
biomedicines

Review

Emerging Therapeutic Potential of Nanoparticles in
Pancreatic Cancer: A Systematic Review of
Clinical Trials
Minnie Au 1,2,†, Theophilus I. Emeto 1,*,†, Jacinta Power 2, Venkat N. Vangaveti 3 and
Hock C. Lai 2

1 Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences,
James Cook University, James Cook Drive, Douglas, Townsville QLD 4811, Australia;
Minnie.au@my.jcu.edu.au

2 Townsville Cancer Centre, The Townsville Hospital, Townsville QLD 4814, Australia;
Jacinta.power@my.jcu.edu.au (J.P.); Hock.Lai@health.qld.gov.au (H.C.L.)

3 College of Medicine and Dentistry, James Cook University, James Cook Drive,
Douglas, Townsville QLD 4811, Australia; venkat.vangaveti@jcu.edu.au

* Correspondence: Theophilus.emeto@jcu.edu.au; Tel.: +61-74781-5082
† These authors contributed equally to this work.

Academic Editor: Shaker A. Mousa
Received: 15 June 2016; Accepted: 16 August 2016; Published: 19 August 2016

Abstract: Pancreatic cancer is an aggressive disease with a five year survival rate of less than 5%,
which is associated with late presentation. In recent years, research into nanomedicine and the use
of nanoparticles as therapeutic agents for cancers has increased. This article describes the latest
developments in the use of nanoparticles, and evaluates the risks and benefits of nanoparticles as
an emerging therapy for pancreatic cancer. The Preferred Reporting Items of Systematic Reviews
and Meta-Analyses checklist was used. Studies were extracted by searching the Embase, MEDLINE,
SCOPUS, Web of Science, and Cochrane Library databases from inception to 18 March 2016 with no
language restrictions. Clinical trials involving the use of nanoparticles as a therapeutic or prognostic
option in patients with pancreatic cancer were considered. Selected studies were evaluated using
the Jadad score for randomised control trials and the Therapy CA Worksheet for intervention
studies. Of the 210 articles found, 10 clinical trials including one randomised control trial and nine
phase I/II clinical trials met the inclusion criteria and were analysed. These studies demonstrated
that nanoparticles can be used in conjunction with chemotherapeutic agents increasing their efficacy
whilst reducing their toxicity. Increased efficacy of treatment with nanoparticles may improve the
clinical outcomes and quality of life in patients with pancreatic cancer, although the long-term side
effects are yet to be defined. The study registration number is CRD42015020009.

Keywords: pancreatic cancer; nanoparticles; clinical trials; cancer therapy

1. Introduction

Pancreatic cancer is a rare but aggressive disease that is plagued by a myriad of problems including
late diagnosis often when the cancer has metastasised, no early warning symptoms and inadequate
therapeutic options on diagnosis [1]. The incidence rate of pancreatic cancer for gender is close to
one, with approximate rates of eight per 100,000 in men and six per 100,000 in women globally [2].
Worldwide, it is responsible for 331,000 deaths annually [2]. It is the sixth most common cause of
cancer-related death in Australia and the fourth globally [3]. Despite years of research, the five year
survival rate remains at approximately 5% [1]. The median age of diagnosis has been reported to
range between 66 and 68 years [4]; however, early onset pancreatic cancer occurring in patients under
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50 years of age is associated with more advanced disease at presentation and a poorer prognosis [4,5].
Currently 97% of the burden of disease from pancreatic cancer is due to years of life lost to premature
death [6] with a median survival time of six to ten months for locally advanced disease, and three to
six months for metastatic disease [7,8]. Established risk factors for pancreatic cancer include a family
history of the disease and smoking, which account for 5% to 10% of cases. Other weaker associations
include obesity, diabetes mellitus, chronic pancreatitis, periodontal disease, Helicobacter pylori and
gallstones [4]. A challenge to the management of pancreatic cancer is the drug resistant nature of
pancreatic tumour cells to gemcitabine, a pyrimidine antagonist used as the first line chemotherapeutic
agent [9]. Unlike many other cancers, pancreatic cancer is characterised by several pathophysiological
complications that makes it hard to treat, specifically with drugs. Traditionally, complete surgical
resection provides the most recognised form of treatment [10]. A complete analysis of the difficulties
in treating pancreatic cancer is aptly reviewed by Oberstein and Olive [11].

Nanoparticles are 100 to 10,000 times smaller than human cells and can interact with biological
molecules intra and extracellularly [12]. Nanomedicine is the use of nanoparticles in medicine, and
they can be attached to lipids or form polymers to encapsulate drugs to increase drug solubility,
permeability and delivery to target cells leading to higher therapeutic efficiency [13]. Their unique
properties include the ability to remain stable in the physiological environment and passively target
pancreatic cancer cells via the enhanced permeability and retention effect (EPR). EPR is due to the
size of the nanoparticles, which allow them to extravasate from leaky blood vessels, supplying the
carcinoma and targeting it. Due to the poor lymphatic drainage in tumours, nanoparticles are able
to accumulate within tumour capillaries and are large enough to escape filtration by the kidney
and small enough to evade phagocytic removal by Kupffer cells and splenocytes. However, the
non-physiological surface chemistry of nanoparticles may cause non-specific cellular targeting and
precipitation leading to cell damage [14]. Alternatively, nanoparticles can be used to actively target
tumour cells by combination of specific recognition motifs such as antibodies, sugar molecules, etc.
within nanomedicine formulations [15]. Evidence suggests that active targeting by nanoparticles is
efficient for poorly leaky tumours, whereas passive targeting is better for highly leaky tumours [15].

Toxicity from nanoparticles may occur as a result of composition, size or charge of the
nanoparticles [16]. For example, cationic liposomal nanoparticles can interact with the extracellular
matrix, serum proteins and lipoproteins, with consequent aggregation and or oxidative stress resulting
in non-target tissue damage [17,18]. Gold nanoparticles are able to cross the placenta and damage the
developing foetus [19]. Gold particles are also implicated in the induction of reactive oxygen formation
and the initiation of autoimmunity [20]. Given the large diversity of materials used in the construction
of nanoparticles, there is an infinite number of combinations of interactions with a high potential of
negative interactions that should be taken into consideration to ensure patient safety [21].

A range of in vitro and in vivo animal studies have shown promising results using a variety
of nanoparticles as nanocarriers or in combination with standard chemotherapeutic agents [22–32].
There has been a surge of interest in the use of nanoparticles as therapeutic agents for various cancers
in recent years. For example, a number of clinical trials have been conducted using nanoparticles
as nanocarriers for a range of solid organ tumours such as colorectal cancer [33], non-small cell
lung cancer [34], gastric cancer [35], breast cancer [36] and adenocarcinomas of the oesophagus and
gastroesophageal junction [37]. Therefore, the aim of this systematic review is to synthesise available
literature on clinical trials performed up to March 2016 on the latest developments in the use of
nanoparticles as an emerging therapy for pancreatic cancer.

2. Methods Section

2.1. Literature Search

This systematic review was performed in accordance to the Preferred Reporting Items of
Systematic Reviews and Meta-Analyses (PRISMA) statement [38]. The study protocol can be
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found on the PROSPERO international prospective register of systematic review (PROSPERO 2015:
CRD42015020009). Briefly, a literature search to identify studies investigating the use of nanoparticles
in the management of pancreatic cancer was conducted. The Embase (1980), MEDLINE (1966),
SCOPUS (1996), Web of Science (1965), and Cochrane Library databases (1992) were searched from
inception to March 2016 with no language restrictions. Search terms applied included: “nanoparticles”
OR “nanomedicine”, [Title/Abstract] AND “pancreatic cancer management” OR “pancreatic cancer
therapy”, AND/OR “clinical trials” OR “clinical studies” OR “human participants”. Titles and
abstracts were independently screened by two authors (M.A and J.P) to identify possibly relevant
studies. The full texts for articles that appear ambiguous were assessed to determine their suitability
for inclusion. Database searches were supplemented by scanning the reference lists of included studies
and employing the related articles function in PubMed. Subsequently, the full texts of all potentially
eligible studies were evaluated in detail for inclusion by the two authors. Discrepancies were resolved
in a consensus meeting between the two authors. If the two authors failed to reach a consensus, a third
author (T.I.E.) was involved to make a final decision.

2.2. Inclusion/Exclusion Criteria

The studies included in this paper are clinical trials involving human participants diagnosed with
pancreatic cancer. Interventions used in the studies must include at least one group of participants
being treated with nanoparticles for pancreatic cancer, and the impact of nanoparticle treatment on the
outcome of disease progression or overall survival must be measured. Studies excluded were studies
not involving human participants, studies evaluating the use of nanoparticles in the imaging/diagnosis
of pancreatic cancer and not the treatment, and studies evaluating the use of nanoparticles in patients
without pancreatic cancer.

2.3. Data Collection

Two investigators (M.A and J.P) extracted data using the aforementioned strategy. Data extracted
included specific details about the population, interventions, comparison, outcome (PICO) and study
methods of significance to the review question and specific objectives. Authors of eligible studies
were contacted where additional information was required. Data were cross-checked in a consensus
meeting and again, discrepancies were resolved through discussion and mutual agreement between
the two authors. The third author (T.I.E.) was available to make a final decision if required.

2.4. Quality of Methods Assessment

Two independent reviewers (M.A and J.P) assessed the validity of the studies using the Jadad
score [39] for randomised control trials (RCT) and the Therapy CA Worksheet [40], for intervention
studies. If there is any disagreement, the third reviewer (T.I.E.) interceded to make a final decision.
The Jadad score assesses randomisation, blinding, and attrition to derive a score ranging from
0 (low quality) to 5 (high quality). For this review, a Jadad score greater than 2 was deemed to
be of sound methodology. The Therapy CA Worksheet assesses whether the study was randomised,
whether there was sufficient and complete follow up, and whether groups were analysed according to
their random allocations, blinding, group characteristics and outcome (mean survival). Articles were
categorised as “low”, “moderate”, or “high” according to analysis.

3. Results

3.1. Study Selection

We identified 210 potentially eligible studies from initial database searches after removing
duplicates (Figure 1). A total of 157 articles were excluded following review of their titles and abstract.
The most frequent reasons for exclusion were: not being clinical trials, not involving nanoparticles,
and not involving patients with pancreatic cancer. After appraising 53 full text articles, a further
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50 were excluded because they were not clinical trials or involved the diagnosis or investigation of
pancreatic cancer but not the management. Six additional studies met the inclusion criteria on hand
searching the reference lists of included studies; therefore 10 studies were included in this study
(Table 1). Ten clinical trials were found from the search strategy, including one randomised controlled
trial and nine phase I/II clinical trials. The types of nanoparticles evaluated include nanoparticles
containing a retroviral gene, gold nanoparticles, micelle nanoparticles, liposomal nanoparticles and
albumin nanoparticles conjugated with chemotherapeutics [7,8,41–48]. In addition to evaluating the
effects of the drug on the progression of pancreatic cancer, the maximum tolerated dose and adverse
effects were also investigated.
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Figure 1. Flow diagram illustrating data collection protocol employed in this study.

3.2. Study Characteristics

All studies were prospectively performed, and conducted in hospitals, mostly in tertiary centres
in the United States, Australia, Greece and Europe. Three studies (30%) were conducted in Japan and
the Philippines [7,43,44]. All studies stated that informed consent was obtained by the participants and
were granted ethics approval. All participants had a formal diagnosis of pancreatic cancer confirmed by
histology, imaging and tumour markers; the majority had metastatic disease refractory to conventional
chemotherapy. The sample size of studies included ranged from 1 to 861 with a median sample size
of 12 participants (interquartile range (IQR), 3–23). Participant age was not stated in the two studies,
in the rest of the studies, participant age ranged from 27 to 88 years (Table 1). The median survival for
participants ranged from 3.5 to 24 months, with an overall median of 8.9 months (IQR, 3.5–13.6), adverse
effects ranged from minor ones such as headaches to major effect such as neutropenia and sepsis
(Table 2). Two studies (20%) did not state the median survival time, or the follow-up period [44,46]
(see Tables 1 and 2). For the remaining studies (80%), the follow up period ranged from six to 48 months,
with an overall median of 16 months (IQR, 9.0–33.0), (Table 2 and Figure 2).
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Table 1. Characteristics of included studies.

Country/Region Sample Size Age Range
(Years) % Males Previous Treatment Follow-Up

(Months) Mortality (%) Assessment Reference

North America,
Eastern Europe,

Australia,
Western Europe

n = 861 27–88 58 None 24
692 total deaths (80)

333 in the treatment group (77)
359 in the gemcitabine group (83)

Nab-paclitaxel plus gemcitabine vs.
gemcitabine monotherapy

Von Hoff et al.
2013 [41]

United States n = 19 24–80 47.4
Chemotherapy
(gemcitabine

containing regimen) *
36 16 at 16 months (84)

Determine the effectiveness of
nab-paclitaxel monotherapy as a

second line agent

Hosein et al.
2013 [8]

United States n = 67 30–72 48 None 18 32 at 12 months (48)
Identify the safety and maximum
tolerated dose of nab-paclitaxel

plus gemcitabine

Von Hoff et al.
2011 [42]

United States
Philippines

Trial 1 n = 6
Trial 2 n = 3
Trial 3 n = 1

Trial 1
45–64
Trial 2
53–68
Trial 3

Not stated

Not stated
Chemotherapy
(gemcitabine

containing regimen)

Trial 1: 13
Trial 2: 6
Trial 3: 6

Trial 1: 6 (100)
Trial 2: 1 (33)

Trial 3: 1 (100)

Trial 1: Determine the safety of
Rexin-G at varying doses

Trial 2: Determine the safety of
Rexin-G at varying doses

Trial 3: Determine the effectiveness of
a personal dosing regimen for Rexin-G

Gordon et al.
2006 [7]

Philippines n = 3 47–56 33

Surgical resection,
chemotherapy
(gemcitabine

containing regimen)
and external beam

radiotherapy

14 1 (33) Evaluate the safety and efficacy
of Rexin-G

Gordon et al.
2004 [43]

United States n = 13 50–83 46
Chemotherapy
(gemcitabine

containing regimen)
12 13 (87) Determine the effectiveness and most

appropriate dose of Rexin-G
Chawla et al.

2010 [48]

Unites States n = 12 42–71 75
Chemotherapy
(gemcitabine

containing regimen)
6 11 (92) Determine the effectiveness and most

appropriate dose of Rexin-G
Galanis et al.

2008 [47]

United States n = 3 Not stated Not stated Chemotherapy Not analysed Not analysed Evaluate the efficacy and safety
of CYT6091

Libutti et al.
2010 [46]

Japan n = 11 43–72 Not stated Chemotherapy Not analysed Not analysed Determine the maximum tolerated
dose, safety and efficacy of NK105

Hamaguchi et al.
2007 [44]

Greece n = 24 47–80 46 Chemotherapy 8 17 (71) Evaluate the safety and efficacy
of lipoplatin

Stathopolous et al.
2006 [45]

* Two patients received non-gemcitabine-based frontline therapy.
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Table 2. Summary of findings associating nanoparticles with pancreatic cancer.

Authors Study Design Nanoparticle
Formulation Selection Criteria Main Objective Participants * Overall Median

Survival/Outcome Adverse Reactions † Conclusion

Von Hoff et al. [41]
Phase III
Randomised
control trial

Nanoparticle
albumin bound
paclitaxel
(nab-paclitaxel)

Metastatic
pancreatic cancer
Karnofsky
performance
status score of 70+

Evaluate the safety and
efficacy of nab-paclitaxel
plus gemcitabine vs.
gemcitabine monotherapy
in patients with metastatic
pancreatic cancer

n = 861. Age
27–88 years.
Metastatic
pancreatic
cancer

8.5 months
(95% CI, 7.89
to 9.53)

Major: neutropaenia
Minor: fatigue,
nausea, vomiting,
anorexia and
neuropathy

Increased
overall survival.
Adverse effects
of peripheral
neuropathy and
myelosuppression
increased

Hosein et al. [8] Phase II
clinical trial

Nanoparticle
albumin bound
paclitaxel
(nab-paclitaxel)

Pre-treated
advanced
pancreatic cancer

Evaluate the safety and
efficacy of nab-paclitaxel
monotherapy in patients
with advanced
pancreatic cancer

n = 19. Age
22–80 years.
Stage III and IV
pancreatic cancer

7.3 months
(95% CI, 2.8–15.8)

Major: sepsis
and neutropaenia
Minor: fatigue
and neuropathy

-

Von Hoff et al. [42] Phase I/II
clinical trial

Nanoparticle
albumin bound
paclitaxel
(nab-paclitaxel)

Untreated
advanced
pancreatic cancer

Identify the safety and
maximum tolerated dose of
nab-paclitaxel plus
gemcitabine in patients
with untreated advanced
pancreatic cancer

n = 67 Age
30–72 years

12.2 months
(95% CI, 9.8
to 17.9)

Major: sepsis and
neutropaenia
Minor: fatigue
and neuropathy

Increased
overall survival.
Slightly higher
occurrence
of febrile
neutropaenia
(3% vs. 1%)

Gordon et al. [7]

(A) Phase I/II
clinical trial Rexin-G

Trial A: Locally
advanced
pancreatic cancer

Trial A: Determine the
safety of Rexin-G at
varying doses in patients
with locally advanced
pancreatic cancer

Trial A, n = 6
Age 45–64 years

Trial A: 24
months. (95% CI,
11.1 to 39.5)

Trial A: nil minor or
major side effects

Trial A:
Increased
overall survival.
Symptom relief

(B) Phase I/II
clinical trial Rexin-G Trial B: Metastatic

cancer

Trial B: Determine the
safety of Rexin-G at
varying doses in patients
with various types of
metastatic cancer

Trial B, n = 3
Age 53–68 years

Trial B: 9 months.
(95% CI, 2.4
to 14.9)

Trial B: nil minor or
major side effects

Trial B:
Increased
overall survival.
Symptom relief

(C) Expanded
access
clinical trial

Rexin-G Trial C: Solid
organ cancer

Trial C: Determine the
effectiveness of a personal
dosing regimen for
Rexin-G in solid tumours.
Nanoparticle: Rexin-G
(non-replicating retroviral
vector expressing a
cytocidal gene)

Trial C, n = 1,
Age (not stated) Trial C: Unknown

Trial C: Major
anaemia requiring
red cell transfusions
and sporadic
thrombocytopaenia

Trial C:
Reduction in
size of
metastatic
lesions
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Table 2. Cont.

Authors Study Design Nanoparticle
Formulation Selection Criteria Main Objective Participants * Overall Median

Survival/Outcome Adverse Reactions † Conclusion

Gordon et al. [43] Phase I/II
clinical trial Rexin-G Stage 4 pancreatic

cancer

Evaluate the safety and
efficacy of Rexin-G in
patients with stage 4
pancreatic cancer.
Nanoparticle: Rexin-G

n = 3 Stage 4
pancreatic
cancer

14 months **
(95% CI, −5.8
to 31.8)

Major: nil
Minor: nil

Increased
overall survival.
No adverse
events

Chawla et al. [48] Phase I/II
clinical trial Rexin-G

Gemcitabine
resistant
metastatic cancer

Determine the effectiveness
and most appropriate dose
of Rexin-G in patients with
gemcitabine resistant
metastatic cancer.
Nanoparticle: Rexin G

n = 13 Age
50–83 years
Gemcitabine
refractory
Metastatic
disease

2.6 months at
dose 0–1, n = 6.
9.3 months at
dose 2, n = 7

Major: nil
Minor: fatigue, chills
and headache

Increased
overall survival.
Low severity of
adverse events

Galanis et al. [47] Phase I/II
clinical trial Rexin-G

Gemcitabine
resistant
metastatic disease

Determine the effectiveness
and most appropriate dose
of Rexin-G in patients with
gemcitabine resistant
metastatic cancer.
Nanoparticle: Rexin G

n = 12 Age
42–71 years
Gemcitabine
refractory
Metastatic
disease

3.5 months from
treatment
initiation

Major: nil
Minor: nausea, fever,
diarrhoea,
hypermagnesaemia
and raised liver
enzymes (alanine
aminotransferase
(ALT), aspartate
aminotransferase
(AST), alkaline
phosphate (ALP))

Significant
increase in
tumour size.
Low severity of
adverse events

Libutti et al. [46] Phase I
clinical trial

Colloid gold
nanoparticle
PEGlycated
with
recombinant
TNF

Solid organ cancer

Evaluate the efficacy and
safety of CYT6091 in
patients with advanced
stage cancer

n = 3 with
Pancreatic
cancer

Not specified

Major: nil
Minor: lymphopenia,
hypoalbuminaemia,
hypokalaemia,
hypophosphataemia
and deranged liver
function tests
(bilirubin and AST)

Nanoparticle
CYT6091
preferentially
targets tumour
tissue
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Table 2. Cont.

Authors Study Design Nanoparticle
Formulation

Selection
Criteria Main Objective Participants * Overall Median

Survival/Outcome Adverse Reactions † Conclusion

Hamaguchi
et al. [44]

Phase I
clinical trial

NK105 (micelle
nanoparticle)

Refractory solid
organ cancers

Determine the maximum
tolerated dose, safety and
efficacy of NK105 in
19 patients with refractory
solid organ cancers

n = 11 Age
43–72 years
(range for all
participants)

Not specified.
Antitumour
response of 1 year
for 1 patient, one
had stable disease
for 4 weeks

Major: neutropaenia
Minor: fever. Nausea,
fatigue, stomatitis,
rash, alopecia (for all
participants with a
solid organ cancer)

Decrease in size
of metastatic
lesions. Low
severity of
adverse events

Stathopolous
et al. [45]

Phase I/II
clinical trial Lipoplatin Refractory

pancreatic cancer

Evaluate the safety and
efficacy of lipoplatin and
gemcitabine in patients
with refractory
pancreatic cancer

n = 24 Age
47–80 years.
Refractory
pancreatic
cancer

4 months from
beginning of
treatment. (Range
2–8 months)

Major: no
neurological/renal
toxicity
Minor: self- resolving
abdominal pain.
Myelotoxicity
(grade 3)

Treatment
resulted in
symptom relief
and a partial
response/stable
disease. Low
severity of
adverse events

* = only includes participants with pancreatic cancer. ** = including 1 patientt still alive after 20 months. † Major reactions include clinically significant neurotoxicity, haemotoxicity
and renal/liver toxicity. Minor reactions include non-life threatening symptoms that resolve with minimal or no intervention.
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4. Synthesis of Study Results

4.1. Nanoparticle Albumin Bound Paclitaxel

Paclitaxel is a plant chemotherapeutic alkaloid that is mixed with human serum albumin in
an aqueous solvent and is under high pressure to form a 100–200 nm drug nanoparticle albumin
bound paclitaxel (nab-paclitaxel) [49]. One phase I/II study and one phase II study were found
on investigating the effect of nab-paclitaxel [8,42]. Promising beneficial effects of a combination of
nab-paclitaxel and gemcitabine were reported in the first study [42]. The second study involved
patients with advanced pancreatic cancers, and failed to show convincing therapeutic effect of this
medication [8]. In a phase I/II study involving 67 patients randomised into three groups, 20 receiving
100 mg/m2, 44 receiving 125 mg/m2 and three receiving 150 mg/m2 of nab-paclitaxel, followed by
1000 mg of gemcitabine on three days in every 28 day cycle. Von Hoff and colleagues reported that
the maximum tolerated dose of nab-paclitaxel was 125 mg/m2 once a week for three weeks plus
1000 mg/m2 gemcitabine every 28 days [42]. They found that the dose limiting adverse reactions
were neutropaenia and sepsis, the progression free survival was 7.9 months (95% CI 5.8–11 months)
with a median overall survival of 12.2 months (95% CI 9.8–17.9 months) and a one-year survival
rate of 48%. Positron emission tomography (PET) analysis of patients showed a median decrease in
metabolic activity of 79% in all three treatment groups with a higher reduction in metabolic activity in
the group receiving 125 mg/m2 nab-paclitaxel-gemcitabine compared to those receiving 100 mg/m2,
68% vs. 53%, respectively (p = 0.044). However, in 19 patients with stage III/IV pancreatic cancer
who progressed on gemcitabine-based treatment, and recruited into a single-arm, open-label phase II
clinical trial of nab-paclitaxel, Hosein and colleague reported similar side effects to the Van Hoff study
above, a progression free survival of 1.7 months (95% CI, 1.5–3.5 months), good overall tolerance, and
median overall survival of 7.3 months (95% CI, 2.8–15.8 months) [8].
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In a more recent phase III RCT involving 861 participants with metastatic pancreatic cancer
randomly assigned to a treatment regimen involving nab-paclitaxel and gemcitabine or gemcitabine
alone, the same authors reported a significant increase in median overall survival in the group
receiving nab-paclitaxel compared to the group receiving gemcitabine alone of 8.5 months and
6.7 months, respectively (p < 0.001) [41]. At the one-year mark, the survival was 5.5 months in
the nab-paclitaxel-gemcitabine group compared to 3.7 months in the gemcitabine group (p < 0.001).
The adverse events associated with treatment were more prominent in patients receiving nab-paclitaxel
plus gemcitabine; these include: neutropaenia (38% in the nab-paclitaxel plus gemcitabine group,
27% in the gemcitabine group), fatigue (17% in the nab-paclitaxel plus gemcitabine group, 7% in
the gemcitabine group) or neuropathy (17% in the nab-paclitaxel plus gemcitabine group, 1% in the
gemcitabine group). However, the rates of myelosuppression and neuropathy were also increased [41].
Taken together, these studies suggest that nab-paclitaxel may serve as a promising treatment modality
in the future.

4.2. Pathotrophic Nanoparticle Gene Delivery

Rexin-G is a pathotropic retroviral based nanoparticle/gene delivery vector produced by transient
co-transfection of human embryonic kidney 293T cells with the Moloney murine leukaemia virus,
and encodes a dominant negative mutant construct of the human cyclin G1 gene [43]. The first
clinical trial using Rexin-G in the treatment of pancreatic cancer in the Philippines was performed by
Gordon et al. [43]. They reported tumour stabilisation in doses ranging from 2.7 × 1010 to 3 × 1011

colony forming units; tumour growth was arrested in three of three patients with no experience of
dose limiting toxicity. Two patients were stable five and 14 months from diagnosis, respectively.
There were no adverse events such as bone marrow suppression, significant alterations in liver and
kidney function, nausea or vomiting, mucositis or hair loss. In a further multicentre/country study,
the same performed a series of clinical trials investigating the use of Rexin-G in patients with locally
advanced or metastatic pancreatic cancer [7]. Clinical trial A assessed the use of Rexin-G in six patients
with pancreatic cancer. Five patients showed a partial response and one had stable disease. Half of the
participants had a >30% reduction in tumour size by Response Evaluation Criteria in Solid Tumours
(RECIST) or by tumour volume measurement. Progression-free survival ranged between two to nine
months with a mean of 3.8 months. The median overall survival of patients treated with Rexin-G
from diagnosis was 24 months, whereas that for patients on conventional therapy was 4.4 months.
Clinically, all six participants had no associated nausea, vomiting, diarrhoea; mucositis, hair loss or
neuropathy, although three participants had symptomatic relief of pain. The only adverse reactions
association with treatment were a generalised rash and urticaria in two participants [7].

Clinical trial B investigated the effectiveness of Rexin-G in patients with metastatic cancer, and this
involved three patients with metastatic pancreatic cancer. For the patients with metastatic pancreatic
cancer, two had a partial response with a >30% reduction in tumour size, necrosis of the primary
tumour and decrease in number and size of metastatic nodules. One patient had progressive disease.
All three had symptomatic relief of pain. These patients did not suffer from any treatment related
adverse reactions [7].

Clinical trial C investigated the effectiveness of using a personalised dosing regimen (Calculus of
Parity) to calculate the dose of Rexin-G in patients with metastatic cancer. This trial involved two
patients with metastatic pancreatic cancer. Both patients responded to therapy with one demonstrating
necrosis and cystic conversion of an unresectable pancreatic tumour, whilst the other patient showed
significant reduction in the primary pancreatic tumour and a reduction from 28 to 12 pulmonary
nodules. None of the patients experienced nausea, vomiting, diarrhoea, mucositis, hair loss or
neuropathy. However, two patients developed anaemia requiring packed red cell transfusions, which
was potentially due to bleeding into the necrotic tumours [7].

In a similar study involving 13 patients with metastatic pancreatic cancer resistant to standard
chemotherapy containing gemcitabine, Chawla et al. reported that four patients left the trial due to
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complications related to their disease or personal reasons after less than one cycle of therapy [48].
They found that the median overall survival was 2.6 months for six patients at dose level 0–1
(1 × 1011 colony forming units, 2–3 times a week) and 9.3 months for seven patients at dose level 2
(2 × 1011 colony forming units, thrice a week for four weeks). Treatment related grade 1 adverse events
were experienced by three participants; two experienced fatigue and one experienced chills with a
headache [48].

Galanis et al. [47] carried out a study to determine the dose of Rexin-G that provided the best
response in 12 patients with gemcitabine refractory metastatic pancreatic cancer. The investigators
found that at a dose level between 1 × 1011 to 6 × 1011 colony forming units per cycle, the treatment
was mostly well tolerated with only one participant experiencing a dose limiting toxicity of raised
serum transaminases at a dose of 1.5 × 1011 colony forming units. The median survival was 3.5 months
with 11 participants showing progressive disease and one showing radiographically stable disease
with clinical deterioration. Although the treatment was well tolerated, there was no evidence of clinical
anti-tumour activity; CT and PET scans pre-treatment at day 28 showed significantly increased tumour
volume with a mean increase of 204.5% (p = 0.001), increase in CA 19.9 by a mean of 204.5% (p = 0.001),
median increase in PET standardized uptake of fluorodeoxyglucose (FDG) was 36.3% (p = 0.0244).

Overall, Rexin-G is reported to selectively targets metastatic cancer sites with associated
angiogenesis and increase mean survival in patients with pancreatic cancer.

4.3. Gold Nanoparticles

Libutti et al. conducted a clinical trial using CYT-6091 in 30 patients with advanced solid organ
cancer, including three participants with pancreatic cancer [46]. CYT-6091 consists of colloid gold
nanoparticles with surface bound recombinant tumour necrosis factor and thiolyated polyethylene
glycol. They found that CYT9061 selectively targeted tumour tissue in the three patients with
pancreatic adenocarcinoma. Electron microscopy examination of biopsies of tumour and adjacent
healthy tissue showed that particles in normal tissues were between 0–2 in the three participants
with pancreatic adenocarcinoma and 5–6 particles in tumour tissue. There were minor adverse effects
reported including lymphopenia, hypoalbuminaemia, electrolyte disturbances and derangement in
hepatic enzymes, but did not specify any overall survival [46]. This study suggests that colloid gold
nanoparticles combined with recombinant tumour necrosis factor selectively target pancreatic cancer
sites, aiding the delivery of chemotherapeutic agents to pancreatic cancer tissue.

4.4. Micelle Nanoparticles

Micelle nanoparticles are constructed by using polyethylene glycol as the hydrophilic component
and modified polyaspartate as the hydrophobic component which entraps the drug paclitaxel [44].
Paclitaxel is an antimicrotubule chemotherapeutic agent for a range of solid organ cancers; however,
its efficacy is limited by poor water solubility [44]. The use of a micelle nanoparticle formulation
overcomes this by encapsulating paclitaxel in a “core-shell” that is water soluble and has been shown
to have enhanced anti-tumour activity due to the EPR effect [44,50].

Hamaguchi et al. performed a phase I clinical trial to determine the maximum tolerated dose,
dose related toxicities, and pharmacokinetics of NK105, a micelle carrier system for paclitaxel [44].
Nineteen cancer patients were recruited, including 11 patients with pancreatic cancer who received IV
infusion of NK105. NK105 was generally well tolerated, six patients developed peripheral neuropathy,
none of the patients developed clinically significant haematological toxicities. A partial response was
seen in a patient with metastatic pancreatic cancer who received 150 mg/m2, their liver metastases
reduced in size by 90%, although the effect on pancreatic cancer was not specifically reported. Hence,
it is unclear whether micelle nanoparticles would be useful in pancreatic cancer management.
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4.5. Liposomal Nanoparticles

A liposomal-cisplatin nanoparticle (lipoplatin) is constructed from cisplatin and liposomes
composed of dipalmitoyl phosphatidyl glycerol, methoxy-polyethylene glycol-distearoyl
phosphatidylethanolamine, and soy phosphatidyl choline [51]. Stathopoulos et al. investigated
the efficacy and safe dose of lipoplatin with gemcitabine in 24 patients with refractory pancreatic
cancer [45]. Response to treatment was determined by CT (computed tomography) measurement of
the tumours. A partial response (>50% reduction in the sum of products of the perpendicular diameters
of lesions lasting for at least four weeks) was seen in two patients. Stable disease (<50% reduction
and <25% increase in the size of the products of two perpendicular diameters of lesions for at least
eight weeks) was seen in 14 patients who had. Median survival from the beginning of treatment was
four months. The treatment dose of fortnightly administration of up to 100 mg/m2 of lipoplatin and
1000 mg/m2 of gemcitabine was well tolerated by the participants with no evidence of neurotoxicity
or renal toxicity.

4.6. Quality of Methods of Included Studies

The quality of methods assessment of 10 studies included is outlined in Table 3. With a Jadad
score of 3, the one RCT included is of reasonably sound methodology, (Table 3a). In the other nine
non-randomised clinical trials included, the Therapy CA Worksheet indicates that included studies
ranged from low to moderate quality of methodology (Table 3b). Common weaknesses identified were:
failure to blind, small sample sizes and/ or failure to justify sample size, and failure to identify and
account for all confounders.
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Table 3. Quality assessment of included studies.

Table 3a. Quality assessment of included randomised controlled trial using the JADAD score.

Author and Year Randomisation Blinding An Account of All Patients Total Score

Von Hoff et al.
2013 [41] 2 0 1 3

Table 3b. Quality assessment of included studies using the Therapy CA Worksheet.

Author and Year Randomisation Sufficient and
Complete Follow-Up

Groups
Analysed

as per
Randomisation

Blinding

Groups Treated
Equally Apart

from
Intervention

Groups Have Similar
Characteristics at the

Start

Median
Survival
(Months)

95% CI

Hosein et al. 2013 [8] N Y N/A N N/A N/A 7.3 2.8–15.8

Von Hoff et al. 2011 [42] N Y N/A N N/A N/A 12.2 9.8–17.9

Gordon et al. 2006 [7]
Trial A: N
Trial B: N
Trial C: N

Trial A: Y
Trial B:Y

Trial C: N

Trial A: N/A
Trial B: N/A
Trial C: N/A

Trial A: N
Trial B: N
Trial C: N

Trial A: N/A
Trial B: N/A
Trial C: N/A

Trial A: N/A
Trial B: N/A
Trial C: N/A

Trial A: 25
Trial B: 9

Trial C: N/A

12.36–38.30 *
3.58–13.76 *

N/A

Gordon et al. 2004 [43] N Y N/A N N/A N/A 13 −2.30–28.30 *

Chawla et al. 2010 [48] N Y N/A N N/A N/A Dose 0–1:4.3
Dose 2:9.2 N/A †

Galanis et al. 2008 [47] N Y N/A N N/A N/A 3.5 2.66–4.34 *

Libutti et al. 2010 [46] N N N/A N N/A N/A N/A N/A †

Hamaguchi et al. 2007 [44] N N N/A N N/A N/A N/A N/A †

Stathopolous et al. 2006 [45] N Y N/A N N/A N/A 4 3.37–4.63 *

Abbreviations: CI = Confidence interval; Y = Yes; N = No; N/A = Not applicable. * Calculated based on values in paper. † Unable to calculate based on information in paper.
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5. Discussion

Pancreatic cancer remain a devastating cause of death globally [3], and is plagued by limited
therapeutic options on diagnosis [1]. A significant challenge in the management of pancreatic cancer is
the drug resistant nature of first line chemotherapy [9]. The ability of nanoparticles to bypass some
of these difficulties due to their unique characteristics has enabled their trials as putative therapeutic
agents for pancreatic cancers in recent years. This article appraised available literature on clinical trials
performed up to March 2015 on the use of nanoparticles as therapeutic agents for pancreatic cancer.

Overall, clinical trials have demonstrated that nanoparticles can improve the efficacy of anticancer
agents [7,8,41–48]. For example, nanoparticles were shown to increase the delivery, cellular targeting
of gemcitabine the current first line chemotherapy for pancreatic cancer, whilst reducing associated
adverse effects [14]. Gemcitabine is known to be plagued by issues such as low solubility and
poor expression of intracellular gemcitabine-uptake regulating nucleoside transporters on pancreatic
cells [27]. Additionally, multidrug resistance proteins, the anti-tumour microenvironment such as
epithelial-mesenchymal transition cells with migratory and invasive properties, and the hypoxic
stroma in pancreatic cancers also play a role as a physical barrier preventing chemotherapeutic
agents from targeting pancreatic cancer cells [4]. The evidence reviewed in this article suggest that
these barriers are broken by nab-paclitaxel which increases drug bioavailability and delivery to the
malignant tissue [31,48,49]. Nab-paclitaxel, for example, has been reported to not only enhance the
effect of paclitaxel by increasing its activity and reducing toxicity, but to also acts synergistically
with gemcitabine [42]. Since the development of gemcitabine in 1996, eight phase III clinical trials
involving chemotherapeutic [52–57] or biologic agents [58–60] have failed to show an improvement in
survival. Improvement was seen in 2006 when a phase III randomised controlled trial demonstrated
that erlotinib and gemcitabine lead to an overall survival of 6.42 months which was significantly
prolonged compared to gemcitabine and a placebo [61].

Rexin-G was the first targeted genetic medicine reported to show an increase in overall
survival with no organ related toxicity [48]. None of the studies reviewed reported any systematic
toxicity [7,47,48]. Although one study failed to show any evidence of vector specific- or neutralising
antibodies in the sera of the participants, and no evidence of vector DNA integration or recombination
events in non-target organs including lymphocytes [48]. Collectively, these studies suggest that
Rexin-G is superior to standard chemotherapy in terms of safety profile, efficacy in the management of
gemcitabine resistant pancreatic cancer, as well as improving quality of life.

Libutti et al. performed the first clinical trial involving CTY-6091 and reported potential tumour
reducing effects with a moderate safety profile [46]. This outcome is supported by previously reported
data on the safety of colloid gold in medicine such as in the treatment for rheumatoid arthritis [62].
In support, pre-clinical studies employing CYT-6091 suggest increased accumulation in solid tumours
and a reduction in systemic toxicity [63]. Similarly studies using liposomal nanoparticles was reported
to exhibit a high safety profile, low toxicity, adequate tumour targeting ability, low immunogenicity
and no renal or neurological toxicity [45].

5.1. Current Progress

As demonstrated in this systematic review, there is indeed ongoing research into the development
of nanotechnology based on the unique tumour microenvironment, which are able to deliver clinically
pertinent doses of active formulations to the tumour site while evading various physiological barriers
in the fight against pancreatic cancers. Evidence suggests that there is progress in developing
nanoparticles able to increase the efficacy per dose of a therapeutic agent by increasing its bioavailability,
and that can also be modified for targeted specificity toward cancer cells with negligible damage
to non-target tissues which is generally associated with current chemotherapy [7,41,43–48,64–67].
With the establishment of the Alliance for Nanotechnology in Cancer responsible for fostering
innovation and collaboration among researchers to expedite the use of nanotechnology for cancer
diagnosis and therapy by the United States National Cancer Institute in September 2004. There have
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been some success in the design and synthesis of nanoparticles that can encapsulate and deliver
a diverse suite of cancer targeting therapeutic formulations such as nanoparticles delivering
chemotherapy drugs or RNA interference inhibitors [68–71], and nanoparticles co-delivering two
chemotherapeutic drugs at a fraction of the dose with minimal side effects and with the potential
to reduce cost [64,65]. There are many other emerging strategies such as the use of nanoparticles
(e.g., magnetic nanoparticles) synergistically to improve photodynamic therapy (use of specific
wavelength irradiation to selectively kill cancer cells via oxidative stress and caspase-dependent
apoptotic mediated mechanisms) [72,73], and photothermal therapy (use of near-infrared light of longer
wavelengths to ablate cancer cells) [74], or both [75], or by employing nanoparticles composed of high
atomic numbers such as gold nanoparticles [76], titanium oxide nanotubes [77], or gadolinium-based
nanoparticles [78] to enhance radiation therapy.

5.2. Limitations

When nanoparticles enter the biological environment, the surface proteins associated with the
nanoparticle interact with biological molecules; this interaction depends highly on the composition of
proteins on the nanoparticle. Inappropriate surface chemistry of nanoparticles have the potential to
cause unwanted reactions, reduction in efficacy and adverse effects [21].

Clinical trials in this study involve participants who have refractory pancreatic cancer; further
studies need to be done to ascertain the effects of nanoparticles on patients with less localised
pancreatic cancer.

Studies included in this review were heterogeneous precluding a meta-analysis. Variability was
identified in the way the dosage of nanoparticles for administration was determined; since dosage is
related to toxicity, this may be a confounder in the frequency and severity of side effects found. In order
for the studies to be comparable, a standardised form of dosing should be used in future studies.

Nanoparticles can be generated in many forms, and only a few of them have been investigated in
clinical trials as demonstrated by this study. Many other nanoparticle types have been investigated in
in vivo studies with promising results [64,65]. In the future, it is expected that many more clinical trials
will be published on these emerging therapies such as quantum dots, carbon nanotubes, paramagnetic
nanoparticles, metallic nanoparticles and silver nanoparticles. Since great diversity exists in the
form that nanoparticles can take, this study is only representative of gold nanoparticles, micelle
nanoparticles, Rexin-G and liposomal nanoparticles. The nanoparticles used in the clinical trials
identified in this study vary greatly among themselves, and the results cannot be generalised to all the
forms of nanoparticles available.

Multiple cell lines of origin for pancreatic cancer exist; the trials included in this did not identify
the cell line of pancreatic cancer for the participants. This is a limitation, as the types of mutation
present in the cell line provides information on the growth characteristics, tumourigenicity and
chemosensitivity of the tumour [79]. For example, panc-1 cells have a 5× greater ability to invade
compared to BxPC-3 cells and Capan-1 cells have a higher angiogenic potential compared to Panc-1
cells [80–83]. Although there is limited evidence on the best method to obtain cell line information,
further research in this area can enhance the interpretation of results from the use of nanomedicine.

5.3. Future Research

These studies highlight the potential of nanoparticles to be used in human participants; the results
demonstrate a safe toxicity profile and ability to increase overall survival. Despite promising research
showing the efficacy and safety of nanoparticles in in vitro and in vivo studies in animal models,
more research is required to determine the clearance mechanisms of nanoparticles and their molecular
interactions in human participants [14]. The long-term side effects of using nanoparticles are yet to be
defined. More randomised controlled trials are required to determine implications of nanomedicine on
the quality of life of patients with pancreatic cancer.
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6. Conclusions

Clinical trials have been performed involving a retroviral vector, albumin, colloid gold, micelles
and liposomes. The clinical trials have demonstrated that nanoparticles can be used in conjunction with
chemotherapeutic and other agents increasing their efficacy whilst reducing their toxicity. Increased
efficacy of treatment with nanoparticles may improve the clinical outcomes and quality of life in
patients with pancreatic cancer, although the long-term side effects of these agents remain unknown.
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