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Abstract 
In this paper we created and validated a predictive model for assessing the susceptibility 

of landslides along Highway E-20 in Ecuador, by measuring the degree of spatial association of a 
landslide inventory with a set of spatial factors in an empirical way. The main aims of this paper 
are to: 1) determine what spatial factors are most associated to landslide occurrence, 2) 
determine if the E-20 has any type of influence on landslide occurrence and, if so, up to what 
distance. For this, we created a landslide inventory based on multi-temporal images from different 
sources and used the Yule Coefficient and the Distance Distribution Analysis, which enabled us to 
determine which spatial factors are more closely related to the occurrence of landslides. The 
findings support the idea that landslides are not randomly distributed, but are associated 
(positively or negatively) to the different geo-environmental conditions of the study area; in this 
case, landslides have shown positive association with areas of active erosive processes, granitic 
rocks, volcanic sandstone and rainfall ranging from 1 500 to 1 750 mm. The statistical significance 
of the model was tested in two different ways, thus it can be considered as valid, showing that 
each spatial factor has some influence on the occurrence of landslides. 
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1. Introduction 1 

 2 

Landslide Susceptibility Analysis (LSA) attempts to establish a relationship between 3 
landslides and the factors associated to them, in order to determine the spatial probability of 4 
occurrence of new landslides in a given area (Marsh 2000; Remondo et al. 2003); this is done by 5 
identifying past landslides, their distribution and main characteristics and applying statistical and 6 
geographic information tools to establish which factors are more associated to landslides. The 7 
results from LSA are not predictions of landslide occurrence, but references of where they can 8 
generally be expected to occur in the future.  9 

Ecuador, located in western South America, is frequently subject to natural disasters of 10 
different kinds and magnitudes (Cajas Alban and Fernandez 2012; Demoraes and D'ercole 2001; 11 
Tibaldi et al. 1995); Landslides are mass movements containing soil, mud, rock and other materials 12 
that detach from a mountain or hill and move down a slope (Wang et al. 2005); they often affect 13 
the country’s road network and other critical infrastructure leaving entire communities destroyed 14 
or uncommunicated (Harden 2001; Hoy 2014a; Hoy 2014b); furthermore, landslides have been 15 
found to be the deadliest disaster type in Ecuador, killing more people than flooding or epidemics 16 
(Zevallos 2004). By determining the geographical factors that are associated with landslides, the 17 
places that have the highest probabilities of landslides can be delineated, thereby raising 18 
awareness and enhancing community resilience and preparation.  19 

Highway E-20 (from now on E-20) links Quito with Santo Domingo de los Tsáchilas (from 20 
now on Santo Domingo) and plays a major role in communicating communities in the high Andes 21 
with those in the coastal lowlands. The E-20 departs Alóag and climbs to the 3 100 m.a.s.l. mark 22 
before beginning its steep descent to Santo Domingo, at 550 m.a.s.l.. This section of the highway 23 
is often affected by landslides and frequently closed for days (Comercio 2014a; Comercio 2014b), 24 
therefore being an important subject for LSA.  25 

The main objectives of this paper are to: i) determine what spatial factors are most 26 
associated to landslide occurrence, ii) determine if the E-20 has any type of influence on landslide 27 
occurrence and, if so, up to what distance, and iii) create a landslide susceptibility map based on 28 
the findings.  29 

This paper is firstly describes the location of the study area, followed by a section that 30 
describes the acquisition of the spatial data and the methods uses; here, the Yule Coefficient (YC) 31 
and the Distance Distribution Analysis (DDA) are presented as efficient tools for LSA, followed by 32 
the methodologies used to test the statistical significance of the model. Subsequently, the main 33 
results are outlined then, the discussion and finally a short conclusion. 34 

 35 

 36 

2. Study Area 37 

 38 

The study area is located in central Ecuador and comprises twelve (12) municipalities (i.e. 39 
parroquias) from the provinces of Pichincha and Santo Domingo de los Tsáchilas ; it covers a total 40 
area of 5 093 Km2. The boundaries of the study area are: 10 010 636 m North to 9 913 845 m 41 
South, and 773 147 m East to 674 910 m West. It was delineated by using the ‘Political Division – 42 
Parroquia’, and not using a geophysical characteristic (e.g. water sheds), because when the model 43 
is finished, it can be easily implemented by each administration in small scale, rather than the 44 
model having to pass a bureaucratic process in several Ministries before its approval and later use. 45 
There are three important topographic features of the study area: the Atacazo, Corazon and 46 
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Guagua Pichincha volcanoes, all with elevations above 4 000 m.a.s.l. and a high presence of 47 
outcrops and quarries of different sorts.  48 

 49 

 50 

 Fig. 1: Location of the study area  51 
Source: Google Earth 52 

 53 

The selected portion of the E-20 Highway covers 98 Km, and it is the central feature in the 54 
study area running from east to west; it connects the towns of Alóag, located in the east, at 2 880 55 
m.a.s.l., and Santo Domingo, located in the west, 530 m.a.s.l..  The road crosses its highest section 56 
(3 170 m.a.s.l.) approximately 12 Km west of Alóag , crosses the western Ecuadorian Andes and 57 
descends to Santo Domingo, located in the coastal plains (see Fig. 2).  58 

 59 

 60 

Fig. 2: Elevation profile of Highway E-20. Alóag is shown on the left hand, with the highest elevation and 61 
Santo doming on the right hand with the lowest elevation. 62 

Source: Google Earth 63 
 64 

The topography of the area, as displayed in Fig. 3, is very rugged, with uneven terrain and 65 
high elevations in the east tending to more smooth hillsides and flat plains in the west. The highest 66 
and lowest elevation are 5 218 m.a.s.l. and 240 m.a.s.l. respectively, this means that climate, 67 
rainfall, and vegetation types vary widely throughout the study area. On the one hand, the region 68 
surrounding Alóag is characterized by cool to mild temperatures averaging 12°C, 79% relative 69 

Study Area 
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humidity and 1 500 mm of rainfall each year; On the other hand, Santo Domingo has anywhere 70 
between 2 000 and 3 000 mm of rainfall and an average temperature of 22°C (INAMHI 2013a; 71 
INAMHI 2013b). Once below 1 300 m.a.s.l. the vegetation changes to evergreen forests of the 72 
coastal lowlands, which increases the amount of cloud cover and creates a semi-permanent 73 
blanket over the forest (Sierra 1999).  74 

 75 

Fig. 3: Elevation map of the study area Highway E-20. 76 

 77 

The geology of the study area is characterized by marine volcano-sedimentary rocks of 78 
andesite and basalt composition with interbedded sediments of the Cretaceous era. The Macuchi 79 
formation is dominant in the area, and is partially covered by volcaniclastic rocks, conglomerates, 80 
shales, tuffs (especially along the E-20) and marine sedimentary rocks such as limestone; to the 81 
east, continental Pleistocene-Holocene volcanic rocks of andesite composition are predominant. 82 
There are also ash and lahar deposits throughout the area. To the and southeast the lithology is 83 
characterizes by pyroclastic fragments of volcanic eruptions such as ash and pumice lapilli, mostly 84 
form the Atacazo, Corazon and Guagua Pichincha volcanoes (GAD 2013).  85 

 86 

 87 

3. Data and Methods 88 

 89 

3.1. Data Collection 90 

 91 
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Data was collected from different sources was used to generate the thematic layers (see 92 
Table 1). In spite of being in the Andes and close to three volcanoes, not enough spatial 93 
information is readily available regarding earthquakes to include them in this LSA. 94 

 95 

Table 1: Information used for the thematic layers. 96 

NAME TYPE SCALE / 
RESOLUTION 

SOURCE YEAR 

Ecuador Profile shp 1:150.000 Instituto Geográfico Militar 2013 

National Road Network Shp 1:150.000 Ministerio de Transporte y Obras 
Públicas 

2013 

Cities and Towns Shp 1:150.000 Instituto Geográfico Militar 2013 

Political Division - 
Parroquia 

Shp 1:150.000 Instituto Geográfico Militar 2011 

Political Division – 
Province 

Shp 1:150.000 Instituto Geográfico Militar 2011 

Geomorphology Shp 1:150.000 MAGAP – SigAgro 2005 

Isohyets – Rainfall shp 1:150.000 INAMHI 2003 

Erosion Shp 1:150.000 MAGAP – SigAgro 2002 

Land Use Shp 1:150.000 MAGAP – SigAgro 2002 

Digital Elevation Model Raster 30 m  Instituto Geográfico Militar 2013 

Aerial Photographs Raster 1:30.000 Instituto Geográfico Militar 2013 

Aerial Photographs Raster 1:20.000 Instituto Geográfico Militar 2005 

Aerial Photographs Raster 1:5.000 Instituto Geográfico Militar 2005 

Aerial Photographs Raster Various Google Earth Pro. 1970, 2002, 2003, 
2007, 2012 

 97 

The profile of the country was used as base to spatially align all other layers, and to ensure 98 
the Digital Elevation Model (DEM) was correctly located; the best available resolution for the DEM 99 
was thirty meter (30 m), that is, each grid cell measured 30m on each side; this was used for 100 
subsequent extraction of information (i.e. slope, aspect and curvature). The section of interest of 101 
the E-20 was obtained from the ‘National Road Network’ layer which was provided by the Ministry 102 
of Transport, while the outlines of the towns of Alóag  and Santo Domingo where obtained from 103 
the ‘Cities and Towns’ shape file, provided by the Military Geographic Institute (IGM). The study 104 
area was selected from the ‘Political Division – Province’ on first stance, and ‘Political Division – 105 
Parroquia’ for the definite selection of municipalities. The ‘Geomorphology’ and ‘Land Use’ layers 106 
contain information on geology, lithology, land use and land cover for the study area. Lastly, the 107 
‘Isohyets – rainfall’ layer contains the rainfall ranges for all the study area, and it was generated 108 
by interpolation of the nation’s network of weather stations. 109 

The processing of all layers was done using ArcGIS v10.2, this included the geo-referencing 110 
of layers, assigning coordinate systems and datums, visualization, extraction and geo-processing 111 
of the raster datasets. The selected datum and coordinate systems were: WSG 1984 and UTM 112 
Zone 17 South respectively. In order to determine the spatial association of each spatial factor 113 
with the presence of landslides, Microsoft Excel was used. 114 

 115 

3.2. Landslide Inventory 116 

 117 

In order to identify and map the locations of landslides, multi-temporal images from 118 
Google Earth and the IGM were geo-referenced and used; the former were comprised of several 119 
images of the whole study area and were dated: Jan/1970, Jun/2002, jul/2003, jun/2007, 120 
jun/2012, jul2012 and sep/2012, but only a small section of the study area had images from all 121 
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the mentioned years. The latter were dated 2005 and scaled 1:5 000, 1:20 000 and 1:30 000 and 122 
covered 1 840 Km2 (36%) of the study area.   123 

Out of 400 photos, 95 were selected on the basis of presence or absence of landslides; 124 
the chosen images were geo-referenced using between 6 and 10 ground control points, and 125 
ensuring the root mean square error was below half of the pixel size (Hughes et al. 2006), which 126 
varied between photographs, hence making sure there was a good correlation between the 127 
locations the geo-objects in ground and their expected location in the map. Once geo-referenced, 128 
a new layer was created in ArcGIS and a polygon was created for every distinguishable landslide, 129 
hence creating the landslide inventory (see Fig. 4). 130 

 131 

 132 

Fig. 4: Landslide inventory  133 

Google Earth Pro was also used to populate the inventory (Van Den Eeckhaut et al. 2012). 134 
In this case, digitalization of landslides was done directly in the program, by creating individual 135 
polygons and storing them in a database that would later be translated into ArcGIS. Having done 136 
this, the layer created in Google Earth Pro was added to the inventory created in ArcGIS, thereby 137 
having a total of 1 328 polygons (i.e. landslides) for the study area in one single layer that could 138 
be superimposed to the other layers. 139 

No Landsat images were used due to two main factors: 1) the resolution of the available 140 
images did not allow clear differentiation between landslides and other land uses, and 2) most 141 
images presented heavy could cover (over 40%), which made landslide identification very difficult. 142 

 143 

 144 
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3.3. Spatial Factors 145 

 146 

Spatial factors are descriptions (i.e. characteristics) of spatial information, they can be 147 
presented in continuous (e.g. elevation) or categorical (e.g. land use) form. The spatial factors 148 
used for this project are shown in Figs. 5 and 6. 149 

Given that the elevation model represented the whole of Ecuador, the section 150 
corresponding to the study area was extracted by using the ‘Extract by Mask’ function in ArcGIS 151 
10.2, resulting in a raster dataset with the exact extent (i.e. shape) of the study area; all 152 
subsequent raster operations were calculated for the study area only. 153 

Regarding the continuous datasets: the DEM was used to derive the Slope, Aspect and 154 
Curvature layers by using the appropriate function of the ‘Spatial Analyst’ toolbox with the 155 
following characteristics: i) slope was calculated in Percent Rise, ii) the aspect was expressed in 156 
degrees (i.e. 0 to 359.9) measured clockwise from the north and iii) the curvature, which varied 157 
between -8.5 and 9.1 showed if the cell represented an upwardly convex (i.e. positive value), a 158 
flat (i.e. value of zero) or an upwardly concave surface (i.e. negative value). All these layers had 159 
the same grid cell size of the DEM, and were calculated as continuous data, meaning that each cell 160 
had a value composed of a number with a certain number of decimal places. 161 

  162 
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 163 

Fig. 5: a) elevation, b) slope, c) curvature, d) aspect. 164 

 165 

Because attribute tables in ArcGIS are only generated for categorical data, the slope, 166 
aspect, and curvature layers had to be reclassified. This was done with the ‘Slice’ function, which 167 
re-distributes the cell values into groups with roughly the same number of cells (see Fig. 5)(Chung 168 
and Fabbri 2003). By doing this, an attribute table for each layer was created, which allowed the 169 
usage of the ‘Zonal Statistics’ tool later on. 170 

Now, for categorical datasets the treatment was different, as all layers were initially in 171 
vector format (see fig. 6). The ‘Land Use’ layer was generalized from 41 to 11 categories based on 172 
their representativeness in the study area and their similarities; land use is believed to play an 173 
important role in landslide occurrence according to CAN (2009) and Gonzales (2011). The main 174 
categories of land use in the study area are: Agriculture and livestock with 33%, followed by 175 
Conservation with 25% and Agriculture and forestry with 18% of the total area. Lithology has 176 
proven to be one of the main contributing factors for landslide occurrence Terrambiente (2006).  177 
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Regarding erosion, four categories have been identified in the study area: very active, 178 
active and potential, potential and null risk; about 22% of the area has null risk of erosion, and 179 
71% (3 643 Km2) of the study falls under the ‘active and potential’ category; in other words, erosive 180 
processes are taking place in most of the study area, especially in the mountainous region which 181 
is characterized by higher altitudes and steeper slopes. 182 

 183 

Fig. 6: e) land use, f) erosion, g) lithology, h) rainfall. 184 

 185 

The lithology layer initially had 41 categories in the study area, and was generalized to 22 186 
based on their similarities In order to facilitate the interpretation of the results when using the 187 
Yule Coefficient. 188 

The rainfall values for the study area are distributed in 13 categories, ranging from 500mm 189 
to 5500mm in the original layer, and were used that way; the layer was created by the National 190 
Institute for Meteorology and Hydrology of Ecuador (INAMHI), and covers years 1981 to 2010; it 191 
is believed that rainfall is an important contributing factor to landslides (CAN 2009; Zevallos 2004). 192 
All four layers (i.e. land use, erosion, lithology and rainfall) were transformed to raster format, 193 
using the same grid cell size as the DEM, in order to use the ‘Zonal Statistics’ tool. 194 
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 195 

 196 

3.4. Statistical Analysis 197 

 198 

The quantitative analysis used here was composed by two main statistical methodologies, 199 
the Yule Coefficient and the distance Distribution Analysis. Both of these relate the occurrence of 200 
geo-objects, in this case landslides, with any given spatial factor (see section 3.2) (Bijukchhen et 201 
al. 2013; Komac and Zorn 2009).   202 

On the one hand, the Yule Coefficient (YC) (Yule 1900; Yule 1912) is used to measure the 203 
association between two attributes; in this case, the attributes considered are i) the presence of 204 
landslides and ii) slope, aspect, curvature, lithology, rainfall, land use and erosion. On the other 205 
hand, the Distance Distribution Analysis (Berman 1977; Berman 1986) is used to determine the 206 
degree of association between geo-objects in terms of the how distant they are from each other; 207 
for this scenario the presence of landslides was weighed against their proximity to the E-20. 208 

 209 

 210 

3.4.1. The Yule Coefficient 211 

 212 

The Yule Coefficient, also known as the Phi coefficient (Chedzoy 2004), has been used in 213 
the sciences  as a reliable measure of association between variables, expressed as a dichotomy 214 
(e.g. presence-absence, true-false, yes-no) (Adeyemi 2011). This technique associates the 215 
presence of landslides to a given spatial actor and assigns a weight that represents the strength 216 
of the association between the two (Komac and Zorn 2009). When incorporated into a GIS, the 217 
relationship between landslides and categorical maps with multiple classes (e.g. lithology, rainfall 218 
ranges, aspect, etc.) can be established by addressing each combination of landslide and class, 219 
thereby treating it as a binary event (i.e. bivariate analysis). Among the advantages of using the 220 
YC, Adeyemi (2011) states the following: i) it does not need corrections before/after, ii) it is quickly 221 
and easily computed, and iii) it is a measure of the proportional association of one variable to 222 
another.  223 

To begin the process of obtaining the YC, the ‘Zonal Statistics as Table’ tool in ArcGIS was 224 
used to create a summary of how many Landslide cells intersect the individual categories of each 225 
Spatial Factor; in other words, one can now how many landslides are present in each slope or 226 
rainfall range, as well as in each lithology category, etc. Having this information allowed to proceed 227 
with the calculation of the YC using the formula presented by Bonham-Carter (1994): 228 

22122111

22122111

TTTT

TTTT
Q




      (1) 229 

were: 230 

T11: Area where both attributes are present. 231 

T12: Area where the first attribute is present but not the second. 232 

T21: Area where neither attribute is present. 233 

T22: Area where the second attribute is present but not the first one. 234 

 235 
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Now, Q varies between +1, when attributes have a positive correlation (i.e. complete 236 
association), and -1 when there is a negative correlation (i.e. complete disassociation). If Q=0 then 237 
the attributes are independent from each other. It’s important to know that the YC assumes that:  238 
i) the attributes are only related to each other, that is, their relationship is not affected by external 239 
factors and ii) the attributes are shown in polygons and/or points (Bonham-Carter 1994; Ghosh et 240 
al. 2011).  241 

 242 

The values for T11, T12, T21 and T22 were derived from the ‘Zonal Statistics as Table” tool 243 
when combining the layer containing the landslides and the ones containing each spatial factor. 244 
This tool provides the following information for the YC: i) the number of cells for each category in 245 
each spatial factor (Npix), and ii) the number of landslide cells that coincide with each layer (T11). 246 
With this information, T12, T21 and T22 can easily be derived in the following way as shown in Tables 247 
2 and 3. 248 

 249 

Table 2: Extraction of the Yule Coefficient for the spatial factors related to the DEM. 250 

 251 

SPATIAL 
FACTOR 

# COUNT 
FACTOR 
CLASS 

Npix LU T11 Npixs T12 T21 T22 YC 

ASPECT 1 320057 Flat 320057 71 11163 11092 319986 5310154 -0,508 

 2 323064 N 323064 874 11163 10289 322190 5307950 0,084 

 3 654045 NE 654045 1724 11163 9439 652321 4977819 0,083 

 4 505694 E 505694 1151 11163 10012 504543 5125597 0,039 

 5 447060 SE 447060 974 11163 10189 446086 5184054 0,026 

 6 523223 S  523223 815 11163 10348 522408 5107732 -0,065 

 7 774608 SW 774608 1272 11163 9891 773336 4856804 -0,053 

 8 891484 W 891484 1645 11163 9518 889839 4740301 -0,021 

 9 853016 NW 853016 1857 11163 9306 851159 4778981 0,028 

 10 349052 N 349052 780 11163 10383 348272 5281868 0,033 

CURVATURE 1 703902 -8.5 - -1.5 703902 2193 11163 8970 701709 4928431 0,134 

 2 861503 -1.5 - -0.8 861503 1671 11163 9492 859832 4770308 -0,006 

 3 685399 -0.8 - -0.4 685399 1142 11163 10021 684257 4945883 -0,048 

 4 1074884 -0.4 - -0.05 1074884 1278 11163 9885 1E+06 4556534 -0,149 

 6 701522 -0.05 - 0.3 701522 1146 11163 10017 700376 4929764 -0,054 

 8 573070 0.3 - 0.7 573070 989 11163 10174 572081 5058059 -0,038 

 9 553330 0.7 - 1.4 553330 1432 11163 9731 551898 5078242 0,076 

 10 487693 1.4 - 9.1 487693 1312 11163 9851 486381 5143759 0,085 

SLOPE 1 603808 0 - 2 603808 132 11163 11031 603676 5026464 -0,520 

 2 536827 2 - 7 536827 202 11163 10961 536625 5093515 -0,410 

 3 570800 7 - 13 570800 479 11163 10684 570321 5059819 -0,226 

 4 569699 13 - 19 569699 927 11163 10236 568772 5061368 -0,054 

 5 545706 19 - 27 545706 1211 11163 9952 544495 5085645 0,032 

 6 561451 27 - 34 561451 1399 11163 9764 560052 5070088 0,065 

 7 563067 34 - 42 563067 1583 11163 9580 561484 5068656 0,100 

 8 572456 42 - 52 572456 1713 11163 9450 570743 5059397 0,118 

 9 559912 52 - 66 559912 1796 11163 9367 558116 5072024 0,138 
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 10 557577 66 - 263 557577 1721 11163 9442 555856 5074284 0,127 

 252 

 253 

Table 3: Extraction of the Yule Coefficient for the categorical spatial factors. 254 

SPATIAL 
FACTOR 

# COUNT 
FACTOR 
CLASS 

Npix LU T11 Npixs T12 T21 T22 YC 

LAND USE 1 169174 
Livestock & 
Conseration 

169174 500 11163 10663 168674 5461466 0,104 

 2 1058908 
Agriculture & 
Forestry 

1058908 4513 11163 6650 1E+06 4575745 0,264 

 3 1478237 Conservation 1478237 3664 11163 7499 1E+06 4155567 0,080 

 4 4333 Forestry 4333 0 11163 11163 4333 5625807 -1,000 

 5 559810 Agriculture 559810 535 11163 10628 559275 5070865 -0,194 

 6 1887136 
Agriculture & 
Livestock 

1887136 1277 11163 9886 2E+06 3744281 -0,328 

 7 237943 
Agriculture & 
Conservation 

237943 425 11163 10738 237518 5392622 -0,027 

 8 26265 
Unproductive 
land 

26265 0 11163 11163 26265 5603875 -1,000 

 9 199477 Livestock 199477 249 11163 10914 199228 5430912 -0,118 

 10 12574 
Cities & 
Towns 

12574 0 11163 11163 12574 5617566 -1,000 

 11 7446 Water 7446 0 11163 11163 7446 5622694 -1,000 

LITHOLOGY 1 2502359 

Andesite, 
volcanic 
sandstone, 
agglomerates. 

2502359 6559 11163 4604 2E+06 3127243 0,144 

 2 145346 Aggromerates 145346 474 11163 10689 144872 5478171 0,129 

 3 71162 
Aggromerate, 
Tuff 

71162 43 11163 11120 71119 5551924 -0,291 

 4 17943 
Glacier 
deposits 

17943 0 11163 11163 17943 5605100 -1,000 

 5 120602 
Alluvial 
Deposits 

120602 313 11163 10850 120289 5502754 0,069 

 6 113597 
Clay 
agglomerates 

113597 106 11163 11057 113491 5509552 -0,189 

 7 107919 Andesite 107919 40 11163 11123 107879 5515164 -0,400 

 8 1425988 

Volcanic 
ashes, Lapilli 
of pumice, 
agglomerates 
(Lahars) 

1425988 527 11163 10636 1E+06 4197582 -0,447 

 9 282571 
Volcanic 
Sandstone 

282571 1710 11163 9453 280861 5342182 0,299 

 10 124212 
Colluvial 
deposits 

124212 255 11163 10908 123957 5499086 0,009 

 11 237119 

Lava Flows, 
tuff, andesite, 
pyroclastic 
agglomerates 

237119 57 11163 11106 237062 5385981 -0,491 



 

P a g e  12 | 34 

 

 12 6773 
Alluvial 
Terraces 

6773 0 11163 11163 6773 5616270 -1,000 

 13 17579 
Undifferentiat
ed terraces 

17579 0 11163 11163 17579 5605464 -1,000 

 14 2270 
Intrusive 
Rocks 

2270 0 11163 11163 2270 5620773 -1,000 

 15 20574 
Granitic rocks, 
Quartz diorite 

20574 388 11163 10775 20186 5602857 0,519 

 16 34142 Granite 34142 71 11163 11092 34071 5588972 0,012 

 17 2529 
Andesite, 
Basalt and 
Shales 

2529 0 11163 11163 2529 5620514 -1,000 

 18 15972 Basalts, Gabro 15972 39 11163 11124 15933 5607110 0,052 

 19 2016 Lava Flows 2016 0 11163 11163 2016 5621027 -1,000 

 20 34137 

Tuff, 
sandstone, 
clay, 
agglomerates 

34137 0 11163 11163 34137 5588906 -1,000 

 21 2426 
Tuff, Alluvial 
sediments 

2426 0 11163 11163 2426 5620617 -1,000 

 22 346970 
Tuff, Lapilli of 
pumice, ashes 

346970 581 11163 10582 346389 5276654 -0,045 

EROSION 1 278029 Potential 278029 0 10958 10958 278029 4064642 -1,000 

 2 40099 
Very Active 
(past and 
Present 

40099 0 10958 10958 40099 4302572 -1,000 

 3 4035501 
Active and 
Potential 

4035501 10958 10958 0 4E+06 318128 1,000 

RAINFALL 1 255309 5000-5500 255309 0 11163 11163 255309 5374831 -1,000 

 2 201843 1250-1500 201843 814 11163 10349 201029 5429111 0,186 

 3 799702 1750-2000 799702 2459 11163 8704 797243 4832897 0,134 

 4 101629 500-750 101629 160 11163 11003 101469 5528671 -0,058 

 5 291595 750-1000 291595 305 11163 10858 291290 5338850 -0,164 

 6 394079 1500-1750 394079 2063 11163 9100 392016 5238124 0,270 

 7 310822 1000-1250 310822 337 11163 10826 310485 5319655 -0,156 

 8 232441 4500-5000 232441 31 11163 11132 232410 5397730 -0,594 

 9 1034302 2000-2500 1034302 2702 11163 8461 1E+06 4598540 0,088 

 10 180479 4000-4500 180479 0 11163 11163 180479 5449661 -1,000 

 11 344835 3500-4000 344835 125 11163 11038 344710 5285430 -0,412 

 12 508543 3000-3500 508543 1148 11163 10015 507395 5122745 0,037 

 13 985724 2500-3000 985724 1019 11163 10144 984705 4645435 -0,185 

 255 

Firstly, the total number of pixels (NpixT) is obtained by adding all the pixels for each 256 
category (Npix AS). Afterwards, the total number of pixels of geo-objects of interest (Npixs) is 257 
calculated by adding all the values in column T11. 258 

 )( ASNpixNpixT      (2) 259 
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 260 

 )11(TNpixs       (3) 261 

 262 

Then, T12 (T12) is determined by subtracting the numbers in the T11 column from those 263 
in Npixs, hence showing the presence of landslides outside of the specified class. Then, T21 (T21) 264 
is calculated by subtracting T11 from Npix AS, resulting in the number of cells that have each 265 
Aspect class, but no landslide.  266 

1112 TNpixsT       (4) 267 

 268 

1121 TNpixTT       (5) 269 

 270 

21121122 TTTNpixTT      (6) 271 

 272 
Finally, T22 (T22) is calculated by subtracting T11, T12 and T21 from the total number of 273 

pixels (NpixT). These is shown in equations 2 through 6 and can be programed in ArcGIS or any 274 
spreadsheet, such as Excel. Having done this, the YC is calculated using Equation 1. After this is 275 
done, the relationship between linear features and landslides can be determined, as the next 276 
section shows. 277 

 278 

 279 

3.4.2. Distance Distribution Analysis 280 

 281 

Given that the distance between geo-objects (i.e. proximity or adjacency) is used as a 282 
benchmark for describing their relationship, the Distance Distribution Analysis (DDA) (Berman 283 
1977; Berman 1986) is a statistical tool that can be used when trying to establish de degree of 284 
association between linear features (e.g. roads, faults, power lines, etc.) and point or polygon 285 
features (e.g. landslides). 286 

DDA compares the cumulative proportion of measured distances D(L), with the 287 
cumulative proportion of expected distances D(NL), of two sets of geo-objects; in this case 288 
landslides and the E-20 highway. This can be demonstrated as follows (Carranza 2009; Ghosh et 289 
al. 2011): 290 

)(

)(
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T

cumji
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
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       (5) 291 

 292 
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NLD

cumji


     (6) 293 

 294 

where: 295 

N(Cij∩L): the cumulative number of pixels where landslides (L) and the ith class of the jth 296 
spatial factor coincide (i = 1, 2, …, n; and  j = 1, 2, …, m), 297 
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N(Cij): the cumulative of the total number of pixels occupied by the ith class of the jth spatial 298 
factor (i = 1, 2, …, n; and  j = 1, 2, …, m), 299 

N(LT): the total number of landslide pixels in the area, 300 
N(T): the total number of pixels of the map. 301 
 302 
Having done this, the degree of association of landslide occurrences with a set of (linear) 303 

spatial factors is determined by comparing the graphs of D(L) and D(NL) following Berman (1977) 304 
and Carranza (2009): 305 

 306 

)()( NLDLDD       (7) 307 

 308 
If: 309 
D ≅ 0, the geo-objects are said to be independent from each other. 310 
D > 0, there is a positive spatial association between the geo-objects. 311 
D < 0, there is a negative spatial association between the geo-objects. 312 
 313 

Put more simply, D(L) represents a correlation between the linear feature (i.e. E-20) and 314 
the spatial location of geo-objects (i.e. landslides), whilst D(NL) represents a random correlation 315 
between the linear features and any location in the study area. Now, in order to assess the 316 
distribution of landslides along the E-20, the following steps have to be followed: 317 

i. Create a raster file by using the ‘Euclidean Distance’ tool in ArcGIS, using the 318 
highway as feature of origin. The resulting file has to be reclassified into ten (10) 319 
percentile intervals by using Quantiles, and the break values exported to Excel. 320 
The latter ones will be in meters, and have to be transformed into kilometres, that 321 
is, column ‘distance Km’. 322 

ii. The ‘npix’ column is filled in Excel, by using the Attribute Table for the recently 323 
created raster and counting the number of pixels on each class (i.e. distance). 324 

iii. To calculate the distance distribution for non-landslide (D(NL)) locations with 325 
respect to the highway, the cumulative cell count (cnpix) and the total cell count 326 
are calculated. Equations 8, 9 and 10. 327 

 cumnpixcnpix )(      (8) 328 

 329 

 )(cnpixtnpix       (9) 330 

 331 

tnpix

cnpix
NLD )(       (10) 332 

 333 
iv. The ‘Zonal Statistics as Table’ tool in ArcGIS is applied to the landslide and the 334 

distance layers to find the number of landslides in a given class (i.e. distance from 335 
E-20), this is column ‘npix_d’. 336 

v. Columns ‘cnpix_d’ and ‘tnpix_d’ are now calculated by adding the number of 337 
landslides cells in each distance range, and counting the total number of landslide 338 
cells respectively. This is shown in equations 11 and 12. 339 

 cumdnpixdcnpix )_(_     (11) 340 

 341 

 )_(_ dcnpixdtnpix     (12) 342 
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 343 
vi. Lastly, the cumulative proportion of measured distances is obtained by 344 

dividing ‘cnpix_d’ by ‘tnpix_d’, and the difference between D(L) and D(NL) can be 345 
calculated as per equations 13 and 1 respectively: 346 
 347 

dtnpix

dcnpix
LD

_

_
)(        (13) 348 

 349 

The result of this procedure is shown in Table 4. 350 

 351 

Table 4: Distance Distribution Analysis of Landslides along the E-20. 352 

Distance 
m 

Distance 
Km 

npix cnpix tnpix D(NL) npix_d cnpix_d tnpix_d D(L) 
D(L)-
D(NL) 

3.137 3,137 556249 556249 5641303 0,099 2450 2450 11163 0,219 0,121 

6.449 6,449 563537 1119786 5641303 0,198 2418 4868 11163 0,436 0,238 

9.761 9,761 583355 1703141 5641303 0,302 1198 6066 11163 0,543 0,241 

12.898 12,898 581385 2284526 5641303 0,405 959 7025 11163 0,629 0,224 

15.861 15,861 569128 2853654 5641303 0,506 831 7856 11163 0,704 0,198 

19.347 19,347 567080 3420734 5641303 0,606 1244 9100 11163 0,815 0,209 

23.356 23,356 555745 3976479 5641303 0,705 924 10024 11163 0,898 0,193 

27.714 27,714 554214 4530693 5641303 0,803 831 10855 11163 0,972 0,169 

32.768 32,768 562356 5093049 5641303 0,903 45 10900 11163 0,976 0,074 

44.446 44,446 548254 5641303 5641303 1,000 263 11163 11163 1,000 0,000 

 353 

 354 

The importance of determining the degree of spatial association between the highway 355 
and the location of landslides is the possibility of the former being a controlling factor on the 356 
latter; by assessing this relationship one could map the landslide susceptibility of different 357 
locations, thereby allowing for actions to be taken ahead of time to prevent losses (Ghosh and 358 
Carranza 2010). 359 

 360 

 361 

3.5. Model Evaluation 362 

 363 

As stated by Chung and Fabbri (2003) the evaluation of the model is an essential part of 364 
the process. In order to test the statistical significance of the model, the Chi-squared test was used 365 
due to its close relationship with the YC (Adeyemi 2011; Chedzoy 2004): 366 

Nxor
N

x 22
2

2       (14) 367 

 368 

were: 369 

Ø2 = phi coefficient or Yule coefficient, squared. 370 
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X2 = Chi-squared  371 

N = number of pixels for each factor class 372 

 373 

The next steps are to determine i) the degrees of freedom (df), as shown in eq. 15, and ii) 374 
the critical value for Chi-squared (Adeyemi 2011); in this case, the latter will be given by a 375 
confidence level of 0.999, that is, a 99.9% assurance on the association, or lack of, between the 376 
variables: 377 

)1(*)1(  crdf      (15) 378 

 379 

were r and c are the number or rows and columns of the table respectively. 380 

 381 

By determining the Chi-squared value, the hypotheses stated at the beginning of this 382 
paper can be accepted or rejected based on the comparison of these with the critical values of 383 
Chi-squared, based on a 0.999 upper confidence band. In addition to this test, Chedzoy (2004) 384 
states that one, rarely used, approximation to the standard error of Ø can be done by dividing 1 385 
by the square root of N (see. eq. 16). This estimation of the error will also be used here.  386 

 387 

N

1
Error       (16) 388 

 389 

 390 

4. Results  391 

 392 

The first results of the bivariate analysis were the calculation of the statistics for the YC. 393 
Coefficients are shown in Table 5, where values range from -1 (i.e. negative association) to +1 (i.e. 394 
positive association). The Aspect factor class presents low degree of association with landslides 395 
(see Fig. 7). Overall the values range from -0.065 to 0.084, which means that landslides are more 396 
or less evenly distributed among all slope aspects. As expected, flat areas are not associated with 397 
the occurrence of mass movements and present negative values for the YC (-0.508). In general, 398 
slopes that face north and northeast present the highest degree of association to landslide 399 
occurrence, despite the values being very small: 0.084 and 0.083 respectively. Slopes facing in all 400 
other directions have YC values that range from 0.039 to -0.065. This means that landslides occur 401 
regardless of the orientation of the slope with a slightly higher tendency to happen on slopes 402 
facing north and northeast.  403 

 404 
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 405 

Fig. 7: Landslide distribution and aspect. 406 

 407 

The data suggests that landslide frequency increases gradually with slope (see Fig. 8); this 408 
is, the higher the slope, the higher the number of landslides present. Although no single slope 409 
range presents a complete association (i.e. YC = 1) with landslide occurrence, landslides are more 410 
associated with gradients over 34% than to softer ones. Inclinations between 52 and 66% present 411 
the highest degree of association to mass movements (YC=0.138). Conversely, slopes below 7% 412 
are not related to landslides, while slopes between 13% and 27% are independent of landslides 413 
with YC values that range from -0.054 to 0.032.  414 

 415 
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 416 

Fig. 8: Landslide distribution and slope. 417 

 418 

The curvature of a surface is related to its vertical plane, and its related to the degree of 419 
change in the surface aspect and is related to certain types of landslides (Komac and Zorn 2009). 420 
The analysis shows that upwardly concave surfaces, represented by negative values in Fig. 9, have 421 
a YC=0.134 and are more likely to be associated to mass movements than those upwardly convex, 422 
which are represented by positive values in Fig.9, and have a YC=0.085. Again, flat surfaces are 423 
not associated with landslides having the lowest value (-0.149) for the YC. Overall, landslides can 424 
occur in concave or convex surfaces with roughly the same frequency. 425 

 426 



 

P a g e  19 | 34 

 

 427 

Fig. 9: Landslide distribution and curvature. 428 

 429 

So far we have seen that the topographic characteristics of the area (i.e. slope, aspect and 430 
curvature) do not show high association to landslide occurrence, save for the slope which appears 431 
to have a positive association on four of its ten classes. Now, the results for spatial association of 432 
landslides and categorical factors (i.e. land use, lithology, rainfall and erosion), some of which are 433 
independent of the geological aspects (Tibaldi et al. 1995), are as follows: 434 

Land Use presents four classes with complete disassociation with mass movements         435 
(i.e. YC=-1), this means that no landslides were identified in the following areas: ‘Water’, ‘Cities 436 
and Towns’, ‘Unproductive land’ and ‘Forestry’ (see Fig. 10). This is because the first two are 437 
located low-lying flatlands with slopes up to 7%, while ‘Unproductive lands’ refers to small areas 438 
(adding to 23 Km2) located above 4 000 m.a.sl. Represented mainly by rock outcrops, quarries and 439 
glaciers and gravel. The ‘Forestry’ patch on the other hand, is a privately managed parcel located 440 
close to Alóag; it presents a high land cover, has slopes below 13% and does not record any 441 
landslides neither in the images from Google Earth nor in the ones from the IGM. Land uses 442 
‘Agriculture & Livestock’, ‘Agriculture’ and ‘Livestock’ also have little association with landslide 443 
occurrence, with values for YC ranging from -0.328 to -0.118.  444 

 445 

 446 
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 447 

Fig. 10: Landslide distribution and land use. 448 

 449 

Regarding the remaining land uses, the most associated to landslides are ‘Agriculture & 450 
Forestry’ with YC=0.264, and ‘Livestock & Conservation’ with YC=0.104. The former refers mainly to 451 
forests or planted forests mixed with fast rotation crops, while the latter refers to forests or shrubs 452 
mixed with different grass crops (for feeding livestock). In both cases the land has to be cleared to 453 
make space for crops or cattle roaming. As for ‘Conservation’ and ‘Agriculture & Conservation’ is 454 
concerned, both have values close to zero (0.080 and -0.027) thereby showing a high degree of 455 
independence from the occurrence of landslides.  456 

 457 

Now, almost 100% of the landslides have been identified in the area for ‘Active and Potential’ 458 
erosion processes (see Fig. 11). Out of 1 328 mapped landslides, only 2 lie out of named factor class 459 
and they are located in the null risk area (in other words, they are out of the official extent of the layer 460 
provided by the Ministry of Agriculture). This means that areas labelled as ‘Potential’ and “Very Active 461 
(past and present)’ have complete disassociation (YC=-1) and the ‘Active and Potential’ zone has 462 
complete association (YC=1) with the presence of landslides.  463 

 464 
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 465 

Fig. 11: Landslide distribution and erosion. 466 

 467 

Turning to precipitation, landslides are mostly associated with areas that have between               468 
1 250mm and 2 000mm of rain annually, which are found in the south east section of the study area; 469 
this range is comprised of three categories with the following values for YC: 0.270, 0.186 and 0.134. 470 
The zones with the highest precipitation values (i.e. 3 500mm to 5 500mm), located mainly in the 471 
northwest, show disassociation with landslides (i.e. YC=-0.412 to -1) as shown in Fig. 12.  472 

 473 
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 474 

Fig. 12: Landslide distribution and rainfall. 475 

 476 

By comparison, the association between landslides and different types of lithology is variable. 477 
Landslides present complete disassociation (YC=-1) with eight (8) lithology classes: 1) Glacier deposits, 478 
2) Alluvial terraces, 3) Undifferentiated terraces, 4) Intrusive rocks, 5) Andesite, basalt and shales, 6) 479 
Lava flows, 7) Tuff, sandstone, clay agglomerates and 8) Tuff and alluvial sediments. These account for 480 
only 2% of the study area, as shown in Fig. 13.  481 

Furthermore, there are five classes that strong negative association with landslides: 1) Lava 482 
flows, tuff, andesite and pyroclastic agglomerates (YC=-0.491), 2) Volcanic ashes, lapilli of pumice 483 
agglomerates (lahars) (YC=0.447), 3) Andesite (YC=-0.400), 4) Agglomerates, tuff (YC=-0.291) and 5) 484 
Clay agglomerate (YC=-0.189).   485 

As far as positive association goes, there are four classes that could be linked to the presence 486 
of landslides: 1) granitic rocks, 2) Volcanic sandstone, 3) Andesite, and volcanic sandstone 487 
agglomerates and 4) Agglomerates, which have the following YC values: 0.519, 0.299, 0.144, and 0.129 488 
respectively.  489 

 490 
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 491 

Fig. 13: Landslide distribution and Lithology. 492 

 493 

 494 



Table 5: Yule Coefficient for all Spatial Factors, arranged from least to most association. 495 

SPATIAL 
FACTOR 

CLASS YC  
SPATIAL 
FACTOR 

CLASS YC  
SPATIAL 
FACTOR 

CLASS YC 

ASPECT Flat -0,508  LITHOLOGY Glacier deposits -1,000  LAND USE Forestry -1,000 

 S -0,065   Alluvial Terraces -1,000   Unproductive land -1,000 

 SW -0,053   Undifferentiated terraces -1,000   Cities & Towns -1,000 

 W -0,021   Intrusive Rocks -1,000   Water -1,000 

 SE 0,026   Andesite, Basalt and Shales -1,000   Agriculture & Livestock -0,328 

 NW 0,028   Lava Flows -1,000   Agriculture -0,194 

 N 0,033   Tuff, sandstone, clay, agglomerates -1,000   Livestock -0,118 

 E 0,039   Tuff, Alluvial sediments -1,000   Agriculture & Conservation -0,027 

 NE 0,083   Lava Flows, tuff, andesite, pyroclastic agglomerates -0,491   Conservation 0,080 

 N 0,084   Volcanic ashes, Lapilli of pumice, agglomerates (Lahars) -0,447   Livestock & Conseration 0,104 

SLOPE 0 - 2 -0,520   Andesite -0,400   Agriculture & Forestry 0,264 

 2 - 7 -0,410   Aggromerate, Tuff -0,291  RAINFALL 4000-4500 -1,000 

 7 - 13 -0,226   Clay agglomerates -0,189   5000-5500 -1,000 

 13 - 19 -0,054   Tuff, Lapilli of pumice, ashes -0,045   4500-5000 -0,594 

 19 - 27 0,032   Colluvial deposits 0,009   3500-4000 -0,412 

 27 - 34 0,065   Granite 0,012   2500-3000 -0,185 

 34 - 42 0,100   Basalts, Gabro 0,052   750-1000 -0,164 

 42 - 52 0,118   Alluvial Deposits 0,069   1000-1250 -0,156 

 66 - 263 0,127   Aggromerates 0,129   500-750 -0,058 

 52 - 66 0,138   Andesite, volcanic sandstone, agglomerates. 0,144   3000-3500 0,037 

CURVATURE -0.4 - -0.05 -0,149   Volcanic Sandstone 0,299   2000-2500 0,088 

 -0.05 - 0.3 -0,054   Granitic rocks, Quartz diorite 0,519   1750-2000 0,134 

 -0.8 - -0.4 -0,048  EROSION Potential -1,000   1250-1500 0,186 

 0.3 - 0.7 -0,038   Very Active (past and present) -1,000   1500-1750 0,270 

 -1.5 - -0.8 -0,006   Active and Potential 1,000     

 0.7 - 1.4 0,076         

 1.4 - 9.1 0,085         

 -8.5 - -1.5 0,134         

496 



Turning to the DDA, Fig. 14 shows that landslides are present both, north and south of the E-497 
20 in roughly the same proportion; furthermore, 54% of the landslides occur within approximately ten 498 
kilometres (10 Km) of the E-20, as seen on Table 6. This may be related to the land use of the area, 499 
where agriculture, forestry and livestock uses are closest to the main road, thereby contributing to 500 
land clearing and de-stabilization of the slopes. 501 

 502 

 503 

Fig. 14: Landslide distribution and distance from the E-20. 504 

 505 

  506 
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Table 6: Distribution of Landslides from the E-20. 507 

DISTANCE FROM 
E-20 (KM) 

% OF 
LANDSLIDES 

CUMULATIVE % 
OF LANDSLIDES 

3,14 21,9 21,9 

6,45 21,7 43,6 

9,76 10,7 54,3 

12,90 8,6 62,9 

15,86 7,4 70,4 

19,53 11,1 81,5 

23,36 8,3 89,8 

27,71 7,4 97,2 

32,77 0,4 97,6 

44,45 2,5 100,0 

 508 

 509 

The DDA, the results show that, at the scale of this analysis, the E-20 does not influence the 510 
frequency of landslide occurrence. Fig. 15 shows the cumulative relative frequency of distances of 511 
landslides to the E-20, represented as D(L), compared to the probability density distribution of 512 
landslides with respect to the highway (Ghosh and Carranza 2010). 513 

 514 

 515 

Fig. 15: Distance Distribution Analysis of landslides away from the E-20. 516 

 517 

As Fig. 15 and Table 3 illustrate, the difference between D(L) and D(NL) is close to zero, 518 
with the highest difference being 0.241 at 9.8 Km, and the lowest being 0.000 at 44.4 Km. This 519 
suggests that, at regional scale, landslides occur independently from the highway.  520 

 521 

Now, the statistical significance of the study was tested by using Chi-squared and 522 
estimating the YC error by using eq. 16; the results are summarized in Table 7, which shows that 523 
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all factor classes, except for the distance from the road, have a higher Chi-squared value higher 524 
than the critical value. 525 

 526 

Table 7: Model Evaluation results. 527 

FACTOR CLASS CHI SQUARE (X2) DEGREES OF 
FREEDOM 

CRITICAL VALUE 
(0,999) 

1/√N 

Aspect 74,273 9 27,877 0,00042 
Slope 383,918 9 27,877 0,00042 
Curvature 181,637 9 27,877 0,00042 
Land Use 1.564,408 10 29,588 0,00042 
Erosion 851,542 2 13,816 0,00048 
Rainfall 496,069 12 32,910 0,00042 
Lithology 1.210,958 21 46,797 0,00042 
Distance 6,182 2 13,816 0,00042 
 528 

 529 

Table 6 shows consistency with the results stated above, in the sense that it demonstrates 530 
that the occurrence of landslides in each factor class is not due to chance or randomness but there 531 
is certain degree of influence (i.e. association) between both. In contrast, the Distance from the 532 
highway shows a value lower than the critical value, meaning that there is 99.9% of confidence 533 
that in this case, landslides are not associated to highway E-20. Furthermore, the values for the 534 
error approximation, following Chedzoy (2004), are very low, thereby supporting all the previous 535 
work. 536 

Considering that: i) the sample size (i.e. study area) is well over five million pixels, ii) 537 
landslides sum 11,163 pixels and iii) the results shown in Table 6, this model could be treated as 538 
valid. Knowing that the model is valid, the last step in the LSA is the creation of a Landslide Hazard 539 
Map for the study area (see Fig. 16). This was done by reclassifying each of the previous maps into 540 
ten (10) categories based the values of the YC. Since the distance from the road was not associated 541 
to the landslides, it was not included in this step. The maps were added with the ‘Raster Calculator’ 542 
tool in ArcGIS, and the results were classified into six (6) categories 543 

 544 
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 545 

Fig. 16: Landslide susceptibility map for the study area. 546 

 547 

 548 

5. Discussion 549 

 550 

Spatial Factors 551 

Results show that, there is a statistical relationship between the presence of landslides 552 
and different spatial factors in the study area. Factor classes that have shown the most 553 
relationship with landslides are: i) Active and potential for erosion (YC=1), ii) Granitic rocks and 554 
quartz diorite (YC=0.519), iii) Volcanic sandstones (YC=0.299), iv) Mean annual rainfall between          555 
1 500 and 1 750 mm (YC=0.270) and v) Land use devoted to agriculture and forestry (YC=0.264). 556 
In contrast, there are 16 factor classes, 7 of them related to lithology and 4 to land use, which 557 
have positive disassociation with landslides. On the one hand, this may be due to their low 558 
proportion of the study area, which is (at best) 5.6% of the total. On the other hand, the lack of 559 
mapped landslides in those areas, due to high cloud cover or low resolution of the images, may 560 
have led to a bias in the these results.  561 
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The data suggests that landslides occur independently of the slope aspect, this means that 562 
there is little influence of this factor on the distribution of mass movements, except for flat areas 563 
which have a strong negative association with them. Elsewhere, studies have evidence that this 564 
spatial factor, sometimes, but not always, influences the occurrence of landslides (Ghosh et al. 565 
2011; Kamp et al. 2008; van Westen et al. 2013). In general, slope presents a weak positive 566 
association with landslides as the strongest association between the two is YC=0.138, yet it has 567 
strong disassociation in areas with less than 7% inclination. Nevertheless, this findings are 568 
consistent with those of Vivanco Quizhpe (2011), (Tibaldi et al. 1995)and Terrambiente (2006) in 569 
Ecuador, and by Brenning et al. (2014) and Das et al. (2010) elsewhere, which suggest that the 570 
landslides tend to be associated to high terrain inclinations.  571 

Erosion is the only spatial factor that presents both, complete association and 572 
disassociation to landslides; almost 100% of mass movements occur in the region classified as very 573 
active, demonstrating consistency with the information provided by the Ministry of Agriculture 574 
and (Tambo 2011). Rainfall is another factor that is associated to landslides, especially in the 1 250 575 
to 1 750mm range. In this study the annual mean rainfall was used, whereas others (Brenning et 576 
al. 2014; Komac and Zorn 2009) have shown that there is a big influence from both, the amount 577 
and the intensity of precipitation. Despite this, studies by INECO (2012) and Cajas Alban and 578 
Fernandez (2012) found that the combination of susceptibility to erosion and high rainfall plays a 579 
significant role in the cyclic occurrence of landslides close to Santo Domingo. Furthermore, in a 580 
national scale, water is the main controlling factor for landslides, especially during the wet seasons 581 
and during the El Nino events for landslide occurrence (Cajas Alban and Fernandez 2012).  582 

The YC shows that mixed land uses tend to be more associated to landslides, such is the 583 
case of ‘Livestock & Conservation’ and ‘Agriculture & Forestry’, which are located in areas where 584 
erosive processes are very active. This is consistent with the findings for slope (see above) as these 585 
land uses taking place mostly in the western lowlands of the study area where there are soft 586 
inclinations (up to 7%) and thus curvature values are close to flat. 587 

Lithology and land use were found to be somewhat independent from landslide 588 
frequency, in accordance with Tibaldi et al. (1995) and Brenning et al. (2014). Despite some classes 589 
being disassociated, the results also suggest that the ones that are associated (i.e. granitic rocks, 590 
volcanic sandstone, and agglomerates) are similar to those found by Tambo (2011) and Brenning 591 
et al. (2014), who state that in the southern Andes, areas with metamorphic and granite bedrock 592 
have a higher tendency to initiate landslides. Furthermore, the study area is bordered by three 593 
volcanoes, which have been known to cause great rock fragmentation and increase landslide 594 
susceptibility (CAN 2009; Tibaldi et al. 1995). Brenning et al. (2014) also acknowledge that the 595 
results associated to this spatial factor may be subject to dilution given the variety of subunits that 596 
comprise the main geological units, which is also important for this study considering conditions 597 
of the study area. 598 

The results of the DDA show no association between the location of landslides and their 599 
proximity to the E-20, whereas Brenning et al. (2014) state that there is a considerable increase in 600 
landslide susceptibility when in close proximity of paved highways in the southern Ecuadorian 601 
Andes; they also indicate that within 25 m of the edge of the road, there is up to one order of 602 
magnitude difference in the frequency of landslide occurrence from those further than 150 m. 603 
This disagreement between their findings and those form this study could be due to the 604 
differences in the scales and extent of the analysis, that is, local vs regional scale and 88 vs 5 093 605 
km2.   606 

 607 

 608 

 609 
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Statistical Analysis 610 

A statistical analysis (Wang et al. 2005) using the YC and DDA was performed to answer 611 
the research questions. On the one hand, DDA showed no association between landslides and 612 
their distance to the highway. On the other hand, the YC presents the following results: out of 77 613 
factor classes,  614 

 16 (21%) show complete disassociation (YC=-1),  615 

 9 (12%) display negative association (-0.6 < YC < -0.3),  616 

 50 (65%) are weakly associated or independent (-0.3 < YC > 0.3), 617 

 1 (1%) is positively associates (0.3 > YC > 1), and 618 

 1 (1%) shows complete association to landslides. 619 

The statistical significance of the model was tested in two different ways: using Chi square 620 
and the phi error. The former showed consistency with all other results, and the latter 621 
demonstrated that the phi error can be considered insignificant. In other words, the hypotheses 622 
presented in section 1 of this study have been tested and are considered as valid, that is, each 623 
spatial factor has some sort of influence on the occurrence of landslides, and landslides do not 624 
occur in all factor classes. 625 

 626 

Limitations 627 

The main shortcoming of this study is related to the lack of information for the western 628 
part of the study area, where no landslides could be mapped due to several issues: i) considerable 629 
cloud cover of the area in the images of Google Earth Pro, ii) no aerial photographs for that region, 630 
and iii) low resolution (i.e. 30 x 30 m pixel size) of the available information did not allow for 631 
identification and mapping of landslide where the first two limitations where overcome. This, in 632 
turn, may have led to bias in the distribution of landslides in the study area, potentially altering 633 
the results for the YC.   634 

 635 

 636 

6. Conclusion 637 

 638 

Under the assumption that future landslides will occur under similar conditions as those 639 
that caused them in the past (Guzzetti et al. 2006), an attempt of measuring the association 640 
between different spatial factors and landslide distribution has been presented and validated 641 
here. The findings support the idea that landslides are not randomly distributed, but are 642 
associated (positively or negatively) to the different conditions of the study area (Das et al. 2010); 643 
in this case, landslides have shown positive association with areas of active erosive processes, 644 
granitic rocks, volcanic sandstone and rainfall ranging from 1 500 to 1 750 mm. Future courses of 645 
action include: i) field validation of the landslide inventory, ii) a low scale (i.e. 1:5000) study on the 646 
relationship of landslides with highway E-20 in order to test the findings by Brenning et al. (2014), 647 
iii) include the location, frequency and magnitude of earthquakes in the LSA for the study area, 648 
and iv) present Landslide Susceptibility Map to each local government in order to aid in the 649 
decision-making process for future infrastructure developments and land use planning. 650 

 651 

 652 
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