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Abstract 

A simple diagnosis of the presence or absence of an infection is an uninformative metric 

when individuals differ considerably in their tolerance to different infection loads or 

resistance to rates of disease progression. Models that incorporate the relationship between 

the progression of the infection with the potential alternate outcomes provide a far more 

powerful predictive tool than diagnosis alone. The global decline of amphibians has been 

amplified by Batrachochytrium dendrobatidis, a pathogen that can cause the fatal disease 

chytridiomycosis. We measured the infection load and observed signs of disease in Litoria 

aurea. Receiver operating characteristic curves were used to quantify the dissimilarity 

between the infection loads of Litoria aurea that showed signs associated with 

chytridiomycosis and those that did not. Litoria aurea had a 78% probability of developing 

chytridiomycosis past a threshold of 68 zoospore equivalents (ZE) per swab and 

chytridiomycosis occurred within a variable range of 0.5-490 ZE. Studies should incorporate 

a species-specific threshold as a predictor of chytridiomycosis, rather than a binary diagnosis. 

Measures of susceptibility to chytridiomycosis must account not only for the ability of 

Batrachochytrium dendrobatidis to increase its abundance on the skin of amphibians but also 

to determine how each species tolerates these infection loads.  
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Introduction 

Predicting the physiological impact of disease on infected individuals is a core component of 

health management but is complex because a single pathogen can have variable effects on its 

host (Linden 2006: 132-9). A simple diagnosis of the presence or absence of an infection is 

an uninformative metric when individuals differ considerably in their tolerance to different 

infection loads or resistance to rates of disease progression (Cecil, et al. 1996: 735-42). 

Models that incorporate the relationship between the progression of the infection with the 

potential alternate outcomes provide a far more powerful predictive tool than mere diagnosis 

alone (Swets 1988: 1285-93). Moreover, they can provide a threshold level of infection 

beyond which a certain event (e.g. death) becomes highly probable without intervention. 

Such thresholds can be used in decision-making to prioritise conservation efforts for 

populations or species most at risk and to direct, evaluate and optimise disease management. 

 

One of the most significant diseases in wildlife biology is chytridiomycosis, caused by 

Batrachochytrium dendrobatidis, an invasive and globally distributed pathogenic fungus that 

is known to infect over 500 species (www.bd-maps.net) in all three amphibian Orders and has 

contributed to population declines, extirpations and extinctions world-wide (Berger, et al. 

2016: 89-99, Berger, et al. 1998: 9031-6, Stuart, et al. 2004: 1783-6). Infection occurs 

primarily in the keratinised epidermis of developed individuals which can impair 

osmoregulatory function and cause cardiac arrest in susceptible species (Voyles, et al. 2009: 

582-5). Infection also occurs in the keratinised mouthparts of larval amphibians but this does 

not result in chytridiomycosis (Berger, et al. 1998: 9031-6). The development of 

chytridiomycosis has been linked to infection with a higher abundance of B. dendrobatidis 

zoospores (Sih, et al. 2004: 274-6, Voyles, et al. 2009: 582-5, Vredenburg, et al. 2010: 9689-
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94). However, individual infection loads can fluctuate widely without the onset of disease 

(Briggs, et al. 2010: 9695-700, Sapsford 2012) and can be affected by exposure to 

environmental inhibitors of fungal growth (e.g. warm temperatures (Stevenson, et al. 2014: 

4053-64), salinity (Stockwell, et al. 2012: e36942, Stockwell, et al. 2015: 901-10) and 

phenolic acids (Stoler, et al. 2016: 1-13)), characteristics that reduce transmission potential 

(e.g. low densities (Briggs, et al. 2010: 9695-700) and aboreality (Rowley and Alford 2007: 

1-9)) and immunological resistance (e.g. antimicobial peptides (Woodhams, et al. 2007: 409-

17) and cutaneous microflora (Harris, et al. 2006: 53-6)). This variability makes anticipating 

the outcome of infection difficult, even when individual infection loads and population 

prevalences are known. Currently, the most common determinant of population level 

susceptibility to chytridiomycosis is the observation of sick and dying individuals and the 

decline of infected populations (Berger, et al. 2016: 89-99).  

 

The recent discovery of a disease-causing threshold (the B. dendrobatidis infection load that 

when exceeded results in a high probability of chytridiomycosis) in captive green and golden 

bell frogs Litoria aurea (Stockwell, et al. 2010: 62-71) may provide a predictive tool for 

chytridiomycosis-driven population decline.  The disease-causing threshold for L. aurea in 

laboratory trials was 15 ZE when first exposed as tadpoles and 32 ZE when first exposed as 

juveniles (Stockwell, et al. 2010: 62-71).  By comparison, infection load at death occurred at 

a wide range of infections loads, between 16-9439 ZE (Stockwell, et al. 2010: 62-71). These 

low infection thresholds and widely varying infection loads at death, suggest individuals of 

this species develop chytridiomycosis at a low infection load but infection load does not 

determine the timing of mortality (Stockwell, et al. 2010: 62-71). An overestimation of the 

disease-causing infection load would lead to false assumptions if it is considered a general 

proxy and used to identify susceptible or declining species. However, it is unknown whether 
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the lower thresholds of L. aurea in laboratory trials accurately reflect terminal stages of 

chytridiomycosis in adults of wild populations that may be exposed to different strains of B. 

dendrobatidis and environmental conditions that affect pathogen virulence or environmental 

stressors that may affect host susceptibility and ultimately, infection outcomes.  

 

Our objective was to determine the disease-causing threshold in wild amphibian populations 

for a species in which this threshold has been previously estimated in the laboratory 

(Stockwell, et al. 2010: 62-71). Specifically we aimed to determine the sensitive and specific 

infection load threshold of L. aurea from two populations, above which individuals have a 

high probability of becoming diseased.  

 

Methods 

Study site 

The study took place at two of the largest remaining populations of L. aurea. Sydney 

Olympic Park (32º51’S 151º44’E) is located 14 km west of Sydney’s central business district 

(CBD) and contains 750 ha of remediated land, over half of which is dedicated to parklands 

including approximately 150 water bodies of varying size and hydrology. Sydney Olympic 

Park has a long-term average annual rainfall of 1132.9 cm (between 1905-2014) and mean 

minimum and maximum annual temperature of 12.3 and 22.2
o
C respectively (between 1909-

2014) (BOM Station: 066131). The L. aurea population size has been estimated to be 

approximately 800 individuals (Pickett, et al. 2013: 156-62). Kooragang Island is situated 

150 km north of Sydney, 5 km west of Newcastle’s CBD and contains 2560 ha of reclaimed 

land. Newcastle has a long-term average annual rainfall of 1132.0 cm (between 1962-2014) 

and mean minimum and maximum annual temperature of 19.2 and 26.5
o
C respectively 

(between 1962-2014) (BOM Station:  061055). The L. aurea population has been estimated 
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to contain 1995 males (therefore, a total population estimate of 3990 assuming a 1:1 sex 

ratio) across 32 water bodies (Hamer, et al. 2007: 79-88). 

 

Study method 

Sixteen adult L. aurea were radio-tracked on Kooragang Island between May and August 

2007. An additional 24 adults were radio-tracked at Sydney Olympic Park between May and 

July in 2011. Each frog was fitted with an external single-stage transmitter (Titley Sicentific, 

Australia) weighing less than 2.7 g (total weight less than 10% of the animal’s body weight), 

attached by a silicone tube waist band (Richards, et al. 1994: 155-8) and released at the 

original point of capture. A REGAL 2000 telemetry receiver and a three element Yagi 

antenna (Titley Scientific, Australia) were used to track the location of each individual. 

Animals were tracked 2-3 times per week, monitored for skin abrasion caused by the 

waistband and signs of chytridiomycosis. Where skin abrasion was evident due to transmitter 

attachment, transmitters were immediately removed. All animals were swabbed for B. 

dendrobatidis infection twice on each hand, four repeat strokes along each of the ventral side 

and each inner and outer thigh, and two times on each foot (40 strokes) before being released 

back to their point of capture.  

 

Where individuals displayed signs associated with chytridiomycosis including lethargy, 

unusual posture, a red ventral surface, skin shedding or lesions (Berger, et al. 2004: 434-40) 

their righting reflexes were tested by placing the animals on their back and watching their 

righting response. If they struggled or were unable to right themselves, the transmitters were 

removed, the animal was swabbed for B. dendrobatidis, and then transported to the 

University of Newcastle for heat treatment (Woodhams, et al. 2003: 65-7) before being 

released back to their points of capture. Without treatment, poor righting reflex is an 
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indication that death will occur within 48 hours (Berger, et al. 2005: 47-50). Animals that did 

not show signs of skin abrasion or disease were tracked for up to four months (the battery life 

of the transmitters). The transmitters were then removed, the animals swabbed and released 

back to their point of capture.  

 

Swabs were stored at – 4 ºC within 8 hours of use. Taqman real-time PCR assays following 

standard procedures were used to detect and quantify B. dendrobatidis on swabs (Boyle, et al. 

2004: 141-8), using a Rotor Gene 6000 DNA amplification system. Each swab was analysed 

in triplicate and the geometric mean of these replicates determined and multiplied by 10 to 

account for a dilution step in the PCR process (Vredenburg, et al. 2010: 9689-94). This 

geometric mean was used to indicate individual infection loads. Inhibition of template 

amplification was identified using TaqMan exogenous internal positive controls and when 

detected, samples were reanalysed with a further ten-fold dilution that was accounted for in 

the calculation of the geometric mean.  

 

Data Analysis  

Receiver operating characteristic (ROC) curves were used to investigate whether radio-

tracked L. aurea could be classified into two groups based on their infection loads; those that 

showed signs of terminal signs of chytridiomycosis and were considered deceased and those 

that did not show signs and were considered alive. The area under the ROC curve (AUC) was 

used as a measure of how dissimilar the infection loads were between these groups, where an 

AUC close to 1 represented a high level of dissimilarity. Where a high level of dissimilarity 

occurred, an infection load threshold was identified. ROC curves plot the proportion of true 

positives (i.e. the proportion of individuals correctly classified as having chytridiomycosis 

from their infection load; also called the sensitivity) against the proportion of false positives 
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(i.e. the proportion of individuals incorrectly classified as having chytridiomycosis based on 

infection load; also called 1-specificity, where specificity is the proportion of true negatives) 

as the discrimination threshold (i.e. the infection load threshold) changes (Zou, et al. 2007: 

645-57). The point at which both sensitivity and specificity were at their highest was 

considered the infection load threshold that best predicted disease.  

 

Results 

Of the 40 individuals radio-tracked, 11 had their transmitters removed due to abrasion at the 

attachment site, one was found dead as the transmitter antennae became tangled in wire, 19 

were tracked until the end of the battery life and nine showed signs of chytridiomycosis and 

were treated. Batrachochytrium dendrobatidis was not detected on 17 individuals and none of 

those individuals showed signs associated with disease. Twenty three frogs were infected 

with B. dendrobatidis. In the nine individuals that displayed signs of disease, their infection 

loads ranged from 0.5-490 ZE, with a median of 145 ZE. In the remaining infected 

individuals that did not show signs of disease, their maximum infection loads ranged from 

0.1-919 ZE, with a median of 15 ZE (Fig. 1).  

 

There was a high level of dissimilarity between the infection loads of L. aurea that showed 

signs associated with chytridiomycosis and those that did not; the area under the ROC curve 

(± SE) equalled 0.86 (± 0.06). The most sensitive and specific infection load threshold was 68 

ZE per swab. Individuals with infection loads greater than this had a 78% chance of showing 

signs of chytridiomycosis, whereas individuals with infection loads less than this threshold 

had a 90% chance of not showing signs. 

 

Discussion 
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Our study demonstrated that individuals in wild L. aurea populations had a low infection load 

threshold for developing chytridiomycosis, as is consistent with previous laboratory studies 

(Stockwell, et al. 2010: 62-71). Litoria aurea had a 78% chance of developing 

chytridiomycosis past a threshold of 68 ZE per swab while chytridiomycosis occurred within 

a variable range of 0.5-490 ZE. Our results suggest that studies on B. dendrobatidis that 

consider infection presence or load as a predictor of chytridiomycosis will be improved by 

incorporating a species-specific threshold as a predictor of disease, rather than a binary 

diagnosis. For example, in multi-state transition models of survival (Nichols and Kendall 

1995: 835-46), incorporating states of below and above the threshold may improve the 

predictive power of estimates. Where high or increasing (if monitored over time) proportions 

of a population have infection loads above the threshold, their use can highlight the need for 

ongoing monitoring, intervention in the form of rescuing the population’s genetic potential by 

taking individuals (or their genetic material) into captivity, or disease management. Although 

there are no established methods for the management of B. dendrobatidis in a host 

population, there are many methods being trialled. These include reducing host density, 

treatment or bacterial bioaugmentation of hosts and their habitat, selective breeding for 

pathogen resistance, creation of climatic refugia and immunisation (Woodhams, et al. 2011: 

8). For L. aurea, habitat creation trials that increase pond salinity for the control of B. 

dendrobatidis are underway (K.L. Klop-Toker unpubl data) and the use of the thresholds 

developed here will provide an important means of determining its effect on incidences of 

disease that would not have been previously possible due to low detectability of diseased and 

dead individuals. 

 

By identifying populations or species with the highest proportion of individuals at risk of 

disease, infection load thresholds could also be used to direct and prioritise management 
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actions, provided methods are standardised prior to comparison. While previous research 

demonstrates intraspecific differences in susceptibility to chytridiomycosis (Langhammer, et 

al. 2014), it is unknown how a disease causing threshold may vary among populations. We 

found similar findings between the low infection threshold of juvenile L. aurea under a 

previous controlled laboratory experiment (32 ZE; Stockwell, et al. 2010: 62-71) and those of 

adults in wild populations (68 ZE, current study) when standardised methods were used. The 

range of infection loads at which wild L. aurea developed chytridiomycosis (0.5-490 ZE) 

were also comparable with individuals in the population that appeared healthy (0.1-919 ZE). 

During our study, two individuals developed chytridiomycosis at infection loads considerably 

below the predicted threshold. Previous studies have demonstrated that reducing 

immunocompetence of tolerant individuals and exposing them to B. dendrobatidis leads to 

the development of chytridiomycosis (Ramsey, et al. 2010: 3981-92). Therefore, it is logical 

to expect that individual differences in immunocompetence and factors that affect it such as 

access to warm temperatures, will determine the rate at which B. dendrobatidis causes 

damage (Ribas, et al. 2009: e8408). It is also possible that additive factors such as other 

pathogens, stress or predators (Sih, et al. 2004: 274-6) become more problematic during B. 

dendrobatidis infection, or the infection itself inhibits immune responses (Woodhams, et al. 

2012: 1203-11); exploration of these interactions requires further examination. 

 

Although we do not know how infection load thresholds vary between L. aurea populations, 

the individuals in the current study did appear to develop signs of chytridiomycosis at 

considerably lower infection loads than those reported for other species (Ratzlaff 2012, 

Voyles, et al. 2009: 582-5). However, this may also be also be explained by differences in B. 

dendrobatidis strain virulence (Berger, et al. 2005: 47-50, Retallick and Miera 2007: 201-7, 

Vredenburg, et al. 2010: 9689-94), variable sampling technique and swab strokes per 
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individual (n = 40, current study; n = 30 (Vredenburg, et al. 2010: 9689-94); n = 50 (Kinney, 

et al. 2011: e16708))  ITS1 copy number (which affects qPCR estimates of infection load  

Longo, et al. 2013: e59499), the use of different qPCR standards or the number of freeze-

thaw cycles for standards and reagents, dilution factors applied to qPCR outcomes prior to 

data analysis (e.g. x 10 (Stockwell, et al. 2010: 62-71); x 80 (Vredenburg, et al. 2010: 9689-

94)) or by differences in infection load at sampling versus those that would result from 

exponential growth in the final period of moribundity, where euthanasia is not induced 

(Carey, et al. 2006: 5-21). Therefore, such comparisons can only be made if methods from 

sample collection to data analysis are standardised. However, if future work confirmed that L. 

aurea is considerably less tolerant to infection than other species, then measures of 

susceptibility to chytridiomycosis may depend not only on the ability of B. dendrobatidis to 

increase in abundance on the skin of amphibians, but also how successfully an individual can 

actually tolerate different infection loads.  

 

Previous research on factors that reduce susceptibility has largely focused on how individuals 

maintain low infection levels and thus examined the mechanisms that inhibit the transmission 

and growth of B. dendrobatidis through individual immunological, behavioural and habitat-

use mechanisms (Harris, et al. 2006: 53-6, Heard, et al. 2013, Kriger and Hero 2007: 781-8, 

Stockwell, et al. 2014, Woodhams, et al. 2007: 409-17, Woodhams, et al. 2007: 390-8) and 

host population densities (Briggs, et al. 2010: 9695-700). Virulence and exposure dose of B. 

dendrobatidis can also affect the outcome of infection in hosts but it is unclear whether this 

occurs because of differences in infection loads or an alternative mechanism (Berger, et al. 

2005: 47-50, Carey, et al. 2006: 5-21). Our study suggests that even low levels of infection 

can result in chytridiomycosis and therefore determining species specific disease-causing 

thresholds is important for assessing the impact of a pathogen; a critical component that 
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should be factored into future surveillance and research. For example, two individuals could 

have similar levels of protective skin peptides but if one host species has a lower disease-

causing threshold, it is inherently far more susceptible than the other.  

 

Factors that affect the variation in the infection load at which individuals succumb to disease 

have not been previously determined for amphibians with B. dendrobatidis. Chytridiomycosis 

causes epidermal hyperplasia and hyperkeratosis (thickening of the straturm corneum) in 

amphibian hosts, which impairs osmoregulatory function, through inhibition of electrolyte 

transport on the epidermis of infected individuals (Voyles, et al. 2009: 582-5). If L. aurea do 

develop chytridiomycosis with comparatively lower zoospore counts than some other species, 

this highlights the possibility that physiological differences in the structure or function of the 

skin of L. aurea may leave them more vulnerable to epidermal damage. Cree (1988: 119-25) 

demonstrated that the osmotic water flow through rate in the pelvic skin in L. aurea was 

higher than the 22 other species tested and related this to the functional requirement for a 

species to uptake water efficiently. Therefore, it is possible that the rate of osmotic water 

flow through amphibian skin affects the tolerance to damage and thus affects species disease-

causing thresholds. It would be useful to compare levels of epidermal damage during low 

level infections between L. aurea and other susceptible species that succumb to disease at 

higher zoospore counts to determine whether the skin of L. aurea is comparatively more 

damaged, or alternatively whether L. aurea are less tolerable of low levels of damage and 

how this tolerance interacts with the health status of individuals.  

 

The apparent susceptibility of L. aurea to chytridiomycosis at low infection loads also 

highlights the possibility that many other frog species may also succumb to chytridiomycosis 

at similarly low loads. This requires further research because assumptions that species with 
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low loads are not at risk of succumbing to chytridiomycosis would be false, leading to poor 

conservation outcomes. The generation of disease-causing thresholds can be done for any 

system where infection loads can be monitored in a sufficient sample of host individuals over 

time. ROC curves then provide a useful tool to diagnostically determine the threshold at 

which diseases are likely to occur and are used widely in the human health field (Søreide, et 

al. 2011: 27-34, Zweig and Campbell 1993: 561-77). Although the range of infection loads at 

which individuals succumbed to chytridiomycosis was variable in our study, by using 

analyses that could incorporate sensitivity and specificity, the estimated threshold 

incorporated a level of confidence that would otherwise be unclear. Using ROC analysis 

provided a standard method to compare with other studies that aim to identify measures of 

susceptibility through disease causing thresholds to chytridiomycosis. It provided a tool to 

relate infection loads of L. aurea to probable outcomes and thus a defendable decision 

making process to direct management, or to incorporate into models. Determining the disease 

causing thresholds of other populations and species can therefore help to predict, understand 

and prevent decline events in susceptible hosts. 
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