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Abstract

This thesis formulates mathematical modelling techniques to investigate groundwater

contamination from a leaky saline pond situated above a freshwater aquifer. This prob-

lem has received little attention from researchers, but given the increasing prevalence

of land based aquaculture, and the fact that saline ponds can be considered a proxy

for other types of contaminated ponds, for example, tailings dams, it’s a scenario that

deserves more consideration. Unfortunately, it’s also a problem that (currently) cannot

be solved mathematically using analytical techniques. As such, it falls to numerical

methods when a solution is required. However, although numerical methods will al-

ways give a solution, problems such as truncation error and numerical diffusion often

cast doubt on the result. Therefore, this thesis will instead explore combined analyt-

ical/numerical techniques (or quasi-analytical techniques) as a potential alternative.

The major transport processes in groundwater contamination are advection and

diffusion. These processes are coupled, with each affecting the evolution of the other

through time. However, depending on the problem, often one of these processes can be

ignored. This is the initial approach taken in this thesis. Given a leaky contaminated

pond, separate quasi-analytical solutions are devised for the individual processes of

advection and diffusion. These then form the basis of two additional quasi-analytical

techniques, which solve for contaminant transport via combined advection-diffusion.

Using the above techniques, mathematical experimentation also revealed general em-

pirical equations which simplify the modelling of contaminant transport beneath leaky

contaminated ponds.
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2 Introduction

1.1 Rationale

As the title suggests, this thesis concerns the modelling of advective-diffusive trans-

port in porous media, or (perhaps) more succinctly: predicting groundwater flow and

contamination. Groundwater resources comprise more than 98% of the world’s liquid

fresh water, with lakes and streams (which are often fed by groundwater) being the

remainder (Bouwer, 2000). Therefore, understanding groundwater flow and contam-

ination is crucial for the management of these resources. Indeed, many countries are

acutely dependent on groundwater for agricultural, municipal and industrial purposes,

and in these circumstances contamination can be catastrophic. Unfortunately, ground-

water is easily contaminated by a variety of means, and often happens unseen and

unsuspected. Over-use of chemical fertilisers, leakage of hazardous substances from

storage containers, or bacterial contamination from septic tanks are just a few ex-

amples of the ways in which groundwater contamination occurs (Fetter, 2001). The

(typically) long residence time of water in groundwater systems often means that by

the time contamination is discovered, the problem is well beyond any short term re-

mediation.

A groundwater contaminant often of interest is salt. Lateral seawater intrusion

is a common occurrence in coastal aquifers worldwide and has received much atten-

tion (Bear, 1999), while in Australia, salt mobilised from underground deposits by a

rising water table degrades valuable farmland, leading to a corresponding impact on

local communities (for a qualitative description refer to Bennett (1998)). However,

recently concern has arisen over another source of salt contamination: the placement

of aquaculture farms in close proximity to traditional farmland. In particular, when

the aquaculture (saltwater) ponds are placed above a freshwater aquifer being used for

irrigation, fears of groundwater contamination are inevitable (Bristow et al., 2006).

Leakage from aquaculture ponds, and the resultant environmental effects have been

largely overlooked by researchers. However, the increasing prevalence of land based
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aquaculture requires that this potential source of contamination be investigated. In-

deed, a saline aquaculture pond can be regarded as a proxy for other types of con-

taminated ponds (for example, tailings dams) sitting above freshwater aquifers. The

lack of research in this area is therefore all the more surprising. Liu et al. (2003) have

shown seepage from saltwater fish ponds above a freshwater aquifer to be a major

source of contamination, while Simmons and Narayan (1998) have numerically mod-

elled salt transport from saline disposal basins in the Murray-Darling basin. However,

these studies did not investigate salt transport throughout the aquifer. Given a leaky

saline pond, how long will it be before it pollutes other areas, or will it pollute those

areas at all? Questions like these need to be answered, and accurately, in order to

avoid the economic and environmental consequences of a vital groundwater reservoir

and surrounding land becoming unusable. However, to answer these questions we must

have an adequate understanding of the transport processes that occur in these aquifers.

Once contaminant transport phenomena are understood, and predictable, costly envir-

onmental and economic consequences can be avoided or minimised, and the process of

rehabilitating already contaminated aquifers can begin.

1.2 Problem description and background

This thesis will investigate the case of leaky contaminated ponds sitting above a fresh-

water aquifer. As mentioned, this scenario has received little attention from research-

ers, but is an ever increasing situation, be it from land based aquaculture, or tailings

dams, or any other non-freshwater pond. Whatever the contaminant, the techniques

developed in this thesis are equally applicable. However, for consistency, the contam-

inant used throughout this thesis will be salt, ostensibly leaking from an aquaculture

pond. A simple schematic can be seen in Figure 1.1.

Contaminant transport through groundwater predominately occurs in two ways:

advection and hydrodynamic dispersion. Advection, simply put, is the movement of

a contaminant within a fluid, via the fluid’s bulk motion. For example, silt dumped

in a fast moving river would be advected downstream. Hydrodynamic dispersion, on
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Fresh aquifer

Saline
ponds

Figure 1.1: Schematic of domain being considered throughout this thesis.

the other hand, is more complicated; it results from the combined processes of molecu-

lar diffusion (the random molecular movement of individual contaminant particles)

and mechanical dispersion (the mixing of advected groundwater and its contaminant

constituents, caused by the vastly different paths two initially adjacent contaminant

particles can take through the porous media). Typically, mechanical dispersion is

more important than molecular diffusion, but as advection reduces to zero, mechanical

dispersion disappears, and molecular diffusion must be considered in isolation. (In

practice, mechanical dispersion is often assumed to be negligible for low advective flow

rates.) However, although functionally different, hydrodynamic dispersion and pure

molecular diffusion are treated mathematically the same way; that is, the same equa-

tion governs both processes. The difference between the two arises through different

‘diffusion’ coefficients. We refer the reader to Bear (1979) for an in-depth treatment.
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In this thesis, the governing equation is solved non-dimensionally, and the appropriate

coefficient for either hydrodynamic dispersion or pure molecular diffusion can poten-

tially be substituted for dimensional results (at least, that is, when the coefficients can

be approximated as constants, such as in this work). Mathematically, for the sake of

simplicity and consistency, the term ‘diffusion’ will cover both processes herein. This

thesis assumes advection and diffusion to be the major transport mechanisms in the

domain of Figure 1.1, with other possible transport, for example, density driven flow,

assumed to be negligible.

Mathematically, we’re interested in solving the advection-diffusion equation,

∂C

∂t
= ∇ · (D∇C)−∇ · (uC), (1.1)

where C is the concentration (of whatever solute/contaminant is being modelled), D

is the diffusion coefficient, and u is the bulk velocity of the solvent (groundwater).

(In the generalised form of equation (1.1), the terms D and u may vary with space,

time, or the concentration C.) Typically, there are two approaches to solving the above

equation: analytical methods and numerical methods.

When available, analytical methods are superior. They are easily applied to differ-

ent values of parameters and inputs, and the relative influence of the parameters can be

readily shown (Bear, 1979). However, for most problems of practical interest, analytical

solutions quickly become impractical or impossible; either the required mathematical

techniques are unfamiliar to the practitioner, or the problem has some complexity that

analytical methods cannot accommodate. For example, irregularly shaped domains,

variable boundary conditions, non-uniform flow fields, and multiple spatial dimensions,

or some combination thereof, all increase the difficulty involved in finding an analyt-

ical solution; and although some solutions exist for the above examples, typically they

are special cases. As such, it generally falls to numerical methods when a solution

is required for a problem with any complexity. Nevertheless, analytical methods are

widely used for simple domains, as coarse approximations of complex domains, or as

test problems for validating numerical methods.
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There are many numerical methods available for solving partial differential equa-

tions such as that in equation (1.1). However, in the field of groundwater modelling

the main techniques employed fall into one of two categories: finite difference methods

or finite element methods. Both types replace the partial differential equation with

an approximating set of algebraic equations (which are then solved simultaneously)

(Strang, 1986), however, each have relative advantages and disadvantages. For ex-

ample, finite difference methods are generally more intuitive and easier to formulate,

whereas finite element methods are more flexible and can accommodate more complex

domains. Nonetheless, a major benefit of both types of method is that they can be

implemented in generic groundwater modelling software. As such, practitioners with

minimal mathematical background can (relatively) safely extract solutions for complex

problems (Bear, 1979). Two such software packages are MODFLOW (USGS, 2005)

(based on finite difference methods) and SUTRA (Voss and Provost, 2002) (based on

finite element methods).

For the domain of Figure 1.1 the modelling of combined advection-diffusion is (cur-

rently) beyond purely analytical techniques. As such, numerical methods become the

default option. However, the grid resolution needed to accurately resolve the flow field

can be a major stumbling block for the above techniques. The large aspect ratios

(that is, length to depth) common in groundwater systems pose fundamental prob-

lems for the transport equation (1.1) when solving numerically (Reddy and Trefethen,

1994). Nevertheless, as stated above, numerical solutions are typically the best op-

tion available for domains with any complexity. However, this thesis will explore an

alternative methodology. Rather than an either/or approach, it will take analytical

techniques as far as practicable, and only then resort to numerical methods. In this

manner, it is hoped to improve upon existing numerical results by removing at least

some of the limitations of numerical methods (for example, truncation error caused

by discretisation), and possibly imbue some of the advantages of analytical methods.

Therefore, the ultimate goal of this thesis is a combined analytical/numerical technique

(henceforth described as a quasi-analytical technique) to solve the advection-diffusion

equation (1.1) in the domain of Figure 1.1. If this can be achieved, then any techniques
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developed may also be more widely applicable.

1.3 Scope and structure of the thesis

This document is a thesis by publication. Therefore, each of the main chapters (2, 3, 4,

5, 6 and 7) were originally written as standalone articles for submission to journals or

peer reviewed conference proceedings. Details can be found in the list of publications.

These chapters/articles are presented in a linear fashion (that is, each builds upon the

work of the previous ones), and therefore (ideally) should be read in the order in which

they appear. Additionally, note that some chapters will vary slightly from the original

articles. In general, introductory background information that was repeated between

articles (where it could be sensibly removed) has been merged into Sections 1.1 and

1.2 of this thesis, some minor improvements to the text have been made, and some

variable/parameter names have been renamed for consistency. Finally, it should be

noted that there is no standalone literature review in this document. The relevant

background literature is presented and discussed as needed within each chapter.

In general, contaminant transport through the domain is a coupled process, with

advection and diffusion being inseparable from each other. That is, each process occurs

simultaneously with the other, and therefore each affects the evolution of the other

through time. However, depending on the domain in question, one or the other can

often be neglected. This is a common technique to reduce the complexity of a problem.

In order to proceed, this thesis will tackle each process separately. Each process,

advection and diffusion, will be solved using quasi-analytical techniques, with combined

advection-diffusion building on these solutions. The below descriptions of each chapter

gives a broad overview of the scope and structure of this thesis.

1.3.1 Chapter 2: Advection

In Chapter 2, the problem of contaminant transport due to advection is tackled. That

is, we assume the advection process is dominant and diffusion can be ignored. The flow

field of the domain of Figure 1.1 is found analytically, and a simple numerical technique
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is used to find isochrones (advection fronts) for a couple of different contamination

scenarios. From these results, simple equations are empirically derived to predict the

advection front location as a function of time.

1.3.2 Chapter 3: Modified advection

In Chapter 3, an improved numerical method is employed to find the advection iso-

chrones revealed in Chapter 2. This chapter can be viewed as an extension to the work

of Chapter 2.

1.3.3 Chapter 4: Diffusion

The results from Chapter 2 show that for the domain of Figure 1.1, although initially

the major source of contamination, at some point in time advection becomes a stagnant

process. In Chapter 4 this result is used as a constant concentration condition when

modelling the progress of diffusion throughout the rest of the domain. This condition

precludes an analytic solution, therefore a quasi-analytical technique is formulated. The

result is advection and diffusion combined within the domain where and when each is

dominant. From these results, simple equations are empirically derived to predict the

diffusion front, which, combined with those from Chapter 2, allow the rapid modelling

of combined advection-diffusion within the domain.

1.3.4 Chapter 5: Generalised equations for advection and

diffusion

Chapter 5 is a generalisation and expansion of the simplified equations derived in

Chapters 2 and 4. These equations may prove useful for the rapid modelling of com-

bined advection-diffusion within the domain of Figure 1.1. They can accommodate

different parameters of hydraulic conductivity, diffusivity, porosity, aquifer depth and

pond height, as well as variable thresholds of contamination. The major limiting

assumptions are that there is no density driven flow, the hydraulic conductivity is

constant throughout the domain, and the domain can be approximated as rectangular.
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1.3.5 Chapter 6: Combined advection-diffusion-reaction

In Chapter 4, a combined advection-diffusion solution is found that depends on each

transport process being dominant at different times. While this may be true for the

leaky pond domain in Figure 1.1, this will not be the case for most other situations.

Chapter 6 explores a more robust technique for combining the above quasi-analytical

solutions of contaminant transport. However, it should be noted that while the method

formulated in this chapter was developed using the leaky pond domain, for publication

it was decided to simplify the problem for explanatory and demonstrative purposes.

That is, this chapter departs from the leaky pond problem as the example considered,

in preference of a simpler domain. In so doing, it was discovered that as well as solving

for advection and diffusion, the technique can be extended to reaction as well. That is,

using the method described in this chapter, it’s easy to incorporate a possible reaction

process (or chemical decay) of the contaminant.

1.3.6 Chapter 7: Combined advection-diffusion for the leaky

pond problem

In this chapter, the technique described in Chapter 6 is applied to the familiar leaky

pond problem. The results represent the realisation of the ultimate goal of this thesis,

that is, a quasi-analytical technique to solve the advection-diffusion equation in the

domain of Figure 1.1.

1.3.7 Chapter 8: Comparison of quasi-analytical techniques

This chapter was not written as an article. It is a comparison of the techniques in

Chapters 5 and 7. We assume results from the quasi-analytical technique of Chapter 7

to be accurate, and test similar results from the simplified equations of Chapter 5

against them.
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1.3.8 Chapter 9: Discussion

The Discussion incorporates an overview of the thesis, suggestions for future work, and

some final remarks.
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Advection
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2.1 Introduction

This chapter deals with the transport of contaminant via the process of advection. As

stated in Section 1.2, the domain of interest is a saline pond sitting above a freshwater

aquifer. We are interested in advection away from the source, caused by the potential

of the pond height. In addition, we consider the situation (as may occur near the

coast) that the fresh groundwater sits above a deeper saltwater layer. In this case the

influence of the saline ponds can cause salt water from the deeper layer to rise, also

contaminating the fresh groundwater.

Modelling the advection and diffusion of salt through an aquifer is a difficult problem

to solve accurately in the best of circumstances. There are fundamental problems as-

sociated with the transport equation that preclude even moderately accurate solutions

over the large aspect ratios (that is, length to depth) that are common in groundwater

flows (Reddy and Trefethen, 1994). For these larger aspect ratios the main features

of these flows appear to be advection with some lateral diffusion and negligible longit-

udinal diffusion. In this chapter, we assume that diffusion is negligible compared to

advection and concentrate on accurately determining the breakthrough front as salt is

advected through the aquifer.

One of the major computational stumbling blocks for numerical schemes is the

grid resolution necessary to accurately resolve the flow field. However, analytic series

solutions for the flow field avoid this problem as they provide continuous, accurate

solutions for the entire solution domain (Powers et al., 1967; Read, 1996a,b; Read and

Volker, 1993). These solutions provide potential functions, stream functions and velo-

city fields continuously throughout the solution domain, and can be used to calculate

equi-potentials, streamlines and velocity contours accurately and efficiently. The ve-

locity field can be integrated to provide accurate isochrones (or breakthrough curves)

with relatively little computational effort. This method has been used by Philip (1984)

to determine isochrones in unsaturated soil profiles of infinite depth.

In this chapter we provide simple models of advection from saltwater ponds to

surrounding areas, and from the lower saltwater layer of the aquifer up to the water
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table. We also provide solutions for the isochrones (breakthrough curves), and from

these results find simple formulas to predict when these isochrones affect the area away

from the ponds. Although these results are for specific examples, the models can be

applied to any similar problems that satisfy the same underlying assumptions.

This chapter is organised as follows. Section 2.2 provides an overview of the ex-

amples considered. Section 2.3 presents the mathematical model to be used, with

model results being presented in Section 2.4. Finally, we discuss these results and

draw appropriate conclusions in Section 2.5.

2.2 Hydrogeology and model boundaries

This chapter models aquaculture ponds placed near traditional farmland, and within

coastal proximity. We assume that the coastal aquifer in the region has a depth of

40 m, beneath which a confining layer of bedrock exists. Since we are near the coast,

we assume the bottom three quarters of the aquifer is affected by salt water intrusion,

leaving the top ten meters of groundwater useful for irrigation. Figure 2.1 shows a

schematic of the above situation. Assuming the worst case scenario, that is, unlined

(or damaged) ponds that allow salt water to discharge freely into the ground, we wish

to model how contamination of the irrigable fresh water within the aquifer might occur.

Before we can model the flow within the aquifer, we first require the boundary con-

ditions of our model. Since the base of the aquifer is bedrock, the bottom boundary

can be considered impermeable. We make the right boundary of the model a vertical

line through the center of the aquaculture ponds, and hence a line of symmetry which

can be regarded as impermeable also. For simplicity we make the left boundary im-

permeable as well, but place it far enough away that the flow within the aquifer is not

affected. Finally, the top boundary is the free surface of the aquifer water table, but

there is a smooth transition to the free surface of the aquaculture ponds, the height of

which provides the driving potential of the saltwater contamination.

To keep our model relatively simple, the following additional assumptions are made.

The hydraulic conductivity of the aquifer is assumed constant (which is valid providing
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Figure 2.1: Sketch of domain being considered.

that any actual soil heterogeneity is small), and since we are near the sea, we set this

parameter to that of sandy loam (0.864 m/d) (Arunakumaren et al., 2000). Also, the

water table below the traditional farmland is horizontal, therefore giving a constant

hydraulic head downstream boundary condition. Finally, we assume hydrodynamic

dispersion to be negligible.

2.3 Mathematical model of salt transport

In view of the discussion in Section 2.2, we can model the seepage from the aquacul-

ture ponds by assuming the aquifer is horizontal and of uniform depth, with constant

hydraulic conductivity K∗. Figure 2.1 shows a schematic of the soil horizon (Note

that all coordinates are dimensionless, while the actual physical lengths are shown

as dimensional). Inside the saturated flow boundary, we assume the seepage velocity
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u∗ = (u∗, v∗) satisfies Darcy’s law

u∗ = −K∗∇∗φ∗(x∗, y∗), (2.1)

where φ∗(x∗, y∗) is the hydraulic head. (Note that asterisk subscripts represent dimen-

sional variables. These will later be dropped when the problem is non-dimensionalised.)

Upon invoking the continuity condition, we obtain Laplace’s equation for the saturated

flow domain,

∇2
∗
φ∗(x∗, y∗) = 0. (2.2)

Along the impermeable aquiclude y∗ = 0 and the vertical side boundaries at x∗ =

0, r∗, the seepage velocity is zero:

v∗(x∗, 0) = −K∗

∂

∂y∗
φ∗(x∗, 0) = 0, (2.3)

u∗(0, y∗) = −K∗

∂

∂x∗
φ∗(0, y∗) = 0, (2.4)

u∗(r∗, y∗) = −K∗

∂

∂x∗
φ∗(r∗, y∗) = 0. (2.5)

Along the water table, the hydraulic head is equal to the elevation of the water

table for 0 ≤ x∗ ≤ a∗ with a smooth transition to the height of the water in the ponds

b∗ ≤ x ≤ r∗. We achieve a smooth transition by using a cubic spline, with the hydraulic

head and the derivative of the head equal at x∗ = a∗ and x∗ = b∗. Noting that the

elevation of the water table is d∗, the height of the ponding is p∗, and the gradient

along the water table and the top of the pond is zero, the hydraulic head on the upper

boundary is

φ∗(x∗, d∗) = ht
∗
(x∗)

=































d∗, 0 ≤ x∗ ≤ a∗

α3(x
3
∗
− a3

∗
) + α2(x

2
∗
− a2

∗
)

+α1(x∗ − a∗) + α0, a∗ < x∗ ≤ b∗

p∗, b∗ < x∗ ≤ r∗

, (2.6)
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where

α3 = −2
p∗ − d∗

(b∗ − a∗)3
, α2 = 3

(b∗ + a∗)(p∗ − d∗)

(b∗ − a∗)3
,

α1 = −6
a∗b∗(p∗ − d∗)

(b∗ − a∗)3
, α0 = d∗.

(2.7)

(The mathematical details are given in Appendix A.1.) The smooth transition is a

small region included to eliminate the discontinuity between the pond and the water

table which would otherwise introduce Gibbs phenomenon into the solution. It affects

only the smallest advection fronts which are of little interest to this chapter. (Note,

the effects of the smooth transition are investigated more thoroughly in Chapter 5.)

In fact, a smooth transition between water levels is arguably a more realistic situation

than a discontinuity. The boundary value problem is now fully defined and can be

solved. Once the hydraulic head is available throughout the aquifer, we can calculate

the stream function and the pore velocity.

The stream function ψ∗(x∗, y∗) is related to the hydraulic head by the Cauchy-

Riemann equations,
∂ψ∗

∂y∗
= K∗

∂φ∗

∂x∗
,

∂ψ∗

∂x∗
= −K∗

∂φ∗

∂y∗
. (2.8)

The stream function is a scalar field that quantifies the mass flux throughout the

aquifer. Note that with this definition the mass flux is positive in the clockwise direc-

tion.

The pore velocity U∗(x∗, y∗) is related to the seepage velocity by the porosity σ,

where 0 < σ < 1 and σ is assumed constant, by

u∗ = σU∗. (2.9)

Hence,

U∗ = (U∗, V∗) = −K∗

σ

(

∂φ∗

∂x∗
,
∂φ∗

∂y∗

)

. (2.10)

At this point we non-dimensionalise the problem using the hydraulic conductivity
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K∗, and the depth of the aquifer d∗. That is,

x∗ = d∗x, y∗ = d∗y, a∗ = d∗a, b∗ = d∗b, r∗ = d∗r, p∗ = d∗p, (2.11)

ht
∗
(x∗) = d∗h

t(x), φ∗(x∗, y∗) = d∗φ(x, y), ψ∗(x∗, y∗) = d∗K∗ψ(x, y), (2.12)

t∗ =
σd∗
K∗

t, u∗ = K∗u, U∗ =
K∗

σ
U. (2.13)

There are three points to note here. First, throughout the dimensionless boundary value

problem, dimensionless parameters replace their dimensional counterparts simply by

removing the subscript asterisk. Second, the coefficients αi of the cubic in the equa-

tions of (2.7) are the same for the dimensionless variables, with the asterisk subscripts

removed, and noting that d∗ = d∗d ⇒ d = 1. That is, the dimensionless depth d of

the aquifer is d = 1. Finally, the dimensionless pore velocity U has been scaled by the

(dimensionless) porosity σ.

2.3.1 Series solution for the hydraulic head and stream

function

Using the classic method of separation of variables (Carrier et al., 1966), a series solu-

tion for the hydraulic head φ(x, y) can be obtained. (Note that this solution presumes

a hydrostatic head distribution above y = d.) Truncating this series after N +1 terms,

the series approximation is given by

φ(x, y) =
N
∑

n=0

An cosh
nπy

r
cos

nπx

r
. (2.14)

This series satisfies the bottom and side boundary conditions exactly with the re-

maining boundary condition, equation (2.6), used to evaluate the series coefficients

An, n = 0, 1, . . . , N . This is a standard cosine series, with

A0 =
1

r

∫ r

0

ht(x) dx, (2.15)

An =
2

r

∫ r

0

ht(x) cos
nπx

r
dx, n 6= 0. (2.16)
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These integrals can be evaluated quickly and accurately using quadrature; see, for

example, Trefethen (2000).

The series solution for the stream function ψ(x, y) that corresponds to φ(x, y) is

easily obtained using the Cauchy-Riemann equations (2.8). Choosing the impermeable

boundary along x = 0, y = 0 and x = r as the zero for ψ, then

ψ(x, y) = −
N
∑

n=1

An sinh
nπy

r
sin

nπx

r
. (2.17)

The value of the stream function at any point (x, y) in the domain is the mass flux

between the impermeable boundary and the point (x, y).

2.3.2 Isochrones

Once the series solution for the hydraulic head φ(x, y) has been determined, the pore

velocity field, U = (U, V ), can be calculated by differentiating the series. That is,

U = (U, V ) = −
(

∂φ

∂x
,
∂φ

∂y

)

. (2.18)

The pore velocity at any point is also given by

U =

(

dx

dt
,
dy

dt

)

, (2.19)

where now the location at which the pore velocity is calculated is parameterised using

(non-dimensional) time t as a parameter. That is, x ≡ x(t), y ≡ y(t). Thus from

equations (2.18) and (2.19), the time t taken for a neutrally buoyant particle to be

advected along a stream line from (x0, y0) to (x(t), y(t)) is

t =

∫ x(t)

x0

dx

U
= −

∫ x(t)

x0

dx

∂φ/∂x
(2.20)

=

∫ y(t)

y0

dy

V
= −

∫ y(t)

y0

dy

∂φ/∂y
. (2.21)

We can use this result to determine isochrones, or the breakthrough curve, for
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the salt water as it is transported away from the aquaculture ponds. By rearranging

equations (2.20) and (2.21), the distances (∆x,∆y) a particle is advected in the x and

y directions in a small time interval ∆t are given (approximately) by

∆x ≈ −∂φ
∂x

∆t, (2.22)

∆y ≈ −∂φ
∂y

∆t. (2.23)

Consider at time t = t0 a discrete set of I > 0 points (xi,0, yi,0), i = 1, . . . , I. Then,

for any time tJ = t0 + J∆t, J > 0, we can calculate the approximate location of

the advection front (xi,J , yi,J) by calculating the intermediate points (xi,j, yi,j), j =

1, . . . , J − 1 using the difference equations

xi,j ≈ xi,j−1 −
(

∂φ

∂x

)

i,j−1

∆t, (2.24)

yij ≈ yi,j−1 −
(

∂φ

∂y

)

i,j−1

∆t, (2.25)

where

(

∂φ

∂x

)

i,j

=

(

∂φ(x, y)

∂x

)

x=xi,j
y=yi,j

, (2.26)

(

∂φ

∂y

)

i,j

=

(

∂φ(x, y)

∂y

)

x=xi,j
y=yi,j

. (2.27)

For sufficiently small ∆t (that is, sufficiently large J), this converges to the advection

front at time tJ . Using this algorithm, we can predict the advection of solutes from

any initial location in the flow domain. In particular, we can determine the isochrones

of solutes advected from the water table immediately below the aquaculture ponds

(b ≤ x ≤ r). We can also determine the advection of solutes from the saline water that

is assumed to lie 10 metres below the water table under the traditional farmland.
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Figure 2.2: Steady state solution of φ(x, y) and ψ(x, y).

2.4 Model results

Given the parameters described in Section 2.2, we solve for the stream and potential

functions of Section 2.3.1. Figure 2.2 shows the orthogonal functions φ(x, y) and ψ(x, y)

which represent the hydraulic head at any point in the domain, and the flow path at

any point in the domain, respectively. We refer to these while solving the isochrone

problems in the following subsections.

2.4.1 Model 1: Advection from aquaculture ponds

The first situation modelled is that of salt water contaminating the water table directly

from the aquaculture ponds. Given that any salt water escaping into the aquifer would

be replenished, we model the pond height as being maintained at a constant value,

and set this hydraulic potential as being 3 m. That is, the surface of the ponds are

3 m above the water table. Setting the contaminant location to be at the top of

the water table directly beneath the ponds, and scaling our dimensionless parameters



2.4 Model results 21

20 24 28 32 36 40 44
0

0.2

0.4

0.6

0.8

1

Timesteps along streamlines (200,000 dimensionless units)

Transect length (pond boundary at x=31)

H
ei

gh
t a

bo
ve

 a
qu

ic
lu

de

Figure 2.3: Final extent of travel along streamlines for Model 1.

with an aquifer depth of d∗ = 40 m (as indicated by (2.11)), we now utilise equations

(2.24) and (2.25) to track the advection of salt from 3,000 points directly beneath the

pond. This salt traces out streamlines (or parts thereof) as they are advected through

the aquifer until they reach the surface of the water table downstream of the ponds.

Figure 2.3 shows the results of the model after 200,000 dimensionless time units

(7,610 years). For clarity, the plot is restricted to 50 starting points, and reveals the

extent that contaminated water at the bottom of the ponds will travel along the relevant

streamlines for the time period specified. From this figure we observe that the longer

the distance between the start and end of each streamline (beginning and ending at

the water table), the less progress has been made by the advection front along that

streamline. Darcy’s law says that the velocity is proportional to the change in hydraulic

head per unit distance. A close inspection of the equi-potentials in Figure 2.2 reveals

that the change in hydraulic head becomes smaller further from the aquaculture ponds,

which implies that the velocity is decreasing with distance. This decrease in velocity

results in slower advection along the streamline.
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Figure 2.4: Advection fronts for Model 1.

The final location of contaminant advection is represented by the ends of each

streamline in Figure 2.3. By joining the ends of these streamlines, we create a new

curve representing the advection front of the saltwater contaminant. Doing this for

intermediate times as well produces Figure 2.4, which represents the advection fronts

(or isochrones) in increasing powers of ten between 20 and 200,000 time units.

As the salt water progresses along the streamlines with each incremental time step,

eventually it will break through the water table at a point downstream of the ponds.

By recording the time and location that this occurs for a large number of points,

we can plot the advance of the saltwater front along the water table at any given

time. This introduces a new variable, X, the dimensionless distance (scaled similarly

to equation (2.11)) from the pond boundary along the water table. Note that X is

positive from right to left as seen in Figure 2.1. Figure 2.5 shows a semi-log plot

of the breakthrough points versus time for a number of data values. We ignore the

points close to the pond boundary (X < 5) as they are affected by the non-linearity

introduced to the model by our smooth transition. Fitting the rest of the data points
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Figure 2.5: Breakthrough curve for Model 1.

using the method of Least Squares, the following ‘contamination equation’ is obtained:

t = 2e1.52X , (2.28)

where X is the dimensionless distance from the pond boundary, and t is the dimen-

sionless time at emergence. It gives us a simple equation to find the progress of the

salt without needing to rerun the model. We note that the plot only shows values

for X < 14. Beyond this point the velocities are so slow the advection front progress

cannot be calculated. We take this to mean there is no flow in this region (X > 14).

To find the actual contaminant progress using the above equation, we need to

substitute in the relevant dimensional values from equation (2.11) and solve:

t∗ =
2σd∗
K∗

e(
1.52
d∗

)X∗ , (2.29)

where X∗ is the dimensional distance in metres, and t∗ is the dimensional time in

seconds.
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Using aquifer hydraulic conductivity K∗ = 0.864 m/d (10−5 m/s), d∗ = 40 m, and

a typical value of σ = 0.3, equation (2.29) reveals that after 23.6 years the advection

front has progressed 150 metres. To progress to 300 metres requires 7,610 years, which

in Figure 2.4 is the curve represented by 200,000 dimensionless time units.

2.4.2 Model 2: Advection from lower saline layer

The second situation considered is that of contamination coming from the saline water

10 metres below the water table. For the most part, this is similar to the previous

model, with the constant pond height assumption still valid, and salt water from the

ponds escaping into the aquifer. This model’s only difference is the initial location

of the contaminant, in this case located 10 m below the water table, a dimensionless

distance of 0.25.

Figure 2.6 plots the extent of travel along each streamline after 200,000 dimension-

less time units (7,610 years). For clarity we restrict the number of starting points in the

plot to 50, but the model was actually run from 500 such points. We note that the same

streamlines in Figure 2.3 which emerged most rapidly are the same to do so in Fig-

ure 2.6, while those that had barely progressed below the water table (Figure 2.3) have

also not moved significantly from their starting points (Figure 2.6). Again, Darcy’s

law explains the reason this occurs, as the whole process is driven by the hydraulic

gradient which is greatest near the pond boundary, and decreases the further we move

away.

To produce the advection fronts of this model, we repeat the steps described in

Section 2.4.1. By joining the final location of travel along each streamline for particular

time periods, Figure 2.7 is produced. These are the advection fronts in increasing

powers of ten between 20 and 200,000 dimensionless time units.

We can plot the time and location that salt water emerges at the water table in the

same way we did for the first model. Figure 2.8 shows a semi-log plot of the break-

through location versus time for a number of data values. We ignore the breakthrough

points close to the pond boundary (X < 4) due to the non-linearity introduced by

our smooth transition. As indicated in the previous model, as the distance from the
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Figure 2.6: Final extent of travel along streamlines for Model 2.
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Figure 2.8: Breakthrough curve for Model 2.

pond boundary increases (X > 14), the velocities become so slow the advection front

progress cannot be calculated without machine error. Fitting the section 4 < X < 14

using the method of Least Squares reveals a second ‘contamination equation’:

t = 0.2e1.57X , (2.30)

where X and t represent the same parameters as equation (2.28).

To find the dimensional values, substitution from equation (2.11) reveals:

t∗ =
0.2σd∗
K∗

e(
1.57
d∗

)X∗ , (2.31)

where X∗ is the dimensional distance in metres, and t∗ is the dimensional time in

seconds.

Using K∗ = 0.864 m/d (10−5 m/s), d∗ = 40 m, and σ = 0.3, we find that after

7.6 years the advection front has progressed 175 metres. To progress to 350 metres

requires 7,610 years, which is the curve represented by 200,000 dimensionless time units
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in Figure 2.7.

2.5 Discussion and conclusions

In this chapter a simple method has been developed to find advection fronts of ground-

water systems, with specific application to an aquaculture farm on a coastal aquifer

system. The method relies on knowledge of the potential and stream functions of the

area, in this chapter derived through a series solutions approach, but not necessar-

ily limited to this technique. Numerical schemes may prove useful in providing these

functions when they are too difficult to solve analytically. However, in practice the

random errors of numerical solutions are amplified when the numerically evaluated

stream function or hydraulic potential is differentiated to obtain the velocity field, and

this may affect the accuracy and efficiency of the method presented in this chapter.

Currently, little is known about the performance of these methods on numerical data.

Once these functions are known, it is a relatively straightforward process to find advec-

tion fronts for any time required. This adds an extra dimension (and importance) to

the ever increasing number of analytic solutions for the potential and stream functions

of varying geometries.

The models developed in this chapter show the progression of the advection front

as it moves outward from the aquaculture ponds to adjacent areas. Although it is

evident from the stream function (Figure 2.2) that contamination of the surrounding

land will occur, until now it has been difficult to predict when this will happen. But

from Section 2.4 we can see that for the models in question, contamination of the usable

groundwater will occur exponentially slowly, in accordance with equations (2.29) and

(2.31), depending on the contamination source. For example, from equation (2.29) we

see that for the advection front to progress 300 metres from the pond boundary requires

7,610 years. But from equation (2.31), 300 metres requires only 990 years. This simple

comparison is indicative of the general case that arrival of salt water from below will

more rapidly cause problems for the surrounding land. But even so, from Section 2.4.2

we see that the exponential nature of the contamination means that although salt
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water will emerge within 7.6 years up to 175 metres from the pond boundary, for the

advection front to travel as far again will require a further 7,600 years. So anyone

judging the ongoing extent of contamination based on the initial progress of the salt

may be dramatically overestimating the final impact to the environment.

The figures above imply some significant conclusions. It could be argued that the

large time period for any significant contamination to occur makes concerns over salt-

water seepage from the aquaculture ponds unfounded, given the relatively short lifespan

of any such operation. However, it is important to note that the results above are based

on a uniform (mean) hydraulic conductivity of 0.864 m/d (10−5 m/s) throughout the

domain. Equations (2.29) and (2.31) show that K∗ is inversely proportional to the

travel time t∗, but in a typical soil profile K∗ can vary by many orders of magnitude

via small pockets of clay and coarse sand, even though macroscopically the soil is ho-

mogeneous. So even though the mean estimate of advection front progress may be

accurate, locally the contaminant location could vary quite significantly. Additionally,

if the heterogeneity within the soil profile is large (for example, such as layers of differ-

ent soil types), our assumption of constant hydraulic conductivity will break down, and

the mean estimate of advection front progress will no longer be valid. However, recently

there has been some (as yet unpublished) progress (at local workshops and seminars) in

the solution of the analytic functions for non-uniform hydraulic conductivity, meaning

that any local variation may soon be calculable.
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3.1 Introduction

The quasi-analytical technique presented in Chapter 2 incorporated a simple numer-

ical method as part of the solution scheme. However, it was found that for very large

isochrones, extracting results could be time consuming, particularly when solutions

are sought using a laptop or pc. As such, this chapter presents an efficient and ac-

curate alternative for the numerical component of the aforementioned quasi-analytical

technique.

Figure 3.1 represents a soil profile taken from an aquaculture farm in the North

Queensland region, where saline ponds sit above a freshwater aquifer 40 meters deep.

Given the worst case scenario of salt water leaking freely into the groundwater beneath,

we determine the contaminant advection fronts using two different techniques. The first

technique, based on Euler’s method, is a more traditional approach for solving time-

dependent problems numerically; that is, we integrate along the closed form solution

of the streamlines using a small discrete time step. This technique has an advantage

in simplicity, but can be slow to extract a solution, especially for low flow domains, or

large isochrones. For this reason, we present a second method (also based on Euler’s

method) which uses a small discrete spatial step, or natural parameterisation. The

second technique has improved accuracy and is significantly quicker, but introduces

some complexity which we discuss.

3.2 Original methodology

Read (1996a,b) describes the method of series solutions in some detail. For our example

(Figure 3.1), we non-dimensionalise the domain using the depth as our scaling factor.

These non-dimensional parameters (shown in brackets) constitute the domain of con-

sideration in the rest of this article. Using the method described in Read (1996a,b), we

truncate after N +1 terms to obtain a potential function φ(x, y) and a stream function

ψ(x, y),
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Figure 3.1: Saline ponds above freshwater aquifer (bracketed terms are dimensionless).

φ(x, y) =
N
∑

n=0

An cosh
nπy

r
cos

nπx

r
, (3.1)

ψ(x, y) = −
N
∑

n=1

An sinh
nπy

r
sin

nπx

r
, (3.2)

where

A0 =
1

r

∫ r

0

ht(x) dx, (3.3)

An =
2

r

∫ r

0

ht(x) cos
nπx

r
dx, n 6= 0. (3.4)

The partial derivatives of equations (3.1) and (3.2) (that is, the fluid velocity)

satisfy the bottom and side (impermeable) boundary conditions exactly (to machine
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precision), with the remaining boundary condition (ht(x)) used to evaluate the series

coefficients An, n = 0, 1, ..., N .

From the series solution of the hydraulic head φ(x, y), we find the seepage velocity

u∗ (that is, the macroscopic velocity averaged over the void and solid area) from Darcy’s

equation,

u∗ = −K∗∇φ(x, y), (3.5)

where K∗, the hydraulic conductivity, is a scalar. To find the pore velocity U∗ (that is,

the actual flow velocity through the void space) from equation (3.5), we simply divide

through by the soil porosity σ (also a scalar),

U∗ = −K∗

σ
∇φ(x, y). (3.6)

We non-dimensionalise equation (3.6) with the scaling factor K∗/σ and separate

the directional components to get an expression for the velocity field U = (U, V ),

U = −
(

∂φ

∂x
,
∂φ

∂y

)

. (3.7)

The velocity at any point is also

U =

(

dx

dt
,
dy

dt

)

, (3.8)

where the location at which the pore velocity is calculated is parameterised using time

t. That is, x and y are no longer independent variables, but are now time dependent,

x ≡ x(t), y ≡ y(t). Thus, from equations (3.7) and (3.8), the time t taken for a

neutrally buoyant particle to be advected along a streamline from (x0, y0) to (x(t), y(t))

is

t =

∫ x(t)

x0

dx

U
= −

∫ x(t)

x0

dx

∂φ/∂x
, (3.9)

=

∫ y(t)

y0

dy

V
= −

∫ y(t)

y0

dy

∂φ/∂y
. (3.10)
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We use this result to determine isochrones for the salt water as it is transported

away from the aquaculture ponds. By rearranging equations (3.9) and (3.10), the

distances (∆x,∆y) a particle is advected in the x and y directions in a small time

interval ∆t is

∆x ≈ −∂φ
∂x

∆t, (3.11)

∆y ≈ −∂φ
∂y

∆t. (3.12)

Consider at time t = t0 a discrete set of I > 0 points (xi,0, yi,0), i = 1, . . . , I. Then, for

any time tJ = t0+J∆t, J > 0, we calculate the approximate location of the advection

front (xi,J , yi,J) by calculating the intermediate points (xi,j , yi,j), j = 1, . . . , J−1 using

the difference equations

xi,j ≈ xi,j−1 −
(

∂φ

∂x

)

i,j−1

∆t, (3.13)

yi,j ≈ yi,j−1 −
(

∂φ

∂y

)

i,j−1

∆t, (3.14)

where

(

∂φ

∂x

)

i,j

=

(

∂φ(x, y)

∂x

)

x=xi,j
y=yi,j

, (3.15)

(

∂φ

∂y

)

i,j

=

(

∂φ(x, y)

∂y

)

x=xi,j
y=yi,j

. (3.16)

For sufficiently small ∆t (that is, sufficiently large J), this converges to the advection

front at time tJ . Using this algorithm, we predict the advection of solutes from any

initial location in the flow domain. In particular, we determine the isochrones of

solutes advected from the water table immediately below the saline ponds. Choosing

an isochrone of tJ = 200, 000 dimensionless units, Figure 3.2 shows the extent of the

advection along each streamline. We have then joined these final advection locations

to create the advection front, or isochrone.
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Figure 3.2: ∆t solution scheme giving isochrone at tJ = 200, 000.

3.3 Problems

The above methodology is inherently simple, but for the example considered, the large

aspect ratio and relative small potential results in extremely low flow velocities in part

of the domain. As we see from equations (3.11) and (3.12), a low velocity will result in

small spatial increments (∆x,∆y). If this happens, then even for a large isochrone value

(as in Figure 3.2), we observe that the final location of the advection front has moved

little from its initial location (observe the area near the right boundary of Figure 3.2).

Although this is not a problem when solving for particular isochrones, solving for the

time to reach a particular location can be problematic. If the location is in the low

velocity part of the domain, then the solution output time may be extremely high.

If we want to solve for the entire domain (that is, for salt water to move everywhere

within the domain), then the time required to produce a solution may be excessive.
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3.4 Modified methodology

For the most part, our modified methodology is similar to that of the original. From

Section 3.2, we follow the procedure described to equations (3.9) and (3.10). It is after

this point that the modified method diverges.

From the original methodology, we observe that in the low velocity part of the

domain our solution progresses extremely slowly. If we could get a consistent rate of

progress throughout the domain at every iteration, this should result in a faster solution

output time. Rather than calculating the distance we move along a streamline for a

set ∆t, we set ∆s as the length we will move along the streamline, and find the time

it takes to do so. That is,

∆s =
√

(∆x)2 + (∆y)2 = constant. (3.17)

Equation (3.7) defines the velocity field (U = (U, V )) everywhere within the domain.

We define W as the speed along ∆s, therefore,

W = ‖U‖ =
√
U2 + V 2. (3.18)

We also know

W ≈ ∆s

∆t
. (3.19)

So, rearranging and solving equations (3.11),(3.12) and (3.19),

∆x ≈
(

U

W

)

∆s, (3.20)

∆y ≈
(

V

W

)

∆s, (3.21)

∆t ≈ ∆s

W
. (3.22)

Stepping along each streamline by ∆s will mean consistent progress at each iteration,

even in the low flow part of the domain. However, unlike the original method where

the time at any iteration (j) was found from the equation (tj = t0 + j∆t), now the



36 Modified advection

time varies, not only for each iteration, but for each streamline in an iteration. For

the modified methodology, as well as recording ∆x and ∆y as in the original method,

from equation (3.22) we need to record ∆t.

Consider at time t = ti,0 a discrete set of I > 0 points (xi,0, yi,0), i = 1, . . . , I. For

a given number of iterations (J), we now determine our progress through the domain,

both spatially and temporally (xi,J , yi,J , ti,J), by calculating the intermediate values

(xi,j , yi,j , ti,j), j = 1, . . . , J − 1 using the difference equations

xi,j ≈ xi,j−1 +

(

Ui,j−1

Wi,j−1

)

∆s, (3.23)

yi,j ≈ yi,j−1 +

(

Vi,j−1

Wi,j−1

)

∆s, (3.24)

ti,j ≈ ti,j−1 +

(

∆s

Wi,j−1

)

, (3.25)

where

Ui,j = −
(

∂φ(x, y)

∂x

)

x=xi,j
y=yi,j

, (3.26)

Vi,j = −
(

∂φ(x, y)

∂y

)

x=xi,j
y=yi,j

, (3.27)

Wi,j =
√

(Ui,j)2 + (Vi,j)2. (3.28)

Given a sufficiently small ∆s (that is, sufficiently large J), the advection location

on any streamline will converge at time t = ti,J (each value of i represents a separate

streamline). But unlike the original methodology, our values of ti,J are not the same,

and this introduces some complexity into our scheme. Let’s take the previous example

of solutes advected from the water table immediately below the saline ponds. Choosing

an isochrone of 200, 000 dimensionless units, we now have to find the values of i, j where

ti,j = 200, 000.

We found the simplest method was to let the scheme iterate through j, with a

stopping condition that for all i, ti,j > 200, 000. The ends of the streamlines in Fig-

ure 3.3 show when this stopping condition is met. We now must find the values of
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Figure 3.3: ∆s solution scheme giving isochrone at t = 200, 000.

ti,j = 200, 000, but this is complicated by the discrete nature of ∆t. We may not find

even one set of i, j values where ti,j = 200, 000, so we must find the closest such values

on each streamline and interpolate. Using these values of i, j, we find the corresponding

values of xi,j , yi,j , and applying the same interpolation ratios, we produce the isochrone

for t = 200, 000 seen in Figure 3.3.

3.5 Comparison

The constant time step approach is an intuitive method, but when dealing with low

velocity domains such as Figure 3.1, we found the time taken to produce a solution was

excessive. To produce satisfactorily accurate results for the example considered in this

chapter (Figure 3.2), we needed to run the scheme overnight using a standard pc (Intel

Pentium 4 cpu 3.40GHz, 1.00GB ram, Matlab). The constant spatial step approach

was developed in response to our need for faster solution output times. Keeping all

other parameters equal, but changing to a constant spatial step, the example in this
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chapter (Figure 3.3) achieved a seven fold reduction in solution output time, from 11

hours to 95 minutes.

Of course, faster solutions can be achieved using the constant time step approach,

simply by choosing a larger value of ∆t and allowing our accuracy to suffer. To show

that the increase in speed of the constant spatial step method is not achieved by

a corresponding decrease in accuracy, we compare the two methods to the analytic

solution. For both methods, we step through the domain incrementally using the

characteristics of the flow field at each point to calculate the location of the next

point. If our schemes are accurate, the paths stepped out in this fashion correspond

to streamlines derived from the stream function (equation (3.2)) starting at the same

points. We judge whether our values of ∆t or ∆s are sufficiently small by finding the

corresponding deviation from the analytic result.

For each of our methods, we take the final point of every streamline which emerges

at the water table for an isochrone of 200, 000, and compare it with the final point as

found from the analytic solution. Figure 3.4 is a plot of the deviation of each of these

streamlines for the examples in this chapter, that is, ∆t = 10 and ∆s = 0.005. We see

that the ∆s method not only gives a seven fold improvement in solution output time,

but is approximately an order of magnitude more accurate as well.

3.6 Discussion

The constant spatial step method was developed to reduce the time required to solve

isochrones in low velocity flow domains. Since we are generally interested in the physical

location of a contaminant as it progresses through a domain, the fact that this method

is consistent in its progress at any point is a big advantage over the constant time step

method. A constant time step will require a certain number of iterations to solve for a

particular isochrone, but in the low velocity part of the domain the physical progress of

the contaminant may be infinitesimal compared with the progress elsewhere. However,

the constant spatial step method can potentially solve even large isochrones in this low

velocity area in a single iteration. For this reason the constant spatial step method is
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Figure 3.4: Deviation of ∆t = 10 and ∆s = 0.005 from the analytical solution.

not constrained to a certain number of iterations for any particular isochrone, but will

produce a solution in the number of iterations required to step to the final physical

location.

For the examples considered in this chapter, ∆t = 10 and ∆s = 0.005 were chosen

as they represent the maximum values at which the accuracy of the solutions started to

decay. For ∆t = 10, exactly 20, 000 iterations were required to solve for the isochrone

at t = 200, 000, while just 3, 173 iterations were required for ∆s = 0.005 for the same

isochrone. We calculated many other isochrones in this same flow domain for varying

∆t and ∆s values, with the constant spatial step method significantly more efficient in

every case. (Note, the errors were similar for both methods.)

The relative improvements in time and accuracy of the constant spatial step method

will vary based on the isochrone being solved, the values of ∆s and ∆t, and the char-

acteristics of the velocity field throughout the domain. For some situations there may

be little advantage in using the constant spatial step method at all. But as we have

shown, when dealing with domains where any part of the velocity field is small, the
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constant spatial step method should perform significantly better.

In this chapter we have compared two different methods for integrating along

streamlines to find the advection front of possible groundwater contaminants. Al-

though different in their application, both techniques are based on simple Euler for-

ward integration. For the purposes of this chapter, this simple integration technique

was sufficient, but future investigation of other numerical integration methods may yet

yield more accurate and/or faster results.
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4.1 Introduction

Contaminant transport via advection from a leaky saltwater pond into an underlying

freshwater aquifer has previously been analysed by Verrall et al. (2009b) (Chapter 2).

Contamination near the pond edge was shown to occur rapidly, but as the distance from

this boundary increased, the time taken for salt to arrive at any particular point slowed

exponentially. A dimensionless ‘contamination equation’ was deduced to predict the

movement of salt away from the pond. This equation showed that the initial burst of

outward movement from the saltwater pond quickly slowed to such an extent that it was

no longer calculable as movement at all. This is a somewhat surprising finding, but this

research only considered the role of advection in the transport of salt contamination.

Given the rapid decay in the speed of the advection process, a natural question to

ask is How long does it take the salt to be transported to the adjacent farmlands once

diffusion takes over?

To answer this question, we extend the analysis carried out in Chapter 2 by consid-

ering diffusive transport as the dominant process, once the advective component has

become negligible. We analyse the problem by dividing the transport process into two

distinct phases. First, salt is advected into the aquifer (ignoring any diffusive effects),

until the discharge velocity becomes negligible. This creates a contaminated region

that forms the source for the diffusion process, the size and shape of this region being

one of the results of Chapter 2. Second, at the boundaries of this region the discharge

velocity is small, therefore advection is ignored and diffusion takes over as the domin-

ant transport process. That is, the problem this chapter investigates is contaminant

transport through the domain once diffusion becomes dominant. Section 4.2 describes

this domain in greater detail. Note that advection still plays a significant role in the

process. Advection replenishes salt that diffuses through the domain, therefore trans-

forming the problem to one of diffusion from a region of constant concentration within

the aquifer. (We examine this idea in more detail in Section 4.4.)

In this chapter, we will solve for the general diffusion problem using analytic series

solutions. The analytic method will be modified to allow for the salt advection from the
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aquaculture ponds, by iteratively updating a region of solute in the aquifer. This quasi-

analytical method incorporates the accuracy of an analytical solution, while maintain-

ing the robustness of a numerical scheme. Using this technique, we find where diffusion

becomes the dominant mode of transport, as well as determining the overall time frame

for contamination to any point within the freshwater aquifer.

This chapter is organised as follows. In Section 4.2 we provide an overview of

the example considered, with the mathematical model presented in Section 4.3. The

relationship between advection and diffusion is analysed in Section 4.4, and results

of the model are presented in Section 4.5. Finally, we discuss these results and draw

appropriate conclusions in Section 4.6.

4.2 Hydrogeology and model boundaries

In this chapter, the problem that we solve is modelled on aquaculture ponds situated

near the coast and adjacent to farmland. We assume that the coastal aquifer in the

region has a depth of 40 metres and lies above an aquiclude of impermeable bedrock.

A leaky saltwater pond, 3 metres high, is situated above the aquifer. The left side

boundary is impermeable, well beyond the area of interest, while the right side bound-

ary lies beneath the edge of the ponds. There is no diffusion across this boundary as

it is spanned by a region R(x, y) that (for the situations of interest to this chapter)

extends to the bottom of the aquifer and is maintained at a constant maximum con-

centration. Therefore, the right side boundary can be treated as zero flux. Figure 4.1

shows a schematic of the solution domain.

The domain of consideration has been modified slightly from the original problem

(Chapter 2) where advection was analysed. In this chapter, the left boundary has

been extended well past the farmland, so that any edge effects are negligible. For

the advection problem, the location of the left boundary had little or no effect on the

advection of the solute. However, edge effects can be important for diffusive processes,

because the concentration of solute increases as the left boundary is moved closer to the

source. For the aquaculture ponds and farmland being modelled in this chapter, the
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Figure 4.1: Domain considered throughout this chapter.

left boundary is situated well beyond any possible edge effects. Also in this chapter,

the right boundary has been shifted from beneath the centre of the saline ponds to

beneath the edge of the saline ponds. This was done for reasons of simplicity, that is,

so the region of higher concentration R(x, y) spanned the boundary, allowing for a zero

flux boundary condition. The top boundary is the surface of the water table, and as

such represents an air/water interface. There is no diffusion across this surface or the

impermeable bottom and side boundaries.

In this chapter we are interested in the breakthrough front of salt diffusion, taken

as the point when the concentration has reached 50% of the concentration in the

saltwater ponds. That is, the diffusion front is said to have moved only when the salt

concentration at any point has reached 50% of the initial contaminant concentration

level. The source boundary for diffusion is taken as the final location of the advection
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front, R(x, y). Outside the final location of the advection front, diffusion is assumed

faster than advection. Inside the advection front, advection is assumed to be faster

than diffusion, and solute is replaced as quickly as it diffuses. (Refer to Section 4.4

for more details.) The region R(x, y) is treated as a source of constant strength, with

solute concentration maintained at the same level as that in the ponds. Any excess salt

that is not diffused away from this region is transported through to the soil surface.

Outside the advection region, the process is considered purely diffusive, with any

solute movement a consequence of molecular diffusion. An important consideration

here is the location where this change from advection to diffusion occurs—we examine

and validate this process in Section 4.4. In the diffusion region, the diffusive processes

are assumed isotropic and due to molecular diffusion only, so the diffusion coefficients

in the lateral and longitudinal directions are equal and constant (Hunt, 1983).

4.3 Mathematical model of salt transport

The problem is formulated mathematically as follows. Inside the aquifer,

∂

∂x∗

(

Dx∗

∂C∗

∂x∗

)

+
∂

∂y∗

(

Dy∗

∂C∗

∂y∗

)

=
∂C∗

∂t∗
, (4.1)

where C∗(x∗, y∗, t∗) is the concentration of solute at any point (x∗, y∗) in the aquifer at

time t∗. (Note that asterisk subscripts represent dimensional variables. These will later

be dropped when the problem is non-dimensionalised.) Assuming there is no diffusion

across impermeable boundaries or the water table, the boundary conditions are

Dx∗

∂

∂x∗
C∗(0, y∗, t∗) = Dx∗

∂

∂x∗
C∗(s∗, y∗, t∗) = 0, (4.2)

Dy∗

∂

∂y∗
C∗(x∗, 0, t∗) = Dy∗

∂

∂y∗
C∗(x∗, d∗, t∗) = 0, (4.3)
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where s∗ and d∗ are the length and depth of the domain, respectively. The initial

condition at t∗ = 0 is then

C∗(x∗, y∗, 0) =







C0
∗
, x∗, y∗ ∈ R∗(x∗, y∗),

0, elsewhere
, (4.4)

with the general solution

C∗(x∗, y∗, t∗) =







C0
∗
, x∗, y∗ ∈ R∗(x∗, y∗),

C∗(x∗, y∗, t∗), x∗, y∗ /∈ R∗(x∗, y∗)
, (4.5)

where R∗(x∗, y∗) is the region in the aquifer to be maintained at constant concentration

C0
∗
, the concentration of solute in the ponds. That is, the region R∗(x∗, y∗) is the area

within the aquifer where advection is dominant. Unfortunately, this constant source

region R∗(x∗, y∗) cannot be incorporated into the partial differential equation (4.1) as a

source term, as the solute concentration in the aquifer would increase without bound,

since there is no solute flux across any of the boundaries. In fact, the boundary of

this region intersects the original rectangular boundary to form an irregular boundary

with a constant concentration along it (refer to Figure 4.1). This means the problem is

not amenable to the usual analytic series techniques. However, also note that we can

solve this problem directly when this condition collapses to an initial condition, as in

equations (4.1)–(4.4).

We non-dimensionalise the problem in terms of the depth of the aquifer, d∗, the ini-

tial concentration of the ponds, C0
∗
, and (noting that Dx∗

= Dy∗ = D∗) the diffusivity,

D∗:

s∗ = d∗s, x∗ = d∗x, y∗ = d∗y, C∗ = C0
∗
C, t∗ =

d2
∗

D∗

tD. (4.6)

(Note, tD is non-dimensional time, scaled for diffusion parameters.) In terms of the

non-dimensional variables x, y, C, tD, the diffusion equation (4.1) becomes

∇2C(x, y, tD) =
∂C(x, y, tD)

∂tD
, (4.7)
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with the boundary conditions in equations (4.2) and (4.3),

∂C

∂x
|x=0,s = 0,

∂C

∂y
|y=0,1 = 0, (4.8)

and the initial condition in equation (4.4),

C(x, y, 0) =







1, x, y ∈ R(x, y),

0, elsewhere
, (4.9)

where R(x, y) is the region of constant concentration in the non-dimensional problem.

4.3.1 Series solution for initial solute distribution

As noted in Section 4.3, the diffusion problem detailed in equations (4.7), (4.8) and

(4.9) is amenable to analytic series methods, and the solution form can be obtained

using separation of variables (see Appendix A.2 for details). Truncating after m =M ,

n = N terms, the series expansion is

C(x, y, tD) =
M
∑

m=0

N
∑

n=0

amn cos
(mπx

s

)

cos (nπy) e−λ2
mntD , (4.10)

where λ2mn = m2π2/s2 + n2π2 and amn are the series expansion coefficients. The series

coefficients can be obtained from an orthogonality relationship,

amn =

∫ s

0

∫ 1

0

C(x, y, 0) cos
(mπx

s

)

cos(nπy) dy dx, (4.11)

or by using a (theoretically equivalent) collocation/discrete least squares approach

(Trefethen, 2000):

C(xi, yj, 0) =
M
∑

m=0

N
∑

n=0

amn cos
(mπxi

s

)

cos(nπyj) (4.12)

at M ′N ′ collocation points (xi, yj), i = 0, . . . ,M ′; j = 0, . . . , N ′, where M ′ ≥ M + 1,

N ′ ≥ N + 1. (M ′ = M + 1, N ′ = N + 1 for a ‘pure’ collocation or pseudo-spectral



48 Diffusion

approach.) In this case, the solution process devolves into solving a matrix equation,

XTCY T =
(

XTX
)

A
(

Y Y T
)

, (4.13)

where, for i = 0, . . . ,M ′, j = 0, . . . , N ′, m = 0, . . . ,M , n = 0, . . . , N ,

[X]im = cos(mπxi/s), [Y ]nj = cos(nπyj), (4.14)

[C]ij = C(xi, yj), [A]mn = amn. (4.15)

This is the approach used in this chapter, with equally spaced collocation points xi, yj ,

as evaluating the integrals in equation (4.11) is significantly more computationally

expensive than the collocation approach.

Once the solution for the diffusion equation (4.7) has been obtained, the isochrones

of concentration at any (fixed) time tD can be obtained by solving the implicit equation

C(x, y, tD) = c0, (4.16)

where c0 is a constant with 0 < c0 ≤ 1, and is the concentration along the isochrone.

In this chapter, we are interested in the breakthrough front where the concentration is

50% (c0 = 0.5) of the saline pond concentration.

4.3.2 Quasi-analytical technique

The series solution in equation (4.10) is obtained for the initial condition of equa-

tion (4.9), however, the solution is only correct at tD = 0. Once tD > 0, the con-

centration of solute will drop below 1, as the diffusive effects start to take place. As

tD → ∞, the concentration of solute throughout the aquifer approaches a constant

value less than 1, and this obviously violates the constant source requirement as stated

in Section 4.2.

To overcome this difficulty, we apply the series solution technique to the problem

iteratively. Diffusing for a short time step (that is, a fraction of the required time
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period) gives a small amount of transport away from the initial distribution, as well

as a small reduction in concentration of that initial distribution. The result of the

outward diffusive transport is kept to define the initial condition outside of R(x, y),

but the initial distribution of solute is reset to the original concentration, and then the

series solution is obtained for the new problem. By repeating this process using very

small time steps, we satisfy the requirement of C(x, y, tD) = C0 where x, y ∈ R(x, y),

and solve the problem for an arbitrary time period.

To choose the time step used for each iteration, simply choose an arbitrary value,

for example, δtD = 10, and measure the overall reduction in the mean concentration

of the source region R(x, y). This time step is then adjusted until the percentage

decrease in concentration in R(x, y) is less than a predefined tolerance. If the decrease

in concentration is greater than the tolerance, the value of δtD is reduced and the

process repeated until a suitable time step is obtained. In this chapter we used a

value of δtD = 0.0391, which corresponds to a tolerance level of 10% of the source

concentration in R(x, y) (that is, the total quantity of salt within R(x, y) never dipped

below 90% of the initial level). Some experimentation revealed that smaller values of

the tolerance did not significantly affect the results, although the computational cost

increased markedly.

4.4 Advection versus diffusion

We model the progress of the solute as a two stage process: advection then diffusion.

In the first stage, solute is advected from the saline ponds to form a stagnant region,

R(x, y), of contamination. That is, the potential gradient from the ponds to the aquifer

can only force contaminated water so far, before fluid flow effectively stops. Within

this stagnant region, R(x, y), if solute is removed, it gets replenished via advection. In

the second stage, contamination via diffusion becomes the dominant process away from

this stagnant region. Depending on the properties of the aquifer, the limits of R(x, y)

will change. The first stage was solved in Chapter 2, with one of the results being an

equation for the contaminant breakthrough curve along the water table. The second
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stage can be solved using the quasi-analytical scheme described in Section 4.3.2. Using

this method, an equation for the 50% breakthrough curve along the water table can be

found. In the following subsections the process for finding the diffusion breakthrough

curve is provided, the relationship between the advection and diffusion time scales

is determined, and the method used to determine the extent of the stagnant region,

R(x, y), is detailed.

4.4.1 Predicting the advective and diffusive contamination

velocities

Chapter 2 found an empirical relationship for the progress of advective contamination

through the domain,

tA = 2e1.52X , 5 ≤ X ≤ 14, (4.17)

where tA is the dimensionless time (scaled for advection parameters) needed to progress

the dimensionless distance X from the pond boundary along the water table. In the

zone X < 5, the results leading to the above equation were influenced by smoothing

the water table at the pond boundary. Note that X is positive from right to left as seen

in Figure 4.1, and that the advection process had effectively stopped when X ≥ 14.

Equation (4.17) can be differentiated w.r.t. time, and rearranged to give the rate of

progress of advective contamination along the water table (which for lack of a better

term we will refer to as the advective contamination velocity) uA:

uA =
1
dtA
dX

=
e−1.52X

3.04
, 5 ≤ X ≤ 14. (4.18)

Given a constant concentration region R(x, y) of solute, the quasi-analytical scheme

of Section 4.3.2 is used to determine a solution for the concentration C(x, y, tD) through-

out the aquifer at any time tD > 0. This solution can be used to determine I coordinates

(Zi, tDi), i = 1, . . . , I of the 50% breakthrough curves of salt contamination along the

water table (Z is the dimensionless distance along the water table from R(x, y), and is

positive from right to left as seen in Figure 4.1). Some experimentation revealed the



4.4 Advection versus diffusion 51

best fit for this empirical relationship is a quadratic of the form

tD = aRZ
2 + bRZ + cR, (4.19)

where tD is the dimensionless time (scaled for diffusion parameters) needed to progress

the distance Z from the boundary of R(x, y). That is, if the boundary of the advection

zone R(x, y) starts on the water table at x = x0, then any point Zi on the breakthrough

curve has x−coordinate xi = x0 − Zi. Differentiating equation (4.19) w.r.t. time, re-

arranging, and substituting Z = 0, gives the rate of progress of diffusive contamination

along the water table (which again, for lack of a better term we will refer to as the

diffusive contamination velocity) uD at the boundary of R(x, y):

uD =
dZ

dtD
=

1

bR
. (4.20)

However, this diffusive contamination velocity, uD, is unrealistic as it occurs at a

discontinuity. That is, mathematically there is a step change in concentration from the

advection region, R(x, y), to the rest of the domain, when clearly this is not the case in

reality. This discontinuity creates two problems: firstly, the concentration change from

C0 = 1 to C(x, y, 0) = 0 means the concentration gradient is infinite; and secondly,

the analytic series solution suffers from Gibbs phenomenon (a mathematical artifact

resulting in oscillatory behaviour near the discontinuity). However, both can be dealt

with by smoothing the transition zone so the concentration changes smoothly from

C0 = 1 to C(x, y, 0) = 0. We initially used a Gaussian spatial filter to smooth the

concentration gradient at the discontinuity. This type of filter is designed to give no

overshoot to a step function input, while minimising the rise and fall time. In our

case, the smooth transition zone corresponded to approximately 2% of the length of

the domain. The modified initial concentration Ĉ(x, y, 0) was given by

Ĉ(xi, yj , 0) =
K
∑

i=1

L
∑

j=1

wijC(xi, yj , 0), (4.21)
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with the weights,

wij =
1

2πθ2
e−(x

2+y2

2θ2
), (4.22)

where θ is the standard deviation. Note, we limited the transition zone on each side

of the discontinuity to three standard deviations, where θ = 0.3 dimensionless units

(giving a total transition length for this domain of 72 m). This smoothed initial distri-

bution removed the Gibbs phenomenon and the sharp discontinuity in the transition

zone, and gave good results.

However, there is a more natural way to introduce a smooth transition between

C0 = 1 and C(x, y, 0) = 0, using the original (discontinuous) series solution. The series

solution is allowed to diffuse for the same period of time required for advection to

create the stagnant region R(x, y), and this is then used as the initial solution for the

quasi-analytical scheme. That is, the series solution for the concentration is obtained

using the original (discontinuous) initial conditions, and then the solution at a later

time (that corresponds to the time taken for advection to create R(x, y)) is used as the

‘smoothed’ initial condition. This process provides smooth initial solutions that do not

suffer from Gibbs phenomenon and work as well, or better, than the filtering technique

previously described. It is this method that will be used throughout the remainder of

this chapter. Note that the coefficients of equation (4.19) are reevaluated after this

smoothing has been applied.

4.4.2 Advection and diffusion time scales

To combine the models (or results) of advection and diffusion (Sections 2.3 and 4.3,

respectively), the dimensionless advection and diffusion time scales have to be related.

That is, although both models are dimensionless, each were non-dimensionalised (tem-

porally) using different parameters, resulting in different scaling factors (similar in

concept to the difference between the dimensionless terms parts per million and parts

per billion). To relate these non-dimensional time scales, we simply convert each back

to the common reference value of dimensional time, and solve. (Note that as the spatial

scaling is the same for both processes, that is, the depth of the aquifer d∗, there is no
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spatial adjustment required to combine the models.)

For the domain of Figure 4.1, to solve for real (dimensional) time, t∗, for pure

advection, Section 2.3 provides the following equation (given in terms of the non-

dimensional advection time tA),

t∗ = tA
σd∗
K∗

, (4.23)

where σ is the porosity, d∗ is the depth, and K∗ is the hydraulic conductivity. To

combine separate solutions of advection and diffusion, equation (4.23) must equate to

the real time for diffusion t∗, given in terms of the dimensionless diffusion time tD,

t∗ = tA
σd∗
K∗

= tD
d2
∗

D∗

. (4.24)

Rearranging, this becomes

tD =
D∗σ

K∗d∗
tA = αtA, (4.25)

where

α =
D∗σ

K∗d∗
=

D∗

d∗
K∗

σ

. (4.26)

The parameter α is the ratio of the dimensionless diffusion time scale to the di-

mensionless advection time scale. However, it is also a combination of the physical

parameters of the aquifer. In this sense, α can be regarded as characteristic of the

aquifer. Therefore, the location within the domain where diffusion becomes the dom-

inant transport process will vary depending on this characteristic value. In the next

section we determine a relationship between α and the location where diffusion becomes

dominant. (As an aside, given that hydraulic conductivity, K∗, has the same units as

velocity (m/s), it is interesting to note the similarity of equation (4.26) to expressions

of the (inverse) Péclet number.)

4.4.3 Advection–diffusion boundary

For each α value there corresponds an X−coordinate (or x−coordinate) that delineates

the point on the water table beyond which the diffusive contamination velocity is faster

than the advective contamination velocity; that is, where diffusion is the dominant
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transport process. This relationship can be obtained by considering the end result

of advection, R(x, y), for any arbitrary time period. The intersection of R(x, y) with

the water table gives the position, X0, which will be the transition point between

the advective region (R(x, y)) and the diffusive region (X > X0) for some (as yet

undetermined) value of α. For this particular α, X0 is therefore also the point on the

water table where the rate of diffusive contamination (4.20) is the same as the rate of

advective contamination (4.18). Recalling that these rates of contamination are defined

using different time scales, tA and tD, then, using equation (4.25) and the chain rule,

uA = αuD. (4.27)

Substituting for uA and uD,
e−1.52X0

3.04
=

α

bR
. (4.28)

Hence,

α = bR
e−1.52X0

3.04
, 5 ≤ X0 ≤ 14, (4.29)

or, given a known value of α,

X0 =
ln
(

3.04
bR
α
)

−1.52
, 5 ≤ X0 ≤ 14. (4.30)

A given set of aquifer parameters allows for the calculation of the characteristic

value α (from equation (4.26)). Substituting α into equation (4.30) gives the location

on the water table, X = X0, that delineates the advective and diffusive regions of the

domain. That is, up to X0, diffusion can be ignored and an advection only simplific-

ation is sufficient. Beyond X0, further advection can be ignored and a diffusion only

simplification (from a constant concentration source) is sufficient. If the time for con-

tamination to reach X > X0 is required, then the time for advection to X0 is simply

added to the time for diffusion (greater than X0). It is important to note that strad-

dling this point, X0, will be a two-mode region of some thickness wherein the relative

rates of advective and diffusive contamination are comparable in magnitude. However,
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Figure 4.2: Diffusion for different R(x, y).

given the exponential decay of the advective velocity, we will ignore this two-mode

region on the expectation that it is small in comparison to the rest of the domain.

4.4.4 Evaluating the quadratic coefficients

The coefficients of equation (4.19) (in particular bR) need to be known before equa-

tions (4.29) or (4.30) can be determined. Rather surprisingly, the diffusion curve (and

hence the quadratic) is virtually the same for all the different constant concentration

regions R(x, y). Figure 4.2 shows a plot of the diffusion time tD versus the distance

X from the pond boundary for four different sized regions R(x, y). These vary from

a small region close to the pond boundary, to a large region well away from the pond

boundary. The root-mean-square error between the fitted quadratic equations and the

model output for each of the curves of Figure 4.2 is less than 2× 10−3.

The similarity of the diffusion curves of Figure 4.2 can be seen even more clearly

when superimposed upon each other, that is, with the origin moved from the pond

boundary to the edge of R(x, y) (the coordinate system changed from X to Z), as in
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Figure 4.3: Superimposed diffusion curves for different R(x, y). Note the excellent quad-
ratic fit to the data points.

Figure 4.3. Averaging these curves gives the following quadratic (which deviates from

the curves of Figure 4.2 by less than 1%):

tD = 1.10Z2 + 2.84Z. (4.31)

As different regions R(x, y) lead to the same equation, it is natural to then compare

equation (4.31) with the result for one-dimensional (1D) diffusion. Ignoring the depth

y of the aquifer, and solving analytically for a boundary of constant concentration

(which is readily found; see, for example, Farlow (1993)) reveals a 1D breakthrough

curve along the water table of

tD = 1.10Z2 + 2.90Z. (4.32)

This equation is almost identical to the two-dimensional (2D) case, with any differ-

ence possibly attributable to the numerical error associated with the time step δtD.
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Figure 4.4: Diffusion fronts of a small region R(x, y), demonstrating the rapid transform-
ation from 2D to 1D.

The implication is that the rate of diffusion along the water table is basically a one-

dimensional process, even when the source R(x, y) (and the aquifer geometry) is clearly

2D in shape.

We include Figure 4.4 to better demonstrate the diffusion process from a constant

concentration source. This figure is modified slightly from the original problem descrip-

tion, with the region R(x, y) being smaller, and rather than spanning the boundary as

before, it is placed near the middle of the domain. We present this figure to demon-

strate the rapid transformation from 2D to 1D, and to give the reader a feel for the

evolution of the concentration profile.

Another important conclusion from this section is that the quadratic coefficients

(and bR in particular) are not dependent on the location, size or shape of the region

R(x, y) and thus the subscript R can be dropped when referring to them. Therefore,

taking b = 2.84 from equation (4.31) and substituting into equation (4.29) gives

α(X) = 0.93e−1.52X , 5 ≤ X ≤ 14. (4.33)
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4.5 Results

Before any results can be generated, the number of terms in the series solution need to

be provided (M and N in equation (4.10)). In this chapter, values of M = 1, 000 and

N = 200 were used, with M ′ =M +1 and N ′ = N +1 collocation points to determine

the series coefficients. The solution was obtained efficiently and accurately at each step

of the iterative process, with root-mean-square errors (evaluated in between collocation

points) of the order of 10−5 or better.

The techniques described in the preceding sections of this chapter allow the progress

of salt (by advection, then diffusion) from the pond through the soil to be predicted,

once the soil parameters are specified. First, the time taken for advection (to create the

constant concentration region, R(x, y)) is calculated. Then, the time taken for diffusion

(ignoring any advection during the diffusion process) outside R(x, y) is calculated. We

consider an aquifer with the following physical parameters: hydraulic conductivity

K∗ = 10−5 m/s; depth d∗ = 40 m; and porosity σ = 0.3. This is the example used

in Chapter 2 to demonstrate the progress of salt contamination via advection in a

typical coastal (sandy-loam) aquifer. Additionally, a value of diffusivity, D∗, is required.

Chapter 2 showed that transport due to advection slows exponentially as distance

from the pond boundary increases. Since we are interested in the area where the

discharge velocity approaches zero, the hydrodynamic dispersion coefficient reduces to

the molecular diffusion coefficient. For salt (NaCl) in water, this value is approximately

D∗ = 2× 10−9 m2/s (Stoessell and Hanor, 1975).

Solving for equation (4.26) with the above parameter values gives α = 1.5× 10−6,

with equation (4.33) revealing that diffusion becomes the dominant mode of transport

at X = 8.77 dimensionless units from the pond boundary. Chapter 2 was only inter-

ested in contamination up to 300 m (X = 7.5) from the pond boundary, therefore,

diffusion need not be considered at all in that case. Clearly, as diffusion is still the

minor contributor of contamination to X = 7.5, Chapter 2 seems justified in ignoring

its effects. However, to demonstrate the role diffusion plays within the domain, we

consider a point 500 m (X = 12.5) from the pond boundary. To reach X = 8.77
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dimensionless units via advection takes 46,851 years (equations (4.17) and (4.23)),

while the remaining Z = 3.73 dimensionless units requires an additional 656,961 years

(equations (4.24) and (4.31)) via diffusion. Figure 4.5 shows the movement of salt con-

tamination along the water table for this example. Salt progresses along the advection

curve (dotted line) to X = 8.77, where it then continues along the diffusion curve (solid

line). The total time of 703,812 years via advection and diffusion is approximately 5%

of the 13,583,128 years required if advection were the only transport process.

For the domain of Figure 4.1, we compared the above results to a similar model in

the standard numerical groundwater modelling package, SUTRA (Voss and Provost,

2002). The SUTRA model began from when contamination first entered the aquifer,

and therefore had to develop both the advective and diffusive regions. Tracking the 50%

concentration levels along the water table (in SUTRA) over time produced the labelled

curve (grey line) in Figure 4.5. In comparing the SUTRA results to the quasi-analytical

results, the curves have the same basic shape and are in general agreement, differing by

a maximum of 8% for dimensionless distances up to X = 16 from the pond boundary.

The SUTRA model indicates greater contamination, likely for the following reasons:

firstly, the quasi-analytical model in this chapter neglects the two-mode region near

X0 (described in Section 4.4.3); and secondly, the possibility of numerical diffusion, a

problem that most numerical techniques suffer from when solving for the large aspect

ratios dealt with here (Reddy and Trefethen, 1994).

4.6 Discussion and conclusions

The domain of Figure 4.1 describes a similar situation to that modelled in Chapter 2,

that is, saltwater aquaculture ponds sitting above a freshwater aquifer. This situation

has received little attention from researchers, with anecdotal evidence (Arunakumaren

et al., 2000) suggesting that salt contamination from said ponds can be serious and

immediate. Chapter 2 showed that although contamination from leaky saltwater ponds

is indeed immediate, the ongoing extent of such contamination (via advection) reduces

exponentially. This leaves contamination via diffusion to be considered.
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Figure 4.5: The progress of salt along the water table via advection then diffusion.

The techniques described in Sections 2.3 and 4.3 are easily mated, with each solu-

tion contributing to the final result where it is dominant. Figure 4.4 shows that the

progress of diffusive transport through time (from a constant concentration advective

source), rapidly degenerates (in comparison to the distance travelled) to a 1D sys-

tem, endorsing the simple 1D models typically used to approximate large aspect ratio

domains. However, the techniques developed herein can also quantify the relative con-

tributions of advection and diffusion. The quasi-analytical 2D modelling method is a

potential alternative to many domains that would otherwise require orthodox numerical

techniques.

Chapter 2 supplied the equation for advective progress (4.17), while this chapter

derived the equations for 50% diffusive progress (4.31 or 4.32), and the location where

diffusion becomes dominant (4.29). There is potential for these dimensionless equations

to allow for the rapid calculation (perhaps in the field) of contaminant progress from

a leaky pond to its surrounds (as demonstrated in Section 4.5). To this end, we

include Appendix A.3. Having established in Section 4.4.4 that a 1D analysis is a



4.6 Discussion and conclusions 61

valid simplification of this particular 2D system, Appendix A.3 contains the curves

for a range of varying percentage diffusion fronts (1% to 90%), calculated using a 1D

analysis.

The equations (4.31 or 4.32) and (4.29) derived in this chapter are necessarily

dependent on the advective contamination equation (4.17) obtained from Chapter 2.

Unfortunately, equation (4.17) only corresponds to a single ratio of pond height to

aquifer depth. A range of equations (or better still, a general equation) corresponding

to multiple (pond height to aquifer depth) ratios is required to obtain the general

solution for a leaky pond of any height, sitting above an aquifer of any depth, with any

aquifer properties.

In Section 4.5 we considered only the 50% diffusion front when calculating contam-

ination to 500 m (X = 12.5) from the pond boundary. However, the speed at which

diffusive contamination spreads through an aquifer varies, based on the concentration

of the solute that is considered harmful. For instance, in absolute terms, if a 1% level

of the concentration of the ponds is considered harmful, this diffusive contamination

front will progress more rapidly than if a 50% contamination level is considered harm-

ful. This is easily seen in the difference between different percentage diffusion curves

in Figure A.1 (Appendix A.3). In addition, at the 1% level, diffusion will take over

from advection (as the dominant transport mechanism) sooner than the 50% level. We

recalculate the example in Section 4.5 using the general equation in Appendix A.3.

Assuming a 1% diffusion front as sufficient for contamination, the reworked example

in Section 4.5 takes 92,362 years to reach 500 m from the pond boundary, or approx-

imately 13.1% of the time for the 50% diffusion front.

To get an idea of the general applicability (to different soil types) of the procedure

outlined in this chapter, we assume the scaling parameter d∗ = 40 m and the porosity

σ = 0.3 to be those of a typical aquifer. From equation (4.33), the limits of X allow for

5.39×10−10 ≤ α ≤ 4.70×10−4. Assuming the molecular diffusivity, D∗ = 2×10−9 m2/s,

to be relatively constant across a range of soil types, substituting into equation (4.26)

gives a range of hydraulic conductivity values 3.19× 10−8 ≤ K∗ ≤ 2.78× 10−2 (m/s).

These encompass the majority of the spectrum of soil types encountered in groundwater
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modelling, from well sorted sand (or sand and gravel) to layered clay (Bear, 1972).

There are a couple of important points to note regarding the methodology used

in this chapter. Firstly, the original quadratic of diffusion progress (equation (4.19))

was found using the X rather than the Z coordinate system, that is, in relation to the

fixed pond boundary rather than the edge of the variably sized constant source region

R(x, y). This is significant in that it allows the simultaneous solution of α, and the

amount of ‘smoothing’ during the advection phase. We have used the Z coordinate

system in this chapter for simplicity, and to better demonstrate that diffusion away from

the constant source region (equation (4.31)) is not dependent on the size of R(x, y).

Secondly, two methods were described in this chapter (Section 4.4.1) to achieve

a smooth transition from R(x, y) to the rest of the domain; these being a Gaussian

spatial filter, and utilising diffusion. However, the amount of smoothing affects the

concentration gradient at the edge of R(x, y), which in turn affects the calculation of

the parameter α. Since diffusive effects cannot be separated from the advection process

(just ignored if practical to do so), it was found to be more effective, and efficient, to

incorporate smoothing via diffusion.

The idea that advection replenishes any solute that diffuses into the domain is

(perhaps) non-intuitive. Let’s reconsider this idea in light of the results of this chapter.

Assuming advection replenishes solute as quickly as it diffuses, thus providing the

constant concentration source used in this chapter, then this situation provides the

largest driving potential possible for the diffusion process. That is, the concentration

gradient from X0 into the rest of the domain is at its highest. Therefore, contamination

from the constant concentration source will progress further into the domain than it

would from a diminishing source over the same time period. However, Figure 4.5

shows that the quasi-analytical method presented in this chapter does not progress

as far as the comparative SUTRA model (likely for the reasons stated at the end of

Section 4.5). Given that a diminishing source would differ still more from the SUTRA

model, our stated assumption that advection replenishes solute as quickly as it diffuses

seems reasonable. It seems to give good results at any rate.

This chapter has presented a quasi-analytical modelling technique to address the
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problem of irregularly shaped constant strength sources for 2D diffusion. The model

was compared to a similar one in the numerical groundwater modelling package

SUTRA, with good agreement. The equations derived along the way allow for calcu-

lation of the relative contributions of advection and diffusion from a leaky pond, but

for the domain considered in this chapter, the conclusion can only be that diffusion is

irrelevant (even using a 1% concentration contour) in practical terms. However, this

chapter has only considered advection and diffusion, with the inherent assumptions of

contaminant neutral buoyancy (no density driven flow), and constant hydraulic con-

ductivity (no preferential flow channels). These limiting assumptions were necessary,

but will undoubtedly cause deviation from the real system being modelled.
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5.1 Introduction

In this chapter we present equations for predicting groundwater contamination, via

advection and diffusion, from a leaky pond above a freshwater aquifer. The equations

are derived from quasi-analytical mathematical models (Verrall and Read, 2012; Verrall

et al., 2009b) (Chapter 2 and Chapter 4), and attempt to reduce the analysis of the

above situation to a few simple relations that can be solved rapidly, without further

need of the original models. In this sense, the equations presented may be regarded

as a transfer function; that is, a simple description of the model output for any given

input.

Groundwater modelling usually involves simplifications and assumptions. Often

the complexities of the domain are simply not known, and/or the governing equations

can’t be solved without simplifying the domain parameters. The equations presented

in this chapter are no exception, with the major assumptions being the same as the

underlying models, that is, constant hydraulic conductivity, no density driven flow,

and a rectangular domain. However, if the above assumptions are reasonable, then the

equations presented are applicable to a pond of any height sitting above an aquifer of

any depth.

The simple equations presented in this chapter will not contain the detail available

from the underlying models. However, the advantage achieved is that of speed of solu-

tion and simplicity of application. Assuming these relations are a good approximation,

some potential applications might be: a quick reference for assessing numerical models;

an alternative when the complete mathematical model is unavailable or impractical, for

example, in the field or when results are sought by those without the requisite modelling

experience; or as a transfer function for use within a decision support system (DSS).

(A DSS is “a metadiscipline, which integrates knowledge and practices across multiple

scientific fields (for example, hydrology, ecology, economics, various social sciences)”

(Jakeman et al., 2011). That is, it is a computer-based information system used for

the rapid evaluation of “what if?” scenarios. As such, if the runtime of a groundwater

model within a DSS is too long, it will not be useful (Anderson et al., 2015). In such
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cases, transfer functions become the preferred option.)

This chapter is organised as follows. Section 5.2 presents the equations relevant to

advection, with Section 5.3 presenting those relevant to diffusion. Section 5.4 contains

the results of an example used for demonstration purposes, and finally, a discussion is

presented in Section 5.5.

5.2 Advection

The situation of interest in this chapter can be seen in Figure 5.1. Figure 5.1 is a gen-

eric representation of a leaky contaminated pond sitting above a saturated freshwater

aquifer. Inside the saturated flow domain, we assume the seepage velocity u∗ = (u∗, v∗)

satisfies Darcy’s law,

u∗ = −K∗∇∗φ∗(x∗, y∗), (5.1)

where φ∗(x∗, y∗) is the hydraulic head. (Note that asterisk subscripts represent dimen-

sional variables. These will later be dropped when the problem is non-dimensionalised.)

Combining Darcy’s law and the continuity condition results in the saturated flow equa-

tion (Laplace’s equation) for the domain of Figure 5.1,

∇2
∗
φ∗(x∗, y∗) = 0. (5.2)

We leave the details for modelling the domain in Figure 5.1 to Chapter 2. How-

ever, in brief, Chapter 2 used a quasi-analytical technique to find advection fronts

(isochrones) for advective contaminant transport through an unconfined aquifer, away

from leaky raised ponds. Using series solutions, a closed form solution was derived for

the saturated flow equation, thereby providing the potential function, stream function

and velocity field. Then, it was a simple matter to numerically step along the stream-

lines (starting from immediately below the contaminated ponds) for any predefined

upper time limit. In this manner, a relationship was found for the time and location

each streamline emerged at the water table. It is this relationship which is the focus

of this section.
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Figure 5.1: Sketch of domain being considered.

To proceed, we first non-dimensionalise the domain parameters. This is done to

present a general solution that can be used for any number of similar cases; that is, the

parameters in Figure 5.1 can take on any value we choose. According to Chapter 2, the

problem is non-dimensionalised using the hydraulic conductivity, K∗, and the depth of

the aquifer, d∗, therefore,

d∗ = d∗d, h∗ = d∗h, X∗ = d∗X, (5.3)

t∗ =
σd∗
K∗

tA, u∗ = K∗u, U∗ =
K∗

σ
U, (5.4)

where h∗ is the height of the pond above the water table, X∗ is the distance from the

pond boundary, U∗ is the pore velocity, σ is the porosity, and t∗ is time. Dimensional

numbers have an asterisk subscript, while their non-dimensional equivalents do not. We

will be working with the non-dimensional parameters, with any conversions achieved



5.2 Advection 69

using equations (5.3) and (5.4) above. It should be noted that dimensionless time

is represented by tA, with the subscript denoting advection. The reason for this will

become clear in Section 5.3.

5.2.1 One-dimensional advection simplification

We are interested in the empirical contamination equation found in Chapter 2,

tA = 2e1.52X , X ≥ 5, (5.5)

for determining the progress of contamination along the water table, X, as measured

from the pond boundary (X = 0). This equation wasn’t derived, but simply found

by recording the time and location each streamline emerged on the water table when

integrated numerically. Streamlines start immediately below the ponds and plunge

deep into the aquifer before reemerging vertically at the water table (a schematic

representation of this process can be seen in Figure 5.1). The horizontal movement

of contamination, as quantified by equation (5.5), is the result of solute progressively

emerging from adjacent vertical streamlines at the water table. It should be noted the

above equation is only applicable to a single ratio of pond height to aquifer depth of

3/40, but given the simplicity of equation (5.5), it seems reasonable there should exist

a general version of this equation that incorporates any ratio of pond height to aquifer

depth.

However, before we proceed there is an additional point to be addressed. Chapter 2

applied a smooth transition between the water table and the pond surface, in order

to remove Gibbs phenomenon (a mathematical artifact). Upon further investigation,

it was found that the length of this transition zone affects the coefficients in equa-

tion (5.5). To solve for the closed form solution of our domain, while minimising Gibbs

phenomenon (and therefore allowing for solutions of domains with smaller transition

zones), we now incorporate Lanczos smoothing (Hamming, 1977). This is a correction

factor applied to each coefficient of the series solution, that smooths the high frequency

ripples of Gibbs phenomenon. This allows the reduction of the transition zone to 2%
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Figure 5.2: Plot showing that the height of the ponds is inversely proportional to the
value of the coefficient A.

of the depth of the aquifer. Further reduction of this region is not required as any ad-

ditional change in the coefficients of equation (5.5) is minor beyond this point. Further

analysis of the transition region can be found in Appendix A.4.

We follow the technique described in Chapter 2, and apply it to multiple ratios of

pond height, h, to aquifer depth, d = 1. If we assume the general equation will likely

have the same form as equation (5.5), that is,

tA = AeBX , (5.6)

then the height of the pond must be incorporated into the coefficients A and/or B.

Analysing the relationships for A and B against various values of h reveals that B is

independent of h, but agreeably, A ∝ 1/h. Figure 5.2 shows this relationship between

A and 1/h.

Given a transition zone of 2% of the aquifer depth, and taking the coefficients of A

and B at h = 1, the general equation for contaminant progress (as seen at the water
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table) through an unconfined aquifer from leaky ponds is

tA =
1.93

h
e1.58X , X ≥ 1. (5.7)

Now that we know when contamination will occur at any point, X ≥ 1, along the

water table, how much contamination will occur at that point? As part of the model,

Chapter 2 defined the velocity field throughout the domain of Figure 5.1. In analysing

the vertical velocity component at the water table, again, a simple relationship was

found to exist, this time of the form

qx =Me−NX , (5.8)

where qx represents the vertical component of the seepage velocity u at the water

table, that is, the specific discharge at X. Running models for various pond heights,

h, and plotting the coefficients, M and N , against these heights, revealed that N is

independent of h, while M ∝ h. Therefore, taking the coefficients of M and N at

h = 1, the general equation giving the mass flux at the water table is

qx = 1.03h e−1.58X , X ≥ 1. (5.9)

As is evident from equation (5.9), qx reduces exponentially as the distance from the

pond boundary increases.

Equations (5.7) and (5.9) allow the modelling of advective contaminant progress

through the general domain of Figure 5.1. Even though flow within the domain isn’t

horizontal, the flow field is such that contaminant progress at the water table is a

good representation of contamination in the vertical column of the aquifer below. As

such, the two-dimensional (2D) domain can be satisfactorily represented by the above

one-dimensional (1D) equations. This can be regarded as similar to the ‘hydraulic

approach’, often employed in groundwater problems (Bear, 1979). That is, in the hy-

draulic approach the thickness of the aquifer is ignored and flow is assumed to be hori-

zontal, therefore reducing the problem to 1D. But this assumption generally fails close
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to a source or sink, as the flow in these regions is demonstrably not horizontal. How-

ever, in our case the 1D equations are empirical, and represent contaminant progress

only; they are derived from the complete flow equation (5.2), without this assumption

of horizontal flow. Therefore, equations (5.7) and (5.9) are valid close to the pond

source, and can be regarded as representing an apparent 1D transport of contamin-

ant, rather than the real 2D flow of contaminated water. Differentiating and inverting

equation (5.7) gives the final result of this section, the apparent velocity of advective

contaminant transport along the water table,

uA =
1
dtA
dX

=
h

3.05
e−1.58X , X ≥ 1. (5.10)

An examination of equation (5.10) reveals that advective contamination along the water

table is exponentially slowing. Chapter 2 found that eventually advective contamina-

tion became so slow as to be incalculable. Given this result, at some point diffusion

must take over as the dominant transport mechanism.

5.3 Diffusion

Chapter 4 found that transport within the domain of Figure 5.3 could be modelled as

a two stage process: advection then diffusion. That is, the aquifer can be separated

into two distinct regions: an advective region, where advective processes dominate and

diffusion can be ignored; and a diffusive region, where diffusive processes dominate and

advection can be ignored. We leave the details to Chapter 4, but briefly, it was found

that diffusion within the domain of Figure 5.3 could be modelled as a 1D process with

a constant concentration boundary condition. It is 1D because the aspect ratio (that

is, length to depth) is high; and it has a constant strength boundary condition because

any solute that doesn’t diffuse (from the advective contamination already within the

aquifer) is transported through to the soil surface via advection and is replaced by full

strength contaminated water from the pond. Using this 1D diffusion simplification,

and the 1D advection simplification (5.10), we will find where diffusion takes over as



5.3 Diffusion 73

Diffusive region

Constant strength
 advective region

h

d=1

u
D

Saline
ponds

X
Z

u
A

X
0

Figure 5.3: Schematic of advective and diffusive regions within the domain.

the dominant transport process, therefore delineating the regions.

To proceed, we must again non-dimensionalise some parameters. For the diffusion

problem, Chapter 4 used the same spatial scaling as that used in the advection problem,

the depth of the aquifer d∗. In addition, the following scaling was also used:

t∗ =
d2
∗

D∗

tD, C∗ = C0
∗
C, (5.11)

where C0
∗
is the initial concentration of the ponds, and D∗ is the diffusivity. Note

that dimensionless time is represented by tD, with the subscript denoting scaling for

diffusion.

However, an examination of equations (5.4) and (5.11) reveals a problem. In this

chapter we wish to combine the (dimensionless) results of advection and diffusion, but

time is scaled differently for each process. (This is analogous to comparing the terms
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parts per million and parts per billion; although each is dimensionless, they differ by

a factor of 1, 000.) We need to relate the different time scales by converting each back

to the common reference value of dimensional time,

t∗ =
σd∗
K∗

tA =
d2
∗

D∗

tD. (5.12)

Rearranged, this becomes

tD =
D∗σ

K∗d∗
tA = αtA, (5.13)

where

α =
D∗σ

K∗d∗
. (5.14)

The dimensionless parameter α is the ratio of the dimensionless diffusion time scale

to the dimensionless advection time scale. However, it is also a combination of the

physical parameters of the aquifer. In this sense, α can be regarded as characteristic

of the aquifer. Therefore, the location within the domain where diffusion becomes the

dominant transport process will vary depending on this characteristic value. We will

return to this idea in Section 5.3.2. (As an aside, given that hydraulic conductivity,

K∗, has the same units as velocity (m/s), it is interesting to note the similarity of

equation (5.14) to expressions of the (inverse) Péclet number.)

5.3.1 One-dimensional diffusion simplification

An analytical solution for 1D diffusion with a constant concentration boundary condi-

tion is relatively easy to find (for example, Farlow (1993)). This solution can be used to

determine breakthrough curves for any threshold concentration level (for example, 1%

of the concentration of the ponds) along the water table, for any given time. Chapter 4

found that the best fit for this relationship is a quadratic of the form

tD = a∞Z
2 + b∞Z, (5.15)
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where Z is a displaced X coordinate system. That is, as yet we don’t know where

diffusion takes over as the dominant transport mechanism, but wherever that is be-

comes the point Z = 0. (The reason for the subscript in the coefficients a∞ and b∞

will become clear below.)

Differentiating and inverting the above equation (similarly to (5.10)) gives the ap-

parent velocity of diffusive contaminant transport along the water table,

uD =
1

2a∞Z + b∞
. (5.16)

Therefore, at the point where diffusion becomes dominant, Z = 0,

uD =
1

b∞
. (5.17)

However, this diffusive contamination velocity is unrealistic as it occurs at a discontinu-

ity. That is, mathematically there is a step change in concentration from advection

(where C = 1) to the rest of the domain (where C = 0). This creates an infinite

concentration gradient when tD = 0, which doesn’t exist in reality; diffusive processes

occurring during the advection phase will smooth any concentration boundary between

the two regions. To overcome this problem, we modify equation (5.15). This equation

has the inherent assumption that diffusion begins only when advection ends, but as

we have just stated, this is not a realistic scenario. Therefore, let’s make the point

(Z = Z ′, tD = αt′A) the new origin of the Z coordinate system, where tD = αt′A is

the total (scaled) time advection occurs until diffusion takes over, and Z ′ is not yet

known. That is, equation (5.15) is still used to predict diffusion, but we assume dif-

fusion has been occurring simultaneously with advection, and shift along the diffusion

curve accordingly. Effectively, equation (5.15) must be shifted down by αt′A, and in

the negative direction by Z ′. As Z ′ is unknown, we solve for it by shifting the curve

down and equating to zero,

a∞Z
2 + b∞Z − αt′A = 0. (5.18)
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Now, when diffusion takes over as the dominant transport mechanism at tD = αt′A,

the diffusive contamination velocity along the water table must equal the advective

contamination velocity along the water table. The advective and diffusive contamin-

ation velocities are defined using the advection and diffusion time scales, respectively,

so applying the chain rule we find

uA = αuD. (5.19)

Hence,

e−BX

AB
=

α

2a∞Z + b∞
, (5.20)

or from equation (5.6),

1

Bt′A
=

α

2a∞Z + b∞
, (5.21)

αt′A =
2a∞Z + b∞

B
. (5.22)

Substituting into equation (5.18),

a∞Z
2 + b∞Z − 2a∞Z + b∞

B
= 0, (5.23)

a∞Z
2 +

(

b∞ − 2a∞
B

)

Z − b∞
B

= 0. (5.24)

Using the quadratic formula,

Z ′ =

(−b∞
2a∞

+
1

B

)

±

√

(

b∞
2a∞

)2

+

(

1

B

)2

. (5.25)

We know that Z ′ must be positive, so observing that the terms outside the radical sign

are the same as the squared terms inside, from Pythagoras’ theorem,

Z ′ =

(−b∞
2a∞

+
1

B

)

+

√

(

b∞
2a∞

)2

+

(

1

B

)2

. (5.26)



5.3 Diffusion 77

To shift the curve (5.15) in the negative direction,

tD = a∞(Z + Z ′)2 + b∞(Z + Z ′). (5.27)

Therefore, making the point (Z = Z ′, tD = αt′A) the new origin, gives the new contam-

ination equation (with smoothing incorporated),

tD = aZ2 + bZ, (5.28)

where

a = a∞, (5.29)

b = b∞ + 2a∞Z
′. (5.30)

There is an important point here: diffusive smoothing is not dependent on the char-

acteristic parameter α, which is (perhaps) a little surprising. Changing the aquifer

properties, and therefore α, doesn’t affect the value of Z ′, because Z ′ is dimensionless

and α is simply a scaling parameter. Differing values of α are reflected in differing

values of dimensional time t∗.

The quadratic coefficients of equation (5.28) vary according to the threshold concen-

tration fronts considered harmful. That is, diffusive contamination progresses through

the domain at different speeds, depending on the concentration level being tracked.

Treating these quadratic coefficients as a function of concentration, C, the following

relationship was found (where a∞ was found similarly to Chapter 4, b∞ = 0, and each

are substituted into equations (5.29) and (5.30)),

tD = a(C)Z2 + b(C)Z, 0.01 ≤ C ≤ 0.9, (5.31)
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where

a = e65.654C
5
−147.446C4+129.625C3

−53.062C2+13.972C−2.662, (5.32)

b = 2aZ ′. (5.33)

5.3.2 Where does diffusion become dominant?

Diffusion takes over when the apparent diffusive velocity equals the apparent advective

velocity,

uA = αuD. (5.34)

Substituting for uA (from equation (5.10)) and uD (from equation (5.17), but replacing

b∞ with b),
h

3.05
e−1.58X =

α

b
. (5.35)

Given a known value of α,

X0 =
ln
(

3.05α
b h

)

−1.58
, (5.36)

A given set of aquifer parameters allows for the calculation of α (from equation (5.14)).

Substituting α into equation (5.36) gives the location on the water table, X = X0,

that delineates the advective and diffusive regions of the domain. That is, up to X0,

diffusion can be ignored and an advection only simplification is sufficient. Beyond X0,

further advection can be ignored and a diffusion only simplification (from a constant

concentration source) is sufficient. If the time for contamination to reach X > X0 is

required, then the time for advection to X0 is simply added to the time for diffusion

(greater than X0).

5.4 Results

To demonstrate the use of the equations presented in this chapter, we consider the

following example. Assume an aquifer has the following properties: K∗ = 10−2 m/s,

D∗ = 2× 10−9 m2/s, d∗ = 5 m, σ = 0.3, and the height of the contaminated ponds is
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h∗ = 3 m. How long does it take for (minimum) 1% contamination to reach 50 m from

the pond boundary? In addition, assuming a (dimensionless) unit width of the aquifer

(that is, into the page of Figure 5.1), what quantity of contaminated pond water exits

the water table during this time?

We first non-dimensionalise the problem using equations (5.3), (5.4) and (5.11).

Solving for equation (5.14) reveals the characteristic dimensionless variable α = 1.2×
10−8, with substitution into equation (5.36) givingX = 9.566 (dimensionless units from

the pond boundary) as the point at which diffusion becomes the dominant transport

process. Therefore, the actual time for advection to reach X = 9.566 is then found from

equations (5.4) and (5.7): t∗ = 50.161 years. From X = 9.566 to X = 10 (Z = 0 to Z =

0.434) diffusion is the dominant process, so substitution into equations (5.11), (5.28)

and (5.31) yields the actual time for diffusion: t∗ = 39.816 years. Adding these values

of t∗ means that (minimum 1%) contamination reaches X = 10 (50 m) from the pond

boundary in 89.977 years. Figure 5.4 shows the movement of contamination through

the aquifer for the above example. Contamination progresses along the advection curve

(dotted line) to X = 9.566, where it then continues along the diffusion curve (solid

line).

Now we require the quantity of contaminated pond water exiting the water table

over this period. At any particular point in time tρ, advective contamination has

progressed to X = Xρ on the water table. Integrating equation (5.9) between X = 1

and X = Xρ gives an average flux, Qx, of contaminated outflow (at t = tρ only)

between these points,

Qx =

∫ Xρ

1

qx dX (5.37)

= 1.03h

∫ Xρ

1

e−1.58X dX (5.38)

=
1.03h

1.58

(

e−1.58 − e−1.58Xρ
)

. (5.39)

Now, over the given period the point X = Xρ varies as a function of time. This value

of Xρ can be found for any time by rearranging equation (5.7). The above equation of
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Figure 5.4: The progress of contamination through the aquifer via advection then diffu-
sion.

average flux can therefore be changed to a function of time,

Qx = 0.652h e−1.58 − 1.26

tρ
. (5.40)

Integrating equation (5.40) over the period tρ = τ0 to tρ = τ1 will give the total volume,

Q (for an aquifer of unit width), of contaminated pond water exiting the water table

(for X ≥ 1),

Q =

∫ τ1

τ0

Qx dtρ (5.41)

= 0.652h e−1.58 tρ

∣

∣

∣

∣

τ1

τ0

− 1.26 ln tρ

∣

∣

∣

∣

τ1

τ0

. (5.42)

The value tρ = τ0 is found from equation (5.7) by using the value X = 1. This gives

some value of τ0 > 0. We regard this as the time required for contamination to initially

progress through the domain and then emerge at X = 1 (in this case τ0 = 15.62).

Equation (5.41) is not valid for tρ < τ0 as no contamination is emerging at the water
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table (X ≥ 1) during this period, but for all intents and purposes we have integrated

between tρ = 0 and tρ = τ1. For τ0 = 15.62 and τ1 = 1.89 × 107 (t∗ = 89.997 years),

Q = 1.52×106. To dimensionalise this value, Q
∗
, consider the steps carried out between

equations (5.37) and (5.41). Simplified, this is

Q = qxXρ tA. (5.43)

Recalling that qx is the vertical component of the seepage velocity u, substitute dimen-

sional values into equation (5.43) from equations (5.3) and (5.4),

qxXρ tA =
qx∗
K∗

Xρ∗

d∗

t∗K∗

σd∗
. (5.44)

Therefore,

Q
∗
= qx∗Xρ∗ t∗, (5.45)

= Qd2
∗
σ, (5.46)

= 1.14× 107 m3. (5.47)

5.5 Discussion

This chapter is a collation and extension of some aspects of the work carried out in

Verrall et al. (2009b) (Chapter 2) and Verrall and Read (2012) (Chapter 4). The

simplified approximate equations presented are only valid for domains that can be

approximated as rectangular, with a constant hydraulic conductivity, and groundwater

advection as a consequence of the height potential of the contaminated ponds. The

purpose of these 1D equations is to simplify the modelling of the leaky pond problem,

so it doesn’t make sense to try to incorporate non-rectangular domains or variable

hydraulic conductivity. Even if these infinite different scenarios could be included,

the added complexity would render the resulting equations less intuitive, or practical,

than a numerical modelling package. However, a useful future addition would be to

incorporate an underlying horizontal flow of groundwater. This should be possible
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using techniques similar to those presented in Chapters 2, 3 and 4, or alternatively, by

using a numerical modelling package such as SUTRA (Voss and Provost, 2002).

It is important to note that the addition of an underlying horizontal flow would

affect contaminant transport via hydrodynamic dispersion. The example in Section 5.4

made the same assumption as Chapter 4; that is, hydrodynamic dispersion reduces to

molecular diffusion. This is because the advective flow of contamination is (more or

less) perpendicular to diffusive movement within the domain, meaning we are only

concerned with the transverse hydrodynamic dispersion coefficient. Given the domain

considered in this chapter, the transverse coefficient should be of the same order of

magnitude as molecular diffusion (Hunt, 1983). However, this assumption would fail if

there were an underlying horizontal flow of groundwater in addition to the flow from

the ponds. In such a case, the transverse coefficient could be orders of magnitude faster

than molecular diffusion.

The domain analysed in this chapter (Figure 5.1) is a simplified version of a real

scenario. In attempting to reduce the analysis of a leaky pond to a set of equations, the

assumptions and simplifications stated in Section 5.1 were required. These equations

aren’t intended to replace a well posed problem, implemented properly in a numerical

modelling package. Rather, they provide a reference to test these numerical solutions,

or an approximation when numerical solutions are unavailable or impractical, for ex-

ample, in the field, or as part of a decision support system. Finally, it is worth men-

tioning that, notwithstanding any simplifying assumptions, the approximate equations

are derived from 2D models which are inherently conservative. That is, the vertical

transect may be viewed as a channel that extends infinitely in the third dimension,

whereas a real pond of finite surface area will likely be a less significant source in a 3D

space.
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6.1 Introduction

The advection-diffusion-reaction (ADR) equation is important in a wide variety of

fields. From air pollution modelling, to groundwater transport, to biological processes

and beyond (Hundsdorfer and Verwer, 2003), the solution of this equation plays a fun-

damental role. Indeed, its analogue also plays a critical role in areas such as finance

(as the Black-Scholes equation) and semiconductor physics (as the drift-diffusion equa-

tion). As such, solving the ADR equation accurately and efficiently is important to

many areas of study.

Typically, when solving the ADR equation, numerical methods (such as finite dif-

ference or finite element (Strang, 1986)) are the default option, because for most prac-

tical problems, that is, multi-dimensional problems, the ADR equation is too difficult

to solve analytically beyond the primary simplifying restriction of uniform flow. Ana-

lytical solutions that do overcome the above limitation are typically special cases that

transform uniform flow solutions to a specific form of non-uniform flow field (for ex-

ample, Broadbridge et al. (2000) and Zoppou and Knight (1999)). The difficulty (and

non-generality) of this approach make numerical methods seem all the more attract-

ive, despite fundamental problems associated with these techniques when applied to

the ADR equation (Reddy and Trefethen, 1994). However, quasi-analytical techniques

(for example, Craig and Heidlauf (2009) and Mehmani and Balhoff (2014)) combine

aspects of both analytical and numerical methods, and provide a viable alternative by

utilising the best aspects of each.

This chapter presents a novel quasi-analytical technique to solve the ADR equation

for non-uniform flow fields. In the field of hydrology, analytical solutions of the flow field

for arbitrary flow domains (Read, 1996a,b) have led to quasi-analytical solutions for the

pure advection simplification of the ADR equation (Verrall et al., 2009a,b) (Chapters 2

and 3). These provide a fast, yet accurate alternative to numerical methods for deal-

ing with variable velocities and non-parallel streamlines. Likewise, pure diffusion can

be solved analytically for flow fields too complicated for combined advection-diffusion-

reaction (see, for example, Verrall and Read (2012)) (Chapter 4). Finally, the reaction
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subprocess of the ADR equation has always been the most amenable to analytic solu-

tions, and can be solved for a wide variety of cases. Therefore, the advection, diffusion

and reaction equations can all be solved either quasi-analytically or analytically when

they are separated, in domains where the combined ADR equation is currently insol-

uble. As such, a natural question to ask is Can we accurately combine these analytical

solutions?

In this chapter we present a split operator (SO) technique to combine analytical

solutions of advection, diffusion and reaction. SO methods are a commonly used ap-

proach for combining numerical solutions of interacting physical phenomena, such as

in groundwater transport. These methods replace a complicated model with a group

of appropriately chosen subprocesses, described by the model, and solved successively

in time (Csomos et al., 2005). The decoupled subprocesses, being simpler to solve than

the original system, allow for the solution of otherwise intractable problems. Over the

years three basic classes of SO methods (Gasda et al., 2011) have arisen in environ-

mental transport problems: sequential SO (SSO); alternating SO; and iterative SO.

As the type of SO method is not the salient aspect of our methodology, we restrict

ourselves to the simplest and most common, the SSO, to demonstrate how to combine

analytical solutions of advection, diffusion and reaction.

The SSO method divides a problem into two or more subproblems which are solved

sequentially, with the solution of each subproblem used as the initial condition for the

following subproblem. The most common approach is to split the whole problem into

L (l = 1...L) discrete time intervals (∆t), where each group of subproblems is solved

for tl = l∆t, and the solution of the final subproblem is used as the initial condition of

the first subproblem of tl+1 = (l + 1)∆t.

This chapter is organised as follows. In the next section we provide a mathematical

description of the problem to be solved. Section 6.3 presents the analytical solution

technique required to solve each decoupled subprocess, and the method used to combine

these is proffered in Section 6.4. Section 6.5 examines potential sources of error in the

SSO methodology, and the results of the combined technique, along with comparative

solutions, are presented in Section 6.6. Finally, in Section 6.7 we present a discussion
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and conclusions.

6.2 Mathematical description of the problem

As stated in Section 6.1, the problem to be solved is that of combined advection-

diffusion-reaction, with the technique described in Section 6.4 applicable to a wide

range of physical situations. In its general form, the governing ADR equation is

∂C

∂t
= ∇ · (D∇C)−∇ · (uC) +R, (6.1)

where C is the concentration (of whatever solute is being modelled), D is the diffusion

coefficient, u is the bulk velocity of the solvent, and R is the reaction term (that is,

a source or sink of solute). Note that each of the terms, D, u and R may vary with

space, time, or the concentration C.

However, in this chapter, for the purposes of clarity and simplicity, we restrict

ourselves to the relatively simple case of a one-dimensional (1D) velocity field, u∗ =

u(y), equal and constant latitudinal and longitudinal diffusion, Dx∗
= Dy∗ = D∗, and a

simple linear decay term for reaction, λ∗C∗, where λ∗ is a constant. The dimensionalised

form of the ADR equation to be solved is then

∂C∗

∂t∗
= D∗

∂

∂x∗

(

∂C∗

∂x∗

)

+D∗

∂

∂y∗

(

∂C∗

∂y∗

)

− u∗
∂C∗

∂x∗
− λ∗C∗, (6.2)

with the asterisk subscripts representing the dimensionalised parameters of equation

(6.1). Non-dimensionalising the above equation (refer to equations (A.20)–(A.26) in

Appendix A.5 for details) results in the specific form of the ADR equation to be solved

throughout this chapter,

∂C

∂t
= ∇ · (∇C)− u(y)

∂C

∂x
− λC. (6.3)
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Figure 6.1: Domain being considered throughout this chapter.

Finally, we define an initial two-dimensional (2D) Gaussian distribution of solute,

C(x, y, 0) = ce
−(

(x−x0)
2

2σ2
x

+
(y−y0)

2

2σ2
y

)
(6.4)

(with the peak concentration c = 1). This domain is seen in Figure 6.1, with s and d

the lengths of the x and y axes respectively, and the domain scaled for the length of

the y-axis, that is, d = 1. For convenience we will use a square domain, s = 1. All

boundary conditions are Dirichlet (first-type) and set to C = 0.

6.3 Analytical solutions of the decoupled

subprocesses

The SSO method can be viewed as an approximate technique to integrate equation (6.3)

over an arbitrary time interval ∆t (Valocchi and Malmstead, 1992). The method is
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perhaps clearer when presented in the notation of Tompson and Dougherty (1990),

∆C = C(x, t+∆t)−C(x, t) =
∫ t+∆t

t

∇· (∇C)dt−
∫ t+∆t

t

u(y)
∂C

∂x
dt−

∫ t+∆t

t

λCdt. (6.5)

Solving the first integral gives a trial solution, henceforth C(1)(x, t + ∆t), which acts

as the initial condition of the second integral. The solution of the second integral,

henceforth C(2)(x, t+∆t), acts as the initial condition of the third integral, the solution

of which gives the final result C(x, t+∆t).

Decoupling the above equation gives the following system,

∂C(1)

∂t
= ∇ · (∇C(1)), (6.6)

∂C(2)

∂t
= −u(y)

∂C(2)

∂x
, (6.7)

∂C

∂t
= −λC, (6.8)

each of which are solved separately in the subsections below.

6.3.1 Diffusion

For the domain of Section 6.2, we solve for diffusion (6.6) using analytic series methods

(for a complete 2D solution similar to that used in this chapter, refer to Appendix A.2).

When combined with a collocation approach (Trefethen, 2000), this technique produces

fast, accurate results for any time period required. Moreover, the coefficients obtained

for this solution can be used to evaluate any point in the domain. This is an important

property of the solution, and indeed any analytical solution.

The diffusion problem (6.6) is formulated mathematically as follows. Inside the

domain,
∂

∂x

(

∂C(1)

∂x

)

+
∂

∂y

(

∂C(1)

∂y

)

=
∂C(1)

∂t
, (6.9)

where C(1)(x, y, t) is the concentration of solute at any point (x, y) in the domain at
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time t. From Section 6.2 we observe the boundary conditions,

C(1)(0, y, t) = C(1)(s, y, t) = 0, (6.10)

C(1)(x, 0, t) = C(1)(x, d, t) = 0. (6.11)

Using separation of variables, and truncating after m =M , n = N terms, the series

solution of equation (6.9) at t = tl+1 is

C(1)(x, y, tl+1) =
N
∑

n=1

M
∑

m=1

Amn sin
(mπx

s

)

sin
(nπy

d

)

e−γ2
mn∆t, (6.12)

where

γ2mn =

(

m2

s2
+
n2

d2

)

π2, (6.13)

and Amn are the series expansion coefficients. These can be obtained from an ortho-

gonality relationship, or (as in the manner of this chapter) by using a theoretically

equivalent collocation/discrete least squares approach (Trefethen, 2000). At t = 0,

C(1)(xi, yj , 0) =
N
∑

n=1

M
∑

m=1

Amn sin
(mπxi

s

)

sin
(nπyj

d

)

(6.14)

at M ′N ′ collocation points (xi, yj), i = 1, . . . ,M ′; j = 1, . . . , N ′, where M ′ ≥ M ,

N ′ ≥ N . (M ′ = M, N ′ = N for a ‘pure’ collocation or pseudo-spectral approach

(Trefethen, 2000).) In this case, the solution process devolves into solving for A in the

matrix equation

XTC(1)Y T =
(

XTX
)

A
(

Y Y T
)

, (6.15)

where, for i = 1, . . . ,M ′, j = 1, . . . , N ′, m = 1, . . . ,M , n = 1, . . . , N ,

[X]im = sin(mπxi/s), [Y ]nj = sin(nπyj/d), (6.16)

[C(1)]ij = C(1)(xi, yj), [A]mn = Amn, (6.17)

and the initial condition C(1)(xi, yj , 0) is obtained from equation (6.4).
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6.3.2 Advection

The technique described in Section 6.4 (implicitly) requires knowledge of the path of

any streamline within the domain. For the domain specified in Section 6.2, we note the

simplicity of the velocity field, that is, u = u(y). This indicates horizontal streamlines.

Consider one such streamline, y = a (where a is some constant). According to the

above statement of the velocity field, along this streamline the velocity, u = u(a), is

also constant. The technique described in Section 6.4 (conceptually) solves combined

advection-diffusion on a point by point basis. Therefore, for any point in the domain,

equation (6.7) reduces to the 1D advection equation with constant velocity,

∂C(2)

∂t
= −u∂C

(2)

∂x
, (6.18)

with an initial condition C(2)(x, a, tl) = C(1)(x, a, tl+1).

Solving the well known equation (6.18) gives

C(2)(x, tl+1) = C(2)(x− u∆t, tl). (6.19)

6.3.3 Reaction

The final subprocess (6.8) of the decoupled system is the reaction (simple decay) term.

Given an initial condition C(x, y, tl) = C(2)(x, y, tl+1), the solution is trivially,

C(x, y, tl+1) = C(x, y, tl)e−λ∆t. (6.20)

6.4 Combined advection-diffusion-reaction

The majority of this section is devoted to combining the analytical solutions of advec-

tion and diffusion. This is the key to the technique outlined in this chapter, as reaction

is a simple extension (at least in this case) to the methodology. However, in order to

proceed, we first need to define a uniform grid of points over the domain described in

Section 6.2. This uniform grid has two functions: firstly, the solution at these points is
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the discrete representation of the continuous solution; and secondly, the grid points act

as the collocation points required to solve for the series coefficients in equation (6.15).

We define this set G = X× Y where X = {x′ : x′ is evenly spaced between (0, s)} and

Y = {y′ : y′ is evenly spaced between (0, d)}.
To solve for advection, observe the form of equation (6.19). This indicates that at

some point (x, y) after time t = ∆t, the final value of concentration C(2)(x, y,∆t) is

equal to the concentration of some upstream point (x − u(y)∆t, y) at t = 0. Since

a function is available to find the initial concentration anywhere within the domain,

equation (6.4), all that is required is the location of the upstream point.

Setting the uniform grid, G = (x′, y′), as the end points of the advection process

after t = ∆t, and using the velocity field u(y), the starting locations of advection are

revealed as the set of points A = {(ξ, η) : (x′ − u(y′)∆t, y′)}, that is, the coordinates

of an advecting particle are transformed from (ξ, η) → (x′, y′) over the period t =

0 → ∆t (or t = tl → tl+1). For all intents and purposes, this is the Semi-Lagrangian

scheme (or modified method of characteristics) sometimes used in numerical modelling

(Hundsdorfer and Verwer, 2003). This result can be seen in Figure 6.2. The square

markers represent the uniform grid, G, while the cross markers represent the starting

points of advection, A. The dotted lines connecting these markers are the streamlines.

We define the velocity field in this figure to be a Gaussian distribution in the y-axis,

u(y) = ue
−

(y−y0)
2

2σ2
y . (6.21)

To solve for combined advection-diffusion, all the required information is now at

hand. Given the set G = (x′, y′), it is a simple matter to find the initial concentration

on the uniform grid, C(1)(x′, y′, 0), utilising equation (6.4). This result is then used

in equation (6.15) to obtain the series coefficients. The diffusion solution (6.12) is

now available, but instead of solving for C(1)(x′, y′,∆t), we solve for the concentration

field at A, that is, C(1)(ξ, η,∆t). In doing so, diffusion is solved from t = 0 → ∆t at

the set of points that will then advect to the uniform grid over the period t = 0 →
∆t. This is the essence of the SSO scheme described in Section 6.1, with the result,
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Figure 6.2: Upstream advection from the original uniform grid, G (square markers), to
the starting locations of advection, A (cross markers). The dotted lines connecting the two
are streamlines.

C(2)(x′, y′,∆t) = C(1)(ξ, η,∆t), being combined advection-diffusion.

Finally, to get combined advection-diffusion-reaction, all that’s required is to substi-

tute the above result into equation (6.20). That is, C(x′, y′,∆t) = C(1)(ξ, η,∆t)e−λ∆t.

The above procedure can then be repeated for L discrete split steps, as described in

Section 6.1. For convenience, we refer to the method described in this section as the

split analytical operator technique.

6.5 Split operator error and commutativity

Typically, when solving ADR problems, split operator techniques combine numerical

solutions of each subprocess. In such cases, there are two sources of error: truncation

error, that is, the error inherent to the numerical solution for that particular subprocess;

and splitting error, the inherent numerical error caused by splitting the subprocesses

in the first place (Gasda et al., 2011). In this chapter, by solving each subprocess
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analytically, we remove (theoretically) the first of these sources of error. (Note that

the analytic series solutions used in this chapter also have some associated truncation

error, but this can be made as small as we choose.) This leaves splitting error to be

considered.

In SO schemes there are certain special cases where splitting error disappears.

These are when the subprocesses, advection, diffusion and reaction, are commutative

(Csomos et al., 2005). That is, if the order in which we combine these subprocesses

makes no difference to the solution, for example, advection-diffusion-reaction, as op-

posed to diffusion-reaction-advection, then the problem is commutative. Using the

Lie operator formalism, Lanser and Verwer (1999) show that with exact integration

of each subprocess, the problem is commutative if R is linear in C, and u, D and R

do not vary in space. Additionally, if the problem is commutative, the SO technique

only requires one split step for an accurate solution, that is, L = 1. Increasing L (and

therefore reducing ∆t) does not improve the result. Given analytical solutions of each

subprocess, if the problem is commutative then the split operator technique will give

the exact solution of the ADR equation. In Section 6.6 we compare one such case (that

meets the above requirements of commutativity) with a purely analytical solution.

However, for most practical situations splitting error exists and needs to be min-

imised. One technique is to reduce the size of the splitting step, ∆t. As ∆t → 0,

this splitting error has been formally shown to converge (Gasda et al., 2011), so in

general, the smaller the splitting step, the more accurate the solution. In addition, the

choice of SO technique can also reduce this splitting error. For example, second order

Strang splitting (an alternating SO technique) is more accurate than the first order

SSO method used in this chapter. Further insight into this splitting error can be found

using the Lie operator formalism (Lanser and Verwer, 1999).

6.6 Results

In this chapter we present two examples: the first with a constant velocity throughout

the domain; and the second with a variable velocity in the y-axis (the Gaussian velocity
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field described in equation (6.21)). In the first of these, we compare the split analytical

operator solution with a purely analytical solution of the coupled problem (details of

the purely analytical solution can be found in Appendix A.5). In the second example

(for which no closed form solution is available) we solve the split analytical operator

problem for successively smaller split steps (that is, ∆t→ 0 as L increases), and check

for convergence of the solutions. In addition, given that the resolution of the grid will

characterise the solution, we also test for RMS error convergence as the uniform grid

is refined.

For the first example with constant velocity, the parameters used are: s = 1; σx =

σy = 1/16; u = −100 (right to left); λ = 10 (sink term); t = 0.002; ∆t = 0.002 (that is,

one split step); M ′ = N ′ = 100 (uniform grid); and M = N = 100 (series coefficients).

(Note that the problem has been non-dimensionalised for the diffusion coefficient.) We

find the split analytical operator solution of combined advection-diffusion-reaction for

our domain (Section 6.2), using the methods described in Sections 6.3 and 6.4. The

above parameters meet the requirements of commutativity as discussed in Section 6.5,

therefore, it follows that the result (Figure 6.3) should be the exact solution of the ADR

problem. Comparing this result to the purely analytical solution found using series

solutions (Appendix A.5), revealed that for the majority of the domain the difference

between the two solutions is of the order 10−14, that is, machine precision. However,

close to the boundaries, x = 0 and x = s, this difference increases according to the

proximity of concentration levels greater than zero (in this case, to approximately 10−5).

This difference appears to be largely a consequence of the advection subprocess of the

SO technique. The coupled solution of Appendix A.5 enforces the boundary condition,

C = 0, for both advection and diffusion, however the split analytical operator technique

only enforces the boundary condition for diffusion, with the classical analytical solution

of advection (6.19) having infinite boundaries. Even so, for this example a mass balance

analysis (refer to Appendix A.6 for details) revealed that the two solutions agreed

extremely well, with a mass balance ratio of 0.99999678.

The second example considered in this chapter will assume similar parameters as

that of the first example, with the notable difference of a Gaussian velocity field in the
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Figure 6.3: Split analytical operator solution of the ADR equation with a constant
velocity field. Contours are projected onto a 2D (lower) plane to aid in visualisation. The
grey wire mesh represents the initial concentration distribution. Concentration values are on
the vertical axis, with the horizontal plane representing the 2D spatial domain.

y-axis, equation (6.21), with u = −100 and σy = 1/20. Figure 6.4 shows the result

after t = 0.002 with one split step. The introduction of an axis dependent velocity

field violates the parameter requirements for commutativity, and therefore Figure 6.4

will vary from a purely analytical solution. As an analytical solution is unavailable

for comparison, we solve for successively smaller split steps (∆t → 0). Figure 6.5

is the final result of the split analytical operator solution after 50 split steps. (This

result was achieved in (approximately) nine seconds on a standard pc (Intel Core 2

Duo cpu, 2.33GHz, 1.96GB ram, Matlab), and compares more than favourably with

most finite difference implementations that are only achieving modest accuracy.) The

rate of convergence for the second example is shown in Figure 6.6 (u = −100). For

comparison, two similar examples varying only in velocity, u = −10 and u = −1, are

also presented. As can be seen, as the peak velocity decreases, that is, the problem

becomes more diffusion dominated, the convergence properties improve. For these
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Figure 6.4: Split analytical operator solution of the ADR equation (with Gaussian velo-
city field) for 1 split step. Contours are projected onto a 2D (lower) plane to aid in visual-
isation. The grey wire mesh represents the initial concentration distribution. Concentration
values are on the vertical axis, with the horizontal plane representing the 2D spatial domain.

examples, the convergence appears to be algebraic with the gradients of the curves

in Figure 6.6 all approximately equal to two, that is, quadratic convergence. For our

specific example, u = −100, the solutions for one split step (Figure 6.4) and 50 split

steps (Figure 6.5) vary by about 23% (RMS difference between the two solutions,

divided by the RMS of the 50 split steps solution). The solutions for 49 split steps and

50 split steps vary by about 0.008%.

Finally, given that the number of grid points characterises the continuous solution,

Figure 6.7 tests the effect of refining the grid against RMS error convergence. The num-

ber of grid points in each axis are continually doubled, M ′ = N ′ = {100, 200, 400, 800,
1600}, and the RMS error between successive solutions is plotted against the finer grid.

All other parameters are those of the second example.
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Figure 6.5: Split analytical operator solution of the ADR equation (with Gaussian ve-
locity field) for 50 split steps. Contours are projected onto a 2D (lower) plane to aid in
visualisation. The grey wire mesh represents the initial concentration distribution. Concen-
tration values are on the vertical axis, with the horizontal plane representing the 2D spatial
domain.

6.7 Discussion and conclusions

This chapter has presented a technique to combine analytical solutions of advection,

diffusion and reaction, in a manner that is conceptually similar to the well known split

operator methodology. Given an analytical solution for diffusion within the domain,

the Semi-Lagrangian approach of connecting each final grid point with a calculated

upstream starting location means advection becomes part of the diffusion calculation,

by simply calculating diffusion at the upstream set of points. But unlike traditional im-

plementations of Semi-Lagrangian schemes (that is, to numerical techniques), there is

no interpolation required to merge advection and diffusion at these upstream locations.

However, despite analytical solutions of each subprocess, Figure 6.7 demonstrates that

the resolution of the grid plays a role in the accuracy of the solution.

The main advantage of the split analytical operator technique presented here is
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Figure 6.6: Rate of convergence for the split analytical operator technique as the number
of split steps increase. The RMS error is between the lth and the (l − 1)th split steps.

improved accuracy; the same advantage as any analytical technique compared to its

numerical equivalent. Using analytical solutions for each subprocess removes one of the

two major sources of error of split operator methods, leaving only splitting error to be

considered. As stated previously, this splitting error is not always present, but when

it is, can be mitigated by reducing the size of the splitting step, ∆t. In addition, there

are other SO techniques available to reduce this splitting error further. Higher order

schemes such as Strang splitting have been shown to improve results, as do iterative

split operator methods, which attempt to eliminate or control splitting error through

an iterative process. We leave the reduction of splitting error in the technique presented

here for future consideration. However, we note that even when reductions to the size

of the splitting step are required (effectively time discretisation), spatially, the solution

C(x, y, t) is a continuous function. (Although the resolution of the uniform grid in

the split analytical operator technique affects the accuracy of the solution, it is not

a spatial discretisation of the problem in the traditional sense.) This is in contrast
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Figure 6.7: Rate of convergence for the split analytical operator technique as the number
of grid points are quadrupled. The test cases are M ′ = N ′ = {100, 200, 400, 800, 1600}. The
number of series coefficients are held constant at M = N = 100. All other parameters are as
for the second example in Section 6.6.

to methods such as finite difference schemes that require both temporal and spatial

discretisation.

The examples presented in this chapter were, for reasons of illustration, relatively

simple. The uniform grid, G, and constant time step, ∆t, provide advantages, such as

the efficient calculation of series coefficients using collocation, and the need for only

one set of upstream locations, A; but these conditions are not necessary. At the cost

of increased complexity, the split analytical operator technique can accommodate non-

uniform grids and variable time steps. However, the split analytical operator technique

may be most useful in its potential application to non-uniform flow fields; an application

that is difficult for other methods. For example, in Chapter 2 we solve analytically for

the 2D flow field beneath saline aquaculture ponds. This type of implicit solution

allows for the numerical calculation of any streamline in the domain to analytical

accuracy. The technique described in this chapter is suitable for this type of problem,
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as it requires only the final upstream location of an advecting particle after time ∆t.

The complexity of the streamline is irrelevant, so long as the upstream location is

accurate.

This chapter has presented a technique to combine analytical solutions of advec-

tion, diffusion and reaction. Analytical solutions have been combined before using

the split operator methodology (for example, Valocchi and Malmstead, 1992), but so

far as the authors are aware, previous incarnations were 1D implementations only,

simply added together for the purpose of investigating splitting error. The method

presented here avoids interpolation for computed upstream concentrations, and shows

some promise for providing accurate results for a range of problems hitherto restricted

to purely numerical techniques. Indeed, it may also provide an alternative for some

purely analytical solutions that meet the requirements of commutativity, such as that

in Appendix A.5. Because of its exponential transform (A.28), when Appendix A.5

was applied practically it could not be solved over the equivalent range of values as the

split analytical operator implementation.
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7.1 Introduction

In this chapter we use the split analytical operator technique (Verrall and Read, 2015)

(Chapter 6) to model advective-diffusive contaminant transport from leaky saline ponds

throughout a freshwater aquifer below. The split analytical operator technique solves

each transport subprocess analytically (or quasi-analytically), and combines the solu-

tions sequentially; that is, the result of the first subprocess is used as the initial con-

dition for the second subprocess. The accuracy of this technique is further improved

by splitting the whole problem into L (l = 1...L) discrete time intervals (∆t), where

each pair of subprocesses are solved for l∆t, and the solution of the second subprocess

is used as the initial condition for the first subprocess of (l + 1)∆t.

This chapter is organised as follows. In Section 7.2 an overview of the specific

problem to be solved is presented. Section 7.3 gives analytical (or quasi-analytical)

solutions of the advection and diffusion subprocesses, with the combined advection-

diffusion model presented in Section 7.4. Section 7.5 provides results for a given set of

aquifer parameters, and finally, a discussion is presented in Section 7.6.

7.2 Hydrogeology and problem description

The problem to be modelled in this chapter is that of a leaky saltwater pond situated

above a freshwater aquifer. The aquifer is assumed to be rectangular, with constant

hydraulic conductivity. The bottom of the aquifer is impermeable bedrock, while the

upstream (right) side boundary lies beneath the centre of the pond and hence acts

as a line of symmetry for the purposes of advection and diffusion. The downstream

(left) side boundary is placed well outside the area of interest and therefore assumed

impermeable for convenience. Finally, the top boundary is the water table and the

surface of the pond, with a smooth transition between the two. (Note, for simplicity

we assume there is no unsaturated zone, that is, the water table coincides with the soil

surface.) The height of the pond provides the driving potential of advective saltwater

contamination. Outside the ponds the air/water interface precludes diffusion across
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this top surface. At the saltwater/freshwater interface immediately beneath the ponds

we assume no diffusion for convenience. (Note, this assumption will be discussed further

in Section 7.6.) A schematic of the domain is presented in Figure 7.1.

We want to find the extent of contamination throughout the freshwater aquifer as

a result of advective-diffusive transport from the saline pond. That is, we need to solve

the advection-diffusion equation,

∂C∗

∂t∗
= −∇∗ · (u∗C∗) +∇∗ · (D∗∇∗C∗), (7.1)

for the domain in Figure 7.1, where C∗ is the concentration, D∗ is the diffusion coef-

ficient, and u∗ is the bulk velocity of the solvent. Note that in the general equation

above, the terms D∗ and u∗ may vary with space, time, or the concentration C∗.

Also note that asterisk subscripts represent dimensional variables; these will later be

dropped when the problem is non-dimensionalised.

7.3 Analytical/quasi-analytical solutions

As mentioned in the introduction, the model in this chapter is an application of the

split analytical operator technique presented in Chapter 6. That is, analytical (or

quasi-analytical) solutions of advection and diffusion are combined using the split op-

erator methodology. Decoupling advection and diffusion from equation (7.1) gives the

following system,

∂C
(1)
∗

∂t∗
= −∇∗ · (u∗C

(1)
∗

), (7.2)

∂C
(2)
∗

∂t∗
= ∇∗ · (D∗∇∗C

(2)
∗

), (7.3)

each of which are solved separately in the following subsections.
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Figure 7.1: Domain being considered throughout this chapter.

7.3.1 Advection

Verrall et al. (2009b) (Chapter 2) describe a quasi-analytical Lagrangian approach

to modelling advective contamination, which allows for the numerical tracing of any

streamline within the domain to analytical accuracy. That is, the extent of contamin-

ation within the domain (Section 7.2) is found by numerically integrating (over time)

along the streamlines of the analytically resolved flow domain. For the details of

this quasi-analytical solution, we refer the reader to Chapter 2. However, for self-

containedness, we present a brief outline and the relevant equations in the remainder

of this subsection.

For the domain of Section 7.2, the solution is confined to an aquifer of constant

hydraulic conductivity, K∗. Within the saturated aquifer, we assume the seepage
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velocity u∗ = (u∗, v∗) satisfies Darcy’s law,

u∗ = −K∗∇∗φ∗(x∗, y∗), (7.4)

where φ∗(x∗, y∗) is the hydraulic head. Upon invoking the continuity condition, we

obtain Laplace’s equation for the saturated flow domain,

∇2
∗
φ∗(x∗, y∗) = 0, (7.5)

with the boundary conditions given by

v∗(x∗, 0) = −K∗

∂

∂y∗
φ∗(x∗, 0) = 0, (7.6)

u∗(0, y∗) = −K∗

∂

∂x∗
φ∗(0, y∗) = 0, (7.7)

u∗(s∗, y∗) = −K∗

∂

∂x∗
φ∗(s∗, y∗) = 0, (7.8)

φ∗(x∗, d∗) = ht
∗
(x∗), (7.9)

where ht
∗
(x∗) is the height of the water surface along the top boundary. The boundary

value problem is now fully defined and can be solved for φ∗(x∗, y∗). Once this is found,

the stream function and the pore velocity become available.

The Cauchy-Riemann equations,

∂ψ∗

∂y∗
= K∗

∂φ∗

∂x∗
,

∂ψ∗

∂x∗
= −K∗

∂φ∗

∂y∗
, (7.10)

give the stream function ψ∗(x∗, y∗), and allow the tracing of any streamline desired.

The pore velocity U∗(x∗, y∗) is related to the seepage velocity by the porosity σ,

where 0 < σ < 1 and σ is assumed constant, by

u∗ = σU∗. (7.11)
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Hence,

U∗ = (U∗, V∗) = −K∗

σ

(

∂φ∗

∂x∗
,
∂φ∗

∂y∗

)

. (7.12)

At this point we non-dimensionalise the problem using the hydraulic conductivity

K∗, and the depth of the aquifer d∗. That is,

x∗ = d∗x, y∗ = d∗y, a∗ = d∗a, s∗ = d∗s, h∗ = d∗h, (7.13)

ht
∗
(x∗) = d∗h

t(x), φ∗(x∗, y∗) = d∗φ(x, y), ψ∗(x∗, y∗) = d∗K∗ψ(x, y), (7.14)

t∗ =
σd∗
K∗

tA, u∗ = K∗u, U∗ =
K∗

σ
U, (7.15)

where h∗ is the height of the saltwater ponds above the water table, and tA is dimen-

sionless time (with the subscript denoting scaling for advection).

There are three points to note here. First, the dimensionless parameters can be

obtained simply by removing the asterisk subscript from their dimensional equivalent.

Second, since d∗ = d∗d, the dimensionless depth d of the aquifer is d = 1. Finally, the

dimensionless pore velocity U has been scaled by the (dimensionless) porosity σ.

The hydraulic head φ(x, y) is now solved using the classic separation of variables

(Carrier et al., 1966) approach. The series solution obtained is truncated after N + 1

terms to give

φ(x, y) =
N
∑

n=0

An cosh
nπy

s
cos

nπx

s
, (7.16)

which satisfies the bottom and side boundary conditions exactly, with the remaining

boundary condition (7.9) (after being non-dimensionalised) used to evaluate the series

coefficients An, n = 0, 1, . . . , N . This is a standard cosine series, with

A0 =
1

s

∫ s

0

ht(x) dx, (7.17)

An =
2

s

∫ s

0

ht(x) cos
nπx

s
dx, n 6= 0. (7.18)

Once the series solution for the hydraulic head φ(x, y) has been determined, the
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pore velocity field U = (U, V ) can be calculated by differentiating the series,

U = (U, V ) = −
(

∂φ

∂x
,
∂φ

∂y

)

. (7.19)

The pore velocity at any point is also given by

U =

(

dx

dtA
,
dy

dtA

)

, (7.20)

where now the location at which the pore velocity is calculated is parameterised using

(non-dimensional) time tA as a parameter. That is, x ≡ x(tA), y ≡ y(tA). Thus, from

equations (7.19) and (7.20), the time tA taken for a neutrally buoyant particle to be

advected along a stream line from (x0, y0) to (x(tA), y(tA)) is

tA =

∫ x(tA)

x0

dx

U
= −

∫ x(tA)

x0

dx

∂φ/∂x
(7.21)

=

∫ y(tA)

y0

dy

V
= −

∫ y(tA)

y0

dy

∂φ/∂y
. (7.22)

Rearranging equations (7.21) and (7.22) gives the (approximate) distances (δx, δy)

a particle is advected in the x and y directions over a small time interval δtA,

δx ≈ −∂φ
∂x
δtA, (7.23)

δy ≈ −∂φ
∂y
δtA. (7.24)

Consider at time tA = τ0 a discrete set of I > 0 points (xi,0, yi,0), i = 1, . . . , I. Then,

for any time τJ = τ0 + JδtA, J > 0, the approximate location of the advection front

(xi,J , yi,J) is found by calculating the intermediate points (xi,j , yi,j), j = 1, . . . , J − 1

using the difference equations

xi,j ≈ xi,j−1 −
(

∂φ

∂x

)

i,j−1

δtA, (7.25)

yi,j ≈ yi,j−1 −
(

∂φ

∂y

)

i,j−1

δtA, (7.26)
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Figure 7.2: Extent of solute advection along streamlines after tA = 200, 000.

where

(

∂φ

∂x

)

i,j

=

(

∂φ(x, y)

∂x

)

x=xi,j
y=yi,j

, (7.27)

(

∂φ

∂y

)

i,j

=

(

∂φ(x, y)

∂y

)

x=xi,j
y=yi,j

. (7.28)

For sufficiently small δtA (that is, sufficiently large J), this will converge to the advec-

tion front at time τJ . Using this algorithm, we can predict the advection of solutes from

any initial location in the flow domain. Chapter 2 chose the initial location for solute

advection as the water table, immediately below the aquaculture ponds (a ≤ x ≤ s).

Figure 7.2 shows the result of such a process. As can be seen, many streamlines are

incomplete, with the end points representing the final location of solute transport.
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7.3.2 Final advection result

Now, let’s consider the classical solution of the 1D advection equation (with constant

velocity µ),

C(x, t) = C(x− µt, 0). (7.29)

This indicates that at some point x after time t, the final value of concentration is

equal to the concentration of some upstream point x− µt at t = 0. To find this point

(given known values of x, µ and t), all that’s required is a trivial substitution. This

1D problem is essentially a single streamline, with the solution being the result of

backtracking along this streamline to the initial upstream point. Tying this idea to

the above analytical solution of the velocity field (U, V ), and the numerical integration

(over time) along the streamlines, then the final advection result is

C(1)(x, y, tA) = C(1)(x−
∫ tA

0

U(x(tA), y(tA))dtA , y−
∫ tA

0

V (x(tA), y(tA))dtA , 0). (7.30)

7.3.3 Diffusion

For the domain of Section 7.2, we solve for the purely diffusive case (again) using

analytic series methods. When applied to a regular (Eulerian) grid, this technique

produces fast, accurate results for any time period required. Moreover, the coefficients

obtained for this solution can be used to evaluate any point in the domain, not just on

the original grid. This is an important property of the solution. For the details of this

purely diffusive solution, we refer the reader to Verrall and Read (2012) (Chapter 4).

However, for self-containedness, we present a brief outline and the relevant equations

in the remainder of this subsection.

The diffusion problem is formulated mathematically as follows. Inside the aquifer,

∂

∂x∗

(

D∗

∂C
(2)
∗

∂x∗

)

+
∂

∂y∗

(

D∗

∂C
(2)
∗

∂y∗

)

=
∂C

(2)
∗

∂t∗
, (7.31)

where C
(2)
∗ (x∗, y∗, t∗) is the concentration of solute at any point (x∗, y∗) in the domain
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at time t∗. From Section 7.2, there is no diffusion across any boundary, therefore,

D∗

∂

∂x∗
C(2)

∗
(0, y∗, t∗) = D∗

∂

∂x∗
C(2)

∗
(s∗, y∗, t∗) = 0, (7.32)

D∗

∂

∂y∗
C(2)

∗
(x∗, 0, t∗) = D∗

∂

∂y∗
C(2)

∗
(x∗, d∗, t∗) = 0, (7.33)

where s∗ and d∗ are the length and depth of the aquifer, respectively.

We non-dimensionalise the problem in terms of the depth of the aquifer, d∗ (same

as advection), the concentration of the ponds, C0
∗
, and the diffusivity, D∗; that is,

s∗ = d∗s, x∗ = d∗x, y∗ = d∗y, C(2)
∗

= C0
∗
C(2), t∗ =

d2
∗

D∗

tD, (7.34)

where tD represents dimensionless time (with the subscript denoting scaling for diffu-

sion).

Equation (7.31) becomes the non-dimensional equivalent

∇2C(2) =
∂C(2)

∂tD
, (7.35)

with boundary conditions

∂

∂x
C(2)(0, y, tD) =

∂

∂x
C(2)(s, y, tD) = 0, (7.36)

∂

∂y
C(2)(x, 0, tD) =

∂

∂y
C(2)(x, d, tD) = 0. (7.37)

Using separation of variables (refer to Appendix A.2 for details), and truncating after

m =M , n = N terms, the series solution of equation (7.35) is

C(2)(x, y, tD) =
N
∑

n=0

M
∑

m=0

Bmn cos
mπx

s
cos

nπy

d
e−γ2

mntD , (7.38)

where

γ2mn = (
m2

s2
+
n2

d2
)π2 (7.39)
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and Bmn are the series expansion coefficients. These can be obtained from an ortho-

gonality relationship or (as in the manner of this chapter) by using a theoretically

equivalent collocation/discrete least squares approach (Trefethen, 2000):

C(2)(xi, yj, 0) =
N
∑

n=0

M
∑

m=0

Bmn cos
(mπxi

s

)

cos
(nπyj

d

)

(7.40)

at M ′N ′ collocation points (xi, yj), i = 0, . . . ,M ′; j = 0, . . . , N ′, where M ′ ≥ M + 1,

N ′ ≥ N + 1. (M ′ = M + 1, N ′ = N + 1 for a ‘pure’ collocation or pseudo-spectral

approach. This is the approach used in this chapter.) In this case, the solution process

devolves into solving for B in the matrix equation

XTC(2)Y T =
(

XTX
)

B
(

Y Y T
)

, (7.41)

where, for i = 0, . . . ,M ′, j = 0, . . . , N ′, m = 0, . . . ,M , n = 0, . . . , N ,

[X]im = cos(mπxi/s), [Y ]nj = cos(nπyj/d), (7.42)

[C(2)]ij = C(2)(xi, yj), [B]mn = Bmn. (7.43)

7.3.4 Final diffusion result

The spatial scaling, d∗, is the same for the dimensionless solutions of advection and

diffusion; however, this is not true of the temporal scaling. In the following section we

combine the dimensionless solutions of advection and diffusion, and these time scales

need to be the same. The (dimensional) time for advection t∗ is given in terms of the

dimensionless advection time tA by equation (7.15). This must be the same as the

(dimensional) time for diffusion t∗, given in terms of the dimensionless diffusion time

tD by equation (7.34),

t∗ = tA
σd∗
K∗

= tD
d2
∗

D∗

. (7.44)
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Therefore, rearranging we obtain the relationship

tD =
D∗σ

K∗d∗
tA = αtA, (7.45)

where

α =
D∗σ

K∗d∗
. (7.46)

The dimensionless parameter α is used to scale the dimensionless solution of advection

to the dimensionless solution of diffusion. This parameter would not be required if

the advection and diffusion solutions were left dimensional; however, the advantages

of a general non-dimensional solution outweighs this added complexity. We choose the

dimensionless scaling for advection (as this is more convenient) as the time parameter

for combining advection and diffusion. Therefore, equation (7.45) modifies equation

(7.38) to

C(2)(x, y, tA) =
N
∑

n=0

M
∑

m=0

Bmn cos
mπx

s
cos

nπy

d
e−γ2

mnαtA . (7.47)

7.4 Combining advection and diffusion

An analytical solution of the combined advection-diffusion problem stated in Section 7.2

is currently unavailable. This chapter doesn’t attempt to find such a solution, but

instead combines the preceding analytical solutions of advection and diffusion using a

simple numerical technique. However, each solution is fundamentally different, with

advection adhering to the Lagrangian approach (where a particle is followed as it moves

through a porous medium), and diffusion following the Eulerian approach (where a

point in space is observed while particles pass through it) (Bear, 1979). The problem

is therefore, how to combine these separate solutions?

To proceed, we need to define a uniform grid of points over the domain described in

Section 7.2. This uniform grid has two functions: firstly, the solution at these points is

the discrete representation of the combined solution; and secondly, the grid points act

as the collocation points required to solve for the series coefficients in equation (7.41).

We define this set G = X × Y where X = {x′ : x′ is evenly spaced between [0, s]} and
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Y = {y′ : y′ is evenly spaced between [0, d]}.
The 2D advection solution in Section 7.3.1 traces the path of contamination by

numerically stepping along the streamlines of the domain. It starts at an initial set of

points and progresses through time to the final location of transported contaminant.

However, if we choose, it is just as easy to backtrack along streamlines over a given time

period. That is, from any point in the domain, we can backtrack along the streamline

over any time period to the initial upstream location, using a trivial modification to

the technique in Section 7.3.1.

Setting the uniform grid, G = (x′, y′), as the end points of the advection pro-

cess after some time tA = τ , and backtracking along the streamlines using the quasi-

analytical technique described in Section 7.3.1, the starting locations of advection are

revealed as the set

A = {(ξ, η) ∈ R
2 : ξ = x′−

∫ τ

0

U(x(tA), y(tA))dtA, η = y′−
∫ τ

0

V (x(tA), y(tA))dtA}.

That is, the coordinates of an advecting particle are transformed from (ξ, η) → (x′, y′)

over the period tA = 0 → τ . For all intents and purposes, this is the Semi-Lagrangian

scheme (or modified method of characteristics) sometimes used in numerical modelling

(Hundsdorfer and Verwer, 2003). This result can be seen in Figure 7.3. The square

markers represent the uniform grid, G, while the cross markers represent the starting

points of advection, A. The lines connecting these markers are partial streamlines. Any

point in the set G connected by a partial streamline to the salt/fresh interface becomes

contaminated via advection over the period tA = 0 → τ . Therefore, it’s a simple

matter to define an initial concentration C(1)(ξ, η, 0). Any point in A at the salt/fresh

interface is at the concentration of the ponds, and all other points are uncontaminated.

The velocity field in this figure is defined by equation (7.19).

To solve for combined advection-diffusion all the required information is now at

hand. As described by the split operator methodology, each subprocess is solved sep-

arately, with the result used as the initial condition for the subsequent subprocess.

In our case, finding the set A, and the initial advection concentration distribution
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Figure 7.3: Upstream advection from the original uniform grid, G (square markers), to
the starting locations of advection, A (cross markers). The lines connecting the two are
streamlines.

C(1)(ξ, η, 0), is all that’s required for the advection subprocess. That is, the initial

diffusion concentration now becomes C(2)(x′, y′, 0) = C(1)(ξ, η, 0) (since any contamin-

ation on A, advects to G, over the period tA = 0 → τ), and diffusion is solved using

the technique described in Section 7.3.3. Combined advection-diffusion is therefore

C(2)(x′, y′, τ).

The above description demonstrates how to solve for advection, then diffusion,

without any interpolation being required to merge the two processes. However, to

improve the above result we can divide the time period, τ , into L (l = 1...L) discrete

intervals, ∆tA = τ/L, and repeat the above procedure for each. That is, the starting

locations of advection become

A = {(ξ, η) ∈ R
2 : ξ = x′−

∫ τ
L

0

U(x(tA), y(tA))dtA, η = y′−
∫ τ

L

0

V (x(tA), y(tA))dtA},

and for each interval (excluding the final one), we solve for the diffusion process at
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the starting points of advection, C(2)(ξ, η, lτ
L
) (instead of C(2)(x′, y′, lτ

L
)). This ef-

fectively gives us the initial upstream concentration for each intermediate interval,

C(1)(ξ, η, (l+1)τ
L

) = C(2)(ξ, η, lτ
L
). It follows that the initial diffusion concentration at

each interval is therefore C(2)(x′, y′, (l+1)τ
L

) = C(2)(ξ, η, lτ
L
). Note, for the final interval,

instead of solving the diffusion process at the starting points of advection, we instead

solve for the regular grid, that is, C(2)(x′, y′, Lτ
L
).

7.5 Results

For the domain described in Section 7.2, we solve for combined advection-diffusion

over a period of 7,610 years, and with the following dimensional parameters: K∗ =

10−5 m/s; D∗ = 2 × 10−9 m2/s; σ = 0.3; d∗ = 40 m; s∗ = 1, 760 m; and a∗ =

1, 240 m (similar parameters to Model 1 in Chapter 2). Non-dimensionalising the

above parameters means that K∗, D∗ and σ disappear, with d = 1; s = 44; and a = 31.

In addition, we choose a grid spacing of ∆x = 0.1 in the horizontal plane, and ∆y =

0.005 in the vertical plane. From equation (7.15), the time period for which we are

solving (conveniently) becomes tA = 200, 000 dimensionless time units. To numerically

step along the streamlines for the advection component of the solution, we choose a

discrete time step of δtA = 10 dimensionless units, which has been shown to produce

accurate results for the advection only problem (Verrall et al., 2009a) (Chapter 3). The

number of split steps chosen is L = 250 (∆tA = 800). This value of L was chosen for

convenience, in that it was the optimal solution (in terms of computation time) for the

problem and parameters described in this chapter, and the particular computer system

on which the model was run. (Details on how this value of L was obtained can be

found in Appendix A.7.) The result of combined advection-diffusion with the above

parameters can be seen in Figure 7.4. The contributions from each process can be seen

in the different colours in this figure. Red represents the contribution from advection,

with blue and green representing diffusion. (It is important to note the difference

between δtA and ∆tA. The former is the size of the discrete time step used to step

along the streamlines in the advection subprocess. The latter is the size of the temporal
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Figure 7.4: Split analytical operator solution with L = 250 (benchmark solution). Con-
tours are projected onto a 2D (lower) plane to aid in visualisation. Concentration values are
on the vertical axis, with the horizontal plane representing the 2D spatial domain.

discretisation of the split analytical operator technique described in Section 7.4.)

Using the above solution as a benchmark, we now halve the spacing of the grid

points in both the horizontal and vertical axes. That is, with all else being equal,

we solve for combined advection-diffusion with four times as many grid points (and

therefore, four times as many series coefficients), and compare the solution to that of

Figure 7.4. Figure 7.5 shows the actual difference between the two solutions. The

extent of contamination is essentially the same, however, the wave between x = 20 and

x = 25 indicates a steeper concentration gradient between the contaminated and non-

contaminated regions for the solution with more grid points. That is, the benchmark

solution seems slightly more diffusive than the finer grid solution. This is likely the

result of numerical dispersion, as the slope of the concentration gradient able to be

captured at the interface between the contaminated and non-contaminated regions

depends on the relative spacing of the grid points. Between the two solutions there is

a relative RMS error of 3.5%.
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Figure 7.5: Difference between the benchmark solution and a solution with four times
the number of grid points. The bottom projection is carried over from Figure 7.4 for ease
of comparison. As can be seen, for most of the domain there is no difference between the
solutions.

Next, again using the solution seen in Figure 7.4 as a benchmark, instead of in-

creasing the number of grid points, we increase the number of split steps in the solution

to L = 2, 000. (As L increases (∆tA → 0) the solution becomes increasingly accur-

ate (Section 6.5).) Figure 7.6 shows the difference between the solutions for L = 250

(∆tA = 800) and L = 2, 000 (∆tA = 100). Again, a wave appears between x = 20

and x = 25, indicating a steeper concentration gradient between the contaminated and

non-contaminated regions for the solution with more split steps. This indicates more

diffusion in the benchmark solution. With fewer split steps, the benchmark solution

suffers from more splitting error than the more accurate solution (Section 6.5); fur-

thermore, the final diffusion step in the benchmark solution is solved over a longer

time period (∆tA = 800) than the more accurate solution (∆tA = 100). The relative

RMS error between the two solutions is 8.0%. Figure 7.7 shows the actual solution for

L = 2, 000. We discuss this figure further in Section 7.6.
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Figure 7.6: Difference between solutions where L = 250 (benchmark solution) and L =
2, 000. The bottom projection is carried over from Figure 7.4 for ease of comparison. As can
be seen, for most of the domain there is no difference between the solutions.

7.6 Discussion

This chapter investigated contamination, via combined advective-diffusive transport,

from leaky saline ponds into a lower freshwater aquifer. It did so using the split ana-

lytical operator technique (Chapter 6), which combines analytical (or quasi-analytical)

solutions of advection and diffusion by means of a simple numerical method. This

combined analytical/numerical solution of the advection-diffusion equation requires a

temporal discretisation, but unlike purely numerical methods, there is no spatial dis-

cretisation. There is, however, a discrete representation (in the form of a uniform grid)

of the continuous spatial domain for practical reasons.

In Section 7.2 we defined separate boundary conditions (b.c.’s) for advection and

diffusion. One of these b.c.’s employed a simplifying assumption of zero diffusion across

the entire top surface of the domain, that is, a Neumann (or second-type) b.c. where
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Figure 7.7: Split analytical operator solution with L = 2, 000. Contours are projected
onto a 2D (lower) plane to aid in visualisation. Concentration values are on the vertical axis,
with the horizontal plane representing the 2D spatial domain.

∂C
∂y

= 0. On closer inspection, a more accurate scenario is a mixed b.c. where

∂C

∂y
= 0, 0 ≤ x ≤ a,

C = 1, a < x ≤ s.

This indicates no diffusion across the air/water interface outside the ponds, but allows

a constant strength source at the saltwater/freshwater interface immediately beneath

the ponds. An analytical solution using the above mixed b.c. (similar to that de-

scribed in Section 7.3.3) would indeed be preferable, but given the nature of the split

analytical operator technique described in Section 7.4, is arguably unnecessary. Given

a sufficiently small temporal discretisation, ∆tA, and grid points sufficiently close to the

saltwater/freshwater interface, the alternating advection steps will deposit salt water

from the ponds inside the boundary of the solution domain from where it can freely

diffuse. This can be seen by comparing Figures 7.4 and 7.7 immediately beneath the
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saline ponds near the right y-axis. In Figure 7.7 the contaminant concentration in this

region is significantly higher than in Figure 7.4. This is also evident in the difference

between the two solutions (Figure 7.6). It is expected that in the limit, ∆tA → 0,

there is no difference between the Neumann b.c. used in this chapter and the mixed

b.c. described above.

A true analytical solution of the advection-diffusion equation is currently unavail-

able for the problem defined in Section 7.2; however, as stated in Chapter 6, the split

analytical operator technique will approach the true solution as the time discretisation

approaches zero. Figure 7.7 shows the result of combined advection-diffusion using this

methodology, with L = 2, 000 split steps. It represents the realisation of the ultimate

objective of this thesis; that is, a quasi-analytical technique to solve the advection-

diffusion equation in the domain of Figure 7.1.
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In Chapter 5, a set of 1D equations were presented that predict the extent of 2D

advection-diffusion beneath leaky contaminated ponds. These equations separate the

transport processes, and by doing so provide an insight into the relative progress and

importance of advection and diffusion within this type of domain. However, 1D simpli-

fications of the advection and diffusion processes cannot capture the full complexity of

true 2D coupled advection-diffusion. To assess how accurate these 1D simplifications

are, in this chapter we compare them to the most accurate solutions (∆tA = 100) of

the split analytical operator (SAO) technique from Chapter 7.

To compare the two techniques, we choose a set of values for the parameters α,

δ and h, and find the mean relative absolute error between the two methods for a

range of breakthrough concentration levels along the water table. Given the work of

Chapters 6 and 7, we assume that the split analytical operator technique will give

the most accurate solution, therefore results from this technique will be the basis

for comparison. Table 8.1 shows results for three sets of parameter values. These

particular values were selected because they span a large range of the parameter sets

tested, and they are representative of the relative error between the two techniques.

The highlighted row in Table 8.1 represents the parameters α = 1.5 × 10−6, δ = 4,

h = 0.075, and a breakthrough contaminant concentration level of 50%. This is the

specific example used in Chapters 2, 3, 4 and 7.

To quantify the difference between the two methods, we first convert results from

the split analytical operator technique to be similar in form to the equations from

Chapter 5. That is, we track various breakthrough concentration fronts as they progress

along the water table to obtain functions relating the distance, X, contamination

has spread from the pond boundary versus the time taken to get there. Using these

functions we then select a set of evenly spaced points along the water table, and find

the time required to reach each of those points. These values of time are substituted

into the functions from Chapter 5 to find the distance, X, predicted by the simplified

1D equations. The difference between the distances, ∆X, predicted by each technique

is the absolute error.

As can be seen in Table 8.1, the error between the two techniques varies anywhere



123

α = 1.5× 10−6, δ = 4, h = 0.075 α = 1.5× 10−4, δ = 2, h = 0.075 α = 1.5× 10−8, δ = 1, h = 0.075

Concentration Relative error Concentration Relative error Concentration Relative error

0.01 0.15 0.01 0.18 0.01 0.22
0.03 0.13 0.03 0.16 0.03 0.19
0.05 0.13 0.05 0.16 0.05 0.17
0.08 0.13 0.08 0.17 0.08 0.16
0.10 0.13 0.10 0.17 0.10 0.15
0.15 0.12 0.15 0.17 0.15 0.13
0.20 0.12 0.20 0.17 0.20 0.11
0.30 0.10 0.30 0.15 0.30 0.08
0.40 0.09 0.40 0.13 0.40 0.06
0.50 0.08 0.50 0.11 0.50 0.04
0.60 0.06 0.60 0.08 0.60 0.03
0.70 0.04 0.70 0.05 0.70 (0.04)
0.80 0.04 0.80 (0.06) 0.80 (0.07)
0.90 (0.05) 0.90 (0.12) 0.90 (0.11)

Table 8.1: ‘Concentration’ in the above table represents the breakthrough concentration
front being tracked along the water table. Values vary between 0.01 (1%) and 0.9 (90%) of the
original pond concentration. The ‘Relative error’ is the mean relative absolute error between
the 1D equations and the SAO technique. In general, the 1D equations underestimate the
amount of contamination, as demonstrated in Figure 8.1. However, when the 1D equations
overestimate the amount of contamination, these relative error values are in brackets.

up to 22% (at least for all the various permutations of the parameters tested). This

difference is largely attributable to the simplification (for the 1D equations) that advec-

tion and diffusion are dominant at different times and in different parts of the domain.

While this is generally true, in the region where diffusion becomes dominant over ad-

vection, both transport processes will (for a time) be of the same order of magnitude.

Therefore, in this region more transport is occurring than is being captured by the

simple equations.

To get a visual representation of the difference between the two methods, in Fig-

ure 8.1 we plot each technique’s predicted 50% breakthrough curve along the water

table for the parameters α = 1.5 × 10−6, δ = 4 and h = 0.075 (the highlighted row

from Table 8.1). This figure is an embellishment of Figure 4.5 from Chapter 4, which

includes results from the numerical groundwater modelling package SUTRA (Voss and

Provost, 2002). Figure 8.1 is composed of two parts, a general view (Figure 8.1a) and

a magnified view (Figure 8.1b), each showing the comparison between the techniques.

As can be seen, the curves produced by the simplified equations and the split analytical

operator technique are the same basic shape. The difference between them (as meas-

ured from the pond boundary) appears to be fairly consistent, with the mean absolute
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(a) Relative progress of contamination along the water table.
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Figure 8.1: Comparative contaminant progress along the water table via combined
advection-diffusion, for the simplified 1D equations, the split analytical operator technique,
and SUTRA.
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relative error being 0.08 (8%). (As an aside, the numerical package SUTRA and the

SAO technique are in good agreement, only varying by about 2%. As such, results

from SUTRA for this type of domain are given further confirmation. That is, given

its quasi-analytical nature, and in the absence of a true analytical solution, the SAO

technique may prove useful in validating numerical simulations.)

The 1D simplified equations are derived from an idealised rectangular domain with

constant hydraulic conductivity, and as such can only approximate a real domain. That

is, any real domain will not be perfectly rectangular and will likely have heterogeneities

in the soil matrix that will affect the advection and diffusion processes. Given this

fact, the errors presented in Table 8.1 seem acceptable for the purposes of estimation

or rapid calculation in the field. If a correction is desired, then the extent of the region

predicted to be contaminated from the pond boundary can easily be modified via the

error values found in Table 8.1. For example, Figure 8.2 demonstrates a correction of

8% for the simplified advection and diffusion curves in Figure 8.1. However, given that

there is some variation in the errors presented in Table 8.1, perhaps an easier approach

is to simply assign, let’s say, a 25% correction across the board. That is, Xcorrected =

X(1 + 0.25) for any set of parameters or breakthrough contaminant concentration

levels. This correction could be incorporated into the coefficients of the simplified

1D equations, resulting in a conservative estimate of the contaminant front for any

situation.
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Figure 8.2: Comparative contaminant progress along the water table via combined
advection-diffusion, for the simplified 1D equations, corrected 1D equations, the split ana-
lytical operator technique, and SUTRA.
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9.1 Thesis summary

This thesis has explored quasi-analytical techniques for predicting contaminant trans-

port via advection and diffusion beneath leaky saline ponds. In Chapter 2, the process

of advection was considered, with a closed form solution for the potential function,

stream function and velocity field derived via the series solutions method. Numerically

integrating along different streamlines gave the location (or advection front) of salt wa-

ter throughout the domain for any predefined upper time limit. The work of Chapter 2

was extended in Chapter 3 by introducing an improved numerical method for finding

the advection fronts.

Chapter 4 examined the contribution of diffusion to contamination of groundwater

from leaky saline ponds. A temporal discretisation was used to extend an analytical

solution of pure diffusion to take into account a constant strength source condition.

This was used to predict where and when diffusion becomes the dominant transport

process over advection (using knowledge of the advection process gained in Chapter 2).

A method was established to find when contamination occurs at any point in the

aquifer, given knowledge of its physical parameters.

In Chapter 5, the quasi-analytical techniques from Chapters 3 and 4 were used

to extensively model contamination beneath leaky saline ponds. From these results,

useful simplified approximate equations were discovered which simplify the process of

predicting the extent of contamination beneath leaky ponds. The equations incorpor-

ate both advection and diffusion, and provided the underlying simplifications (constant

hydraulic conductivity, no density driven flow and a rectangular domain) are reason-

able, the equations can accommodate ponds of variable height, aquifers of variable

depth, and variable thresholds of contamination.

Chapter 6 combined the techniques developed in Chapters 2 and 4 to produce a

novel quasi-analytical method for combined advection-diffusion. For ease of referral

we called this the split analytical operator technique. This chapter departed from

the familiar leaky contaminated pond problem in preference of a simpler domain; this

was for demonstrative and explanatory purposes. The new method is based on the
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split operator technique and the Semi-Lagrangian scheme, and combines analytical

solutions of advection and diffusion. Using this technique it was also found that a

reaction process of the contaminant could be easily incorporated.

Chapter 7 applied the split analytical operator technique derived in Chapter 6 to

the leaky contaminated pond problem. This chapter realised the ultimate objective

of this thesis, that is, an accurate solution for combined advection-diffusion beneath

a leaky contaminated pond. Results from this quasi-analytical model were used in

Chapter 8 to confirm the utility of the simplified 1D equations revealed in Chapter 5.

9.2 Future work

The results and techniques presented in this thesis have considerable scope for fur-

ther investigation and/or development. The following suggestions are by no means

exhaustive, but are ideas that occurred to the author during the course of this work.

Recall the simple 1D equations presented in Chapter 5. These equations only

consider a rectangular domain with a constant hydraulic conductivity, and groundwater

advection as a consequence of the height potential of the saline ponds. The point

of these 1D equations is to simplify the modelling of the leaky pond problem, so it

doesn’t make sense to try to incorporate non-rectangular domains or variable hydraulic

conductivity. Even if these infinite different scenarios could be included, the added

complexity would render the resulting equations less intuitive, or practical, than a

numerical modelling package. However, a useful addition would be to incorporate an

underlying horizontal flow of groundwater. This should be possible using techniques

similar to those presented in Chapters 2, 3 and 4.

For scenarios such as fresh groundwater sitting above a lower saline layer, described

in Chapter 2, it should be possible to find empirical equations similar to those presen-

ted in Chapter 5. Such a situation would be complicated by diffusion from the lower

saline layer; however, this lower (non-constant strength) diffusion source can be ac-

commodated by the iterative diffusion technique from Chapter 4.

The split analytical operator method explored in Chapters 6 and 7 could potentially
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be improved by using a different class of split operator technique. The sequential split

operator method used in Chapters 6 and 7 is simple to understand and implement,

but is only a 1st order scheme. The use of higher order schemes such as alternating

or iterative split operator techniques should result in faster convergence towards the

analytic solution.

So far, the split analytical operator technique has only been used with a constant

diffusion coefficient. Recall that when applied to groundwater problems, the diffusion

coefficient represents hydrodynamic dispersion, and is composed of two contributing

factors: molecular diffusion (spatially constant) and mechanical mixing (spatially vari-

able). By using a constant diffusion coefficient throughout this work, we assume that

the contribution due to mechanical mixing is small. This is a reasonable assumption in

groundwater problems with low flow rates (Hunt, 1983), such as that considered in this

thesis; however, as this condition is not always met, it would be preferable to incor-

porate mechanical mixing into the general solution if possible. (Note, although there

are high flow rates in some parts of the leaky pond domain, these are areas dominated

by advective contamination which rapidly exits the boundary. The rest of the domain

can be classed as having low flow rates.)

To incorporate mechanical mixing into the split analytical operator technique, recall

that mechanical mixing occurs along the path of advective flow. As such, imagine the

diffusion coefficient as having two components: a transverse component, DT , which is

perpendicular to the direction of advective movement; and a longitudinal component,

DL, which is along the direction of advective movement (Hunt, 1983). For uniform flow,

that is, in the direction of one of the major axes, analytical solutions can be stretched

to accommodate this scenario (see, for example, Appendix A.5), but for a 2D flow field

such as that described by Figure 7.2, analytical solutions with spatially dependent

diffusion are currently unavailable. However, considering the above definitions of DT

and DL, let’s define DT = D∗ and DL = D∗+DM , where D∗ is the molecular diffusion

coefficient, and DM is the contribution from mechanical mixing. Using this approach in

conjunction with the split analytical operator technique, a potential method for solving

spatially dependent diffusion presents itself.
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In the split analytical operator technique, advection is solved along each streamline,

then diffusion is solved globally using a constant coefficient. However, to incorporate

spatially dependent diffusion, we need only add an additional diffusion step. That is,

advection is solved along each streamline, then diffusion is solved globally using the

constant diffusion coefficient, D∗, then diffusion is solved along each streamline using

the diffusion coefficient, DM . In this additional step, diffusion along each streamline

is treated separately, and therefore becomes a 1D process, greatly simplifying the

problem. However, the diffusion coefficient, DM , is a function of velocity (Hunt, 1983),

and therefore varies along the streamline. As such, the 1D diffusion process along

each streamline will need to be solved for a variable diffusion coefficient, with all other

required information, that is, the length, the concentration values, and velocity values

along each streamline being obtainable from the previous steps of the split analytical

operator technique.

9.3 Final remarks

This thesis has presented quasi-analytical techniques for solving advection and diffusion

beneath leaky contaminated ponds. Quasi-analytical techniques are uncommon in

mathematics, possibly because solutions are often exclusive to the particular problem

being analysed; however, they provide a good option for improved accuracy when purely

analytical methods are unavailable. The methods presented herein are potentially

useful for validating traditional numerical techniques, or as solution schemes in their

own right. In particular, the split analytical operator technique may provide a good

alternative for solving the advection-diffusion equation, or its analogues, in fields such

as hydrogeology, air pollution modelling, biology, semi-conductor physics, and even

finance.
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A.1 Calculation of spline coefficients

φ∗(x∗, d∗) =































d∗, 0 ≤ x∗ ≤ a∗

α3(x
3
∗
− a3

∗
) + α2(x

2
∗
− a2

∗
)

+α1(x∗ − a∗) + α0, a∗ < x∗ ≤ b∗

p∗, b∗ < x∗ ≤ r∗

(A.1)

A smooth transition from the water table to the pond height requires a gradient of

zero at the points a∗ and b∗, therefore,

dφ∗

dx∗
= 3x2

∗
α3 + 2x∗α2 + α1 = 0.

Substituting x∗ = a∗ and x∗ = b∗ into the above equation gives

3a2
∗
α3 + 2a∗α2 + α1 = 0, (A.2)

3b2
∗
α3 + 2b∗α2 + α1 = 0. (A.3)

From the original equation (A.1) we also know that at x∗ = a∗,

φ∗ = α3(a
3
∗
− a3

∗
) + α2(a

2
∗
− a2

∗
) + α1(a∗ − a∗) + α0 = d∗.

Therefore,

α0 = d∗. (A.4)

Substituting equation (A.4) into equation (A.1) at x∗ = b∗,

φ∗ = α3(b
3
∗
− a3

∗
) + α2(b

2
∗
− a2

∗
) + α1(b∗ − a∗) + d∗ = p∗.
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And rearranging,

(b3
∗
− a3

∗
)α3 + (b2

∗
− a2

∗
)α2 + (b∗ − a∗)α1 = p∗ − d∗. (A.5)

From equations (A.2),(A.3) and (A.5), we now have a system of equations with

unknowns α1, α2 and α3,











3a2
∗

2a∗ 1

3b2
∗

2b∗ 1

(b3
∗
− a3

∗
) (b2

∗
− a2

∗
) (b∗ − a∗)





















α3

α2

α1











=











0

0

p∗ − d∗











. (A.6)

Solving the above system of equations using Cramer’s rule gives

α3 = −2
p∗ − d∗

(b∗ − a∗)3
, α2 = 3

(b∗ + a∗)(p∗ − d∗)

(b∗ − a∗)3
,

α1 = −6
a∗b∗(p∗ − d∗)

(b∗ − a∗)3
, α0 = d∗.
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A.2 Analytic series solution for the diffusion

problem

The solution to the diffusion equation (4.7) is assumed to be of the form

C(x, y, t) = X(x)Y (y)T (t), (A.7)

which, after substitution into equation (4.7) and separating variables, leads to three

ordinary differential equations in x, y and t:

X ′′(x) + α2X(x) = 0, Y ′′(y) + β2Y (y) = 0, Ṫ (t) + λ2T (t) = 0. (A.8)

The homogeneous side boundary conditions in equation (4.8) become

X ′(0) = X ′(s), Y ′(0) = Y ′(1), (A.9)

which, together with the differential equations (A.8) give eigenvalues

α2
m = m2π2/s2, m = 0, . . . ; β2

n = n2π2, n = 0, . . . ; λ2mn = m2π2/s2+n2π2, (A.10)

and eigenfunctions

Xm(x) = cos
(mπx

s

)

; Yn(y) = cos (nπy) , (A.11)

with

Tmn(t) = e−λ2
mnt. (A.12)
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The analytic series solution to the diffusion equation (4.7) is the sum of the weighted

modal solutions

C(x, y, t) =
∞
∑

m=0

∞
∑

n=0

amnXm(x)Yn(y)Tmn(t)

=
∞
∑

m=0

∞
∑

n=0

amn cos
(mπx

s

)

cos (nπy) e−λ2
mnt. (A.13)
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A.3 Varying strength diffusion quadratics

Diffusive contamination will progress through an aquifer at different speeds, depending

on what level of concentration is considered harmful. Below we present a plot of varying

(quadratic) diffusion curves (from 1% to 90% of the pond concentration) for the domain

of Figure 4.1. By considering each of the coefficients of these curves as a function of

concentration (c0), we generalise the equation of diffusion progress (4.19) to

tD = aR(c
0)Z2 + bR(c

0)Z, 0.01 ≤ c0 ≤ 0.9, (A.14)

where

aR = e65.654(c
0)5−147.446(c0)4+129.625(c0)3−53.062(c0)2+13.972(c0)−2.662 (A.15)

and

bR = e66.229(c
0)5−148.716(c0)4+130.605(c0)3−53.374(c0)2+14.009(c0)−1.693. (A.16)
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Figure A.1: Varying strength diffusion quadratics.
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A.4 Advection coefficients as a function of δ

The advection equations found in the main body of this chapter assume a transition

region between the water table and the height of the ponds of X = ± δ (δ non-

dimensionalised similarly to equation (5.3)). We wish to minimise the length of δ

as much as possible. In this section, we explore the effect of changing the length

of the transition region on the coefficients of equation (5.6), now rewritten with the

coefficients as functions of δ,

tA = A(δ)eB(δ)X . (A.17)

Figure A.2 gives a schematic of the situation in question. The pond boundary (X = 0)

is taken as the middle of the smooth transition zone, with the total length of this

region being 2δ. Plotting the coefficients A and B (with h = 1) for various values of

δ (0.01 ≤ δ ≤ 8) produces Figure A.3. As can be seen, as δ decreases, the variation

in the coefficients also decreases. Choosing the coefficients for the minimum value of δ

available (δ = 0.01) gives A = 1.932 and B = 1.576. For the sake of completeness, the

following curves were fitted to the data:

A = Re(1.95 e−0.31(δ−0.23)1.6), (A.18)

where Re represents the real component of the complex number solution, and

B = −2.836× 10−4 δ3 + 2.301× 10−3 δ2 − 1.065× 10−2 δ + 1.576. (A.19)

There is an important point regarding the values of the coefficients in Figure A.3.

They were calculated for streamlines emerging at the water table outside the influence

of the transition region, that is, X ≥ δ+1 (this is a conservative estimate of the lower

bound). For X < δ+1, the effect of the transition region is to introduce a non-linearity

into equation (A.17). (Investigation of this non-linearity is a potential future extension

of the work in this chapter, with possible application to non-horizontal water tables.)

An example of this non-linearity can be seen in Figure A.4. This is a plot of equation

(A.17) for δ = 0.01, that is, A = 1.932 and B = 1.576. As can be seen, the equation is
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Figure A.2: Schematic showing the smooth transition between the height of the ponds
and the water table.

only valid for X ≥ 1.
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points representing the time and place each streamline emerges at the water table.
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A.5 Analytic series solution of the ADR problem

∂

∂x∗

(

Dx∗

∂C∗

∂x∗

)

+
∂

∂y∗

(

Dy∗

∂C∗

∂y∗

)

− u∗
∂C∗

∂x∗
− λ∗C∗ =

∂C∗

∂t∗
(A.20)

x∗ = sx; y∗ = dy; t∗ = τt; C∗ = kC. (A.21)

Therefore,
Dx∗

k

s2
∂2C

∂x2
+
Dy∗k

d2
∂2C

∂y2
− u∗k

s

∂C

∂x
− λ∗kC =

k

τ

∂C

∂t
. (A.22)

Since k cancels, we can scale concentration C arbitrarily:

∂2C

∂x2
+
s2Dy∗

d2Dx∗

∂2C

∂y2
− s

Dx∗

u∗
∂C

∂x
− s2

Dx∗

λ∗C =
s2

Dx∗
τ

∂C

∂t
. (A.23)

We want
s2

d2
Dy∗

Dx∗

= 1;
s2

Dx∗
τ
= 1, (A.24)

therefore,

s =

√

Dx∗

Dy∗

d; τ =
s2

Dx∗

=
d2

Dy∗

. (A.25)

Now, let

u =
s

Dx∗

u∗ =
d

√

Dy∗Dx∗

u∗; λ =
s2

Dx∗

λ∗ =
d2

Dy∗

λ∗. (A.26)

Then equation (A.20) becomes

∇2C − u
∂C

∂x
− λC =

∂C

∂t
. (A.27)

Now, applying the transformation

C = ce
ux
2 (A.28)

into equation (A.27) gives the simplified form,

∇2c+

(

−λ− u2

4

)

c =
∂c

∂t
. (A.29)
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The boundary conditions, C = 0 (as stated in Section 6.2) become c = 0 when substi-

tuted into equation (A.28), and likewise the initial condition becomes

c(x, y, 0) = C(x, y, 0)e−
ux
2 . (A.30)

Now, using the classic separation of variables approach, the solution of equation (A.29)

is

c(x, y, t) = e
−

(

u2

4
+λ

)

t
N
∑

n=1

M
∑

m=1

Amn sin
(mπx

s

)

sin
(nπy

d

)

e−γ2
mnt, (A.31)

where

γ2mn =

(

m2

s2
+
n2

d2

)

π2, (A.32)

and Amn are the series expansion coefficients. These can be obtained in a similar

manner as that described in Section 6.3.1, with the initial condition c(xi, yj , 0) obtained

from equations (6.4) and (A.30).
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A.6 Calculation of mass within the system

The conservation of mass principle is often useful for testing the utility of numerical

techniques. That is, a poor numerical scheme can artificially gain or lose significant

mass within a system, affecting the accuracy of any results, and therefore subsequent

conclusions. In Section 6.6 we presented results for the change in solute mass within

the system for the constant velocity ADR problem, comparing the split analytical

operator technique against a purely analytical solution. The calculation of mass within

the system for the split analytical operator technique is simply the average of the

concentration values at the grid points within the domain. The analytical calculation

of mass follows on from Appendix A.5 and is presented below. The mass balance ratio

is the analytical result divided by the split analytical operator result.

From Appendix A.5, we convert the solution (A.31) back to the original concentra-

tion variable C(x, y, t) using equation (A.28):

C(x, y, t) = e
−

(

u2

4
+λ

)

t
N
∑

n=1

M
∑

m=1

Amn

[

e
ux
2 sin

(mπx

s

)]

sin
(nπy

d

)

e−γ2
mnt. (A.33)

Next, find the integral of
[

e
ux
2 sin

(

mπx
s

)]

using integration by parts:

∫

e
ux
2 sin

(mπx

s

)

dx =
−s
mπ

e
ux
2 cos

(

mπx
s

)

+ s2

m2π2
u
2
e

ux
2 sin

(

mπx
s

)

1 + s2

m2π2
u2

4

. (A.34)

We know the total solute within a system can be obtained by integrating the con-

centration function over the area of the domain,

m =

∫ d

0

∫ s

0

C(x, y, t) dx dy. (A.35)
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Therefore, substituting and solving:

m =

∫ d

0

∫ s

0

e
−

(

u2

4
+λ

)

t
N
∑

n=1

M
∑

m=1

Amn

[

e
ux
2 sin

(mπx

s

)]

sin
(nπy

d

)

e−γ2
mnt dx dy (A.36)

=

∫ d

0

e
−

(

u2

4
+λ

)

t
N
∑

n=1

M
∑

m=1

Amn · · ·

×
[

−s
mπ

e
ux
2 cos

(

mπx
s

)

+ s2

m2π2
u
2
e

ux
2 sin

(

mπx
s

)

1 + s2

m2π2
u2

4

]

sin
(nπy

d

)

e−γ2
mnt

∣

∣

∣

∣

s

0

dy

(A.37)

=

∫ d

0

e
−

(

u2

4
+λ

)

t
N
∑

n=1

M
∑

m=1

Amn

( s

mπ

)

[

1− e
us
2 cos(mπ)

]

(

1 + s2

m2π2
u2

4

) sin
(nπy

d

)

e−γ2
mnt dy (A.38)

= e
−

(

u2

4
+λ

)

t
N
∑

n=1

M
∑

m=1

Amn

( −sd
mnπ2

)

[

1− e
us
2 cos(mπ)

]

(

1 + s2

m2π2
u2

4

) cos
(nπy

d

)

e−γ2
mnt

∣

∣

∣

∣

d

0

(A.39)

= e
−

(

u2

4
+λ

)

t
N
∑

n=1

M
∑

m=1

Amn

(

sd

mnπ2

)

[

1− e
us
2 cos(mπ)

]

[1− cos(nπ)]
(

1 + s2

m2π2
u2

4

) e−γ2
mnt. (A.40)

Equation (A.40) gives the total mass within the domain at any time for the constant

velocity ADR problem.
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A.7 Optimised number of split steps

The split analytical operator method becomes more accurate as the number of split

steps (discrete time intervals) is increased (Section 6.5). In general, this is also the

case for any technique that discretises the solution domain, such as finite difference

and finite element methods. Typically for these methods, as the discrete spacing is

decreased, the computation time increases. That is, as the discrete interval approaches

zero, the computation time tends to infinity. As such, computation time considerations

often determine when a solution is ‘good enough’.

However, the combined advection-diffusion solution in Chapter 7 is a little differ-

ent. As the number of split steps, L, initially increase, the computation time actually

decreases. This trend continues to a minimum, after which the computation time in-

creases in the manner of the traditional discretised schemes described above. In the

absence of an a priori estimate of when a solution is ‘good enough’, it seems reasonable

to initially choose the solution with the minimum computation time.

For an advection only solution, the most computationally expensive aspect is step-

ping numerically (using δtA) along the streamlines. For the combined advection-

diffusion solution described in Section 7.4, after finding the endpoint of advection for

the first interval, all the other intervals’ advection components are incorporated into

the diffusion process (refer to Section 7.4 for details). We wish to find the optimal

(fastest) solution for combined advection-diffusion given that we must do a certain

number of advection iterations, whether they are true numerical advection steps or

diffusion substitutes.

Let Nt be the theoretical total number of advection iterations required (if diffusion

wasn’t part of the solution), Na be the number of actual advection iterations, and Nd be

the number of diffusion substitutes (or effectively, the number of intervals). Similarly,

let Tt be the total computation time to solve the problem, Ta be the computation time

for one numerical advection iteration, and Td be the computation time for one diffusion

iteration. We also know

Nd =
Nt

Na

; Td = ωTa, (A.41)
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where ω is the constant of proportionality (ratio) between the solution times of the two

different processes. That is, once the algorithm is set up, we find the computation time

to solve one advection iteration, Ta, and one diffusion iteration, Td, with ω resulting

from equation (A.41). So,

Tt = NaTa +NdTd (A.42)

= NaTa +
(NtωTa)

Na

. (A.43)

Since we want to minimise the total computation time, let’s differentiate with respect

to the unknown, Na, and equate to zero,

dTt
dNa

= Ta − (NtωTa)N
−2
a = 0. (A.44)

Therefore,

Ta =
NtωTa
N2

a

(A.45)

Na = ±
√

NtωTa
Ta

, Na 6= −ve (A.46)

Na =
√

Ntω (A.47)

with equation (A.41) giving Nd.

If we wish to solve for an overall time period of, say, tA = 200, 000 dimensionless time

units using a numerical advection time step of δtA = 10 dimensionless units, then we

would require Nt = 20, 000 theoretical advection iterations (whether actual or diffusion

substitutes). Nt is therefore a known quantity. Likewise, Ta and Td (and therefore ω)

can be quickly calculated before attempting to solve the combined advection-diffusion

problem. It is a simple matter then to work out the number of intervals, Nd, for the

fastest possible solution. (Of course, the practical value of Nd used will have to be the

closest factor of Nt.) Finally, if the value of tA required is not a convenient number

such as 200, 000, then Nt can be made factorisable by simply choosing a smaller (less

rounded) numerical advection time step (hypothetically, for example, δtA = 9.23874).



List of symbols

The following list is neither exhaustive nor exclusive, but may be helpful. Note that

variables/parameters with an asterisk subscript are dimensional, while those without

are non-dimensional.

K∗ . . . . . . . . . . . . . hydraulic conductivity

φ, φ∗, h
t, ht

∗
. . . . hydraulic head

ψ, ψ∗ . . . . . . . . . . . stream function

u, u∗ . . . . . . . . . . . seepage velocity

U, U∗ . . . . . . . . . . pore velocity

σ . . . . . . . . . . . . . . . porosity

r, r∗, s, s∗ . . . . . . length of domain

d, d∗ . . . . . . . . . . . height of domain

h, h∗ . . . . . . . . . . . height of ponds above water table

D∗ . . . . . . . . . . . . . diffusion/dispersion coefficient

C0
∗
. . . . . . . . . . . . . concentration of the saline ponds

α . . . . . . . . . . . . . . . characteristic aquifer parameter

149
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qx, qx∗ . . . . . . . . . . specific discharge at X

Qx . . . . . . . . . . . . . average flux of contaminated outflow

Q, Q
∗
. . . . . . . . . . total volume of contaminated outflow

δ . . . . . . . . . . . . . . . half length of transition region between the surface of the ponds

and the water table
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