Finite dispersal of a separative nepheloid plume by an internal hydraulic jump in a tropical mountainous river estuary

Wu, Jiaxue, Ametistova, Lioudmila, Heron, Malcolm, Lemckert, Charles J., and Kalangi, Patrice (2006) Finite dispersal of a separative nepheloid plume by an internal hydraulic jump in a tropical mountainous river estuary. Journal of Geophysical Research: oceans, 111. C11004.

[img]
Preview
PDF (Published Version)
Download (3MB)
View at Publisher Website: http://dx.doi.org/10.1029/2005JC003404
 
3
1294


Abstract

This paper investigates the dynamics of an internal hydraulic jump in a river plume and associated suspended sediment dispersal. Field investigations were undertaken into the river plume generated by the Herbert River, Australia, following a moderate flood event induced by Cyclone Fritz in 2004. The forced plume experiences an abrupt transition from supercritical to subcritical via an internal hydraulic jump, as defined by a mode-1 internal Froude number computed using the phase speeds from the Taylor-Goldstein equation. The hydraulic theory of a two-layer stratified flow was used to identify the plume shape and the mechanical energy loss within the jump. The hydraulic jump energy loss is primarily transferred to the buoyancy-driven potential energy, uplifting the river plume. Intense stratification decreases the bottom stress, damping the resuspension. Therefore, a separative nepheloid dispersal system occurs at the jump section. Both the upper and lower nepheloid flows are confined to the inner shelf, but have different dispersal behaviors and mechanisms. The upper nepheloid flow, which is primarily controlled by advection and settling, satisfies an exponential decay law of the total suspended sediment concentrations versus the offshore distance. The lower nepheloid flow dominated by deposition is detached seaward near the lift-off point of the river plume. A turbidity front associated with the jump may accumulate a large quantity of suspended sediments, enhancing sediment release from the river plume. These findings will promote in-depth understanding of both the cross-shelf sediment dispersal and muddy deposit on the shelf.

Item ID: 4578
Item Type: Article (Research - C1)
ISSN: 0148–0227
Keywords: sediment; salinity; river plume; Front; Herbert River; Great Barrier Reef
Date Deposited: 15 Sep 2009 04:19
SEO Codes: 96 ENVIRONMENT > 9699 Other Environment > 969999 Environment not elsewhere classified @ 34%
97 EXPANDING KNOWLEDGE > 970102 Expanding Knowledge in the Physical Sciences @ 33%
97 EXPANDING KNOWLEDGE > 970104 Expanding Knowledge in the Earth Sciences @ 33%
Downloads: Total: 1294
Last 12 Months: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page