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 2 

Abstract 25 

Coral reefs are biologically diverse and ecologically complex ecosystems constructed 26 

by stony corals. Despite decades of research, basic coral population biology and community 27 

ecology questions remain unanswered. Quantifying trait variation among species can help 28 

resolve these questions, but progress has been hampered by a paucity of trait data for the 29 

many, often rare, species and by a reliance of non-quantitative approaches. Therefore, we 30 

propose filling data gaps by prioritizing traits that are easy to measure, estimating key traits 31 

for species with missing data, and identifying “super-traits” that capture a large amount of 32 

variation for a range of biological and ecological processes. Such an approach can accelerate 33 

our understanding of coral ecology, and our ability to protect critically threatened global 34 

ecosystems. 35 

 36 

  37 
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Main text 38 

Coral reefs are ecologically complex ecosystems engineered primarily by stony corals 39 

(Scleractinia) that support hundreds of thousands of species [1]. Despite covering less than 40 

0.1% of global ocean area [2], reefs are important to humankind for food, coastal protection 41 

and many other goods and services [3]. Indeed, the ecosystem value of non-tradable public 42 

benefits per unit area of coral reef is larger than for any other ecosystem [4]. Despite their 43 

economic, cultural and aesthetic value, coral reefs in most regions have been degraded due to 44 

human pressures [5,6]. Moreover, reefs are threatened by continuing global exploitation and 45 

intensifying climate change [7,8]. However, projections of future coral reef assemblage 46 

structure and ecosystem function remain highly speculative due to a lack of basic biological 47 

data at the individual, colony and population level (Figure 1). For example, a widely-cited 48 

estimate of the proportion of coral species under threat from climate change was based 49 

entirely on expert opinion (see Glossary) of organism traits and anecdotal accounts of 50 

population declines [9]. Non-quantitative approaches can provide initial insight and highlight 51 

fruitful avenues to pursue [10], but should yield swiftly to quantitative approaches that reduce 52 

uncertainty.  53 

Understanding the evolution of species, as well as the dynamics of populations and 54 

communities in a changing world, depends critically upon robust quantification of differences 55 

among species. We argue that progress in coral reef research has been hindered by the limited 56 

number of species for which trait data are available [11,12]. Similarly, progress was 57 

previously hindered by a poor understanding of scleractinian evolutionary relationships; 58 

although substantial ongoing revision of scleractinian taxonomy has now yielded a reliable 59 

phylogeny [13] that is transforming our understanding of coral macro-evolutionary patterns 60 

[14]. Consequently, we review recent examples of trait-based coral research, highlighting in 61 

particular how wider quantification of species traits could advance understanding across a 62 
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hierarchy of scales—ranging from organisms to populations, communities, and 63 

biogeographical regions and macro-evolutionary time scales. We also proffer some insights 64 

from other fields for resolving knowledge gaps in reef coral science. We conclude by 65 

identifying data gaps and conceptual priorities, including a focus on “easy” traits, “trait 66 

infilling” and identifying coral “super-traits” to rapidly advance our ability to understand the 67 

drivers and consequences of changing coral species composition on reefs in an era of rapid 68 

environmental change. 69 

 70 

Organism biology and population persistence 71 

Traits, and their differences amongst individuals, have strong effects on the 72 

organismal and population biology of species. For instance, the energy and nutrients available 73 

to an individual are limited, and the way energy and nutrients are distributed amongst various 74 

processes such as growth, reproduction and maintenance shape life history strategies [15]. 75 

Advancing knowledge at these scales requires understanding the patterns of energy allocation 76 

within individuals, and identifying the key demographic traits that regulate population size 77 

and demography. There is no practical way to comprehensively measure demographic trait 78 

values for a large proportion of assemblages in species-rich systems, like coral reefs. Instead, 79 

trait infilling can be used to infer demographic trait values from other, more readily 80 

measurable traits, like colony morphology, that constrain and influence demographic rates 81 

(Box 1). 82 

More generally, trade-offs among traits influence many aspects of organism biology, 83 

such as generation times [16], and they influence responses to disturbance and stress [17]. In 84 

many fields, progress in in identifying trait trade-offs has been limited because traits are 85 

rarely measured in a common currency [18]. Attempts to overcome this measurement 86 

inconsistency typically require the use of mathematical models that integrate traits with 87 
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different units into a common currency. For instance, Silvertown et al. [19] used matrix 88 

models to recreate Grime’s triangle using population growth factor as a common currency for 89 

plant traits. Similarly, Madin et al. [20] used an integrated biomechanical and photosynthetic 90 

model to convert coral species traits, including size and morphology, into the common 91 

currency of lifetime reproductive output. A more pragmatic approach is to search for super-92 

traits that are relatively easy to measure, and that are reasonable proxies for the rates at which 93 

important organismal, population and community processes occur. We here posit that colony 94 

mass per unit tissue surface area is one such super-trait, serving as a surrogate for 95 

demographic rates like growth (Box 2). Other super-traits might capture important 96 

information about other aspects of coral biology, such as competition and dispersal (Table 1). 97 

Intra-specific trait plasticity is another aspect of organism biology that can greatly 98 

influence population ecology, and the capacity of species to acclimatize or adapt to changing 99 

environmental conditions [22], a key concern for reef corals today. However, trait plasticity 100 

data are rare and measured for few species. Instead, species-level characteristics are 101 

commonly used as proxies for plasticity (Table 1, “Plasticity”), because across taxonomic 102 

groups, species with greater capacity for physiological plasticity generally occupy a greater 103 

range of local habitats and have broader geographical ranges because they are able to cope 104 

with a wider range of conditions [21]. However, direct tests of these proxies are rare for 105 

corals because we lack the necessary data to allow multispecies comparisons of the 106 

magnitude of trait plasticity. Indeed, in a recent example, physiological plasticity of 107 

photosynthetic traits was not correlated with depth range in four Acropora species [23], 108 

whereas the ability to up-regulate heterotrophic feeding allowed colonies to better survive 109 

bleaching than colonies of species with less dietary plasticity [24]. A full understanding of 110 

the relationship between trait plasticity and population persistence requires data to be 111 

compiled that enables interspecific comparison of the magnitude of plasticity of physiological 112 
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traits that control energy acquisition and allocation. To be pragmatic, a subset of common or 113 

functionally important species should be selected for intensive intraspecific trait measurement 114 

to allow for characterizations of trait plasticity, and the potential for adaptation or acclimation 115 

to global change. To ensure consistency, we recommend that a handbook of standardised trait 116 

measurement protocols and conditions is compiled [52].  117 

 118 

Community structure and response to disturbance 119 

An increasingly important goal of modern ecology is to identify general rules of 120 

community assembly, disassembly and recovery under global change. Community assembly 121 

represents the filtering of a regional species pool by local environmental conditions and 122 

ecological interactions, based on the organismal and population traits exhibited by those 123 

species [26]. Thus, approaches to characterizing communities that incorporate the trait values 124 

exhibited by species can improve our understanding of how local communities are assembled 125 

[18]. Increasing evidence that non-neutral community structure is widespread also indicates 126 

that species traits will need to be actively incorporated into biodiversity theory to explain 127 

patterns in the commonness and rarity of species [27-30]. Therefore, to advance reef coral 128 

research, a publically-accessible resource is required with sufficient trait data for an adequate 129 

number of species to allow generalizable, global associations among traits to be identified 130 

[31]. The authors and others are working towards such a compilation [32], which 131 

concentrates on capturing historical data and legacy datasets initially, followed by submission 132 

of newly collected data. This collective effort has already highlighted significant data gaps 133 

(Figure 1) and we hope to draw the scientific community together to fill these gaps. 134 

In addition to prioritizing collection of new data, inferring unmeasured trait values via 135 

trait infilling will lead to compilations that are potentially useful for predicting the responses 136 

of species and assemblages to multiple stressors. For example, novel trait-based metrics of 137 
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functional diversity in fishes can identify assemblages susceptible to disturbance [33]. For 138 

reef corals, structural complexity (a measure of the relative abundance of colonies with 139 

different morphologies) is a good predictor of recovery from catastrophic bleaching 140 

disturbances [34]. Similarly, coral morphology can predict size specific mortality better than 141 

species identity [35], and life-history strategies that captured morphology predicted the 142 

response of reef coral assemblages to disturbance [36]. Therefore, knowledge of the 143 

frequencies of different morphological groups present within an assemblage provides a tool 144 

for predicting the impacts of environmental change. Given the importance of colony 145 

morphology for coral demographic and life-history traits, and the fact that this trait is well 146 

described for all coral species, we propose that colony morphology can provide a basis for 147 

inferring unmeasured growth rates (Box 1), and thus be a key component of a coral super-148 

trait (Box 2). 149 

 150 

Macroecology and macroevolution 151 

A trait-based approach that focuses on filling in data gaps at the organismal, 152 

population and community level can provide insight into the underlying drivers of larger-153 

scale patterns, such as geographical range distributions and species diversity patterns. In 154 

particular, we can test whether the observed distribution of traits through space and time fits 155 

with different macroecological hypotheses which, in turn, allows the relative importance for 156 

different processes to be disentangled. For example, the Metabolic Theory of Ecology 157 

proposes that body size and temperature explain the variation in ecological patterns over 158 

space and time [37], such that metabolism should constrain small animals to grow and 159 

reproduce rapidly [38]. These predictions can be tested with trait data: traits of amphibian 160 

populations indeed show that species at higher altitudes and latitudes have shorter breeding 161 
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seasons and longer larval periods as well as larger size as adults and produce fewer and larger 162 

clutches of larger eggs [39]. 163 

Traits are particularly powerful for revealing the drivers of macroecological patterns 164 

when they are combined with abundance distributions. For instance, the relative role for 165 

dispersal versus establishment in determining successful colonization across biogeographic 166 

borders has been difficult to resolve. However, recent work using coral traits has shown that 167 

assemblages on isolated high-latitude reefs include a relatively high proportion of species that 168 

brood larvae, a trait that is hypothesised to enhance capacity to consolidate range expansions 169 

due to rapid settlement [40]. Trait-based analyses therefore reveal that establishment success 170 

is a dominant process in this system. Traits can also mediate the impact of environmental 171 

filtering at biogeographic transition zones between tropical and temperate corals, where 172 

generalist and stress-tolerant species dominate assemblages [41]. At very large spatial and 173 

temporal scales, trait analyses provided support to the mechanism of selective colonization 174 

mediated by plate tectonic movement as an explanation for the  generation of coral 175 

biogeographic provinces throughout the Indo-Pacific [42]. 176 

Answers to many macroevolutionary questions also might be illuminated by 177 

consideration of traits, because traits are often strongly correlated with speciation and 178 

extinction probabilities. For instance, the extinctions of marine taxa during the Permian mass 179 

extinction event was related to physiological traits associated with hypercapnia and 180 

calcification [43]. For Caribbean coral taxa, the probability of going extinct during the late 181 

Miocene was associated with numerous traits, including colony morphology [44,45], tissue 182 

thickness and endo-symbiont type [44], larval development strategy [46] and maximum 183 

colony size [45]. Despite the challenges of isolating key explanatory traits among a suite of 184 

potential traits, such approaches can inform decisions on the trait state of fossil taxa. For 185 

example, identifying traits associated with the capacity to form symbiotic relationships in the 186 
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modern scleractinian fauna, could inform predictions about whether or not fossil taxa were 187 

symbiotic [47,48].  188 

Traits also have the potential to provide important insights into phylogenetic 189 

relatedness because those that have a clear role to play in an individual’s fitness are under the 190 

strongest selection pressure and, therefore, might be highly conserved [14]. With such 191 

information, we could begin to resolve the directionality of trait evolution and the 192 

mechanisms by which trait transitions are constrained or correlated. Indeed, understanding 193 

the interaction amongst traits over evolutionary timescales can help explain correlated 194 

variation of these traits within and among species today [49]. The importance of traits for 195 

understanding macroevolutionary processes is further exemplified by the recognition that 196 

construction of the scleractinian phylogeny can be improved by incorporation of traits beyond 197 

simple colony morphology, such as reproductive mode.  198 

 199 

Challenges 200 

 We have outlined numerous ways that quantification of species traits can advance 201 

knowledge in coral population, community, ecosystem, macro- and evolutionary ecology. 202 

However, several challenges exist in applying trait-based approaches to coral reef research. 203 

First, there is a lack of data coverage for many traits in many species (Figure 1), particularly 204 

traits relating to physiological and demographic rates that relate organismal performance to 205 

environmental conditions [11,12] and for deeper dwelling, slow growing and rare taxa. For 206 

example, in a global survey of reef traits, Darling et al. [50] collected trait information for 207 

847 species, but only 143 species had enough information to be included in the analysis. 208 

Clearly, more comprehensive trait information would facilitate addressing key research 209 

questions relating to resource acquisition and allocation, including rates of photosynthetic and 210 

heterotrophic energy acquisition, proportional energy allocation to growth, fecundity and 211 
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survival, and how such traits scale with colony size and change along environmental 212 

gradients. In lieu of comprehensive trait information, further development of statistical 213 

approaches for trait infilling is needed (Box 1). 214 

 Second, traits are often used as proxies for the rates at which particular life history 215 

processes occur that are hypothesized to be linked to those traits. For example, polyp size is 216 

considered a proxy for heterotrophic feeding despite the fact that species that up-regulate 217 

feeding during bleaching events have among the smallest polyp sizes of all corals. Therefore, 218 

a major challenge is to test the relationship between trait distributions and the rates at which 219 

processes occur that are hypothesized to be linked to those traits. Moreover, corals are further 220 

complicated because they are colonial. It is critically important to quantify how traits of 221 

individuals (i.e., polyps) scale with colony size, and how multiple traits combine to influence 222 

individual and population-level fitness. Scaling-up from the individuals to biogeographical 223 

patterns has been attempted in other fields using theoretical frameworks such as metabolic 224 

scaling relationships [37] and dynamic energy budget theory [51], but it remains to be 225 

explored how well such theory will fit modular, mixotrophic and symbiotic organisms [52].  226 

Third, a major knowledge gap relates to how trait expression varies through space, 227 

and how rapidly it can change through ecological and evolutionary time. Context-dependency 228 

of trait expression is increasingly a challenge for macroecological analyses that attempt to 229 

find generalizable explanations, often over a large biogeographic extent, as it becomes 230 

increasingly evident that traits collected at one reef might not represent the traits expressed by 231 

individuals of the same species elsewhere. A similar challenge exists with macroevolutionary 232 

questions that are concerned with large temporal extents. Slow growing organisms, like 233 

corals, experience longer time scales than other faster-growing organisms, introducing the 234 

challenge of non-stationary environments into trait responses [53]. Understanding corals’ 235 

capacity to sense and respond to environmental conditions via trait expression over space and 236 
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time, and how this is affected by the dynamism of symbiotic switching and shuffling and host 237 

epigenetics, are critical areas of research necessary to anticipate rates of acclimatization and 238 

adaptation under rapid environmental change. Trait probability distributions are more 239 

informative of trait expression than measures of central tendency, but there is a trade-off in 240 

the difficulty of obtaining sufficient data. Recognising such limitations, plant scientists have 241 

focused on trait proxies in order to rank life history processes and rates for the greater than 242 

30,000 species of plants [54]. Despite dealing with an order of magnitude fewer coral species, 243 

many are rare and difficult to access at deeper depths. Therefore, we must work 244 

collaboratively to find solutions to these challenges and move forward with trait-based 245 

approaches. 246 

 247 

Concluding remarks 248 

To advance coral reef science, we need concerted and coordinated efforts to curate 249 

trait information (statistically and empirically) that can improve and validate proxies for key 250 

biological and ecological processes and identify potential super-traits (Box 3). As ocean 251 

warming, acidification, sea level rise and a myriad of human pressures continue to push reef 252 

corals to their limit, adopting a global effort for trait-based science is necessary—for reefs 253 

and the societies that depend on them. We call for a rigorous and quantitative focus on 254 

species differences, rather than opinion and speculation, to understand the unique biology of 255 

reef builders, and to predict and protect reef ecosystem function into the future. 256 

 257 

Supplementary Data associated with this article can be found at doi:XXXXXXX 258 

 259 

  260 
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Figure Caption 261 

 262 

Figure 1. Coverage of data for 78 coral species traits in the Coral Trait Database 263 

(https://coraltraits.org) mapped onto the current molecular phylogeny to illustrate gaps at 264 

different scales (see Online Supplementary Material Method S3). The presence of trait values 265 

for species is shown with points radiating from the phylogeny, with colours representing level 266 

of organisation. Basal clades are labelled at the centre and families at the periphery. 267 

 268 

  269 
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Glossary 270 

 271 

Trait Broadly refers to both individual-level traits (i.e., potentially heritable 

quality of an organism) and species-level characteristics (i.e., 

characteristics of species as entities). We include both, because species-

level characteristics can potentially be used as proxies for individual-

level traits.  

Expert 

opinion 

Assigning a species trait based on knowledge and anecdotal experience 

rather than measuring the trait directly. 

Proxy A trait that provides an estimate for a biological or ecological process 

based on hypothesis or experience. Proxies are used when more 

appropriate traits are not available.  

Super-

trait 

A trait or combination of traits that capture a large amount of variation 

for a broad range of biological, ecological and evolutionary processes. 

Easy trait A proxy for a process that is easy to measure for lots of species. 

Trait 

infilling 

Estimating probable values (with uncertainty bounds) for a missing trait 

based on evolutionary relatedness and other traits that improve accuracy 

(e.g., geometry). 

 272 

  273 
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Table 1. The common challenges faced by corals and some suggested traits relevant to 274 
research to understand these challenges (adapted from [55]). The easy traits listed are 275 
available from the Coral Trait Database, but species coverage is highly variable. 276 
Relationships among difficult traits and easy traits, and the challenges they are hypothesised 277 
to represent, need to be tested. ~ is related to or equivalent to. 278 
 279 

Challenge Difficult trait Easy trait 
1. Dispersal   
Dispersal in space • Dispersal distance 

• Barrier-crossing 
• Larval development strategy 
• Egg or larvae size (small~more chances, 

large~greater reserves) 
• Symbiodinium spp. in larvae (autotrophic) 
• Larval lifespan (~pelagic larval duration) 
• Also see “Acquiring space” below 

Dispersal in time • Larval longevity 
• Recruit longevity 
 

• Larval survivorship  
• Recruit survivorship in conditions not 

conducive to positive growth (~seed bank) 
2. Establishment   
Juvenile growth • Settlement size  

• Growth rate 
• Larval size 
• Sexual system 
• Symbiodinium spp. in larvae 
• Colony mass per area (CMA) 
• Symbiodinium per area (~energy acquistion) 
• RNA:DNA ratio 

3. Persistence   
Gamete production • Fecundity • Eggs per polyp 

• Polyps per area 
• CMA 

Competitive ability • Competitive effect 
and response 

 

• Adult size (~resistance to partial mortality) 
• Growth form (~capacity to overtop neighbor) 
• Attachment (~escape from neighbor) 
• Clonality or solitary (~capacity to overgrowth 

or overtop) 
• Polyp size (~neighbor digestion) 

Plasticity • Reaction norm • Depth range 
• Geographic range 
• Habitat breadth (exposure, turbidity) 

Space holding and 
longevity 

• Life span • Life history strategy  
• Skeletal density (~ investment in structure) 
• CMA 

Acquiring space • Vegetative spread • Growth form 
• Probability of fragment reattachment 
• Attachment strength 
• Clonality or solitary 

Response to local 
disturbance; stress and 
disturbance avoidance 

• Phenology 
• Palatability 
• Symbiodinium 

makeup 
• Mechanical integrity 

• CMA 
• Colony shape factor 
• Symbiodinium clade and subclade 
• Lipid content 
• Protein biomass 

Response to global 
disturbance; mass 
extinction events 

• Heterotrophy 
• Range size 

• Calcification 
• Tissue thickness 
• Growth form 
• Depth range 
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• Range size 
Origin • Fossil age • Phylogenetic age 

• Fossil age (for certain species) 
280 
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