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ABSTRACT 23 

Species that home demonstrate faithfulness to a particular location, however not all species 24 

with high site fidelity can or will home.  These movement decisions are often mediated by a 25 

species social behaviour and habitat preferences. Here we explored how habitat 26 

specialisation, site fidelity and social traits relate to homing behaviour in five species of 27 

cardinalfish (Family: Apogonidae). We also compared species’ capacity to home across open 28 

water versus continuous reefscapes. To track site fidelity and then homing behaviour the 29 

precise location of over 1200 tagged cardinalfish on Kimbe Bay reefs (West New Britain, 30 

Papua New Guinea) was visually monitored over time. Following experimental displacement, 31 

all species homed quickly across ~ 400m of both open water and continuous reef habitats. 32 

Incredibly, individuals of one species homed up to five kilometres across multiple reef and 33 

inter-reef passages. Homing was not coupled with site fidelity as both low and high fidelity 34 

species homed well. However, it was correlated with the degree of habitat specialisation, with 35 

specialist species returning in greater numbers than generalist species. Social traits alone did 36 

not predict stronger homing behaviours, but gregarious species with high site fidelity homed 37 

better than the less social and less specialised species. Hence, both social factors and habitat 38 

preferences appear to influence the propensity to home.  Generalist species and those that do 39 

not form rigid social groups are more likely to be able to settle for new sites and have less 40 

need to return to precise locations.  41 

 42 

Keywords: homing, behaviour, habitat specialisation, aggregation, coral reef fish, social 43 

preferences, Apogonidae.44 
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INTRODUCTION 45 

Many animals exhibit homing behaviour, navigating through complex environments to return 46 

to a previously used location (Griffin 1952). Homing (i.e. to “return by instinct to one’s 47 

territory after leaving it” Oxford Dictionaries, v.d.) is common in animals that regularly 48 

migrate between foraging, breeding and / or resting locations and is widespread in the animal 49 

kingdom (reviewed by Papi 1992). The behaviour allows individuals to exploit widely spaced 50 

resources while maintaining connections with familiar locations and/or individuals. The 51 

distance some species will traverse is extraordinary. For instance, particular species of bees 52 

(Pahl et al. 2011), lizards (Jenssen 2002, Huang & Pike 2011), bats (Guilbert et al. 2007) and 53 

fish (Ogden & Buckman 1973, Matthews 1990, Yoshiyama et al. 1992, White & Brown 54 

2013) will travel 10 - 200 times further than their usual daily ranges to return home. Homing 55 

behaviour, however, is not consistent among similar species or even individuals. The 56 

likelihood of homing is often affected by an individual’s age, size, experience and / or 57 

reproductive status (e.g. Rau 1929, Wall & Herler 2009; Shima et al. 2012). Some species 58 

appear to be more motivated and / or more successful at returning home than others, but the 59 

underlying reasons for variation in the propensity to home are not well understood.  60 

 61 

There is increasing evidence that species or individuals with particular ecological or 62 

behavioural traits are more likely to home than others. Taxa that exhibit strong site fidelity 63 

(i.e. repeatedly use the same location) or have a prolonged association with a particular place 64 

are more likely to home when displaced. For instance, resident rock pool fish return to the 65 

capture pool more than transient species do (White & Brown 2013).  In addition, species that 66 

migrate between the same foraging, resting or nesting areas, typically home back to their 67 

familiar site. For example, nesting turtles (Limpus et al. 1992), migratory birds (e.g. Part 68 

1995, Dell’Ariccia et al. 2015) and various fish species (e.g. Ogden & Buckman 1973,  69 
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Matthews 1990, Dittman & Quinn 1996, de Perera & Guilford 2008, Morris et al. 2014) all 70 

home back to very precise locations. In contrast, taxa that regularly move among locations, 71 

switching between multiple breeding or feeding sites, may be less likely to home following 72 

displacement. Interspecific differences in the ability and motivation to home may relate to the 73 

nature of species’ site fidelity and the type of advantages gained by using familiar locations.  74 

 75 

The degree of habitat specialisation and the distance a species needs to traverse to return 76 

home will have a large effect on their homing success, particularly for small bodied animals. 77 

In sub-tidal marine environments, movement of small fish (< 10cm in length) is usually 78 

impeded by open water and / or sand gaps larger than five metres in width (Frederick 1997, 79 

Overholtzer-McLeod 2006, Feary 2007, Wall & Herler 2009). In contrast, larger fish (> 13cm 80 

in length) will home over open terrain from eight kilometres away (Matthews 1990, Carlson 81 

et al. 1995, Hartney 1996, Workman et al. 2002). In some cases the habitat may be more of a 82 

barrier than the distance. Parrotfish for example will home long distances across continuous 83 

reef habitats, but not short distances through open environments (Ogden & Buckman 1973). 84 

Yet for highly specialised reef fish living on patchy habitats, homing across any terrain may 85 

be necessary to ensure they find suitable habitat. 86 

 87 

On coral reefs, species in the cardinalfish family (F. Apogonidae) are known to have 88 

impressive homing abilities. Cardinalfish are nocturnal planktivores that rest diurnally in 89 

branching corals or caves, and typically form large multi-specific aggregations at these 90 

resting sites (Gardiner & Jones 2005). At dusk, they disperse from their aggregations and 91 

forage in isolation above sand, rubble, rock or coral substrata, before returning to resting sites 92 

at dawn (Chave 1978, Marnane & Bellwood 2002). Their fidelity to diurnal refugia appears 93 

to be very high and can persist for at least several months and / or several breeding cycles 94 
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(Fukumori et al. 2010, Marnane 2000, Okuda 1999). Marnane (2000) experimentally 95 

displaced several species (Apogon doedoerlini, Cheilodipterus artus and Cheilodipterus 96 

quinquelineatus) within a shallow, lagoonal environment and observed fish homing returns of 97 

33 - 63% from two kilometres away, and 56 - 81% from one kilometre, all within three days. 98 

Since Marnane’s (2000) discovery other authors have documented strong homing and site 99 

fidelity in several other reef species (Fukumori et al. 2010, Gould et al. 2014, Rueger et al. 100 

2014) and begun to investigate the sensory cues and motivational drivers of homing (Atema 101 

et al. 2002, Døving et al. 2006, Gerlach et al., 2007, Fukumori et al. 2010, Rueger et al. 2014, 102 

Gould et al. 2015).  103 

 104 

For cardinalfish, both social and habitat preferences are likely drivers of their homing 105 

responses and their site fidelity. Differences in the interactions of these preferences may 106 

explain species-specific differences in their homing responses and site fidelity. Species (and 107 

individuals) that live in small cohesive social groups may be more motivated to home than 108 

less gregarious species. For instance, site fidelity and homing success is higher in paired 109 

individuals of Ostorhinchus cyanosoma than in solitary fish, presumably because of the 110 

reproductive links (Rueger et al. 2014). The gregarious species Pterapogon kauderni also 111 

homes, but it appears to be homing to the site rather than to familiar individuals (Kolm et al. 112 

2005). Indeed, individuals within groups are not always faithful to each other, despite the 113 

advantages of living among known individuals (Chivers et al. 1995; Grabowska-Zhang et al. 114 

2012). Cardinalfish vary in their habitat specificity (Gardiner & Jones 2005) and, as seen in 115 

other small reef fish species, generalists may move more than specialists (Feary 2007). Thus 116 

for some species the habitat may be a greater motivator than their social environment.  117 

 118 
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Here we explore the link between homing and site fidelity for five species of cardinalfish that 119 

differ in their apparent social group structure and habitat preferences. We examine whether 120 

inter-specific differences in homing success are related to differences in species’ degree of 121 

site fidelity, habitat specialisation, and sociality.  Previous research on coral reef cardinalfish 122 

has only evaluated their capacity to home across relatively continuous reef habitats. Here, we 123 

also compare homing success across continuous versus open-water environments and test the 124 

distance to which inter-reef homing might extend. The following specific questions are 125 

addressed: (1) Is homing success higher in species with stronger site fidelity, and is this 126 

correlated with their social and /or habitat preferences? (2) Does the type of terrain crossed 127 

affect homing success? In particular does homing success in Apogonidae differ between 128 

continuous reef and open water (inter-reef) crossings? And (3) to what distance can homing 129 

extend? 130 

 131 

METHODS 132 

Study site and species 133 

This study was conducted on fringing and inshore platform reef slopes in western Kimbe 134 

Bay, Papua New Guinea (5°30ˊS; 150°05ˊE. Figure 1). Reefs in this area are separated by 0.2 135 

– 1km of open water and depths of 30 – 60m (Jones et al. 2004, Srinivasan & Jones 2006). 136 

Diurnal, multi-specific aggregations of 20 - 1000 cardinalfish fish are easily located on large 137 

Porites cylindrica branching corals on most reef slopes (Gardiner & Jones 2005). Our study 138 

was conducted in 3 – 15m water depth, below which the study species and branching coral 139 

habitats are rarely found (Gardiner & Jones 2005). Extensive surveys were conducted on the 140 

Tamare - Kilu reefs (Figure 1) to map out all aggregations of cardinalfish species. This 141 

familiarity with the study area subsequently enabled us to relocate tagged fish during the 142 

project.  143 
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 144 

We used the five species of cardinalfish most abundant in the area: Taeniamia zosterophora, 145 

Zoramia fragilis, Z. leptacantha, Cheilodipterus artus and C. quinquelineatus. These species 146 

vary in their degree of habitat specialisation among diurnal resting habitats (Gardiner & Jones 147 

2005), their apparent social preferences and their site fidelity. The standard length of 148 

individuals used in this study were: T. zosterophora 33 - 50mm, Z. fragilis 31 – 39mm, Z. 149 

leptacantha 31 – 39mm, C. artus 41 – 61mm, C. quinquelineatus 41 – 63mm. Only adults 150 

were used. All animal handling techniques used in this study followed stipulations of James 151 

Cook University animal ethics committee (#A1028).  152 

 153 

Habitat specialisation 154 

In Kimbe Bay, all five species preferentially inhabit P. cylindrica corals but vary in the 155 

breadth of other micro-habitats occupied. Species were categorised by their degree of habitat 156 

specialisation at this locality, according to Gardiner & Jones (2005). In order of micro-habitat 157 

specialisation, from least to most, the species are C. quinquelineatus, C. artus, 158 

T. zosterophora, Z. fragilis and Z. leptacantha.   159 

 160 

Sociality 161 

Inter-specific variation in sociality was explored by comparing species’ propensity to 162 

aggregate. The dispersion of the five species was recorded across 10 fore and back-reef 163 

slopes on the Tamare - Kilu reefs (Figure 1a). This information was collected prior to the 164 

experimental aspects of the current paper, in association with habitat use data (Gardiner & 165 

Jones 2005). For each observed individual, or group of individuals, we recorded the number 166 

of conspecifics in the group. When the number of individuals exceeded 20, accurate counts 167 

were visually difficult and an estimated abundance was extrapolated. Variation in species’ 168 
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aggregation tendencies was compared graphically by plotting the observed group sizes as 169 

well as the frequency of group sizes that individual fish occurred in. The latter provided a 170 

means to compare the probability by which individuals of each species would occur in an 171 

aggregation or in isolation. 172 

 173 

Site fidelity  174 

To establish each species’ degree of fidelity to a home site we conducted a mark-resight 175 

study. The home site was the coral colony where fish were captured, tagged, then repeatedly 176 

observed resting in.  For one species, T. zosterophora, we also explored the extremity of its 177 

site fidelity by monitoring how consistently individuals used particular sections within the 178 

colony. This species was used because it showed the highest site fidelity (see results), and 179 

occurred in sufficient numbers within neighbouring aggregations on one reef slope area, 180 

allowing for optimal sampling efficiency.  181 

 182 

Adult individuals were captured using clove oil anaesthetic (Munday & Wilson 1997), small 183 

hand nets and / or a Bincke net (Anderson & Carr 1998). Clove oil was prepared with a 184 

10:5:100 oil, low grade ethanol to seawater ratio and dispersed around the coral colony 185 

through hand held spray bottles (500ml volume). The anaesthetic acts to slow fish responses 186 

down (within ca. 30 seconds) such that divers can catch them with hand nets. On adult 187 

cardinalfish the anaesthetic effect tended to last approximately five minutes. Repeated doses 188 

were used if fish were not captured and tagged in that period. While still under the influence 189 

of anaesthetic, fish were tagged subcutaneously with fluorescent elastomere (VIE-NorthWest 190 

Marine Technology) inserted into dorsal and/or caudal musculature on the right-hand side of 191 

the fish. Individuals of each species were uniquely tagged using a combination of five tag 192 

colours and five body positions. The tags were relatively long (2 – 4mm long) and in bright 193 
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colours so that they were easy to see from 1 – 2m away. To minimize handling stress, fish 194 

were also tagged whilst at their capture depth, rather than being taken to the surface. Capture 195 

and tagging of cardinalfish in this manner does not adversely affect their behaviour or 196 

predation mortality (Marnane 2000).  197 

 198 

After tagging fish were held in mesh cages near their capture location for at least 30 minutes 199 

prior to release. This time was sufficient for effects of the anaesthetic to disperse from the 200 

coral colony, and for the affected fish to resume normal swimming behaviour (NMG pers. 201 

obs.). Fish were released in a group and most individuals experienced more than 30 minutes 202 

recovery (and up to 2 hours). Upon release from the cage, divers monitored the group of 203 

tagged fish for any signs of abnormal behaviour, and / or instant predation. Any fish 204 

experiencing immediate adverse effects was excluded from future data analysis.  205 

 206 

Fidelity to a single coral colony 207 

To investigate fidelity to particular coral colonies and / or movement among adjacent corals, 208 

we monitored positions of tagged fish on one reef slope. The chosen area had numerous 209 

cardinalfish aggregations on P. cylindrica corals allowing for efficient monitoring of multiple 210 

species and individuals (Figure 1b). The designated monitoring area was 200m long, 211 

approximately 30m wide and extended to a depth of 15m. The area was bordered by large 212 

expanses of sand to the south and steep walls to the North, such that there was at least a 50m 213 

distance to suitable resting refugia on either side. Comprehensive visual surveys identified all 214 

diurnal refuge sites of cardinalfish within the monitoring area, and also around the remainder 215 

of Gava Gava reef (Figure 1b). Four aggregations of T. zosterophora, and Z. fragilis and 216 

three aggregations of C. quinquelineatus and C. artus were selected for tagging and 217 

monitoring. Only three groups of the latter species could be found in the study area, limiting 218 
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their sample size. Within each aggregation, 10 - 16 individuals of the focal species were 219 

captured, tagged, and then monitored.  220 

 221 

Two to three days after tagging, surveys of focal aggregations were carried out and sightings 222 

of tagged individuals were recorded.  Surveys proceeded by the same observer (NMG) 223 

hovering about two metres from the edge of fish aggregations and passively observing fish at 224 

rest. This method was effective because the resting cardinalfish sit on the outer edges of their 225 

refuges and are quite easy to watch and count when not panicked. The observer remained at 226 

each aggregation site for 30 - 60 minutes to count tagged fish, or longer if the aggregation 227 

was particularly large (i.e. > 50 fish). If the fish group were panicked by a predator or a rapid 228 

movement by the diver, they typically resumed their relaxed resting posture within 1 – 2 229 

minutes. This behaviour was taken to indicate that the aggregations of cardinalfish do not feel 230 

harassed by the passive diver observations and thus we assumed surveys did not affect fish 231 

presence / absence at the study sites. To enhance reliability of the visual records per tagged 232 

fish, multiple sightings of each tagged fish were taken during the daily observation time. The 233 

same search procedures were also used in latter surveys and homing experiments.  234 

 235 

Repeat surveys were conducted four times over nine consecutive days and then once more 236 

after three months. All known refuge sites of the focal species were surveyed, as well as any 237 

suitable refugia (branching corals and large crevices) within the 200m reef area. Only 238 

individuals that were re-sighted at least once during the nine day monitoring period were 239 

included in analyses. This was to allow for inclusion of any particularly cryptic fish not 240 

observed on a single survey. With repeated surveys any fish still present in the study area had 241 

a very high chance of being seen more than once. Fish that were never observed after tagging 242 

were ‘missing’ and presumed dead due to handling mortalities. The number of excluded or 243 
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‘missing’ fish was very low (25 fish) but varied per species (Table 1). To find any fish that 244 

had moved long distances, reef wide surveys of the home reef  (Gava Gava) and the closest 245 

neighbouring reef areas (Figure 1b) were carried out after the initial nine day monitoring 246 

period and again three months later.   247 

 248 

Aggregations of Z. leptacantha were not present on the Gava Gava reef site and so their site 249 

fidelity was measured separately at alternate locations. Three aggregations were identified on 250 

neighbouring reefs and ~ 20 fish were tagged and monitored from each group (Table 1). The 251 

home sites and reef area within 100m of the colonies was surveyed for six days following 252 

tagging. Long term (three month) observations were not possible for this species due to 253 

logistical constraints. 254 

 255 

Tagged fish were recorded as (1) at home, (2) relocated (i.e. found in a different coral colony) 256 

or (3) not sighted. Results from each tagging site were pooled for analyses, because of the 257 

low sample numbers per site. Site fidelity was compared over time, per species, using the 258 

number at home versus the number away (relocated + not sighted). Interspecific comparisons 259 

of site fidelity were conducted using data from the third survey (during days 4 - 6). Using this 260 

time period allowed a simple comparison of all five species’ fidelity responses and also 261 

appeared to be the time period with the most conservative measure of fidelity for all species 262 

(see Results). Site fidelity data was statistically analysed with Pearson Chi-squared tests of 263 

independence on contingency tables of Location (2) x Time (4), and Location (2) x Species 264 

(5).  265 

 266 

Fidelity to positions within coral colonies 267 
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We explored whether T. zosterophora individuals with high fidelity to a single coral colony 268 

also had fidelity to particular positions within the refuge. To do this we monitored the 269 

positions of tagged T. zosterophora fish within their home colonies. 64 fish were tagged from 270 

four aggregations (16 – 20 fish tagged per group) and their positions recorded over six days. 271 

Positions were grid referenced using a semi-permanent rope grid constructed above the coral 272 

colony. Grid cells were 20 x 20cm in size. The rope was 3mm in diameter, did not touch the 273 

coral and did not appear to restrict fish movements.  274 

 275 

For each fish we calculated the number of times it was observed in the colony (min 0, max 6), 276 

the number of grid cells in which it was observed in (min 1, max 6), the minimum and 277 

maximum distance between observations and the maximum distance between any 278 

observations. Distances were calculated using the distance between centre points of each grid. 279 

We determined that each individual’s approximate degree of fidelity to specific positions in 280 

the coral would be indicated by a combination of how many grid cells they used and how far 281 

apart the cells were. A fish with the highest positional fidelity would be seen in one position, 282 

with a distance of 0m between observations while a fish with very low fidelity would be 283 

observed in a different spot each day and have a higher distance between repeat observations.  284 

 285 

As we were only examining individuals with high site fidelity, only fish that were either (1) 286 

always observed in the home colony (2) never seen in a different colony, and (3) observed at 287 

least four times were included in analyses. This resulted in a total of 38 fish being used in 288 

data comparisons. Fish that were only observed in the home colony, seen four times, but 289 

missing on 1 – 2 of six occasions were still included as they may have just been extremely 290 

cryptic on those missing occasions. Such fish were also usually re-sighted the following day. 291 
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26 of 64 tagged fish were excluded from the analyses as they either moved among nearby 292 

colonies (N = 7), or were missing on more than three occasions (N = 19).  293 

 294 

Position fidelity was only examined on T. zosterophora, and not other study species. This 295 

species was used because it demonstrated relatively high fidelity to particular coral colonies 296 

and because replicate colonies were located on the same reef area allowing for efficient 297 

sampling. Replicate home sites for other suitable species (e.g. Z. leptacantha) were not all on 298 

one reef and the time required to setup and sample additional grids was prohibitive for our 299 

study. 300 

 301 

Homing 302 

Interspecific comparisons of homing behaviour investigated: (1) whether differences in each 303 

species’ site fidelity, habitat specialisation and / or sociality were associated with differences 304 

in homing success; and (2) whether the environment affects homing success. Homing success 305 

was measured by the absolute number of fish that returned to the capture location, per 306 

replicate. Displacements were made to locations within the same reef and to locations on 307 

neighbouring reefs. Fish would thereby need to home across either continuous reef areas or 308 

across open water respectively. A second displacement experiment was conducted to test the 309 

distance to which homing might extend across a reef-scape of multiple continuous reef and 310 

open water passages.  311 

 312 

Experiment 1:  Homing within versus between reefs 313 

Here we tested the hypothesis that cardinalfish homing behaviour would be more successful 314 

for individuals traversing continuous reef than those returning from neighbouring reefs across 315 

deep open-water channels. Three diurnal refuge sites per species were used (Figure 1c). 316 
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These ‘home’ sites consisted of P. cylindrica coral colonies with high numbers of the focal 317 

species. Each replicate site was either on a different reef or separated by more than 250m 318 

such that it was considered independent from other replicates.   For each home site, and 319 

species, two displacement locations approximately 400m away were designated as (1) ‘within 320 

reef’ (WR) and (2) ‘inter-reef’ (IR) displacement sites. The direction displaced fish would 321 

have to travel home varied among displacement sites (Figure 1c).  322 

 323 

At each species’ replicate home site approximately 60 conspecific adults were caught and 324 

tagged, as per the previous methods, and displaced. Tagged individuals were haphazardly 325 

assigned to one of three groups; (1) control, (2) within reef displacement or (3) inter-reef 326 

displacement with about 20 individuals in each (min. 14, max. 25). Groups were identified 327 

using unique tag colour combinations. Fish were captured, tagged and transported to 328 

displacement locations by day (08:00 – 17:00h) and released from temporary holding 329 

containers after dusk (18:30 – 20:00h). Fish were released in groups, but as they do not shoal 330 

together at night time we assumed each fish moved independently of other fish. Displacement 331 

locations were in the vicinity of branching corals and other cardinalfish aggregations. Control 332 

groups underwent the same transport and holding conditions but were released at the capture 333 

site. Controls were used to account for any handling and disturbance effects on fish presence 334 

at the home site. Fish were released at night during their foraging period, following Marnane 335 

(2000), with the assumption that predation risk would be lower and movement success higher 336 

in this period. Pre-release mortalities due to tagging and / or transport conditions were 337 

minimal and excluded from analyses.  338 

 339 

We counted the number of tagged fish at each home site and / or in the surrounding reef 340 

matrix for seven days post-displacement. Pilot studies indicated decrease in tagged fish 341 
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numbers after this period (see also Marnane 2000). No tagged fish was ever seen in the 342 

neighbouring reef areas. The displacement site and its surrounding reef area were surveyed 343 

the morning after displacement, following Marnane (2000). The mean proportion of tagged 344 

fish returning to home sites was compared amongst species and displacement locations using 345 

a two-way fixed factor ANOVA. Normality and homogeneity of variances were verified 346 

using Levene’s test and residual plots. Post-hoc comparisons were conducted with Tukeys 347 

Honestly Significant Difference (HSD) tests. 348 

 349 

Experiment 2:  Long distance homing   350 

Long distance homing capacity of a single species, T. zosterophora, was assessed with a two 351 

and five kilometre displacement from one home site (Figure 1a). T. zosterophora was chosen 352 

because of the extreme site fidelity and homing responses it displayed in earlier parts of this 353 

study. If any cardinalfish was able to home these long distances, this species was considered 354 

the most likely candidate. 30 fish per distance were captured, tagged, and displaced following 355 

the above methods and released at displacement locations immediately. Logistical constraints 356 

prevented fish release at night as per Experiment 1. The home coral colony, on Gava Gava, 357 

was monitored for the next 26 days, looking for any returns of the displaced fish.  358 

 359 

Comparison of homing with behavioural traits 360 

To investigate whether homing responses are related to species’ specific degree of site 361 

fidelity, habitat specialisation and/or social tendencies, we compared the relative strength of 362 

each trait to that species’ overall degree of homing success. For each trait, species were 363 

ranked as low, moderate or high and the concordance of ranks compared across traits. This 364 

comparison was done in a qualitative manner, due to the predominantly observational 365 

approach taken for assessing trait strength. Importantly the inter-specific comparisons of 366 
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traits and homing behaviour were made within the guild and not against other organisms. 367 

Each species’ homing was ranked according to the total percent of fish that returned from 368 

displacements. This was the additive value of both homing treatments (i.e. within reef plus 369 

inter-reef returns). Site fidelity ranks were based on the percent of tagged fish faithful to the 370 

home site after nine days. Habitat specialisation was accorded following the results of 371 

Gardiner & Jones (2005) and based on the total number of benthic habitats used (1 – 22 372 

categories of living and non-living benthos). Species that use three or less micro-habitat types 373 

as diurnal refugia were called highly specialist, while species that use multiple types of 374 

micro-habitats (> 10 living or other substrates) were ranked as low in specialisation (i.e. 375 

generalists). Sociality ranks were based on the frequency with which individuals occurred in 376 

groups and the modal size of those groups.  Pearson correlation tests were conducted between 377 

homing response and each other trait, as well as between specialisation and site fidelity. If 378 

homing is greater in species with stronger site fidelity, gregariousness and / or habitat 379 

preferences we expect a positive correspondence in trait rankings among species.  380 

 381 

RESULTS 382 

 383 

Sociality 384 

All five cardinalfish species are gregarious, and were seen in aggregations with up to 500 385 

conspecifics in them. However, the frequency to which each species formed aggregations, 386 

and the size of these groups varied (Figure 2). Individuals of all species predominantly 387 

occurred in groups of either 20 – 50 or 50 – 100 fish. Zoramia fragilis was also frequently 388 

observed in groups of 100 – 200 fish. The Cheilodipterus and Taeniamia species appear to 389 

have weaker gregarious preferences than the Zoramia species. The former were observed as 390 

solitary individuals, or in groups of less than 10 fish, 2 – 4 times more often than the latter. 391 
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95% of Z. fragilis groups had more than 20 fish in them, and 68% of Z. leptacanthus groups 392 

had more than 50 fish in them. In contrast it was not uncommon to see solitary 393 

Cheilodipterus and Taeniamia individuals. In particular, 100 C. quinquelineatus individuals 394 

were seen on their own and others were observed in groups of less than ten 300 times.  395 

 396 

Site fidelity 397 

Single coral colonies 398 

Site fidelity varied among the five species, but each species’ particular level of short-term site 399 

fidelity was consistent over the 9-day period. After three months the total number of fish re-400 

sighted, either at home or in another location had halved (Figure 3). At this time some 401 

individuals of all the species were still at home, and up to 40% of C. quinquelineatus were 402 

still there.  403 

 404 

The degree of site fidelity differed among species. There were significant species differences 405 

in the number of tagged fish sighted in home locations compared to away (X2
4

 = 55.067, p < 406 

0.001). Z. leptacantha and T. zosterophora exhibited the highest site fidelity, with more than 407 

two thirds of tagged individuals repeatedly sighted in their original coral colonies over nine 408 

days (Figure 3). For Z. leptacantha, at least 80% of individuals were sighted at home 409 

repeatedly and no fish were found in alternate, nearby conspecific aggregations.  Only 10% 410 

of tagged T. zosterophora changed resting sites and the majority of these only switched sites 411 

once (Table 2). For C. quinquelineatus approximately 50% of individuals used the same 412 

home resting site each day (Figure 3) and only two individuals were found switching between 413 

alternate sites (Table 2). However, a third of C. quinquelineatus were not found on at least 414 

one occasion. For Z. fragilis and C. artus there was relatively low fidelity to their ‘home’ 415 

capture locations. Less than a third of these individuals stayed in the home coral (Figure 3). 416 
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Half of the tagged Z. fragilis individuals (24) moved to an alternate refuge colony (within the 417 

200m study area) within two days of counting, and eight of these switched sites 2 – 3 times 418 

during nine days (Table 2).  C. artus individuals also moved a lot, but most of the tagged fish 419 

were not sighted consistently (Figure 3).  Surveys of cardinalfish aggregations outside of the 420 

designated study area, around Gava Gava reef, found only one tagged fish (T. zosterophora), 421 

in a coral colony 157m from its capture site. No tagged fish were found on nearby reefs.  422 

 423 

Positions within coral colonies 424 

Of the 38 T. zosterophora individuals with total fidelity to singular coral colonies three were 425 

always seen in the same position (Figure 4a), and more than two-thirds (71%, 27 fish) used 426 

the same spot on consecutive occasions (min distance 0cm: Figure 4b). A large proportion 427 

(42%) of fish were restricted to a two cell radius area on their colonies (max. distance 428 

≤ 24cm). Five individuals were in different positions each day (Figure 4a) with the distance 429 

between them ranging from 20cm (the neighbouring cell) to 160cm (the other side of colony: 430 

Figure 4b).  431 

 432 

Homing  433 

Experiment 1: Homing within versus between reefs 434 

All five species demonstrated the capacity to home over both continuous reef and open-water 435 

environments (Figure 5a). Homing also occurred quickly with more than half the individuals 436 

that homed doing so overnight. While some of each species did home, the degree of homing 437 

success (i.e. the number that came back) was quite species specific. There was a significant 438 

treatment effect on the number of fish resighted at the home colony (Table 3). This effect was 439 

due to the difference between control and displaced fish sightings, with the former 440 
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consistently higher in all species (Figure 5). No statistical interaction between species and 441 

displacement location occurred (Table 3).  442 

 443 

T. zosterophora showed the strongest and most consistent homing patterns (Figure 5a). 96 of 444 

the 123 displaced T. zosterophora fish returned home (i.e. 78%) including 100% of one inter-445 

reef treatment group (n = 20). The fidelity of the control groups was very consistent among 446 

replicates (80 - 90% fidelity) and variability among responses of the within reef treatment 2 - 447 

4 fold less than that of other species (st. dev WR returns 0.086; Fig 5a). The lowest homing 448 

response was from one of the inter-reef displacement groups, which even then still had 58% 449 

of fish home back. Z. leptacantha had similarly strong homing behaviour (97 of 132 fish or 450 

73% of displaced fish), with > 60% of displaced fish returning except for one of the inter-reef 451 

treatments in which only eight of the 22 fish returned (36%). In general, T. zosterophora and 452 

Z. leptacantha were the most site faithful and strongest homers.  453 

 454 

Z. fragilis and C. artus had intermediate homing success. Control Z. fragilis individuals had 455 

high site fidelity (> 77%), but only moderate success at returning 400m when displaced. Only 456 

half of all displaced fish returned (53% total). Z. fragilis showed the opposite pattern to other 457 

species with lower returns from displacements on the home reef (WR: 49.4% ± 18.2 st. error) 458 

than from displacements on alternate reefs (IR: 67.3% ± 10.8 st. error). C. artus had lower 459 

site fidelity than other species with 10 - 20% fewer control individuals resighted than in other 460 

species. However homing success was comparable to other species with 49 - 68% of 461 

displaced fish returning from within reef and inter-reef treatments respectively.  462 

 463 

The weakest homing species was C. quinquelineatus. Despite strong site fidelity of control 464 

individuals (71 - 95%), only half of the displaced within reef fish returned home and less than 465 
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a quarter of the inter-reef displacements returned (Figure 5a). The species also had high 466 

variability in homing success. No returns occurred from one treatment site and less than 40% 467 

from three other sites. Statistical differences in homing strength among species were driven 468 

by differences between C. quinquelineatus and the strongest homing species: T. zosterophora 469 

and Z. leptacantha (Table 3b).  470 

 471 

Of the displaced C. quinquelineatus individuals that did not return home, 20-50% were 472 

resighted near displacement sites, the morning after relocation (Figure 5b). These individuals 473 

were typically found among conspecific aggregations in branching corals. Ad-hoc surveys of 474 

inter-reef displacement locations (2 - 8 days later) found that 60 - 80% of those individuals 475 

had persisted in their new refuge positions. In contrast to C. quinquelineatus, persistence of 476 

other species at displacement sites was rare and mirrored their higher frequency of returns 477 

(Figure 5b).  478 

 479 

Experiment 2: Long distance homing 480 

T. zosterophora homed back to capture locations from both two and five kilometre 481 

displacements. 36% of individuals (11 fish) returned from two kilometres within 11 days. 482 

One individual returned in the first evening and five more in the second evening. One 483 

individual from the 5 kilometre displacement returned home sometime between 8 and 11 484 

days.  485 

 486 

Behavioural trait comparison 487 

Behavioural attributes were not consistently related across the guild (Table 4, Figure 6). 488 

Different species had different levels of each trait that related variably to homing strength. 489 

The only consistent pattern was that the two species with the strongest homing response also 490 
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had high fidelity, were habitat specialists, and quite gregarious (T. zosterophora & Z. 491 

leptacantha, Figure 6a - c). The converse link between weaker homing, weaker habitat 492 

specialisation, and weaker sociality was not evident. For instance, the species with the 493 

weakest homing response (C. quinquelineatus) was not the one with the lowest site fidelity 494 

(Z. fragilis).  495 

 496 

Homing was statistically correlated to habitat specialisation, but not other traits (Figure 6b).  497 

The more specialist species had stronger homing responses than the weaker species (Pearson 498 

correlation test: r2 = 0.80, p < 0.05). The more specialist species (T. zosterophora and Z. 499 

leptacantha) also had high site fidelity. However, site fidelity and habitat specialisation were 500 

not consistent across the guild with the least specialist species (C. quinquelineatus) having 501 

greater fidelity than moderate specialist species in the guild (Figure 6d). Social tendencies 502 

were not very different within the guild and thus not well correlated with differential homing 503 

responses (Table 4, Figure 6c). The Zoramia species that frequently occurred in larger 504 

aggregations had moderate to strong homing success but either weak or high site fidelity. The 505 

Cheilodipterus species with more solitary tendencies had moderate fidelity and weak homing.  506 

 507 

DISCUSSION 508 

 509 

Our study confirms that coral reef-dwelling cardinalfish exhibit a remarkable ability to home 510 

over long distances and across both open water and continuous reef environments. We found 511 

that for most species homing was equally successful across either environment. As predicted, 512 

inter-specific differences in the tendency to home appeared to be related to each species 513 

degree of sociality and habitat specialisation.  The motivation to home, having to navigate 514 

through foreign or hostile terrains, appears to be higher for specialised species and those with 515 
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high fidelity to cohesive social groups. Species with strong specialisation and high site 516 

fidelity homed strongly (> 70% success: Taeniamia zosterophora and Zoramia leptacantha) 517 

while moderate and weak specialists had variable homing responses. Homing was stronger in 518 

low site fidelity species (Z. fragilis and Cheilodipterus artus) than in those with moderate site 519 

fidelity (C. quinquelineatus). Weaker homing in the latter could be related to that species’ 520 

generalist habitat preferences and its tendency to live alone.  521 

 522 

Previous work on cardinalfish demonstrated they could home across continuous reef and 523 

shallow lagoon environments from up to two kilometres (Marnane 2000). We extended this 524 

work by investigating the effect of terrain on homing success. Unexpectedly, all cardinalfish 525 

species were able to home rapidly across deep, open water passages. Furthermore, for one 526 

select species, some individuals homed across multiple reef and inter-reef passages from long 527 

two and five kilometre distances. Our results demonstrate that the lack of structured habitat is 528 

no absolute barrier to cardinalfish movements, nor their ability to cue towards a home 529 

location. This degree of homing behaviour, by a very small and poor swimmer (Fisher et al. 530 

2005) surpasses that known for larger reef fish species (e.g. Matthews 1990, Carlson et al. 531 

1995, Hartney 1996). 532 

 533 

For most of the cardinalfish studied here, site fidelity appears to be a good predictor of 534 

homing success. However, one of the most site faithful species, C. quinquelineatus, was the 535 

least successful at homing, both in this study and in Marnane (2000). Here, two-thirds of the 536 

displaced individuals remained at the displacement location. Perhaps this species was able to 537 

establish new ‘home’ sites because it is less constrained by habitat and social preferences. 538 

Insitu observations and aquarium studies have demonstrated the species has weaker social 539 

and habitat preferences than other cardinalfish (Gardiner and Jones 2010). The species was 540 
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physically able to home but generalist habitat preferences and solitary living behaviour may 541 

weaken the necessity to quickly get back to a familiar location or group. Such flexibility in 542 

resource use could enable C. quinquelineatus to adapt quickly to shifts in habitat regimes and 543 

adds to evidence that generalist fish species are less vulnerable to extinction than specialists 544 

(Munday 2004, Wilson et al. 2008).   545 

 546 

Familiarity with a social group and / or a refuge site can increase an individual’s survivorship 547 

and reproductive output substantially (Chivers et al. 1995, Brown et al. 2008, Grabowska-548 

Zhang et al. 2012), thereby driving high site fidelity and homing responses. In our study, the 549 

species with the highest fidelity to a coral colony (T. zosterophora) also had very high fidelity 550 

to specific positions within the colony, and could home over long distances. This species 551 

appears to form distinct mating pairs, and the individual that came back from five kilometres 552 

returned to the same exact branch position and mate that it was with before displacement 553 

(NMG pers. obs.). Pair bonding may therefore drive this species’ site fidelity and homing 554 

behaviour.  Such is the case in another cardinalfish, Ostorhinchus cyanosoma, where fidelity 555 

depends on whether fish are paired or not (Rueger et al. 2014).  556 

 557 

For the two highly aggregative species studied here, much lower site fidelity and homing in 558 

Z. fragilis than in Z. leptacantha could be due to differences in social bonds within the 559 

aggregations. For example, if Z. leptacantha forms mating bonds within the aggregations but 560 

Z. fragilis does not, the latter would be more likely to move among aggregations. Z. fragilis 561 

homing was actually lower within reefs than between reefs, perhaps because displaced fish 562 

found conspecific aggregations enroute to the home site. In contrast fish traversing open-563 

water terrain had minimal friendly distractions. Determining whether homing and fidelity is 564 
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to the social group, to the site or both will require manipulative experiments across multiple 565 

species groups.  566 

 567 

A high proportion of fish tagged in this study were not re-sighted again. Among control 568 

groups, approximately 20% of Taeniamia and Zoramia individuals were missing from each 569 

survey time, and up to 40% of the Cheilodipterus individuals. High natural mortality, 570 

emigration outside the study area and / or observer error attributes to these missing fish 571 

numbers. Tropical cardinalfish probably only live for 1 - 2 years (e.g. Longenecker & 572 

Langston 2006, Kingsford et al. 2014) and are highly susceptible to predation (e.g. Kingsford 573 

1992). A 10 - 20% loss of fish due to mortality would be consistent with the percent of 574 

natural population decline seen in the guild at this location (Gardiner unpubl. data). 575 

Emigration of tagged fish outside of the study area may also account for lower re-sight 576 

numbers. Two species had high inter-site movements (Z. fragilis and C. artus) and it is quite 577 

likely that some individuals moved further afield and were not found. Whether un-sighted 578 

fish from other species also did this cannot be said. Cardinalfish can be highly cryptic and 579 

some ‘present’ individuals may not have been emergent during our surveys. In general, site 580 

faithful fish had a greater chance of being counted than unfaithful fish in our study, and thus 581 

the overall proportion of each species fidelity may be exaggerated. Regardless of these 582 

factors the inter-specific comparisons of several independent trials herein consistently 583 

indicated which species were more likely to be in the home site and which were less.  584 

   585 

 The exact cues that small, adult coral reef fish use to direct homing across inter-reef areas 586 

and especially at distances greater than 500m are not known.  The speed in which individuals 587 

homed across two kilometre and inter-reef displacements in this study suggests navigational 588 

cues are definitely used. Cardinalfish use olfactory cues to discriminate among micro-589 
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habitats, water sources, and conspecific locations (Døving et al. 2006). As seen in diurnally 590 

migrating parrotfish (Ogden & Buckman 1973) and butterflyfish (Reese 1989), spatial 591 

awareness of local landmarks and routes probably assists individuals to navigate between 592 

familiar reef areas, such as the fish that homed from within reef displacements. However, the 593 

passage of site specific chemical signals or knowledge of routes from other reefs and 594 

especially those 2 - 5km away seems unlikely. For the returning fish, directional information 595 

at this level may be contributed by magnetic cues, as used by tide pool fish (Jorge et al. 2012) 596 

and several larger marine species (Klimley 1993, Walker et al. 1997, Lohmann et al. 2008). 597 

The typical distances cardinalfish migrate between diurnal and nocturnal areas have not been 598 

measured.  Given their abundant food resources, small size, and large population sizes, long 599 

or frequent inter-reef journeys do not seem necessary. Thus, how or why adult fish would 600 

remember the way back home is mysterious. Perhaps cue orientation used in the larval phase 601 

(e.g. Gerlach et al. 2007, Leis et al. 2011) persists in the adult memory. 602 

 603 

Reef fish assemblages are threatened by increased fragmentation of reef habitats and shifts in 604 

coral species distributions, as a result of climate change, as well as ongoing destructive 605 

fishing practices (Bonin et al. 2011, Wilson et al. 2006). Designing effective management 606 

systems to combat these changes, such as marine reserve networks, requires a thorough 607 

understanding of how fish use space, what their movement and dispersal potential is and how 608 

nearby populations are connected to one another (Green et al. 2015). Here we illustrate how 609 

habitat, site and social preferences influence a fish’s movement, within and among coral 610 

colonies on the same reef, between reefs over a few hundred metres and over several 611 

kilometres of reef scape. These behavioural dynamics act to concentrate some species’ 612 

populations and increase the dispersal of others into neighbouring populations. Strongly 613 

homing species will be more impacted by habitat loss as they are less likely to move to 614 



26 
 

remnant habitats. The future looks brighter for species with a broader versatility in their 615 

habitat use.  616 

 617 
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FIGURE LEGENDS 814 

Figure 1.  815 

Study sites. (A) Inshore reef scape in proximity to Mahonia Na Dari research centre (MND), 816 

Kimbe Bay, Papua New Guinea. Dashed rectangle indicates the Tamare - Kilu reef sector in 817 

which the cardinalfish community was surveyed. Labelled points indicate sites used for the 818 

long-distance displacements from a home site (Gava Gava), to 2km (Garbuna) and 5km 819 

(Kume) sites. (B) Locations of cardinalfish aggregations on Gava Gava reef, where site 820 

fidelity was monitored. The dashed lines indicate a magnification of that section of the reef 821 

slope. Numbers 1 - 8 indicate home sites of tagged individuals. Rope grids were constructed 822 

above sites 1 - 4 to measure fidelity to positions within coral colonies. (C) Locations of 823 

aggregations and displacement sites used in the primary homing experiment: Numbers 824 

indicate 3 replicate control (C) sites for 5 species and corresponding within-reef (WR) and 825 

inter-reef (IR) displacement locations. Taeniamia zosterophora and Zoramia fragilis; C = 1-826 

4-7, WR = 2-5-8, IR = 3-6-1. Z. leptacanthus: C = 9-5-4, WR = 1-4-5, IR = 8-6-6. 827 

Cheilodipterus artus; C = 9-4-7, WR = 1-5-8, IR = 3-6-1. C. quinquelineatus; C = 5-10-11, 828 

WR = 4-6-2, IR = 6-4-3.  Most reef tops are exposed at low tides, indicated by lighter grey 829 

shading. 830 

 831 

Figure 2.  832 

Aggregation tendencies of five cardinalfish species. Shown is the number of fish observed in 833 

different sized groups (white bars) and the total number of groups observed per size (black 834 

bars). The study was conducted on inshore reef slopes of Kimbe Bay, Papua New Guinea. 835 

 836 

Figure 3. 837 



36 
 

Site fidelity of cardinalfish to diurnal refuge sites (branching coral colonies). Bars indicate 838 

the percentage of tagged fish located at the initial capture site (‘home’), on nearby coral 839 

colonies (‘relocated’) and those not sighted during that survey. ‘n’ indicates the total number 840 

of tagged fish used per species. Fidelity responses were consistent over the initial 9 days of 841 

monitoring (T. zosterophora X2 
3 = 0.521, p = 0.914. Z. fragilis X2 

3 = 4.719, p = 0.194. Z. 842 

leptacantha X2 
2 = 1.007, p = 0.605. C. artus X2 

3 = 5.672, p = 0.129. C. quinquelineatus X2 
3 843 

= 2.167, p = 0.539). Observations were taken on multiple days over a 9 day period and 844 

repeated 3 months later. 845 

 846 

Figure 4. 847 

Diurnal fidelity of 38 cardinalfish (Taeniamia zosterophora) to positions within coral 848 

colonies. (A) Number of positions (20 x 20cm grid cells) that fish were observed in across 4 - 849 

6 days. (B) Distance between positions that fish were observed in. Shown is the upper and 850 

lower bounds of distances for each individual fish. Minimum distance, the lower bound, is 851 

the distance between the closest points fish were ever observed in on consecutive survey 852 

days. Maximum distance, the upper bound, was the distance between the two furthest grid 853 

cells that a fish was ever observed in (i.e. greatest distance apart). 854 

 855 

Figure 5.  856 

Strength of homing behaviour by five cardinalfish species displaced approximately 400m 857 

from home sites. ‘Control’ bars represent fish tagged and released at the home site. ‘Within’ 858 

bars represent fish released on the same reef, but at a distance. ‘Inter-reef’ bars represent fish 859 

released on a different reef.  (A) The mean proportion of tagged individuals that returned to 860 

the home site within 7 days. (B) The mean proportion of tagged fish sighted at displacement 861 
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locations the morning after release. Species are Taeniamia zosterophora, Zoramia fragilis, Z. 862 

leptacantha, Cheilodipterus artus and C. quinquelineatus.  863 

 864 

Figure 6.  865 

Interspecific comparison of behavioural attributes and homing ability in guild of co-occurring 866 

cardinalfish. Values for homing response indicate the total percent of fish, per species, that 867 

homed from displacements in this study (i.e. cumulative of both displacement treatments). 868 

Values for site fidelity (A and D) indicate the percent of fish fidel to the home site over 9 869 

days. Values for habitat specialisation (B and D) are the number of distinct coral and non-870 

coral micro-habitats used as diurnal refugia, according to Gardiner & Jones 2005. Values for 871 

sociality (C) are the modal frequency of aggregation size that fish were found in (see Figure 872 

2). Statistical values indicate Pearson correlation test results with linear relationship plotted 873 

when significant at p < 0.05.  874 

875 
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TABLES 876 

Table 1.  877 

Tagged cardinalfish counts per home site. ‘N tagged’ indicates the total number of tagged 878 
fish while ‘N re-sighted’ indicates the number of those that were fish re-observed at least 879 
once in the course of the study. ‘N missing’ is the number of tagged fish not seen post 880 
tagging, and assumed dead. Fidelity analyses used N re-sighted. Site numbers refer to diurnal 881 
refuge locations (branching coral colonies) of cardinalfish aggregations on Gava Gava reef, 882 
as shown in Figure 1b. Sites used for Z. leptacantha, were located on different reefs 883 
(specifically sites 4, 5, 9 on Figure 1c).  884 
 885 

Species Site 
N 

tagged 
N  

re-sighted 
N 

Missing 
Taeniamia zosterophora 1 16 14 2 

 
2 16 12 4 

 
3 16 16 0 

 
4 16 15 1 

  Pooled 64 57 7 
Zoramia fragilis 1 16 14 2 

 
6 16 11 5 

 
7 17 15 2 

 
8 16 12 4 

  Pooled 65 52 13 
Zoramia leptacantha 4 22 22 0 

 
5 18 18 0 

 
9 22 22 0 

  Pooled 62 62 0 
Cheilodipterus artus 1 5 4 1 

 
2 9 9 0 

 
4 10 10 0 

  Pooled 24 23 1 
Cheilodipterus 
quinquelineatus 1 16 13 3 

 
2 16 15 2 

 
5 11 11 0 

  Pooled 43 39 4 
 886 

 887 

888 
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Table 2. 889 
Frequency of movement by tagged cardinalfish that changed resting sites during a 9 day 890 
period. N is the total number of individuals that moved from their original capture site 891 
between consecutive observations (per Figure 1b). From these, the ‘Frequency of movement’ 892 
is the percent of fish that switched between diurnal refugia once, twice or three times. 893 
 894 
 895 
    Frequency (%) of movement 
Species N 1 2 3 
Z. fragilis 24 67 17 17 
T. zosterophora 11 82 18 0 
C. artus 9 44 44 11 
C. quinquelineatus 2 0 100 0 
  896 

897 
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Table 3. 898 

Statistical comparison of homing success amongst five cardinalfish species and three 899 
displacement locations (control, within reef and inter-reef).  (A) Two-way fixed factor 900 
ANOVA testing differences in the proportion of tagged fish returning home. (B) Tukey’s 901 
HSD post-hoc comparison amongst species and locations. Post-hoc comparisons amongst 902 
species pairs are shown where significant. Species are Taeniamia zosterophora, Zoramia 903 
fragilis, Z. leptacanthus, Cheilodipterus artus and C. quinquelineatus. 904 
 905 

(A) Source of variation df SS MS    F p   
  Species 4 0.598 0.149 4.538 **   
  Displacement location 2 0.507 0.254 7.694 **   
  Species x displacement 8 0.423 0.053 1.606 0.165   
  Error 30 0.988 0.033 4.538     

(B) Source of 
Variation Non-homogenous groups Proportional 

difference p 
  Species C. quinquelineatus T. zosterophora - 0.301 * 
      Z. leptacantha - 0.287 * 
  Displacement 

location Control Within-reef   0.167 * 
      Inter-reef   0.255 ** 
    Within-reef Inter-reef - 0.088 0.386 
  * p < 0.05, ** p < 0.01       
 906 
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Table 4. 907 

Interspecific comparison of behavioural attributes and homing ability in cardinalfish. The 908 
relative strength of each behaviour is ranked (low, moderate, high) in comparison to the other 909 
study species. Homing response values indicate the total percent of fish that returned from 910 
displacements in this study. Site fidelity values indicate the percent of fish fidel to the home 911 
site over 9 days (per Figure 3). Habitat specialisation values are the number of distinct coral 912 
and non-coral micro-habitats used as diurnal refugia, according to Gardiner and Jones (2005). 913 
Values for sociality are the modal frequency of aggregation size that fish were found in (per 914 
Figure 2).  915 
 916 

Species  
Homing response 
(Total % fish returns) 

Site Fidelity 
(% fish fidel) 

Habitat Specialisation 
(# habitats used) 

Sociality 
(Modal group size) 

Taeniamia zosterophora 78% 
High 

68% 
Moderate  

5 
Moderate  
- Uses variety of live coral 

species 

50 
Moderate 
- Seen solitary, and in 

moderate to large 
groups 

Zoramia fragilis 53% 
Moderate 
 

23% 
Low  

7 
Moderate  
- Uses variety of live coral 

species 

20 
Moderate 
- Mostly seen in 

medium to large 
groups 

Zoramia leptacanthus 73% 
High 

91% 
High 

3 
High 
- Predominantly uses 1 

coral species 

50 
Moderate 
- Mostly seen in 

medium to large 
groups 

Cheilodipterus artus 58% 
Moderate 

43% 
Low 

12 
Low  
- Uses living and non-

living substrata 

20 
Moderate 
- Sometimes seen 

solitary 
  

Cheilodipterus 
quinquelineatus 

34% 
Low  

69% 
Moderate 

20 
Very low  
- Uses living and non-

living substrata 

50 
Moderate 
- Frequently seen 

solitary 

Source of information: This study  
(Figure 5) 

This study 
(Figure 3) 

Gardiner and Jones, 2005 This study  
(Figure 2) 

 917 
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FIGURES 918 

Figure 1 919 

 920 
 921 
Figure 1. Study   sites. (A) Inshore reef scape in proximity to Mahonia Na Dari research centre (MND), Kimbe Bay, Papua New Guinea. 922 
Dashed rectangle indicates the Tamare - Kilu reef sector in which the cardinalfish community was surveyed. Labelled points indicate sites 923 
used for the long-distance displacements from a home site (Gava Gava), to 2km (Garbuna) and 5km (Kume) sites. (B) Locations of 924 
cardinalfish aggregations on Gava Gava reef, where site fidelity was monitored. The dashed lines indicate a magnification of that section of 925 
the reef slope. Numbers 1 - 8 indicate home sites of tagged individuals. Rope grids were constructed above sites 1 - 4 to measure fidelity to 926 
positions within coral colonies. (C) Locations of aggregations and displacement sites used in the primary homing experiment: Numbers 927 
indicate 3 replicate control (C) sites for 5 species and corresponding within-reef (WR) and inter-reef (IR) displacement locations. Taeniamia 928 
zosterophora and Zoramia fragilis; C = 1-4-7, WR = 2-5-8, IR = 3-6-1. Z. leptacanthus: C = 9-5-4, WR = 1-4-5, IR = 8-6-6. Cheilodipterus 929 
artus; C = 9-4-7, WR = 1-5-8, IR = 3-6-1. C. quinquelineatus; C = 5-10-11, WR = 4-6-2, IR = 6-4-3.  Most reef tops are exposed at low 930 
tides, indicated by lighter grey shading. 931 
 932 

933 
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Figure 2 934 

 935 
 936 
Figure 2. Aggregation tendencies of five cardinalfish species. Shown is the number of fish observed in different sized groups (white bars) 937 
and the total number of groups observed per size (black bars). The study was conducted on inshore reef slopes of Kimbe Bay, Papua New 938 
Guinea. 939 

940 
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Figure 3 941 

 942 

Figure 3. Site fidelity of cardinalfish to diurnal refuge sites (branching coral colonies). Bars indicate the percentage of tagged fish located at 943 
the initial capture site (‘home’), on nearby coral colonies (‘relocated’) and those not sighted during that survey. ‘n’ indicates the total 944 
number of tagged fish used per species. Fidelity responses were consistent over the initial 9 days of monitoring (T. zosterophora X2 

3 = 945 
0.521, p = 0.914. Z. fragilis X2 

3 = 4.719, p = 0.194. Z. leptacantha X2 
2 = 1.007, p = 0.605. C. artus X2 

3 = 5.672, p = 0.129. C. 946 
quinquelineatus X2 

3 = 2.167, p = 0.539). Observations were taken on multiple days over a 9 day period and repeated 3 months later. 947 
948 
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Figure 4 949 

 950 
Figure 4:  Diurnal fidelity of 38 cardinalfish (Taeniamia zosterophora) to positions within coral colonies. (A) Number of positions (20 x 951 
20cm grid cells) that fish were observed in across 4 - 6 days. (B) Distance between positions that fish were observed in. Shown is the upper 952 
and lower bounds of distances for each individual fish. Minimum distance, the lower bound, is the distance between the closest points fish 953 
were ever observed in on consecutive survey days. Maximum distance, the upper bound, was the distance between the two furthest grid cells 954 
that a fish was ever observed in (i.e. greatest distance apart).955 
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Figure 5 956 

 957 
Figure 5. 958 
Strength of homing behaviour by five cardinalfish species displaced approximately 400m from home sites. ‘Control’ bars represent fish 959 
tagged and released at the home site. ‘Within’ bars represent fish released on the same reef, but at a distance. ‘Inter-reef’ bars represent fish 960 
released on a different reef. (A) The mean proportion of tagged individuals that returned to the home site within 7 days. (B) The mean 961 
proportion of tagged fish sighted at displacement locations the morning after release. Species are Taeniamia zosterophora, Zoramia fragilis, 962 
Z. leptacantha, Cheilodipterus artus and C. quinquelineatus.  963 

964 
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Figure 6 965 

 966 
Figure 6.  967 
Interspecific comparison of behavioural attributes and homing ability in guild of co-occurring cardinalfish. Values for homing response 968 
indicate the total percent of fish, per species, that homed from displacements in this study (i.e. cumulative of both displacement treatments). 969 
Values for site fidelity (A and D) indicate the percent of fish fidel to the home site over 9 days. Values for habitat specialisation (B and D) 970 
are the number of distinct coral and non-coral micro-habitats used as diurnal refugia, according to Gardiner & Jones 2005. Values for 971 
sociality (C) are the modal frequency of aggregation size that fish were found in (see Figure 2). Statistical values indicate Pearson 972 
correlation test results with linear relationship plotted when significant at p < 0.05.  973 




