the initial population of the linked simulation-optimization algorithm 

was the final generation estimated in the first sequence.  Figure 7.7 shows the objective 

function values related to the final generation of the source identification model.  

 

Figure ‎7.7 Objective function values related to the final generation of the source 
identification model. Second sequence 
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At this stage, since the final solution is presented in the form of a Pareto-front, the 

release fluxes for each decision variable are averaged over all members of the final 

generation and presented in Table 7.2.  

7.5 .3 . Third sequence 

The new monitoring locations were again selected for the next monitoring time (July 

2009). The two-objective monitoring network design methodology was utilized to 

select three new monitoring well locations. The already-selected locations and the ones 

which were not able to capture any information at this monitoring time stage were 

eliminated from the list of all potential monitoring locations at this stage. Therefore, 31 

potential monitoring locations were available. Monitoring wells M24, M25 and M23 

located at cells (1,30,25), (1,24,20), and (1,25,32) were selected. 

The contaminant observed concentrations data were recorded in July 2009 at 

monitoring locations M02, M05, M18, M15, M17, and M19 (already existing) and 

M24, M25, and M23 (newly selected) wells. The observed concentrations in July 2009, 

in addition to the concentrations collected in January 2009 and April 2009 (already 

existing) were utilized in the source identification model to improve the accuracy of the 

source flux estimation. In the third sequence, the initial population of the linked 

simulation-optimization model was the final generation estimated in the second 

sequence.  Figure 7.8 shows the objective function values related to the final generation 

of the source identification model.  
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Figure 7.8 Objective function values related to the final generation of the source 
identification model. Third sequence. 

The release fluxes estimated for each decision variable, in the last generation, are 

averaged over all members of the final generation and presented in Table 7.2. 

7.5 .4 . Fourth sequence 

The same process was continued in the fourth sequence. First the monitoring network 

for the contaminant sample collection in October 2009 was designed. The two-

objective monitoring network design methodology was utilized to select three optimal 

locations out of 27 available potential locations. Monitoring wells M31a, M31, and 

RW7 located at cells (1,37,23), (1,38,23), and (1,39,21), respectively, were selected.  

The contaminant observation concentrations data were measured in October 2009 

at monitoring locations M02, M05, M18, M15, M17, M19, M24,M25, and M23 

(already existing) and at M31a, M31, and RW7 (newly selected) wells. The observed 

concentrations in October 2009 in addition to the concentrations collected in January 
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model to improve the accuracy of the source flux estimation. In the fourth sequence, the 

initial population of the linked simulation-optimization algorithm was the final 

generation estimated in the third sequence.  Figure 7.9 shows the objective function 

values related to the final generation of the source identification model.  

 

Figure ‎7.9 Objective function values related to the final generation of the source 

identification model. Fourth sequence. 

The release fluxes estimated for each decision variable, in the last generation, are 

averaged over all members of the final generation and presented in Table 7.2. 

7.5 .5 . Evaluation 

In order to evaluate the effectiveness of the proposed sequential contaminant source 

identification and monitoring network design methodologies in recovering contaminant 

source release histories, a comparatively accurate estimate of source release fluxes was 

required. Therefore, the contaminant source identification methodology was executed 

using all available contaminant observation data (63 monitoring wells) for January, 
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April, July, and October 2009. In total 252 observed concentrations were utilized to 

estimate the contaminant release fluxes using the two-objective source identification 

model. In the NSGA-II optimization algorithm, the population size and maximum 

number of generations were 50 and 400, respectively. The maximum and minimum 

possible source fluxes were 0 and 100 g/s, respectively. The stopping criterion was the 

maximum number of generations, selected as 400 generations. The maximum number 

of generations in each sequence of the sequential method was 100 and the model was 

executed for four sequences. Therefore, having set the maximum number of generations 

for evaluation purposes at 400, helped to provide a more systematic comparison 

between the effectiveness of methods without considering the calculation costs. In 

Table 7.2, the optimal source fluxes estimated using all available measured 

concentrations from the site are presented. These source flux estimates are designated 

as evaluation source fluxes, for comparison purposes. Figure 7.10 shows the objective 

function values related to the final generation of the source identification model. 

7.7. Discussion 

The effectiveness of the proposed sequential source identification and monitoring 

network design methodology is evaluated using Normalized Absolute Error of 

Estimation (%NAEE). This measure is estimated using Eq. 7-1 (Jha & Datta, 2013).  
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where N is the number of stress periods and i
estq and i

evaluateq are the estimated and the 

evaluation source fluxes for stress period i, respectively. NAEE% is calculated for 

potential source location one and presented in Figure 7.11. Since the second potential 

source location is dummy (non-actual), the evaluation source fluxes are zero for all 

stress periods which make the %NAEE indeterminate. Therefore, the Absolute Error of 

Estimation (AEE) is estimated for potential source location two (Eq. 7-2) and presented 

in Figure (7.12).  

Table 7.2 Estimated contaminant source release fluxes (g/s) 

 S1,1 S1,2 S1,3 S1,4 S1,5 S1,6 S1,7 S1,8 S1,9 S1,10 

1st sequence 33 94 26 26 25 0 0 0 10 9 

2nd sequence 36 88 24 34 31 5 0 2 0 0 

3rd sequence 21 48 23 14 3 3 7 22 0 1 

4th sequence 17 37 13 3 2 20 12 6 2 1 

Evaluation 22 33 14 1 1 26 15 4 4 10 

 S2,1 S2,2 S2,3 S2,4 S2,5 S2,6 S2,7 S2,8 S2,9 S2,10 

1st sequence 48 61 13 62 50 0 32 2 0 29 

2nd sequence 8 34 1 1 0 0 0 0 0 0 

3rd sequence 0 0 0 0 0 0 0 0 0 0 

4th sequence 0 0 0 0 0 0 0 0 0 0 

Evaluation 0 0 0 0 0 0 0 0 0 0 
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N
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est evaluate

i
AEE q q
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where N is the number of stress periods and i
estq and i

evaluateq are the estimated and the 

evaluation source fluxes (obtained with all available concentration measurements) for 

stress period i, respectively. 

 

Figure ‎7.10 Objective function values related to the final generation of the source 
identification model. Evaluation 

 

Figure 7.11 NAEE% for potential source location one 
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As Figure 7.11 shows, the NAEE% values estimated for source 1 show a 

decreasing trend by proceeding with the sequences.  The 2nd sequence does not show 

any improvement in estimating source fluxes (in terms of NAEE%), however, it 

exhibits about 7% more estimation error. Proceeding from the 1st sequence to the 2nd 

one, adding more concentration observation data, generally should reduce the source 

flux estimation error. Therefore, this 7% increase in the estimation error may be 

attributed to the level of accuracy of observed concentrations collected in April 2009 

and the measurement error at this monitoring time step. The NAEE% for the source 

fluxes estimated at the end of fourth sequence is 24%. Having a closer look on Table 

7.2, all the release fluxes estimated for source one are relatively accurate except S1,10. It 

can be noted that S1,10 is the contaminant flux release at source location one, in 2009. 

The concentration observation data utilized in the source identification model were 

collected between January and October 2009. Therefore, the large flux estimation error 

associated to S1,10 (900%) can be tracked back to the short monitoring period.  

 

Figure ‎7.12 AEE for potential source location two. 
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The evaluation source fluxes for source two (Table 7.2) correctly show this 

potential source location is dummy or non-actual. In Figure 7.12, the AEE of the 

estimated source fluxes shows that the sequential source identification and monitoring 

network design methodology is able to find the non-active source locations after two 

sequences. Therefore, the sequential method successfully identifies the actual source 

locations using a relatively limited number of observation data (three and nine 

concentration measurements in sequences 1 and 2, respectively), compared to the 

benchmark source estimates based on an extensive monitoring network consisting of 63 

monitoring wells and 252 observed concentrations.  

7.8. Conclusions 

In this chapter the proposed sequential contaminant source identification and 

monitoring network design methodologies are evaluated for an urban contaminated 

study area. The flow and transport simulation models are calibrated for the study area 

using available hydraulic head measurements. The sequential methodologies are 

applied to the area in four sequences. In the first sequence, three arbitrary monitoring 

wells are selected and the source identification model is applied to find the optimal 

source release fluxes. Then these estimates of contaminant release fluxes are used to 

select three new monitoring wells for the next monitoring time step using the two-

objective monitoring network design methodology. The source identification model is 

executed again to improve the accuracy of estimated release fluxes. Then this 

sequential process is repeated for four sequences.  
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To evaluate the performance of the developed methodologies, the source 

identification model is executed using all available observed concentrations from an 

extensive monitoring wells network. These estimates provide the benchmark source 

fluxes for evaluation purpose. Comparing the recovered source histories with the 

benchmark source release fluxes shows that the proposed sequential method is able to 

find relatively accurate source characteristics with limited observed concentrations in a 

real life contaminated aquifer study area. Moreover, the sequential methodology is 

capable of finding the location of non-active potential sources, using a very limited 

number of observed concentrations and a short time span of observation. Therefore, 

utilizing the proposed methodology to characterize contaminant sources can save the 

decision makers substantial money and time. 
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8. SUMMARY AND CONCLUSION 

In this chapter a summary of the new methodologies developed in this study is 

presented. The limitations associated with these methodologies and possible future 

research directions are highlighted. The conclusions from the performance evaluation 

results are also highlighted.  

In contrast with the traditional view of science where uncertainty represents an 

undesirable state, a state that must be avoided at all costs, in this study new 

methodologies are presented to accept and incorporate some level of uncertainty in the 

contaminant source identification and monitoring network design procedure. Many 

previous researchers have tested their methodologies using erroneous/ uncertain 

hydrogeologic parameter values, such as hydraulic conductivity and contaminant 

measurement error; however, this study focuses on explicitly incorporating these 

sources of uncertainty in the contaminant source identification and monitoring network 

design methodologies.  

Lack of information about field hydrogeologic parameters results in non-random 

uncertainty in estimated contaminant concentrations using flow and transport 

simulation models. Inaccurate simulation results decrease the accuracy of the linked 

simulation-optimization based contaminant source identification. In this study, the 

uncertainty in hydraulic conductivity parameter values is quantified using uncertainty-

based linked simulation-optimization contaminant source identification models. 

Multiple realizations of hydraulic conductivity fields were generated using the IDW 

method with different sets of interpolation parameters.  
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Utilizing simulated concentrations in these realizations, the COC is estimated for 

each available spatial and temporal contaminant concentration monitoring data. 

Incorporating the COC in the source identification process increases the accuracy of 

recovered contaminant source characterization. The efficiency of the uncertainty-based 

source identification methodology is compared with the crisp model in an illustrative 

study area. Results show that the uncertainty based methodology is able to characterize 

the contaminant sources more accurately compared with the previous crisp source 

identification methodologies. In crisp methodology the hydrogeologic parameter 

uncertainty is not considered in the methodology. 

The accuracy of solution results and the computational efficiency of the proposed 

methodology are compared with SGS, which is a probabilistic approach. The evaluation 

results demonstrate that the SGS method adds more uncertainty to the already uncertain 

source identification model. Performance evaluation results provide insight into the 

inter-relation between errors in the source identification process and available spatial 

hydraulic conductivity values. The proposed methodology is potentially useful in 

quantifying parametric uncertainty, when precise information is not available.  

The performance of the proposed uncertainty-based source identification model is 

evaluated for a real experimental aquifer study area. The utilized experimental site is 

located in a polluted industrial area in NSW, Australia. A tracer test has been conducted 

in the area and the contaminant concentrations are recorded in different locations. The 

performance evaluation results show the applicability of the proposed methodology in 

real contaminated sites. 
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In order to incorporate the contaminant observation measurement error/ 

uncertainty in the source identification methodology, in this study, a two-objective 

approach is proposed. The first objective minimizes the normalized difference between 

the estimated and measured concentrations at monitoring locations and times. The 

second objective does not use any normalizing factor. The NSGA-II is utilized as an 

efficient multi-objective optimization algorithm.  

When the measurements are erroneous, the source identification problem is non-

unique. Therefore, various solutions with a possibility of being the true source 

characteristics may be achieved. When the contaminant concentration measurements 

are erroneous, it is not possible to match all the observed and simulated concentrations. 

In the two-objective approach, the first objective function is normalized using observed 

concentrations. Therefore, this objective function emphasizes matching smaller 

observed concentrations (larger objective function improvement); however, the second 

objective function, which is not normalized, tries to match the high concentrations. 

Therefore, the two-objective approach finds the set of possible solutions as a Pareto-

front. 

The performance of the proposed methodology is evaluated in an illustrative 

study area and the results are presented as an optimum Pareto-front. It is demonstrated 

that the retrieved source flux estimates obtained  using the proposed two-objective 

approach are more accurate compared with the solution results obtained using each 

objective function separately. 

Furthermore, a new two-objective monitoring network design methodology is 

developed which is sequentially utilized with the linked simulation-optimization source 
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identification model. The monitoring network design objectives are to reduce 

uncertainty in recovered source histories, and reduce redundancy in selecting the 

location of contaminant observation wells. By selecting the monitoring locations based 

on the first objective function, the source identification model would be able to 

differentiate between possible source releases histories. The second objective function 

ensures that the selected monitoring well locations are able to provide acceptable 

coverage for the unmonitored locations. An NSGA-II optimization model is used to 

find the optimal Pareto-front of the monitoring network designs. 

The performance of the proposed methodology is evaluated in an illustrative 

contaminated study area. Results show that utilizing the designed monitoring network 

increases the accuracy and efficiency of the source identification model compared with 

the arbitrary selected locations. Moreover, the proposed methodology exhibits 

acceptable performance in the presence of measurement error which shows the utility 

of this method in real-field conditions. Moreover, the proposed sequential source 

identification and monitoring network design methodology is evaluated for a real urban 

contaminated aquifer located in NSW, Australia. Comparing the recovered source 

histories with the benchmarked source release fluxes shows that the proposed 

sequential method is able to find relatively accurate source characteristics with a 

limited number of observed concentrations in a real contaminated field. Moreover, the 

sequential methodology is capable of finding the location of non-active potential 

sources, using a very limited number of observed concentrations and short pollutant 

investigation periods. Utilizing the proposed methodology to characterize contaminant 



175 

 

sources can save decision makers substantial money and time, and require a very 

limited set of monitoring locations, essentially reducing redundancies in the network. 

The performance evaluation results for both illustrative and real contaminated 

aquifers demonstrate the applicability of the proposed methodologies in groundwater 

contamination problems. There are some limitations to the methodologies developed in 

this study which can be used as research directions by future researchers. The main 

limitations are:  

i. The uncertainty-based linked simulation optimization methodology 

considers quantification of hydraulic conductivity parameter uncertainty. The 

methodology is tested using a number of hydraulic conductivity fields; 

however, the methodology needs to be evaluated for more scenarios and more 

rigorous performance evaluation is needed to establish the applicability of the 

methodology.  

ii. The other hydrogeologic parameters’ uncertainty including dispersivity, 

porosity etc., must be considered as sources of uncertainty in the contaminant 

source identification methodology. 

iii. The geological sources of uncertainty such as fractures and boundary 

conditions must be considered as possible sources of uncertainty in a 

contaminant source identification model. 

iv. The evaluation results presented in this study are limited in scope. More 

rigorous evaluation processes must be completed to clearly establish wide 

applicability of the proposed methodologies and to extend these methodologies.  
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APPENDIX I 

Notation 

AEE  Absolute Error of Estimation  

ANAEE  Average Normalized Absolute Error of Estimation 

C Solute concentration in groundwater (ML-3) 

Cobs  Error free concentration at monitoring locations 

Cpert Perturbed concentration values 

k
iobCest  Concentrations estimated by the simulation model at observation location 

iob and at the end of time period k 

,
k
iob rCest  Estimated concentration at monitoring location iob and time k using r 

hydraulic conductivity realization 

,
k
iob nrCest   Estimated concentration at monitoring location iob and time period k 

using nrth SGS generated hydraulic conductivity realization 

,
p

i kCest   Estimated concentration at monitoring location i and at time k using pq  as 

candidate solutions for the source characteristics 

,
ave
i kCest  Estimated concentration at monitoring location i and time k, averaged 

over all possible sets of source release histories 

k
iobCestn  Average concentration estimated at the monitoring location iob and time 

period k 

k
iobCestnr   Average concentration estimated at the monitoring location iob and time 

period k using all SGS generated realizations 
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p
i ,kC int   Interpolated contaminant concentration at potential monitoring location i 

and time k using candidate source characteristics solutions 

,
k
error free iobCobs  k Error-free concentration measurements at monitoring location iob and 

time k 

k
iobCobs  Observed concentrations at observation location iob and at the end of time 

period k 

D Dispersion coefficient 

Dj,k Dispersion coefficient tensor (L2T-1) 

di Distance between the estimated point and the sample point 

dij Distance between points i and j 

k
iobe   A measurement error factor for monitoring location iob and time k 

k
iobF , ,i jF  Coefficient of uncertainty 

1FOBJ , 2FOBJ  Vector containing all the final objective function values of the resulting 

Pareto-front 

1ifobj , 2ifobj  ith final (non-dominated) objective function value of the resulting Pareto-

front 

H Potentiometric head (L) 

HC Hydraulic conductivity 

I Moran's I 

Kr Hydraulic conductivity field realization 

Kxx, Kyy, and Kzz Hydraulic conductivities (L/T) along the x, y, and z coordinate axes 

MonitoringMax  Maximum number of selected monitoring locations 
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N Total number of candidate source locations 

n, nr Number of closest sampled data points used for interpolation purposes 

NAEE%  Normalized Absolute Error of Estimation 

nk Total number of concentration observation time periods 

nn A constant 

nob Total number of available monitoring locations 

NP  Total number of available set of estimated contaminant release fluxes 

NR Number of hydraulic conductivity realizations 

NS Total number of candidate source locations  

NT  Total number of monitoring design time steps 

p The exponent parameter. 

1( )p COC  , 

2( )p COC   

The probabilities that the COC value is less than or equal to η1 and η2 

Q Vector containing all available estimates of contaminant release fluxes 

1
1
FOBJQ , 1

3
FOBJQ , 

2
1
FOBJQ , 2

3
FOBJQ   

First and third quartiles of the non-dominated objective function values 

i
estq and i

actq  Estimated and actual source fluxes for stress period i 

i
evaluateq  Evaluation source fluxes for stress period i 

maxq  and minq  Upper and lower bound for contaminant release fluxes 

pq   pth set of available estimate of source release fluxes 
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t
s ,pq   pth estimated release flux at candidate source location s and stress period t 

R Number of hydraulic conductivity realizations 

SS Specific storage of the porous material (L-1) 

Sud  A uniform random number between -1 and +1 

ST Total number of stress periods 

t Time 

TotalN  Total number of monitoring locations including the newly selected and 

existing ones 

U  Normalizing factor 

uj Groundwater velocity in three dimensions (LT-1) 

xi, yi, zi Cartesian coordinates of candidate contaminant source i 

ix , lx  Three-dimensional coordinates of potential monitoring locations i and l 

iX   A flag 

W Volumetric flux per unit (T-1) 

wi Weights related to each ( )iZ x value  

wi,j Weight applied based on distance between locations i and j 

( )iZ x  IDW interpolated value 

α A constant 

β  A fraction between 0 and 1.0 and illustrates the level of measurement 

error 

i   A flag 

θ Porosity 
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k
iob  Coefficient of Confidence (COC) assigned to monitoring location iob at 

the end of time period k 

Y  The mean value 

   Standard deviation 

   A fraction between 0 and 1.0 

1

NR

p
p

R


  
Chemical reaction terms (ML-3T-1) 
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