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Among-species variation in the energy budgets of reef-building
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ABSTRACT

The symbiosis between corals and dinoflagellates promotes the rapid
growth of corals in shallow tropical oceans, and the high overall
productivity of coral reefs. The aim of this study was to quantify
and understand variation in carbon acquisition and allocation
among coral species. We measured multiple physiological traits
(including symbiont density, calcification, photosynthesis and tissue
composition) for the same coral fragments to facilitate direct
comparisons between species (Stylophora pistillata, Pocillopora
damicornis, Galaxea fascicularis, Turbinaria reniformis and
Acropora sp.). Tissue protein content was highly sensitive to the
availability of particulate food, increasing in fed colonies of all species.
Despite among-species variation in physiology, and consistent
effects of feeding on some traits, overall energy allocation to tissue
compared with skeleton growth did not depend on food availability.
Extrapolating from our results, estimated whole-assemblage carbon
uptake varied >20-fold across different coral assemblages, but this
variation was largely driven by differences in the tissue surface area
of different colony morphologies, rather than by differences in
surface-area-specific physiological rates. Our results caution
against drawing conclusions about reef productivity based solely
on physiological rates measured per unit tissue surface area.
Understanding the causes and consequences of among-species
variation in physiological energetics provides insight into the
mechanisms that underlie the fluxes of organic matter within reefs,
and between reefs and the open ocean.

KEY WORDS: Energy balance, Heterotrophic feeding, Lipid stores,
Stable isotope analyses, Photosynthesis, Scleractinian corals

INTRODUCTION

Nutritional symbioses promote efficient recycling of nutrients in
terrestrial, aquatic and marine ecosystems, and involve numerous
host and symbiont taxa (Saffo, 1992). One of the most widely
recognised nutritional symbioses is that between corals and
photosynthetic dinoflagellates from the genus Symbiodinium
(zooxanthellae). This symbiosis augments the carbon supply to
the coral while the symbionts benefit from nutrient supply, and the
relatively stable endocellular environment, provided by the coral
host (Yellowlees et al., 2008). Additionally, recent studies have
revealed nutrient exchange between corals and the microbial
community living within the tissue surface layer (Kushmaro and
Kramarsky-Winter, 2004; Garren and Azam, 2012), as well as
between corals and endolithic algae colonising the space between
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coral tissue and skeleton (Fine and Loya, 2002). Overall, coral
symbioses are characterised by complex sharing involving nitrogen
(Reynaud et al., 2009; Tanaka et al., 2015) and carbon (Hughes
et al.,, 2010; Hughes and Grottoli, 2013) that promotes the high
overall productivity of coral reefs.

In addition to obtaining carbon from symbiont photosynthesis,
coral polyps acquire carbon and nutrients through heterotrophic
feeding on a variety of sources including zooplankton (e.g. Sebens
et al., 1996; Ferrier-Pages et al., 2003; Palardy et al., 2005), pico-
and nano-plankton (Bak et al., 1998; Houlbreque et al., 2004; Ribes
et al., 2003), suspended particulate matter (e.g. Anthony, 1999;
Mills et al., 2004) and dissolved organic compounds (e.g. Ferrier,
1991; Grover et al., 2008; Godinot et al., 2011). Early studies on
tropical corals suggested that coral reefs were ‘oases’ in the
oligotrophic tropical seas and functioned as closed systems with
limited exchange of nutrients with the surrounding sea (Odum and
Odum, 1955; Johannes et al., 1972). However, an alternative view at
that time was that heterotrophy provided an important source of
nitrogen and phosphorus but contributed little carbon to coral
symbioses (Johannes et al., 1970; Muscatine and Porter, 1977). In
contrast, recent work indicates that heterotrophy contributes
70-100% of daily carbon requirements (Houlbréque and Ferrier-
Pages, 2008; Grottoli et al., 2006). Moreover, some coral
species upregulate heterotrophic feeding when photosynthesis is
suppressed, either due to decreased light availability (Anthony and
Fabricius, 2000; Tremblay et al., 2015), or when symbionts are lost
from coral tissue (Palardy et al., 2008 and Grottoli et al., 2014).
Given that heterotrophic feeding can contribute up to 150% of
C requirements, understanding how changing environmental
conditions are likely to influence the productivity of coral
communities requires knowledge of plankton and particulate
matter abundance, and of the rates of particulate matter uptake by
corals.

Particulate matter and dissolved nutrients can be present at high
concentrations in coral reef waters. Although daytime standing
stocks of zooplankton can be very low (see Heidelberg et al., 2004),
shortly before sunset demersal zooplankton begin to rise into the
water column and reach concentrations up to ~10 mg m~ (Yahel
et al., 2005; Heidelberg et al., 2004). Moreover, hydrodynamic
features such as upwellings and internal waves can lead to large
increases in plankton densities in shallow waters (Leichter et al.,
1998; Roder et al., 2010). Similarly, strong currents can interact with
benthic topography to concentrate plankton from a large volume of
water into a comparatively small area, greatly amplifying local
zooplankton densities (Genin, 2004). Even when nutrients are in
low concentrations in open waters, the dissipation of energy as
waves impinge onto topographically complex reefs drives high
dissolved nutrient uptake rates by benthic organisms (Hearn et al.,
2001). Finally, in inshore habitats, concentrations of nutrient-rich
sediments can be up to 12 pmol 1=! NO; and 2 mol 1=! PO, (Devlin
and Brodie, 2005). Collectively, these studies highlight the potential
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for high local concentrations of nutrient-rich particulate matter in
some reef environments.

In addition to variation in particulate matter uptake due to
fluctuations in availability in the ocean, the magnitude of particulate
carbon uptake by reefs is likely to be influenced by the species
composition of the benthic community. Consistent with this
hypothesis, the few studies that have directly quantified the
contribution of particulate food to reef ecosystems (i.e. benthic—
pelagic coupling) have revealed 25-fold variation in uptake rates.
Early work in the Caribbean indicated a removal of 34% (by
volume) of particulate matter from the water column by benthic reef
organisms (Glynn, 1973), where baseline levels of particulate
matter ranged between 1 and 4mgNm™ (equivalent to
~10 mgm~ of organic matter). Other studies have shown
changes in the abundances of different plankton groups between
the open water and reef flat that summed to an uptake rate of
~0.1 g Cm~2day~! (e.g. Ayukai, 1995), and import of carbon from
ocean to reef of ~0.2gCm 2day™! due to the activity of
suspension feeding sponges, bivalves and tunicates (Genin et al.,
2009). In coral dominated areas, net import of particulate carbon
from ocean to reef has been estimated at ~2.5 gCm™2day™!
(Fabricius and Dommisse, 2000). Variation in uptake rates between
locations is likely to be partly due to spatial variation in plankton
availability; for instance, a recent study reported that plankton
biomass ranged from 1.0 to 15.6 mg Cm> on Jamaican reefs
(Heidelberg et al., 2004). However, additional research is required
to quantify how different assemblages of reef benthic organisms
vary in their reliance on externally supplied carbon.

Determining the effect of plankton feeding on coral growth
additionally requires knowledge of how heterotrophic carbon is
allocated to tissue biomass versus skeletal growth. To date, studies
into the role of heterotrophic feeding on coral energetics have
revealed species-specific effects. For instance, experimentally
starved colonies of Galaxea fascicularis had the same lipid
content as fed colonies, whereas starved Stylophora pistillata had
approximately 50% lower lipid content than fed colonies (Borell
et al.,, 2008). However, detailed analysis of whether and how
heterotrophic feeding influences the energy budgets of different
coral species is confounded by differences among published studies
in terms of species selection, environmental conditions and
measuring techniques. The aims of the present study were to
quantify variation in carbon acquisition and allocation among coral
species, and in response to food availability, and to determine
whether energy allocation to tissue compared with skeletal growth is
fixed or plastic in response to changes in food availability. In
addition, we aimed to resolve whether and how heterotrophic
feeding alters the sharing of carbon and nitrogen between coral host
and symbionts by analysing differences in the isotopic composition
of symbionts compared with coral tissue. Finally, we extrapolated
our results to assess whether and how coral species composition
influences the uptake of particulate matter from the water column.
We measured multiple physiological traits for the same coral
fragments to facilitate direct comparisons within and among
species. Understanding the causes and consequences of among-
species variation in physiological energetics provides insight into
the mechanisms that underlie variation in the fluxes of organic
matter within reefs, and between reefs and the open ocean.

MATERIALS AND METHODS

Study species and experimental treatments

Five coral species that are generally abundant on coral reefs were
compared: Stylophora pistillata (Pocilloporidae), Pocillopora damicornis

(Pocilloporidae), Galaxea fascicularis  (Euphylliidae), Turbinaria
reniformis (Dendrophyllidae) and Acropora sp. (Acroporidae) [where
family-level taxonomic classification follows Budd et al. (2012)]. Six
genetically distinct coral colonies per species were originally sourced from
the Red Sea and maintained for several months under culture conditions at
the Centre Scientifique de Monaco (temperature 26+0.2°C, light 150 pmol
photons m~2 s~! using metal halide lights on a 12 h:12 h light:dark cycle).
Temperature was maintained using thermostat-regulated aquarium heaters
(Visy-Therm, 300 W). A total of 36 small experimental colonies (nubbins,
surface area 5 to 8 cm?) per species, 6 nubbins from each parent colonies,
were created prior to the experiment, evenly distributed into 6 glass aquaria
(20 litre volume) and allowed to recover for 4 weeks. During the recovery
period, nubbins were not provided with food in order to remove any
previous feeding effect on their physiology (see Shick et al., 2005). During
the experimental period (5 weeks), nubbins in three of the six tanks (18 per
species) were provided with Artemia salina nauplii three times a week
(feeding density of approximately 2000 prey per nubbin per feeding event)
whereas nubbins in the remaining three tanks (18 per species) received no
food at all. After 5 weeks incubation under fed and unfed conditions, the 18
nubbins per treatment and species were divided as follows: 6 nubbins for
the feeding rate measurements and the lipid determination; 6 nubbins for
measurement of photosynthesis/respiration and symbiont, chlorophyll and
protein concentrations; and 6 nubbins for the growth rate measurements and
the 9'°C and 0'N isotopic signature of the tissue.

Heterotrophic feeding rates

Nubbins were individually placed in a 2 litre Plexiglas® flow chamber
(Ferrier-Pages et al., 2011), allowed to acclimate for 30 min until their
tentacles were fully expanded, and then incubated in the dark with an initial
concentration of ~2000 Artemia nauplii per chamber. A control tank
without a coral nubbin was also included to account for natural mortality of
nauplii during these incubations. Feeding rate was determined from the
change in Artemia concentration during the incubation, with samples taken
from each chamber at the beginning and the end of the incubation and
counted using a binocular microscope. Feeding rates were normalized per
unit nubbin surface area as determined using the foil-wrapping technique
(Marsh, 1970).

Photosynthesis and respiration

Rates of photosynthesis and respiration were measured using a set of six
temperature-controlled respirometry chambers (50 ml volume) coupled
with a Strathkelvin oxygen electrode system (Strathkelvin 928 m
with computer interface). Electrodes were calibrated using N, and
air-bubbled seawater as 0% and 100% oxygen saturation values,
respectively. Respiration was measured during incubation in darkness
(30 min). Subsequently, light intensity was increased stepwise to
150 pumol photons m™s~' and then 300 umol photons m~2s~!, and
photosynthesis rates were measured at each light level during a 15-min
incubation. Two light levels were used to ensure that photosynthesis had
reached saturation (to estimate maximum photosynthesis rates) and
feeding and species effects were consistent regardless of which light
level was analysed. Rates were normalized to skeletal surface area as
determined by foil wrapping (see above).

Skeleton growth and coral tissue and symbiont properties
Nubbins were weighed using the buoyant weight technique (Davies, 1989)
at the beginning and end of the experiment. From these weights, growth was
calculated as the total weight increase over the experimental period and was
not normalized to surface area or initial nubbin size. Skeletal micro-density
was determined from the difference in dry and water-saturated buoyant
weight of skeleton samples of each species after Bucher et al. (1998). Micro-
density measurements were subsequently converted to bulk density
assuming porosity of 58% for Acropora (Bucher et al., 1998) and 60%
for Turbinaria (based on values for its close relative Leptopsammia,
Caroselli et al., 2011). Bulk skeletal density estimates for Pocillopora and
Stylophora (1.71 and 1.72, respectively) were from Marshall (2000), and
were estimated for Galaxea based on a value of 1.63 for its relative
Gardineroseris (Manzello, 2010).
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For chlorophyll and protein concentrations, as well as symbiont density,
tissue of each nubbin was removed from the skeleton using an air pick, and
collected in a beaker with 8 ml of 0.45 um filtered seawater. The tissue
slurry was homogenized using a Potter tissue grinder and a 1 ml sub-sample
was taken for symbiont counts, which were made using an inverted
microscope (Leica, Wetzlar, Germany) and the Histolab 5.2.3 image
analysis software (Microvision, Every, France). Five millilitres of the
remaining tissue slurry was centrifuged at 8000 g for 10 min. The
supernatant was removed and the symbionts were re-suspended in 5 ml of
acetone for extraction of chlorophylls a and ¢, during 24 h in darkness.
Chlorophyll content was determined using a spectrophotometry method
according to Jeffrey and Humphrey (1975). The remaining slurry was
incubated in sodium hydroxide (0.5 N) maintained in a water bath for
30 min at 90°C for protein determination. Briefly, concentrations were
estimated using a bicinchoninic acid protein assay (Uptima, Interchim) by
reference to standards across a concentration range from 0 to 2000 pg ml~"
that were prepared using bovine serum albumin (Interchim). Absorbance
was measured at 560 nm, and sample protein content was determined using
GENESIS (Kontron Instruments), and was normalized to the skeletal
surface area.

Lipid content was quantified according to Hoogenboom et al. (2010)
using a modification of the method developed by Bligh and Dyer (1959).
Briefly, frozen nubbins were ground into a fine powder using a mortar and
pestle and mixed with a solution of dichloromethane, methanol and distilled
water. Samples were sonicated for 10 min, incubated at 40°C for 1 h and
filtered through Whatman GF/C filters to remove skeleton fragments from
solution. Subsequently, 1.5 ml of both dichloromethane and methanol were
added to the filtrate and the solution was centrifuged at 3000 g for 10 min to
separate the phases. The lower lipid-containing layer was transferred into
cleaned, pre-combusted and pre-weighed glass vials (4 ml). The solution
was evaporated under nitrogen, and the amount of lipid was determined by
weight.

Carbon and nitrogen isotopic determination

Carbon and nitrogen isotopic determination was performed in each
component of the symbiotic association (symbionts and host) to trace how
nutrients are shared within the symbiosis. We expected that heterotrophic
feeding would change the isotopic composition of the host tissue more than
the symbionts because particulate nutrients are first ingested and digested by
the coral host. Nubbins were individually placed in 100 ml beakers,
containing 20 ml of filtered seawater, which had been pre-combusted at
480°C forat least 4 h in a ThermolyneH 62700 oven. Tissue was completely
removed from the skeleton with an air pick and homogenized with a Potter
tissue grinder. The homogenate was separated into host and symbiont
fractions by centrifugation at 3000 g for 10 min to pellet the symbionts (at
4°C). Centrifugation of the supernatant was repeated twice to entirely
remove any remaining symbionts, and the supernatant was subsequently
flash frozen in liquid nitrogen, and freeze-dried using a Heto (model CT 60)
drier. For the symbiont fraction, the pellet was washed several times with
filtered seawater (to remove any residual host tissue) before being flash
frozen and freeze-dried as above. Samples were analyzed for §'°N and 3'3C
using a Geo-20:20 isotope ratio mass spectrometer (SerConH). Scale
calibration of results was performed using international reference materials
(IAEA-600 and IAEA-CH6, International Atomic Energy Agency) and two
control samples were analyzed with each batch for quality control purposes.
Precision, as determined by repeat analysis of controls and reference
materials, was better than £0.20% and +0.15% for measured 5'°N and §'>C
values, respectively.

Data analysis

Values reported in the text are given as means+standard error. Two-way
mixed-effects ANOVA was used to determine whether provision of food
affected coral energy acquisition and allocation, with species and feeding
regime treated as fixed factors, and tank was included as a random effect.
Raw data were square root or log transformed so that the data were
appropriate for ANOVA, as assessed by visual inspection of normal Q—Q
plots and plots of residuals versus fitted values. Stable isotope data were
analysed using general linear mixed-effects models to account for the
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repeated measure of different tissues (i.e. symbiont tissue and host tissue)
sampled from the same coral fragment. In this analysis, coral fragment
identity was treated as a random factor and the error term of the mixed-
effects model specified that tissue type was nested within fragment. For all
analyses, minimal models are presented with non-significant terms removed
using a backwards deletion procedure. Analyses were implemented in R
(version 2.14.1, R Core Development Team, 2011) using the function ‘lme’
in the package ‘nlme’.

The contribution of heterotrophic feeding to animal respiration (i.e.
CHAR, after Grottoli et al., 2006) was calculated by multiplying feeding
rate (measured as naupliicm™2h™') by the carbon content of nauplii
(0.68 ug C nauplii~', Wijgerde et al., 2011) by the duration of the feeding
period (2 h) and then dividing this rate by the measured respiration rate
converted to carbon equivalents with values normalized to tissue surface
area (as per Hoogenboom et al., 2010). Energy allocation to skeleton growth
was calculated from the measured total calcification across the experiment
(g) multiplied by the energy cost of calcification (0.152 T mg™', Anthony
et al., 2002). Differences in energy allocation to tissue versus skeletal
growth were determined by first converting the measured calcification per
coral fragment (change in buoyant weight, g) into a change in colony
volume (cm?) given the density of the calcium carbonate skeleton (where
increase in colony volume [cm>]=production of new skeleton [g] divided by
skeletal density [gcem™]). Subsequently, we calculated the increase in
surface area that corresponded to the calculated increase in colony volume
based on coral nubbin morphology. To do so, we represented fragments as
cylinders with a ‘branch’ radius of 6 mm for Stylophora and Pocillopora
and 4 mm for Acropora, or as plates with a height of 5 mm for Turbinaria
and 10 mm for Galaxea. Geometric formulae for the surface area and
volume of a cylinder were used to calculate the change in tissue surface area
corresponding to the measured change in volume. Energy allocation to
tissue was then estimated from the calculated change in tissue surface area
multiplied by the measured lipid and protein content per unit surface area
(converted to energy equivalents of 23.9 J mg™" for protein and 39.5 J mg ™'
for lipid, Gnaiger and Bitterlich, 1984). We did not account for
carbohydrates because they typically contribute less than 10% of coral
tissues (Leuzinger et al., 2003). Finally, given that these calculations depend
on several parameters that are estimated with error, we conducted a
sensitivity analysis to assess how variation in parameter values influenced
proportional energy allocation to tissue (see Fig. S1).

Carbon acquisition of simulated coral assemblages

Total carbon uptake (from net photosynthesis and heterotrophic feeding)
was simulated for different coral assemblages composed of different
combinations of the study species. We used the measured data
(photosynthesis, respiration, heterotrophic feeding, lipid content and
protein content), and scaled up from measurements per unit tissue surface
to values per square metre of reef taking into account the surface area to
horizontal planar area ratios of the different genera. For the (flat) laminar/
encrusting morphologies (Galaxea and Turbinaria), colony tissue surface
area is equivalent to horizontal planar area. For the branching morphologies,
colony tissue surface area was calculated based on measured branch
densities (branches cm™2) for Acropora valida (as a proxy for Acropora sp.
used herein) and P. damicornis (as a proxy for Pocillopora and Stylophora
used herein). These branch density estimates were determined from field
photographs of 4. valida and P. damicornis from Lizard Island (northern
Great Barrier Reef) and Orpheus Island (central Great Barrier Reef). All
photographs were taken from directly above coral colonies and included a
ruler as a scale bar and were analysed using ImageJ. Branch surface area
(based on branch diameter) was calculated for each genus, and then
multiplied by branch density to obtain tissue surface area per unit reef
occupied (i.e. horizontal planar area). To account for effects of
morphological variation within species (e.g. Turbinaria colonies range
from encrusting to cone-shaped with multiple tiers), we repeated the
calculations for different colony shapes. Moreover, previous studies indicate
that different proportions of the coral tissue surface actively capture particles
from the water column, ranging from branch tips (Palardy et al., 2005) to
branch bases at the centre of colonies where plankton can become trapped
in interstitial spaces (Schiller and Herndl, 1989). To account for this,
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we repeated calculations for branching assemblages allowing active
particle feeding for different proportions of the total colony surface area.
For each simulated coral assemblage we calculated total carbon uptake
(g Cm~2day™!, with daily respiration subtracted from daily photosynthesis
and converted to carbon equivalents as above), particulate carbon uptake
(gCm™2day™", calculated based on feeding rates and an estimated carbon
content of plankton of 0.68 pg C plankton™!; see above) and total coral
tissue biomass (g m~2, calculated as the sum of protein and lipid content per
unit surface area multiplied by colony tissue surface area). We note that
these calculations assume that area-specific rates are independent of colony
diameter and are intended to identify relative variation among the
assemblages rather than to predict absolute rates of carbon uptake under
field conditions.

RESULTS

Among-species variation in symbiont properties and carbon
acquisition

The effect of feeding on the density of symbionts within coral tissue
varied among the study species (Table 1). Provision of food
enhanced symbiont density for Acropora, Pocillopora and
Stylophora but not for Galaxea or Turbinaria (Fig. 1A). Among
the five species, Stylophora had the highest average symbiont
density, but values for this species were similar to those of
Turbinaria and Galaxea (Tukey’s HSD, P>0.75 for both
comparisons), while densities for Acropora and P. damicornis
were 2-3-fold lower (Fig.1A). Variation in total chlorophyll
concentration (chl atc,) in response to feeding was generally
consistent with observed variation in symbiont densities for
Acropora, Pocillipora and Turbinaria (Fig. 1B), although this
difference was not significant for Pocillopora (post hoc test,
P=0.07). However, fed nubbins of Stylophora did not have higher
chlorophyll content than unfed nubbins, despite the increase in
symbiont population density with feeding, reflecting a decrease in
chlorophyll per symbiont cell for fed nubbins (data not plotted).
Conversely, chlorophyll content was significantly higher in fed
nubbins of Turbinaria, although feeding did not significantly
enhance symbiont numbers for this species.

Neither rates of photosynthesis nor dark respiration varied
significantly with food availability for any of the study species
(Table 1), despite a general trend toward increased photosynthesis
rates in fed nubbins of all species except for Turbinaria (Fig. 1C).
Measured rates of dark respiration (Fig. 1D) were approximately
equivalent for all species except for Acropora, for which rates were
~3-fold lower, and were not influenced by food availability (Table 1,
Fig. 1D). Grazing rates of coral nubbins on Artemia salina nauplii
ranged between 9.6+3.6 to 188+15.9 nauplii cm=2h~! for Acropora
and Pocillopora, respectively, with the other species intermediate in
this range (Table2). The ratio of photosynthesis to respiration,
converted to units of ug C cm~2 day~!, ranged from 1.06+0.14 for
Pocillopora to 1.41£0.08 for Galaxea with the other species
intermediate within this range (Table 2). The contribution of total
acquired carbon to animal respiration (CTAR, calculated as the sum of
daily photosynthetic plus heterotrophic carbon acquisition relative to
daily respiration) was >100% for all species (Table2), with
Pocillopora>Stylophora>Acropora>Galaxea>Turbinaria.

Among-species variation in calcification and tissue
composition

Skeleton growth over the total duration of the experimental period
ranged from 0.14 to 3.8 g and was highest for Turbinaria and
Stylophora, which showed approximately equivalent growth of
2.3£0.27 and 1.7+0.16 g, respectively, compared with ~0.50 to
0.75 g for the other species. Skeleton growth was generally higher

Table 1. Mixed-effects ANOVA of the effect of feeding on bioenergetics
of five coral species (Stylophora pistillata, Turbinaria reniformis,
Acropora sp., Pocillopora damicornis and Galaxea fascicularis), where
tank was included as a random effect

Factor d.f. F P
Symbiont density
Species 4,46 72 <0.001
Feeding 1,4 a7 <0.01
Species: 4,46 3.9 <0.01
Feeding
Chlorophyll content
Species 4,46 91 <0.001
Feeding 1,4 38 <0.01
Species: 4,46 3.7 <0.05
Feeding
Photosynthesis rate
Species 4,46 10.8 <0.001
Feeding 1,4 1.8 0.26
Species: 4,46 3.1 <0.05
Feeding
Respiration rate
Species 4,50 8.0 <0.001
Feeding 1,4 0.7 0.45
Protein content
Species 4,50 58 <0.001
Feeding 1,4 21 <0.05
Lipid concentration
Species 4,46 35 <0.001
Feeding 1,4 23 <0.01
Species: 4,46 4.0 <0.01
Feeding
Calcification rate
Species 4,50 29 <0.001
Feeding 1,4 44 0.11
Skeletal density
Species 4,50 9.8 <0.001
Feeding 1,4 0.01 0.93
13C
Species 4,20 8.5 <0.001
Feeding 1,20 16 <0.001
Tissue 1,25 93 <0.001
Species: 4,20 6.1 <0.01
Feeding
Species:Tissue 4,25 9.2 <0.001
15N
Species 2,11 55 <0.001
Feeding 1,11 52 <0.001
Tissue 1,12 0.17 0.69

2,12 <0.05

Non-significant interaction terms were removed from the analyses, and data
were square root or log transformed where required to enable the use of
parametric ANOVA.

Species:Tissue 47

for fed compared with unfed nubbins overall, but this effect was not
statistically significant (Table 1, Fig.2A), nor did it depend on
species identity (ANOVA, species by feeding interaction term,
F450=1.5, P=0.21). Skeletal micro-density was not influenced by
food availability (Table 1, Fig. 2D), but Galaxea had higher skeletal
density than all other species ( post hoc test, pairwise comparisons
between Galaxea and other species, P<0.03 in all cases).
Pocillopora and Turbinaria had the lowest skeletal density,
although density of Turbinaria was not significantly different
than that of Stylophora and Acropora, which had intermediate
density (Fig. 2D).

Tissue composition varied among species and in response
to feeding. Protein content was highest, on average, for nubbins of
Turbinaria  (1.9£0.12 mg cm™2) followed by Galaxea (1.2+
0.07 mg cm™2), and levels for these species were significantly
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different from each other and from those of the three branching species
(Tukey’s HSD, P<0.01 for all comparisons). As observed for skeletal
growth rates, protein levels were higher in fed compared with unfed
nubbins overall (Tables 1 and 3), independent of species identity
(ANOVA, species by feeding interaction term, F4 50=1.3, P=0.30,
Fig. 2B). In contrast to the consistent effect of feeding on tissue
protein, lipid concentrations were only significantly higher in fed
compared with unfed nubbins of Pocillopora and Turbinaria
(Fig. 2C). On average, Stylophora had the highest lipid content
(1.3£0.09 mg cm™~2), Pocillopora had the lowest lipid content
(0.5620.09 mg cm~2) and the other three species were intermediate
between these levels.

Symbiont and host tissue isotopic ratios
8!°N isotopic values ranged from ~3.3 to 8.3%o overall, but
comparison of the effects of tissue type (host versus symbont) and

food availability (fed versus unfed) could only be conducted for
three species because of missing data for symbionts within unfed
nubbins of Acropora and Pocillopora. This analysis revealed that
fed corals (overall, pooled across species and tissue type), tended to
have higher 8'°N (feeding main effect, Table 1) than unfed corals.
However, host and symbiont tissues only differed in 8'N for
Stylophora (post hoc test, host versus symbiont comparison,
P=0.17 and 0.35 for Galaxea and Turbinaria, respectively,
Fig. 3A). When only the fed nubbins of all species were
compared in a separate analysis, symbiont 8'°N values were
higher than those of host tissue for Stylophora (post hoc test, host
versus symbiont comparison, P<0.02), lower than those of host
tissue for Pocillopora (post hoc test, host versus symbiont
comparison, P<0.001) but equivalent for the remaining three
species ( post hoc test, host versus symbiont comparison, P>0.27 in
all cases, Fig. 3A). The 8'3C isotopic ratio ranged from ~—29 to

Table 2. Summary of the energy budget for fed corals of each of five species showing carbon intake from different sources

Carbon budget

Feeding rate

Heterotrophic carbon intake

Photosynthetic carbon intake Total carbon intake relative

Species (naupliicm™h~") relative to respiration (%) relative to respiration (%) to respiration (%)
Acropora sp. 9.6+3.6 1946.8 140+17.7 160114
Galaxea fascicularis 14.5+2.1 14+1.1 141+7.7 156+7.8
Pocillopora damicornis 188+15.9 159139 106+13.4 265148
Stylophora pistillata 103.8+11.9 758.8 128+8.6 203+16
Turbinaria reniformis 50.316.7 36+3.8 10949.8 145+13

Data are means+SEM.
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~—11%o and was more positive in symbiont compared with host
tissue for Acropora, Galaxea and Pocillopora (Table 1, Fig. 3B). In
addition, the 8'3C isotopic ratio was higher in unfed compared with
fed nubbins for Acropora (but not for the other four species; Table
3, Fig. 3B).

Relationships between physiological traits and relative
heterotrophic feeding rates

The high variation in feeding rates corresponded to CHAR values
between 14£1% and 159439% for Galaxea and Pocillopora,
respectively, with the other three species intermediate within this
range (Fig. 4). Feeding rates were more variable between species than

photosynthesis rates, and this meant that the rank order of species
based on CTAR was generally similar to the rank order of species
based on CHAR, with Pocillopora and Stylophora having
considerably higher values than the other three species. Based on
simple geometric relationships between surface area and volume of
coral branches (Acropora, Pocillopora, Stylophora) and plates
(Turbinaria, Galaxea), the proportion of energy allocated to tissue
biomass (relative to skeletal growth) ranged from 31% to 74% overall
(absolute range across all nubbins). There was no evidence that
allocation to tissue was higher in fed compared with unfed nubbins
(data not plotted, two-way ANOVA, feeding effect on energy
allocation, F; 55=2.3, P=0.14). However, allocation did vary among

Table 3. Summary of the overall effects of heterotrophic feeding on physiological energetics for five coral species

Physiological trait Acropora sp. Galaxea fascicularis Pocillopora damicornis Stylophora pistillata Turbinaria reniformis
Symbiont density + 0 + + 0
Chlorophyll content + 0 0 0 +
Respiration rate 0 0 0 0 0
Photosynthesis rate 0 0 0 0 0
Calcification 0 0 0 0 0
Lipid content 0 0 + 0 +
Skeletal density 0 0 0 0 0
Protein content + + + + +
Isotopic ratio

RN n.d. + Fed only, Host<Sym +, Host>Sym. +

5" +, Host>Sym. 0, Host>Sym. 0, Host>Sym. 0 0

'+’ denotes a positive effect of feeding and ‘0’ denotes no effect. n.d. refers to ‘no data’ and ‘Host>Sym’ denotes a difference between coral host and
Symbiodinium regardless of feeding treatment. The ‘feeding’ main effect in Table 1 for §'°N only applies to Galaxea, Stylophora and Turbinaria because of
missing data for the tissue fraction of unfed colonies of Acropora and Pocillopora.
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Fig. 3. Effect of feeding on the nitrogen and carbon isotopic composition
of coral tissues. Bars show mean values for (A) nitrogen and (B) carbon for
symbiont versus host tissue from five species of reef-building corals,
differentiated by feeding regime (F, fed; S, unfed). Values are measured
relative to the isotopic composition of Vienna Pee Dee Belemnite (V-PDB) for
carbon and relative to air for nitrogen, and the zero point is a relative rather than
absolute measure.

species (two-way ANOVA, species effect on energy allocation,
F450=11.3, P<0.001, Fig.4A). Energy allocation was similar for
Stylophora, Pocillopora and Turbinaria (Tukey’s post hoc test,
P>0.58 for all relevant pairwise comparisons), and values for these
three species were lower than values for Galaxea and Acropora
(Tukey’s post hoc test, P<0.02 for all relevant pairwise comparisons).

Energy allocated to tissue versus skeleton was higher in species
that had a lower reliance on heterotrophic feeding (Pearson’s
correlation between CHAR and energy allocation to tissue, arcsin-
transformed proportion data, »=—0.49, t,5=—3.04, P<0.01, Fig. 4A).
Note that only data for fed nubbins were analysed because CHAR=0
for the unfed nubbins in our experiment. In contrast, there was not
an obvious trend in the relationships between CHAR and the
differences in §'3C and 8'°N between host and symbiont tissue from
the same fragments (denoted by A8'3C and AS'N, respectively,
hereafter) because the values for Pocillopora were not consistent
with the trend observed for the other four species. For the carbon
isotopic ratio, the largest differences in host and symbiont values
occurred when CHAR was very low (<30%) or very high (>150%).
For nitrogen, differences between host and symbiont values
occurred when CHAR was >70%, but this difference was positive
for Stylophora and negative for Pocillopora.

Differences in A8'3C between host and symbiont tissues were
generally consistent with differences in AS!SN between host and
symbiont, except for Pocillopora (Fig. 4B,C). When data from both
fed and unfed colonies were included there was a general trend
toward a larger AS'3C associated with increased A8'>N (Fig. 5).
However, this relationship was not statistically significant
(Pearson’s correlation, R=—0.38, t;o=—1.8, P=0.09) as there was
high variation in A§'*N for colonies for which A8!3C values were
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Fig. 4. Relationships between relative heterotrophic feeding capacity
(CHAR) and coral energy allocation and tissue isotopic composition.
Points show (A) energy allocation to tissue versus skeleton (%) for coral
colonies; (B) difference (%o) between host and symbiont e isotopic ratio, and
(C) difference (%o) between host and symbiont "N isotopic ratio. Only data for
the fed colonies were included in the analyses (and plots), and error bars show
standard error. P-values in B and C indicate whether host and symbiont values
different significantly within species, and S, T, A, P and G denote values for
Stylophora, Turbinaria, Acropora, Pocillopora and Galaxea, respectively.
Values in B and C are measured relative to the isotopic composition of V-PDB
for carbon and relative to air for nitrogen, and the zero point is a relative rather
than absolute measure.

small. In addition, there were two colonies that showed values
inconsistent with the general trend (two Acropora with A§'3C >8
but A§' N ~1). In contrast, the magnitude of the difference between
host and symbiont values was correlated with symbiont density
within coral tissue for 8'°N (Pearson’s correlation, R=—0.77,
t=—2.9, P<0.03, Fig.6B) with a similar, but not statistically
significant, association observed for §'3C (Pearson’s correlation,
R=-0.53, t&=—1.8, P=0.12, Fig. 6A).
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Fig. 5. Relationship between the difference between coral host and
symbiont isotopic composition for carbon and nitrogen isotopes. Data
points represent values for individual colonies for which both §'°N and §'*C
data for both host and symbiont were obtained (N=20). Both fed and unfed
colonies of all five study species were included in this analysis.

Carbon acquisition of simulated coral assemblages

Net carbon uptake of simulated coral assemblages varied >20-fold
depending on species composition (Table4). The assemblage
composed of only encrusting/laminar colony morphologies (i.e.
Galaxea and Turbinaria) had the lowest total carbon uptake
(~0.76 g Cm~2day™') despite the relatively high gross
photosynthesis rates of these genera (Fig.1). In contrast, the
assemblage composed of the three branching genera (i.e. Acropora,
Stylophora and Pocillopora) had substantially higher total carbon
uptake (~12.1 g C m~2 day~!) and higher particulate carbon uptake
(~9.6 g Cm~2day~!). These differences were primarily driven by
the much higher surface area to horizontal planar area ratio of
branching compared with other morphologies (as indicated by the
higher total tissue biomass of these assemblages, Table4).
Morphological plasticity, such as changes in colony shape
observed for Turbinaria along a light intensity gradient, had a
relatively small influence on particulate and total carbon uptake by
coral assemblages (Table4). In contrast, for branching species,
decreasing the proportion of the tissue surface actively involved in
particle capture substantially decreased whole-assemblage uptake
of particulate carbon (Table 4). However, uptake by the assemblage
of branching species remained higher than that of the non-branching
species as long as the area of the effective feeding surface was >6%
of the total tissue surface area.

DISCUSSION

Of the 9 physiological traits measured in this study, tissue protein
content was the most sensitive to the availability of particulate food,
increasing in fed colonies of all five study species (as summarised in
Table 3). Symbiont density and chlorophyll content were influenced
by food availability only for certain species, whereas whole-colony
photosynthesis and respiration rates were independent of feeding for
all species. Despite among-species variation in physiology, and
consistent effects of feeding on some traits, overall energy allocation
to tissue compared with skeleton growth did not depend on feeding
status, primarily because both calcification and tissue quality
(protein content) were enhanced by feeding (although the effect of
feeding on calcification was not statistically significant). §'°N was a
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Fig. 6. Relationships between symbiont density and the difference
between coral host and symbiont isotopic composition. Points show
values for carbon (A) and nitrogen (B) isotopes. Data points represent values
for individual colonies for which both 5'°N and §'*C data for both host and
symbiont were obtained. Both fed and unfed colonies of all five study species
were included in this analysis. There are fewer data points in B due to missing
data for §'°N for unfed colonies of Acropora and Pocillopora.

reliable indicator of heterotrophic feeding because it was higher in
tissues of fed Galaxea and Turbinaria, significantly different
between symbiont and host for Stylophora and Pocillopora (data
available for fed corals only) and the difference in §'°N between
host and symbiont decreased with increasing symbiont density.
Finally, estimated whole-community carbon uptake varied >20-fold
across different simulated coral assemblages. However, this
variation was driven by differences in the tissue surface area to
horizontal planar area ratio for different colony morphologies, and
by differences in the effective feeding surface area of branching
morphologies. Clearly, accurately quantifying the size of the
effective feeding surface area is important for accurate prediction
of particulate matter uptake by coral assemblages.

Nutrient sharing between coral host and symbionts

Stable isotopes are increasingly used in dietary and food web studies
(Peterson and Fry, 1987) and are a valuable technique for tracking the
exchange of nutrients within symbiotic associations (e.g. Hughes
et al., 2010; Tremblay et al., 2014). To date, several studies of coral
feeding ecology have quantified the difference between symbiont and
coral host isotopic ratios, with larger differences implying a greater
reliance on heterotrophy. Such inferences are supported by the general
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Table 4. Whole-community biomass and carbon uptake for simulated coral assemblages with a fixed horizontal planar area of 1.5 m?

Net carbon uptake (g C

Particulate carbon uptake (g C

Coral assemblage m~2day™") m~2day™") Tissue biomass (g m~2)
(A) Galaxea, Turbinaria (0.75 m? per genus) 0.66-0.87 0.25-0.63 24-33
with conical Turbinaria 0.66-0.87 0.25-0.63 24-33
with conical multi-tier Turbinaria 0.86-1.1 0.36-0.89 32-45
(B) Acropora, Stylophora, Pocillopora (0.5 m? per genus) 9.9-12.9 7.2-10.5 139-206
Particle capture by 75% of polyps 5.4-7.9
Particle capture by 50% of polyps 3.6-5.3
Particle capture by 25% of polyps 1.8-2.6
(C) Acropora, Stylophora, Pocillopora, Galaxea, 6.2-8.1 4.5-6.6 93-137

Turbinaria (0.3 m? per genus)

Values have been scaled up from measurements per unit surface area based on calculated colony tissue surface area per unit of horizontal area occupied as
determined from colony morphology. For A, calculations were repeated using different morphologies for Turbinaria: conical refers to a cone-shaped colony with
radius 25 cm and height 12 cm; multi-tier refers to a colony with two cone-shaped layers, one with radius 25 cm and height 12 cm and one with radius 15 cm and
height 20 cm. For B, calculations were repeated assuming different proportions of the coral tissue area actively captured particles.

trend of increased differentiation between host and symbiont isotope
ratios as depth and heterotrophy increase to compensate for the
decrease in light and photosynthetic productivity (Land et al., 1975;
Muscatine and Kaplan, 1994; Lesser et al., 2010). In natural field
settings, coral symbiont density, or the chlorophyll content of
symbionts, tends to increase with depth to maximise light
interception (Porter et al., 1984; Titlyanov et al., 2001; Frade et al.,
2008). In this study we observed that host and symbiont isotopic
composition were more similar in corals with high symbiont densities,
suggesting that increased translocation of nutrients from coral host to
symbiont (e.g. because of increased particulate feeding by the host)
may drive an increase in symbiont density and a corresponding
similarity in host and symbiont isotopic composition.

Our results suggest that nitrogen is exchanged and shared
differently between coral host and symbionts compared with
carbon: carbon isotopic composition was significantly different
between coral and symbiont tissues for Acropora, Galaxea
and Pocillopora, whereas nitrogen isotopic composition was
significantly different between coral and symbiont tissues for
Stylophora and Pocillopora. Although further studies on a greater
number of species are required, our study suggests that differences
between symbiont and host are associated with CHAR: variation in
8'3C values occurred only when CHAR was very low or very high,
and variation in 8'°N was only observed in species for which CHAR
was above 70%. Differentiation between host and symbiont when
CHAR is high is consistent with what is reported in the broader
literature. However, differentiation in host and symbiont §'3C for
Acropora and Galaxea, species that had low CHAR values,
indicates that 8N may be a more reliable indicator of coral
heterotrophic feeding than 8'C. Nevertheless, carbon translocation
from symbiont to host can vary with particle feeding rates (Hughes
et al., 2010; Tremblay et al., 2014) and a decrease in the amount of
carbon translocated to the host when feeding rates are low and
nutrient supply is limited could drive differentiation in host and
symbiont 8'3C. Finally, we note that the 8'3C values for symbiont
and host observed here are more negative compared with other
studies (e.g. —11 to —14%o in Nahon et al., 2013; or —13 and —16%o
in Swart, 1983). Likely explanations for this observation include the
relatively low light levels under which corals were grown in our
study: several studies have found decreasing 5'>C with depth (e.g.
Grottoli and Wellington, 1999; Alamaru et al., 2009; Lesser et al.,
2010). In addition, these values are likely to depend upon the
nutritional value of the food source and the observed §'3C signal
may reflect that of the Artemia used in our study (—29%o, 1.24=+
0.5 pg C nauplii~! and 0.25+0.01 ug N nauplii—!).
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Energy allocation between tissue and skeleton

Results of this study indicate that resource (i.e. energy and nutrients)
allocation between tissue and skeleton growth is not sensitive to
changes in plankton availability. Most energy budget models allow
for variation in energy allocation between growth, reproduction and
basic maintenance across an individual’s lifespan, depending on
body size and food availability (e.g. McCauley et al., 1990).
Similarly, over evolutionary time scales, selection can drive
variation in energy allocation; for instance, among-species
variation in energy allocation to reproduction in fishes is related
to population-specific adult mortality rates (Lester et al., 2004).
Research on corals indicates that tissue growth precedes skeletal
growth, with corals increasing their tissue before new skeleton is
produced (e.g. Ferrier-Pages et al., 2003; Houlbreque et al., 2004),
which could lead to a tight coupling between tissue and skeleton
growth that would constrain variation in relative energy allocation.
More broadly, a fixed energy allocation pattern indicates that
changes in particulate food availability are likely to cause a general
decline in coral growth rather than a change in energy allocation
occurring that maintains skeleton growth and the expense of tissue
growth (or vice versa).

Scaling from coral polyps to communities

Our results demonstrate that there is high among-species variation in
carbon uptake, and indicate that the fluxes of carbon into and out of
coral assemblages are likely to vary in response to changes in species
composition. While we acknowledge the limitations of extrapolating
results from laboratory experiments to natural field environments, this
study indicates that coral communities dominated by branching
morphologies (with a high coral tissue surface area to planar area
ratio) potentially take up a much greater amount of particulate and
photosynthetic carbon, although their uptake of particulate carbon
depends on the proportion of the tissue surface that encounters and
captures prey. Branching corals also excrete 40-60% of acquired
carbon (Crossland et al., 1980; Davies, 1984) and, hence, carbon
fluxes from reefs dominated by branching species are likely to exceed
those of other coral assemblages. Although few studies have
systematically compared the total productivity of different coral
assemblages, evidence in the literature supports the interpretation of
greater carbon flux from assemblages dominated by branching
corals. For example, Acropora-dominated communities produce
15.3 to 16.6 g Cm~2day™' (Gattuso et al., 1996 and Smith, 1981,
respectively) compared with 1.3 to 9.9 gCcm™2day™' for mixed
benthic assemblages of corals, macroalgae and crustose coralline
algae (Atkinson and Grigg, 1984; Bates, 2002; Gattuso et al., 1996).
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Consistent with studies of coral heterotrophy conducted over the
past decade (e.g. Houlbréque et al., 2004; Grottoli et al., 2006, 2014),
our results demonstrate that particle feeding contributes substantially
to the energy budgets of certain coral species, with CHAR values
ranging between 14% (for Galaxea) and 150% (for Pocillopora).
Moreover, CHAR is typically calculated based on macroplankton
and is likely to be higher if all possible heterotrophic feeding sources
are considered (e.g. Tremblay et al., 2011). This is of concern
because the species composition and body size distribution of
plankton are regulated by physical and chemical conditions
(Richardson, 2008) and are likely to change under climate change
conditions. Presently, there is limited direct evidence of spatial
variation in the extent to which different coral reefs, and/or different
assemblages of coral species, consume plankton and other
particulate matter. However, studies using stable isotope
techniques have shown that corals in deeper waters consume more
plankton than corals in shallow habitats (Muscatine et al., 1989;
Alamaru et al., 2009). Similarly, there is evidence of among-reef
variation in the carbon and nitrogen isotopic composition of coral
tissues (Heikoop et al., 2000), and a recent study has demonstrated
that spatial variation in coral tissue composition was associated with
variation in turbidity (Nahon et al., 2013). Nevertheless, it remains
unclear whether such variation in tissue composition is due to corals
in different areas consuming different amounts or types of particulate
food, or whether corals in different areas have differential reliance on
photosynthesis versus particulate feeding. High variation in feeding
rates among coral species, and in CHAR and the effects of feeding on
coral physiology (present study; Sebens et al., 1996; Ferrier-Pages
etal., 2011; Palardy et al., 2005), indicates that predicted changes to
plankton communities, and nutrient and sediment run-off, under
climate change scenarios (e.g. McKinnon et al., 2007; Richardson,
2008) may affect the relative abundances of coral species on reefs.

Understanding the causes and consequences of among-species
variation in physiological energetics provides insight into the
mechanisms that underlie changes in the fluxes of organic matter
within reefs, and between reefs and the open ocean. In this study we
measured multiple physiological traits for the same coral fragments
to facilitate direct comparisons within and among species. Results
show that tissue protein content is consistently higher when
particulate food is available for corals in general, whereas effects
of feeding on symbiont density and chlorophyll content were
species-specific. Our findings suggest that energy allocation between
tissue and skeletal growth is not sensitive to variation in food
availability. Finally, estimated whole-community carbon uptake
varied >20-fold across different simulated coral assemblages and,
therefore, our results caution against drawing conclusions about reef
productivity based solely on physiological rates measured per unit
tissue surface area without accounting for differences in total tissue
surface area among different colony morphologies. Overall, these
findings indicate that the fluxes of carbon into and out of coral
assemblages are likely to vary in response to changes in species
composition.
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