ResearchOnline@JCU

This is the **Accepted Version** of a paper published in the journal: Applied Economics

Sun, Sizhong, and Anwar, Sajid (2016) *Interrelationship among* foreign presence, domestic sales and export intensity in Chinese manufacturing industries. **Applied Economics**, 48 (26). pp. 2443-2453.

hhttp://dx.doi.org/10.1080/00036846.2015.1122733

Interrelationship among foreign presence, domestic sales and export intensity in Chinese manufacturing industries

Sizhong Sun^{*} James Cook University Townsville, QLD 4811, Australia Email: Sizhong.Sun@jcu.edu.au

&

Sajid Anwar School of Business, University of the Sunshine Coast Maroochydore DC, QLD 4558, Australia Email: SAnwar@usc.edu.au

Abstract

Using panel data on six Chinese manufacturing industries over the period 2005-2007, this paper explores the interrelationship among foreign presence, domestic sales and export intensity of local firms. We find that the domestic sales and exports are complementary for local firms in China's pharmaceutical industry, whereas in the case of the textile, transportation equipment, beverage, communication equipment and general equipment manufacturing industries, domestic sales and exports are substitutes. An increase in the average domestic sales increases foreign presence in all industries. The same applies to an increase in the average export intensity. An increase in the level of competition in China's textile industry increases the export intensity as well as domestic sales of local textile firms. However, an increase in the level of competition in pharmaceutical industry leads to a very large decrease in export intensity of local pharmaceutical firms. In the case of China's transportation equipment manufacturing industry, an increase in the level of competition decreases domestic sales of local firms. Furthermore, an increase in the firm size increases domestic sales of Chinese firms in all six manufacturing industries.

Key Words: FDI-related spillovers; export intensity; domestic sales; China, GMM

^{*} This paper has greatly benefitted from helpful comments and suggestions from several colleagues. We are particularly grateful to Robert Alexander and John Rice. However, the authors are responsible for all remaining errors and imperfections.

1. Introduction

An increase in the pace of globalisation in recent decades has contributed to rapid growth in foreign direct investment (FDI) flows around the globe. The increased interdependence has generated significant interest in exploring the implications of FDI for firms and industries in host countries. A large number of studies have argued that FDI can, among other things, affect the output as well as exports of domestic firms in host economies.¹ However, most existing studies tend to separately examine the impact of FDI on each variable. In a relatively recent study, using firm level data from Spain, Salomon and Shaver (2005) argue that export behaviour and domestic sales are interrelated. Indeed, profit maximising firms determine their sales in domestic and export markets simultaneously and hence domestic market and export market sales could be better analysed by means of a simultaneous equation model. The existing literature suggests that FDI can also affect the output of domestic firms through increased competition. The competition effect is likely to be negative. However, through the related productivity spillover effect, FDI can also increase the output of domestic firms (See Blomström and Kokko, 1998). A change in the output is bound to affect firm sales in both domestic and export markets. Furthermore fluctuations in sales can also affect FDI inflows. In other words, there is a clear link among FDI-related spillovers, domestic sales and exports. However, relatively few studies have focused on this interrelationship. Furthermore, the interrelationship among these variables is likely to vary across industries within the manufacturing sector. However, existing studies (such as the work of Salomon and Shaver, 2005) is based on highly aggregated data.

Using firm level panel data from six Chinese manufacturing industries over the period of 2005-2007, this paper aims to examine the complex interaction among foreign presence, domestic sales and exports. Since the opening up of the Chinese economy in late 1970s, there has been a significant increase in FDI in China. In the starting phase (i.e., 1979-1983), the average annual foreign investment in China was approximately US\$0.54 billion. During the expansion phase (i.e., 1984-1991), the average annual foreign investment in China increased to US\$2.80 billion. In the expansion phase, additional special economic zones were established in ten provinces. In the rapid development phase (i.e., 1992-2000), the average annual foreign investment in China increased to US\$35.92 billion. In the current

¹ For example see Chen, Sheng, and Findlay (2013), Anwar and Nguyen (2014), Anwar and Sun (2014) and references therein.

adjustment/enhancement phase (i.e., from 2001-to present), the average annual investment in China reached US\$55.24 (see Meng, 2010). Increase in FDI, which leads to an increase in foreign presence, has coincided with a rapid economic growth in China. Owing to increase in net-exports, China's foreign exchange reserves were estimated to be close to US\$3.8 trillion in early 2014 (Jacob, 2014).

Using data on domestic firms, this paper focuses on the interrelationship among foreign presence, domestic sales and exports in China's (i) textile industry, (ii) transportation equipment, (iii) communication equipment, computer and other electronic equipment, (iv) general equipment, (v) pharmaceutical, and (vi) beverage manufacturing industry.² In the past three decades, China's manufacturing sector has played an important role in the rapid economic growth, in terms of both domestic sales and exports. At the same time, the FDI inflow is substantial in these industries. One can expect that the significant presence of FDI in these industries will affect domestic firms' behaviour in both local sales and exports, through such channels as productivity spillovers. For example, if domestic firms improve their productivity by learning from FDI-invested firms, they are likely to produce more and sells more to both local and foreign markets, *ceteris paribus*. The interrelationship is evaluated by means of a three-equation model. The model is estimated by means of <u>System the</u> Generalised Method of Moments (GMM). This-The system of three equations allows us to accounts for possible endogeneity of some variables.

Based on the results presented in this paper, we argue that the interrelationship among foreign presence, domestic sales and exports varies across Chinese manufacturing industries. We find that domestic sales and exports are substitutes for Chinese firms in the textile, transportation equipment, communication equipment & computer equipment, general equipment and beverage manufacturing industries.³ However, for Chinese firms in the pharmaceutical industry, domestic market sales and exports are complimentary. An increase in average domestic sales appears to have the smallest impact on foreign presence in transportation equipment and communication & computer equipment manufacturing industries. Except for the pharmaceutical industry, there is strong evidence of a positive and statistically significant relationship between (i) foreign presence and domestic sales and (ii) foreign presence and export intensity of Chinese firms in all six manufacturing industries. A

² The choice of these industry groups is dictated by data availability.

³ Within the context of this paper, foreign presence is a measure of the spillover effect arising from FDI.

decrease in the level of competition in China's pharmaceutical industry increases the export intensity of domestic firms but domestic sales decline. An increase in the level of competition in China's textile industry increases the export intensity as well as domestic sales of the local firms. The competition level has no impact on export intensity of domestic firms in China's transportation equipment manufacturing industry but it is negatively related to domestic sales. An increase in firm size increases the domestic sales of all six manufacturing industries.

The rest of this paper is organised as follows. Section 2 contains a review of related studies. Methodology is described in Section 3. Section 4 contains a discussion of the empirical results. Section 5 concludes the paper.

2. Review of Related Literature

Over the past several decades, a number of theories of FDI have been developed. The capital market theory, which is perhaps the oldest, suggests that FDI takes place due to differences in the rate of return on capital. The developing countries (for example China, India and Vietnam) tend to have more labour and less capital than the developed countries. As a result, the return on capital in developing countries is relatively high and wages are relatively low. In order to earn a higher return on capital, firms from developed countries invest in developing countries. This creates jobs in developing countries as more capital is available to be combined with relatively large supply of labour. As the rate of unemployment decreases, wages start to rise, which increases the purchasing power of the host country residents. An increase in the purchasing power increases the demand for all goods and services in host countries, which creates further employment and hence the per capita increases.

Owing to technological improvements in recent decades, which resulted in a substantial decrease in cost of communication and transportation, there has been a significant change in the nature of FDI. FDI used to be concentrated in industries characterised by oligopoly. Multinational corporations (MNC) were viewed as multi-plant firms operating in local as well as foreign markets. However, the transaction costs, as highlighted by Williamson (1975) and barriers to entry, were the major constraints. In order to compete with local firms, foreign firms would have to have some advantages over domestic firms. These advantages could take the form of superior technology and management skills. FDI was

viewed as a way of internalising the advantages that an MNC might have over domestic firms in host economies (Hellenier, 1989). In addition to creating jobs in host economies, FDI was also viewed as a way of reducing the monopoly power of power of domestic firms. However, at present, most FDI that takes place in China takes the form of partnerships with domestic firms. Dunnings (1981 and 1988) provided an alternative explanation for FDI by means of his eclectic paradigm. Dunning argued that FDI takes place due to locational advantages – FDI occurs when firms located in one country possess ownership/monopolistic advantages over firms located in another country that could be transferred thereby internalising the relevant externalities arising from market failure. The Radical view emphasises the desire of firms located in developed countries to take advantage of cheaper labour in developing countries.

Since the end of the cold war, there has been a significant increase in FDI flows across international boundaries. Table 1 shows that FDI inflows to all countries have substantially increased over time. It is interesting to note that FDI flows to both developed and developing countries have increased over time.

Table 1: FDI Inflows in Billion US dollars (2000 – 2012)													
Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Developing Economies	1.72	1.85	1.80	2.06	2.40	2.80	3.46	4.61	44.37	5.30	6.52	6.90	7.74
Transition Economies	0.06	0.09	0.12	0.15	0.20	0.27	0.40	0.68	0.43	0.63	0.77	0.76	0.85
Developed Economies	5.68	5.61	5.68	7.70	8.64	8.60	10.55	12.75	10.79	12.39	13.10	13.21	14.22

Source: UNCTAD (2014)

Rapid increase in FDI flows has generated tremendous interest in empirical analysis of their impact on a number of variables, notably on productivity and export behaviour of domestic firms in host economies.⁴ Early studies that consider he relationship between export behaviour and FDI include Aitken, Gorg, and Strobl (1997) and Kokko, Zejan, and Tansini (2001). Using data from Mexican firms from 1986 to 1990, Aitken, Görg, and Strobl examined the impact of FDI on the export decision of local firms. They found that proximity to multinational activity has a positive effect on the probability that domestic firms in the same sector will engage in export activity. Using firm level data from Uruguay, Kokko, Zejan,

⁴ A good review of empirical studies that deal with the impact of FDI on firm productivity can be found in Meyer and Sinani (2009). Wagner (2007) includes a comprehensive review of studies that deal with the impact of FDI on firm export behaviour. Sun (2009) examines the presence of FDI-related export spillovers in China.

and Tansini reported that FDI can enhance the probability that domestic firms will be involved in export activities.

As far as the empirical studies on China are concerned, Li, Liu, and Parker (2001) examine the impact of FDI on productivity in China's manufacturing sector. Among other things, they found that FDI led to technological improvement in state-owned firms. This study extends Buckley, Clegg and Wang (2002). Buckley, Clegg and Wang reported that, as compared to the state-owned firms, collectively-owned firms are relatively more capable of absorbing FDI-related productivity spillovers. Chuang and Hsu (2004), using the same dataset, re-confirmed the presence of positive FDI-related productivity spillovers. Buckley et al. (2007) also used the same dataset to explore the possibility of curvilinear FDI-related productivity spillovers. They found that the productivity of Chinese firms increases with spillovers. However, after reaching a certain threshold, any further increase in spillovers leads to a decline in productivity. Using firm level data from the Chinese manufacturing sector, Liu (2008) distinguishes between change in the level of productivity and the growth rate of productivity. Liu's empirical analysis suggests that the relationship between FDI and the level of productivity of domestic firms is negative in the short-term but the relationship between FDI and the growth rate of productivity is positive in the long-term. Using crosssectional data collected in 2001 from Chinese firms in five cities and ten industries, Hale and Long (2011) re-investigated the link between FDI-related spillovers and productivity. However, they found mixed evidence, which could be attributed to the fact that some previous studies suffer from aggregation bias and/or fail to control for endogeneity of FDI.⁵

While highlighting the simultaneity between exports and domestic sales, Wei et al (2012) examine the impact of FDI on the two variables by means of single equation GMM. Based on highly aggregated data, they argue that presence of foreign firm in China decreases the domestic sales but its impact on exports is positive. Using data form China's manufacturing sector over the period 2000-03, Chen, Sheng and Findlay (2013) examine the impact of FDI on export value and export-to-sale ratio of domestic firms. They conclude that FDI has a positive impact on export performance of domestic firms. Chen et al, also distinguish between horizontal and vertical export spillovers. This study also contains an excellent review of previous studies that deal with the impact of FDI on export performance

⁵ A good review of some studies on China can also be found in Table 1 of Hale and Long (2011). For a review of the broader literature, see for example, Blomström and Kokko (1998), Saggi (2002), Görg and Greenaway (2004), Wagner (2007), Smeets (2008), Meyer and Sinani (2009) and Bodeman and Le (2013).

of Chinese firms. Using panel data from Chinese customs from 1997 to 2007, Mayneris and Poncet (2013) find that the presence of foreign firms encourages domestic firms to export. A number of existing studies have confirmed the presence of productivity slipover effect among Chinese firms. Anwar and Sun (2014) extend this literature by demonstrating that FDI-related spillovers in Chinese manufacturing industries are also heterogeneous.

While a number of studies have separately explored the impact of FDI and FDIrelated spillovers on firm productivity and export behaviour in China, few studies have explored the interaction among FDI, domestic sales and export behaviour. Based on crosssectional survey data collected in 2003 (for year 2002), Bao, Wang and Huang (2013) argue that FDI-invested firms in China experience improvement in productivity and sales in the domestic market but there was no statistically significant change in their export behaviour. However, these conclusions are based on a single equation model. In this paper, unlike the existing literature, by making use of a three equation model, we explore the link among foreign presence, domestic sales and exports of domestic firms. The empirical results presented in this paper are based on panel data from six Chinese manufacturing industries.

The hypotheses tested in this paper are as follows:

- 1. Domestic sales and exports are substitutes and foreign presence affects both variables.
- 2. Increase in market competition affects domestic sales as well as export intensity of domestic firms.
- 3. Firm size affects domestic sales as well as export intensity of domestic firms.

3. Empirical Specification and Data

While the focus of this paper is on the interrelationship among foreign presence, domestic sales and exports, in order to ensure that each of the three variables is identified, we specify a three-equation model, which includes some control variables as follows:⁶

$$\ln(dsales) = \alpha_0 + \alpha_1 eintensity + \alpha_2 fp + \alpha_3 \ln(firmsize) + \alpha_4 r dint + \alpha_5 a dint + \alpha_6 herfindahl + \alpha_7 dyear + \varepsilon_1$$
(1)

$$eintensity = \beta_0 + \beta_1 \ln(dsales) + \beta_2 fp + \beta_3 \ln(firmsize) + \beta_4 rdint + \beta_5 \ln(k) + \beta_6 herfindahl + \beta_7 dyear + \varepsilon_2$$
(2)

⁶ As indicated earlier, we focus on foreign presence because it measures the spillover effect of FDI.

$$fp = \gamma_0 + \gamma_1 meintensity + \gamma_2 \ln(mdsales) + \gamma_7 dyear + \varepsilon_3$$
(3)

where *dsales* is the sales of a domestic firm as a proportion of its total sales; *eintensity* is the sales of a domestic firm in export market as a proportion its total sales; *fp*, which measures foreign presence in a four-digit industry, is calculated as the output of the foreign-invested firms in the four-digit industry; *firmsize* is measured by the number of employees; *rdint* is the firm research and development (R&D) intensity, which is the share of a firm's R&D expenditure as a proportion of its total sales; *adint* is the advertising expenses as a proportion of sales; *herfindahl* is the Herfindahl index (i.e., the firm market share in a four digit industry) which captures the level of competition within the industry; *k* denotes the capital intensity, measured by the fixed assets per employee; *meintensity* is the mean export intensity in a four-digit industry; *mdsales* is the mean domestic sales in a four-digit industry; *dyear* is a set of year dummies; and ε_1 , ε_2 , and ε_3 are three correlated error terms.

Equations (1) and (2) reflect the interrelationship between domestic sales and exports. These equations indicate that foreign presence affect both variables. However, foreign presence is not exogenous. FDI tends to flow into industries with higher domestic sales (i.e., industries with bigger domestic market) and higher export intensity. Equation (3) controls for the endogeneity of foreign presence in that the error term ε_3 is correlated with error terms ε_1 and ε_2 . In other words, the model specified in the above appears to be partially recursive. The inclusion of control variables ensures that all equations are identified.

Equations (1) to (3) are estimated using data from six two-digit manufacturing industries. These industries include beverage manufacturing, textile, pharmaceutical, general equipment manufacturing, transportation equipment manufacturing, communication equipment, computer and other electronic equipment manufacturing. The data are collected from China's National Bureau of Statistics, and cover the period of 2005-2007. As per usual, the dataset is cleaned to exclude firms with negative sales. This dataset has also been used by a number studies, such as Liu, Wei and Wang (2009) and Anwar and Sun (2013 & 2014). The useable dataset consists of unbalanced panels. Data summary statistics are reported in Tables 1-6.

--- insert Tables 1 to 6 about here ---

Equations (1) to (3) are estimated by using System GMM, <u>which The equation</u> system allows us to take into account the possible endogeneity problem.⁷ As indicated in Tables (1) to (6), the sample includes a large number of firms. Some firms are small, whereas some firms are very large. As the sample includes both large and small firms, we use logarithm of domestic sales, firm size, the mean domestic sales and capital intensity in our empirical analysis. This allows us to reduce the bias that may arise because large firms tend to have higher sales in dollar value terms and they also employ a large number of workers. Furthermore, large firms are likely to have higher value of fixed assets.⁸

4. Empirical Results

As indicated earlier, using panel data, equations (1) to (3) are estimated for each of the six industries by System GMM. Table 7 shows the empirical results for China's textile manufacturing industry. The estimated results shows that an increase in export intensity in China's textile industry decreases the domestic sales, suggesting that textile industry exports and domestic sales are substitutes. An increase in foreign presence in textile industry increases the domestic sales as well as export intensity of Chinese firms in the same industry. The impact of an increase in R&D intensity of domestic firms on their domestic sales and export intensity is positive. However, within the context of the textile industry, an increase in the level of competition (as measured by the Herfindahl index) increases both domestic sales as well export intensity of domestic firms.⁹ Table 7 also shows that an increase in average export intensity increases foreign presence in the textile industry, which contributes to a very large increase in domestic sales and its effect on the export intensity of domestic firms is also positive.

--- insert Table 7 about here ---

Table 8 shows that, within the context of the transportation equipment industry, an increase in the level of competition within the industry increases domestic sales but its impact on export intensity of domestic firms is statistically insignificant. Domestic sales and exports

⁷ In order to control for endogeneity within the context of a single equation model, Wei et al. (2012) have used one period lag of several variables including FDI. In this paper, we use a three-equation model, which allows three variables to be endogenous.

⁸ As the export intensity of some firms included in our sample is zero, it is not feasible to use logarithm of export intensity.

⁹ A decrease in the value of Herfindahl index represents an increase in market competition.

appear to be substitutes. An increase in foreign presence in China's transportation equipment industry has a positive effect on domestic sales and the export intensity of local firms. The same applies to an increase in R&D intensity of domestic firms. An increase in advertising intensity increases domestic sales. A decrease in the level of market competition increases the domestic sales but its impact on export intensity is statistically insignificant. Finally, an increase in the average export intensity leads to a large increase in foreign presence in China's transportation equipment manufacturing industry but a large increase in average sales in domestic leads to a relatively small increase in foreign presence. In recent years China has restricted FDI in its transportation industry.

--- insert Table 8 about here ---

Table 9 shows the empirical results for China's communication equipment, computer and other electronic equipment manufacturing industry. These results suggest that for the local firms, domestic sales and exports are substitutes. An increase in average sales contributes an increase in foreign presence, which leads to an increase in domestic sales as well as export intensity of domestic firms. The impact of an increase in capital and R&D intensities on domestic sales is statistically insignificant. Advertising contributes to an increase in domestic sales. A decrease in the level of competition within the industry, as shown by the estimated coefficient of the Herfindahl index, contributes to increase in both domestic sales and export intensity of local firms. This could be attributed to the fact that both domestic and foreign customers tend to buy famous brands of electronic products, for example mobile phones.

--- insert Table 9 about here ---

Table 10 shows the empirical results for China's general equipment manufacturing industry. An increase in average sales as well as average export intensity increases foreign presence, which increases the domestic sales and export intensity of local firms. Domestic sales and export appear to be substitutes. An increase in R&D intensity contributes to a significant increase in domestic sales and its impact on export intensity of domestic firms is also positive. However, capital intensity does not appear to have statistically significant impact on export intensity of domestic firms. Similarly, the impact of advertising intensity on domestic sales is statistically insignificant. However, large domestic firms appear to have higher export intensity. Finally, an increase in the level of competition within the industry contributes to increase in domestic sales and export intensity of domestic firms.

--- insert Table 10 about here ---

Table 11 shows the empirical results for China's pharmaceutical industry. It is interesting to note that, unlike other industries, domestic sales and exports in pharmaceutical industry appear to be complementary; an increase in domestic sales increases the export intensity of local firms. Foreign presence has a positive impact on domestic sales but its impact on export intensity of local pharmaceutical firms is negative. However this conclusion is not very strong as the estimated results are statistically insignificant at the 5% level of significance (the relevant estimated *p*-values are 0.064 and 0.082). Larger firms appear to sell more in the domestic market but smaller firms appear to be more successful in the export market. An increase in R&D intensity contributes to increase in export intensity of domestic firms. Furthermore, the impact of advertising intensity on domestic sales is statistically insignificant. An increase in the level of competition increases domestic sales but its impact on export intensity of domestic firms is negative. Chinese customers are more likely to know the Chinese firms and hence increased competition through a decrease in the price of pharmaceutical products can have a positive impact on domestic sales. However, foreign customers would be reluctant to buy pharmaceutical products from new and unknown Chinese firms.

--- insert Table 11 about here ---

Table 12 shows the empirical results for China's beverage manufacturing industry. The estimated results indicate that domestic sales and exports are substitutes and foreign presence contributes to an increase in both the domestic sales and export intensity of local firms. However, an increase in foreign presence has a relatively large impact on export intensity. An increase in the level of competition within the industry contributes to increase in both the domestic sales and export intensity of local firms. Larger firms tend to have higher sales in both domestic and export markets. R&D intensity does not increase domestic sales of local firms. However, an increase in the capital intensity of domestic firms increases the export intensity of domestic firms. An increase in average export intensity and average sales lead to a statistically significant increase in foreign presence. An increase in the level of competition within the industry increases both domestic sales and export intensity of domestic firms.

--- insert Table 12 about here ---

5. Concluding Remarks

Most foreign direct investment (FDI) related existing studies on China can be divided into three categories, (i) studies that examine the determinants of inward-FDI and FDI-related spillovers, (ii) studies that examine the impact of FDI-related spillovers on export performance and (iii) studies that examine the impact of FDI-related spillovers on domestic productivity and sales. A main weakness of these studies is that, in most cases, a single equation model is used, which implies that domestic sales and exports are independent. In a very interesting study, using panel data from regions of Spain, Salomon and Shaver (2005) considered the interaction between exports and domestic sales. They argue that decision to sell in domestic and export markets are interdependent. In this paper, we argue that foreign presence (i.e., FDI-related spillovers) affect both domestic sales and export intensity of local firms. Furthermore, as foreign presence in all real economies is endogenous, the interrelationship between domestic sales and exports can be better evaluated by means of a three-equation model, where foreign presence is endogenous.

Using firm level panel data from six Chinese manufacturing industries over the period 2005-2007, we consider the interrelationship among domestic sales, exports and foreign presence. The manufacturing industries considered in this paper are (i) the textile, (ii) transportation equipment, (iii) communication equipment, computer and other electronic equipment, (iv) the general equipment, (v) pharmaceutical and (vi) beverage manufacturing industries. The empirical estimation based on System-Generalised Method of Moments (GMM) suggest that an increase in average domestic sales and average export intensity increases foreign presence in each of the six manufacturing industries, which leads to increase in domestic sales and export intensity of domestic firms. Furthermore, except for the pharmaceutical industry, domestic sales and exports are substitutes for local firms. We find that for local firms in China's pharmaceutical industry, domestic sales and exports are complementary. Except for the pharmaceutical industry, an increase in foreign presence increases the domestic sales and export intensity of local firms in all manufacturing industries. The impact of an increase in foreign presence on domestic sales and export intensity of Chinese firms in pharmaceutical industry is positive but this effect is statistically less significant. An increase in the level of competition in China's textile industry increases the export intensity as well as domestic sales of local textile firms. However, an increase in the

level of competition in pharmaceutical industry leads to a very large decrease in the export intensity of local pharmaceutical firms. In the case of China's transportation equipment manufacturing industry, an increase in the level of competition decreases domestic sales of local firms. Finally, an increase in firm size increases the domestic sales of Chinese firms in all six manufacturing industries.

The results presented in this paper suggest that FDI is China's pharmaceutical industry is not contributing to a statistically significant increase in domestic sales of local firms and their export intensity. In other words, the interrelationship among foreign presence, domestic sales and exports varies across Chinse manufacturing industries. Increased competition helps the textile industry but it can reduce the export intensity of domestic pharmaceutical firms and domestic sales of local transport equipment manufacturing firms. Chinese firms intending to form partnerships with foreign firms need to take these varying impacts into account.

References

Aitken, B.J., Görg, H. and E. Strobl (1997), Spillovers, Foreign Investment, and Export Behavior. Journal of International Economics, 43, 103-132.

Anwar, S., and Nguyen, L.P. (2014). Is Foreign Direct Investment Productive? A Case Study of the Regions of Vietnam, *Journal of Business Research*, Vol. 67(7), 2014, 1376-1387.

Anwar, S. and Sun, S. (2013), "Foreign Entry and Firm R&D: Evidence from Chinese Manufacturing Industries," *R&D Management*, 2013, Vol. 43(4), 303-317

Anwar, S., and Sun, S. (2014), Heterogeneity and Curvilinearity of FDI-Related Productivity Spillovers in China's Manufacturing Sector, *Economic Modelling*, Vol. 41, 2014, 23-32.

Bao, Q., Wang, Y. and Huang, J. (2013), Productivity and Firms' Sale Destination: Chinese Characteristics, Institute of International Business, Nankai University.

Blomstrom, M., and Kokko, A. (1998). Multinational corporations and spillovers. *Journal of Economic Surveys*, 12, 1-31.

Buckley, P. J., Clegg, J., and Wang, C. (2002). The impact of inward FDI on the performance of Chinese manufacturing firms. *Journal of International Business Studies*, *33*, 637-655.

Buckley, P. J., Clegg, J., and Wang, C. (2007). Is the relationship between inward FDI and spillover effects linear? An empirical examination of the case of China. *Journal of International Business Studies*, *38*, 447-459.

Chen, C., Sheng, Y. and Findlay, C. (2013), Export Spillovers of FDI on China's Domestic Firms (November 2013). *Review of International Economics*, Vol. 21 (5), 841-856.

Dunning, J.H. (1981), Explaining the international investment position of countries: Towards a dynamic or development Approach, *Weltwirtschaftliches Archiv*, Vol. 117, 30-64.

Dunning, J. (1988), The eclectic paradigm of international production: A restatement and some possible extensions, *Journal of International Business Studies*, Vol. 19(1), 1-31.

Görg, H. and Greenaway, D. (2004) Much ado about nothing? do domestic firms really benefit from foreign direct investment?, *World Bank Research Observer*, **19**, 171-197.

Greenaway, D., and Kneller, R. (2007). Firm heterogeneity, exporting and foreign direct investment. *Economic Journal*, 117, F134-F161.

Hale, G. and Long, C. (2011) Are there productivity spillovers from foreign investment in China? *Pacific Economic Review*, **16(2)**, 135-153.

Hellenier, G.K. (1989), Transnational corporation and direct foreign investment, in Chenery, H. and Srinivasan. T.N. (eds.), *Handbook of Development Economics*, Edition 1, Volume 2, 1142-1480.

Jacob, J. (2014), China's Dollar Trap: Foreign Exchange Reserves Hit \$3.8tn, http://www.ibtimes.co.uk/chinas-dollar-trap-foreign-exchange-reserves-hit-3-8tn-1432428

Kokko, A., Zejan, M. and R. Tansini (2001), Trade Regimes and Spillover Effects of FDI: Evidence from Uruguay. *Review of World Economics*, Vol. 137, 124-149.

Li, X., Liu, X. and Parker, D. (2001) Foreign direct investment and productivity spillovers in the Chinese manufacturing sector, *Economic System*, **25**, 305-321.

Lin, P., Liu, Z., and Zhang, Y. (2009). Do Chinese domestic firms benefit from FDI inflow?: Evidence of horizontal and vertical spillovers. *China Economic Review*, 20, 677-691.

Mayneris, F. and Poncet, S. (2013), Chinese Firms' Entry to Export Markets: The Role of Foreign Export Spillovers, *The World Bank Economic Review*, doi: 10.1093/wber/lht009

Meng, Z. (2010), Foreign direct investment and China's Economic development, Unpublished Masters Thesis, Universita della Svizzera Italiana, Lugano.

Meyer, K.E. and Sinani, E. (2009) When and where does foreign direct investment generate positive spillovers? *Journal of International Business Studies*, 40, 1075-1094.

Saggi, K. (2002) Trade, Foreign Direct Investment, and international technology transfer: a survey, *World Bank Research Observer*, **17**, 191-235.

Salomon, R., and Shaver, J. M. (2005). Export and domestic sales: Their interrelationship and determinants. *Strategic Management Journal*, *26*, 855-871.

Sun, S. (2009), How does FDI affect domestic firms' exports? Industrial evidence. *World Economy*, Vol. 32, 1203-1222.

UNCTAD. (2014). Inward and outward foreign direct investment stock, annual, 1980-2012, http://unctadstat.unctad.org/TableViewer/tableView.aspx?ReportId=89

Wagner, J. (2007), Exports and Productivity: A Survey of the Evidence from Firm-level Data, *World Economy*, 60-82.

Wei, Y., Liu, X., Wang, C. and Wang, J. (2012), Foreign Presence and Local Firms' Decisions on Export and Domestic Sales in Chinese Manufacturing, Working Paper, http://www.doc88.com/p-678126239544.html.

Williamson, O.E. (1975) Markets and hierarchies: Analysis and anti-trust implications. New York: Free Press.

Zhang, J. and Gangopadhyay, P. (2012), 'The Janus-faced view of China's economy: implications of trade for environment', *Indian Journal of Asian Affairs*, Vol. 25, no 41276, Page 99-107.

Zhang, J. and Gangopadhyay, P. (2015). On the Dynamics of Environmental Quality and Economic Development: The Regional Experience of Yangtze River Delta. *Applied Economics*, Vol. 47(29), 3113-3123.

Variable	Obs	Mean	Std. Dev.	Min	Max
ln(domestic sales)	53204	9.9044	1.2887	-0.0600	17.7939
export intensity	56699	0.1477	0.3166	0	1
foreign presence	56699	0.2841	0.1260	0.0368	0.6078
ln(firm size)	56699	-2.2369	1.0465	-4.8283	5.0174
R&D intensity	56699	0.0004	0.0063	-0.0650	1.1399
advertising intensity	56699	0.0003	0.0028	0	0.2149
Herfindahl	56699	0.0101	0.0113	0.0030	0.0849
ln(capital intensity)	56699	3.5688	1.2102	-4.2449	8.1831
mean export intensity	56699	0.1962	0.1454	0.0647	0.4833
ln(mean domestic sales)	56699	10.6714	0.4450	9.5971	11.2859

Table 1 Summary statistics of the textile industry

Source: NBS, 2005-2007; negatives values in logarithms in this and other tables reflect the small size of the variable in non-logarithm form.

Variable	Obs	Mean	Std. Dev.	Min	Max
ln(domestic sales)	28112	10.0380	1.3723	-0.0600	17.2540
export intensity	28551	0.0628	0.2034	0	1
foreign presence	28551	0.3797	0.1687	0	0.7475
ln(firm size)	28551	-2.1790	1.0934	-4.8283	3.6425
R&D intensity	28551	0.0026	0.0175	-0.0109	1.1385
advertising intensity	28551	0.0006	0.0032	0	0.1365
Herfindahl	28551	0.0172	0.0438	0.0040	0.7202
ln(capital intensity)	28551	3.5098	1.2085	-4.8929	8.1624
mean export intensity	28551	0.1006	0.0637	0	0.4487
ln(mean domestic sales)	28551	11.1595	0.7845	9.2731	15.1185

Table 2 Summary statistics of the transportation equipment manufacturing industry

Source: NBS, 2005-2007.

Table 3 Summary statistics of the communication equipment, computer and other electronic equipment manufacturing industry

			0		
Variable	Obs	Mean	Std. Dev.	Min	Max
ln(domestic sales)	13127	9.9301	1.3717	-0.0600	16.7931
export intensity	13582	0.1245	0.2800	0	1
foreign presence	13582	0.7601	0.1572	0.0107	0.9597
ln(firm size)	13582	-2.1500	1.1282	-4.8283	3.8127
R&D intensity	13582	0.0180	0.4651	-0.0052	52.5157
advertising intensity	13582	0.0013	0.0065	0	0.3762
Herfindahl	13582	0.0311	0.0434	0.0055	0.3274
ln(capital intensity)	13582	3.2458	1.3784	-3.2189	8.9444
mean export intensity	13582	0.3172	0.1077	0.0565	0.5448
ln(mean domestic sales)	13582	11.2045	0.7299	10.0729	14.0663

Source: NBS, 2005-2007.

Table 4 Summary statistics of the general equipment manufacturing industry						
Variable	Obs	Mean	Std. Dev.	Min	Max	
ln(domestic sales)	55461	9.7847	1.1803	-0.0600	16.6866	
export intensity	56657	0.0706	0.2207	0	1	
foreign presence	56657	0.2501	0.1171	0.1006	0.7518	
ln(firm size)	56657	-2.4654	0.9469	-4.8283	2.8332	
R&D intensity	56657	0.0018	0.0119	-0.0061	0.9177	
advertising intensity	56657	0.0005	0.0029	0	0.2002	
Herfindahl	56657	0.0142	0.0186	0.0011	0.1786	
ln(capital intensity)	56657	3.5136	1.1153	-3.3202	8.8123	
mean export intensity	56657	0.1063	0.0705	0.0081	0.4176	
ln(mean domestic sales)	56657	10.6490	0.4881	9.8946	13.3439	

Table 4 Summary statistics of the general equipment manufacturing industry

Source: NBS, 2005-2007.

Table 5 Summary statistics of the pharmaceutical industry							
Variable	Obs	Mean	Std. Dev.	Min	Max		
ln(domestic sales)	12224	10.2162	1.3029	1.8859	16.3260		
export intensity	12309	0.0532	0.1761	0	1		
foreign presence	12309	0.2585	0.0947	0.1329	0.4140		
ln(firm size)	12309	-2.1168	1.0249	-4.8283	2.9882		
R&D intensity	12309	0.0082	0.0333	-0.0973	1.5681		
advertising intensity	12309	0.0078	0.0316	0	0.7261		
Herfindahl	12309	0.0109	0.0040	0.0063	0.0217		
ln(capital intensity)	12309	4.3785	1.1102	-3.0445	8.5674		
mean export intensity	12309	0.0754	0.0610	0.0196	0.1815		
ln(mean domestic sales)	12309	11.2261	0.4299	10.3420	11.8631		

Source: NBS, 2005-2007.

Table 6 Summary statistics of the beverage manufacturing industry

Variable	Obs	Mean	Std. Dev.	Min	Max
ln(domestic sales)	8950	9.9476	1.3879	-0.0296	16.7834
export intensity	9058	0.0387	0.1671	0	1
foreign presence	9058	0.2475	0.2599	0.0236	0.9393
ln(firm size)	9058	-2.3694	1.0847	-4.8283	3.3866
R&D intensity	9058	0.0010	0.0061	0	0.2144
advertising intensity	9058	0.0050	0.0168	0	0.4500
Herfindahl	9058	0.0389	0.0591	0.0059	0.5658
ln(capital intensity)	9058	4.1192	1.1926	-2.4849	8.6936
mean export intensity	9058	0.0463	0.0603	0.0010	0.2006
ln(mean domestic sales)	9058	11.2005	0.7494	9.6160	12.5760

Source: NBS, 2005-2007.

	Coef.	Std. Err.	Z	P>z
ln(dsales)				
constant	12.0980	0.0541	223.65	0
eintensity	-15.2199	0.6865	-22.17	0
fp	6.3429	0.4253	14.91	0
ln(firmsize)	1.1406	0.0272	41.94	0
rdint	6.3807	1.9733	3.23	0.001
adint	-0.6161	2.1631	-0.28	0.776
herfindahl	-7.7562	1.8028	-4.3	0
eintensity				
constant	0.8864	0.0833	10.65	0
ln(dsales)	-0.0736	0.0076	-9.7	0
fp	0.3978	0.0200	19.91	0
ln(firmsize)	0.0811	0.0050	16.13	0
rdint	0.4086	0.1301	3.14	0.002
ln(k)	0.0027	0.0019	1.42	0.156
herfindahl	-0.9541	0.0984	-9.69	0
fp				
constant	-1.1826	0.0204	-58.06	0
meintensity	0.9737	0.0056	173.58	0
ln(mdsales)	0.1205	0.0018	66.11	0
Number of obs	53204			

Table 7 Regression results of the textile industry

manufacturing industry							
	Coef.	Std. Err.	Z	P>z			
ln(dsales)							
constant	11.1039	0.0667	166.55	0			
eintensity	-17.9687	1.0487	-17.13	0			
fp	6.4990	0.3394	19.15	0			
ln(firmsize)	1.2362	0.0272	45.52	0			
rdint	2.3149	0.7887	2.94	0.003			
adint	8.0623	3.0496	2.64	0.008			
herfindahl	1.4601	0.4563	3.2	0.001			
eintensity							
constant	0.5754	0.0598	9.62	0			
ln(dsales)	-0.0514	0.0055	-9.33	0			
fp	0.3666	0.0099	37.21	0			
ln(firmsize)	0.0647	0.0048	13.45	0			
rdint	0.1358	0.0508	2.67	0.008			
ln(k)	-0.0025	0.0012	-2.13	0.034			
herfindahl	0.0151	0.0236	0.64	0.523			
fp							
constant	-0.2007	0.0122	-16.51	0			
meintensity	1.3912	0.0133	104.57	0			
ln(mdsales)	0.0378	0.0011	35	0			
Number of obs	28112						

Table 8 Regression results of the transportation equipment manufacturing industry

manufacturing industry							
	Coef.	Std. Err.	Z	P>z			
ln(dsales)							
constant	11.6675	0.0779	149.87	0			
eintensity	-6.5973	0.4159	-15.86	0			
fp	1.0828	0.1252	8.65	0			
ln(firmsize)	0.9884	0.0210	47.1	0			
rdint	-0.2866	0.0855	-3.35	0.001			
adint	1.2123	0.5569	2.18	0.029			
herfindahl	2.9366	0.2424	12.11	0			
eintensity							
constant	1.5880	0.1545	10.28	0			
ln(dsales)	-0.1329	0.0144	-9.2	0			
fp	0.1679	0.0164	10.21	0			
ln(firmsize)	0.1370	0.0100	13.73	0			
rdint	-0.0374	0.0157	-2.39	0.017			
ln(k)	-0.0094	0.0032	-2.92	0.004			
herfindahl	0.3368	0.0661	5.1	0			
fp							
constant	0.0987	0.0151	6.53	0			
meintensity	1.0604	0.0089	119.08	0			
ln(mdsales)	0.0292	0.0013	22.28	0			
Number of obs	13127						

Table 9 Regression results of the communication equipment, computer and other electronic equipment manufacturing industry

manufacturing industry						
	Coef.	Std. Err.	Z	P>z		
ln(dsales)						
constant	11.7201	0.0200	586.87	0		
eintensity	-4.7605	0.1430	-33.28	0		
fp	1.1060	0.0610	18.14	0		
ln(firmsize)	0.8519	0.0056	152.92	0		
rdint	1.1076	0.3213	3.45	0.001		
adint	0.0475	0.3909	0.12	0.903		
herfindahl	-1.7777	0.2341	-7.59	0		
eintensity						
constant	2.4790	0.0850	29.17	0		
ln(dsales)	-0.2112	0.0079	-26.71	0		
fp	0.2316	0.0111	20.87	0		
ln(firmsize)	0.1798	0.0059	30.46	0		
rdint	0.2348	0.0726	3.23	0.001		
ln(k)	-0.0013	0.0018	-0.71	0.48		
herfindahl	-0.3534	0.0494	-7.15	0		
fp						
constant	-1.3995	0.0091	-153.22	0		
meintensity	1.1753	0.0059	198.51	0		
ln(mdsales)	0.1449	0.0008	173.54	0		
Number of obs	55461					

Table 10 Regression results of the general equipment manufacturing industry

In(dsales)constant11.74790.0442265.520eintensity1.88710.19529.670fp0.25560.13811.850.064ln(firmsize)0.79540.010575.880rdint-1.47750.2793-5.290adint0.24290.22241.090.275herfindahl-13.38672.8788-4.650eintensityconstant-5.32200.9579-5.560ln(dsales)0.44530.08715.110fp-0.13070.0752-1.740.082ln(firmsize)-0.35120.0731-4.810rdint0.63050.21762.90.004ln(k)0.01640.01650.9990.322herfindahl9.21891.60015.760fpconstant-1.58710.0160-99.380meintensity0.55260.009856.520		Coef.	Std. Err.	Z	P>z
eintensity1.88710.19529.670fp0.25560.13811.850.064ln(firmsize)0.79540.010575.880rdint-1.47750.2793-5.290adint0.24290.22241.090.275herfindahl-13.38672.8788-4.650eintensityconstant-5.32200.9579-5.560ln(dsales)0.44530.08715.110fp-0.13070.0752-1.740.082ln(firmsize)-0.35120.0731-4.810rdint0.63050.21762.90.004ln(k)0.01640.01650.990.322herfindahl9.21891.60015.760fpconstant-1.58710.0160-99.380	ln(dsales)				
fp0.25560.13811.850.064ln(firmsize)0.79540.010575.880rdint-1.47750.2793-5.290adint0.24290.22241.090.275herfindahl-13.38672.8788-4.650eintensityconstant-5.32200.9579-5.560ln(dsales)0.44530.08715.110fp-0.13070.0752-1.740.082ln(firmsize)-0.35120.0731-4.810rdint0.63050.21762.90.004ln(k)0.01640.01650.990.322herfindahl9.21891.60015.760fpconstant-1.58710.0160-99.380	constant	11.7479	0.0442	265.52	0
In(firmsize) 0.7954 0.0105 75.88 0 rdint -1.4775 0.2793 -5.29 0 adint 0.2429 0.2224 1.09 0.275 herfindahl -13.3867 2.8788 -4.65 0 eintensity constant -5.3220 0.9579 -5.56 0 In(dsales) 0.4453 0.0871 5.11 0 fp -0.1307 0.0752 -1.74 0.082 In(firmsize) -0.3512 0.0731 -4.81 0 rdint 0.6305 0.2176 2.9 0.004 ln(k) 0.0164 0.0165 0.99 0.322 herfindahl 9.2189 1.6001 5.76 0	eintensity	1.8871	0.1952	9.67	0
rdint -1.4775 0.2793 -5.29 0 adint 0.2429 0.2224 1.09 0.275 herfindahl -13.3867 2.8788 -4.65 0 eintensity constant -5.3220 0.9579 -5.56 0 ln(dsales) 0.4453 0.0871 5.11 0 fp -0.1307 0.0752 -1.74 0.082 ln(firmsize) -0.3512 0.0731 -4.81 0 rdint 0.6305 0.2176 2.9 0.004 ln(k) 0.0164 0.0165 0.99 0.322 herfindahl 9.2189 1.6001 5.76 0	fp	0.2556	0.1381	1.85	0.064
adint0.24290.22241.090.275herfindahl-13.38672.8788-4.650eintensityconstant-5.32200.9579-5.560ln(dsales)0.44530.08715.110fp-0.13070.0752-1.740.082ln(firmsize)-0.35120.0731-4.810rdint0.63050.21762.90.004ln(k)0.01640.01650.990.322herfindahl9.21891.60015.760fpconstant-1.58710.0160-99.380	ln(firmsize)	0.7954	0.0105	75.88	0
herfindahl-13.38672.8788-4.650cintensityconstant-5.32200.9579-5.560ln(dsales)0.44530.08715.110fp-0.13070.0752-1.740.082ln(firmsize)-0.35120.0731-4.810rdint0.63050.21762.90.004ln(k)0.01640.01650.990.322herfindahl9.21891.60015.760fp-1.58710.0160-99.380	rdint	-1.4775	0.2793	-5.29	0
eintensityconstant-5.32200.9579-5.560ln(dsales)0.44530.08715.110fp-0.13070.0752-1.740.082ln(firmsize)-0.35120.0731-4.810rdint0.63050.21762.90.004ln(k)0.01640.01650.990.322herfindahl9.21891.60015.760fp-1.58710.0160-99.380	adint	0.2429	0.2224	1.09	0.275
constant-5.32200.9579-5.560ln(dsales)0.44530.08715.110fp-0.13070.0752-1.740.082ln(firmsize)-0.35120.0731-4.810rdint0.63050.21762.90.004ln(k)0.01640.01650.990.322herfindahl9.21891.60015.760fp-0.158710.0160-99.380	herfindahl	-13.3867	2.8788	-4.65	0
constant-5.32200.9579-5.560ln(dsales)0.44530.08715.110fp-0.13070.0752-1.740.082ln(firmsize)-0.35120.0731-4.810rdint0.63050.21762.90.004ln(k)0.01640.01650.990.322herfindahl9.21891.60015.760fp-0.158710.0160-99.380	eintensity				
fp -0.1307 0.0752 -1.74 0.082 ln(firmsize) -0.3512 0.0731 -4.81 0 rdint 0.6305 0.2176 2.9 0.004 ln(k) 0.0164 0.0165 0.99 0.322 herfindahl 9.2189 1.6001 5.76 0 fp constant -1.5871 0.0160 -99.38 0	constant	-5.3220	0.9579	-5.56	0
In(firmsize) -0.3512 0.0731 -4.81 0 rdint 0.6305 0.2176 2.9 0.004 ln(k) 0.0164 0.0165 0.99 0.322 herfindahl 9.2189 1.6001 5.76 0 fp -0.5871 0.0160 -99.38 0	ln(dsales)	0.4453	0.0871	5.11	0
rdint 0.6305 0.2176 2.9 0.004 ln(k) 0.0164 0.0165 0.99 0.322 herfindahl 9.2189 1.6001 5.76 0 fp constant -1.5871 0.0160 -99.38 0	fp	-0.1307	0.0752	-1.74	0.082
ln(k) 0.0164 0.0165 0.99 0.322 herfindahl 9.2189 1.6001 5.76 0 fp -1.5871 0.0160 -99.38 0	ln(firmsize)	-0.3512	0.0731	-4.81	0
herfindahl 9.2189 1.6001 5.76 0 fp	rdint	0.6305	0.2176	2.9	0.004
fp constant -1.5871 0.0160 -99.38 0	ln(k)	0.0164	0.0165	0.99	0.322
constant -1.5871 0.0160 -99.38 0	herfindahl	9.2189	1.6001	5.76	0
	fp				
meintensity 0.5526 0.0098 56.52 0	constant	-1.5871	0.0160	-99.38	0
	meintensity	0.5526	0.0098	56.52	0
ln(mdsales) 0.1609 0.0014 113.59 0	ln(mdsales)	0.1609	0.0014	113.59	0
Number of obs 12224	Number of obs	12224			

Table 11 Regression results of the pharmaceutical industry

industry				
	Coef.	Std. Err.	Z	P>z
ln(dsales)				
constant	11.4573	0.0419	273.21	0
eintensity	-0.5473	0.2276	-2.4	0.016
fp	1.1122	0.0835	13.31	0
ln(firmsize)	0.8151	0.0103	78.99	0
rdint	-2.4544	1.8162	-1.35	0.177
adint	1.9317	0.5960	3.24	0.001
herfindahl	-1.0497	0.2050	-5.12	0
eintensity				
constant	22.3652	4.2862	5.22	0
ln(dsales)	-2.0283	0.3996	-5.08	0
fp	1.4245	0.2179	6.54	0
ln(firmsize)	1.7157	0.3422	5.01	0
rdint	-5.1237	1.8757	-2.73	0.006
ln(k)	0.2993	0.0930	3.22	0.001
herfindahl	-1.2032	0.2054	-5.86	0
fp				
constant	-3.2723	0.0555	-58.95	0
meintensity	2.1399	0.0592	36.13	0
ln(mdsales)	0.3076	0.0048	64.57	0
Number of obs	8950			

Table 12 Regression results of the beverage manufacturing industry