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Abstract 

 

The receptors CD96 and TIGIT are expressed on the surface of T and NK cells and 

recent studies suggest both play important inhibitory roles in immune function. CD96 

has been shown to modulate immune cell activity in mice, with Cd96-/- mice 

displaying hypersensitive NK cell responses to immune challenge and significant 

tumor resistance. TIGIT overexpression has been shown to reduce NK cell-mediated 

cytotoxicity. TIGIT is also upregulated on T-cells during cancer and chronic viral 

infection, with expression associated with effector T-cell exhaustion and increased 

Treg suppression. The counterbalance between the putative inhibitory CD96, TIGIT 

receptors and the activating receptor, CD226, offers unique strategies for immuno-

oncology drug development. Blocking CD96 or TIGIT with monoclonal antibodies 

(mAbs) has been shown to improve tumor control in mice, in particular when used in 

combination with PD-1/PD-L1 blockade. These results have highlighted these 

pathways as promising new targets for immune modulation. This review will examine 

the rationale behind targeting CD96 and TIGIT and discuss the potential approaches 

in translating these preclinical findings into novel clinical agents.    
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Background 

 

CD155, CD226 and TIGIT in immune regulation and cancer 

The development of antibodies targeting immune checkpoint receptors PD-1 (1) and 

CTLA-4 (2) has been a monumental step forward in the clinical success of cancer 

immunotherapy. While highly successful as monotherapies, more than a dozen 

alternate pathways exist that modulate immune responses (3), suggesting combination 

approaches may greatly augment response rates. This hypothesis is supported by a 

recent clinical trial, demonstrating improved objective responses when PD-1 and 

CTLA-4 inhibitors were used in combination (4). While antibodies against CTLA-4 

and PD-1 are thought to act predominately through T-cells, another immune cell type 

the natural killer (NK) cell is gaining traction as a target for cancer immunotherapy, 

particularly for the control of metastases and blood cancers (5). NK cells are part of 

the innate lymphocyte family and play a critical role in viral and tumor immune 

surveillance. NK cells act by detecting and killing infected or cancerous cells via 

perforin-mediated cytotoxicity and also regulate immune responses through the 

release of cytokines (6). 

 

Candidate pathways for cancer immunotherapy include a cluster of immunoglobulin 

superfamily receptors that interact with nectin and nectin-like molecules (NECL), 

which are critical regulators in immune surveillance. Nectin and NECL family 

members were first characterized as adhesion molecules, mediating both homo- and 

heterophilic interactions (7). A diverse range of nectin and NECL proteins-receptor 

interactions exist, with roles in immune regulation, virus entry to cells and normal 

development (7, 8). Several nectin and NECL proteins have prominent roles in cancer 
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surveillance, with CD155 (necl-5, PVR) the most well-characterized. While 

expression is low in normal tissue, CD155 is highly expressed on many cancer cell 

lines and primary tumors (9). CD155 has been linked with enhanced tumor 

proliferation (10) and migration (9). CD155 is also upregulated on many immune 

cells during inflammation (11) and on tumor-associated APCs (12). CD155 

expression is thought to modulate T and NK cell responses through CD226, TIGIT 

and CD96 interactions (Table 1 and Figure 1).  

 

Engagement between CD155 and CD226 or TIGIT has been a major focus of 

research, with CD226 having dual roles as both an activating and adhesion receptor 

on NK cells (13, 14), while TIGIT acts as an inhibitory receptor, shown to reduce NK 

cell cytokine production and cytotoxicity (15, 16). CD226 is also considered an 

activating receptor for CD8+ T-cells (17) with its downregulation observed in 

advanced cancer and associated with T-cell exhaustion (12, 18). The role of CD226 in 

tumor immune surveillance is supported by accelerated tumor growth in Cd226-/- 

mice (19, 20). Conversely, TIGIT is highly upregulated on both CD8+ T-cells and 

Tregs in many clinical tumor settings (12, 18, 21), with expression also correlating 

with other immune checkpoints such as PD-1. Across in vitro human assays, primate 

models and mouse tumor models, TIGIT blockade has been shown to enhance T-cell 

function in particular, in combination with other checkpoints such as PD-1(12), PD-

L1 (21, 22) and TIM-3 (23). While CD155 is considered the dominant ligand for 

CD226 and TIGIT, CD226 can also interact with CD112 (24) and TIGIT can interact 

with CD112 and CD113 (25).  

 

CD96 expression, ligand interactions and putative signaling pathways 
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CD96 (TACTILE) was first identified as an Ig superfamily receptor (26), however it 

is now known to be a member of the extended nectin/necl family and its role in 

immune function has received little attention until recently. CD96 expression is 

broadly similar between mice and humans, and is present on a proportion of 

hematopoietic stem cells, αβ and γδ T-cells, NK cells and a sub-population of B-cells 

in humans (27-31) and present on αβ and γδ T-cells, NK cells and NKT cells in mice 

(11, 32). CD96 is not expressed on other immune cells and expression is generally 

low or absent in organs without lymphocyte infiltrate (29). Of interest, CD96 is 

expressed at far higher levels in mice, with almost all cells positive for the receptor at 

resting state while basal expression is lower in humans (26). Interestingly, CD96 has 

been shown to be highly expressed in acute myeloid leukemia (AML), T-cell acute 

lymphoblastic leukemia (T-ALL) (29) and myelodysplastic syndromes (33). CD96 

has additionally been proposed as a cancer stem cell marker in leukaemia (30, 33). 

 

Akin to DNAM and TIGIT, the main ligand for CD96 is CD155, to which it binds 

with an affinity stronger than CD226, but weaker than TIGIT. Human CD96, CD226, 

TIGIT bind to CD155 with dissociation constants (Kd) of 37.6 nM, 119 nM and 3.15 

nM respectively (25). Of note, mouse CD96 (mCD96) but not human CD96 (hCD96) 

has been shown to bind CD111 (nectin-1) (32). Other key differences also exist 

between human and mice. For example, hCD96 exists as two splice variants that 

confer different binding affinities to CD155 (29). The sequence of hCD96 but not 

mCD96 contains a potential SH-2 domain binding-site within the cytoplasmic tail in 

the form of an YXXM motif (29), similar to that found in activating receptors. Both 

human and mouse CD96 sequences contain immunoreceptor tyrosine-based inhibitory 

motifs (ITIMs) (34) that putatively may provide inhibitory signals to lymphocytes 
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following ligation. However, downstream signaling of the CD96 receptor has not 

been evaluated in detail. Given CD155 contains cytoplasmic signaling motifs, it will 

be of interest to determine whether CD96 engagement triggers reverse CD155 

signaling. Indeed, TIGIT/CD155 ligation has been shown to modulate the function of 

CD155 expressing DC cells, inducing IL-10 secretion (25).    

 

Functions of CD96  

Initial investigations of CD96 biology suggested a role in mediating human NK cell 

adhesion to CD155 expressing target cells and was also proposed as a weak NK cell 

activating receptor (31). CD96 was also described as an adhesion molecule to CD155 

and CD111 in mouse studies (29, 32). The first evidence that CD96 might be acting as 

an inhibitory receptor was shown in Cd96-/- mice, where NK cells produced greater 

IFN-γ in responses to LPS, IL-12 or IL-18 stimulation (11). This study also 

demonstrated a role for CD96 in cancer immune surveillance, with Cd96-/- mice 

showing robust resistance to experimental lung metastases and MCA-induced 

fibrosarcomas. The potential of targeting CD96 to enhance NK cell control of 

metastases was highlighted in our recent article (35). In this study, we demonstrated 

that mAbs against CD96 could reduce the number of lung metastases in a range of 

spontaneous and experimental models. The activity of anti-CD96 was dependent on 

NK cells, IFN-γ and CD226.  

 

Clinical-Translational Advances 

Therapeutic approaches 

The complexity of interaction dynamics within the CD96/TIGIT/CD226/CD155 axis 

poses both opportunities and challenges for therapeutic translation in oncology. At the 
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most fundamental level, the net inhibitory signals from either TIGIT or CD96 are 

counterbalanced via multiple mechanisms by the activating signal of CD226. Thus, an 

understanding of the dynamic regulation of CD226 expression and activity must be a 

core consideration when attempting to modulate TIGIT and CD96 activity. 

Therapeutic antibodies that reduce co-inhibitory signaling via blockade of CD155 

binding to CD96 and/or TIGIT have considerable experimental support in preclinical 

cancer models (21, 35). These data support a correlation between antibody blockade 

of the CD96/TIGIT/CD155 axis with enhanced anti-cancer activity through increased 

CD8+ T-cell or increased NK cell function for anti-TIGIT and anti-CD96, 

respectively. As an alternative to blockade of ligand binding to co-inhibitory 

receptors, antibodies that stabilize CD155 binding to CD226 might selectively 

potentiate an activating signal, and may serve as a therapeutic strategy by providing a 

more robust counterbalance to TIGIT and CD96. 

 

Functional TIGIT suppression of anti-tumor responses is both intrinsic to effector T-

cells and indirect, via enhancement of Treg activity. The enrichment of TIGIT 

expression on tumor-infiltrating Tregs compared to peripheral Tregs (23) would 

suggest that maximal anti-tumor response could be achieved via modification of the 

mAb Fc region. Increased binding to activating FcR could mediate a selective 

depletion of TIGIT+ Tregs at the tumor site through antibody dependent cellular-

cytotoxicity (ADCC) or -phagocytosis (ADCP), similar to what has been described 

for anti-CTLA-4 antibodies (36). The relatively greater TIGIT expression on Tregs 

versus T-effector cells within tumor site would optimally enable this approach. While 

CD96 is expressed on CD4+ T-cells (11), further work is necessary to determine 

whether CD96 influences the suppressive function of Tregs, and to define CD96 
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expression on Tregs and Teff within the tumor microenvironment and periphery. 

Importantly, the ability of blocking CD96 mAb to reduce B16F10 lung metastases 

was not dependent on activating FcR (35), indicating that anti-tumor activity was not 

due to selective immune subset depletion.  

 

Since receptor-binding domains are conserved in CD155 (25), therapeutic antibodies 

targeting this ligand are not likely to have selective effects on inhibitory (TIGIT and 

CD96) signals versus activating (CD226) pathways. However, the relatively higher 

binding affinity of CD155 to TIGIT or CD96 compared with the lower affinity 

CD226 interaction can theoretically be exploited for drug development. Greater 

selectivity towards CD226-dependent signaling and subsequent lymphocyte activation 

could be achieved using engineered variants (or “muteins”) of CD155 or other nectins 

that retain TIGIT and/or CD96 binding but cannot bind CD226. By competing with 

native CD155, these modalities would functionally block TIGIT and/or CD96 

inhibitory signaling but retain the activation through CD226. The ability of TIGIT to 

form a signaling-competent homodimer (37) or, conversely, a heterocomplex with 

CD226 which impairs CD226 activation signaling (21), reveals the dynamic 

interactions of this receptor system and other potential anti-cancer drug approaches. 

Antibodies that target the interface between TIGIT homodimers may reduce 

inhibitory signaling, while targeting interactions between TIGIT and CD226 

extracellular domains might conceivably block heterocomplex formation and relieve 

TIGIT-mediated inhibition of CD226 signaling.  

 

Preclinical mechanistic data and known lymphocyte expression patterns suggests that 

combination immunotherapy strategies targeting TIGIT and/or CD96 will have 
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improved anti-tumor responses. For instance, combining anti-CD96 with either anti-

CTLA-4 or anti-PD-1 mAbs resulted in a greater reduction in B16F10 lung metastasis 

compared to monotherapy treatment, an effect dependent on NK cells (35). Moreover, 

survival of mice with 4T1.2 spontaneous metastases, was significantly increased by 

combining anti-CD96 and anti-CTLA-4 or anti-PD-1 compared to monotherapy. 

Similarly, treatment of CT26 tumors with a combination of anti-TIGIT and anti-PD-

L1 dramatically improved anti-tumor responses compared to each as a monotherapy 

(21), while using an anti-TIM-3 mAb in Tigit-/- mice improved the control of B16F10 

metastases and subcutaneous tumors (23). There is also evidence that targeting TIGIT 

and CD96 in combination could be exploited as a therapeutic strategy. While Tigit-/- 

mice showed enhanced immunity to either B16F10 melanoma grown as subcutaneous 

tumors (23), experimental B16F10 lung metastasis were not reduced in Tigit-/- mice 

(11). However treatment of Tigit-/- mice with an anti-CD96 mAb resulted in a greater 

reduction of B16F10 or EO771 lung metastasis than that observed upon anti-CD96 

mAb treatment in wild-type mice (35), suggesting that these pathways may instruct 

non-overlapping lymphocyte subsets and/or distinct molecular mechanisms.  

 

While immunotherapy functions by increasing host anti-tumor immunity, the 

induction of immune-related adverse events (irAEs) in patients can limit certain 

approaches. Clinically, CTLA-4 blockade is associated with more high-grade irAEs 

than PD-1 (4), and in agreement, Ctla-4-/- mice develop a lethal lymphoproliferative 

disorder (38). However,  Pd-1-/- mice, can spontaneously develop a range of less 

severe immune pathologies (39, 40). To date, Tigit-/- (41) or Cd96-/- mice (11) have 

not shown spontaneous development of overt immune pathologies, however Tigit-/- 

mice were more sensitive to the induction of experimental autoimmune 
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encephalomyelitis (41) and TIGIT blockade was shown to increase experimental 

arthritis development (42). While caution in the over interpretation of animal studies 

is advised, these preclinical observations suggest CD96 or TIGIT blocking therapies 

may have favourable clinical toxicity profiles. 

 

Open questions and challenges 

Currently, the foremost challenge for translating TIGIT- or CD96-targeted therapies is 

to functionally validate blockade of these receptors in human lymphocytes. Two 

useful validation surrogates include the analysis of TIGIT and CD96 

expression/function in patient tumor infiltrating lymphocytes (TILs), or on T-cells 

from chronic virus-infected individuals, and any correlation with exhaustion markers 

and/or phenotype. TIGIT was reportedly co-expressed with PD-1 on effector CD8+ T-

cells during HIV or SIV infection and increased TIGIT expression correlated with 

disease progression (22). TIGIT levels were elevated on CD4+ and CD8+ TILs and co-

expressed with PD-1 on CD8+ T-cells in NSCLC, colon cancer and melanoma 

samples (12, 21), with similar expression seen on PBMCs from AML patients (18). 

Promisingly, treatment of HIV-specific CD8+ T-cells with an anti-TIGIT mAb 

increased IFNγ production (22). Similarly, treatment of tumor-specific melanoma 

CD8+ TILs with anti-TIGIT mAb augmented proliferation and IFN-γ production (12, 

43). These data are consistent with a co-inhibitory function for TIGIT in the context 

of chronic antigen stimulation in humans and provide a sound rationale for further 

development of TIGIT blockade therapeutics.  

 

Currently, the validation of hCD96 as a potential immunotherapy target is not as 

advanced as TIGIT. While CD96 surface expression is increased on human T-cells 
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post activation (26, 44), a high percentage of resting CD8+ T-cells from healthy 

controls express CD96 and the fraction of CD96+ CD8+ T-cells was reduced in HIV-

infected individuals (44). Interestingly, serum levels of soluble CD96 were found to 

be elevated in patients with chronic viral hepatitis B infection (45), suggesting that 

persistent antigen exposure can increase CD96 levels and/or cell surface shedding. In 

human cancers, CD96 surface expression on TILs versus PBMCs has not been well 

characterized, however CD96 mRNA expression, along with TIGIT, was highly 

expressed and associated with a T-cell signature in lung cancer (21). Current data 

from preclinical cancer models indicates an inhibitory function for CD96 on NK cells, 

but whether the same function exists on mouse T-cells and human NK or T-cells 

remains to be elucidated. The determination of CD96 expression in human T-cell 

subsets, TILs and a comprehensive validation of functional pathway activity in human 

immune cells is an area of active research and are obligatory prerequisites for the 

development of CD96 blockade therapeutics. 

 

Presently, the relationship between specific structural/biophysical attributes and 

optimal anti-cancer mechanisms of TIGIT- or CD96-targeted therapies are not well 

described. The rationale for blocking CD155/TIGIT binding to augment CD8+ T-cell 

function as a cancer immunotherapy approach is sound. While TIGIT robustly 

inhibits human NK cell-mediated cytotoxicity in vitro (16, 46), in mice, TIGIT NK 

cell-mediated tumor suppression is less pronounced than CD96 (11). Moreover, the 

potentially dominant contribution of TIGIThigh Treg cells in the anti-cancer immune 

response (23) suggests that a blocking antibody might also augment effector 

functions. These observations should be reconciled to understand the full, integrated 
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contribution of TIGIT on distinct lymphocytes (eg CD8+ T-cells, CD4+ T-cells and 

NK cells) for an optimal anti-tumor response.  

 

The ability of CD96 or TIGIT to counterbalance activation mediated by CD226 

appears to drive most of the anti-cancer activities of CD96/TIGIT targeted therapies. 

Indeed, a CD226 blocking antibody reversed suppression of CT26 tumors by an anti-

TIGIT mAb (21). Similarly, CD96 suppression of B16F10 lung metastases, via 

genetic deletion or blocking antibody was mostly dependent on intact CD226 function 

(11, 35). Within this paired inhibitory/activating axis, the magnitude and integrated 

quality (activation versus inhibition) of lymphocyte signaling is dictated by the 

relative availability (and selective competitive binding) of certain ligands but also by 

the kinetics and coordinated expression of receptor levels. To this end, CD226 was 

down regulated on CD8+ T-cells and NK cells in AML patients (18, 47), and low 

CD226 was detected on CD8+ TILs from melanoma patients compared with PBMCs 

(12). CD226, TIGIT and CD96 receptor expression was reportedly dynamically 

modulated by ligand exposure. CD155 interaction decreases surface expression of 

CD226 (48) and CD96 (31) on contacting cells. Conversely, increased levels of 

CD226 and CD96 have been observed in Cd155-/- mice, while TIGIT levels were 

unchanged (49). These dynamic alterations in activating and inhibitory receptor levels 

may tip the balance in net signaling output in a context-dependent manner and 

potentially alter responses to CD96- and TIGIT- targeted therapies.  

 

Clearly, emerging preclinical evidence suggests there is much promise in modulating 

the CD96/TIGIT/DNAM/CD155 axis for immuno-oncology. A clearer understanding 

of the molecular- and context-dependent mechanisms by which CD96 and TIGIT 
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function in immunity will pave the way for its therapeutic application in cancer, either 

as monotherapies or in combination with other therapies. At this stage, the ultimate 

impact of fine-tuning the function of TIGIT and CD96 receptors on cancer patient 

outcomes are wholly unknown but will be interesting to monitor as knowledge 

advances.   
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Table 1. Biological roles of TIGIT and CD96 in lymphocyte function and 
outcomes of pathway inhibition relevant to immunotherapy 
 

 

 

  

 TIGIT CD96 
T-cells  • Increased T-effector cell function in 

tigit-/- knockout or anti-TIGIT mAb 
treated mice, increased human T-
effector function following antibody 
treatment or shRNA knockdown 
REFS (12, 21, 22, 41, 50) 

• Reduced suppressive function of Treg 
cells; reduced suppression of anti-
tumor immune responses by tigit-/- 
Tregs, increased suppression of Th1, 
Th17 immune responses by TIGIT+ 
compared to TIGIT- Tregs in mice 
REFS (23, 51) 

• Associated with markers of T-cell 
exhaustion in tumors or chronic viral 
infections, blockade improves effector 
T-cell function REFS (12, 18, 21, 22, 
43) 

• Role of CD96 in T-cell function currently 
unknown 

• Surface expression of CD96 upregulated 
on activated human T-cells REF (26) 

• CD96 mRNA expression increased and 
associated with a T-cell signature in non-
squamous non-small cell lung cancer 
cohort REF (21) 

• Reduced expression on CD8+ T-cells 
from chronic HIV infected patients 
compared to healthy controls REF (44)  

NK 
cells 

• Blockade of TIGIT-CD112/CD155 
interactions increases human and 
mouse NK cell cytotoxicity and IFNγ 
production REFS (15, 16, 46) 

• Tigit-/- mice do not have increased 
protection from lung metastases REFS 
(11, 35) 

• Putative adhesion molecule of mouse and 
human NK cells REFS (29, 31, 32) 

• Putative activating receptor for human NK 
cells REF (31) 

• Cd96-/- mice or blockade with anti-CD96 
mAb increases NK production of IFNγ 
REFS (11, 35) 

• Cd96-/- mice or blockade with anti-CD96 
mAb increases control of NK cell-
dependent tumors and metastases REFS 
(11, 35)
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Figure 1. The regulation of inhibitory versus activation signals in NK cell and T-cells 
by CD96/TIGIT/CD226 receptors is achieved by complex receptor/ligand and 
receptor/receptor counterbalancing mechanisms. CD155 and CD96, TIGIT, CD226 
are all members of the Ig superfamily and all share similar variable or constant Ig 
motifs in the extracellular domains, single-pass transmembrane regions and short 
cytoplasmic domains.  
A). CD155 levels on different cells are upregulated as a result of cellular stress. In 
cancer, CD155 is increased on transformed cells and antigen presenting cells (APC) 
within the tumor microenvironment and is sensed by the CD96/TIGIT/CD226 
receptors to modulate anti-tumor immunity.  
B). Upon exposure to increasing levels of CD155, the net activation or inhibition of 
lymphocytes is fine-tuned by the integrated signalling of CD96, TIGIT and CD226. 
This net integration is dictated by the relative binding affinity of CD155 for different 
receptors, relative abundance of activation (CD226) vs. inhibitory (CD96, TIGIT) 
receptors, the strength and quality of signal transduction by each receptor and the 
modulation of ligand binding and biochemical signal transduction by homo- and 
heterodimerization of receptor complexes.  
The cytoplasmic domain of CD226 has a tyrosine (Y322) and serine (S329), which 
become phosphorylated in a CD155-dependent manner.   Phosphorylation of Y322 
confers binding of CD226 to the SH2-domain containing protein Grb2 and 
downstream signalling. Serine 329 phosphorylation of CD226 mediates activation of 
protein kinase C and the association with lymphocyte function-associated antigen 1 
(LFA1) as an intermediate for further signal transduction.  TIGIT contains an 
immunoreceptor tyrosine inhibitory motif (ITIM) domain and an immunoglobulin tail 
tyrosine (ITT) motif within the cytoplasmic tail.  Upon ligand binding, both the ITT 
and ITIM domains of TIGIT are phosphorylated and recruit adaptor and signaling 
molecules.  While both mCD96 and hCD96 contain an ITIM-like domain, the human 
CD96 cytoplasmic domain uniquely also includes a YXXM motif.  A detailed review 
of CD226, TIGIT and CD96 signaling mechanisms is described in (8). 
C). These molecular regulatory mechanisms provide distinct opportunities for drug 
development in immuno-oncology.  1). Therapeutic antibodies that block CD155 
binding to CD96 or TIGIT would reverse the inhibitory signaling by these receptors. 
Using either anti-CD96 or anti-TIGIT mAbs, this approach has received specific 
experimental support in mouse cancer models. 2). Antibody or mutated ligand 
(“mutein”) modalities which allow preferential signaling through the activating 
receptor CD226 might tip the balance between CD155-dependent activation and 
inhibition.  For instance, a mAb that recognizes and stabilizes the unique interaction 
complex of CD155/CD226 could enhance stimulatory signaling through CD226. 
Alternatively, engineered mutations in CD155 muteins that preferentially bind CD96 
and/or TIGIT might competitively inhibit native CD155 binding and enhance 
lymphocyte activation. 3). The blockade of TIGIT/CD226 heterodimer or 
TIGIT/TIGIT homodimer by drug modalities would potentially reduce TIGIT-
dependent inhibitory signals.   
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