FISEVIER

Contents lists available at ScienceDirect

International Journal of Infectious Diseases

journal homepage: www.elsevier.com/locate/ijid

Etiologic predictive value of a rapid immunoassay for the detection of group A Streptococcus antigen from throat swabs in patients presenting with a sore throat

Ulrich Orda ^{a,b,i,*}, Ronny Gunnarsson ^{c,d,e}, Sabine Orda ^{a,b}, Mark Fitzgerald ^{f,g,h}, Geoff Rofe ⁱ, Anna Dargan ^{b,i}

- ^a North West Hospital and Health Service, Mount Isa, QLD, Australia
- ^b James Cook University, Townsville, QLD, Australia: Mount Isa Centre for Rural and Remote Health, Mount Isa, QLD, Australia
- ^c Cairns Clinical School, Cairns, QLD, Australia; James Cook University, Townsville, QLD, Australia
- ^d Research and Development Unit for Primary Health Care and Dental Care, Southern Älvsborg County, Region Västra Götaland, Sweden
- ^e Department of Public Health and Community Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- ^f National Trauma Research Institute, Melbourne, VIC, Australia
- g Department of Surgery, Monash University, Melbourne, VIC, Australia
- ^h Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, Australia
- ⁱ Mount Isa Hospital Emergency Department, Mount Isa, QLD, Australia

ARTICLE INFO

Article history: Received 15 December 2015 Received in revised form 31 January 2016 Accepted 3 February 2016

Corresponding Editor: Eskild Petersen, Aarhus, Denmark.

Keywords:
Pharyngitis
Group A Streptococci
Rapid Antigen Detection Test
Etiologic predictive value
Antibiotic prescribing
Clinical reasoning

SUMMARY

Background: Clinical reasoning utilizing certain symptoms and scores has not proven to be a reliable decision-making tool to determine whether or not to suspect a group A Streptococcus (GAS) infection in the patient presenting with a sore throat. Culture as the so-called 'gold standard' is impracticable because it takes 1 to 2 days (and even longer in remote locations) for a result, and thus treatment decisions will be made without the result available. Rapid diagnostic antigen tests have demonstrated sufficient sensitivities and specificities in detecting GAS antigens to identify GAS throat infections.

Methods: Throat swab samples were collected from patients attending the Mount Isa Hospital emergency department for a sore throat; these samples were compared to swab samples collected from healthy controls who did not have a sore throat. Both groups were aged 3–15 years. All swab samples were analyzed with a point-of-care test (Alere Test Pack +Plus with OBC Strep A). The etiologic predictive value (EPV) of the throat swab was calculated.

Results: The 95% confidence interval for positive EPV was 88–100% and for negative EPV was 97–99%, depending on assumptions made.

Conclusion: This study demonstrates that the point-of-care test Alere Test Pack +Plus Strep A has a high positive predictive value and is able to rule in GAS infection as long as the proportion of carriers is low. Also the negative predictive value for ruling out GAS as the etiologic agent is very high irrespective of the carrier rate. Hence, this test is always useful to rule out GAS infection.

© 2016 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

With an incidence of 3–13 cases per 100 patient-years, Group A Streptococcus (GAS) pharyngitis is a common presentation, not only in primary health care but also in emergency departments. Amongst all patients presenting with a sore throat, the incidence of

GAS infection reported in the literature ranges from almost 0% to 40%.^{2,3} Both the incidence of acute presentations and the severity may vary over time, and infections may occur in clusters.⁴

GAS pharyngitis is a main cause of acute rheumatic fever (ARF) and rheumatic heart disease.⁵ Whilst the absolute global burden of GAS disease is not exactly known, estimated annual numbers of rheumatic heart disease cases worldwide of approximately 2 400 000⁶ to 12 000 000⁷ have been reported. North Queensland, Australia, has one of the highest incidences of ARF and rheumatic heart disease in the world, especially within the indigenous

^{*} Corresponding author at: Associate Professor Ulrich Orda, Mount Isa Hospital Emergency Department 30 Camooweal Street, Mount Isa, QLD, 4825, Australia. E-mail address: ulrich.orda@gmail.com (U. Orda).

communities, with reported incidences of 54–492 cases per 100 000 population.^{5,8} This is due to a high percentage of residents in this region living in remote communities, often in varying degrees of poverty and crowding, and is consistent with findings in the Northern Territory, Australia.⁹

Whilst there is increasing suspicion and some evidence that ARF may also be related to chronic skin sores (pyoderma),⁵ patients having a sore throat remain the main focus.

Identifying the individual patient presenting with a sore throat as having a GAS infection is more challenging than it seems on first sight, not even taking into account whether all positive GAS results actually represent an acute bacterial infection. ¹⁰ Utilizing clinical decision rules based solely on symptoms and signs, such as the Centor criteria and World Health Organization criteria, does not appear to be reliable enough to clarify whether the infective agent is GAS or not, and thus whether to treat with antibiotics or not. ^{10,11} The resulting problems are an untreated GAS infection that may lead to ARF, and more often, the unnecessary prescription of antibiotics leading to side effects as well as the potential of bacteria developing antibiotic resistance.

Throat culture has been recommended as an aide for treatment decisions. ^{1,12} However, it has been shown that the 1–2 days of delay until the result is available results in the decision being made without considering the outcome of the culture. ^{13,14} Furthermore, in the setting in which a large number of patients travel several hundred kilometers to see a doctor and where there is limited phone reception, it is difficult to organize re-presentation or follow-up of the results including treatment modifications.

An excellent solution for this dilemma would be a bedside rapid antigen detection test (RADT) for GAS that provides a positive or negative result within 5–10 min, thus directly influencing the treatment decision. Such RADTs have been evaluated previously using throat culture as the gold standard and initially showed insufficient sensitivity and specificity. Later studies have provided evidence that the sensitivity of GAS RADT is equal or superior to culture, and specificity close to 100%. 16.17,18

The aim of this study was to evaluate the ability of a RADT to rule in or out a true link between the symptom of a sore throat and the test outcome while considering the potential of GAS carriers.

2. Materials and methods

Two groups of participants were recruited consecutively. The first comprised healthy controls. These were children aged 3–15 years presenting consecutively at the Mount Isa Hospital emergency department (ED) in northwest Queensland, Australia, for reasons other than infection, thus ensuring that a positive GAS RADT result in this group would represent asymptomatic carriage. The second group comprised patients with a sore throat. These were children aged 3–15 years presenting consecutively at the Mount Isa Hospital ED in northwest Queensland, Australia, for a sore throat. None of these children had previously had rheumatic fever.

Once consent was obtained, a throat swab was collected from each child. This was done using the Dacron swab provided with the test kit. The swab was sealed in a specimen bag, together with a data collection sheet and a signed consent form, put in an envelope, and stored in a refrigerator at approximately 6 °C outside the clinical area.

The study team processed the swabs within 72 h using the Alere Test Pack +Plus with OBC Strep A kit (Alere, Waltham, MA, USA). This test kit has shown a $95\%^{19}$ to $97\%^{17}$ sensitivity (the manufacturer quotes a 97% sensitivity) and a specificity of $95\%^{17}$ to $100\%^{19}$ to detect GAS. In this study the outcomes were compared with the assumption that the sensitivity of the point-of-care test was 95% and with the assumption that the sensitivity was 97%. The treating clinician was blinded to the point-of-care test result.

The intention was to collect up to 200 samples in each group, with an interim analysis after approximately 50% of samples had been obtained.

2.1. Statistical analysis

The etiologic predictive value (EPV) is a statistical method developed to link symptoms and signs to test findings, hence linking potential etiologic agents such as a bacterium, while taking carriers into consideration. To calculate the EPV, it is necessary to have the proportion of positive tests among patients, the proportion of positive tests among a healthy control population, and the sensitivity of the test to find what it is designed to look for. This enables the positive and negative predictive values, including 95% confidence intervals, to be calculated in a situation where a gold standard for comparison is not present or is questionable and the population prevalence of GAS is previously unknown. The influence of different assumptions for theta (the assumed ratio between the proportion of carriers of GAS among healthy individuals and those with a sore throat caused by a virus) was also explored.

Ethics approval was granted by the Townsville Hospital and Health Service, Human Research and Ethics Committee (HREC/13/QTHS/260).

3. Results

From June 30, 2014 to February 27, 2015, 248 throat swabs were collected and examined within 72 h. Two parents refused the collection of swabs for the purpose of this study. Out of the 101 patients presenting with a sore throat, 26 (26%) tested positive for GAS. Only one (0.7%) of the 147 control patients had a positive test result. Statistical analysis showed both the positive and negative EPV to be high (Table 1). The confidence intervals in this interim analysis were deemed to be narrow enough and hence further data collection was cancelled.

4. Discussion

The main finding of this study was that both the positive and negative EPV indicated that this RADT can be used to both rule in and rule out a link between symptoms and GAS for the study population. However, this conclusion may not be valid in other circumstances where the prevalence of carriers or the proportion of patients having GAS is different. The incidence of GAS colonization of the pharynx in asymptomatic patients reported in the literature is controversial and ranges from less than 2% to 11%.²² Some authors refer to GAS carriers as sources for recurrent infections and deem the rate of asymptomatic carriers to be as high

Table 1 Etiologic predictive value (EPV) of the tests^a

Estimated sensitivity to find GAS	Estimation of theta ^b	Positive EPV	Negative EPV
0.97	1.0	98 (88–100)%	99 (98–99)%
0.95	1.0	98 (88-100)%	98 (97-99)%
0.97	1.1	98 (88-100)%	99 (98-99)%
0.95	1.1	98 (88-100)%	98 (97-99)%

GAS, group A Streptococcus.

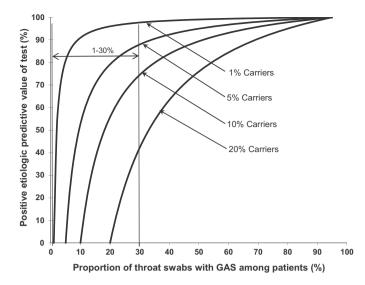
^a The EPV of tests states the probability that the test finding is linked to symptoms/signs while considering symptomatic carriers ill from another agent (such as a virus).

^b Theta is the estimated prevalence of GAS among symptomatic patients ill from something other than GAS, usually a virus; 1.0 means the prevalence is the same as among the healthy individuals and 1.1 means a 10% higher prevalence than in asymptomatic healthy individuals.

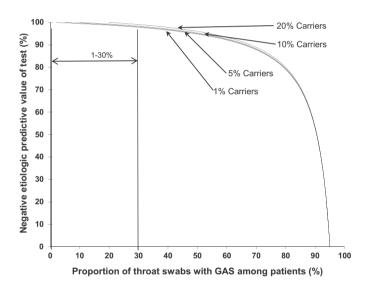
as 25%.²³ In the present study population, it was less than 1%. Furthermore, the proportion of patients having GAS may vary in different settings from close to zero up to 40%.^{2,3} In unselected cases in primary health care or similar settings it would most often be between 5% and 25%.

Clinical decision rules have not shown appropriate predictive values to be considered sufficient for clinical decision-making alone as to whether or not to treat a sore throat as a GAS infection. ^{7,10,24} Focusing on patients with severe pharyngitis alone may increase the positive predictive value of a decision-making rule, but would focus only on a small subgroup of patients.

Culture has historically been considered the gold standard, not only for diagnostics in clinical practice, but also for rating other diagnostic methods. ^{1,24,25} However it has been shown that modern GAS RADTs have similar or better sensitivity than culture, ^{17,18} especially when assessed using PCR testing, the gold standard in many other areas of diagnostics of infectious diseases. PCR tests have shown positive results for patient samples testing positive with a RADT but negative with culture, ²⁶ demonstrating that some RADTs are more sensitive than culture when assessed against PCR as the gold standard. ^{26,27}


Whilst the benefit of a bedside test for decision-making is widely acknowledged, ^{14,28} the benefit of older generation tests has been controversial, ¹⁴ demonstrating a lower sensitivity for a small inoculum size.²⁹ However it has been found that even the utilization of older generations of bedside tests in the ED and other acute care settings is significantly better than clinical judgment alone, ^{24,30} especially in combination with history, examination, and a clinical decision rule.²⁸

The sensitivity/specificity and predictive values of several RADTs have been deemed sufficient for diagnosis and management in other studies, ^{1,31} including the test utilized for the present study, which has shown excellent predictive values.


This study is the first to calculate EPV for a RADT in the setting of sore throat patients. The influence of different assumptions was tested, such as the sensitivity of the test and theta. The assumptions most likely to reflect the reality would be a sensitivity of RADT to detect the presence of GAS of 95–97% with a theta of 1. Thus, the positive EPV would be 98 (88–100)% and subsequent negative EPV 98–99 (97–99)%. Hence, a negative RADT would rule out the possibility of a sore throat being caused by GAS with a probability of \geq 97%.

A strength of this study was the use of an established low-cost RADT with a high sensitivity and specificity. This test should normally be performed in the clinic or ED by a doctor (general practitioner, registrar, or emergency physician) or a nurse, producing a result within minutes. The tests were analyzed in batches in this study and the outcomes were not given to the treating doctor. The reason for this was that the aim of the study was to establish predictive values of tests rather than the actual influence that this RADT might have on decision-making.

The direct findings of this study are applicable to unselected presentations of children aged 3–15 years having a sore throat, with a low carrier rate of GAS and around 25% of children with a sore throat having a positive test for GAS. It can be shown that the positive EPV remains quite high as long as the proportion of carriers remains very low (Figure 1). The positive EPV for this RADT becomes unreliable when the carrier rate of GAS increases (Figure 1). The negative EPV usable to rule out a link between symptoms and GAS always remains high, irrespective of the carrier rate of GAS and for any reasonable change in the proportion of patients with a sore throat having GAS (Figure 2). Therefore when utilizing the EPV to rate the post test probability of GAS infection, the result is transferable not only to different regions once the numbers of true infections and asymptomatic carriers are established, but also to every age group.

Figure 1. Variation in the positive etiologic predictive value depending on the carrier rate and prevalence of GAS among patients, assuming a sensitivity of the test of 95%, as with a rapid antigen detection test (reproduced with the kind permission of R. Gunnarsson²¹).

Figure 2. Variation in the negative etiologic predictive value depending on the carrier rate and prevalence of GAS among patients, assuming a sensitivity of the test of 95%, as with a rapid antigen detection test (reproduced with kind permission of R. Gunnarsson²¹).

The RADTs are a significant step forward in correctly diagnosing sore throat and greatly help to prevent unnecessary antibiotic prescription. ¹⁰ In Australia they are relatively cheap (AUD 4/USD 3/EUR 2.70) compared to culture (AUD 29/USD 21.70/EUR 19.30). PCR tests have even better test performance, with sensitivity and specificity close to 100%, but are more difficult to use and too expensive to be used for unselected patients with a sore throat (varying cost depending on the system used). However, this may change in the future.

In conclusion, it can be shown mathematically that a point-of-care test like the Alere Test Pack +Plus Strep A is always useful to rule out a link between symptoms of a sore throat and GAS. Its ability to rule in a link between symptoms and GAS depends on the carrier rate of GAS. Having the results within 5–10 min makes it ideal for guiding treatment decisions in unselected presentations of patients with a sore throat.

Conflict of interest/Funding: None.

References

- Lean WL, Arnup S, Danchin M, Steer AC. Rapid diagnostic tests for group A streptococcal pharyngitis: a meta-analysis. Pediatrics 2014;134:771-81.
- Cohen JF, Chalumeau M, Levy C, Bidet P, Thollot F, Wollner A, et al. Spectrum and inoculum size effect of a rapid antigen detection test for group A Streptococcus in children with pharyngitis. PLoS One 2012;7:e39085.
- McDonald M, Brown A, Edwards T, Hope A, Amu M, Morey F, et al. Apparent contrasting rates of pharyngitis and pyoderma in regions where rheumatic heart disease is highly prevalent. Heart Lung Circ 2007;16:254–9.
- Schwartz B, Elliott JA, Butler JC, Simon PA, Jameson BL, Welch GE, et al. Clusters
 of invasive group A streptococcal infections in family, hospital, and nursing
 home settings. Clin Infect Dis 1992;15:277–84.
- RHD Australia (ARF/RHD writing group), National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand. Australian guideline for prevention, diagnosis and management of acute rheumatic fever and rheumatic heart disease. 2nd ed. Menzies School of Health Research; 2012.
- Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. *Lancet Infect Dis* 2005;5:685–94.
- Rimoin AW, Hamza HS, Vince A, Kumar R, Walker CF, Chitale RA, et al. Evaluation of the WHO clinical decision rule for streptococcal pharyngitis. *Arch Dis Child* 2005;90:1066–70.
- Hanna JN, Heazlewood RJ. The epidemiology of acute rheumatic fever in indigenous people in north Queensland. Aust N Z J Public Health 2005;29: 313-7
- Lawrence JG, Carapetis JR, Griffiths K, Edwards K, Condon JR. Acute rheumatic fever and rheumatic heart disease: incidence and progression in the Northern Territory of Australia, 1997 to 2010. Circulation 2013;128:492–501.
- 10. Gunnarsson MS, Sundvall PD, Gunnarsson R. In primary health care, never prescribe antibiotics to patients suspected of having an uncomplicated sore throat caused by group A beta-haemolytic streptococci without first confirming the presence of this bacterium. Scand J Infect Dis 2012;44:915–21.
- Wessels MR. Clinical practice. Streptococcal pharyngitis. N Engl J Med 2011;364:648–55.
- Huck W, Reed BD, French T, Mitchell RS. Comparison of the Directigen 1-2-3 Group A Strep Test with culture for detection of group A beta-hemolytic streptococci. J Clin Microbiol 1989;27:1715-8.
- 13. Makela M. Effect of latex agglutination test on prescribing for group A streptococcal throat disease in primary care. Scand | Infect Dis 1989;21:161-7.
- Jonckheer T, Goossens H, De Donder M, Levy J, Butzler JP. Evaluation of the direct detection of group A beta-hemolytic streptococcal antigen in a pediatric population: comparison with the traditional culture technique. Eur J Epidemiol 1986;2:205–7.
- Hoffmann S. Detection of group A streptococcal antigen from throat swabs with five diagnostic kits in general practice. Diagn Microbiol Infect Dis 1990;13:209–15.

- 16. Yuckienuz SA, Thorne GM, Macone AB, Goldmann DA, St Pierre J, Marcus EP. Performance of a solid phase enzyme immunoassay for detection of group A streptococci in a pediatric office laboratory as refereed by a hospital laboratory. Pediatr Infect Dis J 1988;7:393–8.
- Lindbaek M, Hoiby EA, Lermark G, Steinsholt IM, Hjortdahl P. Which is the best method to trace group A streptococci in sore throat patients: culture or GAS antigen test? Scand J Prim Health Care 2004;22:233–8.
- **18.** Kaplan EL, Top Jr FH, Dudding BA, Wannamaker LW. Diagnosis of streptococcal pharyngitis: differentiation of active infection from the carrier state in the symptomatic child. *J Infect Dis* 1971;**123**:490–501.
- Lasseter GM, McNulty CA, Richard Hobbs FD, Mant D, Little P, Investigators P. In vitro evaluation of five rapid antigen detection tests for group A beta-haemolytic streptococcal sore throat infections. Fam Pract 2009;26:437–44.
- Gunnarsson RK, Lanke J. The predictive value of microbiologic diagnostic tests if asymptomatic carriers are present. Stat Med 2002;21:1773–85.
- Gunnarsson R. Microbiologic diagnostic tests when asymptomatic carriers are
 present. Aspects of the use of conventional throat and nasopharyngeal cultures
 as examples. Doctoral Thesis. University of Gothenburg, Sweden; 2001. Available at: http://hdl.handle.net/2077/15233 (accessed 02/10/2012).
- Carapetis JR, Currie BJ, Kaplan EL. Epidemiology and prevention of group A streptococcal infections: acute respiratory tract infections, skin infections, and their sequelae at the close of the twentieth century. Clin Infect Dis 1999;28:205-10.
- Sepdham D, Rao S, Hitchcock K, Goodwin MA. Clinical inquiries: should you treat carriers of pharyngeal group A strep? J Fam Pract 2008;57:673–4.
- Cohen JF, Cohen R, Levy C, Thollot F, Benani M, Bidet P, et al. Selective testing strategies for diagnosing group A streptococcal infection in children with pharyngitis: a systematic review and prospective multicentre external validation study. CMAJ 2015;187:23–32.
- 25. Rogo T, Schwartz RH, Ascher DP. Comparison of the Inverness Medical Acceava Strep A test with the Genzyme OSOM and Quidel QuickVue Strep A tests. *Clin Pediatr (Phila)* 2010;49:1050–2.
- Cohen JF, Cohen R, Bidet P, Levy C, Deberdt P, d'Humieres C, et al. Rapid-antigen detection tests for group A streptococcal pharyngitis: revisiting false-positive results using polymerase chain reaction testing. J Pediatr 2013;162:1282–4.
- Uhl JR, Adamson SC, Vetter EA, Schleck CD, Harmsen S, Iverson LK, et al. Comparison of LightCycler PCR, rapid antigen immunoassay, and culture for detection of group A streptococci from throat swabs. J Clin Microbiol 2003;41:242-9.
- 28. Ebell MH, Smith MA, Barry HC, Ives K, Carey M. The rational clinical examination. Does this patient have strep throat? *JAMA* 2000;284:2912–8.
- Gerber MA, Spadaccini LJ, Wright LL, Deutsch L. Latex agglutination tests for rapid identification of group A streptococci directly from throat swabs. J Pediatr 1984;105:702–5.
- **30.** DuBois D, Ray VG, Nelson B, Peacock JB. Rapid diagnosis of group A strep pharyngitis in the emergency department. *Ann Emerg Med* 1986;**15**:157–9.
- Corneli HM. Rapid detection and diagnosis of group A streptococcal pharyngitis. Curr Infect Dis Rep 2004;6:181-6.