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Abstract

An accurate quantitative understanding of the transport of light leptons, such as electrons and
positrons, in dilute gaseous and soft condensed mediums is of interest to a number of technological
applications, as well as from the perspective of fundamental physics research. In particular, this
research has been directly applied to cross section set validation, is motivated by nuclear medicine,
and will find application in liquid particle detectors and plasma medicine.

The connection between the microscopic description of matter, such as scattering cross sections,
and macroscopic applications is usually made via Monte Carlo simulations or kinetic theory, which
are often used in a complementary fashion. The fundamental kinetic equation considered in this
work is Boltzmann’s equation, which describes the evolution of the swarm particle phase-space
distribution in time and space due to the influence of collisions with a background medium and
external forces on the system. Following the work of White and co-workers [1] a full, multi-
term, space-time Boltzmann equation solver has been developed for the first time for highly non-
equilibrium electron and positron transport in dilute gases, dense gases and liquids. By simulating
the evolution of the Boltzmann equation Green’s function, the result from a single simulation
can be used to model a wide variety of experimental configurations and applications including
pulsed-Townsend, steady-state Townsend and other practical experimental devices.

Swarm experiments, which operate in the hydrodynamic regime, provide stringent tests on the
accuracy and completeness of cross section sets, as well as a benchmark for the energy-dependent
component of the numerical code. An investigation of benchmark model and real systems, including
electron-neon, positron-helium and positron-molecular-hydrogen, have allowed us to assess and
validate various scattering processes, as well as to comment on the consistency and accuracy
of established cross sections with experimental measurements in the low-energy regime. A new
collision operator for positron impact ionization was developed and systematically benchmarked
as part of this.

A major focus of the present work is extending the kinetic theory formalism beyond dilute
gases to dense gases, liquids and soft-condensed matter such as biological matter. The study of
swarm transport in dense mediums is considerably more complex due to the density effects arising
from the small interparticle spacings and highly correlated scattering centres. We have generalized
the ab initio method of Lekner and Cohen [2, 3] overcoming several approximations which are no
longer necessary in modern day transport and scattering theory. Liquid argon was chosen as the
test bed for our calculations, and by including both coherent scattering effects and modifications
to the electron-atom potential, a high level of agreement between the calculated and measured
transport coefficients was achieved.

An investigation of the full spatio-temporal evolution of electrons in a model hard-sphere liquid
successively demonstrated the periodic non-hydrodynamic phenomena expected, and was confirmed
by independent Monte Carlo simulation. Finally, the spatio-temporal evolution of electron swarms
in gas- and liquid-phase argon were compared. Striking differences were evident in the evolution of
the distribution function components, which were a reflection of the reduced momentum-transfer
and lack of a Ramsauer minimum in the liquid-phase when compared to the gas-phase cross sec-
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tions. This highlights the problems with treating liquid systems as gaseous systems with increased
density, with implications to various applications.
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1
Introduction

1.1 Motivation and aims
Electron and positron (lepton) impact processes in gases, liquids and soft-condensed matter under-
pin a diverse range of scientific fields and applications. To optimize the applications and extract
new fundamental physics from experiments, it is important to have a full understanding of the
space, time, and energy distribution of the primary and secondary particles. Electron-driven pro-
cesses in gaseous systems were the cornerstone of the digital age through the development of
low-temperature plasma processing of microelectronic devices. Programs involving complex mod-
elling of plasma discharges and the species induced (electrons, ions, neutrals, radicals), informed
by accurate microscopic scattering information (experiment and theory) together with diagnostics,
permitted optimal control design [45, 46]. The next frontier is biological applications for medical
diagnostics and therapy. For applications involving the human body, there is a need to be able to
accurately quantify the biological consequences of radiation, including damage to DNA, with the
aim of minimizing the negative effects and improving efficacy.

The path to optimizing these technologies will be similar to that of microelectronic device de-
velopment, i.e., reliant on the development of accurate predictive models underpinned by accurate
fundamental science and benchmarked against experiment. Predictive modelling allows a system-
atic investigation of a much larger variety of systems and sampling of a much wider parameter
space than can be done physically. Our program focuses on understanding two key aspects:

1. Fundamental microscopic scattering information (cross sections) that describe how electrons
and positrons interact with various species in the gaseous and liquid phases.

2. Transport of electrons and positrons under highly non-equilibrium conditions in the gaseous
and liquid phases.

The behaviour of electrons, positrons etc. in gases and soft-condensed matter is quantified via
important properties, including temporal and spatial profiles, mobilities, diffusion rates, ionization
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rates and energy deposition, which can then inform and optimize the relevant technologies. We
discuss some of the processes and applications in detail now.

1.1.1 Electron driven processes and applications

Studies of charged particle behaviour dates back to the birth of modern atomic physics, in the late
nineteenth and early twentieth centuries. The invention of cathode ray tubes and discovery of X-
rays [47] spurred interest in the conductivity of electricity through gases. British experimentalists
Thomson, Townsend and Wilson [48] determined that the cathode rays were electrons, and made
the first accurate estimates of the electron’s mass and charge. Subsequent experiments by Thom-
son, Townsend, Millikan, Fletcher, Rutherford, Moselel, Frank and Hertz largely established the
structure of an atom [49,50] and laid the foundations for the electron swarm experiments discussed
in detail in Section 1.2.

Today, the technological consequences of these early investigations and associated electron-
induced processes are ubiquitous. There are applications to an extremely diverse range of scientific
fields including electron radiation therapy, nuclear imaging, astrophysics, aerospace, atmospheric
physics, high energy particle detectors, welding, and biomedical and toxic waste treatment in-
dustries to name but a few [45, 46, 51]. Low-temperature, weakly ionized gas discharge plasma
processing is used in the manufacture of microelectronic devices (i.e., etching, sputtering and de-
composition processes) contributing billions of dollars to the world economy alone [45].

Radiation damage One of the most important limitations in diagnostic nuclear medicine, radi-
ation therapy, radiation safety etc. is the risk of ionizing-radiation-induced cancer [52,53]. Ionizing
radiation can induce chemical changes in biological matter leading to chromosome damage, cell
death, oncogenic transformation, and acute radiation sickness [54]. It is thus necessary to be able
to accurately assess patient and practitioner radiation doses [55].

In positron emission tomography, which is discussed in detail in Section 1.1.2, the emitted
positron interacts with matter and deposits energy randomly and rapidly via collisional processes
including excitation and ionization events. Approximately 70% of charged particle energy depos-
ition occurs via ionization [54]. In an ionization event, the imparted energy is greater than the
binding energy of the molecule which results in the emission of an electron from the now positively
charged ion. Because water makes up such a large percentage of living systems, the interaction
between radiation and water molecules is extremely important. The secondary ion species produced
by the ionization of H2O are unstable and can produce further free radicals via dissociation, which
can in turn disrupt cellular mechanisms directly or via damage to genetic material [54]. There is
also a cascade of ionized electrons that accompany the path of the emitted positron (approximately
105 ionized electrons emitted per MeV deposited primary radiation in matter [56,57]), which makes
these secondary electrons the most abundant of all secondary species produced by the interaction.
The kinetic energy distribution of the secondary electrons in H2O indicates that the vast majority
are produced in the energy region below 10 eV [57,58]. Furthermore, Sanche and co-workers have
showed that electrons with energy below 20 eV are largely responsible for single and double strand
breaks in plasmid DNA via dissociative electron attachment [59,60]. Hence both the primary and
secondary species can cause severe damage to DNA, which can lead to mutagenic, genotoxic and
other potential DNA lesions.

To determine a suitable balance between image quality and patient dose (and hence the risk
of radiation-induced damage) dosimetric data is required. The international Medical Internal Ra-
diation Dosimetry (MIRD) Committee of the Society of Nuclear Medicine has developed a meth-
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odology for calculating the radiation dose to selected organs and the whole body from internally
administered radionuclides [61–63]. The MIRD formalism takes into account variables associated
with the deposition of ionizing radiation energy and those associated with the biologic system
for which the dose is being calculated. Although some of the variables are known with relatively
high degree of accuracy, others are best estimates on simplified assumptions that, taken together,
provide an estimate of the dose to the average (reference) adult, adolescent, child and fetus [61].

Plasma medicine Plasma medicine is a rapidly emerging multi-disciplinary field capitalizing
on concepts and techniques from physics, chemistry, medicine, hygiene, biology, material sci-
ences, microelectronics and engineering [64–68]. The products of low-temperature plasmas (e.g.
electrons, ions, excited species) can be manipulated by electric and magnetic fields to achieve a
variety of goals, e.g. the sterilization of medical equipment. Advancements in the manipulation
of non-equilibrium plasmas has led to the development of low-temperature plasmas which are
still capable of driving plasma chemistry. Cold atmospheric plasma (CAP) devices, which exhibit
electron temperatures of a few electron volts while the neutral and ion temperatures are close to
room temperature, have opened the possibility to extend plasma treatments to heat-sensitive and
vulnerable objects such as living tissue under ambient conditions.

A key process in applications of CAPs is the interaction of reactive oxygen and nitrogen species
(RONs) with biological targets, which are well known to produce beneficial effects [69–71]. Plasma
needles [68,72,73] and torches [74–81], contact-free sterilization [64,67,82], the stimulation of tissue
regeneration [83, 84], inducement of blood coagulation [85, 86], cosmetic re-structuring of tissue,
drug delivery and even cancer treatment [70] are amongst the envisaged applications. While there
has been considerable effort invested in studying RONs and their impact on cells [70,87], much less
attention has been given to the role of electrons, despite their importance in many of the relevant
electron-induced processes both in the gas and tissue phases.

Liquid particle detectors Liquid-phase noble gases were proposed by Alvarez in 1968 as good
candidates for high-energy particle detectors [88]. Ionizing radiation can excite electrons into con-
duction levels so that they can be transported through the liquid by an applied electric field, which
is the general operating principle of time projection chambers (TPCs). Liquid-phase noble gases,
particularly liquid argon (LAr) and liquid xenon (LXe), are good candidates for use in TPCs
due to their commercial availability, high mobility and low diffusion of electrons, which can then
provide high-quality imaging and high-resolution energy measurements from the detection of the
ionization charge. LAr and LXe TPCs overcome the deficiencies of both bubble chambers (which
are limited in size and sensitive only for short times) and large-size calorimetric detectors (which
suffer from coarse granularity and limitations in the identification of electromagnetic showers). At
present, several LAr and LXe TPCs have been built for dark matter searches [89–92], neutrino
detection [92–94], and have been used in high-energy beam-line experiments [92, 95]. Optimiz-
ing these liquid TPC particle detectors requires an accurate understanding of electron drift and
diffusion in noble liquids subject to electric fields.

1.1.2 Positron driven processes and applications

The positron is the antimatter counterpart of the electron, and possesses the same mass and
quantum spin, but has an opposing charge [96]. The prediction and subsequent discovery of the
positron is one of the great successes of quantum mechanics and twentieth century physics. In
1928, Paul Dirac introduced the eponymous Dirac equation, a unification of quantum mechanics,
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special relativity, and the concept of spin to explain the Zeeman effect [97]. Dirac realized that
both the positive and negative solutions of his equation were equally valid, and that the latter had
real physical existence [98]. Only a few years later in 1932, experimental evidence of the positron
was found by Anderson [99] while investigating cosmic rays in cloud chamber experiments, and
was later confirmed by Blackett and Occhialini [100].

When a particle interacts with its corresponding antiparticle, the two can annihilate [101].
Annihilation is the process by which a particle-antiparticle pair are converted into new sets of
particles and energy obeying energy and momentum conservation laws. Annihilation of a positron-
electron pair can proceed by a number of mechanisms [102]. When the positron and electron are
both in the singlet spin state the most probable annihilation channel is the two-gamma process

e+ + e− = 2γ.

Annihilation can also occur via the emission of higher numbers of gamma rays, but become in-
creasingly unlikely. The ratio of the cross sections for three- and two- gamma ray emission is
≈ 1

370 [103], and higher order processes are expected to decrease by similiar fractions. Conserva-
tion of momentum would require an annihilating electron-positron pair at rest to produce collinear
gamma rays. However, De Benedetti and co-workers [104, 105] discovered that the angle between
the two-gamma rays emitted following positron annihilation in various solids differed from precisely
180 degrees. The small acollinearity can be attributed to the motion of the bound electrons, the
positrons having essentially thermalized.

Mohorovicic [106] proposed the existence of a quasi-stable bound state of a positron and an
electron in 1934, called positronium, which was discovered experimentally in 1951 by Deutsch [107].
Similar to hydrogen, the ground state of positronium has two possible configurations based on the
relative spin orientations of the positron and electron. The spin state has a significant influence
on its annihilation lifetime [108]. The singlet state (11S0) is called para-positronium and has a
lifetime of approximately 1.25× 10−10 s, while the triplet state (13S1) is called ortho-positronium
and has a much longer lifetime of 1.4 × 10−7 s. The annihilation of positrons and positronium
in gases has been systematically exploited to determine properties including hyperfine structure,
lifetime, annihilation selection rules and photon energy spectrums [101, 109]. Many of the early
experimental techniques developed are still in use today [110].

Positrons are much more difficult to produce, accumulate and control than electrons due to their
scarcity in nature and propensity to annihilate. For these reasons the applications of positrons are
more narrow, and specifically exploit the annihilation of free positrons and positronium. Examples
include positron annihilation spectroscopy [111], which is a useful tool for probing the structure
of materials, and positherapy [112], which is a new technique which has been demonstrated to
affect apoptosis and necrosis of tumours on the cellular level. A major motivation behind several
investigations in this thesis is applications to the nuclear imaging technique of positron emission
tomography.

Positron emission tomography Positron emission tomography (PET) has become a well es-
tablished and powerful non-invasive tool for measuring the rate of biological processes in humans
and animals [113]. In PET, a short-lived positron-emitting radionuclide is used to mark a biolo-
gically active substance which can then be tracked as it travels through, and is metabolized by,
the body. It therefore provides a functional or metabolic, rather than structural, assessment of
tissue. All biological substrates and most drugs contain an atom that can be replaced by a positron
emitter [114]. Radiolabelled compounds are created by substituting a positron emitter such as 11C,
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13N, 15O, and 18F (there are many other less common ones - 14O, 64Cu, 124I, 76Br, 82Rb, 68Ga),
for equivalent stable elements in components of biological importance, which then have essen-
tially the same biochemical properties as the original compound [113]. The radionuclide undergoes
beta-positive decay randomly and spontaneously at a rate determined by its half-life, emitting
an energetic positron along with a neutrino. The emitted positron proceeds to scatter repeatedly
off molecules in the medium until slowing down sufficiently and encountering a localized electron.
As discussed in the previous section, the positron and electron can form the short-lived bound
state called positronium which can annihilate to produce signature gamma rays. The annihilation
photons that are produced have identical energies of 511 keV [102] and are emitted simultaneously
in opposite directions, neglecting a slight non-collinearity, where they are measured by the detector
ring of the PET apparatus [115].

The fundamental difference between PET and other medical imaging techniques, such as X-ray
imaging, computed tomography and magnetic resonance imaging, is that the former assesses func-
tional and metabolic characteristics, whereas the latter generally assess structural or morphologic
features. PET can sometimes detect clinically relevant changes even when no changes or minimal
ones are detected by morphologic imaging [116]. The study of physiological factors and metabolic
rates through PET has found major clinical applications in oncology, neurology, cardiology and
a number of other areas. The non-invasive methodology of PET also allows the investigation of
metabolic functions of normal volunteers to develop experimental models for various human dis-
eases and disorders [117]. For most applications fluorodeoxy-glucose (FDG) is the preferred tracer,
and it is now widely manufactured around the globe. Regionally specific discrepancies in glucose
uptake can indicate the existence of pathological disorders. PET’s most widespread application
has been for the detection and staging of cancer in patients, as FDG can differentiate between
normal and malignant tissue based on glucose transport and glycolysis. A patient’s responses to
therapy and the effectiveness of treatment plans can be monitored and assessed. One of the fast-
est growing uses of PET imaging is in the area of drug development [118, 119], as the previously
isolated imaging and pharmaceutical communities begin to coalesce [120–123].

When the detector ring of the PET apparatus registers a pair of annihilation photons near-
simultaneously, their origin can be determined along a line connecting the two points of detection
using coincidence logic [54]. A coincidence event is assumed to have occurred when a pair of meas-
urements by opposing detectors is recorded within a specified timing window, which is necessary to
account for a difference in distances as well as to allow for signal transit times through cables and
electronics. Photons that do not both arrive within the timing window are ignored. Scintillation
crystals coupled to photomultiplier tubes are used as detectors in PET. Mathematical algorithms
make use of the detected photons to reconstruct images of selected planes within the object [117].

The spatial resolution of PET imaging is also dependent on a number of physical factors
regarding the fundamental physics of positron emission and annihilation [124]. After emission, the
positron travels away from the source some finite distance before undergoing annihilation, called
the penetration range. Hence the PET apparatus can deduce the location of the annihilation
event but not the location of the radioactive source of interest. Higher initial positron emission
energies lead to larger penetration distances and reduced spatial image resolution. For the current
generation of scanners and certain isotopes, the positron penetration range represents perhaps
the most significant effect on image resolution [125]. There have been a number of attempts at
combating this effect, from utilizing isotopes with small emission energies, to more sophisticated
techniques involving encapsulating the positron-emitter in a material lattice to greatly reduce the
penetration distance [126,127]. The penetration distance can also be reduced by the presence of a
magnetic field, which will cause the positron to travel in a helical path. Involving magnetic fields
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comes with significant technological difficulties, e.g. developing PET-appropriate photon detectors
that are insensitive to magnetic fields, however these are being overcome with the growing interest
in combined PET-MRI scanners [124,128].

Another limitation is due to the non-collinearity of annihilation photons whereby they are rarely
emitted at exactly 180 degrees from each other. This is a direct result of conservation laws. At
the end of its range the positron has a small residual momentum, and coupled with the electron’s
own energy and momentum, the resulting annihilation photons are generally required to have a
net momentum. This has a relatively small effect on low resolution imaging, but becomes very
important for higher resolutions. It should be noted that the positron range and non-collinearity
do not depend on the technology and hence cannot be overcome by simply employing smaller
detector elements etc.

1.1.3 Current status of modelling in soft-condensed matter

The rapid development of both equilibrium and non-equilibrium statistical mechanics since the
1950’s is due to the simultaneous advancement of computing technology and numerical techniques,
particularly the development of Monte Carlo methods by Metropolis et al. [129] and the molecular
dynamics of Alder and Wainwright [130] in 1953 and 1956 respectively [131]. The modern land-
scape of transport modelling is now dominated by Monte Carlo methods, thanks to their power and
flexibility when dealing with complex geometries, boundary conditions, and complex and coupled
physical systems. The general operating principle of a Monte Carlo simulation is to follow a large
number of individual incident particles through subsequent collisions and applying specific rules
each time one of the expected interaction processes occurs. By applying statistics to a sufficiently
large number of particle ‘histories’, macroscopic properties can be determined from microscopic
cross sections, even for complex situations where deterministic approaches are infeasible. Monte
Carlo codes can be divided into two classes; 1.) General purpose codes, which simulate particle
transport and were developed for general high energy physics or for dosimetry (e.g. GEANT4 [132],
EGS4 [133], EGSnrc [134], ITS [135], MCNP [136], PENELOPE [137], PARTRAC [138], EPO-
TRAN [139], and LEPTS [140, 141]). The advantages of these general purpose codes are that
they are widely used, well documented, and in the public domain leading to a large international
community for continued updates, bug fixing, and support, often with the most current pro-
gramming tools and hardware facilities available [142]; 2.) Dedicated codes, designed for specific
simulations and more narrow application (e.g. PETSIM [143], SIMSET [144], EIDOLOM [145],
PET-EGS [146], and Reilhac [147] are all Monte Carlo simulation packages designed specifically
for PET configurations). While general purpose codes such as GEANT4 remain quite complex
with many extra capabilities which inflate the code sizes and complicate their use for specific ap-
plications, dedicated codes provide greater programming simplicity and ease of use at the cost of a
decreased dedicated user-base. These codes are often developed by small research groups and have
a user base much smaller than communities involved in high particle physics or dosimetry, hence
maintenance and long-term existence are uncertain. Dedicated Monte Carlo codes developed also
tend to suffer more from limitations in terms of validation and accuracy [142].

Whether general or dedicated, the existing numerical packages for modelling electron and
positron transport have some deficiencies/issues that need to be addressed.

Benchmarking A simulation code needs to be thoroughly benchmarked and validated. Of-
ten in Monte Carlo simulations we find lepton trajectories are used as a method of differentiating
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various background media [148]. While these are illustrative and important in developing nano-
dosimetric models, this is not a measurable that can be used for validation. Generally, thermal-
ization simulations are performed with the range/dispersion and energy deposition sampled and
measured. These measures are not strict benchmarks, since there exists degeneracy in the scat-
tering cross sections that can generate the same range/dispersion. The only tunable parameters
in such validation experiments are the initial distribution of the emitted leptons and these are in-
sufficient to remove/test degeneracy. The application of electric fields to drive systems into highly
non-equilibrium states, however, represents a stringent benchmark and test of degeneracy, through
the modifications of the phase-space distribution function. One group that does appreciate the
need for systematic benchmarks is Petrović and co-workers [149–151].

Low energy processes A full description of lepton transport in soft matter, particularly
as medicine moves towards the realm of cellular microdosimetry, necessarily includes transport
in the low-energy regime. Above 10 keV the Born-Bethe [152, 153] approximation can be used
to accurately describe molecules combining the atomic species H, C, N, and O [154]. Below this
energy, scattering cross sections are required to properly describe the various processes of the
particles from emission down to their final thermalization. In Monte Carlo codes, the collisions
are usually based on multiple scattering theories and/or energy loss distributions leading to some
inaccuracies in the calculated track of the particles, which is exacerbated at low energies [155].
Furthermore, ‘effective cross sections’ which are sometimes used in simulations are not measurable
quantities such that their use is both arbitrary and inaccurate - groups of processes may be lumped
together to form an average cross section or be omitted entirely. For PET modelling, a complete
set of differential and integral cross sections describing all elastic and inelastic processes induced by
positrons and secondary electrons are required for a proper calculation of transport quantities [156].

Structure and density effects In dilute gases, the scattering centres of the medium can
be considered independent and uncorrelated. During a collision, only a single medium particle
is sampled at a time leading to large simplifications in the underlying theory. When considering
denser media, such as dense gases, liquids and biological matter, the temporal and spatial correl-
ations of the scattering centres becomes important. The de Broglie wavelengths of the incoming
particle can then be of the order of the interparticle spacing, which leads to significant multiple
scattering effects. The complexity of this more realistic scenario invalidates the assumptions and
simplifications made in most current models, however, structure effects are of critical importance
for accurately modelling swarm behaviour at low energies [157]. Density effects include coherent
scattering [3], quantum self interference [158,159], screening of the long range polarization poten-
tial [2], and the formation of bubbles or clusters [160–163]. A more satisfying model of charged
particle transport in soft-condensed materials incorporating density effects is required. A detailed
discussion of liquid and structure effects is given in Chapters 7 and 8.

1.1.4 Aims of this study

To overcome the deficiencies described in the previous section, a kinetic theory approach to mod-
elling leptons in soft-condensed matter is chosen rather than the usual Monte Carlo approach.
Instead of considering the trajectories and behaviour of individual particles, kinetic theory con-
siders the probability distribution of the swarm as a whole, and has a good pedigree for lepton
transport in gases. The aim is to bring to bear on this problem the highly accurate mathematical
and computational machinery developed for the Boltzmann equation treatment of swarms and
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plasmas. In this work, a kinetic theory is developed to describe highly non-equilibrium electron
and positron transport, with particular attention paid to understanding the scattering mechanisms
in gases and soft-condensed matter. Differences between the gas-phase and liquid-phase transport
manifests themselves most strongly in the low-energy regime. While the treatment of biological
matter is the final goal, this work focuses on atomic liquids for which there is a large body of liter-
ature and benchmarks for the underlying scattering mechanisms and transport. From the kinetic
theory model the microscopic information can be used to generate macroscopic properties includ-
ing spatio-temporal profiles, collision rates and transport coefficients. Systematic benchmarking
of our numerical scheme for all collisional processes is a major theme in this work, and here swarm
experiments play a major role. Swarm experiments have a long history, and have been performed
for electrons and positrons in many species in gas and liquid phases, with a high degree of accuracy.

1.2 Swarm experiments
In a charged-particle swarm, the density of the constituents is so low that the charged particles do
not influence the external electric field and the Coulomb interaction between the charged particles
is negligible. Swarms can be considered the low lepton-density limit of gas discharges, as opposed
to plasmas which operate at the high electron-density limit. A variety of configurations of swarm
experiments exist [50,101,110,164–167] to measure the physical properties of electron or positron
swarms. The general operating principle is to apply electric fields to drive the swarm out of thermal
equilibrium such that a quasi-steady state is achieved by a balance between power input from the
electric field and the energy loss rate via collision of the swarm particles with a neutral background
medium. Variations in the applied field allow one to selectively probe different energy regions in
the cross sections. An early use of swarm experiment measurements were to ‘unfold’ and extract
complete sets of cross sections from transport data.

Detailed sets of lepton-molecule interaction cross sections are now compiled through a combin-
ation of binary collision experiments (crossed beam [168], trap-based [169]) and quantum calcula-
tions. One of the key functions of modern-day swarm experiments is to assess the completeness
and accuracy of the cross section sets. Swarm experiments are many-scattering experiments, where
there is a balance established between the number of particles and the momentum and energy trans-
fers occurring. If the transport coefficients calculated from a given set of cross sections fit well with
swarm experiment measurements, then this set of cross sections is complete in the sense that it sat-
isfies the various balance requirements. Hence swarm experiments provide a stringent test of cross
section sets derived from combination of binary-collision experiments and theoretical calculations.
Limitations of the swarm technique for determining cross sections are also well known [170, 171],
and include non-uniqueness, limited resolution, and averaging over the angular distribution. In-
deed the non-uniqueness problem for swarms, which is overcome by direct measurement of cross
sections in binary collision experiments, has led to interest in the former waning considerably.
Ideally both swarm and binary techniques are used together in a complementary, iterative fashion
- cross sections are determined by binary collision/theoretical techniques, validated against swarm
experiments via a transport calculation, which then informs adjustments to the cross sections, and
so on.
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1.2.1 Swarm measurements in dilute gases

Electron swarm experiments in the gas phase

The foundations for swarm physics were developed alongside accurate electron experiments in the
1970’s and 1980’s measuring transport coefficients [50, 51, 171]. Australia has a rich history in
the field of experimental (and theoretical) swarm physics, ushered in through the seminal work
of Huxley, Crompton and co-workers (see [50]) . The prototypical swarm experiment is the well
known Time of Flight (TOF) experiment, which is based on releasing a source of electrons into
a gas in the presence of an electric field between the source and the detector, and measuring the
current (see e.g. the more recent work of Nakamura and co-workers [172, 173]). From the current
various different transport coefficients (drift velocity, diffusion coefficient, etc) or combinations of
them can be determined depending on the experimental configuration. A variation of the standard
TOF experiment involves analysing the arrival time spectra of the electrons [174, 175]. Likewise,
Pulsed Townsend (PT) experiments allowed the extension to higher energies, and also enabled
the determination of attachment and ionization rates [176,177]. In Steady-State Townsend (SST)
experiments, a constantly emitting electron source allows a steady-state to be established with
a background gas at equilibrium between two electrode plates, from which diffusion coefficients,
excitation and ionization rates can be measured [178, 179]. The Cavalleri experiment uses a novel
method for detecting the number of remaining electrons in the diffusion cell which allows direct
measurement of the longitudinal diffusion coefficient [180,181]. Swarm experiments in electric and
magnetic fields performed by Schmidt and co-workers [182] are particularly noteworthy, since they
provided additional transport coefficients (e.g. drift velocities and diffusion tensors with additional
elements) as a possible method to address the well known degeneracy issue with cross sections and
transport coefficients.

At present there are very few experimental centres surviving, with only the notable groups of
de Urquijo and co-workers [176,183–186], Franck and co-workers [187,188] and more recently Satoh
and co-workers [189] still active in this area.

Positron swarm experiments in the gas phase

The development of the low energy positron beam in the 1970’s (see reviews by Griffith and Hey-
land, and Charlton [169, 190]) allowed the measurement of scattering cross sections directly, and
interest in positron swarm techniques has subsequently declined. There are currently no positron
swarm experiments of equivalent accuracy to their electron counterpart. Experimental techniques
in the gas phase can be divided into two major categories; the measurement of annihilation life-
times, and the Doppler broadening of the annihilation radiation. The basis of traditional lifetime
experiments were formulated by Shearer and Deutsch in 1949 [191], and are based on the idea of
measuring the lifetimes of a large number of positrons from their production to annihilation with
background medium electrons, which are then collated into a lifetime spectrum. The initial timing
signal is provided by the gamma-ray emission which accompanies the beta-decay of a radioactive
source (such as 22Na) while the photons accompanying eventual annihilation provide the stopping
signal, both of which are detected using pairs of scintillation counters arranged appropriately on
the exterior of the chamber which contains the medium and the source. During the slowing down
of free positrons, a significant number form positronium, and hence the positron lifetime spectra
consists of components due to both direct annihilation and the decay of positronium. The early
experiments on positron diffusion in gases were mainly concerned with positronium formation,
particularly the ortho-positronium state. The annihilation rate is proportional to the parameter

Chapter 1. Introduction 9



Boyle, Gregory The modelling of lepton transport in gases/liquids

Zeff, which is a measure of the effective number of target electrons as experienced by the positron
due to polarization effects. An important landmark in the study of positron lifetime spectra of
gases was the discovery of a shoulder region in the Zeff profiles which can be characterised in terms
of a shoulder width, τs, and related to the thermalization time of the positrons [110]. The shoulder
region was first observed in argon by Falk and Jones [192], Tao et al. [193], and Paul [194]. Zeff has
been measured for field-free annihilation in noble gases [11,195], and molecular species [15,196–198],
and for positrons subject to a static electric field in noble gases [11, 13, 15, 199, 200] and limited
molecular species [15, 201–204].

A trap-based method of studying thermalized positron annihilation in gases was developed
by Surko and co-workers [205, 206]. Essentially, the gas species is added to an accumulation of
low-energy positrons, and then the effect on the number of trapped particles measured to deduce
lifetimes and zero-field Zeff. For thermalized positrons, the momentum of the centre of mass motion
of an electron-positron pair is predominantly that of the electron [104, 105]. The centre of mass
motion creates a Doppler shift in the annihilation photons as measured in the laboratory frame of
reference, which can also be analysed by the positron-trap technique. The annihilation of positrons
in a wide variety of molecular gases have been investigated with this technique [102].

There have also been limited attempts to directly measure positron drift velocities in gases.
Two different approaches have been developed by Paul and co-workers [207–209] and Charlton and
co-workers [101, 110]. According to Charlton [110], the main experimental difficulty has been in
getting suitable drift lengths and times to compute the drift velocity using systems in which the
positrons are derived directly from a radioactive source. The importance of the non-conservative
process of positronium formation on transport coefficients has only recently been understood and
re-evaluation of transport data from this viewpoint is warranted.

1.2.2 Swarm measurements in dense gaseous and liquid phases

Swarm experiments in dense gases and liquids are much more limited in number than their dilute
gas counterparts, since liquid systems provide extra experimental difficulties [210]. Electron mo-
bilities and characteristic energies have been measured for a range of noble gas liquids, including
argon [28–30, 211–213], krypton [28, 212, 214], and xenon [28, 212, 213, 215], dense non-polar gases
such as CO2 [216, 217], and dense polar molecular gases including NH3 [218–221] and H2O [222].
The role of molecular impurities in atomic liquids has also been investigated experimentally [212],
which can give rise to a number of radically new effects [223].

Field free annihilation lifetime studies have been reported for positrons in liquid helium [127,
224–227] and liquid argon [228, 229]. Annihilation lifetimes studies of positrons in liquids subject
to electric fields are particularly rare, and have been limited to a handful of experiments by Pepe
and co-workers in nitrogen [230, 231], helium [231, 232] and argon [231, 232]. In these works the
variation of the positronium formation fraction with electric field strength is investigated along
with the free positron and triplet state positronium lifetimes.

1.3 Kinetic theory of electron and positron swarms
A macroscopic volume of gas consists of a very large number of molecules (typically ∼ 1023) which,
ignoring quantum effects, each obey the laws of classical mechanics. If the initial positions and
momenta of all particles in the system where perfectly known in conjunction with the laws of
interaction between the molecules, then the evolution of the system could, in principle (if not in
practice), be calculated exactly. However, rarely is the initial state known exactly, and solving such
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an initial value problem for a number of particles of realistic order is at present an impossible task.
Instead, the only way to treat the system is as an ensemble of many similar systems in a probabil-
istic way, i.e. with statistics and probability distributions. Statistical mechanics provides the link
between microscopic and macroscopic descriptions of matter, and kinetic theory is that branch of
statistical mechanics which describes systems through a phase-space distribution f(r,v, t). Study
of a macroscopic system requires calculation of f(r,v, t) from a kinetic equation.

A phase-space is a multi-dimensional space in which every degree of freedom or parameter of the
system is represented as an axis. A particle in phase-space varies smoothly in position and velocity
by the action of gradients and external forces, and varies abruptly in velocity due to collisions
with other particles. The behaviour of a particle in phase-space thus appears as a contiguous flow
of points, associated with a 6-dimensional ‘velocity’, with occasional abrupt vertical changes in
the velocity co-ordinate due to collisions. Spatial variation of the distribution is ignored during
scattering since the duration of a collision is assumed negligibly small compared with the mean
free path, and takes place over a distance negligible in comparison to any relevant macroscopic
length. The system is completely described by Liouville’s equation. Bogoliubov [233], Born and
Green [234], Kirkwood [235,236] and Yvon [237] independently derived an infinite chain of equations
(BBGKY) hierarchy for a reduced dimension of the Louiville. Assuming two body interactions and
that any external field is small compared to the force of interaction during a collision, the kinetic
equation resulting from the reversible BBGKY hierarchy is the irreversible Boltzmann equation,
first derived (in a different way) by Ludwig Boltzmann in 1872 [238].

1.3.1 The Boltzmann equation

Research on the Boltzmann equation has advanced considerably beyond the classical gases Boltzmann
intended, and generalizations have been successful in studying positron transport in gases, elec-
tron transport in solids and plasmas, neutron transport in nuclear reactors, phonon transport in
superfluids, and radiative transfer in planetary and stellar atmospheres [131,239]. The form of the
Boltzmann equation we consider in this work is(

∂

∂t
+ v · ∇+ a · ∂

∂v

)
f (r,v, t) = −J (f (r,v, t)) , (1.1)

where f (r,v, t) is the phase-space distribution function, v is the velocity relating to the incoming
particle, and a refers to the acceleration from external forces applied to the system. The Boltzmann
equation represents the way in which the representative 7-point ‘fluid’ behaves in phase-space, and
is in effect an extension of continuity to 6 dimensions. Microscopic scattering information is in-
cluded in the collision operator, J , via appropriate scattering cross sections for each of the different
collisional processes. In order for the Boltzmann equation to produce macroscopic irreversible beha-
viour from microscopic reversible information, the molecular chaos assumption or ‘Stosszahlansatz’
is required [238]. This assumption states that the distribution functions of the two particles are
uncorrelated before a collision, but not so afterwards, thereby introducing an arrow of time.

1.3.2 Two-term vs. multi-term solutions

Kinetic theory was developed alongside the early investigations in swarm physics i.e. investiga-
tions of electrical conductivity of gases induced by X-rays. Experiments by Thomson, Rutherford
and Townsend were crucial in the discovery of the electron, the determination of the electronic
and atomic charge, and elucidating the ionization process. In 1909 Lorentz [240] undertook an
analysis of electrical conductivity in metals, which marked the earliest theoretical investigation of
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electron motion. Pidduck [241, 242] generalized Lorentz’s work on electron motion in metals to
a treatment of electron motion in gases. Pidduck’s results were subsequently re-discovered by a
number of other authors, and influential papers by Wannier [243], Allis [244] and Waldmann [245]
in the 1950’s cemented the kinetic theory of charged particles. The first rigorous solution of the
Boltzmann equation with an expansion method was independently formulated by Chapman and
Enskog between 1910 and 1920. In the Chapman-Enskog [246] theory, the distribution is expan-
ded about the equilibrium solution which is only valid for near equilibrium conditions and hence
not particularly useful for most situations in swarm physics. A good review of the early devel-
opments in electron transport is given by Huxley and Crompton [50]. This work prior to the
1980’s relied on the so called ‘two-term approximation’. The two-term approximation requires that
the velocity distribution function can be written as a dominant isotropic component, f0, with a
small anisotropic contribution, f1, i.e. the first two terms of a Legendre polynomial expansion in
velocity-space. This assumption of quasi-isotropy in velocity space can be violated in many situ-
ations, e.g. when inelastic collisions are involved, or when strong electric and/or magnetic fields
cause transverse spatial gradients [247, 248]. The consequence is clear; one must go beyond the
two-term approximation, to multi-term expansions.

The modern era really began with the introduction of techniques from atomic and nuclear
physics into kinetic theory by Kumar [249,250], particularly the techniques of irreducible spherical
tensor analysis and separation of centre-of-mass and relative velocity co-ordinates through the
Talmi transformation. Viehland, Mason and collaborators formulated the first strong field solution
of Boltzmann’s equation for ions [251, 252], which in turn laid the basis for the first accurate
multi-term solution of Boltzmann’s equation for electrons [253]. Robson, Ness, White and co-
workers have extended the standard multi-term technique to studies of conservative and non-
conservative collisions in arbitrary crossed electric and magnetic field configurations [247,254]. The
numerical methods developed by these authors involve an expansion of the distribution function
speed dependence in Sonine polynomials about a variety of Maxwellian-weighted functions. There
have also been a number of other methods proposed for representing speed dependences of the
phase-space distribution function, e.g., finite difference schemes [255–259] and splines [35,260].

Despite the development of multi-term Boltzmann solutions and the well known limitations of
the two-term approximation, use of the latter is still widespread and often of questionable validity.
This can be attributed to the computational simplicity of low-order expansions, and also to the
popularity of the free and user-friendly computer package BOLSIG+ [261], which is promoted
by the online electron and ion information database LXCat [262], and is based a priori on the
two-term approximation.

1.3.3 Transport in the hydrodynamic regime

A solution of the full multi-term space-time dependent Boltzmann equation is a complex and
formidable challenge. Previous investigations have relied on one of a number of simplifications
to make the problem more tractable, e.g. employing the two-term approximation, or considering
only spatially homogeneous or steady-state systems. A common approach is to consider swarms
and plasmas only in the ‘hydrodynamic regime’ i.e. the regime where there are no strong gradients
imposed by large temperature differences, shearing flows, sources or sinks, and the explicit influence
of boundaries are ignored. The spatial gradients of the swarm number density decay purely by the
motion of particles, and does so at a much slower rate than the gradients of momentum, energy,
and the higher velocity moments which can rapidly dissipate via collisions. In the hydrodynamic
regime, the spatial dependence of the phase-space distribution functions are functionals of the
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number density, n(r, t), and the implicit space-time dependence of the phase-space distribution
and all velocity moments is adequately represented by a ‘density gradient expansion’ [263]. The
swarm experiments that developed alongside the kinetic theory of gases deliberately operate in
the hydrodynamic regime, such that the coefficients of the density gradient expansion, called
transport coefficients, relate directly to swarm experiment measurables such as drift velocities,
diffusion coefficients, etc.

The diffusion equation was originally used to unfold swarm experiments to determine the micro-
scopic scattering cross sections. An important distinction between ‘bulk’ transport coefficients and
‘flux’ transport coefficients needs to be made, since it is the former which are generally determined
in swarm literature. Physically, flux transport coefficients describe the mean velocity and diffusion
of the particles in the swarm, whereas the bulk transport coefficients describe the spread about,
and motion of, the swarm’s centre of mass. When non-particle-conserving processes are operative,
the bulk and flux coefficients can differ by several orders of magnitude, and even exhibit entirely
different quantitative behaviour [264–268]. Following the convention of [269], this phenomena is
referred to as the Tagashira-Sakai-Sakamoto (TSS) effect after the researchers who first recog-
nized and investigated the differences between the two transport coefficients [264, 265]. Informed
by swarm experiments, work by Kumar, Robson, Mason, McDaniel and Viehland established a
unified treatment of both electrons and ions (which had previously been developed separately)
in the hydrodynamic regime, as well as establishing many useful and well-known empirical laws
e.g., the Wannier energy relation, the generalized Einstein relations, Blanc’s law, Tonks’s theorem,
and so on [269,270]. Subsequent studies of electrons subject to electric fields were performed with
a multi-term Boltzmann approach [34, 271]. Multi-term Boltzmann equation investigations have
been performed for electrons subject to RF electric fields [248,272–274] and electric and magnetic
fields [247,254,275].

As discussed earlier, the latter part of the twentieth century saw the rise of crossed beam
experiments, and the demise of swarm experiments, such that there are currently only a few
groups remaining with operational swarm experiments despite their importance [276]. Instead,
transport coefficients and hydrodynamic calculations have found an important role in informing
low-temperature plasma modelling, which has influenced later investigations. In particular, trans-
port coefficients are directly used for fluid models [46,270] and also for the fluid parts of the hybrid
models [277]. Swarm conditions are the free diffusion limit of the plasma and hence results from
swarm limit analyses provide benchmarks for plasma codes in this limit.

1.3.4 Transport in the non-hydrodynamic regime

Strong gradients can be caused by boundary effects, strong electric or magnetic fields, varying
fields, sources or sinks of particles etc., which introduce non-hydrodynamic conditions. In situations
where the hydrodynamic regime is not applicable, the space-time dependence of the phase-space
distribution function cannot be projected onto the number density. A density gradient expansion
is no longer valid and transport coefficients are no longer meaningful quantities. Instead the
configuration space dependence of the Boltzmann equation must be treated on an equal footing with
the energy space dependence, which makes for a particularly computationally difficult problem even
for simple geometries [278–280]. It is no surprise that systematic studies of such non-hydrodynamic
phenomena lag behind their hydrodynamic counterparts. The Frank-Hertz experiment [281, 282],
which helped lay the groundwork for quantum and atomic physics, is the prototypical example
of non-hydrodynamic phenomena. A simple view of the Frank-Hertz experiment is the successive
acceleration of electrons due to an electric field, which then rapidly lose energy due to an inelastic
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channel, which gives rise to periodic spatial structures in the distribution function and velocity
moments.

One of the first investigations of non-hydrodynamic phenomena using the Boltzmann equa-
tion was carried out by Morse et al. [283] to study the spatial variation that developed from an
isotropic monoenergetic electron beam. In this pioneering work the calculations were simplified
by assuming only elastic collision described by a constant cross section and assuming the two-
term approximation. Thomas and Thomas [284] later also solved the two-term approximation
Boltzmann equation alongside Monte Carlo simulations to calculate the time-dependent reaction
rate for an electron avalanche, which showed oscillations about the asymptotic, hydrodynamic
value. The method of characteristics was developed by Segur and co-workers [38, 285–287] to de-
scribe the motion of charged particles along characteristic lines in configuration and energy space.
In a similar philosophy, an integral method based on flux-corrected transport was investigated
by Kushner and co-workers [288, 289], but could only consider forward and backward scattering.
More recently, extensive studies of non-hydrodynamic electron phenomena have been performed
by the group at Griefswald, including field free spatial relaxation [290], and spatial relaxation in
the presence of uniform [291–293], non-uniform [294] and periodic electric fields [295–297]. Similar
kinetic studies on spatial relaxation of the electrons in uniform and spatially periodic fields have
been performed by Golubovskii et al. [298–301]. The majority of these investigations have been
limited to the two-term approximation in solving the space-dependent Boltzmann equation. Li
and co-workers [254, 302, 303] developed a multi-term eigenvalue theory approach to investigate
the spatial relaxation of electrons in arbitrary electric and magnetic field configurations.

Solution of the full kinetic equation for electrons including both the space and time dependence
have also recently been performed [304–306]. These authors were restricted to a two-term ap-
proximation in Legendre polynomials to make the problem computationally feasible. As discussed
in Section 1.3.2, for atomic systems a two-term analysis may provide sufficient accuracy, but in
general a multi-term representation of the distribution function is required. This thesis addresses
this limitation and includes the first development of a multi-term kinetic solution of the space and
time dependent Boltzmann equation, as discussed in Chapter 8.

1.3.5 Kinetic modelling of lepton transport in dense gases, liquids and struc-
tured matter

In rarefied gas mediums the spacing between medium particles is much greater than the de Broglie
wavelength of the swarm particle, such that only a single scattering centre is sampled during a
binary collision. The surrounding medium particles can be considered to be moving randomly
with no correlation between them. The behaviour of charged particles in materials with inter-
particle spacing comparable or smaller than the de Broglie wavelength is very different to rarefied
gases [157], and represents a complex problem. The major contributions to these differences arise
from the small inter-particle spacings and their highly correlated separations. The de Broglie
wavelengths of the swarm particles are often orders of magnitude larger than the interatomic
spacing, which leads to significant quantum-like effects. Even within a semi-classical picture, where
the swarm particles are assumed to act as point-like particles, no particular volume is ‘owned’ by a
single atom. This means the typical picture for transport in a gas, i.e. a series of individual collision
events separated by the mean-free path, is no longer valid, making it important to consider multiple
scattering effects of the electron from many atoms simultaneously. Of particular note is the effect
of ‘coherent scattering’ and the pair correlations of the liquid.
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Many previous calculations for electrons in dense systems have neglected these liquid effects for
simplicity, modelling dense fluids by applying a theory for dilute gases with only an appropriate
increase of the density. Experimentally, this was shown to be quantitatively and qualitatively
wrong [157]. However, a few alternative theories exist that have explored liquids in different ways.
Borghesani et al. [307] have heuristically combined the liquid effects identified above to obtain an
effective cross section. When used in the standard equations from kinetic theory for mobility in a
non-zero field, their results have been shown to be remarkably accurate. Braglia and Dallacasa [308]
have derived a theory that addresses both enhancements and reductions to the zero-field mobility
through a Green’s function approach with appropriate approximations to the self-energy, but do
not go beyond linear response theory and hence do not explain non-equilibrium behaviour at high
fields.

There are, in essence, two major problems to address in liquid scattering. The first is how to
determine the effective atomic potential scattering of a charged particle in a liquid or dense state,
from which one can derive a scattering cross section. When the neighbouring medium particles
are close together, the long-range polarization force between a positron/electron and a polarizable
atom is screened by the presence of other polarizable atoms. There is considerable overlap of the
polarization force fields of different atoms, and to a lesser extent, of the static fields of nearest
neighbours. In simple liquids, although the mutual configuration of particles moves continuously,
the position and momentum of each atom should represent the configuration perfectly at any
moment. Lekner in 1967 [2] outlined a process for calculating the screening of the polarization
interaction from knowledge of the pair correlation function. Lekner accounted for the overlap of
neighbouring atom potentials in the liquid state by defining an ‘ensemble average’ potential from
which the appropriate cross sections can be calculated. Many of the techniques for calculating
polarization, static, and exchange potentials have improved since Lekner’s original paper, hence
the same procedure can be followed with modern scattering methodologies. Sakai et al. [157]
have been able to improve agreement with experiment by empirically modifying the resultant cross
sections of the Lekner formalism and by including inelastic processes. Atrazhev et al. [309] were
able to simplify the arguments of Lekner [2] to argue that, for small energies, the effective cross
section becomes dependent on the density only and obtained good agreement with experiment.
However the distance at which to enforce this new behaviour of the effective cross section remains
a free parameter in the theory and this constant effective cross section must be found empirically.
Atrazhev and co-workers went on to consider the interaction as a muffin tin potential, with each
cell being a Wigner-Seitz sphere surrounding each atom in the liquid. They used a variable phase
function method which could describe the absence of a Ramsauer minimum in the liquid cross
section along with density fluctuations of the liquid [310–312].

The second problem is how to calculate transport properties once the potential is known.
A general view of charged-particle interactions with a dense medium is as the scattering of a
wave representing the charged particle by the medium as a whole. If one considers an incoming
plane wave scattering off molecules in the medium into spherical waves, where the new signal is
measured by a detector some distance away from the volume, then a first approximation to the
scattering is the ‘single scatterer approximation’ in which the scattered beam is the coherent sum of
contributions from many molecules which interfere to effectively produce a diffraction pattern of the
medium. This is known as coherent scattering. Multiple scattering effects are taken as negligible,
though are accountable through modifications to the cross sections [307, 313]. The approach to
including coherent scattering effects due to structure in the framework of modern kinetic theory was
proposed by Cohen and Lekner in 1967 [3], using concepts previously put forward by Van Hove
in 1954. Van Hove showed that the first Born approximation scattering cross section could be
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expressed in terms of a suitably generalized pair distribution function depending on a space vector
and a time interval [314]. Essentially, the wave associated with the charged particle moving through
the condensed material transfers energy to the collective excitations of the system, and all necessary
information about the excitations in the single-scatterer approximation are contained in the Van
Hove space-time pair correlation function, or more directly, its Fourier transform. The differential
cross section for scattering in a dense medium is then proportional to the product of the single-atom
differential cross section, which depends purely on properties of the interaction, and the structure
function which encompasses properties of the medium only. The new scattering cross section,
which incorporates the structure due to inter-particle correlation, can now be used to construct a
governing kinetic equation, and has recently been investigated by White and Robson [1, 315].

1.3.6 Monte Carlo modelling of lepton transport in dense gases, liquids and
structured matter

As discussed in Section 1.1.3, Monte Carlo simulation [149,151,156,316–319] (and in a similar spirit
particle-in-cell and hybrid models [277, 320–322]) is the dominant method for modelling charged
particle transport. Even so, there are few authors who focus on non-equilibrium swarm transport
in soft condensed matter, and even fewer who have addressed the deficiencies outlined. Sakai et
al. [157] performed the first Monte Carlo simulation of electron scattering in liquid argon using
a dynamic structure factor to account for coherent scattering. A similar approach was used by
Kundhardt and co-workers to investigate electrons in liquid argon and xenon [323–325]. More
recently, Tattersall [9] has adapted the static structure factor work of Wojcik and Tachiya [326] to
develop a Monte Carlo code targeted specifically at non-equilibrium swarm transport, extending
the work of Sakai [157], and applying it to a much greater variety of systems. The simulations
of Tattersall have been used repeatedly throughout this thesis for benchmarking and validation
purposes.

1.4 Structure of the thesis
The ultimate aim to develop predictive models of lepton transport in biological matter requires
the systematic development of a benchmarked transport theory that accounts for all relevant
underlying microscopic physics in the problem (see Section 1.3.5) and accounts for the full space-
time evolution of the lepton phase-space distribution function. The scope of this thesis, however,
is limited to:

1. The development of a time-dependent solution of the Boltzmann equation for electron and
positron hydrodynamic swarm transport via a multi-term Legendre polynomial expansion of
the velocity distribution function.

2. Systematic benchmarking of the Boltzmann equation solver for a range of non-equilibrium
model and real systems, and its application to assess/develop various electron/positron cross
section sets for atomic gases.

3. The modification of the Boltzmann collision operator and associated collision cross sections
to account for density effects in simple non-polar liquids, and its benchmarking for electrons
in liquid argon.
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4. The extension of the multi-term solution of Boltzmann’s equation to the non-hydrodynamic
regime, and investigation of the spatio-temporal evolution of swarms in gaseous and liquid
systems.

In Chapter 2, the kinetic theory of an electron or positron swarm moving through a background
medium is detailed. The governing kinetic equation is the Boltzmann equation. The velocity
dependence of the charged particle distribution function is represented in terms of Legendre poly-
nomials, and the Boltzmann equation is decomposed into a system of coupled equations for the
distribution function coefficients. In such an expansion, no limitation is placed on the number of
terms in the Legendre polynomial expansion, i.e., this represents a true multi-term description.
In the hydrodynamic regime, the space-dependence of the distribution function is represented by
a second order density gradient expansion which accounts for non-conservative collisions. Ex-
pressions are given for the hydrodynamic components of the distribution function and transport
coefficients. The collision operators are detailed for the important scattering processes in electron
and positron transport, e.g., elastic, excitation, ionization, positron annihilation and positronium
formation. Particular attention is given to coherent elastic scattering, which is a many-body effect
important to transport in dense gases and liquids. We finish the chapter with a discussion of the
initial and boundary conditions required.

Chapter 3 details the numerical techniques and considerations employed in this thesis for solving
the Boltzmann equation representations and related expressions given in Chapter 2. Three different
discretizations of the energy-space and collision operator are discussed; a centred Finite Difference
representation and two pseudo-spectral methods, one based on Chebyshev polynomials and one
on Laguerre functions. The temporal evolution of the system is achieved with an implicit-Euler
method, and it is shown that the time-asymptotic solution can be found directly by solving an
eigenvalue problem.

In Chapter 4, the kinetic theory and numerical schemes developed for Boltzmann’s equation in
the hydrodynamic regime are benchmarked for a number of model systems. Simple analytic cross
section models allow us to individually and systematically validate the solution technique for each
of the different collisional processes required in the full description. Particular attention is given to
particle loss processes, such as positron annihilation, and particle gain processes, such as electron
impact ionization. The calculations are compared with previous authors and an independent Monte
Carlo simulation where possible. The inclusion of coherent scattering effects is benchmarked for a
simple model liquid, and a detailed description of the phenomenology is given in Appendix A via
fluid modelling.

In Chapters 5 and 6, the now-benchmarked numerical code is applied to real, dilute, gaseous
systems. The Boltzmann equation provides the connection between microscopic cross sections
and the macroscopic transport coefficients measured in swarm experiments. In particular, the
application of an electric field to swarm experiments represents a stringent test on the validity
of the cross section set, particularly above thermal energies. In Chapter 5 the electron-neon and
positron-helium systems are investigated in the low-energy regime, using new sets of cross sections
provided by scattering theoreticians. We then comment on the accuracy of new and existing cross
section sets and make recommendations for the cross sections that are most consistent with swarm
experiment measurements.

In Chapter 6 the positron-H2 system is studied with respect to the ionization process. A
positron impact ionization kinetic theory collision operator is derived for the first time. Particular
attention is given to the effect of the energy-sharing between post-ionization constituents, and the
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influence that different energy-partitioning models has on transport coefficients. A basic energy-
partitioning model that captures, at least qualitatively, the basic physics of high energy and near-
threshold positron ionization is proposed, which is fit to experimental H2 data to investigate the
transport of positrons in dilute H2 gas.

In Chapter 7 the scattering of electrons is considered in gas-phase and liquid-phase argon. The
study of excess electrons in dense gases and liquids is a complex problem, requiring the inclusion
of many effects that are not present in dilute gaseous systems. The calculations we present in
this chapter are based on a generalization of the Cohen and Lekner formalism, overcoming several
approximations which are no longer necessary in modern day transport and scattering theory. The
importance of an accurate description of static, polarization and exchange potentials is highlighted.
There are two key modifications to the scattering potential necessary; one due to the screening
of the long-range potential, and one due to contributions from other particles in the bulk. We
perform calculations specifically for the noble gas of argon, which is an excellent test bed for new
theories due to the good availability of experimental data, i.e. drift velocities and characteristic
energies.

In Chapter 8, the kinetic theory developed for transport in the hydrodynamic regime is extended
to the non-hydrodynamic regime. In the non-hydrodynamic regime, the full energy-space and
configuration-space need to be resolved at each time. A numerical scheme is developed for the full,
non-equilibrium, multi-term, spatio-temporal solution of the Boltzmann equation Green’s function,
from which a variety of experimental configurations and applications can be modelled. The spatio-
temporal evolution of electron swarms is then investigated in a modified Percus-Yevick hard-sphere
liquid system, and then real gaseous and liquid argon to elucidate the influence of liquid effects on
the relaxation.
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2
Kinetic theory

2.1 Introduction
In this chapter a kinetic equation for a dilute swarm of light-mass charged particles, such as
positrons or electrons, moving through a dilute gaseous or structured medium is detailed. The
swarm will be considered to be a non-degenerate, non-relativistic, one-component swarm of N

particles each of mass m confined in a volume V . It is assumed that the swarm-particle density
is so low that the Coulomb interactions between them are negligible, and furthermore, to a first
approximation the overall state of equilibrium of the background medium is effectively undisturbed.
It is generally a requirement that the background medium be a dilute gas [270,327,328], however, in
this work we extend our investigation to include dense gases and liquids under the same conceptual
framework.

Kinetic theory is the branch of statistical mechanics that describes a system through a ‘phase-
space’ distribution function. A phase-space [329] is a space in which all possible states of a system
are represented. Essentially, every degree of freedom or parameter of the system is represented
as an axis of a multidimensional space. The succession of points traced in the phase-space is
analogous to the system’s state evolving over time. For mechanical systems, the phase-space
usually consists of all possible values of position and velocity variables, i.e., each of the N particles
has three dimensions of configuration-space, r, and three dimensions of velocity-space, v. The time
evolution of a state, z(r,v), can be written as

ż =
dz
dt , (2.1)

where z is then a 6N -dimensional vector. Given an initial state, z0, equation (2.1) can be used to
determine z at subsequent times. If the initial data are not known with absolute accuracy, then one
must instead introduce a probability density, P (z), for the initial data, and then seek to compute
the probability density at subsequent times, provided that the forces are known and the only
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uncertainty is the initial data [239]. The system is completely described by Louiville’s equation,
which describes the probability of finding the 6N -dimensional system in a given state of position
and momenta of the particle constituents. Bogoliubov [233] , Born and Green [234], Kirkwood [235,
236] and Yvon [237] independently derived an infinite chain of equations (BBGKY hierarchy) for
a reduced dimension of the Louiville equation. By introducing a direction of time into the system,
which is synonymous with the stosszahlansatz introduced by Boltzmann in 1872 [238], the infinite
chain of equations can be terminated at the first equation. Assuming two-body interactions only,
the kinetic equation resulting from the BBGKY hierarchy is the irreversible Boltzmann equation
(which could equivalently be derived from the complete set of Newton’s equations of motion), and
is the fundamental kinetic equation used in this work.

The Boltzmann equation [330] is(
∂

∂t
+ v · ∇+ a · ∂

∂v

)
f (r,v, t) = −J (f (r,v, t)) , (2.2)

where f (r,v, t) is the phase-space distribution function and a refers to the acceleration from ex-
ternal forces applied to the system. Equation (2.2) represents the fundamental equation from
which macroscopic properties can be determined, i.e., from a knowledge of f , all relevant informa-
tion about the system can be obtained. The Boltzmann equation represents the way in which the
representative 7-point ‘fluid’ behaves in phase-space, and is in effect an extension of continuity to
6 dimensions. The left hand side of equation (2.2) describes the way f changes by the collision-less
motion of the particles. The first term, ∂

∂tf , describes the explicit time dependence of f at a fixed
position r and velocity v, while the remaining terms, v · ∇ and a · ∂

∂v , represent the convective
flow in configuration and momentum space respectively. The right hand side of equation (2.2) is
the eponymous Boltzmann collision integral, J(f), which accounts for both conservative and non-
conservative collisions between the swarm particle and a neutral molecule. The representation of
the collision processes is an integral part of kinetic theory, and it is through the collisional operator
that microscopic collisional information is included.

2.2 Multi-term Legendre polynomial expansion
The starting point for most modern-day solutions [330] of Boltzmann’s equation, (2.2), is the rep-
resentation of the velocity-space angle-dependence of the charged particle phase-space distribution
function in terms of spherical harmonics, Y [l]

m [331], i.e.,

f(r,v, t) =
∞∑
l=0

l∑
m=−l

f (l)
m (r, v, t)Y [l]

m (v̂) , (2.3)

where v̂ is the unit vector for velocity, i.e. v = vv̂. Truncation of the infinite series (2.3) at some
l = lmax designates the ‘(lmax + 1)-term approximation’. The history of charged particle transport
in gases has been dominated by the two-term approximation [50], i.e., where only the first two
terms in l have been included. The assumption of quasi-isotropy is violated in many situations,
particularly when inelastic collisions are included [253]. Such an assumption is not necessary in
our formalism. Rather, lmax is treated as a free parameter to be increased until some convergence
or accuracy criterion is met.

If there is a single preferential direction, â, in the physical system, perhaps due to an applied
electric field, then the system has a symmetry that can be exploited to reduce the scale of the
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problem. In this case, the full spherical harmonic expansion reduces to a Legendre polynomial
expansion, i.e.,

f(r,v, t) =
∞∑
l=0

fl(r, v, t)Pl (µ) , (2.4)

where µ = â · v̂ and Pl is the lth Legendre polynomial [332]. Specifically, the coefficients in
equations (2.3) and (2.4) are related by f

(l)
m = 4π

2l+1flY
(l)
m (â).

2.2.1 Plane-parallel geometry

If there is a preference in the z direction (see Figure 2.1) then f (r,v, t) → f (z, v, µ, t), where
µ = ẑ · v̂ = cos θ. Equation (2.2) can then be written as,(

∂

∂t
+

[
v
∂

∂z
+ az

∂

∂v

]
µ+

az
v

(
1− µ2

) ∂

∂µ
+ J

)
f (z, v, µ, t) = 0 , (2.5)

where az is the acceleration which is now entirely in the z direction. Substituting the Legendre
polynomial expansion (2.4) into equation (2.5) and equating the Legendre polynomial coefficients
leads to an infinite chain of coupled partial differential equations:

∂fl
∂t

+
∑
p=±1

∆
(p)
l

[
v
∂

∂z
+ az

(
∂

∂v
+ p

l + 3p+1
2

v

)]
fl+p + Jl(fl) = 0 , (2.6)

where

∆
(+1)
l =

(l + 1)

(2l + 3)
, (2.7)

∆
(−1)
l =

l

(2l − 1)
, (2.8)

and Jl is the Legendre decomposition of the collision operator. Equation (2.6) can be re-cast in
terms of energy, U = 1

2mv2, i.e.,

∂fl
∂t

+

(
2

m

) 1
2 ∑
p=±1

∆
(p)
l

[
U

1
2 ∂

∂z
+ qE

(
U

1
2 ∂

∂U
+ p

(
l + 3p+1

2

)
2

U
− 1

2

)]
fl+p + Jl (fl) = 0 , (2.9)

where az has been replaced by the electric field, E, i.e. az = qE/m. We will generally work
in the energy representation, but will switch between the two when convenient. Solution of this
equation is required under general operating regimes present in most experiments and applications.
In the following section we consider a specific regime where the space-time dependence is projected
onto the number density, i.e., the hydrodynamic regime. This allows us to make connection with
traditional estimations of swarm transport coefficients obtained from swarm experiments, operating
in the hydrodynamic regime. The non-hydrodynamic regime is considered in Chapter 8.
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Figure 2.1: Schematic of the electric field direction and plane-parallel configuration-space geometry
studied in this thesis.

2.2.2 Hydrodynamic regime

Transport coefficients, which will be detailed in Section 2.4, are defined in the ‘hydrodynamic
regime’ where the spatial dependence of the phase-space distribution functions are functionals
of the number density, n(r, t) [263]. The gradients of momentum, energy, and higher velocity
moments, can be rapidly dissipated locally by virtue of collisions, whereas gradients of the swarm
number density can only decay by the motion of particles and do so at a much slower rate. If
there are no strong gradients imposed externally, such as large temperature differences, shearing
flows, sources or sinks, and the explicit influence of boundaries are ignored, then the hydrodynamic
regime is applicable. Here, the implicit space-time dependence of the phase-space distribution and
all velocity moments is adequately represented by a ‘density gradient expansion’. To satisfactorily
account for the effect of non-conservative processes a second order truncation of the density gradient
expansion in Cartesian co-ordinates is required [263,271], i.e.,

f (r,v, t) = n (r, t)F (v)− F (L)(v) ∂

∂z
n (r, t)− F (T)(v)

[
cosϕ ∂

∂x
+ sinϕ ∂

∂y

]
n (r, t)

+

√
1

3
F (2T)(v)

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
n (r, t)

+

√
2

3
F (2L)(v)

[
1

2

(
∂2

∂x2
+

∂2

∂y2

)
− ∂2

∂z2

]
n (r, t) ,

(2.10)

where ϕ is the azimuthal angle, and the superscripts L and T are quantities defined parallel and
transverse to the electric field (defined to be in the z direction) respectively. The inclusion of
more terms in equation (2.10) introduces coefficients representing the skewness and kurtosis of
the swarm, however, these are not considered in this work and all transport properties of interest
can be found by using the coefficients from the second order expansion. Our solution of the
Boltzmann equation in the hydrodynamic regime, (2.2), requires the decomposition of the density
gradient coefficients F (v), F (L)(v), F (2L)(v) and F (2T)(v) in velocity space through an expansion
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in Legendre polynomials, Pl(µ),

F (v) =
∞∑
l=0

Fl(v)Pl(µ) , (2.11)

F (L)(v) =
∞∑
l=0

F
(L)
l (v)Pl(µ) , (2.12)

F (2T)(v) =
∞∑
l=0

F
(2T)
l (v)Pl(µ) , (2.13)

F (2L)(v) =
∞∑
l=0

F
(2L)
l (v)Pl(µ) . (2.14)

The first transverse component, F (T)(v), must be represented in terms of an expansion in associated
Legendre polynomials [332], P 1

l (µ),

F (T)(v) =
∞∑
l=1

F
(T)
l (v)P 1

l (µ) . (2.15)

Exploiting the orthogonality of Legendre and associated Legendre polynomials, along with the
density gradient expansion (2.10), the Boltzmann equation can be re-written as a hierarchy of
equations [271]. If we first define the spatially-homogeneous energy-space Legendre polynomial
Boltzmann operator, L, which operates on a function Φl (U), i.e.,

LΦl =

(
∂

∂t
+ ω0 + Jl

)
Φl +

(
2

m

) 1
2 ∑
p=±1

∆
(p)
l qE

(
U

1
2 ∂

∂U
+ p

(
l + 3p+1

2

)
2

U
− 1

2

)
Φl+p , (2.16)

then the hierarchy of equations for Φl =
{
Fl, F

(L)
l , F

(2T )
l , F

(2L)
l

}
can each be written as,

LΦl = h
(s)
l , (2.17)

where

h
(0)
l = 0 , (2.18)

h
(L)
l =

(
2U

m

) 1
2
(

l + 1

2l + 3
Fl+1 +

l

2l − 1
Fl−1

)
− ω1Fl , (2.19)

h
(2T)
l =

(
2U

3m

) 1
2
[
l + 1

2l + 3

(
F

(L)
l+1 + (l + 2)F

(T)
l+1

)
+

l

2l − 1

(
F

(L)
l−1 − (l − 1)F

(T)
l−1

)]
−ω2Fl −

(
1

3

) 1
2

ω1F
(L)
l ,

(2.20)

h
(2L)
l = −

(
U

3m

) 1
2
[
l + 1

2l + 3

(
2F

(L)
l+1 − (l + 2)F

(T)
l+1

)
+

l

2l − 1

(
2F

(L)
l−1 + (l − 1)F

(T)
l−1

)]
−ω̄2Fl +

(
2

3

) 1
2

ω1F
(L)
l .

(2.21)
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Similarly, the first transverse component, F (T)
l , is given by(

∂

∂t
+ ω0 + Jl

)
F

(T)
l

+
l + 2

2l + 3

(
2

m

) 1
2

qE

[
U

1
2 ∂

∂U
+

(l + 2)

2
U

− 1
2

]
F

(T)
l+1

+
l − 1

2l − 1

(
2

m

) 1
2

qE

[
U

1
2 ∂

∂U
− (l − 1)

2
U

− 1
2

]
F

(T)
l−1 =

(
2U

m

) 1
2
(

1

2l − 1
Fl−1 −

1

2l + 3
Fl+1

)
.

(2.22)

The expansion coefficients, F (s)
l , satisfy the normalization conditions

2π
(

2
m

) 3
2
´∞
0

dU U
1
2 F

(s)
0 = δs,0. The quantities ω0,ω1, ω2 and ω̄2 [271] can be written compactly

as

ω0 = −Tα (F0) , (2.23)

ω1 = TF (F1)− Tα

(
F

(L)
0

)
, (2.24)

ω2 = TF

(
1√
3

[
F

(L)
1 + 2F

(T)
1

])
− Tα

(
F

(2T)
0

)
, (2.25)

ω̄2 = −TF

(√
2

3

[
F

(L)
1 − F

(T)
1

])
− Tα

(
F

(2L)
0

)
, (2.26)

where TF and Tα are general flux and particle non-conserving operators respectively, i.e.,

TF (F (U)) =
2π

3

(
2

m

)2 ˆ
dU UF (U) , (2.27)

Tα (F (U)) = 2π

(
2

m

) 3
2
ˆ

dU U
1
2 JNC

0 (F (U)) , (2.28)

where JNC (Fl) is the total non-conservative collision operator for particle non-conserving pro-
cesses, i.e., JNC(Fl) is the sum of particle loss and particle gain processes such as electron attach-
ment, electron ionization, positron annihilation and positronium formation etc.

The system of equations (2.16)–(2.26), represent a hierarchy of kinetic equations where an equa-
tion corresponding to a coefficient with level s > 0 depends upon coefficients from previous levels.
For example, the distribution Fl appears in hl when solving for F (L)

l and F
(T)
l and therefore one

must solve the zeroth level first. Similarly, the second level equations depend on coefficients found
from the first and zeroth levels. It should also be noted that, in the presence of non-conservative
collisions, the ω coefficients contained within hl involve an integration which is dependent on the
very density gradient expansion coefficient, F (s), that is the subject of the equation, resulting in
a non-linear expression. For example, in the second level longitudinal equation, hl includes an ω̄2

term. The functional form of ω̄2 has a dependence upon the distribution F
(2L)
0 .

There remains the task of finding explicit expressions for the collision operator and their Le-
gendre decompositions, for each of the relevant collisional processes.

2.3 Collision operators

The solution of equation (2.6) for the fl, and the solution of equations (2.16)–(2.22) for the F
(s)
l

depends intimately on the collision processes included through the collision operator projections Jl.
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The relevant collisional processes for the positron and electron transport considered in this work
are detailed below, with a particular focus on the adjustments required for modelling transport in
dense or structured media.

2.3.1 Coherent scattering

A swarm of particles moving through a dense gas, liquid, solid, or other structured system is
scattered by atoms which interact with one another, and are therefore correlated both temporally
and spatially. A first approximation of the scattering is the single-scattering from multiple centres
approximation, in which the scattered amplitude at a point is the coherent sum of amplitudes
collectively scattered from the individual atoms. This is termed ‘coherent scattering’. From the
most general point of view, a particle wave moving through a liquid or solid transfers energy to
collective excitations of the system. In the Born approximation, the scattering cross section is
expressible in terms of a generalized pair-distribution function G (r, t) depending on a space vector
r, and time interval t [314]. The generalized pair-distribution function G (r, t) is a natural extension
of the conventional pair-correlation function, g(r) [333]. In the absence of quantum effects G (r, t)
is the likelihood to find, at time t′ + t, a particle at position r′ + r given that the particle was at a
point r′ at time t′. This definition has to be slightly modified for a quantum system. In the limit of
t → 0, G (r, t) → g(r). In the single-scatterer approximation, all necessary information about the
excitations is contained in the single-atom cross section and G (r, t), or more directly, its Fourier
transform, termed the dynamic structure factor, S(∆k,∆ω). The dynamic structure factor plays
an important role in developing a collisional rate of change [3]. It is convenient to work with wave
number, k, and angular frequency, ω, instead of particle velocity and energy respectively. It is easy
to switch between the two representations via

~k = mv , (2.29)

~ω = U =
1

2
mv2 . (2.30)

A schematic of the coherent elastic scattering process is given in Figure 2.2. Undashed and
dashed quantities refer to swarm-particle properties before and after a collision respectively. By
employing the definition of the double differential cross section d2σ

dk̂′dω′ [334] one can build up an
expression for the change of a property of velocity, ϕ (v), due to collisions,

[
∂

∂t
ϕ(v)

]
col

=

ˆ
dvϕ(v)J [f(v)] ,

= n0

ˆ
dv vf(v)

ˆ ∞

0

dω′
ˆ

k̂′
dk̂′ [ϕ(v)− ϕ(v′)]

d2σ
dk̂′dω′

, (2.31)

where k̂ is the unit vector designating the wave number direction. Van Hove [314] showed that the
double differential cross section can be expressed in terms of the single particle differential cross
section (in the laboratory frame of reference) σlab

(
|∆k| , k̂′

)
and the dynamic structure factor

S(�k,∆ω), i.e.,
d2σ

dk̂′dω′
= σlab

(
|∆k| , k̂′

)
S(�k,∆ω) , (2.32)

where ∆k = k − k′ is the change in the wave vector, and ∆ω = ω − ω′ is the change in energy
due to the interaction with the medium as a whole. It is important at this point to note that
the double differential scattering cross section is made up of two independent parts, i.e., the single
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scattering cross section which depends purely on properties of the interaction potential, and the
dynamic structure factor which depends only upon properties of the medium. The collisional rate
of change of ϕ (v) is then given by,[

∂

∂t
ϕ(v)

]
col

= n0

ˆ
dv vf(v)

ˆ ∞

0

dω′

×
ˆ

k̂′
dk̂′ [ϕ(v)− ϕ(v′)]σlab

(
|∆k| , k̂′

)
S(�k,∆ω) .

(2.33)

For light particles, the dynamic structure factor must satisfy the first three sum rules for a mo-
mentum exchange K and energy exchange Q,

ˆ ∞

−∞
dQS (K, Q) = S(K) , (2.34)

ˆ ∞

−∞
dQQS (K, Q) =

K2

2m0
, (2.35)

ˆ ∞

−∞
dQQ2S (K, Q) ≈ 2kbT0

K2

2m0
, (2.36)

where S(K) is known as the ‘static structure factor’ [3,157] and is the Fourier transform of the pair
correlation function. A useful analogy can be found by viewing coherent scattering from an optics
viewpoint i.e. as a multi-slit experiment. The resulting ‘pattern’ is the combination of diffraction
due to each individual slit (single particle scattering) along with the interference pattern from the
collection of slits as a whole (scattering centres) with Doppler shifting. In practice, the arguments
K and Q may be specified in some experimental arrangement set up to probe the properties of the
medium.

Figure 2.2: Schematic of coherent scattering, where the incoming plane wave (with wave parameters
k and ω) is scattered from multiple scattering centres simultaneously into spherical outgoing waves
(with wave parameters k′ and ω′) through an angle χ.

The sum rules (2.34)–(2.36) are only true for independent K and Q. Since k and ω are
not independent, the integral in equation (2.33) cannot be evaluated immediately. To enforce
independence we expand about zero energy exchange, where the magnitude of k does not change,
but due to the rotation through a scattering angle χ, still has a non-zero vectorial change. The
associated momentum exchange, ∆k0, is related to ∆k through

∆k = k− k′ = ∆k0 + (k − k′) k̂′ . (2.37)
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When evaluating subsequent expressions arising from this expansion, we use the following identities:

|∆k0|2 = 2k2 (1− cosχ) , (2.38)

k̂′ ·∆k0 = −k (1− cosχ) . (2.39)

In the limit of small relative energy exchanges, ∆ω/ 1
2mv2, the following approximations can be

made:

σlab

(
|∆k| , k̂′

)
= σ (v, χ)− v

4

(
∆ω

1
2mv2

)
∂

∂v
σ (v, χ) , (2.40)

S (∆k,∆ω) ≈ S (∆k0,∆ω) +
1

2
mv

(
∆ω

1
2mv2

)
k̂′.

[
∂

∂KS (K,∆ω)

]
K=∆k0

, (2.41)

which can now be used in the evaluation of collision integrals.
Now that the double differential scattering cross section incorporating coherent scattering has

been constructed, we now need to determine the collision integrals (including their Legendre de-
compositions) for the various collisional processes. Only the elastic collision process is coherent,
and hence influenced by the structure of the medium. For an inelastic process, energy is transferred
on a localized site during scattering. Scattering is hence incoherent and interference effects do not
manifest themselves. Processes such as attachment, annihilation, and positronium formation from
a kinetic theory viewpoint are simple particle loss processes, and hence the collision operators
representing such processes are just the direct scattering part of the original Boltzmann collision
operator. Consequently, the structure of the material only plays a role in the elastic scattering
processes.

2.3.2 Elastic collisional processes

Elastic scattering is a particle-conserving processs in which the kinetic energy in the centre-of-mass
frame is conserved. To derive the collisional operator for elastic collisions, let us first express the
collisional rate of change (2.33) formally as[

∂

∂t
ϕ(v)

]
col

=

ˆ
dv f(v)J† (ϕ) , (2.42)

where the adjoint operator J† (ϕ) is defined as

J† (ϕ) = n0

ˆ ∞

0

dω′
ˆ

k̂′
dk̂′ [ϕ(v)− ϕ(v′)]σlab

(
|∆k| , k̂′

)
S(�k,∆ω) , (2.43)

which plays a key role in transport theory. This is the adjoint of the particle-medium collision
operator J(f) , and the two are related via

ˆ
dvϕ(v)J (f) =

ˆ
dv f(v)J† (ϕ) . (2.44)

Let us now represent a property ϕ(v)=
∑

l ϕl(v)Pl (µ) and consider the change due to collisions of
the individual, ϕl(v)Pl(µ). For light particles, i.e., m/m0 ≪ 1, we make use of the approximation

ϕ (v′) ≈ ϕ (v)− 1

2
v

(
∆ω

1
2mv2

)
∂

∂v
ϕ (v) +O

(
∆ω

1
2mv2

)2

. (2.45)
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Rate of change of a scalar

For the scalar case of l = 0, equation (2.33) becomes,[
∂

∂t
ϕ0(v)

]
col

= n0

ˆ
dv vf(v)

ˆ
k̂′
dk̂′

×
ˆ ∞

−∞
d (∆ω) [ϕ0(v)− ϕ0(v

′)]σlab

(
|∆k| , k̂′

)
S(�k,∆ω) ,

≈ n0

ˆ
dv f(v) 1

m

∂

∂v
ϕ (v)

ˆ
k̂′
dk̂′ σ (v, χ)

× σ (v, χ)

ˆ ∞

−∞
d (∆ω) (∆ω)S (∆k0,∆ω) , (2.46)

where expansions (2.40), (2.41) and (2.45) have been substituted, with terms above second order in(
∆ω

1
2mv2

)
neglected. The integral over post-collision energies, ω′, has been replaced by an equivalent

integral over ∆ω to make connection with the expansions. It should be noted that first order
terms cannot be neglected for the scalar case, lest there be no energy change due to collisions. The
above is true for zero temperature. To account for temperature, the second order terms must be
retained [1,157]. We can now evaluate the integral over ∆ω using the sum rules (2.34)–(2.36), i.e.,

[
∂

∂t
ϕ0(v)

]
col

= n0

ˆ
dv f(v) 1

m

∂

∂v
ϕ (v)

ˆ
k̂′
dk̂′ σ (v, χ)

×
ˆ ∞

−∞
d (∆ω) (∆ω)S (∆k0,∆ω) ,

≈ n0

ˆ
dv f(v) 1

m

∂

∂v
ϕ (v)

ˆ
k̂′
dk̂′ σ (v, χ)

∆k0.∆k0

2m0
,

= n0

ˆ
dv f(v) m

m0
v2

∂

∂v
ϕ (v)

ˆ
k̂′
dk̂′ σ (v, χ) (1− cosχ) ,

= n0

ˆ
dv f(v) m

m0
v2σm (v)

∂

∂v
ϕ (v) ,

= 4πn0

ˆ
dv v2f0(v)

m

m0
v2σm (v)

∂

∂v
ϕ (v) , (2.47)

where σm is the ‘momentum-transfer cross section’,

σm = σ0 − σ1 , (2.48)

where σl are the coefficients of a Legendre polynomial expansion, i.e.,

σl =

ˆ
k̂′
dk̂′ σ (v, χ)Pl (cosχ) . (2.49)

Comparing (2.42) with (2.47), it follows that

J†
0 (ϕ) = n0

m

m0
v2σm (v)

∂

∂v
ϕ (v) , (2.50)

and similarly from (2.44),

J0 (f0) = −
1

v2
∂

∂v

[
n0

m

m0
v4σm (v) f0

]
. (2.51)
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It should be noted that these scalar operators are of exactly the same form as the corresponding
operators for an unstructured dilute gas medium, derived by Pidduck [335] and Davydov [336]. The
derivation including thermal motion of the background medium is more complicated, but follows
along similar lines [1, 157]. For this reason, we merely quote the result,

J0 (f0) = −
1

v2
∂

∂v

[
n0

m

m0
v3σm (v)

(
vf0 +

kbT0

m

∂

∂v
f0

)]
. (2.52)

Rate of change of a vector or tensor

For the case of l ≥ 1,[
∂

∂t
ϕl(v)Pl (cosχ)

]
col

= n0

ˆ
dv vf(v)dω′

ˆ
k̂′
dk̂′

×
ˆ ∞

−∞
d (∆ω) [ϕl(v)Pl (cos θ)− ϕl(v

′)Pl (cos θ′)]σlab

(
|∆k| , k̂′

)
S(�k,∆ω) ,

≃ n0

ˆ
dv vf(v)ϕl(v)

ˆ
k̂′
dk̂′ [Pl (cos θ)− Pl (cos θ′)]

×
ˆ ∞

−∞
d (∆ω)

′
σ (v, χ)S (∆k0,∆ω) , (2.53)

where only the leading term in
(

∆ω
1
2mv2

)
has been kept. The integral over d (∆ω) can be done

immediately, yielding

[
∂

∂t
ϕl(v)Pl (cosχ)

]
col
≈ n0

ˆ
dv vf(v)ϕl(v)

ˆ
k̂′
dk̂′ [Pl (cos θ)− Pl (cos θ′)]σ (v, χ)S (∆k0) .

(2.54)

If we define Σ (v, χ) = σ (v, χ)S (∆k0), then we can represent the angular dependence via the
expansion

Σ(v, χ) =
∑
l

Σl(v)Pl (χ) ,

=
∑
l

Σl(v)Pl

(
k̂ · k̂′

)
,

=
∑
l,m

4π

2l + 1
Σl(v)Y

(l)
m

(
k̂
)
Y [l]
m

(
k̂′
)
, (2.55)

where Y
(l)
m is the complex conjugate of Y [l]

m , i.e., Y (l)
m =

(
Y

[l]
m

)∗
. Similarly,

Pl (cos θ′) =
4π

2l + 1

∑
m

Y (l)
m

(
k̂′
)
Y [l]
m (â) , (2.56)
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such that
ˆ

k̂′
dk̂′ [Pl (cos θ)− Pl (cos θ′)]σ (v, χ)S (∆k0)

= Pl (cos θ)
ˆ

k̂′
dk̂′

∑
l′

Σl′(v)Pl′ (χ)

−
ˆ

k̂′
dk̂′ 4π

2l + 1

∑
m

Y (l)
m

(
k̂′
)
Y [l]
m (â)

∑
l′,m′

4π

2l′ + 1
Σl′(v)Y

(l′)
m′

(
k̂
)
Y

[l′]
m′

(
k̂′
)
,

= Pl (cos θ)Σ0(v)

− 4π

2l + 1

∑
m

∑
l′,m′

Σl′(v)Y
[l]
m (â)Y (l′)

m′

(
k̂
)ˆ

k̂′
dk̂′Y (l)

m

(
k̂′
)
Y

[l′]
m′

(
k̂′
)
,

= Pl (cos θ)Σ0(v)−
4π

2l + 1

∑
m

Σl(v)Y
[l]
m (â)Y (l)

m

(
k̂
)
,

= Pl (cos θ)Σ0(v)− Pl (cos θ)Σl(v) , (2.57)

which leads to[
∂

∂t
ϕl(v)Pl (cos θ)

]
col
≈ n0

ˆ
dv vf(v)ϕl(v)Pl (cos θ) (Σ0(v)− Σl(v)) ,

≃ 4πn0

ˆ
dv v2vfl(v)ϕl(v) [Σ0(v)− Σl(v)] . (2.58)

Clearly, for l ≥ 1,

J†
l (ϕ) = n0v [Σ0(v)− Σl(v)]ϕl(v) , (2.59)

Jl (fl) = n0v [Σ0(v)− Σl(v)] fl(v) ,

= ν̃l(v)fl(v) , (2.60)

where
ν̃l = n0v [Σ0(v)− Σl(v)] . (2.61)

For l = 1 we have an effective momentum-transfer collision frequency accounting for coherence
effects. In summary

Jel
l (fl (v)) =

 −
m
m0

1
v2

∂
∂v

[
v3νm (v)

(
f0 (v) +

kbT0

mv
∂f0
∂v

)]
,

ν̃el
l (v)fl(v) ,

l = 0 ,

l ≥ 1 ,
(2.62)

or, equivalently in energy-space,

Jel
l (fl (U)) =

 −
2m
m0

U− 1
2

∂
∂U

[
U

3
2 νm(U)

(
f0(U) + kbT0

∂f0
∂U

)]
,

ν̃el
l (U)fl(U) ,

l = 0 ,

l ≥ 1 .
(2.63)

In the dilute gas limit, that is, when the coherent scattering is suppressed and collisions are binary,
S (∆k0)→ 1, Σ(v, χ)→ σ (v, χ), ν̃el

l → νel
l , and the usual expressions [335,336] are recovered.

2.3.3 Collisional excitation processes

In an excitation collision, the energy of the impacting particle exceeds some threshold energy caus-
ing a state change in the medium, leading to a difference in the pre- and post-collision kinetic
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energy. Like elastic collisions, it is also a particle-conserving process. For an excitation process,
energy is transferred on a localized site during scattering. Scattering is hence incoherent and inter-
ference effects do not manifest themselves. Examples include electronic excitations, and rotational
and vibrational excitations in molecular species. Particle-conserving ionization collisions, such as
positron impact ionization are also an example of a conservative inelastic process (with respect
to the positron), but will be considered in a more comprehensive manner in Chapter 6. Impact
particles with an energy below the required inelastic threshold energy undergo elastic or super-
elastic collisions. For media with a non-zero background temperature the medium particles may
already exist in an excited state, and super-elastic collisions are possible where the de-excitation
of the medium imparts energy to the swarm particle.

Excitations are an incoherent process, so it is reasonable to work in the centre-of-mass frame
for binary collisions. For a swarm particle velocity, v, and neutral velocity v0, the relative velocity
is given by g = v − v0. For binary particle-conservative collisions in a background medium, we
assume the Wang-Chang et al. collision operator [337],

Jexc (f) =
∑
jk
j ̸=k

ˆ
dv0 dĝ′ [f (r,v, t)Fj(v0)− f (r,v′, t)Fk(v′

0)] gσ (jk; g, χ) , (2.64)

where F is the velocity distribution of the neutral molecules (not to be confused with the density
gradient expansion coefficients). The indices j and k represent the initial and final internal states
respectively, of the molecular gas. Inelastic and super-elastic collisions correspond to j > k and
j < k respectively. The differential cross section σ (jk; g, χ) describes the possibility of scattering
a swarm particle of velocity v from a neutral molecule in the jth state with velocity v0 to the kth
state of the neutral molecule. According to energy conservation we have,

1

2
µg2 + Uj =

1

2
µg′2 + Uk , (2.65)

where the reduced mass of the system is given by

µ =
mm0

m+m0
. (2.66)

This simplifies for light particles to µ ≈ m.
When deriving the Legendre polynomial decomposition form of the elastic collision operator, a

first-order approximation in the mass ratio m/m0 is required to obtain a non-zero expression. If
the background gas has internal degrees of freedom then, to zeroth order in the mass ratio, energy
exchange can still occur through excitation and de-excitation of those internal states. Hence unlike
the isotropic part of the elastic collision integral, the scalar part of the inelastic collision integral
does not vanish under a zeroth order mass assumption. The Legendre decomposed form of the
collision operator was derived by Frost and Phelps [338], as extension of the work of Holstein [339],
and is given in energy-space by,

Jexc
l (fl) =

(
2

mU

) 1
2 ∑
j<k


n0j

[
Uσexc (jk;U) f0 −∆U+

kjσ
exc
(
jk;∆U+

kj

)
f0

(
∆U+

kj

)]
+ n0k

[
Uσexc (kj;U) f0 −∆U−

kjσ
exc
(
kj;∆U−

kj

)
f0

(
∆U−

kj

)]
,

l = 0 ,

n0jUσexc (jk;U) fl (U) + n0kUσexc (kj;U) fl (U) , l ≥ 1 ,

(2.67)
where σexc (jk;U) and σexc (kj;U) represent excitation and de-excitation integral cross sections
with an associated threshold energy of Ukj = Uk − Uj , and n0j and n0k is the density of the
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background particles in the state j and k respectively. We use the shorthand ∆U±
kj = Uk±Uj . We

assume that the background neutrals are in equilibrium such that they have a Maxwell-Boltzmann
distribution in velocity space,

Fj(v0) = n0j

(
m

2πkbT0

) 3
2

exp
[
− m

2kbT0
v20

]
, (2.68)

which is associated with a number density of neutrals in the jth quantum state, n0j , given by [340]

n0j =

(
n0

Z1

)
gj exp

(
−Uj

kbT0

)
, (2.69)

where n0 is the total neutral number density, gj is the degeneracy of jth state, and Z1 is the single
particle partition function,

Z1 =
∑
j

gj exp
(
−Uj

kbT0

)
. (2.70)

It is clear that, provided the degeneracy does not increase substantially, for larger threshold energies
Uj the associated n0j are small, and hence super-elastic processes can be ignored for these processes.
For processes that have smaller threshold energy levels, such as rotations and vibrations, the excited
states may be populated and super-elastic processes can be crucial, particularly for low energy
studies.

From the principle of microscopic reversibility and detailed balancing [341], the excitation and
de-excitation collisions are related via

gk (U − Ukj)σ
exc (kj;U − Ukj) = gjUσexc (jk;U) , (2.71)

gkUσexc (kj;U) = gj (U + Ukj)σ
exc (jk;U + Ukj) . (2.72)

2.3.4 Attachment, annihilation and positronium formation

Electron attachment, positron annihilation and positronium formation occur through distinctly
different physical mechanisms. However, from a transport theory perspective they each represent
a unidirectional particle loss process, and hence the form of their collision operators are identical.
Since there is no post-collision scattering the collision operator is simply [34],

J loss (f) =
∑
k

f (r,v, t)
ˆ

dv0 f0k (v0) gσ
loss(k; g) , (2.73)

where k are the available loss process channels, and σloss(k; g) is the cross section for the kth loss
process. This is equivalent to introducing a loss-process collision frequency νloss

k (g) given by

νloss
k (g) =

ˆ
dv0 fok(v0)gσ

loss(k; g) , (2.74)

which allows (2.73) to be written as

J loss (f) =
∑
k

νloss
k (g)f(r,v, t) , (2.75)

and then,
J loss
l (fl) =

∑
k

νloss
k (U)fl (U) . (2.76)
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Reversible reactions, possibly characterizing chemical equilibrium are not considered here.

2.3.5 Ionization processes

Ionization by electron impact is fundamentally different from ionization by positron impact. Since
the ejected electron is of the same species as the impacting particle, electron impact ionization (EII)
is a non-particle-conserving process. Since the scattered positron is a different particle type than
the ejected electron, positron impact ionization (PII) is a particle-conserving-process with respect
to the positron swarm. A different collision operator needs to be used for each case. Although
ionization is a three-body process, if we restrict our analysis to light swarm particles and heavy
neutrals, we can assume the neutrals remain at rest during a collision to zeroth order in the mass
ratio, m/m0. In effect, we assume that both the energy and momentum post-ionization are shared
between the scattered and ejected particles.

The EII collision operator, JEII, is given by [342]

JEII(f) = n0vσ
EII(v)f(r,v, t)− 2n0

ˆ
dv′ v′σEII(v′)B(v,v′)f(r,v′, t) , (2.77)

where σEII is the total EII cross section, and B(v,v′) is a probability density that partitions the
available momentum after ionization between the two electrons. Specifically, B(v,v′) represents
the probability of one of the two electrons after ionization having a velocity in the range v to
v + dv, provided that the incident electron has a velocity v′. The first term on the right hand
side of (2.77) represents the direct loss due to scattering from an element of phase-space, while the
second term represents a source resulting from the scattering and ejection of electrons from other
elements of phase-space. The factor of two on the right hand side of (2.77) is a consequence of the
indistinguishability of the post-collision electrons.

The Legendre decomposition of (2.77) yields [342]

JEII
l (f) =

 n0vσ
EII(v)f0(v)− 2n0

´∞
0

dv′ v′3σEII (v′)B0(v, v
′)f0(v

′) ,

n0vσ
EII(v)fl(v) ,

l = 0 ,

l ≥ 1 ,
(2.78)

where B0(v, v
′) is the zeroth-order Legendre decomposition of the momentum partition density,

B(v,v′), which can be found from,

Bl(v, v
′) = 2π

ˆ 1

−1

d (cosχ) B(v,v′)Pl (cosχ) . (2.79)

It should be highlighted that for central scattering forces the partition function has the form
B(v,v′) = B (v, v′; v̂ · v̂′).

To our knowledge, a full kinetic theory collision operator for conservative PII has never been
developed. Instead it has been treated as a standard excitation process in the existing literature
[1, 31, 315, 343–345]. In this work the complete PII ionization operator is considered, a derivation
of which is given in Chapter 6. To zero order in the mass ratio, m/m0, the collision operator for
PII is given by,

JPII(f) = n0vσ
PII(v)f(r,v, t)− n0

ˆ
dv′ v′σPII(v′)B(v,v′)f(r,v′, t) , (2.80)

where σPII is the total conservative ionization cross section. The momentum partition density,
B(v,v′), now has a slightly different definition, i.e. it represents probability of the (single) positron
after ionization having a velocity in the range v to v+dv, provided that the incident positron has
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a velocity v′. The differences between (2.77) and (2.80) is the factor of two in front of the integral
term, which is a consequence of indistinguishability vs distinguishability for the two different
processes, along with the definition of B. The specific form of the sharing of momentum between
post-ionization particles, dictated by B(v,v′), has a significant influence on the swarm transport
properties, especially for positron swarms.

The Legendre projections for the PII operator (derived in Chapter 6) are given by

JPII
l (fl) =

 n0vσ
PII(v)f0(v)− n0

´∞
0

dv′ v′3σPII (v′)B0(v, v
′)f0(v

′) ,

n0vσ
PII(v)fl(v) ,

l = 0 ,

l ≥ 1 .
(2.81)

Re-writing (2.78)and (2.81) in terms of energy and ionization collision frequency,

JEII
l (fl) =

 νEII(U)f0(U)− 2U− 1
2

´∞
0

dU ′ U ′ 12 νEII (U ′)P (U,U ′)f0(U
′) ,

νEII(U)fl(U) ,

l = 0 ,

l ≥ 1 ,
(2.82)

and

JPII
l (fl) =

 νPII(U)f0(U)− U− 1
2

´∞
0

dU ′ U ′ 12 νPII (U ′)P (U,U ′)f0(U
′) ,

νPII(U)fl(U) ,

l = 0 ,

l ≥ 1 ,
(2.83)

where P (U,U ′) is the energy-partitioning function, defined such that P (U,U ′)dU represents the
probability of the positron (or one of the two electrons in the case of EII) having an energy in
the range U + dU after ionization for an incident positron of energy U ′. The energy-partitioning
function has the following properties:

P (U,U ′) = 0 for U ′ < U + UI , (2.84)
ˆ U ′−UI

0

P (U,U ′)dU = 1 for U ′ ≥ U + UI , (2.85)

where UI is the ionization threshold energy. The energy-sharing, which is determined by the
energy-partitioning function P , is a major theme in the present work and the impact of different
energy-partition models is highlighted in Chapter 6.

2.4 Transport properties and transport coefficients

2.4.1 Transport properties

In swarm experiments only a few macroscopic variables can be controlled and/or measured [50].
The particular experimental configurations are specified numerically purely through boundary con-
ditions and initial conditions. Examples include the Time of Flight , Pulsed Townsend (PT) [50],
Steady-State Townsend (SST) [346, 347], Cavalleri [348] and Annihilation Lifetime [101] experi-
ments. The distribution function, f , contains all relevant information about the system, but is
not an experimentally measurable quantity. Instead, the connection between kinetic theory and
experiment is made via the continuity equation,

∂

∂t
n(r, t) +∇ · Γ(r, t) = S(r, t) , (2.86)
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where n is the number density, Γ is the particle flux, and S represents a source or sink of particles.
In the full non-hydrodynamic situation, the important measurable quantities, such as number
density, flux and mean energy, are space-time dependent, and can be calculated via

n(r, t) =
ˆ

dv f(r,v, t) , (2.87)

Γ(r, t) =
ˆ

dv vf(r,v, t) , (2.88)

ϵ(r, t) = 1

n(r, t)

ˆ
dv 1

2
mv2f(r,v, t) . (2.89)

More discussion of the non-hydrodynamic transport properties is given in Chapter 8.

2.4.2 Transport coefficients

The continuity equation is not particularly useful in its exact form, equation (2.86). If the hy-
drodynamic regime applies, i.e., spatial gradients are weak and boundary conditions are negligible
such that the space-time dependence of the distribution function can be projected onto the num-
ber density, then ‘transport coefficients’ can be identified as the coefficients of a density gradient
expansion [263]. The bridge between theory and experiment is then the diffusion equation [349],
which also identifies two types of transport coefficients, known as flux and bulk coefficients. Physic-
ally, the flux transport coefficients detail mean velocity and diffusion of the particles in the swarm,
whereas the bulk transport coefficients are concerned with the spread about, and motion of, the
swarm’s centre of mass. It is important to recognize the difference, as it is the bulk and not the flux
transport coefficients which are generally measured and tabulated in the vast majority of swarm
experiment literature [349]. When there are no non-conservative processes, the two sets of coeffi-
cients are identicial, however in the presence of non-conservative processes the flux properties and
bulk transport coefficients can differ by up to several orders of magnitude, and sometimes even
exhibit completely different qualitative behaviour e.g. negative absolute mobility [350, 351] and
negative differential conductivity [31, 352]. Following the convention of [269], this phenomena is
referred to as the Tagashira-Sakai-Sakamoto (TSS) effect after the researchers who first recognized
and investigated the differences between the two transport coefficients.

The transport coefficients [263,271] that will be used extensively in this work, including mean
energy, ϵ, bulk drift velocity, W , and the bulk transverse and longitudinal diffusion coefficients,
DT and DL respectively, can be written using the operators defined in equations (2.27)–(2.28), i.e.,

ϵ (t) = 2π

(
2

m

) 3
2
ˆ

dU U
3
2F0(U, t) , (2.90)

W (t) = TF (F1 (U, t))− Tα

(
F

(L)
0 (U, t)

)
,

= W flux (t)− Tα

(
F

(L)
0 (U, t)

)
, (2.91)

DT (t) = TF

(
F

(T)
1 (U, t)

)
− Tα

(
1√
3

[
F

(2T)
0 (U, t) +

1√
2
F

(2L)
0 (U, t)

])
,

= Dflux
T (t)− Tα

(
1√
3

[
F

(2T)
0 (U, t) +

1√
2
F

(2L)
0 (U, t)

])
, (2.92)

DL (t) = TF

(
F

(L)
1 (U, t)

)
− Tα

(
1√
3

[
F

(2T)
0 (U, t)−

√
2F

(2L)
0 (U, t)

])
,

= Dflux
L (t)− Tα

(
1√
3

[
F

(2T)
0 (U, t)−

√
2F

(2L)
0 (U, t)

])
. (2.93)
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The superscript ‘flux’ designates flux transport quantities, which differ from the bulk transport
quantities on the left hand side of equations (2.91)–(2.93) when non-conservative processes are
operative. Another useful quantity is the average collision rate, α, for a process with collision
frequency ν, i.e.,

α (t) = 2π

(
2

m

) 3
2
ˆ

dU U
1
2 ν(U)F0(U, t) . (2.94)

When ν describes non-conservative processes, α represents the rate of loss or gain of particles to
the system. When ν is due purely to annihilation collisions (ν = νann), then a connection can be
made to the Zeff parameter commonly reported in positron investigations [101],

Zeff (t) =
1

πr20cn0
αann (t) . (2.95)

If the hydrodynamic regime is not applicable, then the space-time dependence of the distribution
function cannot be projected onto the number density, and transport coefficients are not meaningful
quantities. Instead, the kinetic properties of the swarm particles are space-time dependent, and
must be calculated as such, as in (2.87)–(2.89).

2.5 Initial and boundary conditions

2.5.1 Initial energy distribution

To solve the time-dependent set of coupled equations (2.6), or the hierarchy (2.16)–(2.22), requires
an initial condition, fl(r, v, 0), for all l. The Legendre polynomial coefficients can be determined
from the source distribution function, f(r,v, 0) = fs(r,v), by exploiting the orthogonality of
Legendre polynomials [332],

fs
l (r, v) =

(
2l + 1

2

) ˆ
fs(r,v)Pl (µ)dµ . (2.96)

In positron experiments un-moderated positrons have a peak in their emission energy spectrum
of around half an MeV, which then lose energy rapidly via collisions [101]. There is usually little
information known about the initial source distribution in thermalization experiments. Three
common initial distributions are:

1. An isotropic distribution constant in speed-space up to some cut-off value, v∞ =
√

2U∞/m,
i.e. f0(v) = Θ (v∞ − v)C, where Θ(x) is the Heaviside step function and C is a normalization
constant. The mean energy of this distribution function is given by the identity, ϵ = 3

5U∞.

2. An isotropic distribution constant in energy-space up to a cut-off value, U∞, i.e.,
f0(U) = Θ (U∞ − U)U− 1

2C, where Θ(x) is the Heaviside step function and C is a normal-
ization constant. The mean energy of this distribution function is given by the identity,
ϵ = 1

2U∞.

3. A drifted Maxwellian distribution,

fDM(v) = n

(
m

2πkbTi

) 3
2

exp
[
− m

2kbTi
(v−Wi)

2

]
, (2.97)
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with prescribed temperature and drift velocity parameters Ti and Wi, respectively. The
drifted Maxwellian is well known in equilibrium statistical mechanics, and is non-isotropic if
Wi is non-zero.

The first two source distributions were used by Campeanu and Humberston [12] in their investig-
ations of helium, whereas the third is commonly employed by Li and co-workers when analysing
spatial relaxation [278, 303]. We will utilize all three source distribution types throughout this
thesis.

2.5.2 Boundary conditions

Appropriate boundary conditions in both configuration and energy space must be applied to
uniquely specify the solution to Boltzmann’s equation. Considering the Legendre-decomposed
system (2.6), clearly there are lmax + 1 configuration space conditions and also lmax + 1 energy
space conditions that need to be specified.

Winkler and collaborators [257, 353, 354] have analysed the multi-term, even-order approxim-
ation, and discovered that the general solution of the steady-state, spatially-homogeneous, hier-
archy contains 1

2 (lmax + 1) non-singular and 1
2 (lmax + 1) singular fundamental solutions when U

approaches infinity, and the physically relevant solution has to be sought within the non-singular
space of solutions. They give the boundary conditions necessary for the determination of the
non-singular physically relevant solution as

fl(U = 0) = 0 for odd l ,

fl(U = U∞) = 0 for even l , (2.98)

fl(U > U∞) = 0 for all l ,

where U∞ represents a sufficiently large energy. The configuration-space boundary conditions
depend on the exact experimental setup being modelled, and a variety of setups exist [50,101,110,
164–167]. A detailed discussion is postponed until Chapter 8.
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3
Numerical techniques

3.1 Introduction
In Chapter 2, a semi-analytic representation of Boltzmann’s equation, (2.2), was derived via a
Legendre polynomial expansion of the angular component of the velocity-space. Further progress
can now be achieved computationally. In this chapter, the numerical methods and techniques
employed to find solutions of the systems of equations we outline in (2.9) or (2.16)–(2.22) are
detailed.

3.2 Operator splitting
The full Boltzmann equation, (2.2), is a very challenging numerical problem involving transport
and collision contributions in energy, configuration and time dimensions. It has been noted [355]
that the collision part of the Boltzmann equation is generally stiff, while the advection part is non-
stiff, and that, ideally, one would like to be able to solve the two with tools specifically designed for
the individual components. Operator splitting allows one to do just that. The basic idea behind
operator splitting methods is to separate a complex problem into a series of simpler tasks, called
split sub-problems. The sub-problems can be chosen to represent separate physical processes, to
separate and reduce dimensions, to isolate more interesting regions of the domain, to deal with
physical processes on different time scales, or simply for algebraic reasons. The splitting leads to
a splitting error, which can be estimated theoretically. More detail on the splitting methods used
is given in Chapter 8, and a good discussion on the basic studies can be found in [356].

It is convenient to employ operator splitting to separate the configuration-space dependence of
the Boltzmann equation, i.e., the advection part, from the remaining spatially-homogeneous part:

∂

∂t
f (r,v, t) + SU (f (r,v, t)) + SZ (f (r,v, t)) = 0 , (3.1)
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where SU and SZ are the spatially-homogeneous and configuration-space advection operators re-
spectively,

SU (f (r,v, t)) = a · ∂

∂vf (r,v, t) + J (f (r,v, t)) , (3.2)

SZ (f (r,v, t)) = v · ∇f (r,v, t) . (3.3)

The remainder of this chapter (and Chapters 4–7) will focus specifically on the spatially-homogeneous
or hydrodynamic parts of the Boltzmann equation. Chapter 8 will focus on the numerical tech-
niques required for including the configuration-space dependence, which can be combined directly
with the spatially homogeneous solution developed here via operator splitting.

3.3 Energy-space representation
To demonstrate the energy-space discretizations employed in subsequent chapters, the steady-state,
spatially homogeneous Legendre decomposed Boltzmann equation, i.e.,

L (fl) = 0 , (3.4)

where

L (fl) =
(

2

m

) 1
2 ∑
p=±1

∆
(p)
l qE

(
U

1
2 ∂

∂U
+ p

(
l + 3p+1

2

)
2

U
− 1

2

)
fl+p + Jl (fl) , (3.5)

is chosen as the prototypical example. In this section, a very flexible and general framework for
the energy-space discretization is developed, with a focus on three particular numerical schemes:
pseudo-spectral methods based on Chebyshev polynomials and Laguerre functions, and a finite
difference scheme. Although many of the comments here also apply to the configuration-space
discretization, a detailed discussion of configuration space is delayed until Chapter 8.

3.3.1 Local vs. global approximations

The simplest numerical schemes, such as finite difference (FD) schemes, are based on low-order,
local approximations, i.e., using information from a small number of neighbouring points from
where the solution is sought [357]. These are flexible methods that can be applied to irregular
domains [358, 359], complicated boundary conditions [360], shock fronts and discontinuous re-
gions [361,362], especially when only low or moderate accuracy is desired. However, local methods
offer limited accuracy and slow convergence, such that a very fine and computationally expensive
grid may be required in order to accurately resolve a function. Most energy-space discretizations
of the Boltzmann equation use local approximation methods.

Alternatively, instead of only using a few nearby points, one can use information from the entire
computational domain. These are called global approximation methods and include spectral and
pseudo-spectral schemes [363–365]. Global approximations are usually very high-order, and have
excellent error convergence properties which, depending on the smoothness of the solution, demon-
strate ‘exponential’ or ‘spectral’ convergence (as opposed to the algebraic convergence achievable
by FD) [365]. Global algorithms suffer much greater losses in accuracy and efficiency than local
alternatives when considering irregular domains or sharp variations, and are more costly per degree
of freedom. However, in situations where global methods work well, savings up to several orders
of magnitude in computational memory and time can be realized [365].
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3.3.2 Pseudo-spectral method

There is some ambiguity of nomenclature in the literature; terms such as spectral, pseudo-spectral,
collocation, discrete ordinate etc. are used and defined differently by various authors [195,366–370].
All methods that directly use information from the solution at discrete points, or ‘nodes’, are termed
collocation schemes, and collocation schemes that employ global basis functions extending over the
entire computational domain are termed pseudo-spectral. The pseudo-spectral approach appears
to have been first used by Slater [371] and Kantorovic [372] in 1934 in specific applications, and
was subsequently developed by many workers [363,373–375]. An excellent summary of the theory
and applications of spectral methods, and the first to give a unifying mathematical assessment is
presented by Gottlieb and Orszag [363]. Modern applications of the pseudo-spectral method to
charged-particle transport belong almost entirely to Shizgal and co-workers [376–378], who employ
the Discrete Ordinate (DO) method, which can be considered a pseudo-spectral method [370] based
on Lagrange interpolation.

The different types of spectral methods, including pseudo-spectral methods, may be viewed
as a class of discretization schemes known generically as the Method of Weighted Residuals
(MWR) [379]. The key elements of the MWR are ‘trial functions’ and ‘test functions’. The
trial functions are used as the basis functions for a truncated series expansion of the solution,
while the test functions are used to ensure that the differential equation is satisfied as closely as
possible by the truncated series expansion [364]. This is achieved by minimizing the residual, i.e.,
the error in the differential equation produced by using the truncated expansion instead of an exact
solution, with respect to a suitable norm. The choices of test function, trial function, and method
of minimizing the residual lead to the many different numerical methods e.g. finite volume [380],
finite element [381], finite difference [382], Galerkin, Tau and pseudo-spectral [383].

In the pseudo-spectral approach, the test functions are translated Dirac delta functions centred
at ‘collocation nodes’, and require that the system of equations be exactly satisfied at those points.
To formalize this, let H be a differential or integral operator such that

Hf(x) = g(x) , (3.6)

then, in following the MWR, the desired function f(x) is approximated by a finite sum of N + 1

trial functions, Tn(x), i.e.,

f(x) ≃ fN (x) =
N∑

n=0

anTn(x) , (3.7)

where fN (x) represents theNth-order approximation of f(x), and an are the expansion coefficients.
The residual, R, is defined by

R(x; a0, a1, ..., aN ) ≡ HfN (x)− g(x) . (3.8)

If the Tn are global functions extending over the entire domain, then the pseudo-spectral solution
is distinguished as the solution to an which forces R to zero at N + 1 specified collocation nodes.

Different choices of trial functions can fit interchangeably under the one framework. Applying
the general pseudo-spectral method to (3.5) yields
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L

(
N∑

n=0

alnTn(U)

)

=

(
2

m

) 1
2 ∑
p=±1

∆
(p)
l qE

(
U

1
2 ∂

∂U
+ p

(
l + 3p+1

2

)
2

U
− 1

2

)
N∑

n=0

al+p
n Tn(U) + Jl

(
N∑

n=0

alnTn(U)

)
,

=

(
2

m

) 1
2

N∑
n=0

[∑
p=±1

∆
(p)
l qE

(
U

1
2 ∂

∂U
Tn(U) + p

(
l + 3p+1

2

)
2

U− 1
2Tn(U)

)
al+p
n + Jl (Tn(U)) aln

]
,

(3.9)

where we have taken

fl(U) ≃
N∑

n=0

alnTn(U) . (3.10)

No assumption on the specific form of the trial function has yet been introduced, and any choice
can now be inserted into equations (3.9)–(3.10). An appropriate choice of trial function has three
general properties [383]: they are easy to compute; they are complete, i.e. the trial functions are
sufficient to represent all functions in the class of solutions with arbitrarily high accuracy; and
they are orthogonal with respect to some weight function. The relation (3.7) suggests that there
is still a further choice to be made: whether to work with the collocation-point function values
directly, or with the series coefficients. It has been found that the latter approach is more robust
and flexible [384], easily allowing natural interpolation and extrapolation, node-manipulation, over-
and under-collocation, etc.

Chebyshev polynomials

One of the most popular choices of trial functions for pseudo-spectral schemes are the Chebyshev
polynomials [366]. Chebyshev polynomials are important in approximation theory because the
roots of the Chebyshev polynomials of the first kind are useful in minimizing the problem of
Runge’s phenomenon in polynomial interpolation [385]. Boyd [383] is particularly vocal about the
virtues of a Chebyshev polynomial basis.

The Chebyshev polynomials of the first and second kind, T (x) and U(x), are the set of poly-
nomials defined on the interval [-1,1], by

Tn(x) = cos (n arccos(x)) , (3.11)

Un(x) =


sin((n+1) arccos(x))

sin(arccos(x)) ,

(n+ 1)xn ,

−1 < x < 1 ,

x = ±1 ,
(3.12)

respectively [332]. The first few Chebyshev polynomials of the first kind are shown in Figure 3.1.
The derivative of Tn(x) can easily be computed from the relation

d
dxTn(x) = nUn−1(x) , (3.13)
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Figure 3.1: The first five Chebyshev polynomials of the first kind, (3.11), on the interval
−1 < x < 1.

or by exploiting recurrence relations [332], such that

d
dxTn(x) = n


2

n−1∑
odd j

Tj(x) ,(
2

n−1∑
even j

Tj(x)

)
− T0(x) ,

when n is even ,

when n is odd .
(3.14)

It should be noted that the differentiation matrix resulting from either (3.13) or (3.14) is applied to
the series coefficients, and is hence different from the more common differentiation matrices which
are applied to the function values directly [366].

The roots of Tn(x), xk, are easy to compute,

xk = cos
( π

2n
(2k − 1)

)
, k = 1, ..., n . (3.15)

The xk in (3.15) are often simply called the ‘Chebyshev nodes’. It has long been known that to
deal with Runge’s phenomenon, i.e., the problem of large, unwanted oscillations at the edges of
an interval when using high-order polynomial interpolation, one must use sets of nodes that are
clustered at the endpoints of the interval, with an asymptotic density proportional to (1−x2)(−

1
2 )

as n → ∞ [386]. Chebyshev nodes represent the simplest such family of clustered point sets,
obtained by projecting equally spaced points on the unit circle down to the unit interval [−1, 1].
It should be noted that, although the Chebyshev polynomials are naturally defined on [−1, 1],
transformations can be applied to map them onto a general interval [a, b] including the infinite and
semi-infinite intervals [383].

The energy-space boundary conditions (2.98) can be represented in term of the Chebyshev
polynomials, i.e.,
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fl odd(U = 0) = 0 ≈
N∑

n=0

alnTn(U = 0) ,

=
N∑

n=0

alnTn(x = −1) ,

=
N∑

n=0

aln (−1)
n
,

= al0 − al1 + al2 − al3 + · · ·+ (−1)N alN , (3.16)

and

fl even(U = U∞) = 0 ≈
N∑

n=0

alnTn(U = U∞) ,

=

N∑
n=0

alnTn(x = 1) ,

=

N∑
n=0

aln ,

= al0 + al1 + al2 + al3 + · · ·+ alN . (3.17)

Laguerre functions

When the trial functions used in a pseudo-spectral method exhibit advantageous behaviour, such
as satisfying homogeneous boundary conditions, the solution also exhibits this behaviour [383].
The Laguerre functions (not to be confused with Laguerre polynomials) are a natural choice of
trial function for problems defined on the semi-infinite interval, [0,∞), since they exhibit behaviour
desired in the solution of the velocity distribution, i.e., exponential decay of the functions and de-
rivatives to zero asymptotically. Although Laguerre functions and polynomials are well known and
often discussed [332, 387], they have a poor reputation and are seldom used in numerical approx-
imation [384]. Shen [388] has attributed the previous disappointing results to the use of Laguerre
polynomials rather than Laguerre functions, which are not suitable for practical computations due
to the extremely ill-conditioned behaviour of Laguerre polynomials and associated quadrature.

The Laguerre polynomials, Ln(x), are the set of polynomials defined on [0,∞) which can be
computed from the recurrence relations [332],

L0(x) = 1 , (3.18)

L1(x) = −x+ 1 , (3.19)

(n+ 1)Ln+1(x) = (−x+ (2n+ 1))Ln(x)− nLn−1(x) . (3.20)

The Laguerre polynomials are orthogonal with respect to the weight exp(−x), such that one can
then construct the Laguerre functions, Tn(x), which are simply the Laguerre polynomials rescaled
by exp(−x/2), i.e.,

Tn(x) = e−x/2Ln(x) , (3.21)

and are thus orthonormal. The first few Laguerre polynomials and Laguerre functions are shown
in Figures 3.2 and 3.3.
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Figure 3.2: The first five Laguerre polynomials, (3.18)-(3.20), on the interval 0 < x < 15.
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Figure 3.3: The first five Laguerre functions, (3.21), on the interval 0 < x < 35.

The derivative of the Laguerre functions can easily be computed from [384],

d
dxTn(x) = −


1
2T0(x) ,

n−1∑
j=0

Tj(x) +
1
2Tn(x) ,

n = 0 ,

n ≥ 1 .
(3.22)

The semi-infinite interval can be mapped onto itself, leading to a free scaling parameter k which
can be varied to optimize computations. Scaled Laguerre functions, T̃n(x), can be defined by

T̃n(x) ≡ T̃n(x; k) = Tn(kx) , (3.23)

which are orthogonal but not orthonormal. Usually asymptotic boundary conditions need to be
enforced explicitly, however by choosing Laguerre functions they are enforced implicitly.
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The collocation points for an nth-order Laguerre function series expansion are the same as the
standard choice for a Laguerre polynomial series expansion [384], i.e.,

x0 = 0 ,

d
dxLn+1(x)

∣∣∣∣
xi

= 0 , 1 < i < n . (3.24)

The collocation points are clustered quadratically near x = 0. This is the same quadratic clustering
that occurs in Chebyshev and Legendre pseudo-spectral schemes, which provides numerical stability
by suppressing Runge’s phenomenon [389].

The energy-space boundary conditions (2.98) can be represented in term of the Laguerre func-
tons, i.e.,

fl odd(U = 0) = 0 ≈
N∑

n=0

alnTn(U = 0) , (3.25)

=
N∑

n=0

alnTn(x = 0) , (3.26)

=
N∑

n=0

aln , (3.27)

= al0 + al1 + al2 + al3 + · · ·+ alN , (3.28)

and

fl even(U = U∞) = 0 ≈
N∑

n=0

alnTn(U = U∞) . (3.29)

Collocation nodes

The pseudo-spectral and finite difference methods are examples of collocation methods, which
require information from a set of collocation nodes to discretize a system of differential and integral
equations. Collocation of a single term of equations (3.9)–(3.10) at the point Um, leads to the
following:

L (Tmn) a
l
n =

(
2

m

) 1
2

[∑
p=±1

∆
(p)
l qE

(
U

1
2

mDmn + p

(
l + 3p+1

2

)
2

U
− 1

2 Tmn

)
al+p
n + Jl (Tmn) a

l
n

]
,

(3.30)
where

Tmn = Tn (Um) , (3.31)

Dmn =
∂

∂U
Tn(U)

∣∣∣∣
Um

. (3.32)

The system (3.30) can easily be represented numerically as a matrix.
For an Nth-order approximation, N +1 pieces of information are required from the collocation

nodes in conjunction with the boundary conditions or constraints. At first glance it would appear
that the choice of collocation points is arbitrary, however there is a close relation between the best
choice of collocation nodes and the trial functions employed. In effect, the collocation nodes are
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tied to quadrature rules for the orthogonality of the trial functions. Boyd [383] suggests that as
a rule of thumb, the collocation nodes should be the roots of the first discarded basis function.
However, there is some flexibility, e.g., sometimes we wish to include the location of boundary
conditions.

A summary of the two pseudo-spectral schemes investigated in this work is as follows:

Chebyshev polynomials The Chebyshev polynomials basis functions and derivatives, (3.11)–
(3.14), are collocated at standard Chebyshev nodes, (3.15), supplemented with the boundary
conditions (3.16)–(3.17).

Laguerre functions The Laguerre function basis functions and derivatives, (3.18)–(3.22), are
collocated at standard Laguerre polynomial nodes, (3.24), supplemented with the boundary
conditions (3.25)–(3.29).

3.3.3 Finite difference method

The finite difference (FD) method [390] is a local approximation method in contrast to the pseudo-
spectral methods described in the previous subsection. However, FD can be written in a way con-
sistent with the pseudo-spectral schemes, and hence all three methods are treated interchangeably
within the same framework. FD approximates derivatives by combining nearby function values
using a set of weights. They are widely used, simple to program, and lead to sparse matrices with
band structures approximating derivatives [357].

Following the work of Winkler and collaborators [257, 353, 354], the system of ODEs (3.5) is
discretized at centred points using Centred Difference, i.e.,

df(U, t)
dx

∣∣∣∣
Ui+1/2

=
f(Ui+1, t)− f(Ui, t)

Ui+1 − Ui
, (3.33)

f(Ui+1/2, t) =
f(Ui+1) + f(Ui)

2
, (3.34)

so that equation (3.5) evaluated at i+ 1/2 becomes,

Lfl|i+1/2 = Jl (fl)|i+1/2 +

(
2

m

) 1
2 ∑
p=±1

∆
(p)
l qE

[
U

1
2

i+1/2

(
fl+p(Ui+1)− fl+p(Ui)

Ui+1 − Ui

)

+p

(
l + 3p+1

2

)
2

U
− 1

2

i+1/2

(
fl+p(Ui+1) + fl+p(Ui)

2

)]
, (3.35)

for i = 0, 1, . . . N−1. Although a general form can be constructed for an arbitrary grid, the simplest
case is for evenly spaced points, i.e.,

Ui = i∆U for 0 ≤ i ≤ N , (3.36)

where ∆U is a constant. The centred difference scheme is not biased in either direction as is the
case for the forward and backward first-order FD schemes.
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Equations (3.33) and (3.34) can be written in matrix form,


f1/2

f1+1/2

...
fN−1/2

 =
1

2


1 1

1 1

. . . . . .
1 1





f0

f1
...

fN−1

fN


, (3.37)

fc = Tfs , (3.38)

and

d
dU


f1/2

f1+1/2

...
fN−1/2

 =
1

∆U


−1 1

1 −1
. . . . . .

1 −1





f0

f1
...

fN−1

fN


, (3.39)

d
dU fc = Dfs , (3.40)

where [f]i = f(Ui), the superscripts c and s refer to the interval midpoint and endpoint nodes
respectively, ∆U is the constant interval spacing, and

T =
1

2


1 1

1 1

. . . . . .
1 1

 , (3.41)

D =
1

∆U


−1 1

1 −1
. . . . . .

1 −1

 . (3.42)

Discretising at the centre between two solution nodes results in a system of linear equations that
is under-determined, however the extra information is naturally provided by boundary conditions
which are appended. The boundary conditions (2.98) here are simply,

fl odd(U = 0) = 0 , (3.43)

= fl odd (U0) ,

and

fl even(U = U∞) = 0 ,

= fl even (UN ) . (3.44)

It is important to note that the system (3.35) is not collocated explicitly at U = 0, and thereby
avoids problems that can arise regarding the cross sections and collision frequencies in this limit.
For example, in the two-term approximation with only elastic processes operative, (3.4) yields a
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relation between ∂
∂U f0 and f1, i.e.,

f1 = −qE

m

U
1
2

νm

∂

∂U
f0 , (3.45)

which is divergent if νm → 0 faster than U
1
2 . Even in situations where U

1
2 → 0 faster than νm,

equation (3.45) is difficult to properly represent numerically in its current form. Thankfully these
problems are sidestepped by the centred collocation scheme, and direct implementation of the
boundary conditions at U = 0 for odd l.

3.3.4 Representation of cross sections

The cross section sets which serve as inputs into the Boltzmann equation solver are often tab-
ulated from experimental or theoretical investigations. To get a representation of inputs on the
computational mesh, interpolation is required. Different methods of interpolation include linear
interpolation, cubic splines, Chebyshev polynomials, Laguerre functions etc., and can be applied
to either the cross sections directly or collision frequencies with respect to energy or speed. This
choice of interpolation method can lead to significant differences in the calculated distributions
and velocity moments when the input mesh is too sparse, particularly in situations where there is
limited available data in a given energy regime (see Section 5.2.2). We have chosen to work with
the collision frequency as a function of energy, which is a natural input for the collision operat-
ors, rather than the cross sections directly. Of course, when the input cross sections or collision
frequencies have an analytic form, the problem of interpolation is avoided.

3.3.5 Representation of collision operators and hl

Here we detail special considerations which must be made to the representation of the collision
operators and non-zero hl elements of the higher order hydrodynamic equations.

Elastic

The form of the elastic collision operator we consider is given in equation (2.63). For a cold gas
(T0 = 0 K), applying the pseudo-spectral representation, the elastic operator becomes,

Jel
l (Tmn) a

l
n =

−
2m
m0

U
1
2
m

(∑N
k=0 Dmkbk

)
aln , l = 0 ,

ν̃el
l (Um)Tmna

l
n , l ≥ 1 ,

(3.46)

where Tmn = Tn(Um), and

N∑
k=0

Tk (Um) bk = U
3
2
mνel

1 (Um)Tn (Um) , (3.47)

Dmk =
d
dU Tk(U)

∣∣∣∣
Um

. (3.48)

To apply the pseudo-spectral differentiation operator, it is necessary to have a representation of
the full target for differentiation (i.e., U 3

2 νel
1 Tn) in terms of the basis functions, which is described

by equations (3.47)–(3.48).
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Similarly, employing the finite difference representation (3.33)–(3.34), yields,

Jel
l (fl)

∣∣
i+1/2

=

−2m
m0

U
− 1

2

i+1/2

(
U

3
2
i+1ν

el
1 (Ui+1)f0(Ui+1)−U

3
2
i νel

1 (Ui)f0(Ui)

)
(Ui+1−Ui)

, l = 0 ,

ν̃el
l (Ui+1/2)

fl(Ui+1)+fl(Ui)
2 , l ≥ 1 ,

(3.49)

for i = 0, 1, . . . , N − 1. An extra difficulty arises when considering the extension to non-zero
temperatures, equation (2.63), which now involves a second derivative term. In this work, only
the finite difference operator is used for these types of problems, though the extension for pseudo-
spectral is straightforward. A 4-point stencil (3-point on the edges) is required to construct a
symmetric second order derivative, i.e.,

d2f(U)

dU2

∣∣∣∣
Ui+1/2

=
1

(∆U)
2


f(U0)− 2f(U1)− f(U2) , i = 0 ,

1
2 [f(Ui+2)− f(Ui+1)− f(Ui) + f(Ui−1)] , 0 < i < N − 1 ,

f(UN−2)− 2f(UN−1)− f(UN ) , i = N − 1 ,

(3.50)

where for this form it has been assumed that the energy grid is evenly spaced with ∆U = Ui+1−Ui.

Attachment, annihilation and positronium formation

The representation of the collision operator for simple loss processes, equation (2.76), is straight-
forward for both pseudo-spectral and finite difference schemes, i.e.,

J loss
l (Tnm) aln = νloss(Um)Tmna

l
n , (3.51)

and
J loss
l (fl)

∣∣
Ui+1/2

= νloss(Ui+1/2)
fl (Ui+1) + fl (Ui)

2
, (3.52)

respectively.

Excitation

The Frost-Phelps form of the excitation collision operator is given in equation (2.67). The unique
aspect of this operator is the discrete energy shifts corresponding to excitation and de-excitation
terms. The cross sections are not a problem, as they can be interpolated in the usual way on
the input mesh. The difficulty is in treating the shift of the f0, which needs to be represented in
terms of the solution nodes. To stay consistent with the overall scheme, a linear interpolation with
respect to the two nearest solution nodes is performed. For example, the excitation operator for
a cold gas (so that no de-excitation processes are available) with a single excitation channel with
threshold energy of UI can be represented (in a slightly different form from equation (2.67)) as

Jexc
l

(
Ui+1/2

)
= νexc (Ui+1/2

) fl (Ui+1) + fl (Ui)

2

−


(

Ui+1/2+UI
Ui+1/2

)1/2
νexc (Ui+1/2 + UI

)
f0
(
Ui+1/2 + UI

)
,

0 ,

l = 0 ,

l ≥ 1 ,
(3.53)

where
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f0
(
Ui+1/2 + UI

)
=

 wf0 (Um) + (1− w) f0 (Um+1) ,

0 ,

Ui+1/2 + UI ≤ U∞ ,

Ui+1/2 + UI > U∞ ,
(3.54)

where m and m+ 1 are the indices of the energy mesh nodes straddling Ui+1/2 + UI, and
w =

(
Ui+1/2 + UI − Um

)
/ (Um+1 − Um). Since f0 (U > U∞) = 0, no extrapolation is required.

Ionization

The ionization operator for EII is given in equation (2.82). The comments here apply equally
to PII collision operator. The integral term of equation (2.82) includes the distribution function,
which then makes the Boltzmann equation non-linear. However, if we choose to represent the
integral numerically with a linear quadrature method, i.e., as a weighted sum, then solving for the
distribution function again becomes a linear problem. For evenly spaced nodes, Simpson’s rule is
chosen for the numerical integration. The integral term in equation (2.82) is represented as,

ˆ ∞

0

dU ′ U ′ 12 νEII (U ′)P (Ui+1/2, U
′)f0(U

′) =
N∑

m=0

wmU
1
2
mνEII (Um)P (Ui+1/2, Um)f0(Um) , (3.55)

where according to Simpson’s rule [390]

wm =
∆U

3



1 , m = 0 ,

4 , m odd ,

2 , m even ,

1 , m = N ,

(3.56)

So that finally,

JEII
l (f(Ui+1/2)) = νEII (Ui+1/2

) fl (Ui+1) + fl (Ui)

2

−

 2U
− 1

2

i+1/2

∑N
m=0 wmU

1
2
mνion (Um)P (Ui+1/2, Um)f0(Um) ,

0 ,

l = 0 ,

l ≥ 1 .
(3.57)

Higher order hydrodynamic terms

The higher order hydrodynamic equations, (2.16)–(2.26), involve non-zero hl terms. When non-
conservative processes are included such that JNC

0 ̸= 0, then the ω terms given in (2.23)–(2.26)
involve the target distribution function coefficient encased in an integral with respect to energy.
Similar to the case of the ionization operator considered above, this non-linear problem becomes
linear when the integral is represented as a weighted sum with Simpson’s rule. For example,
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consider ω0 from equations (2.23) and (2.28):

ω0 = −2π
(

2

m

) 3
2

∞̂

0

dU U
1
2 JNC

0 (F0 (Um)) ,

≈ −2π
(

2

m

) 3
2

N∑
m=0

wmU
1
2
mJNC

0 (F0 (Um)) ,

= −2π
(

2

m

) 3
2

N∑
m=0

wmU
1
2
mνNC (Um)F0 (Um) , (3.58)

where the wm are again given by Simpson’s rule (3.56). In the same way, the quantities ω1, ω2

and ω3 can be linearized with respect to F
(L)
0 , F (2T)

0 and F
(2L)
0 .

Energy-space truncation

For the numerical simulations, an appropriate energy-space truncation must be chosen, which is
not known a priori. In general practice, a truncation energy, U∞, is chosen such that the ratio
f0(U∞)/max [f0 (U)] is at least 10−10 [259].

3.4 Temporal representation
We now turn our discussion to the temporal dependence of the Boltzmann equation. To do so, we
consider the prototypical example,

∂

∂t
fl + L (fl) = 0 , (3.59)

where L is still defined as in (3.4).

3.4.1 Asymptotic time behaviour

We are often interested in the asymptotic time behaviour of the phase-space distribution and
the macroscopic transport coefficients, hence a method of solving for this state directly rather
than following a full, computationally expensive, temporal relaxation is advantageous. When non-
particle-conserving processes are operative, such as annihilation, a steady-state can exist in the
sense that the macroscopic transport averages (but not the phase-space distribution function),
such as mean energy, drift velocity, Zeff etc., remain unchanged in time [34,303]. Both the conser-
vative and non-conservative situations can be treated using the same formalism, which extracts the
asymptotic time-dependence of the distribution function through an eigenvalue expansion. The
usual approach is to represent the time-dependence as a sum of exponentials [16,391], i.e.,

fl(U, t) = Fl(U)τ(t) , (3.60)

where τ(t) is an eigenfunction satisfying the eigenvalue equation,

d
dt τ(t) = ατ(t) , (3.61)

and hence the prototypical problem (3.59) becomes,

αFl(U) + L (Fl(U)) = 0 . (3.62)
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The α are assumed to form a discrete set [16, 391], i.e., α → αn, n = 1, 2, ..., and that only
exponentially decaying solutions are physically realistic, such that in the asymptotic limit only the
eigenfunction corresponding to α∗ = min (|ℜ(αn)| ≤ 0) survives. When only conservative processes
are operative, a steady-state exists for both the distribution function and transport coefficients,
and α∗ will be 0 (or numerically close to 0). When non-conservative process are operative the
asymptotic solution yields an α∗ ̸= 0, and only the transport coefficients have steady-state values.
It can be demonstrated that the surviving eigenvalue, α∗, is equivalent to the average total non-
conservative collision frequency;

ˆ
[α∗F + LF ] dv = 0 ,

= 2π

(
2

m

) 3
2
[
α∗

ˆ
dU U

1
2F0 +

ˆ
dU U

1
2 JNC (F0)

]
,

= 2π

(
2

m

) 3
2
[
α∗ +

ˆ
dU U

1
2 νNC (U)F0

]
, (3.63)

where the normalization of F0 and particle-conserving nature of the other collision and convective
components of equation (2.9) have been invoked. It follows from equations (2.23), (2.28) and (3.63)
that α∗ = −

´
dU U

1
2 νNC (U)F0 = 1

2π

(
2
m

)− 3
2 ω0.

There are numerous numerical techniques for solving generalized eigenvalue problems [392–394].
Two different types of ‘spurious’ eigenvalues can arise from generalized eigenproblems, numerically
spurious and physically spurious [365]. A numerically spurious eigenvalue is a poor approxim-
ation to an exact eigenvalue, i.e., an eigenvalue belonging to a mode that is under-resolved by
N degrees of freedom. A given numerically spurious eigenvalue can be computed accurately by
using sufficiently large N . Physically spurious eigenvalues arise from the inappropriate applica-
tion of boundary conditions or other misrepresentation of the physics. One common cause is the
use of algebraic constraints to analytically reduce a system of equations before being approxim-
ated numerically [365]. Physically spurious eigenvalues cannot be overcome by simply increasing
the degrees of freedom. The question remaining is how to include boundary conditions consist-
ently in equation (3.62). Rather than using special spectral methods to avoid or filter problem-
atic eigenmodes [363, 395], we can avoid physically spurious eigenvalues by using the ‘descriptor’
framework [396, 397] for including boundary conditions. The descriptor framework is posed as
a generalized eigenvalue problem that explicitly retains algebraic constraints in the computation
of the eigenvalues. Once discretized in energy-space, as described in Section 3.3, equation (3.62)
becomes a generalized eigenvalue matrix equation of the form,

αf + Lf = 0 , (3.64)

where L is the matrix representing the discretization of the L operator. Boundary conditions can
also be represented in matrix form, i.e.,

Gf = 0 . (3.65)

The descriptor framework invokes the construction of the new generalized eigenvalue problem,

αMf + Lf = 0 , (3.66)
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where

M =

[
G
I

]
, L =

[
0
L

]
, (3.67)

and I is the identity matrix. This is a natural way to include boundary conditions with the added
benefit of avoiding physically spurious eigenvalues.

3.4.2 Temporal discretization

The discretization of the energy-space (and later, configuration-space) of equation (2.9) leads to
a coupled system of ODEs. This is the philosophy behind the widely used and well established
Method of Lines (MOL) [398–402]. The system of ODE’s corresponding to the prototypical problem
(3.59) can be written in matrix form as

M d
dt f + Lf = 0 , (3.68)

where L and M are matrices resulting from the discretization process, commonly known as the
‘stiffness matrix’ and ‘mass matrix’ respectively [402]. Clearly, equation (3.66) is the equivalent
of equation (3.68) in the time-asymptotic limit. The MOL formalism allows easy implementation
of linear boundary conditions or constraints via the mass matrix. If the discretized boundary
conditions and constraints of (3.68) are represented by Gf = 0, where G is a coefficient matrix
and 0 is a vector of zeros, then d

dtGf = G d
dt f = 0. Provided the initial solution satisfies the

constraints then,

M d
dt f = Lf , (3.69)

where M and L are the modified mass and stiffness matrices,

M =

[
G
M

]
, L =

[
0
L

]
. (3.70)

The system (3.69) is too large and, in general, complicated to solve analytically, and so one is
eventually forced to discretize the time variable as well. The temporal evolution is achieved using
a first-order implicit Euler method [403], i.e.,

Mf (tn+1)− f (tn)
tn+1 − tn

+ Lf (tn+1) = 0, (3.71)

or equivalently (
M

tn+1 − tn
+ L

)
f (tn+1) =

M
tn+1 − tn

f (tn) , (3.72)

where tn and tn+1 are successive times. The first-order implicit Euler method has been chosen for
its good stability properties.

When considering the spatially-inhomogeneous situation, the time discretization is coupled with
the configuration space discretization to satisfy conditions for numerical stability and conservation
(see Chapter 8).
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3.4.3 Temporally-adaptive energy mesh

In many applications, a high-energy source of charged particles must be followed as they relax,
often through many orders of magnitude of energy, to eventual thermalization. In order to provide
appropriate energy-space resolution of the distribution function over the full relaxation, a simple
‘adaptive’ energy-space mesh has been developed. Assuming that the source distribution requires
a higher energy truncation than the thermalized distribution, then the distribution at time t is
interpolated onto a new energy mesh with a maximum value of U∗ whenever

U∗/U∞ ≤ 3/4, (3.73)

where U∞ is the current truncation value and U∗ is determined from

f0(U = U∗)/max [f0 (U)] = 10−10. (3.74)

It has been found that these parameter choices provide a good balance between accurately rep-
resenting the distribution function components and minimizing the accumulation of interpolating
errors.
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Hydrodynamic benchmark systems

This chapter contains material that has been published in the following journal articles:
[7] G. J. Boyle, W. J. Tattersall, D. G. Cocks, S. Dujko and R. D. White. Kinetic theory of

positron-impact ionization in gases. Physical Review A, 91, 052710 (2015).
doi:10.1103/PhysRevA.91.052710.

[9] W. J. Tattersall, D. G. Cocks, G. J. Boyle, S. J. Buckman and R. D. White. Monte
Carlo study of coherent scattering effects of low-energy charged particle transport in Percus-Yevick
liquids. Physical Review E, 91, 043304 (2015). doi:10.1103/PhysRevE.91.043304

This chapter includes Monte Carlo calculations performed by W. J. Tattersall for the model
hard-sphere system. All other work described in this chapter is my own.

4.1 Introduction
The theory developed in Chapter 2 and numerical techniques described in Chapter 3 for the
solution of the Boltzmann equation in the hydrodynamic regime, (2.16)–(2.22), is applied to a
series of model systems. The purpose of this chapter is to systematically benchmark the theory
and associated computational code for each of the collisional processes required in a full description
of positron/electron transport, and to compare against previous kinetic theory calculations and
independent Monte Carlo simulations where possible. The validation of space-dependent non-
hydrodynamic transport is postponed until Chapter 8. It is to be emphasized that more realistic
cross section sets can (and will in later chapters) be employed for real world systems using the same
code. The simple and analytic form of the model cross sections employed here are particularly
useful for isolating the individual processes and physical phenomena which may be obscured in
real systems by the presence of multiple interaction processes. In Section 4.6 a benchmark model
for a system of hard spheres with a structure described by the Percus-Yevick model is considered.
The Percus-Yevick structure factor is analytic and has free parameters which can be adjusted to
emulate specific real liquids. Also presented in this chapter are convergence testing results for
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computational parameters including energy-space truncation, U∞, number of collocation nodes,
N , and the Legendre polynomial series expansion truncation, lmax.

4.2 Elastic collisions

4.2.1 Constant elastic collision frequency

The first interaction model considered is of the form

σm = 5U− 1
2 Å2

,

m0 = 4 amu ,

E/n0 = 1 Td , (4.1)

where U is in units of eV. For this particular power law, known as the ‘Maxwell model’, the
momentum transfer collision frequency, νm = n0

√
2U
m σm(U), is a constant. As such, the Boltzmann

equation is solvable analytically for both cold gases and gases with a non-zero temperature. The
transport coefficients for a constant collision frequency are given exactly for light particles (m ≪
m0) by [404]

W =
qE

mνm
, (4.2)

ϵ =
1

2

m0

q
W 2 +

3

2

kbT0

q
, (4.3)

n0DT = n0DL =
2qϵ

3mνm
. (4.4)

Transport properties for the solution of Boltzmann’s equation under model (4.1) calculated using
the finite difference numerical scheme (Section 3.3.3) are given in Table 4.1 for increasing lmax.
Results obtained using the Chebyshev polynomial and Laguerre pseudo-spectral methods (Section
3.3.2) differ from the finite difference method calculations by less than 0.01% and have hence been
omitted. The calculated transport properties agree up to at least the fourth significant figure
with the analytical values for all properties investigated. There are differences of less than 0.05%
between the quantities calculated using lmax = 1 and lmax = 5 expansions, which validates the use
of a two-term approximation when only elastic collisions are operative.

Table 4.1: Transport coefficients for model (4.1) with varying lmax and T0. ‘An.’ refers to the
analytic value to 5 significant figures found from equations (4.2)–(4.4). Calculations have been
performed with U∞ = 12 and N = 5000.

T0 ϵ W n0DT n0DL
[K] lmax [eV] [104 ms−1] [1024 m−1s−1] [1024 m−1s−1]
0 An. 0.72916 0.59310 2.8831 2.8831

1 0.7292 0.5931 2.883 2.882
3 0.7292 0.5931 2.883 2.883
5 0.7292 0.5931 2.883 2.883

293 An. 0.76703 0.59310 3.0328 3.0328
1 0.7670 0.5931 3.033 3.032
3 0.7670 0.5931 3.033 3.033
5 0.7670 0.5931 3.033 3.033
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4.2.2 Constant elastic cross section

The second elastic-only interaction model considered is of the form

σm = 5 Å2
,

m0 = 4 amu ,

E/n0 = 1 Td . (4.5)

All scattering is assumed elastic and isotropic. This model is known as the ‘hard-sphere model’
and unlike the Maxwell model, (4.1), the momentum-transfer collision frequency is now a function
of energy. In the two-term approximation, analytic solutions of Boltzmann’s equation exist for
cross sections of the from σm = βU

p
2 Å2 and T0 = 0 K, such that

ϵ =
1

2
m
Γ
(

5
2p+4

)
Γ
(

3
2p+4

)η2 , (4.6)

W =
1

3

(
0.1ETd

β

)( q

m

) 2p+ 4

ηp+1

Γ
(

p+6
2p+4

)
Γ
(

3
2p+4

) , (4.7)

where Γ is the incomplete gamma function (not to be confused with the transport property, flux),
and

η =

[
1

3

m0

m
(2p+ 4)

( q

m

)2(0.1ETd
β

)2
] 1

2p+4

. (4.8)

For model (4.5), β = 5 and p = 0. It should be noted that the above expressions are only
true in the two-term approximation, and do not give an analytic solution to the full Boltzmann
equation. For the non-zero temperature case considered, our calculations are compared against
those of White [32]. Transport properties for the solution of Boltzmann’s equation for model (4.5)
calculated using the finite difference numerical scheme described in Section 3.3.3 are given in Table
4.2. Once again, the calculated transport values do not change significantly for lmax > 1, and agree
with the analytical values for T0 = 0 K, and the results of White [32] for T0 = 293 K to less than
0.05%.

Table 4.2: Transport coefficients for model (4.5) with varying lmax and T0. ‘Two-term.’ refers to
the two-term approximation analytic value to 5 significant figures found from equations (4.6)–(4.7).
‘White’ refers to the value quoted in [32]. Calculations have been performed with U∞ = 6 and
N = 5000.

T0 ϵ W n0DT n0DL
[K] lmax [eV] [104 ms−1] [1024 m−1s−1] [1024 m−1s−1]
0 Two-term 0.72932 0.57595 - -

1 0.7293 0.5760 3.204 1.572
3 0.7293 0.5759 3.202 1.573
5 0.7293 0.5759 3.202 1.573

293 White 0.75057 0.56896 - -
1 0.7507 0.5689 3.248 1.639
3 0.7507 0.5689 3.247 1.640
5 0.7507 0.5689 3.247 1.640
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4.2.3 Alternating electric field

The application of a time-varying AC electric field to the constant cross section model (4.5), can
be used to validate the time-stepping numerics. In contrast to the uniform DC field of model (4.5),
we consider an oscillating field of the form

E/n0 = 1 cos (ωt) Td ,

T0 = 0 K , (4.9)

where ω is the angular frequency. A ‘steady-state’ can be achieved in that a repetitious behaviour
with respect to the cycling of the electric field is eventually achieved, independent of the initial
distribution. The initial distribution affects the transient behaviour of the system as it relaxes to
this periodic steady-state. To reach the steady-state quickly and efficiently, a constant 1/

√
2 Td

DC electric field was initially applied for a small number of large time-steps to allow the source
distribution to relax, after which the oscillatory field in model (4.9) was switched on and a much
finer time-step size relative to the angular frequency applied. A minimum of ten cycles were used
to ensure that any transient motion had dissipated. The temporal profiles of transport coefficients
(ϵ, W , n0DL and n0DT) for model (4.9) for varying angular frequencies is shown in Figures
4.1–4.3, along with the digitized data of White [33]. There are small differences that could be
attributed to digitizing error as much as differences in the solution approaches, but it is clear that
the appropriate temporal behaviour is being satisfactorily reproduced. A detailed discussion and
physical justification of the phenomena is given in [33].
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V
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Figure 4.1: Variation of mean energy, ϵ, for model (4.9) over a range of reduced angular frequencies,
ω/n0. Calculations have been performed with U∞ = 10, lmax = 1, and N = 5000.
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Figure 4.2: Variation of drift velocity, W , for model (4.9) over a range of reduced angular frequen-
cies, ω/n0. Calculations have been performed with U∞ = 10, lmax = 1, and N = 5000.
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Figure 4.3: Variation of diffusion coefficients, n0DL and n0DT, for model (4.9) over a range of
reduced angular frequencies, ω/n0. Calculations have been performed with U∞ = 10, lmax = 1,
and N = 5000.

Cycle-averaged and root mean square (RMS) transport coefficients are given in Table 4.3, and
compared to the calculations of White [33]. The two sets of values agree to within 0.1% for all
transport coefficients across all angular frequencies.

Table 4.3: Cycle-averaged (ϵ, n0DT, and n0DL) and RMS (WRMS) values of the transport coeffi-
cients for model (4.9) at various applied reduced angular frequencies. ‘White’ refers to the value
quoted in [33]. Calculations have been performed with U∞ = 10, N = 5000 and lmax = 1.

ω/n0 ϵ WRMS n0DT n0DL
[rad m−3s−1] Method [eV] [104 ms−1] [1024 m−1s−1] [1024 m−1s−1]
10−19 Current 0.4647 4.597 2.450 1.214

White 0.4647 4.597 2.448 1.215
10−18 Current 0.4704 4.623 2.491 1.335

White 0.4703 4.623 2.490 1.335
10−17 Current 0.5068 4.796 2.662 2.097

White 0.5070 4.797 2.662 2.099
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4.3 Power-law loss processes
Benchmarking for simple particle loss processes such as attachment, annihilation and positronium
formation is performed by considering the following model:

σm = 10U− 1
2 Å

2
,

σloss = aUp Å
2
,

E/n0 = 0.4 Td ,

m0 = 16 amu ,

T0 = 293 K . (4.10)

As the name suggests, the consequence of a loss process is the non-conservation of particle number
density. Despite the changing number density, a steady-state can still exist for the transport
coefficients, which are essentially normalized with respect to the number density. Non-conservative
processes highlight the differences between flux and bulk transport coefficients, as defined in Section
2.4.2.

Transport properties for model (4.10) with various values for the a and p parameters are detailed
in Table 4.4. The values p = 1

2 , −
1
2 and −1 correspond to collision frequencies that increase, are

constant, and decrease with energy respectively. Our results generally agree with those given in [34]
to within 0.5%. It should be noted that there are errors in the results listed in [34] for some bulk
properties, and these cases have been re-calculated using a similiar Burnett function expansion to
that used by Ness and Robson (which are included in Table 4.4 enclosed within square brackets),
which now agree closely with our calculations.

Energy-dependent loss collisional processes can have a large effect on the flux and bulk transport
coefficients. When p = 1

2 , the loss process collision frequency increases with energy which means
that high-energy particles are preferentially lost from the swarm, leading to an overall attachment
cooling. The amount of cooling is directly proportional to the magnitude of the loss process, hence
as a and αloss increase in Table 4.4 the mean energy, drift velocities and diffusion coefficients
decrease for the swarm. The opposite effect, attachment heating, is shown when the loss process
collision frequency decreases with energy, i.e., p = −1. Now low-energy swarm particles are
preferentially removed from the swarm, leading to an increase in mean energy, drift and diffusion
coefficients with increasing a and αloss. When p = − 1

2 , the loss process collision frequency is
constant with respect to energy, and particles are lost uniformly along the energy spectrum. Hence
no attachment heating or cooling is observed, and bulk and flux values are identical.

In Table 4.5 the convergence in lmax is tested for a single value of a = 10−5, with N = 5000.
No difference is observed in the transport coefficients for lmax > 1, which implies that a two-term
approximation is adequate to describe the transport coefficients to four figure accuracy. Anisotropy
in the velocity distribution arises from the change in momentum of the scattered particle. Since
simple loss processes do not involve a scattered component, only the speed distribution is modified.
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4.3.1 Convergence properties of finite difference andpseudo-spectral schemes

In Section 3.3 three different energy-space discretizations were described; a centred finite difference
method, a pseudo-spectral method based on Chebyshev polynomials and a pseudo-spectral method
based on Laguerre functions. In the results tabulated thus far, there have been insignificant
differences in the converged results that arise from the three methods, and so only the finite
difference method results have been included. The major difference between the three schemes is
in the convergence rates of the solutions with respect to the number of energy-space nodes. The
finite difference scheme is a low-order, local approximation, while the pseudo-spectral schemes are
high-order, global approximations. The pseudo-spectral schemes have excellent error convergence
properties that depend on the smoothness of the solution, and hence for certain situations can
boast savings up to several orders of magnitude in computational memory and time over low-order
schemes [383].

The convergence rates of the finite difference scheme, Chebyshev pseudo-spectral scheme, and
Laguerre function pseudo-spectral scheme are compared for the following power law attachment
model:

σm = 10 Å2
,

σloss = 10−3U− 1
2 Å2

,

m0 = 16 amu ,

T0 = 0 K ,

E/n0 = 0.4 Td . (4.11)

The attachment collision frequency for model (4.11) is independent of energy, and hence the dis-
tribution function components in the hydrodynamic regime, Fl, are unaffected by the attachment
process. Under the two-term approximation, an analytic solution of model (4.11) for F0 and F1

can be found, and compared to the numerical results. The distribution function components are
smooth and do not demonstrate discontinuities or singularities, so it is expected that they should
be well approximated by pseudo-spectral methods.

The variation of the root mean square (RMS) error between the analytic and numerical solution
for F0 with the number of terms in the series, N , is shown in Figure 4.4 for the three energy-space
discretization schemes. The RMS error profiles for both the Chebyshev polynomials and Laguerre
functions demonstrate exponential convergence, with the latter reaching machine precision first.
The error profile of the finite difference method however exhibits much slower, algebraic convergence
of ~O(N−1.6). For model (4.11), machine precision is reached in ∼ 40 terms by the pseudo-spectral
schemes, whereas the finite difference scheme has only reached an RMS error of ∼ 10−4 in 1000
terms. This example highlights the computational time and memory advantages that can be
achieved by pseudo-spectral methods.

Unfortunately, the performance of the pseudo-spectral schemes is intimately linked to the
smoothness of the solution and its derivatives. The model (4.11) is a particularly advantage-
ous system for the pseudo-spectral schemes, since the collision frequencies for both elastic and
attachment processes are smoothly-varying, operate at all energies (i.e., they do not ‘turn on’ or
‘turn off’), and do not introduce singularities at U = 0. When these conditions are not met, the
spectral convergence properties of the pseudo-spectral schemes can be destroyed. For the inelastic
processes considered in the following sections, the cross sections turn on at non-zero threshold
energies, often abruptly, which introduces discontinuities that are not handled well by global ap-
proximation methods [383,405]. It can be concluded that pseudo-spectral schemes are particularly
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Figure 4.4: Convergence of RMS error with number of terms for finite difference, Chebyshev and
Laguerre pseudo-spectral solutions for model (4.11).

useful and efficient when only elastic and simple attachment processes are operative, which is often
true in low-energy transport studies, but for the general case (and henceforth in this work) the
finite difference scheme is employed.

4.4 Excitations
In an excitation collision, the energy of the impacting particle exceeds some threshold energy
causing a state change in the internal states of the medium, leading to a difference in the pre- and
post-collision energy. Like elastic collisions, it is also a particle-conserving process. The excitation
process benchmarks in this section assume a cold gas, such that there are no excited states occupied
and no super-elastic processes. Scattering is assumed to be isotropic.

4.4.1 Reid's ramp model

The following model, initially developed by Reid [39], is used to benchmark particle conserving
excitation processes:

σm = 6.0 Å
2
,

σexc =

10(U − 0.2) Å
2
, U ≥ 0.2 eV ,

0 , U < 0.2 eV ,

m0 = 4 amu ,

T0 = 0 K . (4.12)

This model is now a standard benchmark in the field, due to its known failure of the two-term
approximation. Transport coefficients for model (4.12) are given in Table 4.6. Ness and Robson [34]
have collated results from a number of different authors using a variety of approaches, which are
also included in Table 4.6 for comparison. The accuracy of the various methods are included in
brackets when known. Our calculations agree with those of Ness and Robson to within 0.05% for
each of the reduced fields considered, which also agree closely with the other methods tabulated.
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Table 4.6: Transport coefficients for Reid’s ramp model, (4.10), with varying E/n0. ‘M’ refers
to the moment method of Ness and Robson [34], ‘POR’ the cubic spline method of Pitchford et
al. [35, 36], ‘McM’ the relaxation method method of MacMahon [37], ‘FEM’ the finite element
method of Segur et a.l [38], ‘PDM ’ the path differential method of Segur et al. [38], ‘Reid’, ‘Brag’,
‘Skull’ and ‘Penet’ the Monte Carlo results of Reid [39], Braglia et al. [40], Skullerud [38] and
Penentrante [36] respectively. The accuracy of the various methods are included in brackets when
known. Calculations have been performed with lmax = 5 and N = 5000.

E/n0 ϵ W n0DT n0DL
[Td] Method [eV] [104ms−1] [1024m−1s−1] [1024m−1s−1]
1 Current 0.1015 1.272 0.9750 0.7591

M (6 term) 0.1015 1.272 0.9751 0.7591
POR (6 term) 1.272 0.9749
McM (6 term) 0.1015 1.272
FEM 0.1015 1.271 0.9749 0.7594
PDM 0.1018 1.270 0.9735 0.7623
Reid (MC) 0.1013(10) 1.255(13)
Brag (MC) 0.1014(5) 1.272(6) 0.975(10)

12 Current 0.2689 6.838 1.135 0.5688
M (6 term) 0.2689 6.839 1.135 0.5688
POR (6 term) 0.269 6.838 1.134 0.57
McM (6 term) 0.269 6.84
FEM 0.2689 6.832 1.135 0.569
PDM 0.269 6.832 1.131 0.569
Reid (MC) 6.87(7)
Brag (MC) 0.269(1) 6.84(3) 1.136(10)
Penet (MC) 0.270(1) 6.86(2) 1.16(4) 0.58(3)

24 Current 0.4080 8.882 1.1337 0.4606
M (6 term) 0.4079 8.886 1.134 0.4609
POR (6 term) 0.408 8.885 1.132 0.46
McM (6 term) 0.408 8.89 1.133 0.460
FEM 0.4074 8.881 1.134 0.463
PDM 0.4083 8.874 1.131 0.4613
Reid (MC) 0.408(2) 8.89(9) 1.145(23)
Brag (MC) 0.408(2) 8.88(4) 1.134(10) 0.473(5)
Skul (MC) 0.4074 8.869 1.130 0.465
Penet (MC) 0.409(1) 8.89(2) 1.16(4) 0.48(2)

In Table 4.7 the variation of the transport coefficients with lmax is shown for E/n0 = 12 Td.
It is evident that the two-term approximation is inadequate and significantly overestimates the
mean energy and drift velocity, while underestimating the diffusion coefficients. An lmax = 5

expansion is required to get transport coefficient convergence to four significant figures. The
lmax = 1 calculations give errors as large as 20% with respect to the converged values. The
lmax = 3 are accurate to within 0.2%, which are sufficient for most practical purposes.

Table 4.7: Transport coefficients for Reids ramp model, (4.12), with varying lmax for E/n0 = 12 Td.
Calculations have been performed with U∞ = 3, and N = 5000.

ϵ W n0DT n0DL
lmax [eV] [104 ms−1] [1024 m−1s−1] [1024 m−1s−1]
1 0.2736 7.029 1.369 0.5065
3 0.2689 6.840 1.137 0.5684
5 0.2689 6.838 1.135 0.5688
7 0.2689 6.838 1.135 0.5688
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4.5 Electron impact ionization
In this section the electron impact ionization (EII) collision operator is benchmarked. EII is
a fundamentally different process than ionization by positron impact (PII), due to the ejected
electrons contributing to the electron swarm in the former case. A different collision operator
needs to be used for each case. EII benchmarks have been investigated by a number of authors,
and the Lucas-Saelee [42] and Ness-Robson [34] models are considered here. PII is investigated in
detail in Chapter 6.

4.5.1 Model of Lucas and Saelee

To understand the fundamental effects of EII on the transport properties we consider the Lu-
cas–Saelee model [34, 42],

σm = 4U− 1
2 Å

2
,

σexc =

0.1 (1− F ) (U − 15.6) Å
2
, U ≥ 15.6 eV ,

0 , U < 15.6 eV ,

σEII =

0.1F (U − 15.6) Å
2
, U ≥ 15.6 eV ,

0 , U < 15.6 eV ,

E/n0 = 10Td ,

m/m0 = 10−3 ,

T0 = 0 K . (4.13)

The energy-partition function, P (U,U ′), for this model is such that all energy-sharing fractions
are equiprobable. It should be noted that, in this model, the total cross section for inelastic and
ionization collisions is independent of the parameter F , and the threshold energies are the same
for both processes. Thus, it can be used to isolate the separate effects of inelastic and ionization
collisions, respectively. In the literature, it is not unusual to ignore the distinction, and to treat
ionization as merely another conservative inelastic excitation (see, e.g. [257,259,292,406–408] and
others), completely ignoring the effect of particle generation in collisions. If this approximation
were to hold for the present model, there would be no variation in the calculated properties
with respect to F . The transport properties for model (4.13) are tabulated in Table 4.8, along
with the results from various methods quoted in [34]. There is some significant variation in the
results from the different calculation methods. The ionization rates, mean energies and bulk drift
velocities calculated in this work agree with the values of [34] to less than 0.3%, 0.5% and 1%
respectively. There are larger differences of 1% and 5% between the transverse and longitudinal
diffusion coefficients respectively. Slightly better agreement is found with the Monte Carlo results
of Taniguchi et al. [41], where our results are consistent to within 1% for all transport coefficients
across all F .

4.5.2 Model of Ness and Robson

The energy-partitioning function, P , which was described in Section 2.3.5, controls the partitioning
of the post-ionization energy between the scattered and ejected constituents, and is a major theme
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Table 4.8: Transport coefficients for the Lucas-Saelee model, (4.13), with varying F . ‘l = 1’ and
‘l = 2’ refer to the moment method of Ness and Robson [34], ‘T’ to the calculations of Taniguchi
et al. [41], ‘L’ to the Boltzmann calculations of Lucas and Saelee [42], and ‘MC’ the Monte Carlo
results of Lucas and Saelee [42]. Calculations have been performed with lmax = 5 and N = 5000.

αEII ϵ W n0DT n0DL
F Method [10−15 m3s−1] [eV] [104 ms−1] [1024 m−1s−1] [1024 m−1s−1]
0 Current 0 5.565 7.319 27.26 26.54

l = 1 0 5.55 7.33 27.3 26.3
l = 2 0 5.55 7.32 27.2 26.5
T 0 5.56 7.32 27.4 26.5
L 0 5.58 7.4 27 26.5
MC 0 5.60 7.4 27 26.5

0.5 Current 1.333 5.224 8.593 27.26 28.65
l = 1 1.34 5.21 8.59 27.6 27.6
l = 2 1.34 5.21 8.60 27.5 28.0
T 1.3 5.23 8.6 27.5 29
L 1.50 5.49 8.3 27 27.5
MC 1.32 5.30 8.6 28.5 31

1.0 Current 2.420 4.969 9.474 27.23 29.33
l = 1 2.43 4.96 9.47 27.7 27.9
l = 2 2.43 4.96 9.48 27.6 28.4
T 2.4 4.95 9.5 27.5 29.5
L 2.93 5.40 9.2 26.5 28.5
MC 2.45 5.10 9.6 26.5 28.5

in the present work (see Chapter 6). To investigate the effect of the energy partitioning function
on EII transport properties Ness and Robson [34] proposed the following model:

σm = 10 Å
2
,

σexc =

1 Å
2
, U ≥ 10 eV ,

0 , U < 10 eV ,

σEII =

1 Å
2
, U ≥ 15 eV ,

0 , U < 15 eV ,

m0 = 25 amu ,

T0 = 0 K . (4.14)

The energy-partition function, P (U,U ′), for this model is such that one of the post-ionization
electrons receives a fraction, Q, of the available energy. Due to the indistinguishability of post-
collision particles, the results for Q and 1−Q with respect to EII are identical, and so we consider
only Q ≥ 0.5. As detailed in Section 6.2.3, the modified Frost-Phelps form of the collision operator
(6.20) breaks down when Q = 0, hence there is no value given in Table 4.9 corresponding to
Q = 0 and Q = 1 (if one of the electrons gets the fraction Q = 1 of the available energy, then
the other receives Q = 0 and the same problem is encountered). The EII calculations using our
kinetic theory model agree closely with both our Monte Carlo simulations and the kinetic theory
approach in [34]. There are generally differences of less than 0.6% and 0.3% in the ionization rate
and mean energy respectively, between the present kinetic theory results and both the Monte Carlo
simulation and [342] over the whole range of reduced fields and energy sharing fractions, except
for the AFE case. An error is present in the AFE calculations of [342]. Values for the AFE case
have been re-calculated using a similar Burnett function expansion to that of Ness and Robson
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(which are included in Table 4.9 enclosed within square brackets) which agree closely with our
calculations. Both the flux and bulk drift velocities generally agree to within 0.3% between the
three calculation methods over the range of fields and energy-sharing fractions considered.

In Table 4.10 the variation of the transport coefficients with lmax is shown for E/n0 = 1000 Td.
An lmax = 5 expansion is required to get transport coefficient convergence to four significant figures.
The lmax = 1 calculations give errors as large as 20% with respect to the converged values. The
lmax = 3 are accurate within 0.8%.

Table 4.10: Convergence in lmax of the bulk transport coefficients for the ionization model (4.14)
for E/n0 = 1000Td and Q = 1

2 . Calculations have been performed with N = 5000, and U∞ = 250.

αEII/n0 ϵ W n0DT n0DL
lmax [10−15 m3s−1] [eV] [105 ms−1] [1024 m−1s−1] [1024 m−1s−1]
1 1.278 16.03 6.749 6.376 3.385
3 1.250 15.91 6.821 5.776 4.248
5 1.249 15.88 6.822 5.735 4.256
7 1.249 15.88 6.822 5.735 4.256

4.6 Percus-Yevick hard-sphere model
A major focus of the present work is extending the kinetic theory formalism beyond dilute gases to
dense gases, liquids and soft-condensed matter such as biological matter. In order to investigate
the effects of structure on charged particle transport, a model for the structure function is required.
One such model, frequently employed in the literature, is that for a system of hard-sphere poten-
tials obtained by applying the Percus-Yevick approximation as a closure to the Ornstein-Zernike
equation, which yields a pair-correlation function [409, 410]. The static structure factor, SPY, is
found via the Fourier transform of the pair-correlation function, the angle-integration of which is
used directly in the numerical simulations. In particular, we use the model of Percus and Yevick
with the Verlet-Weiss correction [411,412] to better emulate the structure of a real liquid:

SPY (∆k) =

[
1 +

24η (S1 + S2 + S3)

(∆k)
2

]−1

, (4.15)

S1 =
2

(∆k)
2

(
12γ

(∆k)
2 − β

)
, (4.16)

S2 =
sin (∆k)

∆k

(
α+ 2β + 4γ − 24γ

(∆k)
2

)
, (4.17)

S3 =
2 cos (∆k)

(∆k)
2

(
β + 6γ − 12γ

(∆k)
2

)
− cos (∆k) (α+ β + γ) , (4.18)

where ∆k is the momentum exchange, η = Φ − Φ2

16 , α = (1+2η)2

(1−η)4
, β = −6η(1+ η

2 )
2

(1−η)4
, γ = ηα

2 . The
volume fraction parameter, Φ, specifies how tightly packed the hard spheres in the medium are.
It can be written in terms of the hard-sphere radius r and the neutral number density, n0, as
Φ = 4

3πr
3n0. Low volume fractions indicate a larger inter-particle spacing, whereas higher volume

fractions indicate a smaller inter-particle spacing. Figure 4.5 shows the static structure value,
S (∆k), for different values of Φ. We have modelled systems with a range of densities, from Φ = 0,
which emulates a dilute gas, to Φ = 0.4, which states that 40% of the volume is excluded by the
hard-sphere potentials of the neutral molecules. The oscillatory nature exhibited in the structure
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factor is echoed in the behaviour of the transport coefficients. In the limit ∆k → ∞, S → 1, and
the dilute gas case is regained.
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Figure 4.5: The variation of the static structure factor with momentum exchange ∆k for the
Percus-Yevick model (with Verlet-Weiss correction) for various volume fractions, Φ.

In the hard-sphere model, the elastic collision cross section is constant and isotropic. For
isotropic scattering σ (v, χ) is independent of angle χ, and the structure-modified momentum-
transfer cross section, Σm (v) = Σ0 (v) − Σ1 (v), accounting for coherent structure effects can be
found from

Σm (v) = σm (v) s(v), (4.19)

where σm(v) is the momentum-transfer cross section for single particle scattering and s(v) is the
angle-integrated structure factor, given by,

s (v) =
1

2

ˆ 1

−1

S

(
2mv

~
sin
(χ
2

))
(1− cosχ)d (cosχ) . (4.20)

It should be noted that the assumption of isotropy is for simplicity in illustrating the technique,
and by no means a necessity.

The details of the hard-sphere model implemented are

σm = 6 Å2 ,

Φ = 0, 0.2, 0.3, 0.4,

m0 = 4 amu ,

T0 = 0 K . (4.21)

The effective momentum-transfer collision frequencies for this model as a function of the volume
fraction are shown in Figure 4.6. Physically, one expects that as the energy increases, and hence
de Broglie wavelength decreases, the effects of coherent scattering are reduced and the structure-
modified profiles of the transport coefficients converge on the dilute gas phase profile. This be-
haviour is consistent with Figure 4.6, and it is to be expected that the oscillatory nature of the
structure factor and high energy convergence with the dilute gas profiles will be reflected in the
transport coefficients.
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Figure 4.6: The energy variation of the structure-modified momentum-transfer cross section, Σm,
for various volume fractions Φ, for a dense gas of hard spheres.

4.6.1 Transport coefficients

The same Percus-Yevick hard-sphere system was studied in [9], and a comparison with the Monte
Carlo simulation results act as a benchmark for the Boltzmann code solution. The variation of
the mean energy (ϵ), drift velocity (W ), and the transverse and longitudinal diffusion coefficients
(DT and DL respectively) with reduced electric field are presented in Figures 4.7–4.10 for various
volume fractions. The independent Monte Carlo simulation results agree to within 1% each of the
transport coefficients at all reduced electric fields considered. It should be noted that, in general,
the Monte Carlo statistical error [413] is not visible at these scales, being less than 1% in all cases.

It is evident that the presence of coherent scattering causes significant differences between the
volume fraction profiles. A thorough discussion of the phenomenology of the Percus-Yevick hard-
sphere system is given in Appendix A, where fluid modelling furnishes semi-analytic expressions
which will greatly aid the discussion. Equations (A.24) and (A.25), in the appendix are restated
here for clarity, i.e.,

W =
qE

mν̃m
, (4.22)

ϵ =
1

2
m0W

2 ν̃m
νm

, (4.23)

where ν̃m is the momentum-transfer collision frequency including coherent scattering effects. At
low field strengths, and hence low energies, increasing the volume fraction decreases the collision
frequency, leading to an increase in W as per equation (4.22). The effect on mean energy is a
little more complex due to the non-linear nature of equation (4.23), but generally in the low field
strength and low energy region the same behaviour is observed as for the drift velocity. Physically,
coherent scattering generally acts to reduce the momentum transfer, thus enhancing the electric
field’s ability to pump energy and momentum into the system. The enhancements in the mean
energy, drift velocity and diffusion coefficients due to enhanced coherent scattering effects then
follows. At higher field strengths, the volume fraction profiles converge to the dilute gas phase
profile, a reflection of the increase in mean particle energy and decrease in the associated de Broglie
wavelength and subsequent suppression of coherent scattering effects. It should also be noted that
for the larger volume fractions in Figure 4.8 there exists a small window of electric field strengths
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for which the drift velocity decreases despite an increase in the applied electric field strength. This
is the phenomena known as ‘negative differential conductivity’ (NDC), conditions for which have
been investigated by a number of authors [31, 266, 267, 414]. The NDC observed in Figure 4.8 is
purely a consequence of medium structure. A condition for the occurrence of structure-induced
NDC, derived in Appendix A, is given by

d ln
(

ν̃m
νm

)
d ln ϵ > 1, (4.24)

which is only satisfied in this model for the Φ = 0.3 and Φ = 0.4 cases. The excellent agreement
between the Boltzmann solution and Monte Carlo simulation results observed in Figures 4.7–
4.10 with respect to the transport coefficients (ϵ, W , DT and DL), and successful demonstration
of structure-induced NDC for the model system validates our numerical scheme when including
coherent scattering effects.
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Figure 4.7: Mean energy, ϵ, for Percus-Yevick model (4.21) as a function of reduced electric field,
E/n0, for a range of volume fractions, Φ.

10
−3

10
−2

10
−1

10
0

10
1

10
210

2

10
3

10
4

10
5

E/n
0
 (Td)

W
 (

m
s−

1 )

 

 

Φ = 0    (Boltzmann)
Φ = 0    (Monte Carlo)
Φ = 0.2 (Boltzmann)
Φ = 0.2 (Monte Carlo)
Φ = 0.3 (Boltzmann)
Φ = 0.3 (Monte Carlo)
Φ = 0.4 (Boltzmann)
Φ = 0.4 (Monte Carlo)

Figure 4.8: Drift velocity, W , for Percus-Yevick model (4.21) as a function of reduced electric field,
E/n0, for a range of volume fractions, Φ.

Chapter 4. Hydrodynamic benchmark systems 72



Boyle, Gregory The modelling of lepton transport in gases/liquids

10
−3

10
−2

10
−1

10
0

10
1

10
210

−2

10
−1

10
0

10
1

10
2

E/n
0
 (Td)

n 0D
T
 (

10
24

m
−

1 s−
1 )

 

 

Φ = 0    (Boltzmann)
Φ = 0    (Monte Carlo)
Φ = 0.2 (Boltzmann)
Φ = 0.2 (Monte Carlo)
Φ = 0.3 (Boltzmann)
Φ = 0.3 (Monte Carlo)
Φ = 0.4 (Boltzmann)
Φ = 0.4 (Monte Carlo)

Figure 4.9: Transverse diffusion coefficient, n0DT, for Percus-Yevick model (4.21) as a function of
reduced electric field, E/n0, for a range of volume fractions, Φ.
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Figure 4.10: Longitudinal diffusion coefficient, n0DL, for Percus-Yevick model (4.21) as a function
of reduced electric field, E/n0, for a range of volume fractions, Φ.
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4.7 Conclusion
In this chapter, a variety of benchmark systems for conservative and non-conservative collisional
processes have been considered in order to thoroughly validate the computational code and theory
developed. The transport coefficients calculated agree closely with previous investigations for
each of the model systems investigated. The validation having been completed, the transport of
electrons and positrons in real gases and liquids are considered in the proceeding chapters.
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5
Low-energy electron and positron

transport in atomic gases

This chapter contains material that has been published in the following journal articles:
[5] G. J. Boyle, M. J. Casey, R. D. White, Y. Cheng and J. Mitroy. Transport properties of

electron swarms in gaseous neon at low values of E/N . Journal of Physics D: Applied Physics, 47,
345203 (2014). doi:10.1088/0022-3727/47/34/345203.

[6] G. J. Boyle, M. J. Casey, R. D. White, and J. Mitroy. Transport theory for low-
energy positron thermalization and annihilation in helium. Physical Review A, 89, 022712 (2014).
doi:10.1103/PhysRevA.89.022712.

This chapter includes cross section calculations and theory performed by J. Mitroy and Y.
Cheng. The cross section theory has been summarized here, and full details are to be found in
the cited publications. The transport property calculations and analysis were performed by the
author. All other work described in this chapter is my own.

5.1 Introduction
In Chapter 4, the Boltzmann equation solution scheme developed was systematically benchmarked
for a number of simple model systems. In this chapter, the solution scheme is applied to real gases
for both electron and positron systems, in the low-energy regime. The systems investigated are
simple atomic systems, the cross sections for which are reaching benchmark status [414,415]. The
Boltzmann equation is a useful tool for evaluating the accuracy and completeness of cross section
sets, serving as the connection between theoretical investigations on the microscopic scale, and the
swarm experiments on the macroscopic scale [276]. In particular, the application of an electric field
to thermalization experiments represents a stringent test on the validity of the cross section set,
particularly above thermal energies. This allows us to work closely with scattering theoreticians
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to comment on the accuracy and completeness of currently used cross sections sets and to make
recommendations.

We first consider electron swarms in atomic neon in Section 5.2. The electron-helium system
has already been heavily investigated, such that it can essentially be considered a solved problem
with regards to practical applications [416–419]. The electron-neon system however, has yet to
reach the same benchmark status as electron-helium. Accordingly, a stringent analysis of the low-
energy cross section with particular emphasis on a detailed comparison with swarm experiments
at low values of E/n0 is required. An investigation of transport parameters calculated from a
recent all-order many-body perturbation theory treatment of the cross section [420] is compared
with experimental drift velocities measurements [43], and characteristic energy measurements [10]
at applied reduced electric fields of E/n0 < 2 Td. We also comment on the accuracy of various
theoretical and empirical electron-neon cross section sets in the low-energy regime. A recommended
elastic momentum-transfer cross section is then constructed.

Positron swarms in atomic helium are considered in Section 5.3. When considering positron
swarms, there is always the possibility of in-flight annihilation of the positron with the atomic
electrons, and experiments typically exploit this to determine a number of annihilation paramet-
ers. Previous simulations [12, 16] determine Zeff, as defined in equation (2.95), to compare with
experiment. Mitroy [6] has calculated collision cross sections for helium which give a more complete
description of the positron-helium annihilation cross section. The improved momentum-transfer
and annihilation cross sections are employed in our kinetic theory calculations to give improved
descriptions of the time dependence of Zeff for positrons injected into helium, as well as the vari-
ation of Zeff versus E/n0 for experiments where the annihilation region is immersed in an electric
field.

It is customary in discussions on cross sections, particularly in the low-energy regime, to speak
of the speed and energy in terms of wavelength, k. Transformations between the representations
are straightforward, i.e.

~k = mv , (5.1)

U =
~2k2

2m
. (5.2)

5.2 Electron swarms in gaseous neon
The electron-helium system is the most thoroughly investigated electron-atom collision system.
There have been numerous experiments and calculations that have studied practically every im-
portant reaction channel for this system [416–419]. The quality of agreement between theory and
experiment is now very good and for many practical applications the calculation of the electron-
helium collision properties can be regarded as a solved problem. Indeed, electron-helium cross sec-
tions computed with the Kohn variational method at energies below the first excitation threshold
are often adopted as a benchmark cross section [415,421].

This section is focused on the electron-neon system. A study by Alves et al. [416] of electron-
neon cross section sets concluded that they were adequate for the purposes of plasma modelling
where an overall accuracy of 10% is needed. Furthermore, it was noted that theoretical cross
section sets from B-spline R-matrix calculations [416,422,423] could reproduce swarm parameters
in good agreement with the cross sections over a range of E/n0 varying from 10−2 to 103 Td [416].
Coincident with this work, a state of the art method for atomic structure, the relativistic all-order
many body perturbation theory with single and double excitations (SDpT) [424,425], was adapted
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by Mitroy and co-workers to describe low-energy electron-neon scattering [420]. The derived cross
sections were able to reproduce most existing elastic and momentum-transfer cross section data to
an accuracy of better than 5%.

Accordingly, it is now appropriate to perform a stringent analysis of the low-energy cross
section with particular emphasis on a detailed comparison with swarm experiments at low values
of E/n0. There have been measurements of the drift velocity, W , [43, 177, 426–428] and the
characteristic energy (the ratio of the transverse diffusion coefficient DT to the mobility µ = W/E,
DT/µ) [10]. These measurements have been used to generate estimates of the momentum-transfer
cross section [10, 43, 429–432]. Other transport parameters that have been measured include the
transverse diffusion coefficient at thermal energies [180,181,433–435] and the longitudinal diffusion
coefficient [436]. Expressions for the transport coefficients are given in Section 2.4.

5.2.1 Cross sections

In the low-energy regime, the electron transport is reliant on three types of low-energy cross section.
These are the elastic cross section, σT, the momentum-transfer cross section, σm, and the viscosity
cross section, σv. The viscosity cross section is needed for solutions of the Boltzmann equation
that go beyond the two-term approximation. All can be defined in terms of angular integrals of
the differential cross section σ(k, χ) where χ is the scattering angle. Furthermore, expressions in
terms of phase shifts are also known. These cross sections are defined

σT (k) = 2π

ˆ
σ(k, χ) sin(χ) dχ,

=
4π

k2

∑
ℓ=0

(
(ℓ+ 1) sin2(δ+ℓ ) + ℓ sin2(δ−ℓ )

)
, (5.3)

σm (k) = 2π

ˆ
(1− cosχ)σ(k, χ) sin(χ) dχ,

=
4π

k2

∑
ℓ=0

( (ℓ+ 1)(ℓ+ 2)

(2ℓ+ 3)
sin2(δ+ℓ − δ+ℓ+1)

+
ℓ(ℓ+ 1)

(2ℓ+ 1)
sin2(δ−ℓ − δ−ℓ+1)

+
(ℓ+ 1)

(2ℓ+ 1)(2ℓ+ 3)
sin2(δ+ℓ − δ−ℓ+1)

)
, (5.4)

σv (k) = 2π

ˆ
(1− cos2 χ) σ(k, χ) sin(χ) dχ,

=
4π

k2

∑
ℓ=0

( 2ℓ(ℓ+ 1)

(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
sin2(δ+ℓ − δ−ℓ )

+
(ℓ+ 1)(ℓ+ 2)(ℓ+ 3)

(2ℓ+ 3)(2ℓ+ 5)
sin2(δ+ℓ − δ+ℓ+2)

+
ℓ(ℓ+ 1)(ℓ+ 2)

(2ℓ+ 1)(2ℓ+ 3)
sin2(δ−ℓ − δ−ℓ+2)

+
2(ℓ+ 1)(ℓ+ 2)

(2ℓ+ 1)(2ℓ+ 3)(2ℓ+ 5)
sin2(δ+ℓ − δ−ℓ+2)

)
. (5.5)

In these equations, δ+ℓ refers to the phase shift with j = ℓ + 1
2 and δ−ℓ refers to the phase shift

with j = ℓ − 1
2 . The expression for the momentum-transfer cross section is compatible with that
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previously given by McEachran [437].
The ℓ = 0, 1 and 2 phase shifts were obtained from a recent calculation using relativistic many-

body perturbation theory [420]. This SDpT calculation iterates many-body perturbation theory
for an excitation space allowing for all possible single and double excitations until convergence is
reached. The effects of triple excitations are included perturbatively [425].

The SDpT phase shifts cover an energy range from k = 0 to k = 0.80 a−1
0 . These phase shifts

are extended to higher energies using a central field model. The effective Hamiltonian (in atomic
units) for the electron with co-orddinate r0 moving in the field of the atom is written

H = −1

2
∇2

0 + Vdir(r0) + Vexc(r0) + V L
pol(r0). (5.6)

In equation (5.6), Vdir(r0) and Vexc(r0) are the direct and exchange interactions of the scattering
electron with the neon target which is represented by a Hartree-Fock wavefunction. The angular
momentum dependent polarization potential is given the form

V L
pol(r0) = −

αd(1− exp
(
−r60/ρ6L

)
)

2r40
, (5.7)

where αd is the static dipole polarizability which is set to 2.669 a30 [420]. The adjustable parameters,
ρL are fixed by reference to the value of the phase shifts near k ≈ 0.80 a−1

0 .
Higher ℓ phase shifts are given by the modified effective range theory (MERT) formula [438–440],

tan(δℓ) =
παdk

2

(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
. (5.8)

The SDpT cross sections are tabulated on a dense momentum grid, with spacings of ∆k =

0.001 a−1
0 at the lowest momenta and a spacing of ∆k = 0.01 a−1

0 at the higher momenta. The
net number of points in the tabulation is 139. A momentum grid provides a better representation
of the variations in the cross section at low energies than a similarly sized energy grid.

One characteristic of the e−-neon σm is its abnormally small size of ≈ 0.17 × 10−20 m2 at
zero-energy (U = 0). The cross section increases rapidly as the energy increases and is about three
times larger at thermal energies.

Besides the SDpT cross section set, two other theoretical cross section sets have been con-
sidered. One set is the momentum-transfer cross section from the ab initio B-spline R-matrix
(BSR) calculations [422, 423]. The basis used in this calculation was large. The BSR calculation
does not report the viscosity cross section (or phase shifts) that would allow a solution of the
Boltzmann equation to go beyond the two-term approximation. However, the BSR calculation
gave elastic, excitation and ionization cross sections that extend to high-energy and therefore can
be used in simulations of electron transport at high E/n0.

Another theoretical cross section is that from the multi-configuration Hartree-Fock (MCHF)
calculations [441]. One limitation with the MCHF data is that the data is restricted to energies
with U ≤ 7 eV and further only the elastic and momentum-transfer cross sections are given. The
MCHF σm was set to its 7 eV value for all energies greater than 7 eV when solving the Boltzmann
equation.

Other momentum-transfer cross sections are essentially derived from experiment. The cross
section of Robertson [43] was determined by solving the two-term Boltzmann equation and iterat-
ively adjusting the momentum-transfer cross section. The same approach was used by the Rikkyo
group [10], except in this case the momentum-transfer cross section was tuned by fitting to the
characteristic energy DT/µ. Another approach by O’Malley and Crompton used modified effective
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range theory (MERT) to help derive expressions of the scattering phase shifts at low-energy [432]
by fitting the ANU drift velocity measurements. The scattering length derived from the O’Malley
fit was 0.214± 0.005 a0. Most of the electron-Ne momentum-transfer cross sections in the LXCat
database [416,442] incorporate elements of the Robertson [43] or O’Malley [432] σm.

The recommended cross section published by Buckman and Elford [18, 443] is an amalgam
of the Robertson and O’Malley cross sections for U < 4 eV. The zero-energy cross section of
0.163× 10−20 m2 is slightly larger than that of O’Malley. At higher energies this cross section was
derived from crossbeam measurements [444,445] and the MCHF calculations [441,446].

The cross section of Morgan [416,447] is essentially the Buckman cross section up to 4 eV, but
has omitted many energies from the Buckman tabulation below 0.03 eV. The Morgan cross section
starts to deviate from the Buckman cross section for U > 4 eV.

The SIGLO database [416, 448, 449] uses the Robertson σm [43] data from 0.03 to 6.0 eV.
The zero-energy cross section of 0.161 × 10−20 m2 was computed using the O’Malley scattering
length [432]. The cross section at energies greater than 6 eV is different from the Robertson cross
section and is taken from Shimamura [450].

The Biagi σm is stated to be taken from version 8.9 of the Magboltz Monte Carlo program
[416,451–453]. At low energies, the momentum-transfer cross section is based on the MERT fitting
formulae of O’Malley [432]. Examination of the source code of the Magboltz program indicates no
values below 1 eV, but values below 1 eV are tabulated in the LXcat database. The U = 0 cross
section was fixed to the value at 0.0001 eV, but this is about 8% larger than expected from the
O’Malley scattering length.

The Puech data for neon was initially described in [454,455]. It is stated that this cross section
was taken from Robertson [43] for U < 7 eV while the cross section of Hayashi is used at higher
energies. Examination of the tabulation reveals differences of a few percent with the Robertson
σm across the energy range for which Robertson tabulate the cross section.

A new empirical cross section was constructed from the SDpT by multiplying it by a simple
energy dependent scaling factor of the form, A = 1/(1 + α exp(−U/β)). The choice of α = 0.08

and β = 0.089 eV gave a σm that gave a superior fit to the ANU W data for E/n0 < 0.01 Td.
This cross section is identified in all subsequent text as the SDpTv2 cross section. The scattering
length of the SDpTv2 cross section is 0.2158 a0.

In the following subsections, detailed comparisons of transport parameters computed with
the SDpT, BSR, SDpTv2 and Buckman cross sections are given as a function of the applied
reduced electric field, E/n0. The Buckman cross section was chosen as a representative example
of the empirically derived cross sections. Some summary assessments, e.g. the root mean square
differences from experiment, where all cross sections are tested against available transport data
are also made.

5.2.2 Comparisons with transport data

Comparisons are made with four sets of experimental data. First there are the drift velocities of
the ANU group [43]. Drift velocities at applied electric fields ranging from 0.001594 Td to 2.003 Td
have been made at 77 K and 293 K. The stated uncertainty for this set of drift velocities is ±1%.
In addition, there are the characteristic energies from the University of Rikkyo group [10]. They
were obtained at 293 K using values of E/n0 ranging from 0.014 Td to 0.40 Td and are reported
with a stated uncertainty of ±3%. Finally, the diffusion coefficient at thermal energies has been
measured [181,433–435].
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The mass of the neon atom in the solution of the Boltzmann equation was taken as 20.1797 amu
[456].

Validity of the two-term approximation

Two different solutions of the Boltzmann equation were made using the SDpT cross section. One
of the solutions was made using the two-term approximation. The other solution was a four-term
solution which included the viscosity cross section, σv. The differences in the drift velocity and
diffusion coefficients due to the two-term and four-term solutions was always less than 0.01% at
all values of E/n0 < 2 Td. This is a reflection of the isotropic nature of the velocity distribution
function at these reduced electric fields. This is a consequence of the dominance of elastic scatter-
ing which is essentially isotropic nature, and as such collisions act to randomize the velocities with
minimal changes in the speeds. This level of precision justifies the use of the two-term approx-
imation in this reduced electric field regime, and all transport parameters quoted in this section,
unless stated otherwise, were computed with the two-term approximation.

Numerical representation of the cross section

As the present work is focused on the comparisons with swarm parameters at a level of accuracy
approaching 1% it is desirable to test the accuracy of the numerical representation of the cross
sections. The cross sections used in the solution of the Boltzmann equation are typically given
as a set of discrete points tabulated on a numerical grid [10, 43]. The density of grid points, and
the approach used to interpolate between those points will have an impact upon the calculated
transport parameters. This is evidenced by the fact that the improved numerical representations of
vibrational cross sections did go some way towards reducing the discrepancies between vibrational
cross sections derived from swarm and beam experiments [182].

The importance of the numerical representation of the cross section was tested by solving
the Boltzmann equation with different tabulations of the same SDpT cross section. The SDpT
cross sections use a high density tabulation with velocity increments of 0.001 a−1

0 near the U = 0

threshold. The SIGLO cross section has no cross section values below 0.030 eV. Removing all points
below 0.03 eV from the SDpT tabulated cross section results in the 77 K W at E/n0 = 0.001594 Td
decreasing by 0.2% and the 77 K DT/µ characteristic energy increasing by 8%. The characteristic
energy is potentially much more sensitive to the numerical representation of the cross section than
the drift velocity.

Comparison with drift velocities

Drift velocities at T0 = 77 K computed with the SDpT, SDpTv2, BSR and Buckman cross sections
are compared with the measured ANU drift velocities in Table 5.1. The SDpT W utilized a
multi-term solution of the Boltzmann equation and natural cubic spline interpolation was used to
convert the tabulated values into a continuous function. All other calculations were done using
the two-term approximation and linear interpolation. Table 5.2 compares the ANU T0 = 293 K
W [43] with those computed with the SDpT, SDpTv2, BSR and Buckman cross sections. The
mean energy of the swarm at 77 K and 293 K is depicted in Figure 5.1 for applied reduced electric
fields ranging from approximately 0.001 Td to 2.0 Td. The mean energies and swarm parameters
for the two different temperatures are almost the same for E/n0 > 0.03 Td. The lowest mean
energy for the 77 K data set occurs at 0.001594 Td and was 0.031 eV.

The SDpT W tend to be slightly smaller (about 0.5− 2%) than the 77 K ANU drift velocities
for E/n0 < 0.010 Td. For larger values of E/n0 there are no instances of differences exceeding
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Table 5.1: Drift velocities, in units of 103 ms−1, as a function of the reduced electric field, for
electrons in neon at T0 = 77 K. The stated uncertainty for the ANU experimental drift velocities
[43] is 1%.

E/n0 SDpT SDpTv2 BSR Buckman ANU
[Td] [420] [416,422,423] [443] [43]
0.001594 0.4177 0.4258 0.3998 0.4245 0.424
0.002390 0.4994 0.5070 0.4884 0.5055 0.508
0.003187 0.5639 0.5700 0.5563 0.5693 0.572
0.003984 0.6180 0.6245 0.6117 0.6227 0.625
0.004781 0.6651 0.6711 0.6590 0.6691 0.671
0.005578 0.7072 0.7127 0.7007 0.7106 0.712
0.006374 0.7454 0.7504 0.7381 0.7481 0.751
0.007171 0.7805 0.7851 0.7724 0.7827 0.785
0.007968 0.8131 0.8173 0.8041 0.8148 0.817
0.01195 0.9499 0.9525 0.9354 0.9497 0.953
0.01594 1.060 1.061 1.040 1.058 1.062
0.01992 1.153 1.154 1.129 1.150 1.154
0.02390 1.235 1.236 1.208 1.232 1.235
0.03187 1.378 1.378 1.347 1.374 1.378
0.03984 1.501 1.501 1.468 1.496 1.500
0.04781 1.611 1.611 1.576 1.605 1.609
0.05578 1.711 1.711 1.674 1.704 1.707
0.06374 1.803 1.803 1.765 1.795 1.800
0.07171 1.889 1.889 1.850 1.881 1.885
0.07968 1.970 1.970 1.931 1.962 1.965
0.1195 2.325 2.324 2.281 2.315 2.320
0.1594 2.624 2.624 2.577 2.616 2.618
0.1992 2.888 2.888 2.839 2.883 2.883
0.2104 2.957 2.957 2.907 2.953 2.953
0.2390 3.126 3.126 3.075 3.125 3.125
0.3187 3.550 3.550 3.492 3.555 3.55
0.3984 3.921 3.921 3.856 3.932 3.92
0.4781 4.250 4.250 4.182 4.269 4.25
0.5259 4.432 4.432 4.362 4.455 4.44
0.5578 4.548 4.548 4.477 4.574 4.55
0.6374 4.819 4.819 4.746 4.853 4.82

1%. The SDpTv2 cross section, which has a smaller cross section below U < 0.15 eV, gives drift
velocities that reproduce the ANU data with higher accuracy. Table 5.3 reports the root mean
square (RMS) of the relative difference between calculated and experimental transport parameters
for a number of momentum-transfer cross sections. The RMS relative difference of the SDpTv2
cross section is four times smaller than the RMS relative difference for the SDpT cross section.
Another useful estimate of the accuracy is the largest relative difference between the calculated
and measured transport parameters. These are listed in Table 5.4. This is 1.70% for the SDpT
cross section, and 0.42% for the SDpTv2 cross section. The SDpTv2 cross section is in perfect
agreement with the 77 K ANU transport data given that the stated experimental uncertainty is
1% [43].

Both the SDpT and SDpTv2 cross sections give almost the same drift velocities for the 293 K
data set. The lowest value of E/n0 for the 293 K data set was 0.01518 Td. The lowest mean
energy for this data set is about 0.05 eV, and at this energy the differences between the SDpT and
SDpTv2 σm are insignificant. The transport coefficients computed with these cross sections agree
with the ANU W to better than 0.5% for all E/n0 < 1.5 Td.
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Figure 5.1: The mean energy (in eV) as a function of E/n0 (in Td) for electron swarms in neon.
The mean energy was computed using the SDpT cross section.

The SDpT and SDpTv2 transport parameters show substantial differences with the ANU data
at E/n0 = 1.821 and 2.003 Td. The mean energy exceeds 5 eV when E/n0 > 1.6 Td and it is
likely that excitations to the lowest energy excited states near 16.6 eV are starting to influence W

at the two largest values of E/n0.
The discrepancies between the BSRW and experiment are much larger, with a 5.7% discrepancy

with the 77 K ANU drift velocity at E/n0 = 0.001594 Td and an RMS difference of 2.2%. The BSR
drift velocity is smaller than the ANU (and SDpT) drift velocities at all values of E/n0 which is
indicative of a cross section which is too large. The BSR momentum-transfer cross section is larger
than the SDpT cross section for all energies below the first excitation threshold. The difference is
especially significant at U = 0 eV where the BSR cross section is set to 0.500×10−20 m2 (equivalent
to a scattering length of 0.377 a0), about 3 times larger than the SDpT cross section. The BSR σm

is roughly constant for U < 0.01 eV, a functional dependence that is not compatible with MERT.
The very large differences in the zero-energy cross section do not lead to a commensurate change
in the drift velocity because the cross section is so small at U = 0. The tendency for the BSR drift
velocities to be smaller than experiment is also apparent in the 293 K data set.

The Buckman cross section is based on the original momentum-transfer cross section of Robertson
[43]. As expected, this cross section does a uniformly good job of reproducing the measured drift
velocities at almost all values of E/n0. The RMS difference of this momentum-transfer cross sec-
tion with the 77 K and 293 K drift velocity data is less than 1%. The Buckman cross section does
tend to be about 1% larger than the ANU drift velocity for E/n0 > 0.6 Td.

The ab initio MCHF σm gives larger RMS differences with the ANU drift velocities than the
SDpT or SDpTv2 cross sections. The larger RMS difference is partly due to incomplete information
about its behaviour at higher energies.

The SIGLO, Morgan and Biagi cross sections accurately reproduce the ANU drift velocity
to a high degree of accuracy, and the largest RMS difference resulting from any of these cross
sections is less than 0.4%. This is not surprising since all three cross section sets are based on the

Chapter 5. Low-energy electron and positron transport in atomic gases 82



Boyle, Gregory The modelling of lepton transport in gases/liquids

Table 5.2: Drift velocity, in units of 103 ms−1, as a function of the reduced electric field, for
electrons in neon at T0 = 293 K. The stated uncertainty for the ANU drift velocities is 1%.

E/n0 SDpT SDpTv2 BSR Buckman ANU
[Td] [420] [416,422,423] [443] [43]
0.01518 0.9738 0.9756 0.9530 0.9721 0.976
0.01821 1.052 1.053 1.028 1.050 1.052
0.02125 1.122 1.123 1.096 1.119 1.122
0.02428 1.186 1.187 1.158 1.183 1.185
0.02732 1.246 1.246 1.216 1.242 1.243
0.03035 1.301 1.301 1.270 1.296 1.300
0.04553 1.536 1.536 1.501 1.530 1.532
0.06071 1.729 1.729 1.691 1.722 1.723
0.09106 2.046 2.046 2.005 2.038 2.040
0.1214 2.311 2.311 2.267 2.302 2.300
0.1518 2.544 2.544 2.498 2.536 2.532
0.1821 2.754 2.754 2.706 2.748 2.741
0.2125 2.948 2.948 2.897 2.944 2.935
0.2428 3.127 3.127 3.075 3.126 3.115
0.2732 3.297 3.297 3.241 3.298 3.284
0.3036 3.456 3.456 3.398 3.460 3.445
0.3643 3.750 3.750 3.688 3.759 3.738
0.4250 4.018 4.018 3.952 4.033 4.004
0.4553 4.144 4.144 4.076 4.161 4.130
0.4857 4.264 4.264 4.195 4.284 4.255
0.5464 4.492 4.492 4.421 4.518 4.478
0.6071 4.704 4.704 4.632 4.736 4.699
0.7589 5.178 5.178 5.105 5.226 5.170
0.9106 5.589 5.589 5.517 5.654 5.576
1.062 5.954 5.594 5.883 6.033 5.945
1.214 6.284 6.284 6.216 6.377 6.280
1.336 6.529 6.529 6.462 6.631 6.542
1.821 7.377 7.377 7.317 7.509 7.813
2.003 7.659 7.659 7.601 7.799 8.491

Robertson [43] or O’Malley [432] cross sections at low energies with some fine tuning occurring at
energies greater than 4 eV.

Comparison with the characteristic energy

Table 5.5 gives the characteristic energy, DT/µ, for a swarm travelling through neon gas at T0 =

293 K. Experimental data comes from the Rikkyo group [10]. The key conclusion to be drawn from
the Table 5.5 is that there is a 3% discrepancy at the level of the transport coefficients between
cross sections that reproduce drift velocity measurements and cross sections that reproduce the
Rikkyo data for the transverse diffusion coefficients.

The SDpT DT/µ tend to be larger than the Rikkyo data. The RMS difference is 2.5% with
the largest difference being 3.5%. The largest differences tend to occur at the smallest values
of E/n0. This is clearly visible in Figure 5.2 where the relative difference is given. The SDpT
cross section would need to be increased in order to be compatible with the Rikkyo experiment.
However, the SDpTv2 σm is actually smaller than the SDpT σm. Hence the RMS difference of the
SDpTv2 transport parameters with the Rikkyo data has increased to 3.3%. Figure 5.2 shows that
the increase in the difference with the Rikkyo data is most prominent at the lowest E/n0.

Four of the empirical cross sections, the Buckman, SIGLO, Morgan and Biagi cross sections
have RMS differences that range from 2.8% to 3.7%. These cross sections give a DT/µ that exceeds
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Table 5.3: The RMS relative difference between experimental and calculated transport parameters.
The E/n0 = 1.821 and 2.003 Td W are not part of the error calculation for the 293 K data set.

Set W 77 K [43] W 293 K [43] DT/µ [10]
SDpT [420] 0.00618 0.00295 0.0253
BSR [416,422,423] 0.0221 0.0163 0.0132
MCHF [441] 0.00542 0.00819 0.0239
SDpTv2 0.00146 0.00296 0.0333
SIGLO [416,448] 0.00143 0.00209 0.0318
Buckman [443] 0.00324 0.00718 0.0278
Morgan [416,447] 0.00369 0.00154 0.0366
Biagi v8.9 [416,452,453] 0.00299 0.00285 0.0303
Puech [416,454,455] 0.0143 0.0104 0.0157

Table 5.4: The maximum relative difference between experimental and calculated transport para-
meters. The relative difference is given above the value of E/n0 at which it occurs. The E/n0 at
1.821 and 2.003 Td at 293 K were excluded from consideration.

Set W 77 K [43] W 293 K [43] DT/µ [10]
SDpT 0.0170 0.00477 0.0346

0.002390 0.1214 0.014
BSR [416,422,423] 0.0571 0.0236 0.0237

0.001594 0.01518 0.35
MCHF [441] 0.0101 0.0180 0.0391

0.002390 1.214 0.014
SDpTv2 0.00417 0.00475 0.0553

0.001594 0.1214 0.014
SIGLO [416,448,449] 0.00301 0.00380 0.0530

0.5259 0.2732 0.014
Buckman [443] 0.00694 0.0154 0.0507

0.6374 1.214 0.014
Morgan [416,447] 0.00817 0.00310 0.0639

0.007968 0.01518 0.014
Biagi v8.9 [416,452,453] 0.00502 0.00523 0.0591

0.003187 1.336 0.014
Puech [416,454,455] 0.0380 0.0171 0.0267

0.001594 0.2732 0.30

experiment in all cases. The inherent discrepancy between the drift velocity and diffusion data are
clearly seen in Table 5.3. The cross section sets that have less than 0.5% RMS discrepancy with
the drift velocity data all have greater than 3% RMS relative differences with the diffusion data.

The BSR cross section gives a smaller RMS difference with the Rikkyo data than the other
two ab initio cross sections. The BSR cross section is larger than these other cross sections and
this results in smaller values of DT/µ. The BSR DT/µ are mostly 1 − 2% too small over the
entire range of E/n0. However, the relative difference of all values of BSR DT/µ lie within the
stated uncertainty of 3%. One feature of the graph is the 1.6% jump that occurs between 0.30 and
0.35 Td.

The Puech cross section has RMS differences with the W and DT/µ data of 1.0 to 1.5%. This
suggests that this cross section has been constructed to give equally good fits to both the W and
DT/µ transport data.

The cross sections that give the better than 0.5% accuracy fits to the ANU drift velocities give
RMS differences of 3% with the DT/µ data. This does not constitute an irreconcilable conflict
since the stated uncertainty in the Rikkyo measurements was 3%. However, one aim of this
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Table 5.5: The characteristic energy DT/µ, (in eV) with electric field (in Td), for electrons in neon
at T0 = 293 K. The stated uncertainty of the Rikkyo data is 3%.

E/n0 SDpT SDpTv2 BSR Buckman Rikkyo
[Td] [420] [416,422,423] [443] [10]
0.014 0.1314 0.1340 0.1268 0.1334 0.127
0.017 0.1491 0.1518 0.1442 0.1511 0.146
0.020 0.1660 0.1687 0.1606 0.1679 0.162
0.025 0.1926 0.1953 0.1864 0.1943 0.187
0.030 0.2177 0.2204 0.2105 0.2193 0.213
0.035 0.2418 0.2444 0.2336 0.2431 0.236
0.040 0.2649 0.2674 0.2557 0.2660 0.260
0.050 0.3091 0.3115 0.2978 0.3098 0.300
0.060 0.3511 0.3533 0.3379 0.3513 0.341
0.070 0.3914 0.3935 0.3764 0.3911 0.382
0.080 0.4304 0.4324 0.4137 0.4297 0.420
0.10 0.5054 0.5072 0.4856 0.5038 0.491
0.12 0.5774 0.5791 0.5549 0.5750 0.562
0.14 0.6473 0.6488 0.6221 0.6440 0.630
0.17 0.7492 0.7506 0.7204 0.7449 0.730
0.20 0.8486 0.8499 0.8165 0.8435 0.828
0.25 1.011 1.012 0.9733 1.005 0.987
0.30 1.169 1.170 1.127 1.163 1.14
0.35 1.326 1.327 1.279 1.320 1.31
0.40 1.480 1.481 1.429 1.476 1.46

section is to test the quality of various momentum-transfer cross sections at a 1% level of precision.
Consequently, precedence should be given to fitting ANU W data ahead of Rikkyo DT/µ data.

Comparison with the thermal diffusion coefficient

The thermal diffusion coefficient for electrons diffusing in neon has been measured on a number
of occasions [181, 433–435]. Discounting some earlier measurements, estimates have been made
at Oak Ridge National Laboratory (ORNL) [433], the Laboratori C. I. S. E [180, 181] and the
ANU [434, 435]. The C.I.S.E. value of n0D is converted from the stated diffusion constant of
D0 = (2860± 100) cm2 s−1 [181] by assuming that measurements were taken at a gas temperature
of 273 K.

The three experimental diffusion constants are not compatible within their mutual experimental
uncertainties when temperature dependent effects are taken into consideration. Preference is given
to the ANU value of n0D.

Comparisons of experimental diffusion coefficients, n0D with calculations using the SDpT and
BSR cross section sets can be found in Table 5.6. The mean energy of a thermal electron cloud at
295 K is 0.0381 eV. The n0D diffusion coefficient varies slowly with temperature. For example,
using the SDpTv2 cross section and decreasing the temperature results in n0D decreasing from
75.04× 1020 mm−1 s−1 to 74.14× 1020 mm−1 s−1, a change of only 1.2%.

The good agreement between the MCHF and ANU n0D coefficients suggests that the ANU
diffusion experiment would be consistent with a scattering length that is close to the MCHF
calculation, namely 0.2218 a0 [441]. The SDpTv2 value of n0D of 75.04× 1020 mm−1 s−1 lies just
outside the error bounds for the ANU measurement.

One of the issues affecting comparisons with the empirically derived cross sections such as the
SIGLO, Morgan and Biagi is their numerical representation. These cross sections all have relatively
few tabulated points below 0.1 eV where the cross section changes by a factor of 4. This had an
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Figure 5.2: The relative difference, between calculated characteristic energies and the experimental
data of the University of Rikkyo [10] group.

Table 5.6: The thermal diffusion coefficient, n0D, in units of 1020 mm−1 s−1, for thermal electrons
in neon gas.

Source n0D
T0 = 295 K T0 = 273 K

ORNL [433] (T0 = 300 K) 64.7
Laboratori C.I.S.E [181,434,435] 76.9± 2.4
ANU [434] 72.7+2.0

−0.9

SDpT [420] 71.28 70.36
BSR [416,422,423] 59.51 58.05
MCHF [441] 72.73 71.81
SDpTv2 75.04 74.14
SIGLO [416,448,449] 77.61 77.01
Buckman [443] 74.68 73.81
Morgan [416,447] 75.93 75.13
Biagi v8.9 [416,452,453] 79.97 79.48
Puech [416,454,455] 66.47 65.41

impact of 1-4% on the calculated diffusion constant. A significant part of the differences between
the n0D values of the Buckman, SIGLO, Morgan and Biagi values of n0D arises from the energies
at which the cross sections are tabulated.

The BSR cross section gives a diffusion coefficient of 59.5× 1020 mm−1 s−1, about 20% lower
than the ANU value. This underestimate further illustrates the problems with the BSR cross
section at energies below 0.15 eV.

One of the salient conclusions drawn from Table 5.6 is the overall degree of consistency between
the Buckman, SDpTv2, MCHF and ANU values of n0D. The Buckman and SDpTv2 cross section
give very similar drift velocities that are close to ANU values [43]. These are effectively compatible
with the ANU n0D within the experimental uncertainty.
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There is one other electron transport parameter that has been measured for neon, the lon-
gitudinal diffusion coefficient on mobility, DL/µ [428]. However, the lowest value of E/n0 for
which measurements have been made is 1.4 Td and the effects of inelastic collisions could make
a contribution here. Consequently, no calculations of the longitudinal diffusion parameter were
made.

5.2.3 Recommended low-energy momentum-transfer cross section

Two measures have been given as metrics to test the performance of the different cross sections
against the drift velocity and transverse diffusion data. These are the root mean square of the
relative difference between the calculated and measured transport parameters and secondly the
largest relative difference between the calculated and measured transport parameters.

The SIGLO momentum-transfer cross section gives drift velocities with very small RMS differ-
ence from the ANU experiment of 0.14% at 77 K and 0.21% at 293 K, which are slightly smaller
than those using the SDpTv2 cross section. Despite these very low differences from ANU drift
velocity data, in many aspects the SDpTv2 cross section has one significant advantage over the
SIGLO cross section. For example, the SDpTv2 diffusion constant, n0D, is closer to the ANU
experimental value than the SIGLO value of n0D. The smaller RMS difference of the SIGLO
values of W is of minor importance since all of the SIGLO and SDpTv2 values of the drift velocity
lie within the stated 1% uncertainty. However, the SDpTv2 cross section, being derived from a
large ab initio calculation, has a functional dependence based on a properly founded dynamical
description of the electron-neon interaction as opposed to the SIGLO cross section which like other
purely empirical cross sections is a table of numerical values constructed to fit experimental values
of the drift velocity. In effect, the SDpTv2 σm varies smoothly as a function of energy in a manner
that can be expected to be consistent with the actual momentum-transfer cross section.

5.3 Positron swarms in gaseous helium
In the classic positron gas annihilation experiment [11, 169, 457], positrons are emitted into a gas,
undergo thousands of inelastic collisions while thermalizing and eventually a mixture of low-energy
positrons and ortho-positronium is left in the gas. The free positrons and ortho-positronium then
experience elastic collisions until they are in thermal equilibrium with the gas. When positrons
collide with atoms, there is always the possibility of in-flight annihilation of the positron with the
atomic electrons, and experiments typically result in the determination of a number of annihilation
parameters. One parameter is the positronium fraction, i.e. the number of positrons surviving in
the form of free positronium. Another parameter is the annihilation parameter, zeff(k), which can
be defined in terms of the spin-averaged annihilation cross section, σann(k) by the identity [458]

zeff(k) =
k σann(k)

πcr20
, (5.9)

where r0 is the classical electron radius and c is the speed of light. The annihilation parameter is
determined by measuring the intensity of 2γ annihilation as a function of time. Finally, there is
the pick-off annihilation rate which is a consequence of annihilating collisions between the positron
in long-lived triplet positronium and the electrons in the target atom.

In addition, the time dependence of the Zeff during thermalization contains information about
the momentum-transfer cross section, the initial energy distribution of the positrons, and the energy
dependence of Zeff. The time dependent behaviour of Zeff for positrons annihilating in the rare gases
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has been extracted from the annihilation signal [11–13,459,460]. Experimental information about
the energy dependence of the positron-atom momentum-transfer and annihilation cross sections
can also be obtained by performing experiments in a static electric field [15]. The presence of the
electric field leads to the drifting and diffusing positrons having a different energy distribution at
equilibrium.

In this section the spatially-homogeneous Boltzmann equation is solved to determine the be-
haviour of Zeff(t) for positrons thermalizing in helium. The simulations are restricted to positrons
with an energy below the positronium formation threshold where the only possible processes are
elastic scattering and positron annihilation with the atomic electrons. The present solutions
gave a fit to the experimental data [11, 12] that was significantly improved over previous simu-
lations [12, 16]. The variation of the equilibrium zeff versus electric field strength has also been
determined and again the agreement with experimental data was a significant improvement over
previous calculations [15,16].

5.3.1 Cross sections

The collision model is based upon an earlier semi-empirical model of positron scattering and
annihilation [461]. In this model, the interaction between the positron and the atoms was written
as the sum of two terms. The first term is the repulsive direct interaction as computed from the
Hartree-Fock wave function of the target atom. The second term is a semi-empirical polarization
potential. In the earlier work [461], a single polarization potential was used for all partial waves.
In the present work, the polarization potential depends on the orbital angular momentum, L, of
the colliding positron. The effective Hamiltonian given in equation (5.6) is simplified by the lack
of the exchange process in positron scattering, i.e.,

H = −1

2
∇2

0 + Vdir(r0) + V L
pol(r0). (5.10)

The adjustable parameter, ρL in the polarization potential (5.7) is fixed by reference to some
external factor, e.g. the value of the scattering length as deduced from a high precision ab initio
calculation. All the complicated many-body interactions between the positron and atomic electrons
can be absorbed into the polarization potential. There have been many investigations of positron-
atom interactions in the past that have used conceptually similar Hamiltonians [462–469].

The underlying philosophy of the collision model is semi-empirical, no attempt at determining
the specific form of the polarization potential by ab initio calculation is made. Phase shifts and
cross sections produced by this approach have been shown to reproduce ab initio calculations over
an energy range up to 10 eV provided the adjustable parameter in the polarization potential,
namely ρL is tuned to reproduce the ab initio phase shift at some energy [461]. In low-energy
scattering, the speed of the incident particle is negligible compared to the speed of light, and
instead the relativistic effects are due to the speed of the electrons in the inner most shells of
the target atom. In perturbation theory, relativistic effects are proportional to the fourth power
of the atomic number, and become more important as the nuclear charge increases. The helium
atom spectrum however, is simple enough that the fine-structure splitting is extremely small, and
a non-relativistic treatment is justified. The total elastic, σT, and momentum-transfer, σm, cross
sections are calculated using a simplified, non-relativistic form of equations (5.3) and (5.4), namely

σT(k) =
4π

k2

∑
ℓ=0

(2ℓ+ 1) sin2(δℓ) (5.11)
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Table 5.7: The parameters ρL and GL for helium in the model potential. Note αd = 1.383 (a30) [44].
The particular numerical criteria (and their source) used to fix ρL and GL are specified.

L ρL (a0) Source GL Source
0 1.510 δ0(k = 0.2) = 0.041 [482] 2.979 zeff(k = 0.0) = 3.99 [483]
1 1.440 δ1(k = 0.3) = 0.019 [482] 3.96 zeff(k = 0.4) = 0.497 [484]
2 1.00 δ2(k = 0.8) = 0.025 [485] 4.65 He+ (G2 − 1)/(G1 − 1) = 1.233 [481]

σm(k) =
4π

k2

∑
ℓ=0

(ℓ+ 1) sin2(δℓ+1 − δℓ) (5.12)

where δℓ are the phase shifts.
Besides reproducing the low-energy elastic cross section, this model potential approach also

does a reasonable job of reproducing zeff(k). The annihilation parameter is computed from the
scattering wavefunction using [458,470,471]

zeff(k) = Ne

ˆ
d3τ |Ψ(r1, . . . , rN )Φ(v, rN )|2 , (5.13)

where Ψ(r1, . . . , rN ) is the anti-symmetrized wave function of the target atom, Φ(v, rN ) is the
positron scattering function and d3τ represents an integration over all electron co-ordinates. Equa-
tion (5.13) is not completely general as the total system wave function is assumed to have the
product form Ψ(r1, . . . , rN )Φ(v, r0). The expression for zeff(k) given by equation (5.13) is spin-
averaged. In the plane wave Born approximation, where the positron wave function is written as a
plane wave, the annihilation parameter is equal to the number of atomic electrons, i.e. zeff(k) = Ne.

The zeff(k) predicted by equation (5.13) is likely to be an underestimate. The attractive nature
of the electron-positron interaction leads to strong electron-positron correlations that increase
the electron density at the position of the positron, and consequently enhances the annihilation
rate [472–475]. Therefore, an L-dependent enhancement factor, GL, is used to rescale the calculated
zeff(k) for a given partial wave i.e. values for zGeff(k) would be computed by

zGeff(k) =
∑
L

zGL,eff(k) =
∑
L

GLzL,eff(k) , (5.14)

where zL,eff(k) is the partial annihilation rate for a positron with angular momentum L scattering
from the model potential. The values of GL are fixed by reference to a high quality ab initio calcu-
lation or to experimental data. This work is concerned with low-energy scattering and under these
circumstances the relative collision momentum distribution of the annihilating electron-positron
pair is not expected to change much as the positron energy changes slightly. This means that the
errors in using an energy independent enhancement factor should not be too large [476,477]. There
have been a number of investigations that have shown that a single multiplicative factor (for each
L) can adequately represent the magnitude and energy dependence over the energy range below
the first excitation threshold [461,478–481].

The ability of the model potential calculations to realistically describe the low-energy elastic
and annihilation cross sections depends crucially upon the choice of ρL and GL. A number of
sources have been used to provide the reference data which was used to fix ρL and GL which are
tabulated in Table 5.7.

The cross section computed by Mitroy [6] with the values in Table 5.7 is termed the model
potential (MP) cross section set, and is depicted in Figure 5.3 and compared with other calculations
and experiment. Cross sections from a polarized orbital (PO) calculation [471, 486] are shown in
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Figure 5.3: The elastic cross section, σT (in units of πa20) for positron scattering for helium.
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Figure 5.4: The momentum-transfer cross section, σm (in units of πa20) for positron scattering for
helium.
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Figure 5.5: The annihilation parameter, zeff for positron scattering for helium.

addition to the calculations mentioned previously. The MP cross section lies very close to the
most recent elastic cross section of the University College London (UCL) group [482]. This was
expected since the UCL cross section was used to set the cutoff parameters. The PO calculation
gives a scattering length which is larger in magnitude and with a Ramsauer minimum occurring at
a higher velocity. The convergent close coupling (CCC) calculation [485] has a scattering length
that is slightly smaller in magnitude resulting in a smaller cross section below the Ramsauer
minimum. There are two sets of experimental data that are included, those by the ANU [487]
and Kyoto [488]. Cross sections from some older experiments [489,490] are not included to reduce
clutter in the figure.

The ANU and Kyoto group elastic cross sections do lie closer to the CCC cross sections at
the lowest energies. However, the cross sections based on Kohn variational calculations should be
preferred. The Kohn variational phase shifts have been validated by new calculations based on the
confined variational method (CVM) [483,491] which reproduce the experimental Zeff = ⟨zeff⟩ (see
Section 2.4). The impact of systematic errors in the experiments can become more severe at the
lower energies.

Figure 5.4 plots the momentum-transfer cross section as a function of k for energies below
the Ps-formation threshold. It is compared with the Kohn variational momentum-transfer cross
section from the UCL group [482] and the CCC momentum-transfer cross section of the Curtin
group [485]. The MP cross section lies very close to the momentum-transfer cross sections from
the UCL and Curtin groups.

The annihilation parameter as a function of k is depicted in Figure 5.5. The original zeff(k)

of Campeanu and Humberston [12] is characterised by the small size of zeff(k) near k = 0.5 a−1
0 .

However, there are some obvious problems with the Campeanu and Humberston zeff. This curve
shows a variation of zeff(k) near k = 0 that is linear in k. However, an application of effective
range theory to annihilating collisions has shown that zeff(k) ≈ Z0 + k2Z2 where Z0 and Z2 are
constants [492]. Another limitation of this earlier calculation is the omission of contributions from
partial waves with L > 1. For these reasons the Campeanu and Humberston zeff(k) should be
regarded as being superseded by the later Kohn variational calculations [484,493].

Chapter 5. Low-energy electron and positron transport in atomic gases 91



Boyle, Gregory The modelling of lepton transport in gases/liquids

The later variational calculation [493] did include contributions from the d-wave, and the func-
tional form of zeff(k) near k = 0 is more compatible with the expectations of effective range theory.
This later calculation had larger values of zeff(k) at the minimum despite not including contribu-
tions from partial waves with L > 2. The MP calculations do include terms from these higher
partial waves, with the contribution to zeff at k = 1.1 a−1

0 being 0.101. This partly explains why
the MP zeff(k) is larger than the Kohn variational (KV) zeff(k).

5.3.2 Positron diffusion and thermalization calculations

In positron annihilation studies, positrons are released from a source with an unknown distribu-
tion of energies well above thermal energies. The positrons then thermalize through energy and
momentum exchanging collisions with the background gas, before eventually annihilating. The
process is necessarily nonequilibrium and the positron velocity distribution is non-Maxwellian dur-
ing the thermalization process. For positron annihilation studies conducted in the presence of an
applied electric field, the field drives the electrons out of thermal equilibrium, and the steady-state
distribution is no longer Maxwellian in nature. The connection between microscopic scattering
processes and macroscopic properties, including the measured annihilation rates, is made under
nonequilibrium conditions through Boltzmann’s equation [238]. Under spatially homogeneous con-
ditions, the motion of a dilute ensemble of positrons (charge q) moving through a dense background
gas of neutral atoms (density n0) in the presence of an applied electric field E can be described by
the Boltzmann equation, (2.2). For the regime of interest, the interaction processes determining
the macroscopic properties are elastic scattering and annihilation, characterized respectively by a
differential elastic cross section σ(g, χ) (where g and χ are the speed and scattering angle in the
centre of mass frame), and the annihilation cross section σann(g). First, it must be emphasized
that we do not assume that annihilation can be treated perturbatively [12] (i.e., setting J loss ≈ 0).
The explicit modification of the distribution function due to the annihilation processes is strictly
accounted for in a self-consistent manner. Secondly, this is a true multiterm theory, with none of
the limitations of the two-term approximation used in previous treatments [12,16]. There are no a
priori assumptions on the quasi-isotropy of the velocity distribution function. Angular dependence
beyond the momentum-transfer cross sections are accurately included in this multiterm theory.

Positron annihilation in helium under field-free conditions

Initially we consider positron annihilation experiments where positrons are released into a gas of
known pressure and the annihilation spectra is measured and interpreted in terms of the transient
Zeff(t) and the steady-state value, Zeff. For helium, the experimental results of the UCL group for
Zeff(t) are displayed in Figure 5.6 as a function of the reduced time, n0t. Comparison with the
calculated transient Zeff(t) provides some assessment of the positron-helium elastic and annihilation
cross sections.

There is limited information regarding the appropriate initial conditions for the speed distri-
bution of the positrons at the start of the Zeff(t) measurements. Accordingly, there is little point
in experimenting with a variety of initial velocity distributions. The initial distributions will have
positrons with energies up to the positronium formation threshold. This choice was also made by
Campeanu and Humberston [12]. With this choice, there are two obvious distribution functions
that can be adopted.

The first of these would be a constant speed distribution, i.e. f (0)
0 (k) = C where C is a constant

up to some cutoff velocity, k∞ =
√
2U∞/m. The mean energy of this distribution function is

Chapter 5. Low-energy electron and positron transport in atomic gases 92



Boyle, Gregory The modelling of lepton transport in gases/liquids

0.0 1.0 2.0 3.0

3.2

3.4

3.6

3.8

4.0

n0t (units of 10
3 ns amagat)

Z
eff

(t
)

 

 

MP Const   ,    = 10.68 eV
MP Const   ,    = 0.90 eV
MP Const   ,    = 8.90 eV
CH 1977
UCL 1975

k ǫ

k ǫ

U ǫ

Figure 5.6: Temporal variation of Zeff(t) for positrons thermalizing in gaseous helium at a temper-
ature of 293 K. The simulations are compared with the UCL experimental data [11] and the CH
simulation [12]. The different initial distributions are characterised by varying distributions and
average energies; Const v is a constant distribution in v space below the Ps-threshold; Const ϵ is
a constant distribution in energy space below the Ps-threshold. See text for details.

given by the identity, ϵ = (3/5)(mk2∞/2). For helium, with k∞ = 1.1438 a.u., this leads to
ϵ = 0.39249 a.u. = 10.68 eV.

The second initial distribution would be one that was constant in energy space, i.e. f (0)
0 (U)U

1
2 =

C where C is a constant up to some cutoff velocity, k∞. The mean energy of this distribution
would be ϵ = (1/2)(mk2∞/2), which for helium gives ϵ = 0.32707 a.u. = 8.90 eV.

In Figures 5.6 and 5.7 the calculated temporal variation of Zeff(t) and the mean energy ϵ(t)

are plotted. Besides the two distributions specified above, we also show an additional f (0)
0 (k) = C

distribution with k∞ = 0.3320 a.u. (ϵ = 0.90 eV). Also shown in Figure 5.6 is the UCL experimental
Zeff(t) and the previous simulation by Campeanu and Humberston (CH) [12]. The UCL Zeff(t)

initially has Zeff(t = 0) higher than its equilibrium value, it decreases as t increases, until it
stabilises before increasing to its equilibrium (thermal) value. This indicates that the initial velocity
distribution should have a mean energy that is larger than the energy where zeff(k) is smallest.
The CH profile, which used a constant speed initial distribution, shows these qualitative features.
But, the minimum Zeff(t) during thermalization is 0.3 smaller than the minimum Zeff(t) seen for
the UCL data and the value after thermalization is achieved is too small by 2.3%.

The Zeff(t) computed with the MP cross sections are in better agreement with the UCL Zeff(t).
The minimum value of Zeff(t) is much closer to the minimum observed in the UCL experiment.
This is a consequence of the larger value of zeff(k) at the minimum. The asymptotic value of the MP
Zeff(t) is only 0.01 to 0.03 smaller than the UCL data for values of the reduced time greater than
2× 103 ns amagat. The thermalization times are also compatible with the thermalization time for
the UCL experiment. The initial constant speed distribution has a slightly longer thermalization
time than the initial constant energy distribution.

Both the MP and CH simulations start with zeff(k) closer to 4.0 at the k = 0 threshold.
However, the asymptotic value for the CH simulation as t → ∞ is more than 0.1 smaller than
experiment and the MP asymptotic values. This is due to the incorrect functional dependence of
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Figure 5.7: Variation of ϵ(t) for positrons thermalizing in helium for different initial conditions.
The temperature of the helium gas was taken as 293 K.

the CH zeff(k) with k near k = 0. As mentioned earlier, the linear dependence of the CH zeff(k)

with k is incompatible with effective range theory [492].
Figure 5.6 also depicts Zeff(t) for a positron distribution with the mean energy located at an

energy lower than the minimum in the zeff(k) profile. The distribution does not show any sign of
the minimum in the Zeff(t) profiles seen in the UCL experiment and other simulations.

The transient profiles, including the depth of the minimum, are determined by an interplay
between the σm(k), the annihilation cross section and the initial average energy of the positrons.
An initial distribution with positron energies up to the Ps-formation threshold is crucial to a
giving a correct prediction of the overall thermalization time. While there are small uncertainties
in the MP σm(k), these uncertainties have minimal impacts on the thermalization time and can be
effectively neglected as a source of error. The size of the dip in Zeff(t) is primarily driven by the
dip in zeff(k). The zeff(k = 0.42)/Zeff,T ratio, where Zeff,T is the zero field value, is 0.872 for the
MP calculation with the f

(0)
0 (k) = C distribution. The ratio of the dip in Zeff(t) measured with

respect to the Zeff,T for the UCL data is 0.90. The ratio can be expected to show some sensitivity
to the initial positron distribution used to start the simulations.

One characteristic of all the calculated Zeff(t) in Figure 5.6 is shape of the minima which are
sharper than the experimental curve. However, the experimental Zeff(t) was taken with a finite
time resolution of 1.92 ns, and subjected to smoothing. A more precise investigation of the effects
of time resolution is not possible since Figure 5.5 [12] is given in terms of reduced time and the
density of the gas was not specified.

5.3.3 Positron annihilation in helium in an electric field

The application of an electric field in thermalization experiments drives the positrons out of thermal
equilibrium with the background helium gas. The steady-state is achieved when the energy gain
of the positrons in the electric field is balanced by the energy loss from collisions with helium
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Figure 5.8: Comparison of steady-state Zeff(E/n0) for thermalized positrons in helium at T0 =
293 K. The curve labelled MP 2014 uses the MP cross section set. Also shown are experiments
from the Toronto [13], UBC [14] and UCL [15] laboratories. Previous transport calculations are
also depicted [12,16]).

atoms. The velocity distribution of the positrons in the steady-state will no longer be a Maxwellian
distribution. As the field strength is increased in magnitude, the cross sections and zeff are sampled
over an increasingly larger energy range. Further, the electric field modifies the steady-state velocity
distribution function, and hence Zeff, and necessarily modifies the transient response Zeff(t). The
application of an electric field to the thermalization experiments represents a test on the validity
of the cross section set at energies higher than thermal energies.

The variation of the steady-state Zeff with an applied electric field is displayed in Figure 5.8.
The MP cross section set is shown, as are results from two previous transport calculations [12,16].
Experimental data from the University of Toronto [13], University of British Columbia (UBC) [14]
and the University College London (UCL) [15] are presented. All calculated and experimental data
show the same trend, there is a tendency for Zeff(E/n0) to decrease as the reduced electric field,
E/n0 is increased. The reason for the decrease is easily explained by reference to the functional
dependence of zeff(k) and the mean energy of the positron cloud at increasing E/n0. The increase
in mean positron energy with E/n0 is shown in Figure 5.9. The rapid increase in ϵ beginning at
2 V/(cm amagat) is a consequence of the Ramsauer-Townsend minimum in the momentum-transfer
cross section at around 1.0 eV. For values of E/n0 > 5 V/(cm amagat), the mean energy ranges
from 1− 3 eV where zeff(k) has a broad minimum with zeff(k) ≈ 3.5.

There are effectively four sets of experimental data: the data of the Toronto [13] and UBC [14]
experiments, and the two UCL datasets [15] which were taken at densities of 3.5 and 35.7 amagat.
The present MP Zeff(E/n0) tends to lie higher than three of the experimental datasets. However,
two of these data sets (Toronto and UBC) should be given less weight since they do not reproduce
the accepted value for the zero-field Zeff,T . The 3.5 amagat data from the UCL experiment has
large error bars since the free positron annihilation signal was barely resolvable from the signal due
to pick-off annihilation and ortho-Ps decay [15]. The most reliable experimental dataset would be
the 35.7 amagat set from the UCL experiment.

The two previous transport calculations of Zeff(E/n0) [12,16] both use roughly the same zeff(k)
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Figure 5.9: The steady-state Zeff and mean energy ϵ, for positrons thermalizing in helium at
T0 = 293 K under the action of a reduced electric field E/n0 using the new cross section set.

and both calculations give Zeff(E/n0) < 3.3 for E/n0 > 5 V/(cm amagat). The present MP
calculations have Zeff(E/n0) ≈ 3.5 for E/n0 > 5 V/(cm amagat). The present MP calculations
have a larger Zeff(E/n0) simply because the MP zeff(k) is larger than the CH zeff(k) for the relevant
values of k.

The most significant comparison in Figure 5.8 is between the present transport calculation with
the MP cross sections and the 35.7 amagat data from the UCL experiment [15]. The UCL data
tend to be about 2− 3% smaller than the MP curve for E/n0 < 3 V/(cm amagat). However, this
is a low-energy region where the MP calculation should be most reliable. At these energies, the
functional dependence of zeff(k) is largely governed by effective range theory [492].

At higher electric fields, the MP Zeff(E/n0) are larger than the Toronto and UBC data, although
generally consistent when the scatter in the data is considered. The MP Zeff(E/n0) are however
slightly below the higher density experimental data of the UCL group [15]. While the higher
pressure UCL results [15] are more accurate than their lower pressure results, at 35.7 amagat,
these results may include other multiple scattering [157] and density effects [163] which have not
been included in our calculations. It is also worth noting that the discrepancy is only 2− 3%.

On the accuracy of a perturbation treatment of annihilation and the two-term ap-
proximation used in positron transport theory

If the annihilation collision frequency νann(k), or equivalently zeff(k), increases/decreases mono-
tonically with energy in the region sampled by the distribution function, there exists a preferential
loss of positrons within the higher/lower energy part of the distribution. The annihilation cross
section is usually many orders of magnitude smaller than the momentum-transfer cross section and
so it is often assumed that annihilation can be treated as a perturbation. The loss of flux due to
annihilation is typically omitted during the calculation of the distribution function (i.e. neglect the
explicit νann in the Boltzmann equation).

Chapter 5. Low-energy electron and positron transport in atomic gases 96



Boyle, Gregory The modelling of lepton transport in gases/liquids

Calculations of positron transport in helium have also been done with the flux loss due to
annihilation excluded in the calculation of the distribution function (i.e., setting J loss ≈ 0), which
are compared with the non-perturbative treatment. At zero field, this non-perturbative treatment
will cause the distribution function to deviate slightly from the expected Maxwellian distribution
(at the helium temperature) and therefore result in a small change in the Zeff,T . For helium, the
differences between the actual temperature of the thermalized distribution and gas temperature
are less than 0.13%, resulting in a change to Zeff,T of 0.0015%.

The perturbative and non-perturbative treatments can also be compared for the steady-state
diffusion of positrons in an electric field. Figure 5.9 shows the thermalized Zeff and ϵ for positrons
diffusing in electric fields. The differences between the perturbative and non-perturbative treat-
ments are less than 4% for the mean energy and 0.14% for Zeff over the range E/n0 ∈ [0, 20] V/(cm
amagat). These differences are essentially not visible in Figure 5.9.

The validity of the two-term approximation used in earlier transport calculations [12, 16] has
been checked with an investigation of the impact of the computational parameter lmax in the
Legendre polynomial expansion in equation (2.4). This parameter accounts for the anisotropic
nature of the velocity distribution function, and also enables greater account for the anisotropy
in the differential cross sections to be included. The parameter lmax is incremented until some
convergence criteria is met, generally on the macroscopic parameters such as Zeff. It was found
that the two-term approximation was sufficient to guarantee accuracy to within 0.01% or better
for all transport properties over the range of reduced fields considered. This is expected since
low-energy positron helium elastic scattering is dominated by the s-wave. Consequently, collisional
processes result in large momentum exchanges with small energy exchanges and the quasi-isotropy
of the velocity distribution then follows.

5.3.4 Recommended low-energy elastic and annihilation cross sections

Transport theory calculations of the thermalization and annihilation of positrons diffusing in helium
have been completed. The collision cross sections for helium were calculated from model potential
values that were tuned to the best available calculations and experiments. These values are given
in Table 5.7. The present calculations of the positron diffusion are largely compatible with the
available experimental information. Lack of detailed knowledge in the energy distributions of the
positrons at the start of the simulation does mean that some uncertainty must be attached to any
conclusions. The present transport calculations, however, provide a greater degree of consistency
with experiment than earlier calculations [16, 494]. The closer agreement with the experimental
data has largely arisen from a more complete description of the positron-helium annihilation cross
section. The use of a two-term distribution function and a perturbative treatment of positron
annihilation used in previous studies are found to have a very small effect on the transient and
steady-state behaviour of the positron cloud.
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6
Positron impact ionization in gases

This chapter contains material that has been published in the following journal article:
[7] G. J. Boyle, W. J. Tattersall, D. G. Cocks, S. Dujko and R. D. White. Kinetic theory of

positron-impact ionization in gases. Physical Review A, 91, 052710 (2015).
doi:10.1103/PhysRevA.91.052710.

This chapter includes Monte Carlo simulation results performed by W. J. Tattersall. The
transport property calculations and analysis were performed by me. All other work described in
this chapter is my own.

6.1 Introduction
One of the major focuses of this work is eventual applications to PET [495]. To optimize PET
technologies and quantify the associated radiation damage requires a thorough understanding of
the processes by which an energetic positron (and the secondary species) thermalize. It has been
shown recently by Sanche [496–499] that the secondary electrons created via ionization can cause
significant DNA damage. The number of secondary electrons ejected along the positron track is
on the order of 104 per MeV of primary radiation produced in water [56, 57], so it is clear that
particular attention needs to be paid to the ionization process.

Although the impact from either a sufficiently energetic positron or electron can ionize a gas
molecule, the ionization process differs in a crucial way: ionization by a positron is a particle-
conserving process with respect to positrons, while ionization by an electron is non-particle-
conserving with respect to electrons [151, 257, 407, 500, 501]. The two types of ionization will be
referred to as ‘positron impact ionization’ (PII) and ‘electron impact ionization’ (EII) respectively.
In the framework of kinetic theory, Ness [342] developed a collision operator for EII, however, no
positron equivalent has yet been developed. Instead, previous investigations [1, 31, 315, 343–345]
have generally treated positron ionization as a simple excitation process, which effectively assumes
that the scattered positron receives all of the available post-ionization energy.
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In this chapter, a PII equivalent of the EII collision operator of Ness is derived. Macroscopic
transport coefficients, such as mean energy and flux drift velocity, are compared for a simple
bechmark model using both a kinetic theory approach based on the Boltzmann equation, and an
independent Monte Carlo simulation [9]. Particular attention is paid to the effect of energy-sharing
between post-ionization constituents, and the influence that different energy-partitioning models
have on transport. A basic energy-partitioning model that captures, at least qualitatively, the
basic physics of high energy and near-threshold positron ionization is proposed, which can then be
fitted to the rather limited experimental data that is available. The new kinetic theory model is
used to investigate the transport of positrons in dilute H2 gas using a recently-compiled, complete
set of cross sections [156], and the proposed energy-partitioning model fit to the experimental data
of Kover and Laricchia [17].

6.2 Positron impact ionization collision operator
Ionization by electron impact is fundamentally different from ionization by positron impact. Since
the ejected electron is the same species as the impacting particle, EII is a non-particle-conserving
process. The indistinguishability of electrons leads to a gain in the number of electrons in the
swarm. Since the scattered positron can be distinguished from the ejected electron, PII is a particle-
conserving-process. A different collision operator needs to be used for each case. In previous
studies, PII was treated as a simple excitation process, which ignores the possible exchanges of
energy between the scattered positron and ejected electron.

6.2.1 Derivation

The case of EII has been treated by Ness [342], and we follow this work closely to derive the PII
collision operator. For simplicity, we consider one ionization process with a neutral in the ground
state, but the generalization is straightforward. To derive the collision operator we will consider
the scattering of positrons into and out of an element of phase-space, drdv.

Let us consider a beam of positrons incident upon the background neutrals which are at rest.
The flux of incident positrons, I, in drdv is

I = vf (r,v, t)dv. (6.1)

If σion(v) is the total ionization cross section for an incoming positron of speed v, then the number
of ionization collisions in drdv per unit time per neutral is,

Iσion(v) = vf(r,v, t)σion (v) dv, (6.2)

and hence the total rate of positrons scattered out of the element drdv for n0 neutral particles due
to ionization is

J ion
out(f)drdv = n0vσ

ion(v)f(r,v, t)drdv. (6.3)

In EII, either the primary or ejected electrons (which are indistinguishable) from an ioniza-
tion event somewhere else in phase-space may be scattered into the element drdv. Since one can
distinguish between electrons and positrons, the PII equivalent is simpler. Let us consider a new
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element of phase-space with the same configuration space location but new velocity space location,
i.e., drdv′. Similar to (6.3), the total number of PII in drdv′ per unit time is

n0v
′σion(v′)f(r,v′, t)drdv′. (6.4)

The momentum post-ionization is shared between the scattered positron and the ejected electron.
We define a quantity B(v,v′), such that B(v,v′)dv is the probability of the positron having a
velocity between v and v + dv after ionization, given that the incident positron has velocity v′.
Assuming the neutral particle remains a bystander at rest during the process (to zeroth order in
the mass ratio, m/m0), then by conservation of momentum,

v′ = v + �v, (6.5)

where �v is the velocity of the ejected electron. It follows from equation (6.4) and the definition of
B(v,v′) that the number of positrons that enter drdv per unit time due to an ionization event in
drdv′ is

n0v
′σion(v′)f(r,v′, t)B(v,v′)dvdrdv′. (6.6)

Integrating over all possible incident velocities thus yields the total rate of positrons scattered into
drdv due to PII, i.e.,

J ion
into(f)drdv = n0drdv

ˆ
v′σion(v′)f(r,v′, t)B(v,v′)dv′. (6.7)

The total PII collision operator is then the difference in the rates of positrons scattered into
and out of the element drdv, i.e., J ion = J ion

out − J ion
into,

J ion(f) = n0vσ
ion(v)f(r,v, t)− n0

ˆ
v′σion(v′)B(v,v′)f(r,v′, t)dv′. (6.8)

If we assume central forces, then the scattering cross section and partition function are dependent
only on the magnitudes of the pre- and post-collision velocities, and the angle between them, i.e.,
v, v′ and v̂ · v̂′. We may then further define a differential scattering cross section for ionization,
σion (v, v′; v̂ · v̂′), such that σion (v, v′; v̂ · v̂′) dv is the number of positrons scattered into the range
dv about v due to incident electrons of velocity v′ divided by incident flux,

σion (v, v′; v̂ · v̂′) dv = σion (v′)B (v, v′; v̂ · v̂′)dv. (6.9)

The partition function satisfies a normalization condition so that

σion(v′) =

ˆ
σion (v, v′; v̂ · v̂′)dv. (6.10)

Substituting equation (6.9) into equation (6.8) gives the PII collision operator

J ion(f) = n0vσ
ion(v)f(v)− n0

ˆ
v′σion (v, v′; v̂ · v̂′) f(v′)dv′. (6.11)
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This operator is particle-number-conserving, i.e.
ˆ

J ion(f)dv =

ˆ
n0vσ

ion(v)f(v)dv− n0

¨
v′σion (v, v′; v̂ · v̂′) f(v′)dv′dv,

= n0

ˆ
vσion(v)f(v)dv− n0

ˆ
v′f(v′)dv′

ˆ
σion (v, v′; v̂ · v̂′)dv,

= n0

ˆ
vσion(v)f(v)dv− n0

ˆ
v′σion(v′)f(v′)dv′,

= 0, (6.12)

as required.

6.2.2 Legendre decomposition

For central scattering forces the partition function can be decomposed in terms of Legendre poly-
nomials, i.e.,

Bl(v, v
′) = 2π

ˆ 1

−1

B(v,v′)Pl (µ) dµ, (6.13)

where µ = v̂ · v̂′. For isotropic scattering, Bl(v, v
′) = 0 for l ≥ 1. Multiplying equation (6.8) by

Pl (cosχ), and integrating over all angles leads to

J ion
l (fl) = n0vσ

ion(v)fl(v)−

n0

´∞
0

v′σion (v′)B0(v, v
′)f0(v

′)v′2dv′, l = 0,

0, l ≥ 1.
(6.14)

We now seek to represent equation (6.14) in terms of energy rather than speed, i.e., U = 1
2mv2.

The probability of a positron having a speed in the range v + dv after ionization, for an incident
positron of speed v′ is

v2dv
ˆ

B (v, v′; v̂ · v̂′)dv̂ = B (v, v′) v2dv,

≡ P (U,U ′)dU, (6.15)

where U and U ′ are the post- and pre-collision positron energies respectively, and now the right-
hand-side term of equation (6.15) represents the probability of a positron having an energy in the
range U + dU after ionization for an incident positron of U ′. The energy partitioning function,
P (U,U ′), has the following properties:

P (U,U ′) = 0 U ′ < U + UI, (6.16)
ˆ U ′−UI

0

P (U,U ′)dU = 1 U ′ ≥ U + UI. (6.17)

Finally, we can represent equation (6.14) in terms of energy and the energy-partition function,
P (U,U ′),

J ion
l (fl) = νion(U)fl(U)−

 U− 1
2

´∞
0

dU ′ U ′ 12 νion (U ′)P (U,U ′)f0(U
′) ,

0,

l = 0 ,

l ≥ 1 .
(6.18)
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6.2.3 Modified Frost-Phelps operator

If the scattered positron leaves the collision with an exact fraction, Q, of the available energy,
U ′ − UI, where UI is the threshold energy, then the energy-partition function has the form,

P (U,U ′) = δ (U −Q(U ′ − UI)) ,

=
1

Q
δ

(
U ′ −

(
U

Q
+ UI

))
, (6.19)

and the integral in equation (6.18) reduces to,

J ion
l (fl) = νion(U)fl(U)−

 1
Q

(U
Q+UI)

1
2

U
1
2

νion
(

U
Q + UI

)
f0

(
U
Q + UI

)
,

0,

l = 0,

l ≥ 1,
(6.20)

where νion(U) = n0

√
2U
m σion(U) is the ionization collision frequency. Equation (6.20) can be

considered a ‘modified Frost-Phelps’ operator. A similar result for EII was given in [292]. In the
case where the positron gets all of the available energy, i.e., Q = 1, equation (6.20) reduces to the
standard Frost-Phelps operator as required. Clearly, equation (6.20) breaks down when Q = 0.

6.3 Positron ionization benchmarking
We first discuss several benchmark models which can act as a test bed for our numerical techniques
and solution model. An independent Monte Carlo simulator [9] has been used to compare with the
Boltzmann equation solver results. The Lucas-Saelee [42] model is a popular benchmark for EII,
but focuses on the differences between excitation and ionization rather than energy-partitioning
specifically. Taniguchi et al. [41] modified the partition function of the Lucas-Saelee model, which
assumes a distribution with all energy-sharing fractions equiprobable, to instead share energy
equally between the two electrons, but found that it did not alter the transport coefficients signi-
ficantly. Instead, Ness and Robson [34] proposed a step model for testing energy-sharing for EII,
which was shown to have some variation for the partitionings they investigated. The details of the
model are:

σm = 10 Å2
,

σexc =

 1 Å2,

0,

U ≥ 10 eV,

U < 10 eV,

σion =

 1 Å2
,

0,

U ≥ 15 eV,

U < 15 eV,

m0 = 25 amu,

T0 = 0 K. (6.21)

Transport coefficients for EII calculated using kinetic theory were compared against the results of
Ness and Robson, and the Monte Carlo simulations in Table 4.9 of Chapter 4. The results support
the integrity of our methods and solutions. Transport coefficients for PII under this model are
given in Table 6.1 for varying energy sharing fractions, Q, where Q = U

U ′−UI
. As described in

Subsection 6.2.3, the collision operator (6.20) breaks down when Q = 0, hence there is no value
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given in Table 6.1 corresponding to the kinetic model for positrons with Q = 0. No previous
positron impact calculations exist for model (6.21), so the transport properties from our kinetic
theory model are compared solely against an independent Monte Carlo simulation in Table 6.1.
The uncertainty in the Monte Carlo simulations has been estimated to be less than 1% for the
ionization collision rates, and less than 0.5% (generally less than 0.3%) for the drift velocity and
mean energy. The two approaches give αion/n0, ϵ and W values which differ by less than 0.6%,
0.3% and 0.3% respectively, over the range of reduced electric fields and available energy fractions,
all of which are within the corresponding Monte Carlo uncertainty. As the reduced field, E/n0,
is increased, the velocity distribution function samples more of the ionization process leading to a
greater ionization rate and a stronger dependence of the transport coefficients on the post-collision
energy partitioning.

Table 6.1: Comparison of average ionization rates, αion/n0, mean energies, ϵ, and flux drift velo-
cities, W , for PII for model (6.21) for different reduced fields E/n0 and energy sharing fractions Q.
Columns ‘Current’ correspond to the current kinetic theory calculations, and columns ‘MC’ are the
results of the Monte Carlo simulation. Note, Q = AFE corresponds to ‘all fractions equiprobable’.

E/n0 αion/n0 ϵ W
[Td] Q [10−15m3s−1] [eV] [105ms−1]

Current MC Current MC Current MC
300 0 1.711 6.869 2.767

1/4 1.720 1.718 6.919 6.931 2.722 2.730
1/3 1.725 1.719 6.940 6.942 2.711 2.706
1/2 1.740 1.739 6.983 6.979 2.693 2.689
2/3 1.757 1.761 7.021 7.023 2.677 2.676
3/4 1.767 1.774 7.041 7.040 2.671 2.664
1 1.807 1.804 7.098 7.087 2.654 2.648
AFE 1.745 1.739 6.979 6.981 2.699 2.701

500 0 4.856 9.210 3.951
1/4 4.915 4.917 9.379 9.375 3.819 3.822
1/3 4.955 4.949 9.446 9.450 3.789 3.780
1/2 5.060 5.055 9.579 9.588 3.738 3.739
2/3 5.211 5.208 9.716 9.714 3.697 3.697
3/4 5.288 5.293 9.788 9.789 3.678 3.678
1 5.565 5.599 10.03 10.05 3.627 3.628
AFE 5.119 5.107 9.589 9.577 3.754 3.755

800 0 9.903 13.30 5.260
1/4 10.21 10.23 13.75 13.76 4.986 4.992
1/3 10.39 10.40 13.93 13.93 4.922 4.925
1/2 10.84 10.83 14.32 14.33 4.816 4.818
2/3 11.40 11.41 14.79 14.81 4.719 4.725
3/4 11.68 11.70 15.07 15.09 4.672 4.678
1 12.92 12.95 16.27 16.31 4.518 4.527
AFE 10.92 10.94 14.38 14.36 4.850 4.857

The convergence of transport coefficients for 1000 Td with increasing lmax is shown in Table
6.2. Since an even-order approximation is required for the appropriate boundary conditions, the
lmax are odd in our calculations. Clearly the two-term approximation (lmax = 1) leads to an over-
estimation of the ionization rate, mean energy and flux drift velocity by approximately 2%. Indeed
six terms are required to achieve convergence to four significant figures.

The variation of mean energy with Q for PII at a reduced electric field of 800 Td is shown
in Figure 6.1. For PII, the mean energy of the positron swarm increases monotonically with the
energy-sharing fraction, Q. This behaviour is to be expected, as the ejected electron directly
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Table 6.2: Convergence of transport properties with lmax for PII model (6.21) at 1000 Td and
Q = 1/2.

αion/n0 ϵ W
lmax [10−15m3s−1] [eV] [105ms−1]
1 12.77 18.23 5.460
3 12.47 17.96 5.350
5 12.48 17.95 5.349
7 12.48 17.95 5.349

removes energy from the positron swarm. The ionization collision frequency increases with energy
in model (6.21), so that the greater the energy of the swarm, the higher the rate of ionization
collisions. Hence αion/n0 also increases monotonically with Q. The flux drift velocity, W in
contrast, decreases with increasing Q. The effect of collisions is to randomize the directions of the
swarm particles, such that an increase in the ionization rate decreases the average velocity of the
swarm. The transport properties for the ‘all fractions equiprobable’ (AFE) distribution are very
similar to that of the equal-energy sharing case.

The variation of mean energy with Q for EII at 800 Td is shown in Figure 6.2. The mean energy
profile is symmetrical about Q = 0.5 due to the indistinguishability of post-collision electrons, and
for 800 Td has a concave shape with a minimum value corresponding to equal energy-sharing.
It should be noted that, in contrast to PII where the mean energy always increases with Q, the
exact nature of the EII mean energy profile depends on how the distribution function samples the
elastic, inelastic and ionization cross sections. The variation in the transport properties for EII
with respect to Q for the fields considered is small, suggesting that EII is relatively insensitive
to the exact nature of the energy-partitioning for the model (6.21). Ness and Makabe [502] have
shown that for EII in argon the choice of energy-sharing fraction can in fact cause differences of
∼ 25%, so that care must still be taken when choosing the energy-partitioning function.

The qualitative shape of the Q-dependence of the mean energy for PII is insensitive to the
reduced electric field, and the range of values for a particular reduced field is considerably larger
than that for EII. In previous positron studies [257,259,315,407], PII has been treated as a standard
excitation process. The current results suggest that PII is particularly sensitive to the form of the
energy-partitioning and, if real-world PII differs significantly from the model of pure scattering
with excitation, large errors can result. To comment on this, we need to develop a realistic model
of PII energy-partitioning.
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Figure 6.1: Variation of mean energy, ϵ, with energy sharing fraction, Q, for PII model (6.21) at
a reduced field of 800 Td.
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Figure 6.2: Variation of mean energy, ϵ, with energy sharing fraction, Q, for EII model (6.21) at
a reduced field of 800 Td.

6.4 Positron ionization energy-partitioning model
We now wish to develop a model for post-ionization energy-partitioning that captures the following
basic physical behaviours:

1. For high impact energies, the positron ionization scattering cross section approaches the
electron ionization scattering cross section. The first Born approximation [503] is valid for
high impact energies and shows a heavy bias towards the case where the scattered positron
leaves the collision with almost all of the energy which is available post-collision.

2. For impact energies near the ionization threshold, there is significant correlation between the
scattered positron and ejected electron. In the Wannier theory [243], originally developed
for near-threshold EII, the repulsion between the two electrons causes them to emerge with
similar energies but in opposite directions. In terms of the interaction potential between
the two electrons, one may talk about a Wannier ‘ridge’ upon which the system is in an
unstable equilibrium. Klar [504] was the first to adapt Wannier’s classical idea to PII. As
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in Wannier’s theory, the energy is predicted to be shared equally, however now the positron
and electron emerge in similar directions due to the Coulomb attraction. Ashley et al. [505]
measured the positron ionization cross section in helium which they were able to accurately
represent by a power law, albeit different to that derived by Klar. Ihra et al. [506] extended
the Wannier theory to be consistent with both Klar and experiment. The success of these
power law models justifies the assumption of equal energy-sharing at near-threshold impact
energies, although recent experiments [507] suggest a slight asymmetry. It should be noted
that the positron and electron escape in similar directions with similar energies and are highly
correlated, so no clear distinction between ionization and continuum state positronium can
be made [101].

3. Ionization at intermediate energies appears to be a combination of the above two effects, i.e. a
strong peak in the energy-sharing distribution corresponding to the scattered positron leaving
with all the available energy, and a second peak occurring when the positron and electron
emerge with similar energy and direction and in a highly correlated state. This feature
has been shown in the studies of atomic hydrogen by Brauner et al. [508] and measured
experimentally in H2 by Laricchia and co-workers [17, 507].

To capture simply the above three characteristics we propose a model consisting of an exponen-
tially decaying function, ghigh(Q), to represent the high impact energy ionization, and a rational
polynomial (sometimes called the Cauchy or Lorentz distribution), glow(Q), centred around equal
energy-sharing to represent the near-threshold ionization i.e.,

ghigh(Q) = Ahigh exp(βhighQ), (6.22)

glow(Q) = Alow

[
β2

low + (Q− 0.5)
2
]−1

, (6.23)

where Q is the fraction of the available energy, Ahigh and Alow are normalization constants, and
βhigh and βlow are free parameters to be fitted. An energy-fraction-partitioning function which
depends only on the impact energy and Q can then be constructed as

g(U ′, Q) = w(U ′)ghigh(Q) + (1− w(U ′)) glow(Q), (6.24)

where w(U ′) is chosen as a hyperbolic tangent function to transition smoothly between ghigh and
glow, i.e.,

w(U ′) =
1

2

[
1 + tanh

(
γ
U ′ − UI

q
− δ

)]
, (6.25)

where q is the elementary charge, and γ and δ are free parameters that control where and how sharp
the transition is. The relationship between the energy-fraction-partitioning function, g(U ′, Q), and
the energy-partitioning function, P (U,U ′), used in equation (6.18) is given simply by

g(U ′, Q)Q = P (U,U ′)U. (6.26)

In the following subsections we shall investigate a test model with reasonable values for the free
parameters which can serve as a future benchmark model, and then fit the energy-partitioning
model to real experimental H2 data.
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6.4.1 Test model

In this subsection we investigate the effect that the energy-partitioning model (6.22)–(6.25) has on
positron transport for a range of reduced electric field strengths. The parameters for the energy-
partitioning function are

βhigh = 10,

βlow = 0.05,

γ = 0.05,

δ = 3.5, (6.27)

with the same cross sections, neutral temperature and mass as the model (6.21). The energy-
partition function for model (6.27) is displayed in Figure 6.3.

Figure 6.3: Variation of the energy-fraction-partition function with impact energy, relative to the
ionization threshold, and energy sharing fraction, Q, for parameters. (6.27)

Transport properties calculated via kinetic theory and Monte Carlo are shown in Table 6.3. The
kinetic theory and Monte Carlo results agree to within 0.4%. Also included in the table for 800 Td
and 5000 Td are the swarm properties assuming the energy-partitioning was replaced by only glow

or ghigh respectively. At 800 Td, the swarm properties for the full energy-partitioning model are
close to that which results from the inclusion of only glow, which indicates that the distribution
is generally sampling the even energy-sharing part of the full energy-partitioning distribution. At
the higher field of 4000 Td the swarm properties are now close to those that come from allowing
only ghigh to have an effect. As the field has increased, the distribution has shifted from sampling
mostly the even sharing region, to the region that is heavily biased towards the positron getting
large amounts of available energy.

6.4.2 Model for positron impact ionization in H2

Laricchia and co-workers [17,507] have measured experimentally the energy-sharing of post-ionization
species for PII for a specific impact energy and angle. Their results for ionization by a 1000-eV
positron, where both the positron and electron emerge at the same angle of 0°, are included in
Figure 6.4. It is evident that there is a bias towards the positron getting all or large amounts of
the available energy, with a secondary peak close to equal energy-sharing due to electron-positron
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Table 6.3: Comparison of average ionization rate, αion/n0, mean energies, ϵ, and flux drift velocities,
W , for PII for model (6.27). The superscripts a and b refer to w(U) = 0 and w(U) = 1 respectively.
Columns ‘Current’ correspond to the current kinetic theory calculations, and columns ‘MC’ are
the results of Monte Carlo simulation.

E/n0 αion/n0 ϵ W
[Td] [10−15m3s−1] [eV] [105ms−1]

Current MC Current MC Current MC
800 10.92 10.90 14.40 14.37 4.810 4.814
800a 10.86 10.85 14.35 14.32 4.816 4.820
800b 12.48 12.37 15.82 15.70 4.555 4.585
1600 26.29 26.26 34.12 34.04 6.331 6.348
2400 40.97 40.88 65.56 65.42 6.910 6.932
3200 53.97 53.85 104.1 103.9 7.201 7.229
4000 64.95 64.90 144.8 145.0 7.491 7.517
4000a 49.18 49.11 86.49 86.52 9.509 9.527
4000b 66.96 66.64 149.5 149.2 7.150 7.178

correlation effects. Our model predicts that this peak should occur at exactly Q = 0.5, but exper-
iments show that there is a slight energy-sharing asymmetry in positron ionization, such that the
peak actually occurs at Q > 0.5 [507]. A more sophisticated energy-partitioning model will need
to take this effect into account. We have performed a non-linear least squares calculation to fit the
free parameters of model (6.22)–(6.25) to the experimental data, which were determined to be,

βhigh = 5.88,

βlow = 0.0468,

γ = 0.0584,

δ = 3.45. (6.28)

The fitted profile is shown in Figure 6.4 and qualitatively reproduces the main features of the
experiment. It should be noted that at the 0 degree scattering angle the secondary peak is partic-
ularly dominant, and if one were to average the triple differential cross section over all angles, a
similar form with a reduced secondary peak would result. Due to the lack of experimental data at
a variety of angles, we will assume that the angle-integrated cross section has the exact same shape
as the 0◦ angle cross section for the purpose of this work, which will have the effect of exaggerating
the equal energy-sharing part of the full energy-sharing distribution. The parameters in equation
(6.28) have been chosen to ensure a smooth transition between glow and ghigh while ensuring that
the relative weights give the fit to experiment for an impact energy of 100 eV. The full, three
dimensional energy-sharing distribution is qualitatively similar to Figure 6.3.

6.5 Positrons in H2

In the previous subsection, a model for the post-ionization energy-sharing for PII from H2 was
proposed. In this section, the effect of the energy sharing on transport properties is investigated
for PII in rarefied H2. The set of H2 cross sections employed are those compiled in [156, 345] and
using an elastic cross section1 calculated with a convergent-close-coupling formalism [509] up to
1000 eV, extrapolating where necessary. It is clear that the ionization process, which turns on at
15.4 eV, is particularly important, and dominates at energies above 50 eV .

1M. Zammit in private communication

Chapter 6. Positron impact ionization in gases 108



Boyle, Gregory The modelling of lepton transport in gases/liquids

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

10
1

 Q

C
ro

ss
 s

ec
tio

n 
(a

.u
.)

 

 

Model fit
Ref. [28]

Figure 6.4: Differential PII cross section for an impact energy of 100 eV, as a function of the energy
sharing fraction, Q. KL 1998 is the experimental data of Kover and Laricchia [17] for the triply
differential cross section for an impact energy of 100 eV and ejection angle of 0◦. The model fit
has been calculated with the parameters (6.28) and by assuming that the triply differential cross
section is the same at all ejection angles.
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Figure 6.5: Cross section set for positron scattering in H2. References are given in text.

In order to assess the importance of energy-partitioning on ionization we investigated the time-
dependence of the mean energy for a source of positrons in H2 gas at 293 K as they relax to
thermal equilibrium in the absence of an electric field. In positron experiments [101], unmoderated
positrons have a peak in their emission energy spectrum of around half a MeV, which then lose
energy rapidly via collisions. There is little information about the initial source distribution in
thermalization experiments [12]. For our purposes, we wish to probe the influence of PII collisions,
and accordingly choose an initial distribution with a mean energy far above the ionization threshold
so that a large range of the ionization cross section can be sampled during relaxation. The source
distribution is chosen to be uniform in velocity space up to the 1000 eV cutoff, which is equivalent
to an initial mean energy of 600 eV as discussed in Section 2.5.1. The thermalization profiles for the
energy-partitioning model (6.28), and using the PII collision operator with Q = 0.5 (equal energy-
sharing), and Q = 1 (standard excitation form) are shown in Figure 6.6. There are two distinct
regions of rapid relaxation: one due to ionization at high energies; and one due to the vibrational
modes at lower energies. The first occurs on time scales of between 0.1 and 2 ns amagat, while the
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second at about 5 ns amagat, which shows that the relaxation due to inelastic collisions is very
rapid. While in the ionization-dominated region, the three profiles show significant differences in
mean energy of up to an order of magnitude. The profile corresponding to Q = 1.0 has the highest
mean energy since the positron loses the least amount of energy during an ionization collision in
that limit. It takes significantly longer to relax until the positron energies fall below the ionization
region, and thus they will experience more ionization collisions. The Q = 0.5 profile shows the
lowest mean energy since the ejected electron removes large amounts of energy from the swarm,
and exits the ionization region quickest. The ‘real’ H2 model profile sits between the even energy-
sharing and standard excitation profiles as expected, since it is essentially a mixture of the two. At
lower energies, once ionization collisions become insignificant, all three energy partitioning profiles
coalesce, resulting in essentially the same total thermalization times.

Although the total thermalization time is essentially insensitive to the form of the ionization
energy-partitioning, the large differences in mean energies in the ionization-dominated region can
have other important effects. In a space-dependent situation, the higher mean energies can allow
the positron to travel larger distances during thermalization. This is important to PET simulations
since the resolution of PET images is dependent on the distances traveled between positron emission
and annihilation [495]. Similarly, the higher the mean energy, the longer the positron swarm can
significantly sample the ionization cross section, and hence the more secondary electrons that are
created via PII. It is the secondary electrons created in the human body during PET scans that can
cause DNA damage [496–499]. Furthermore, the exact energy profile of the secondary electrons
will be dependent on the form of the PII energy-partitioning.
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Figure 6.6: Mean energy temporal relaxation of a positron swarm in H2 at 293 K. The initial
source distribution is uniform in speed space up to 1000 eV. The H2 model ionization parameters
are given in equation (6.28) and are compared with constant energy sharing fractions of Q = 0.5
and Q = 1.0.
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6.6 Conclusion
Ionization by positron impact is a fundamentally different process than ionization by electron
impact. Applications such as PET demand increasingly accurate models for positron transport,
so it is important to be able to describe the ionization process in detail. To this end, a kinetic
theory model with a general PII collision operator has been developed for the first time. The key
feature of the ionization collision operator is the energy-partition function, which controls how the
available energy is shared between the post-collision constituents.

The kinetic theory results were compared against a Monte Carlo simulation for a simple test
model (6.21), which may serve as a new benchmark for PII. The transport properties calculated
differed between the two approaches by less than 0.6% over a range of reduced electric fields and
available energy fractions, which is within their respective uncertainties. The sensitivity of the
transport properties to the energy-sharing fraction Q for PII was shown to be significant, and
much greater than that of EII. Thus large errors can result in real-world applications if PII is not
treated carefully.

A simple energy-partition function was developed to capture qualitatively the underlying phys-
ics of PII. At high impact energies, the scattered positron leaves the collision with almost all of the
available energy, while at near-threshold impact energies the Wannier theory [243] suggests that
both the scattered positron and ejected electron share approximately half of the available energy.
In reality, there is a slight energy-sharing asymmetry in near-threshold positron ionization [507]
and a more sophisticated energy-partitioning model will need to take this asymmetry into account.
The model parameters were fit to the experimental results of Kover and Laricchia [17] for positrons
in H2 with good qualitative agreement.

Using the newly constructed H2 energy-partitioning function, we investigated the temporal
relaxation of a positron swarm from a high energy source (600 eV) to thermalization at room
temperature, and compared the equal-energy sharing model with the common approach of treat-
ing the PII as a standard excitation process. In the ionization-dominated region there can be
more than an order of magnitude difference in the mean energy profiles, and hence the choice of
energy-partition function has a significant effect on the number of ionization collisions and the en-
ergy distribution of the secondary electrons created, which is particularly important for radiation
damage modelling [498].
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7
Electron scattering and transport in

atomic liquids

This chapter contains material that has been published in the following journal article:
[8] G. J. Boyle, R. P. McEachran, D. G. Cocks and R. D. White. Electron scattering and trans-

port in liquid argon. The Journal of Chemical Physics, 142, 154507 (2015). doi:10.1063/1.4917258.
This chapter includes scattering cross section theory and calculations for the electron-argon

system (in particular, Section 7.2.1) performed by R. P. McEachran. All other work described in
this chapter is my own.

The coherent scattering modifications discussed in this chapter have been benchmarked for the
Percus-Yevick model in Section 4.6.

7.1 Introduction
The study of electron transport in non-polar liquids is of fundamental interest for understanding
the dynamics of electronic processes in liquids and disordered systems, including dynamic and
scattering processes. More recently, attention has focussed on applications including liquid state
electronics, driven by use in high-energy particle detectors such as the liquid argon time projection
chamber (LArTPC). Advances in the fields of plasma discharges in liquids and associated electrical
breakdowns (see e.g. the review of Bruggmen [510]) are dependent on a fundamental knowledge of
charged particle transport in liquids. Furthermore, the rapidly developing interdisciplinary field of
plasma medicine [64–67] requires a detailed knowledge of electron transport through liquid water
and other biostructures, typically under non-equilibrium conditions.

The study of excess electrons in dense gases and fluids is a complex problem, requiring the
inclusion of many effects that are not present in dilute gaseous systems. The major contributions to
these effects arise from the small interparticle spacings and their highly correlated separations. For
thermal energies, the de Broglie wavelengths of the excess electrons are often orders of magnitude
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larger than the interatomic spacing, which leads to significant quantum-like effects. Even within
a semi-classical picture, where the excess electrons are assumed to act as point-like particles, no
particular volume is ‘owned’ by a single atom. This means the typical picture for transport in
a gas, i.e. a series of individual collision events separated by the mean-free path, is no longer
valid, making it important to consider multiple scattering effects of the electron from many atoms
simultaneously. Of particular note is the effect of ‘coherent scattering’ and the pair correlations of
the liquid, which play very important roles.

Many previous calculations for electrons in dense systems have neglected these liquid effects for
simplicity, modelling dense fluids by applying a theory for dilute gases with only an appropriate
increase of the density. However, a few alternative theories exist that have explored liquids in
different ways. Borghesani et al. [307] have heuristically combined the liquid effects identified above
to obtain an effective cross section. When used in the standard equations from kinetic theory for
mobility in a non-zero field, their results have been shown to be remarkably accurate. Braglia and
Dallacasa [308] have derived a theory that addresses both enhancements and reductions to the
zero-field mobility through a Green’s function approach with appropriate approximations to the
self-energy but do not go beyond linear response theory and hence do not explain non-equilibrium
behaviour at high fields.

In contrast to the above approaches, the seminal articles by Lekner and Cohen [2, 3] outline a
method to address effects of a dense fluid from an ab initio approach by appropriate modifications
of the microscopic processes. The article by Lekner [2] describes how an effective potential for a
single collision event can be built up from knowledge of only the single-atom/electron potential and
the pair correlator of the fluid as well as prescribing a method for obtaining effective cross sections
from this potential. The article by Cohen and Lekner [3] then describes how the effects of coherent
scattering can be included with these effective cross sections in a Boltzmann equation solution for
the calculation of transport properties. Sakai et al. [157] have been able to improve agreement with
experiment by empirically modifying the resultant cross sections of the Cohen and Lekner formalism
and by including inelastic processes. Atrazhev et al. [309] were able to simplify the arguments of
Lekner [2] to argue that, for small energies, the effective cross section becomes dependent on the
density only and obtained good agreement with experiment. However the distance at which to
enforce this new behaviour of the effective cross section remains a free parameter in the theory
and this constant effective cross section must be found empirically. Atrazhev and co-workers
went on to consider the interaction as a muffin tin potential, with each cell being a Wigner-Seitz
sphere surrounding each atom in the liquid. They used a variable phase function method which
could describe the absence of a Ramsauer minimum in the liquid cross section along with density
fluctuations of the liquid [310–312].

The calculations presented here are based on a generalization of the Cohen and Lekner formal-
ism, overcoming several approximations which are no longer necessary in modern day transport and
scattering theory. With regard to the scattering potential, Lekner [2] used the Buckingham poten-
tial [511] as input, which we will show is completely inadequate due to its omission of the exchange
interaction. This is not noticeable for gas phase measurements, due to the fitting parameter of the
Buckingham potential, but shows significant differences after the liquid modifications are applied.
By performing a detailed analysis of the partial phase shifts, Atrazhev and co-workers [311] were
able to isolate the important properties of the potential which are required for accurate determina-
tion of the transport properties. Our calculations instead avoid these difficulties by using accurate
forms for the electron-atom interaction.

With regard to the transport theory itself, we employ a previously derived extension of the
Cohen and Lekner formalism for the Boltzmann equation from a two-term to a full multiterm
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treatment of the velocity distribution function [1]. This theory utlises the full anisotropic detail of
the cross sections that is available in our calculations. For dilute gaseous systems, the two-term
approximation can be in serious error [512], and in this chapter we consider contributions to the
error arising from the neglect of the full anisotropy in both the velocity distribution function and
the differential scattering cross section for liquid systems.

In Section 7.2, calculations are performed specifically for the noble gas of argon, which is an
excellent test bed for new theories due to the good availability of experimental data and the
high degree of accuracy to which ab initio calculations can model the gaseous phase. Available
experimental data include drift velocities and characteristic energies in both the gas and liquid
phases, as well as precise single-atom cross sections. It is emphasized that we are interested in
the full non-equilibrium description of the transport properties and not only that of zero-field
mobilities, and so we must consider the full range of the static structure factor S(K) instead of
S(0) which is fixed by the isothermal compressibility. The calculation of the macroscopic swarm
transport properties is considered in the gaseous and liquid environments from the microscopic
cross sections, modified by the screening and coherent scattering effects. The gas phase cross
sections are calculated using accurate potentials in the Dirac-Fock scattering equations, and we
demonstrate the importance of an accurate treatment of exchange and polarization.

7.2 Electron scattering and transport in liquid argon
In this section, we perform calculations for the electron-argon system. We first detail the calcula-
tion of the gas phase cross sections in Section 7.2.1, using accurate potentials in the Dirac-Fock
scattering equations and then address, in Section 7.2.2, effects of screening in the liquid. The
transition from a gas to liquid requires a modification of the scattering to include an effective scat-
tering potential and an effective non-local exchange term which we describe in Section 7.2.3. We
present the results of our transport calculations in Section 7.2.4. Initially in Section 7.2.4 we con-
sider only the gas phase, understanding the importance of an accurate treatment of exchange and
polarization and thereby establishing the credibility of the initial gas-phase potential subsequently
used as input for the calculation of cross sections for the liquid phase environment. Transport
coefficients calculated using the screened cross sections and associated coherent scattering effects
are considered in Section 7.2.4, where they are compared with the available measured transport
data. Throughout this section, we will make use of atomic units (m = e = a0 = ~ = 1) unless
otherwise specified.

7.2.1 Scattering of electrons by argon gas

The core of a transport calculation is based on an accurate description of the scattering of the
electron off a particle in the bulk. Effective interaction potentials are often used to determine vari-
ous measurable properties, such as scattering lengths or polarizabilities. These effective potentials
are successful so long as they correctly reproduce these quantities for input in other simulations.
However, as mentioned above, there are many additional effects due to a dense gas or liquid which
can modify the details of the scattering processes. Hence, a potential is required that does not only
produce the correct scattering properties in the dilute limit but also well describes the scattering
properties under a perturbation of the potential.

In the pure elastic energy region, there are only two interactions which need to be taken into
account in electron-atom collisions, namely polarization and exchange. The polarization can be ac-
counted for by means of long-range multipole polarization potentials while the exchange interaction
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is represented most accurately by a short-range non-local potential formed by antisymmetrizing
the total scattering wavefunction.

In the present work the scattering of the incident electrons, with wave number k, by argon
atoms is described in the gaseous phase by the integral formulation of the partial wave Dirac-Fock
scattering equations (see [513] for details). In matrix form, these equations can be written as(

fκ(r)

gκ(r)

)
=

(
v1(kr)

v2(kr)

)
+

1

k

ˆ r

0

dxG(r, x)

[
V (x)

(
fκ(x)

gκ(x)

)
−

(
WQ(κ;x)

WP (κ;x)

)]
, (7.1)

where the local potential V (r) is given by the sum of the static and local polarization potentials
i.e.,

V (r) = Vs(r) + Vp(r), (7.2)

and WP (κ; r) and WQ(κ; r) represent the large and small components of the exchange interaction.
In equation (7.1), fκ(r) and gκ(r) are the large and small components of the scattering wavefunction
where the quantum number κ can be expressed in terms of the total and orbital angular momentum
quantum numbers j and l according to

j = |κ| − 1

2
with l =

κ, if κ > 0,

−κ− 1, if κ < 0.
(7.3)

The free particle Green’s function G(r, x) in equation (7.1) is defined in terms of Riccati-Bessel
and Riccati-Neumann functions (see equations (23) and (24a,b) of Ref. [513]). The kinetic energy
ϵ of the incident electron and its wave number k are related by

k2 =
1

~2c2
U
(
U + 2mc2

)
. (7.4)

We note that if we ignore U with respect to 2mc2, we obtain the usual non-relativistic relationship
between the wave number and the energy of the incident electron.

The static potential V (r) in equation (7.2) is determined in the usual manner from the Dirac-
Fock orbitals of the atom [513]. The polarization potential Vp(r) was determined using the polarized
orbital method [471] and contained several static multipole terms as well as the corresponding
dynamic polarization terms [514, 515]. In total, the potential Vp(r) contained all terms up to and
including those that behave as r−14 asymptotically.

Finally, the exchange terms WP (κ; r) and WQ(κ; r) in equation (7.1) are given by

WP or Q(κ2; r) = (1 + γ)
∑
n′κ′

{
Pn′κ′(r) or Qn′κ′(r)

}
×
{
−
[
Un′κ′ + U

]
∆n′κ′ δ(κ, κ′) + e2

∑
ν

qn′κ′
1

2ν + 1
C2

(
jj′ν;−1

2

1

2

)
1

r
yν(n

′κ′, κ; r)
}
. (7.5)

Here, C
(
jj′ν;−1

2
1
2

)
is the usual Clebsch-Gordan coefficient and the sum over n′κ′ in equation

(7.5) is over the radial part of the atomic orbitals (Pn′κ′ (r) and Qn′κ′ (r)) of the ground state,
while qn′κ′ = 2j′ + 1 is the occupation number of these closed sub-shells where the Un′,κ′ are the
eigenvalues of these sub-shells. The exact form of the definite integral ∆n′κ′ and the indefinite
integral r−1yν (n

′κ′, κ; r) is given in equations (11) and (12) of [516]. We note that the dependence
of the exchange terms (7.5) on the wavefunction requires an iterative solution for equation (7.1).
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In the integral equation formulation, the scattering phase shifts can be determined from the
asymptotic form of the large component of the scattering wavefunction i.e.,

fκ(r) −→
r→∞

Aκ ĵl(kr)−Bκ n̂l(kr) , (7.6)

where

Aκ = 1− 1

k

ˆ ∞

0

dr
{
v1(kr)

[
V (r) fκ(r)−WP (κ; r)

]
+ v2(kr)

[
V (r) gκ(r)−WQ(κ; r)

]}
, (7.7)

and

Bκ = −1

k

ˆ ∞

0

dr
{
v1(kr)

[
V (r) fκ(r)−WP (κ; r)

]
+ v2(kr)

[
V (r) gκ(r)−WQ(κ; r)

]}
. (7.8)

The partial wave phase shifts are then given by

tan δ±l (k) =
Bκ

Aκ
, (7.9)

where the δ±l are the spin-up (+) and spin-down (−) phase shifts. The total elastic and momentum-
transfer cross sections are given by the same relations as in (5.3)–(5.4), which can be shown to
reduce to the non-relativistic results if we set δ+l (k) = δ−l (k) = δl(k).

As can be seen in Figure 7.1, neither the polarization nor the exchange interaction alone is
capable of reproducing the true Ramsauer minimum in the argon momentum transfer cross section;
it is only when we combine these two interactions that there is agreement with experiment. This
is also true for the Ramsauer minimum in the elastic cross section.

In the original work of [2], Lekner described the elastic scattering of electrons by argon atoms
by just the local dipole polarization potential of Buckingham [511] which is given by

Vp(r) = −
αd

2 (r2 + r2a)
2
, (7.10)

where αd is the static dipole polarizability of argon and ra is an adjustable parameter. Lekner
chose this parameter so as to obtain the experimental scattering length a0 = −1.5 a.u. of [429].
This value is very close to the current recommended value of a0 = −1.45 a.u. of [18]. The value
obtained in the current work is a0 = −1.46 a.u.

As a consequence of Lekner’s choice for the adjustable parameter ra, his simple polarization
potential in equation (7.10) was able to mimic the effects of both the polarization and exchange
interactions at low energies of the incident electron and his calculation was able to produce a
low-energy Ramsauer minimum in the momentum transfer cross section. At higher energies his
momentum transfer cross section deviates from the experimental cross section.

The calculated cross sections are shown in Figure 7.1. We obtain very good agreement with the
recommended set of cross sections of [18] which combine many different experimental measurements
and theoretical calculations. In order to demonstrate the importance of including the non-local
exchange interaction, we have also repeated the calculation using two different model potentials
that replace the non-local exchange with an effective local term in the potential [19, 20]. One of
these local approximations [19] is qualitatively wrong, showing the same behaviour as that without
exchange. The other approximation [20] is qualitatively similar but differs in the scattering length
and position of the Ramsauer minimum by an order of magnitude. It is clear to see that there is a
significant difference between the results. When we compare our results to those of the Buckingham
potential, where we set rα = 1.087 a.u. such that the scattering length is a0 = −1.50 a.u., we find
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Figure 7.1: Cross sections for electron scattering from argon. The calculations described in this
section, which use the non-local exchange interaction (solid line) are in good agreement with
the recommended set of Buckman et al. [18]. A comparison with a calculation similar to that
of Lekner [2] using a Buckingham potential (dotted line) shows loose qualitative agreement at
the Ramsauer minimum, but quantitatively is incorrect. Also shown are the results from using
two different effective models of a local exchange potential (thick dashed [19] and dash-dotted
lines [20]) which do not agree with experimental measurement at all, as well as the cross section
when exchange is included but polarization is neglected (thin dashed line).

that it does follow the general shape of the Ramsauer minimum. However, we emphasize that this
is a result of the fitting parameter rα and this potential does not accurately describe the details of
the scattering.

7.2.2 Screening of the polarization interaction

The effects of the high density of the liquid are included in our calculations by several modifications
of the gas scattering properties. The first of these is to account for the screening of a single induced
atomic dipole by the induced dipoles of all other atoms. The procedure outlined in this section
closely follows that of Lekner [2].

In the dilute gas limit, the mobile electron undergoes a collision with a single atom of the gas
effectively in isolation from all other atoms in the gas. During this collision the electron induces a
set of multipole moments in the atom, which in turn interact with the electron through a charge-
multipole potential, resulting in the polarization potential, Vp(r), of Section 7.2.1 above. For a
dilute gas, the range of the potential produced by these induced multipole moments is relatively
small compared with the large interatomic spacing and so it is a good approximation to neglect
their effect on other atoms. However, with higher densities of the gas or liquid, many atoms can
have a non-negligible induced set of multipole moments originating from both the mobile electron
and from all other atoms in the bulk. The effective charge-multipole polarization potential felt by
the electron at any particular location re is then the sum of the polarization potentials from all
atoms.

We consider effects originating from the induced dipoles of the atoms only and determine
the effective polarization of an individual atom self-consistently. We first assume that the induced
dipole strength for every atom in the bulk can be written as f(r)αd(r)e/r

2 where r is the distance of
the electron from the atom, αd(r) is the exterior dipole polarizability (see [517], equation (1)) for a
single atom that results from the interaction with the electron, and f(r) accounts for polarization
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screening which must be determined. This simple multiplicative factor is valid, so long as we
average over the atomic distribution. In the dilute-gas limit, we can safely approximate f(r) = 1,
and in the dense case we must obtain a self-consistent expression for f(r). By choosing a particular
‘focus atom’ i at location ri such that r = re− ri, and assuming that the coefficient f(r) is known
for all other atoms, which we denote by fbulk(r), we can calculate [2] the dipole strength for atom
i from:

fi(r) = 1− πn0

ˆ ∞

0

ds g(s)

s2

ˆ r+s

|r−s|
dtΘ(r, s, t)

αd(t)fbulk(t)

t2
(7.11)

which has been obtained using bipolar co-ordinates, s and t, where n0 is the density of the bulk,
g(s) is the isotropic pair correlator of the bulk and the factor

Θ(r, s, t) =
3

2

(s2 + t2 − r2)(s2 + r2 − t2)

s2
+ (r2 + t2 − s2), (7.12)

arises due to the form of the electric field of a dipole. The integrations over s and t represent the
contribution from an atom located at a distance s from atom i and a distance t from the electron.
The likelihood of finding an atom is determined by g(s) and so it can be seen that equation (7.11)
approximates the exact polarization by that resulting from the ensemble average of all atomic
configurations, given that one atom is located at ri. In this approximation, the polarization itself
is always aligned along the vector r̂ between the focus atom and the electron.

The self-consistent solution to equation (7.11) is obtained by setting fi(r) = fbulk(r) and solving
for fi(r), which we do by iteration. The most important quantity in equation (7.11) is the pair
correlator, which represents the next order in the particle distribution in the bulk beyond the
average density. In the calculation of Lekner, the pair correlator was taken to be the analytical
solution of the Percus-Yevick model for ease of calculation. In our calculation, we go beyond this by
using the experimental measurements of Yarnell [21] to more accurately describe the correlations.
The data we use, which was obtained for a bulk density of n0 = 0.0213Å−3, is shown in Figure 7.2
and compared with the Percus-Yevick model at the same density.
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Figure 7.2: Pair correlator for argon, as reported in Yarnell [21], measured in neutron scatter-
ing experiments. Also plotted, is the pair correlator calculated in the analytical Percus-Yevick
approximation as used by Lekner [2].
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Using the pair correlator of argon, the screening function f(r) has been self-consistently cal-
culated, and the result is shown in Figure 7.3. Although this screening factor technically applies
to the dipole term only, we work with a rather more complicated form of the polarization term
than Lekner had originally considered. However, as the largest contribution to the polarization
does indeed come from the dipole term, we have decided to apply the screening factor f(r) to the
entire polarization potential. Hence, with the screening of the polarization taken into account, the
screened polarization potential, Ṽp(r), of an electron with one atom in a dense fluid is given by:

Ṽp(r) = f(r)Vp(r) . (7.13)

We note that, in contrast to Lekner, who used only the static dipole polarizability αd, the more
accurate representation of the atom-electron interaction as described in Section 7.2.1 has already
led to a radial dependence of the polarization potential Vp(r) beyond that of a potential whose
asymptotic behaviour is r−4. The effect of the screening has hence lead to a further modification
of Vp(r) which is density dependent.
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Figure 7.3: The screening function f(r) of the polarization interaction potential for scattering of
an electron from a single argon atom in a bulk of density n0 = 0.0213Å−3.

7.2.3 Effective potential in a liquid

For input into the kinetic theory, we require appropriate cross sections for the scattering of the
electron from a single ‘focus atom’ in the bulk. As discussed above, the presence of the other atoms
screens the polarization interaction between the electron and the focus atom. However, there is
another more obvious effect resulting from the other atoms in the bulk: their interaction with the
electron itself remains significant even when the electron is very close to the focus atom. Hence,
as outlined in Lekner [2], we build up an effective potential that is experienced by the electron
throughout a single scattering event, as well as define what is meant by ‘a single scattering event’.
Although we follow the general principles of [2], we calculate the cross sections in a distinctly
different fashion.

The effective potential that we consider Veff = V1 + V2 is made of two parts: V1(r) which
corresponds to the direct interactions with the focus atom, and V2(r), which corresponds to the
interaction of the electron with the rest of the bulk. As it is prohibitively expensive to treat exact
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configurations of atoms in the bulk, we build the external potential V2 by again taking the ensemble
average:

V2(r) =
2πn0

r

ˆ ∞

0

dt V1(t)

ˆ r+t

|r−t|
ds sg(s) , (7.14)

where the order of integration has been reversed in comparison to (7.11) for numerical convenience
1. We note that taking the ensemble average has the advantage of enforcing spherical symmetry
of the total effective potential Veff. In calculating (7.11) and (7.14), we make use of the quantity
σcore, which corresponds to the hard-core exclusion diameter for the distribution of atoms in the
bulk, i.e. the probability for two atoms to approach within a distance σcore is vanishingly small.
For argon σcore ≈ 6 a0 and we take advantage of this by explicitly setting g(s) = 0 for s < σcore

and adjusting the limits of equations (7.11) and (7.14) accordingly.
In addition we go beyond Lekner’s calculation by including the effects of the exchange terms in

the bulk. We do this by performing the same ensemble average as in (7.14) but over the quantities
WP and WQ instead of V1, obtaining bulk averages WP,2 and WQ,2. These are then included
as effective exchange terms, W (P or Q),eff = WP or Q + W (P or Q),2 in the Dirac-Fock scattering
equations (7.1). In contrast to V2, these exchange terms are dependent on the wave function itself,
so the ensemble averages must be recalculated at every iteration in the solution of (7.1).
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Figure 7.4: Plots of the total effective potential Veff felt by an electron when colliding with one atom
in the liquid. Also shown are the components, V1 and V2, which represent the direct potential of
the atom and the contribution of the remaining atoms in the bulk respectively. The dashed vertical
lines at σcore/2 and rm indicate the hard-core exclusion radius and the proposed collisional sphere
respectively. Note that effects of exchange are not represented in this figure.

A plot of the functions Veff, V1 and V2 is shown in Figure 7.4. It can be seen that there is
a turning point that occurs at a distance we denote by rm. In the dense gas limit that we are
investigating, this value is rm ≈ 4.3 a0. The turning point at rm provides a natural distinction
between the volume that is under the influence of the focus atom, i.e. the sphere of radius rm, and
that of the rest of the bulk. Hence, we can say that a single collision event takes place when an
electron enters and leaves the radius rm of a single atom. We note that rm ≈ 2

3σcore > σcore/2, i.e.
rm is larger than half of the minimal interatomic separation, which could be considered to define
the volume ‘owned by’ the focus atom and hence a logical choice for the ‘collision event radius’.

1In the arrangement of (7.14), it is possible to precompute the innermost integral cumulatively once and use its
values in a look-up table.

Chapter 7. Electron scattering and transport in atomic liquids 120



Boyle, Gregory The modelling of lepton transport in gases/liquids

rm is also different from the Wigner-Seitz diameter dWS = 2(4πn0/3)
−1/3 ≈ 4.2 a0 [312], although

it is very similar.
We would now like to solve for the scattering properties, in particular the cross sections, from

such a collision process. We assume that it remains reasonable to extract the cross sections through
the phase shifts in a partial wave equation. In order to determine these, Lekner chose to shift
the effective potential by an amount V0 such that Veff(rm) + V0 = 0, and to set the potential
Veff(r > rm) = 0, and finally matched to the asymptotic form of each partial wave in the usual
fashion. In contrast, we choose to leave the potential unaltered, but calculate the phase shift at the
point rm instead, effectively setting the upper limits of equations (7.7) and (7.8) to be rm instead
of infinity. We note that this is also known as calculating the ‘phase function’ [311] at the point
rm, which is equivalent to setting Veff(r > rm) = 0 and matching to the asymptotic form of the
wave function. We believe that this more accurately represents the available energy states in the
bulk.

As we may assume g(s) = 0 for s < σcore and because we calculate the potential only up
to a distance of rm ≈ 2

3σcore, we can see that the integral over t in (7.14) is non-zero only for
t & 1

3σcore ≈ 2 a0. At these ranges, the dominant contribution to the potential comes from the
polarization component. We also note that the values of WP,2 and WQ,2 are not well behaved for
larger distances and so we set them to be zero for r > σcore/2. We have performed calculations that
neglect the contribution of WP,2 and WQ,2 to the bulk and compared these to the full calculations,
which showed very little difference in the high energy regime of the resultant cross sections and a
small difference of up to 5% otherwise. The effect of this change on the transport properties was
a small but non-negligible deviation.

Cross sections and variation of rm

The choice of the value for rm is a crucial part of our calculation. It is worth mentioning that the
choice we make above is consistent in the limit of n0 → 0; in this case V2 is so weak that it is
only after V1 has significantly decayed for very large values of r that d(V1 + V2)/dr = 0. Hence,
rm → ∞ as n0 → 0 and our calculation reduces to the usual scattering calculation from a single
atom. However, in the dense case, it is not known whether d(V1 +V2)/dr|rm = 0 is the best choice
to model the scattering in the liquid. Hence, we have also performed a sensitivity analysis on the
parameter rm. We denote the distance at which we calculate the phase shifts by r∗ and allow it
to vary from our initial choice of r∗ = rm. The resultant cross sections from a variation of ± 1

16a0

are shown in Figure 7.5 as well as the more straightforward choice of r∗ = σcore/2. We note that
Atrazhev et al. [312] have implicitly investigated this variation previously, in order to describe the
effect of density fluctuations on the effective cross sections. In their case, the value of r∗ was set
to be the Wigner-Seitz cell radius, which itself depends on the density of the liquid. In contrast,
we keep the density fixed while varying r∗.

It can easily be seen that the largest modification to the cross sections due to the variation in rm

occurs at low energies. Importantly, the more obvious choice of r∗ = σcore/2 yields a dramatically
different behaviour. As will be shown later, the effect that these variations have on the transport
measurements is significant and shifts the peak observed in various transport properties.

We note that we neglect the effect of density fluctuations, which would modify the effective
cross section for the liquid. This was investigated by Atrazhev et al. [312], and shown to have
a significant contribution to the cross sections. However, their article focused on a density for
which the effective liquid cross section vanishes, causing the density fluctuations to be the largest
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Figure 7.5: Elastic total and momentum-transfer cross sections for argon calculated from the phase
shifts determined at a distance r∗. Our preferred choice for transport calculations in this work,
r∗ = rm, corresponds to the solid line, the dashed lines are those corresponding to a variations
r∗ = rm ± 1

16a0 and the dotted line corresponds to a variation of r∗ = σcore/2.

contribution for small electron energies. In our case, we can expect density fluctuations to cause
both enhancements and reductions of the cross sections, which would cancel out on average.

7.2.4 Results

Swarm experiments are a test of the particle, momentum and energy balance in the cross section
set and the associated transport theory or simulation. In the low-field regime considered in this
chapter, only conservative quasi-elastic processes are operative, and hence the ability of the calcu-
lated values of drift and characteristic energy to match the measured coefficients provides this test
on momentum and energy balance.

In the following sections we consider the calculation of the macroscopic swarm transport proper-
ties in the gaseous and liquid environments from the microscopic cross sections, including screening
and coherent scattering effects as discussed above. Initially in Section 7.2.4 we consider only the
gas phase, focussing on understanding the importance of an accurate treatment of exchange and
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polarization and establishing the credibility of the initial gas-phase potential subsequently used
as input for the calculation of cross sections for the liquid phase environment. Transport coeffi-
cients calculated using the screened cross sections and associated coherent scattering effects are
considered in Section 7.2.4, where they are compared with the available measured transport data
in the liquid phase.

Electrons in gaseous argon – benchmarking the potential and exchange treatment

The calculated drift velocity and characteristic energy transport properties using the gas-phase
cross sections detailed in Section 7.2.1 are presented in Figure 7.6. They are compared against
various experimental data for this gas [22, 24]. We restrict ourselves to the reduced electric fields
of less than 3 Td, to ensure we are in the regime where only elastic scattering is operative.

Our current potential, with a non-local treatment of exchange, we observe agreement to within
3% or better for drift velocity and 10% or better for the characteristic energy over the majority
of the reduced fields considered (fields where the transport properties are rapidly increasing have
a higher percentage difference). If the exchange interaction is neglected in the calculation of
the cross section, we observe that the calculated values of the transport properties depart from
the measured by an order of magnitude or more, reflecting the qualitative disagreement in the
form of the cross sections predicted in Figure 7.1. Given the similarities in the cross sections
calculated using the local exchange potential B [20] to those neglecting exchange, the calculated
transport coefficients are quite similar between the two techniques. Using the local treatment of
exchange A [19], which reproduces the Ramsauer minimum in the cross section (although its depth,
location and width disagree quantitatively), the transport coefficients have a similar qualitative
form, however they are displaced to significantly higher fields relative to the measured values.
As expected, implementation of the Buckingham potential as in Lekner [2], which was tuned to
reproduce the zero-energy gas-phase cross section, produces drift velocities that are accurate to
within 10%, however the characteristic energies are significantly worse than those using the current
potential. The small disagreement for the characteristic energy over a small range of E/n0 may
reflect some minor limitations in the cross section database.

Electrons in liquid argon

In Figure 7.7, we compare the drift velocity and characteristic energies in both the gaseous and
liquid phases. The transport coefficients are presented as a function of the reduced electric fields,
so that the explicit density dependence has been scaled out and we have a true comparison of the
gaseous and liquid phases. For a given reduced field, we observe that the drift velocity in the liquid
phase is enhanced by as much as an order of magnitude over the gaseous phase in the reduced field
range considered. Contrarily, the characteristic energy in the liquid phase is reduced relative to the
gaseous phase by as much as 500% over the range of fields for which the data exists. Importantly,
the measured data emphasizes that transport of electrons in liquids cannot be treated by using
only the gas phase cross sections and scaling of the density to those of liquids.

We now assess the importance of including various physical processes present in liquids in repro-
ducing the measured transport coefficients. Firstly, we assess the importance of coherent scattering
effects, by implementing the gas-phase interaction potential and associated cross sections into the
coherent scattering framework detailed in Section 2.3.1. The resulting cross sections are displayed
in Figure 7.8. We observe in Figure 7.7 that the inclusion of only coherent scattering effects acts
to enhance both the drift velocity and the characteristic energy. This is a reflection of the reduced
momentum transfer cross section in Figure 7.8 in the regime where coherent scattering effects are
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Figure 7.6: The drift velocity (top) and characteristic energy (bottom) of electrons in gaseous
argon, calculated using the potentials and associated cross sections detailed in Section 7.2.1, and
compared with available experimental data (Robertson [22,23] at 90 K; Warren and Parker [24,25]
at 77 K; Townsend and Bailey [26,27] at 288 K). The full non-local treatment of exchange considered
here is compared to two forms of local exchange potentials (LocExA [19]; LocExB [20]) and to
the case when the exchange interaction is neglected altogether. The background argon gas for the
calculations was fixed at 90 K for determination of the drift velocity and 77 K for the characteristic
energy.

operative [1]. Interestingly, coherent scattering produces the physical process of negative differen-
tial conductivity (i.e. the fall of the drift velocity with increasing electric field) which is absent from
the gas-phase calculations, as discussed elsewhere [1]. While the inclusion of coherent scattering
effects results in a calculated drift velocity of the same order of magnitude as the experimental
data, it does not reproduce the correct shape in the profiles, with errors as large as 250%. Fur-
ther, the calculated characteristic energy produced by including coherent scattering enhances the
characteristic energies relative to the gas phase which is inconsistent with the experimental data.

Second, in addition to the coherent scattering, we now include the full liquid induced effects on
the potential as detailed in Sections 7.2.2 and 7.2.3. The resulting cross sections are displayed in
Figure 7.8, where we emphasize that such effects act to essentially remove the Ramsauer minimum
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in the cross section. This produces an enhanced and relatively constant cross section in that energy
regime. This is very similar to that predicted by Atrazhev and Iakubov [309], in their reduction of
the Cohen and Lekner theory, which suggested that a cross section that is only density dependent
would occur for low impact energies. In Figure 7.7 we demonstrate that the inclusion of both
scattering potential modification and coherent scattering produces drift velocities and characteristic
energies that are both qualitatively and quantitatively in agreement with the experimental data.
Errors in the drift velocities and characteristic energies are significantly reduced.
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Figure 7.7: Comparison of the measured drift velocities W and characteristic energies DT/µ in
gaseous and liquid argon, with those calculated from the various approximations to the cross
sections. Experimental data (Robertson [22,23] at 90 K; Miller et al. [28] at 85 K; Halpern et al. [29]
at 85 K; Warren and Parker [24, 25] at 77 K; Townsend and Bailey [26, 27] at 288 K; Shibamura
et al. [30] at an unmeasured liquid temperature). The various approximations used are: gas-phase
only cross sections (Gas), gas-phase cross sections with coherent scattering (Gas+Coh), and liquid
phase cross sections with coherent scattering effects (Liq+Coh). The results have been calculated
using the full differential cross section and results are converged multi-term values. Experimental
uncertainties are estimated at 2% for Robertson and less than 15% for Shibamura et al.

In Figure 7.5, we highlighted the sensitivity of the calculated cross sections in the liquid phase
to the value of r∗ at which the phase shifts are determined. The macroscopic manifestations of this
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Figure 7.8: The momentum transfer cross sections in the gas-phase (Gas), liquid-phase (Liq) and
their modifications when coherent scattering effects are included (+Coh). The recommended trans-
fer cross section of reference [18] for a dilute gas is a combination of experimental measurements
and theoretical calculations.

sensitivity on both the drift velocity and characteristic energy is presented in Figure 7.9. Slight
modifications of r∗ by a0/16 from the preferred value of r∗ = rm emphasize the sensitivity of the
transport coefficients to this value. The choice of r∗ = σcore/2 produces results that are essentially
translated to higher reduced electric fields. Importantly, these results indicate that the value of
rm may be energy dependent. One could possibly tune the value of rm to match the experimental
data, however we have strived to eliminate adjustable parameters in our formalism. One may also
look at using an alternative scheme that is energy-dependent for choosing the value of rm, e.g.
including contributions from the exchange terms WP,eff and WQ,eff.

7.2.5 Impact of scattering anisotropy and the two-term approximation

We conclude this section by considering the impact of the anisotropy in both the scattering cross
sections and the velocity distribution function on the calculated transport properties.

In Figure 7.10 we display the differential cross sections for the gas phase and for the liquid
modified differential cross sections, highlighting the impact of coherent scattering effects. For
the dilute gas phase, we observe at low energies that the differential cross sections are small
and essentially isotropic. As we move to higher energies, the differential cross section begins to
demonstrate an increased magnitude and also enhanced anisotropy, with peaks in the forward
and back-scattering directions. When we account for liquid effects in the scattering potential, we
observe that similar qualitative structures are present in the resulting differential cross section,
with slightly more structure than for the dilute gas phase. When the liquid phase differential
cross section is combined with the structure factor accounting for coherent scattering effects, the
resulting differential cross section Σ(U,χ) takes on a completely different qualitative structure.
The forward peak in the differential cross section is removed, with suppression of the cross section
at low energies and low scattering angles. The backscattering peak in the differential cross section
at high energies remains unaffected, while subpeaks in the differential cross section are enhanced
by the coherent scattering effects.
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Figure 7.9: Comparison of the calculated drift and characteristic energy with variation in the
distance r∗ at which the phase shifts are determined. Experimental data is as detailed in Figure 7.7.

The degree of anisotropy in the distribution function is evidenced by an enhanced value of
lmax required in the spherical harmonic expansions (2.3), and (2.4) to achieve convergence in the
velocity distribution or transport properties. In Figure 7.11, we display the error in the two-term
approximation (lmax = 1) and the converged multi-term result. In the gas and liquid phases we
see that the two-term approximation is sufficient to ensure accuracy to within 0.5% in the drift
velocity, however errors as large as 10% are present in the characteristic energy. This indicates
a failure of the two-term approximation for the evaluation of the characteristic energy. Similar
findings in the gas-phase were found by Brennan and Ness [518]. Theories that have used the
two-term approximation to iteratively adjust cross sections may produce cross sections that are
inconsistent with a multi-term framework.

In Figure 7.11 we also consider the impact of anisotropic scattering on the validity of the two-
term approximation. The two-term approximation can only sample the momentum transfer cross
section. Higher-order spherical harmonic components of the distribution function in expansions
(2.3), and (2.4) are coupled to, and hence sample, higher-order coefficients in the expansion of the
differential cross section. In Figure 7.11 we highlight the differences, using dashed lines, between
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Figure 7.10: Differential cross sections in square angstroms for electrons in Ar for a) dilute
gas phase, b) effective liquid phase including screening effects, and c) liquid phase cross section
including coherent scattering effects Σ(U,χ).

the multi-term approximation using only the momentum transfer cross section (i.e. we assume
σl≥2 = σ1) and those where the full differential cross section is considered. The differences are less
than 1% (usually less than 0.1%) indicating the distribution function is not sufficiently anisotropic
to couple in higher-order partial cross sections. Equivalently, anisotropy in the differential cross
sections has only a minimal impact on the anisotropy in the velocity distribution function.
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Figure 7.11: Percentage differences between the two-term and multi-term values of the charac-
teristic energy for the gas and liquid phases using the full differentail cross sections (solid lines),
and percentage differences between the multi-term results with using only the momentum transfer
cross section and the full differential cross section (dashed lines). All percentages are relative to
the converged multi-term result using the full differential cross section.
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7.3 Conclusion
We have extended the approach of Lekner and Cohen [2,3], overcoming some of its limitations, to
calculate the effective cross sections and transport properties of electrons in liquid argon. For the
first time an accurate multipole polarizability in the electron-atom potential, and a fully non-local
treatment of exchange were included in the calculation of liquid-phase cross sections using the
full machinery of the Dirac-Fock scattering equations. The accuracy of the potential implemented
and associated cross sections calculated was confirmed by comparison with experiment in the gas-
phase, and the importance of a fully non-local treatment of exchange was demonstrated. The
result calls into question cross sections (gas, liquid or clusters) which assume a local treatment of
the exchange. Sensitivity to the radial cut-off for the electron-atom potential was presented, and
while the maximum in the potential was shown to be a suitable choice, enhanced accuracy may be
achieved with an energy dependent choice of the cutoff.

The calculation of the drift velocity and characteristic energies were performed for the first time
using a multi-term solution of Boltzmann’s equation accounting for coherent scattering. The full
anisotropy of the liquid-phase differential cross section was considered including anisotropy arising
from both the interaction and from the structure factor. The multi-term framework enabled an
assessment of the sensitivity to this anisotropy in the differential cross section and in the velocity
distribution function. While the two-term approximation was found to be sufficient for accuracies
to within 1% for the drift velocity, errors of the order of 10% or more were found in the characteristic
energy. The latter was found to be the dominant contribution to the differences in the two and
multi term results. It was found that both coherent scattering and screening of the electron-atom
potential are required to reproduce the measured transport coefficient values. We emphasize that
there are no free parameters in the current theory and its implementation, and hence the high level
of agreement between the calculated and measured transport coefficients yields confidence that the
essential physics has been captured in the theory.
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8
Non-hydrodynamic space-time

dependent transport

This chapter contains material that has been submitted to the following journal article:
G. J. Boyle, D. G. Cocks, W. J. Tattersall, R. P. McEachran, and R. D. White. A multi-term

solution of the space-time Boltzmann equation for electrons in gaseous and liquid Argon. Submitted
to Physical Review E.

8.1 Introduction
In the previous chapter, the scattering and transport of excess electrons in liquid argon in the
hydrodynamic regime was investigated, generalizing the seminal works of Lekner and Cohen [2, 3]
with modern scattering theory techniques and kinetic theory. Transport coefficients such as drift
velocities and characteristic energies calculated in the hydrodynamic regime with our hydrodynamic
multi-term Boltzmann equation solution were in good agreement with swarm experiment meas-
urements in both gas- and liquid-phase argon. In this chapter, the discussion is extended to the
non-hydrodynamic regime.

The solution of the the full temporal-, spatial- and energy-dependent Boltzmann equation is
formidable, both mathematically and computationally. Historically, the majority of kinetic theory
investigations have focused on the hydrodynamic regime where spatial gradients are small, and
have considered increasingly complex space- and time-dependent hydrodynamic behaviours and
field configurations (see reviews [248, 254, 269, 271, 519]). In situations where the hydrodynamic
regime is not applicable, the space-time dependence of the phase-space distribution function can
not be projected onto the number density and a density gradient expansion is no longer valid.
Instead the configuration-space dependence of the Boltzmann equation must be treated on equal
footing with the energy-space dependence, which makes for a difficult problem even for simple
geometries [278–280]. It is no surprise that systematic studies of non-hydrodynamic phenomena
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lag behind their hydrodynamic counterparts. The prototypical example of non-hydrodynamic
phenomena is the Frank-Hertz experiment [281,282], which helped lay the foundations for quantum
and atomic physics. Extensive theoretical studies of non-hydrodynamic electron phenomena have
been performed including field free spatial relaxation [290], and spatial relaxation in the presence of
uniform [291–293], non-uniform [294] and periodic electric fields [295–297]. Similar kinetic studies
on the spatial relaxation of electrons in uniform and spatially periodic fields have been performed
by Golubovskii et al. [298–301]. Li and co-workers have considered arbitrary electric and magnetic
field configurations with a multi-term analysis [254,303,520]. Solution of the Boltzmann equation
for electrons including both the space and time dependence have also recently been performed
[304–306], however these authors restricted their calculations to a two-term approximation in
Legendre polynomials in order to make the problem computationally feasible. Limitations of the
two-term approximation for molecular gases are well known [512]. Prior to the study in [8], all
studies of electron transport in liquids were in the hydrodynamic or spatially homogeneous regimes,
and restricted to the two-term approximation.

In this chapter, we present a full multi-term space-time dependent solution of Boltzmann’s
equation, capable of handling highly non-equilibrium electron transport in dilute gases, dense
gases and liquids under non-hydrodynamic conditions. To our knowledge, this is the first time
such a complete solution of Boltzmann’s equation has been developed. In addition, by solving for
the spatio-temporal evolution of the Boltzmann equation Green’s function, the technique is quite
general in its application, enabling various experimental configurations (temporal and spatial initial
and boundary conditions) and practical devices to be modelled from a single solution. This work
extends the Boltzmann equation framework to applications and accuracies comparable to those
achieved using the Monte-Carlo simulations of Petrović, Dujko and co-workers [149–151].

The operator splitting treatment of the space, time and energy dependence is detailed in Section
8.2. In Section 8.3 we present solutions for a model hard-sphere liquid system with a Percus-Yevick
structure factor used to simulate a prototypical liquid with realistic pair correlations. A simple in-
elastic channel is included to induce periodic oscillatory structures (an idealized version of the well
known Frank-Hertz experiment [282]) which can act as a non-hydrodynamic benchmark. Lastly,
in Section 8.4 we investigate the temporal and spatial evolution of the phase-space distribution for
electrons in liquid argon, using microscopic cross sections which have been derived previously [8].
The issues with treating liquid systems as gaseous systems with increased density, and the implic-
ations for various applications including liquid argon time projection chambers, are highlighted.

8.2 Solution technique
The Boltzmann equation, (2.2), consists of two parts; an advective component (in phase-space)
and a component representing collisions. It is a formidable task to solve the Boltzmann equa-
tion numerically, using a single numerical scheme for both components and a single time-stepping
method. Because of the complexity, we choose to replace the task of solving the full Boltzmann
equation by the task of solving the configuration-space transport, the energy-space transport and
the contributions due to collisions separately, then combining the results in a manner that appro-
priately approximates the full solution. This can be achieved via the technique known as operator
splitting [356].
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8.2.1 Operator splitting

As discussed in Chapter 2, the Legendre polynomial expansion of Boltzmann’s equation in plane
parallel geometry given in equation (2.9) can be represented as

∂fl
∂t

+ SZ(fl) + SU (fl) = 0 , (8.1)

where
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The simplest method of operator splitting, and the method employed in this work, is Lie-Trotter
splitting [521, 522], which employs two separate operators, e.g. SZ and SU , in a sequential order.
If

∂f

∂t
+ SZ(f) + SU (f) = 0, (8.4)

then the Lie-Trotter algorithm is

∂f∗

∂t
+ SZ(f

∗) = 0, with t ∈
[
tn, tn+1

]
and f∗ (tn) = f (tn) , (8.5)

∂f#

∂t
+ SU (f

#) = 0, with t ∈
[
tn, tn+1

]
and f# (tn) = f∗ (tn+1

)
, (8.6)

so that f(tn+1) = f# (tn+1
)
, where tn and tn+1 are successive times. This simple method can be

shown to be only accurate to first order in time, and there are many other methods available that
offer higher order accuracy and often include additional advantageous properties [355, 522–526].
The major reason for this particular choice of operator splitting algorithm is that if SZ is treated
in an explicit manner, and SU is treated in an implicit manner, then the result is essentially the
Douglas class of the Alternating Direction Implicit schemes [527, 528], which is particularly suc-
cessful at accurately capturing the steady-state solution. Accurately and consistently determining
the steady-state solution can be a problem for general operator splitting methods [529].

The isolation of the configuration-space dependence to the operator SZ makes this particular
scheme an example of dimensional splitting. We can now investigate in detail how to treat the
configuration-space advection, energy-space advection, and collision components numerically.

8.2.2 Configuration-space advection

The operator involving the configuration-space dependence, Sz, is given by equation (8.2), which
represents a coupled homogeneous advection equation. As there are no derivatives of U present
in Sz, the configuration-space dependence can be solved independently for different values of U
which is huge simplification when a discretization in energy space is used. The coupled advection
equation can be simplified as follows:
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which can be written in matrix form,

∂
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f + A ∂

∂z
f = 0, (8.8)

where f = [f0, f1, ..., flmax ] and
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By letting A = RΛR−1, where Λ is a matrix of eigenvalues of A on the diagonal, and R are the
associated eigenvectors, then

∂

∂t
g + Λ

∂

∂z
g = 0, (8.10)

where g = R−1f, which now represents a set of uncoupled, homogeneous advection equations. It
follows from the method of characteristics [530], that

g (t, z) = g (0, z − Λt) . (8.11)

Even in this extremely simple form, the solution can be troublesome. When discretized, the set of
values z−Λt are unlikely to align with existing z values, and hence some form of interpolation is re-
quired. It can be shown that linear interpolation is equivalent to a first order upwind finite volume
method scheme [531]. First order methods have the advantage of being well behaved and can
be used to conserve mass etc. with no unwanted, unphysical oscillations, but have the disadvant-
age of introducing extra numerical diffusion, particularly around regions of sharp variation [357].
Higher order methods perform better at controlling unwanted diffusion but can lead to problem-
atic, oscillatory and unphysical solutions. Rather than straightforward interpolation, we choose to
employ a variation of a technique well known in fluid transport, the SHASTA algorithm of Boris
and Book [532]. The SHASTA algorithm approach, termed flux-corrected transport (FCT), leads
to a class of Eulerian finite-difference algorithms which strictly enforce the non-negative property
of realistic mass and energy densities. As a result, steep gradients and shocks can be handled
particularly well, which is a useful property when modelling transport under non-hydrodynamic
conditions. A FCT algorithm consists conceptually of two major stages, a transport or convective
stage, followed by an anti-diffusive or corrective stage.

We employ a simplified version of the full FCT algorithm to numerically approximate g (0, z − Λt).
Let us consider the evolution of g (t, z) for a single Λ, i.e., g (t, z; Λ), over a time interval of ∆t,
with a uniform configuration-space mesh with spacing ∆z. By discretizing in this way, zj = j∆z

for j = 1, 2 . . . , nz − 1, and tn+1 = tn +∆t. The algorithm is as follows:

1. Shift The elements of g (t, z; Λ) are shifted to the node closest to z − β, where β = ∆t
∆zΛ.

This may result in an ‘overshoot’, but we can then propagate the shifted solution (in step 2)
either forwards or backwards in time as appropriate. The purpose of this step is to overcome
time step limitations due to the Courant-Friedrichs-Levy (CFL) condition [533], which allows
us to choose arbitrary time step sizes with respect to the configuration-space convergence
(sufficiently small time steps are still necessary for the operator splitting accuracy etc.). By
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shifting to the nearest node, the CFL condition

|β| = ∆t

∆z
|Λ| ≤ 1 (8.12)

for the remaining advection is always satisfied.

2. Advection with additional diffusion The advection algorithm employed is given by

gn+1
j = gnj −

β′

2

(
gnj+1 − gnj−1

)
+

(
γ +

β′2

2

)(
gnj+1 − 2gnj + gnj−1

)
, (8.13)

where gn+1
j = g (tn+1, zj), and

γ =

[
0,

β′

2

]
, (8.14)

is the additional numerical diffusion. The dimensionless advancement β′ = β −⌊β⌉ accounts
for the shift that has been applied in step 1. Note that β′ may be opposite in sign to
β, which corresponds to an overshoot in step 1. However, this does not adversely affect the
procedure. If γ = 0, then equation (8.13) is the well known Lax-Wendroff scheme [357], which
is accurate to second order. Historically, the inclusion of an extra diffusion term, γ, has been
used to ensure that a density function (i.e. a function that is non-negative by definition)
remains positive, which is unconditionally enforced everywhere if γ = β′

2 . In our case, the
gnj include contributions from fl≥1, which are expected to be negative in some regions of
space. However, the presence of γ ensures the stability of gn+1

j , which can be defined by
the requirement that ∆gn+1

j < max(∆gnj−1,∆gnj ,∆gnj+1) where ∆gnj = gnj+1 − gnj . When the
solution gnj is sharply varying or, in the extreme case, a discontinuity, the additional diffusion
is necessary to suppress unphysical oscillatory behaviour in gn+1

j .

3. Anti-diffusion An ‘anti-diffusion’ step is employed to reduce the extra numerical diffusion
introduced in (8.13) i.e.,

ḡn+1
j = gn+1

j −
(
γ +

β′2

2

)(
gn+1
j+1 − 2gn+1

j + gn+1
j−1

)
. (8.15)

The inclusion of this extra diffusion in step 2 assures that the solution is positive and physic-
ally realistic, and the straightforward application of step 3 undoes this which can re-introduce
a negative solution. Boris and Book [532] suggested modifying the removal of the erroneous
diffusion by just enough to maintain positivity, in a non-linear way (note that they worked
with non-negative densities, as we have remarked on above in step 2). This is an early ex-
ample and precursor of the modern technique of flux limiting [534–538]. In this work the full
anti-diffusion step is applied in general, except in regions where a sharp variation or discon-
tinuity is known a priori (e.g. configuration-space boundaries), in which case no anti-diffusion
is applied. Unphysical oscillations can now occur, but we have found that for the situations
considered they are negligibly small. The natural extension is to include flux limiting to
prevent this unphysical behaviour but this introduces extra computational complexity. The
anti-diffusion step could also be solved implicitly rather than explicitly, but we found that
this had no significant impact on the results.

It should be noted that the shift step can be performed after the advection and anti-diffusion
stages with no change in the result. We have assumed that the boundaries are absorbing, in that
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the elements of g(t, z) that move outside the computational domain are lost, and no information
is introduced from outside the domain. Although perfectly absorbing boundaries are notoriously
difficult to implement numerically, in our calculations we avoid this problem by keeping the swarm
density negligible at the simulation edges, through the use of an adaptive mesh, see Section 8.2.4.
In practice we pre-calculate a transformation matrix (for a given set of parameters) which combines
the above three steps for each of the grid energies.

8.2.3 Green's function solution

In our formalism and associated code, we solve for the Boltzmann equation Green’s function

Lfl = δ(z − z0)δ(t− t0), (8.16)

where

Lfl =
∂fl
∂t

+

(
2

m

) 1
2 ∑
p=±1

∆
(p)
l

[
U

1
2
∂

∂z
+

eE

m

(
U

1
2 ∂

∂U
+ p

(
l + 3p+1

2

)
2

U
− 1

2

)]
fl+p+Jl (fl) , (8.17)

for l = 0, 1, 2, . . . ,∞. The Green’s function solution, fl, can then be used to find the solution of
the more general space-time Boltzmann equation, i.e.

Lf̃l = S(z, t), (8.18)

where S(z, t) is a source term, then

f̃l (U, z, t) =

ˆ
dt0
ˆ

dz0 fl (U, z − z0, t− t0)S (z0, t0) . (8.19)

We do this by choosing an initial distribution in configuration-space that is a good approximation
to a delta-function, which, for this study, is a narrow Gaussian,

δa(z) =
1

a
√
π
exp

(
−z2

a2

)
, (8.20)

where a is a parameter controlling the width of the Gaussian, representing the temporal-spatial
relaxation profile of a single pulse centred on z0 and released at t0. In the limit of a → ∞,
δa(z)→ δ(z). The formalism is quite general, enabling the treatment of various experiments (e.g.
Pulsed Townsend (PT), Steady-State Townsend (SST) and other drift tube configurations [50] -
detailed in Section 8.2.5), as well as various source and spatial/energy space/temporal distributions,
through a single solution. This approach extends the functionality and accuracy of Boltzmann
equation solutions to those routinely achieved by Monte Carlo simulations [9, 149,539].

8.2.4 Numerical considerations and adaptive meshing

The matrix system of linear equations that result from the discretization of the Legendre-decomposed
Boltzmann equation in energy- and configuration-space at each time step are of the size
(nznU (lmax + 1))× (nznU (lmax + 1)), where nz and nU are the number of nodes in configuration
and energy space respectively. Due to the discretization schemes, the matrix is sparse and sparse
techniques are employed to exploit this property. Each of these parameters are free to be increased
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until some convergence criterion is met. It should be noted that, although the two-term approx-
imation (lmax = 1) has been used extensively, it is well known that it can be insufficient in many
situations [512].

In order to model the spatio-temporal relaxation of a narrow Gaussian source distribution in
configuration-space with a distribution of energies as computationally efficiently as possible, we
have developed a configuration-space node-mesh that adaptively follows the size of the distribution
throughout the simulation. In this way a small configuration-space window is used around the
original narrow Gaussian source which can then be sufficiently resolved with a small nz. As the
initial pulse drifts and diffuses, a small amount of information reaches and then leaks out of the
window boundaries. Before the amount of information lost to the system exceeds some small
tolerance, the window is extended and the solution at the previous time-step calculated on the new
configuration-space mesh. We have found that the most convenient way to quantify the amount
of information on the boundary is by the relative number density, and impose the condition that
when ˆ t

t0

dt′ n (zL or zR, t
′)´

dz n(z, t′)
≥ 10−5, (8.21)

then the configuration-space window is doubled (while the number of nodes is kept the same).
Here t0 is the time of the last window adjustment, zL and zR are locations of the left and right
configuration-space boundaries respectively. The choice to extend the window by doubling is
to make it so that the new mesh lines up exactly with nodes of the old mesh, hence requiring no
interpolation. The accuracy of the modified Lax-Wendroff scheme used to model the configuration-
space advection [357] is related to the parameter β = ∆t

∆zΛ, hence by doubling ∆z after a re-
adjustment, the value of ∆t can also be doubled. This effectively allows us to use smaller time
steps when our solution is sharp and diffusing quickly, and larger time steps once the solution has
spread out and is varying less quickly. A maximum value for the time step size still needs to be
enforced however, since with bigger time step sizes less mixing between the configuration-space
and energy-space components of the operator splitting occurs, leading to errors.

There is one extra complication to be discussed. Since the boundaries are absorbing, when
they are re-adjusted, the number density profiles (and distribution functions) drop directly from
the built-up value at the previous boundaries location to zero in a single ∆z, which can lead to
problematic, unphysical, oscillatory solutions when treated with the method described in Section
8.2.2. In order to combat this, we simply apply the procedure without the final anti-diffusion step
for a small amount of time on the edge and in the newly opened regions. The extra diffusion added
ensures that the solution remains positive and give physical results, which, after a small amount
of time, ensures that the profiles decrease smoothly to zero at the boundary. After this short
correction time, we again apply the full procedure. By not removing the added extra diffusion we
have increased the overall diffusion, but since it is only applied for a small time and to a region
where there is necessarily only a small proportion of particles, this does not significantly affect the
transport profiles.

8.2.5 Transport properties

The cross sections and collision operator terms represent the microscopic picture of electron in-
teractions with the medium. The macroscopic picture, e.g. transport properties that represent
experimental measurables, are obtained as averages of certain quantities with respect to the dis-
tribution function, f . Among the transport properties of interest in the current manuscript are
the number density, n, particle flux, Γ, and average energy, ϵ, of the electron swarm, which can
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be calculated via

n (z, t) = 2π

(
2

m

) 3
2
ˆ

dU U
1
2 f0(U, z, t), (8.22)

Γ (z, t) =
2π

3

(
2

m

)2 ˆ
dU Uf1(U, z, t), (8.23)

ϵ (z, t) =
1

n (z, t)
2π

(
2

m

) 3
2
ˆ

dU U
3
2 f0(U, z, t). (8.24)

Likewise, we can sample the traditional hydrodynamic transport coefficients in this non-hydrodynamic
framework, e.g. the drift velocity, W , and the (longitudinal) diffusion coefficient, DL:

W (t) =
d
dt

[
1

N (t)

(ˆ
dz zn (z, t)

)]
, (8.25)

DL(t) =
1

2

d
dt

[
1

N (t)

(ˆ
dz z2n (z, t)

)
−
(

1

N (t)

ˆ
dz zn (z, t)

)2
]
, (8.26)

where N(t) is the total number of particles:

N (t) =

ˆ
dz n (z, t) . (8.27)

When the above properties are calculated from the Green’s function solution, which corresponds to
a simulation of a PT experiment, then the transport properties for other experimental systems can
also be calculated in a straightforward manner. In this work we are also interested in the results
of a SST simulation, for which there have been previous calculations performed for benchmark
systems. Similar to [149, 278, 282, 317], the SST transport properties can be determined from the
Green’s function transport properties via

fSST
l (U, z) =

ˆ ∞

0

dt0 fl (U, z, t0) , (8.28)

nSST(z) =

ˆ ∞

0

dt0 n (z, t0) , (8.29)

ΓSST (z) =

ˆ ∞

0

dt0 n (z, t0) vz (z, t0) , (8.30)

ϵSST (z) =
1

nSST(z)

ˆ ∞

0

dt0 n (z, t0) ϵ (z, t0) . (8.31)

In practice the upper limit of the integrals is not ∞, but a sufficiently long time for the SST
transport properties to have converged over the z range considered.

8.2.6 Reduced variables

Henceforth, it is convenient to work with rescaled reduced variables. In particular, the space and
time variations will be presented as functions of

z∗ = n0σ0z, (8.32)

t∗ = n0σ0

√
2e

m
t, (8.33)

where σ0 = 10−20 m2. Likewise, the electric field dependence arises through the reduced electric
field E/n0 in units of Townsend (1 Td = 10−21 Vm2). By presenting results in this manner
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scales out the n0 dependence, and hence allows comparisons between the dilute gas phase and the
liquid/dense gas phase, to give a true reflection of the impact of coherent and other scattering
effects.

8.3 Electron transport in amodified Percus-Yevick hard-
sphere benchmark liquid model

In order to investigate the effects of medium structure on charged particle transport, a model for
the structure function is required. The Percus-Yevick model introduced in Section 4.6 is once again
used to emulate the structure of a real liquid. The remaining details required of the benchmark
hard-sphere model implemented for electron sized particles are

σm = 6 Å2
,

σexc =

 0,

0.1 Å2
,

U < 2 eV

U ≥ 2 eV
Φ = 0, 0.2, 0.3, 0.4,

E/n0 = 3 Td,

m0 = 4 amu,

T0 = 0 K. (8.34)

A step-like inelastic process has been included in addition to the standard Percus-Yevick hard-
sphere benchmark system in model (8.34). The inelastic channel introduces a periodic oscillatory
non-hydrodynamic behaviour, similar to those observed in the well-known Frank-Hertz experiment,
and can hence determine whether the numerical code is accurately capturing the non-hydrodynamic
phenomena. The variation of the momentum transfer cross section with Φ for model (8.34) was
shown in Chapter 4 in Figure 4.5.

The source distribution is given by

f (U, z, 0) = AfU (U)fz(z), (8.35)

where fz(z) is a narrow Gaussian in configuration-space, i.e.,

fz(z) =
1

∆z0
√
2π

exp
(
−1

2

(
z

∆z0

)2
)
, (8.36)

(we take ∆z0 = 0.1), while fU (U) corresponds to drifted Maxwellian distribution with T = 105 K,
and W = 104 ms−1Ê, i.e.,

f(v) = n

(
m

2πkbT

) 3
2

exp
[
− m

2kbT
(v−W)

2

]
, (8.37)

and A is a normalization constant such that
´
U

1
2 f (U, z, 0) dU = 1.

8.3.1 Transport coefficients in the long-time limit

The asymptotic values of the drift velocity and longitudinal diffusion coefficient calculated from the
spatial moments (8.25) and (8.26) respectively using the full non-hydrodynamic code are displayed
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in Table 8.1 for various volume fractions. Here we compare these values with those determined
from a purely hydrodynamic formalism and associated code [7,8]. The zeroth order hydrodynamic
transport coefficients, i.e., the mean energy and drift velocity, agree to within 0.2% with the
asymptotic non-hydrodynamic values for the volume fractions considered. The hydrodynamic and
non-hydrodynamic calculations of the longitudinal diffusion coefficient agree to within 0.7%. As
the volume fraction increases, both the mean energy, drift velocity and diffusion coefficient increase
monotonically, a consequence of the coherent scattering where, at low energies, increasing volume
fractions leads to decreasing structure factors at low ∆k, and hence decreased momentum-transfer
cross sections. A discussion on the physical variation of the hydrodynamic transport coefficients
with volume fraction is given in Appendix A from the perspective of fluid modelling.

Table 8.1: Comparison of the transport quantities calculated from non-hydrodynamic (first row)
and time asymptotic hydrodynamic (second row) formalisms for model (8.34) at various volume
fractions Φ.

ϵ W n0DL
Φ [eV] [104 ms−1] [1024 m−1s−1]
0 0.8335 1.385 2.386

0.8337 1.385 2.387
0.2 0.9765 3.397 6.333

0.9772 3.391 6.328
0.3 1.080 5.929 11.22

1.080 5.921 11.24
0.4 1.233 10.52 19.51

1.233 10.51 19.63

8.3.2 Space-time evolution of the phase-space distribution and its velocity mo-
ments

In Figure 8.1 the space-time evolution of the f0 and f1 velocity distribution function components
are compared for Φ = 0 and Φ = 0.4 at three different times. The space-time evolution of the
integral moments of f0 (electron density n(z, t)) and velocity moment of f1 (flux Γ) are displayed
in Figure 8.2. The timescale for variation of f0 is governed by ∼

(
2 m
m0

νm

)−1

, and hence there
is no explicit Φ dependence in the timescale, however differences arise due to the implicit energy
dependence in the collision frequency (which does depend on Φ) and the coupling to higher order
moments with different timescales. The timescale for variation of f1 on the other hand is governed
by ν̃−1

m , which has an explicit Φ dependence. The timescale for momentum exchange is significantly
decreased for increasing Φ at low energies, as shown in Figure 4.5, however they approach the same
value at higher energies. We will show that this is reflected in the evolution of the profiles.

At small times (e.g. t∗ = 0.2), there are only small differences in the f0 contours between
the two volume fractions, and this is also highlighted in the density n(z, t). At higher energies
(> 5-6 eV) there are also very little differences in the f1 contours (reflecting the similarity in the
momentum relaxation times at these energies), however at low energies, the Φ = 0.4 contours
for f1 are significantly displaced in both energy and configuration-space relative to the Φ = 0

case. This indicates significantly higher advective and diffusive fluxes in this energy regime at this
time, which is evidenced in the flux profiles of Figure 8.2. Given the sharp initial pulse with large
spatial gradients, we observe large positive and negative diffusive fluxes, along with a large positive
advective contribution.
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At larger times, the f0 and f1 contours in the Φ = 0.4 case depart significantly from the Φ = 0

case, initially in the low energy regime and then finally over the entire energy regime as the higher
energy electrons relax from the initial condition. The peaks in each of the distribution components
at larger times for the Φ = 0.4 case are significantly displaced in the z-direction from the Φ = 0 case.
This is reflected in both the density and flux profiles at larger times, which highlight the enhanced
drift and diffusion due to the reduced momentum transfer cross section associated with coherent
scattering for this model and field. Interestingly, at sufficiently long times, the Φ = 0.4 contours
have predominantly positive values, and only very small negative excursions at low energies, in
contrast to the Φ = 0 contours. At these times, the flux is positive over the entire swarm indicating
that the advective contribution dominates the diffusion contribution, since the density gradients
are much more rapidly dissipated in the Φ = 0.4 case, as seen in Figure 8.2.

Strikingly, both the Φ = 0 and Φ = 0.4 contours for both f0 and f1 demonstrate periodic
structures in both configuration space and in energy space at sufficiently long times and sufficiently
downstream from the source. The periodic structures manifest themselves earlier for the Φ = 0.4

case. These are the well known Franck-Hertz oscillations [281,282]. A simplistic picture of this non-
hydrodynamic phenomena is that the electrons in the swarm are being repeatedly accelerated by the
electric field to an energy above the inelastic process threshold whereby they undergo an inelastic
collision losing their energy. This simple physics is evidenced in the f0 and f1 distributions. By
integrating over the energy to obtain the density and flux, shown in Figure 8.2, much of the periodic
structures observed in the distribution function is masked, however some non-Gaussian spatial
structure is still observed. We will explore the Φ-dependence of the wavelengths of oscillations
further in Section 8.3.3.

8.3.3 Steady-state Townsend configuration

The solution detailed in Section 8.3.2 is essentially equivalent to solving for the Boltzmann equa-
tion Green’s function for the model (8.34). A strict validation of this approach and associated
numerical code is to be able to reproduce the Steady-State Townsend (SST) transport properties
from the Green’s function solution, as described in Section 8.2.3. The average energy (8.31) and
average velocity (8.30) for SST simulations of various volume fractions are shown in Figure 8.3.
In the spatially asymptotic regime, the average energy and the average velocity are equal to the
hydrodynamic and pulsed-Townsend values given in Table 8.1. It can be seen that the SST proper-
ties demonstrate damped spatially periodic structures similar to those observed in the Frank-Hertz
experiment and other investigations [281, 282, 287, 292, 540, 541]. They are a manifestation of the
energy and spatial periodic structures in the distribution function components, and in the spatially
periodic structures in the density and flux profiles of Figure 8.2. By assuming the elastic scattering
is weak, the width between the peaks in the transport property profiles, λ, is directly related to
the threshold energy of the inelastic process, UI in eV, via [542]

λ =
UI

(0.1)eV/Td (E/n0)Td
, (8.38)

where the reduced electric field is in Townsend (Td). For model (8.34), the theoretical spacing is
6.6̇. In Figure 8.3 it is possible to see that there are variations in the wavelength of the spatial
structures with Φ, as well as significant differences in the decay rates of the oscillation amplitudes.
For Φ = 0, the wavelength is approximately 8.24 ± 0.02 and this decreases to 6.67 ± 0.02 for
Φ = 0.4. The differences arise explicitly due the differences in the elastic momentum transfer cross
section, as well as implicit variations associated with the modification to the swarm’s energy with
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Φ. For Φ = 0.4, the momentum transfer cross section for elastic scattering is significantly reduced
compared to the Φ = 0 case. Hence, the randomizing collisions that dampen the oscillations [282]
are reduced for Φ = 0.4 as compared to other Φ, and the variation of damping with Φ then follows.
Likewise, it should not be surprising that the wavelength for the Φ = 0.4 case is closest to the
analytic value of (8.38), since the reduced momentum transfer associated with the Φ = 0.4, more
closely approximates the weak elastic scattering assumption used in deriving it.

We must also point out that the validity of these profiles are dependent on the discretization
of the distributions in configuration-space. If the spatial discretization is of the same order as the
Frank-Hertz wavelength, then it will be very difficult to resolve these features in the distributions
and consequently the time-averaged profiles. Of course, our initial choice for the discretization is
small enough to easily resolve these features, but as the simulation progresses and the distribution
diffuses, our adaptive mesh will increase in range and also increase the spatial discretization step
size. After a point, the coarseness of the discretization causes the distribution to slowly lose its
features, which is visible in the time-averaged quantities by the suppression of the amplitude of the
oscillations. In our simulations we expect our results for z∗ ' 30 deviate from the true spatially
dependent steady-state values, however the fully relaxed values agree with the hydrodynamic
values. It is simple to address this issue by increasing the number of points in configuration-space
but this is also significantly more computationally intensive

Figure 8.3: Spatial variation of the average energy and average velocity under SST conditions for
model (8.34) with various volume fractions Φ.

8.4 Spatio-temporal relaxation of electrons in liquid ar-
gon

Electron transport in liquid argon is an essential component in the function of Liquid Argon
Time Projection Chambers (LArTPC) which are currently being used for high energy particle
detection [88]. Ionized electrons in liquid argon originating from the high energy particles are
accelerated under the action of an electric field to generate a current and consequently reconstruct
the path of the high energy particle. Typically these chambers operate with electric field strengths
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of less than 500 kV/cm. The aim of this component is to follow the spatio-temporal evolution
of these ionized electrons in liquid argon, relevant to the operation of these detectors. Foxe et
al. [543] have measured the energy distribution of the electrons ionized by high energy particles
in liquid argon, and have shown that the majority of the ionized electrons have energies below
1 eV. Consequently in this study we employ an initial source energy-distribution that is constant
in energy space up to 1 eV, i.e.,

fU (U) = CU− 1
2Θ(U − 1 eV) , (8.39)

where Θ is the Heaviside step function, and U is in eV and C is a normalisation constant. The
mean energy of this distribution is 0.5 eV. The swarm is released from a narrow Gaussian in
configuration-space,

fz(z) =
1

∆z0
√
2π

exp
(
−
(

z

∆z0

)2
)

(8.40)

so that the full initial phase-space distribution is f (U, z, 0) = AfU (U)fz(z), where A is a normal-
ization constant such that

´
U

1
2 f (U, z, 0) dU = 1. For argon, we take ∆z0 = 10, a larger initial

spread than for the Percus-Yevick model, reflecting the smaller cross sections of argon, and hence
a larger mean free path. The aim of this component is to follow the spatio-temporal evolution of
these ionized electrons in liquid argon, relevant to the operation of these detectors.

8.4.1 Cross sections, potentials and screening

In Chapter 7, the modifications required to treat transport of electrons in dense gaseous and liquid
argon was investigated, with our simulations focused purely on the hydrodynamic regime. The
potentials, screening factor, and cross sections derived in Chapter 7 are used once again here. The
momentum transfer cross section calculated from the dilute gaseous and liquid argon potentials
are shown in Figure 8.4. It is significant to note the absence of the Ramsauer minimum in the
liquid-phase cross section.

Figure 8.4: The momentum transfer cross sections in the gas-phase (dashed line) and liquid-phase
(solid line) for electrons in argon.
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8.4.2 Results

To consider conditions representative of those in liquid state particle detectors, we simulate electron
transport in liquid argon under the following conditions:

E/n0 = 2.5× 10−3 Td ,

T0 = 85 K ,

m0 = 40 amu . (8.41)

The reduced field is equivalent to 500 kV/cm with a density corresponding to liquid argon, n0 =

0.0213 Å−3. For this reduced electric field and source distribution, given in (8.39)–(8.40), the
electron swarm energies are generally well below the first inelastic channel threshold energy (8.9 eV),
so that there is no inelastic channel operative, and hence the periodic spatial structures observed
in the Percus-Yevick hard-sphere liquid model above are not present.

The relaxation of the f0 distribution function component are compared for the gas and liquid
phases at three different times in Figure 8.5. At t∗ = 1, there are only small differences between
the contours reflecting similar energy relaxation rates between the two phases initially. At t∗ = 10,
a bulge is beginning to develop in the gas-phase contour in the energy region between 0.1− 0.5 eV
while no such bulge appears in the liquid-phase contour. This corresponds to the presence of a
Ramsauer minimum in the gas-phase momentum transfer cross section only. In this region, the
gas-phase momentum transfer cross section dips below the liquid cross section, which has resulted
in this enhancement of the diffusive flux in this range. At higher energies the liquid cross section
is less than the gas-phase cross section, which has resulted in enhanced diffusive flux. At t∗ = 100

these effects are even more pronounced.
In Figure 8.5 the f1 component contours for the gas and liquid phases of argon are compared

for the same three times. At the first time, t∗ = 1, there is already significant differences in the
f1 contours, with the largest change occurring in the Ramsauer minimum range in the gas-phase
case. This highlights again the difference in the timescales of the energy and momentum relaxation
between the two phases. As time increases, greater differences develop between the f1 contours
particularly around the Ramsauer minimum and at the high energy range for the reasons previously
discussed.

The number density as a function of time is shown in Figure 8.6. The behaviour of the number
density profiles is consistent with the behaviour of the f0 and f1 profiles. At t∗ = 1 there is no
noticeable difference in the two number density profiles. At later times it is clear that, despite
the Ramsauer minimum in the gas-phase, the liquid-phase experiences the greater diffusion rate
overall. For the electric field and initial source distribution considered, the average drift velocity
for both the gas and liquid phases is small compared to the diffusion rates.
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Figure 8.6: Temporal evolution of the number density profiles for gas-phase (dashed lines) and
liquid-phase (solid lines) argon. The three columns represent the times, t∗ = 1, 10, and 100
respectively.

8.5 Conclusion
In this chapter, a full multi-term, space-time dependent solution of the electron Boltzmann equation
in gases and liquids capable of modelling non-hydrodynamic conditions has been developed. The
flexibility of the algorithm lies in solving the Boltzmann equation’s Green’s function, knowledge
of which allows one to construct the solution for other experimental configurations e.g. the SST
experiment and similar applications. Operator splitting has been employed to efficiently evolve the
energy-space and configuration-space components individually with tailored numerical schemes.

The theory and associated code was first applied to a simple hard-sphere benchmark model
liquid, where structure effects were simulated by the Percus-Yevick structure factor as a function of
the volume fraction, Φ. The inclusion of an inelastic channel was a key test of the algorithm’s ability
to reproduce non-hydrodynamic phenomena. Periodic spatial structures developed in the space-
time and steady-state profiles for the distribution function components and associated transport
properties, the periodicity of which is directly related to the threshold energy of the inelastic
process. We observed that these periodic structures arose on shorter times scales when coherent
scattering effects became important. The steady-state profiles constructed for various volume
fractions also reproduced the non-hydrodynamic oscillatory structures expected. The asymptotic
transport coefficients calculated from the non-hydrodynamic solution of Boltzmann’s equation were
also shown to be consistent with the values calculated from a hydrodynamic solution of Boltzmann’s
equation.

Finally, the cross sections calculated in Chapter 7 were used to investigate the spatio-temporal
evolution of electrons in gas-phase and liquid-phase argon. The two momentum-transfer cross sec-
tions feature different qualitative and quantitative behaviours. Striking differences in the evolution
of the components of the phase-space distribution were apparent, reflecting the differences in the
gas-phase and liquid-phase cross sections, particularly the absence of a Ramsauer minimum in
the liquid-phase. This highlights the problems associated with treating liquid systems as gaseous
systems with increased density, which has implications for various applications including liquid
argon time projection chambers.
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Concluding remarks

9.1 Summary
An understanding of the temporal and spatial behaviour of electrons and positrons (as well as
other species) in gases and soft-condensed matter underpins a variety of technologies and applic-
ations. Electron applications are ubiquitous in modern life: plasma processing of microelectronic
devices, radiation therapy, dosimetry, plasma medicine and liquid particle detectors all depend
on electron-driven processes. Positrons have the unique property of annihilating with electrons, a
process which is exploited in positron-annihilation spectroscopy, positherapy and positron emission
tomography. Particularly for applications involving the human body, there is a need to be able to
accurately quantify the biological consequences of ionizing-radiation, including damage to DNA,
with the aim of minimizing the negative effects. The scope of this thesis has been to develop a
systematically benchmarked model for lepton transport in gases and simple atomic liquids valid
under hydrodynamic and non-hydrodynamic conditions. This has been achieved via a numerical
solution to the space-time dependent Boltzmann equation. An expansion of the velocity-space in
terms of Legendre polynomials has been performed with no limitation placed on the number of
terms included, i.e., a multi-term solution.

Under hydrodynamic conditions, the numerical scheme has been benchmarked for a variety of
model and real systems over a wide range of electric field strengths, chosen to validate the relevant
collisional processes. Swarm experiments, which generally operate in the hydrodynamic regime,
provide a stringent test on the accuracy and completeness of scattering cross section sets. The
Boltzmann equation provides a connection between microscopic information such as cross sections,
and macroscopic information including swarm experiment measurements, which has allowed us to
work closely with scattering theoreticians to comment on the accuracy and validity of new and
existing cross section sets. In this role, we have investigated and made recommendations for the
low-energy elastic cross section for the electron-neon system and the elastic and annihilation cross
sections for the positron-helium system.
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At higher energies, additional inelastic channels, such as ionization, become available. Ioniz-
ation by positron impact (PII) is a fundamentally different process than ionization by electron
impact (EII). In this work, a PII kinetic theory collision operator has been derived for the first
time, as well as a simple energy-partition function model that qualitatively captures the underlying
physics of high energy and near-threshold PII. We have shown that PII is much more sensitive to
the energy-partitioning than EII. In our investigation of the role of ionization on thermalization
in H2, different treatments of the energy-partitioning lead to differences of more than an order of
magnitude in the mean energy profiles, with implications to the energy deposition and number of
secondary particles generated.

Transport in tissue or biological matter requires a model of transport in soft-condensed matter.
The seminal works of Lekner and Cohen, which describe how to modify the scattering potentials for
dense fluids and include coherent scattering effects, have been generalized with modern scattering
theory. An effective liquid-phase argon cross section for elastic scattering has been calculated,
and the transport coefficients calculated agree closely with swarm experiment measurements in
both the gaseous and liquid states. The importance of an accurate treatment of the exchange and
polarization potentials has been highlighted.

Finally, a full, multi-term Boltzmann equation solver describing the non-equilibrium spatio-
temporal evolution of swarms under non-hydrodynamic conditions has been developed. To our
knowledge, this is the first time such a complete solution of Boltzmann’s equation has been de-
veloped. We have presented solutions for a model hard-sphere liquid with the addition of a inelastic
channel to induce periodic oscillatory structures, which can act as a non-hydrodynamic bench-
mark. The spatio-temporal evolution of the phase-space distribution for electrons in liquid argon
has been investigated, using the microscopic cross sections derived previously. The gas phase and
liquid phase momentum-transfer cross sections demonstrated quantitative and qualitative differ-
ences, which were reflected in the phase-space distribution evolution, and highlights the problems
associated with treating liquid systems as gaseous systems with increased density.

9.2 Recommendations for future work
This is a very broad field of research with many applications and opportunities that arise naturally
from this work. The analytic, mathematical and numerical tools and framework developed, to-
gether with the results obtained, suggest several avenues of research that can be further developed.

First, our Boltzmann equation solution can be generalized beyond plane-parallel geometry
to other geometries and symmetries. A spherically-symmetric system in configuration-space and
velocity-space can also be adequately described with the same Legendre polynomial expansion
considered here. Cylindrical geometry in configuration-space or the presence of magnetic fields
that destroy the spherical symmetry of the velocity-space cannot be adequately represented in
this simple way. In general, an expansion of the velocity-space in terms of spherical harmonics is
required [330]. These extensions are particularly important to PET applications, as the positrons
are emitted from a spherically symmetric radioactive source, the development of combined PET-
MRI scanners involve magnetic fields, and the ionized electrons arising from the thermalization
spur are produced with a cylindrical geometry. Similarly, the ionized electrons produced in the
emerging field of ion-beam therapy [544] are produced with a cylindrical geometry.

Second, a number of other important microscopic effects need to be included in our models on
the path to biological matter, for both electrons and positrons. The generalized Cohen and Lekner
procedure developed for electrons in atomic liquids can be adapted to positrons in atomic liquids.
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Quantum self-interference [158,159], the formation of localized states such as bubbles and clusters
[160, 163], accounting for orientational correlations due to dipoles in polar liquids [333, 545] and
the transition to solvation are effects that need to be included. Further investigation of scattering
from biomolecules including H2O, THF, pyramidine, Uracil and other simple DNA analogues is
warranted [546] to generate complete sets of differential cross sections for tissue analogues.

Finally, in this work, a general framework has been developed for tracking the drift and diffusion
of a pulse-like source during thermalization, via an adaptive configuration-space mesh. For many
applications, a high energy source of particles must be followed as it thermalizes, often through
many orders of magnitude with respect to the mean energy. An adaptive energy-space mesh has
been applied in our hydrodynamic relaxation studies, but has not yet been used in conjunction
with the adaptive configuration space mesh for non-hydrodynamic investigations.
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A
Fluid modelling in dilute and dense

atomic gases

This appendix contains material that has been published in the following journal article:
[4] G. J. Boyle, R. D. White, R. E. Robson, S. Dujko and Z. Lj. Petrović. On the approximation

of transport properties in structured materials using momentum-transfer theory. New Journal of
Physics, 14, 045011 (2012). doi:10.1088/1367-2630/14/4/045011.

This chapter includes reference Boltzmann equation solutions results which were performed by
R. D. White. All other work described in this appendix is my own.

It should be noted that a scaling error was made [9] in the calculation of the Percus-Yevick
structure factor, which is evident when comparing Figure A.1 to Figure 4.5 in Chapter 7. However,
since both the fluid model described here and the reference Boltzmann equation solver both used
the same (erroneous) structure factor, the comparisons made and associated comments are still
valid.

A.1 Introduction
The integro-differential nature of the Boltzmann kinetic equation, (2.2), makes finding a general
solution for the velocity (phase-space) distribution function a computationally expensive task.
In previous chapters, a multi-term Legendre polynomial expansion, (2.4), (2.6)–(2.8), has been
employed and numerical schemes developed to find the distribution function directly (see Chapters
2 and 3). In this appendix, the task of finding the phase-space distribution function is set aside,
and instead the focus is on the kinetic theory at a semi-quantitative level, by considering a fluid
approach. Fluid equations are generated by taking low-order moments of the kinetic equation,
which essentially represent continuity, momentum and energy balance equations [251, 266, 404,
547]. Whereas it is difficult to gain physical insight directly from the full Boltzmann equation,
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the moment approach allows one to obtain analytic relations between measurable quantities and
hence direct physical understanding of the relationships between these properties. This procedure
has a long history in the kinetic theory of gases [243, 548]. While there are many and varied
techniques to close the set of moment equations and approximate the moments of the collision
integral (see [269, 549] for discussions), we believe momentum transfer theory (MTT) (see the
textbook discussion [328]) represents the most transparent and internally consistent method to
approximate the moments of the collision operator. It is exact in the benchmark case of point-
charged induced dipole interactions, and the prescriptions for improved accuracy are clear [327,
404]. While the primary aim of MTT initially was to furnish relationships between measurable
quantities (e.g. Wannier energy relations, generalized Einstein relations (GER), etc.), more recently
it has been demonstrated to provide transport properties in good qualitative and semi-quantitative
agreement with more rigorous treatments such as Boltzmann equation solutions and Monte-Carlo
simulations [31,171,266,269,270,327,549–551].

While there exists a large body of literature dedicated to the measurement and calculation of
scattering cross sections and transport properties for the dilute gas phase, the same cannot be said
for the structured and soft-condensed phase. One aim of this work is to capitalize on this body
of literature in the gas phase by adapting and applying it where possible to consider transport in
structured and soft-condensed phases. In Chapter 7, an effective liquid scattering cross section was
calculated ab initio from the Dirac-Fock equation, which involved both coherent scattering effects
and a modification to the dilute gas-phase potential. The aim of this appendix is to approximately
calculate transport coefficients in structured and soft-condensed materials directly from transport
properties measured or calculated in the dilute gas phase limit.

A.2 Fluid equations and momentum-transfer theory
A full and general solution to the Boltzmann equation, (2.2), can be achieved only numerically
[1, 269]. A fluid equation treatment, however, can yield approximate quantitative results and,
importantly, can furnish analytic relationships between physically measurable properties. The
problem of solving the Boltzmann equation for f in phase-space is replaced by a low order set
of approximate (velocity) moment equations of f [34, 251, 252, 263, 266, 404]. The set of moment
equations is found by multiplying the modified Boltzmann equation (2.2) by an arbitrary property
of swarm particle velocity, Ψ(v), and integrating over all velocities,

∂

∂t
[n ⟨Ψ(v)⟩] +∇ · [n ⟨vΨ(v)⟩]− n

q

m

⟨
E · ∂

∂vΨ(v)
⟩

= −
ˆ

Ψ(v)J(f)dv ,

= CΨ , (A.1)

where ⟨⟩ represents the average over swarm particle velocity, and the negative on the right hand
side of (A.1) indicates the rate of loss of that quantity due to collisions with the medium. If one
takes Ψ(v) equals 1, mv and 1

2mv2, etc. in succession the above generates an infinite chain, a full
solution of which would be equivalent to knowing f . In practice, one must truncate the chain, and
generally for light particles only the first three moment equations are required. Setting Ψ(v) equal
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to 1, mv and 1
2mv2, yields the continuity, momentum and energy balance equations respectively:

∂n

∂t
+∇ · nv = C1 , (A.2)

∂

∂t
[nm⟨v⟩] +∇ · [nm⟨vv⟩]− nma = Cmv , (A.3)

∂

∂t
[n⟨1

2
mv2⟩] +∇ · [n⟨1

2
mv2v⟩]− nma · ⟨v⟩ = C 1

2mv2 . (A.4)

Momentum transfer theory (MTT) provides a way of evaluating the collision terms [328], and the
exact form will be detailed below. For now, it suffices to say that the collision frequencies are
assumed to be slow-varying functions of energy. The Taylor series representation,

ν (U) = ν (ϵ) + (U − ϵ) ν′ (ϵ) + · · · , (A.5)

about some reference energy, ϵ, at which the dominant contribution to the average occurs, can then
be assumed to converge rapidly. It is assumed that the appropriate reference energy is the average
energy ⟨U⟩. For conservative collisional processes such as elastic and inelastic scattering, only the
first term of the expansion (A.5) is generally considered. However, when energy-dependent non-
conservative processes, such as positronium formation, positron annihilation, and electron induced
ionization, are required in the description then the derivative term in (A.5) become leading term
and must be kept.

The connection between experiment and theory is generally given by the continuity equation
(2.86):

∂n (r, t)
∂t

+∇ · Γ (r, t) = S (r, t) , (A.6)

where Γ = n ⟨v⟩ denotes the swarm particle flux, n the charged particle density and S represents
a source or sink term arising from the presence of non-conservative collisional processes. If the
gradient of the swarm number density is also assumed to be small, and we are far from boundaries,
sources or sinks, the ‘hydrodynamic regime’ applies, and one can apply the density gradient expan-
sion of the phase-space distribution function [263]. The space-time dependence of all properties is
then effectively been projected onto functionals of the number density. Projecting out the space
and time dependence average energy, ϵ(r, t) and flux in the same manner, we have respectively

ϵ(r, t) =
⟨
1
2mv2

⟩
= ϵ+ γ · ∇n

n + · · · , (A.7)

Γ(r, t) = n ⟨v⟩ = nW−D · ∇n+ · · · , (A.8)

where ϵ is the mean energy of the swarm and γ is the gradient energy parameter [272]. Fick’s
law (A.8) defines the ‘flux drift velocity’ W and ‘flux diffusion tensor’ D. These are distinct
from the ‘bulk’ transport coefficients [264, 549] which are not considered in this appendix. If the
hydrodynamic regime has not been reached, then the space-time dependence of the distribution
function cannot be projected onto the number density, and transport coefficients are not meaningful
quantities. A complete, non-hydrodynamic solution is then required.

Using the explicit form of the collision operators used in [1, 315] and applying the relevant
approximations from MTT, the set of moment equations (A.3) in the hydrodynamic regime yield
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for a steady-state swarm of light particles,m≪ m0, the following hierarchy of coupled equations [4]:

W =
qE

m
(
ν̃m + 2

3ϵν
′
A
) , (A.9)

ϵ =
3

2
kbT0 +

1

2
m0W2 ν̃m

νm
− Ω

νe
− 2

3
ϵ2
ν′A
νe

, (A.10)

(
ν̃m +

2

3
ϵν′A

)
D =

d
dϵ

(
ν̃m +

2

3
ϵν′A

)
Wγ +

2

3

ϵ

m
I , (A.11)

[
1 +

ν′m
νm

(
ϵ− 3

2
kbT0 −

1

2
m0W2 ν̃

′
m
ν′m

)
+

Ω′

νe
+

1

νe

d
dϵ

(
2

3
ϵ2ν′A

)]
γ

= −m0
ν̃m
νm

W ·D−Q . (A.12)

The effect of attachment enters the balance equations through the derivative, ν′A . It has also been
assumed that, for light particles, random motion dominates directed motion, i.e.,

⟨
v2
⟩
≥ ⟨v⟩2. The

average momentum and transfer collision frequencies,

νm (ϵ) = νelas
m (ϵ) + νinel

m (ϵ) ,

=
∑
j

n0j

√
2ϵ

m
σm (j, j; ϵ) +

∑
j,j′

j ̸=j′

n0j

√
2ϵ

m
σm (j, j′; ϵ) ,

=
∑
j,j′

n0j

√
2ϵ

m
σm (j, j′; ϵ) , (A.13)

νe (ϵ) =
2m

m0
νm (ϵ) , (A.14)

ν̃m (ϵ) = ν̃elas
m (ϵ) + νinel

m (ϵ) ,

=
∑
j

n0j

√
2ϵ

m
σ̃m (j, j; ϵ) +

∑
j,j′

j ̸=j′

n0j

√
2ϵ

m
σm (j, j′; ϵ) , (A.15)

νA (ϵ) =
∑
j,j′

n0j

√
2ϵ

m
σA (j, j′; ϵ) , (A.16)

represent the dilute gas phase momentum and energy transfers, soft-condensed momentum transfer,
and attachment collision frequencies respectively, and are all prescribed functions of the mean
energy defined in the centre of mass frame. The terms σm, σ̃m and σA represent the momentum-
transfer cross sections for dilute gaseous and soft-condensed mediums, and the attachment cross
section respectively. Ω represents the energy lost in inelastic collisions in one elastic energy transfer
collisional time, ν−1

e , and is given by

Ω(U) =
∑

I
∆UI (⟨−→νI (U)⟩+ ⟨←−νI (U)⟩) . (A.17)

The inelastic channels I are governed by threshold energies UI, and collision frequencies for inelastic
and super-elastic processes, −→νI (U) and ←−νI (U), respectively.

Equations (A.9) and (A.10) represent coupled non-linear differential equations for the drift
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velocity W and mean energy ϵ, which serve as inputs into the linear coupled differential equations
(A.11) and (A.12) for the diffusion coefficients and gradient energy parameter. The heat flux, Q,
is found from higher order moments, and so an assumption needs to be made to achieve closure.
In this work we neglect Q, which is generally a safe assumption under hydrodynamic conditions,
but not always [267]. For further discussion on the heat flux the reader is referred to [549].

From this system of equations structure-modified generalizations of well known dilute gas phase
results such as Wannier’s energy relation [243], generalized Einstein relations [327], and others can
be made, as detailed below.

A.3 Standard MTT
In the preceding section, the system of equations (A.9)–(A.12) were derived for homogeneous and
first order inhomogeneous transport coefficients valid in soft-condensed matter. The aim of this
section is to develop semi-analytic relationships between dilute gas phase microscopic information,
such as cross sections and medium structure factor, and soft-condensed phase macroscopic trans-
port coefficients. To illustrate the technique, we limit ourselves to the simple case of a steady,
spatially uniform swarm subject to an electric field, undergoing elastic and particle-loss processes
only with a background medium. In this case, νm = νelas

m , ν̃m = ν̃elas
m and Ω = 0.

A.3.1 Drift velocity and mean energy

If ‘effective collision frequencies’ are defined by

ν̃eff = ν̃m +
2

3
ϵν′A, (A.18)

νeff = νm +
2

3
ϵν′A, (A.19)

then the equations (A.9) and (A.10) simplify to

W =
qE

mν̃eff
, (A.20)

and
ϵ =

3

2
kbT0 +

1

2
m0W

2 ν̃m
νm
− 2

3
ϵ2
ν′A
νe

, (A.21)

which can be combined as

ϵ =
3

2
kbT0 +

1

2
m0

(
qE

m

)2
ν̃m

ν̃2effνm
− 2

3
ϵ2
ν′A
νe

. (A.22)

Equation (A.21) is a generalization of the well known Wannier energy relation [243] in dilute gas
transport theory, which is frequently used empirically to produce the approximate mean energy
from measured drift velocities [328]. From (A.22), it is clear that given knowledge of the dilute gas
phase cross sections for the necessary processes and the structure factor of the medium, the above
non-linear expressions can be solved for the soft-condensed phase mean energy and drift velocity
numerically by any number of methods [552,553].

It is well known in gas transport theory that, for some energy profiles, the inclusion of inelastic
or non-conservative scattering cross sections can cause regions in which the flux drift velocity
decreases despite an increase in the applied electric field [267, 328, 414]. The conditions for the
occurrence of this phenomena, known as ‘negative differential conductivity’ (NDC), have been
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investigated previously [31,266,267,414]. For a structured media there is a new type of NDC [315]
which does not require inelastic collisions or non-conservative processes, i.e. purely a consequence
of the medium structure. NDC is characterized by a decrease in the drift velocity W despite an
increase in the magnitude of applied electric field E, i.e.

dW
dE < 0. (A.23)

For simplicity, we assume elastic collisions only and take the cold gas approximation, T0 = 0 K,
such the drift and mean energy equations (A.20) and (A.21) respectively become

W =
qE

mν̃m
, (A.24)

ϵ =
1

2
m0W

2 ν̃m
νm

. (A.25)

From these relations it can be shown that

dϵ
d lnE

1− d ln
(

ν̃m
νm

)
d ln ϵ

 = m0W
ν̃m
νm

dW
d lnE . (A.26)

Considering the signs of the left hand side and right hand side constituents of (A.26), it is evident
that for structure induced NDC to occur, the following condition must be met,

d ln
(

ν̃m
νm

)
d ln ϵ > 1. (A.27)

In Section A.3.3 this condition is further explored through numerical investigations, and can be
confirmed graphically.

A.3.2 Diffusion coefficients

The homogenous transport coefficients found in Section A.3.1 can be used to find first order
inhomogeneous transport coefficients. For the electric field only case considered here, there are
two non-zero components of the diffusion tensor; those parallel to the electric field, DL, and those
perpendicular, DT, given by:

DT =
2

3

ϵ

mν̃eff
, (A.28)

DL =
2

3

ϵ

mν̃eff
+

ν̃′eff
ν̃eff

Wγ , (A.29)

where dashed quantity represents energy derivatives. Substituting in the parallel component of
expression (A.12) (neglecting the heat flux) into (A.29) and re-arranging ,

DL =
2

3

ϵ

mν̃eff

1 + m0W
2 ν̃

′
eff

νeff
ν̃m
νm

1− 1
2m0W 2 ∂

∂ϵ

(
ν̃m
νm

)
+ ∂

∂ϵ

(
2
3ϵ

2 ν̃A
νe

)
−1

. (A.30)

This result can expressed in terms of the mobility, µ,

µ =
W

E
=

q

mν̃eff
, (A.31)
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which can then be used in combination with (A.21) to prove the following identity;

∂ ln µ
∂ lnE(

1 + ∂ ln µ
∂ lnE

) =
−m0W

2 ν̃
′
eff

ν̃eff
ν̃m
νm

1− 1
2m0W 2 ∂

∂ϵ

(
ν̃m
νm

)
+ ∂

∂ϵ

(
2
3ϵ

2 ν̃A
νe

) . (A.32)

It follows that equation (A.30) can be written as

DL
DT

= 1 +
∂ lnµ
∂ lnE , (A.33)

which is valid in soft-condensed matter and is of the same form as the well-known generalized
Einstein relation in dilute gas transport theory [243, 267]. The inclusion of a non-zero heat flux,
Q, manifests itself as a correction term in (A.33).

A.3.3 Benchmark model

The benchmark model for coherent scattering was introduced in Section 4.6. For a system of hard-
spherical particles, the model of Percus and Yevick (with the Verlet-Weiss correction) [411, 412]
provides the appropriate structure behaviour. The important factor is the volume fraction, Φ,
which is a measure of how tightly packed the particulates of the media are. Low volume fractions
indicate a larger inter-particle spacing, whereas higher volume fractions indicate a smaller inter-
particle spacing. Figure A.1 shows the static structure value, S (K), for different values of Φ. The
details of the model parameters was given in model (4.21).
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Figure A.1: The variation of the static structure factor with momentum exchange K for the
Percus-Yevick model (with Verlet-Weiss correction) for various volume fractions, Φ.
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Figure A.2: The energy variation of elastic the collision frequency, ν̃m, for various volume fractions
Φ, for a dense gas of hard spheres.

Mean energy and drift velocity

The spatially homogeneous transport coefficients, i.e. mean energy and drift velocity, were calcu-
lated from (A.9) and (A.10) for the hard-sphere model. In Figures A.3 and A.4, the variation of
swarm mean energy and drift velocity, respectively, with reduced electric field E/n0 is displayed
for the fluid model approach and compared with those of the Boltzmann solution. The fluid model
predictions are qualitatively correct and exhibit satisfactory quantitative agreement, generally to
within 10 to 20 percent of the Boltzmann equation solution results. In regions where the structure-
modified momentum transfer collision frequency varies rapidly with energy, the associated errors
are increased. This is consistent with the approximations associated with the low-order truncation
of (A.5) associated with momentum transfer theory. It is evident that the presence of structure in
the medium causes a significant difference between the two sets of coefficients. Coherent scattering
effects generally act to reduce the momentum transfer thus enhancing the field’s ability to pump
energy and momentum into the system. The enhancements in the mean energy and drift velocity
due to enhanced coherent scattering effects then follows. At high fields the profiles converge to the
dilute gas phase profile, a reflection of the decrease in the associated de Broglie wavelength and
subsequent suppression of coherent scattering effects.

Importantly, in Figure A.4, the fluid model successfully predicts the phenomenon of structure-
induced negative differential conductivity (NDC) [1,315], i.e., a decrease in drift velocity despite an
increase in electric field. While NDC has been demonstrated in the past as a consequence of inelastic
[267] or non-conservative [266] processes, its occurrence here is purely a result of including structure
effects. In certain regions an increase in energy leads to a sharp increase in the momentum-transfer
cross section (a reflection of sharp increases in the structure factor) and hence a decrease in drift
velocity (for further details on structure-induced NDC see [1,315]). A condition for the occurrence
of NDC was given in (A.27), restated differently using equation (4.19),

d ln s
d ln ϵ > 1. (A.34)

Figure A.5 shows a log-log plot of energy versus s, as defined in 7, superimposed with straight lines
of slope one. It is evident that there are energies for Φ = 0.3 and Φ = 0.4 profiles for which the
slope of log s/ log ϵ exceeds one, but for lower Φ there are not. This coincides with the occurrence
of NDC in Figure A.4 for Φ = 0.3 and Φ = 0.4 and not in the smaller volume fraction profiles. It
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Figure A.3: Variation of the swarm mean energy with reduced electric field, for various volume
fractions Φ, for a dense gas of hard spheres. Fluid results are compared with those from a multi-
term Boltzmann equation solution [1].
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Figure A.4: Variation of the swarm flux drift velocity with reduced electric field, for various volume
fractions Φ, for a dense gas of hard spheres. Fluid results are compared with those from a multi-
term Boltzmann equation solution [1].

can be deduced from (A.24) that the during NDC, a small increase E is accompanied by a rapid
increase in ν̃m resulting in an overall decrease in the drift velocity.
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Figure A.5: Variation of s, as defined in (4.20), with reduced electric field, for various volume
fractions Φ, for a dense gas of hard spheres.

Diffusion coefficients

The phenomenon of anisotropic diffusion is well known for charged particles of all masses in dilute
gaseous systems is now textbook material [328]

DL
DT

= 1 +
∂ lnµ
∂ lnE =

∂ lnW
∂ lnE . (A.35)

For charged particles interacting with a dilute gas of hard spheres with a constant collision cross
section, W ∼ E

1
2 , and hence

DL
DT
≃ 0.5. (A.36)

In Figures A.6 and A.7 the variation is presented in the transverse and longitudinal diffusion
coefficients respectively with reduced electric field as a function of the volume fraction Φ. Figure A.6
highlights the effect of coherent scattering on the transverse diffusion coefficient. For low fields, the
dense gas diffusion is about two orders of magnitude greater than the dilute gas equivalent, which
is successfully predicted by the fluid equations. As the field increases, the fluid approximations
departs significantly from the Boltzmann solution, reflecting the regions in the structure factor
which vary quickly and violate the assumption made in (A.5) of a slowly-varying collision frequency
and subsequent low-order truncation. Extra correction terms may need to be included to account
for this. Once the field increases to a point where the collision frequency is less varying with
energy, the fluid approximations return to the dense gas phase Boltzmann equation profiles, which
converge on the dilute gas profile.

Figure A.7 shows the variation of the longitudinal diffusion coefficient with reduced electric
field. Comparing with Figure A.6, the dilute profile for the longitudinal diffusion coefficient is half
the value of the transverse diffusion coefficient when considering hard spheres, as predicted by the
generalized Einstein relation (A.36). When coherent scattering effects are included the ratio of 0.5
is still retained at high and low field strengths. In between the two extremes, the oscillatory nature
of the structure factor effects in the momentum transfer collision frequency is exhibited, causing
the fluid model to break down entirely for the two largest volume fractions, Φ = 0.3 and Φ = 0.4, in
the region between about 10 Td and 20 Td where the dense gas collision frequency varies sharpest.
In this region we observe that the drift profiles predicted by the fluid approximation in A.4 exhibit
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Figure A.6: Variation of the transverse diffusion coefficient with reduced electric field for various
volume fractions Φ, for a dense gas of hard spheres. Fluid results are compared with those from a
multi-term Boltzmann equation solution [1].

NDC. Consequently, the right hand side of relation (A.33) becomes negative and the relation
breaks down. Again, extra correction terms in MTT are required to remedy this [267].
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Figure A.7: Variation of the longitudinal diffusion coefficient with reduced electric field for various
volume fractions Φ, for a dense gas of hard spheres. Fluid results are compared with those from a
multi-term Boltzmann equation solution [1].

A.3.4 Liquid argon

The fluid model theory is now applied to the case of positrons in liquid argon at 84 K. This
application has been considered previously and data is available for both the dilute gaseous and
liquid phases [1, 31, 315]. The semi-analytic expressions (A.9)-(A.11), include only elastic and
attachment collision effects. As such, it is expected that these will give less accurate results for
liquid argon than for the hard-sphere test case, particularly at fields where inelastic effects become
significant, but there is a range of fields where these equations are suitable.

Figure A.8 details the variation of positron swarm mean energy with the reduced electric field
in gaseous and liquid argon. The fluid model gives much less accurate predictions in this scenario
as compared to the hard-sphere test model case. The fluid predictions demonstrate peculiar,
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unphysical behaviour; there are regions in which multiple steady-state mean energies can result
from a single reduced electric field strength. Given the occurrence of this behaviour in the dilute
gas phase situation as well, it is clearly a consequence of the cross section behaviour rather than
purely a structure effect. Low-order MTT is not sufficient to account for the variation of the
collision frequencies. As the field strength increases, the fluid profiles diverge significantly from
that of the Boltzmann solution results as neglected inelastic processes become significant.
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Figure A.8: Variation of the swarm mean energy with reduced electric field, for dilute gaseous
and liquid argon at 84 K. Fluid results are compared with those from a multi-term Boltzmann
equation solution [1] and Monte-Carlo simulation [31].

The same issues are echoed by the drift velocities shown in Figure A.9; generally bigger er-
rors than the hard-sphere model scenario, peculiar profile behaviour and degeneracy, and large
discrepancies when inelastic procceses become significant.
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Figure A.9: Variation of the swarm flux drift velocity with reduced electric field, for dilute gaseous
and liquid argon at 84 K. Fluid results are compared with those from a multi-term Boltzmann
equation solution [1] and Monte-Carlo simulation [31].

Given the inadequacy of the spatially homogeneous transport property predictions, the higher
order moments, for which these serve as inputs, are not derived. Extra terms in the Taylor series
expansion (A.5) will be required to sufficiently describe positron transport in liquid argon using
the standard MTT technique.
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In light of the issues experienced using a standard MTT approach, a modified approach has
been developed,which utilizes the existing dilute gas phase transport coefficient literature to predict
transport in the soft-condensed phase, and is outlined in the following section.

A.4 Modified MTT
In the preceding section, relations between dilute gas phase microscopic quantites and soft-condensed
phase macroscopic transport coefficients were derived. The aim of this section is to develop semi-
analytic relationships between sets of transport coefficients in the dilute gas phase and in the soft-
condensed phase, facilitating the prediction of the latter directly from knowledge of the former and
structure information of the medium. From here forth, tildes will represent transport properties
in dense and soft-condensed phases while those without will represent quantities in the dilute gas
phase limit.

The steady-state, spatially homogeneous balance equations, (A.20) and (A.21), are restated
here for clarity:

W̃ =
qE

mν̃eff
, (A.37)

ϵ̃ =
3

2
kbT0 +

1

2
m0W̃

2 ν̃m
νm
− 2

3
ϵ̃2
ν′A
νe

. (A.38)

If the inter-particle spacing is large compared to the de Boglie wavelength of the swarm particle,
then the static structure factor S(∆k) reduces to unity and subsequently ν̃m → νm, regaining the
gas phase relations,

W =
qE

mνeff
, (A.39)

ϵ =
3

2
kbT0 +

1

2
m0W

2 − 2

3
ϵ2
ν′A
νe

. (A.40)

Comparing (A.37) and (A.39),

W̃ = W
νeff(ϵ)

ν̃eff(ϵ̃)
, (A.41)

which immediately links the drift velocities and mean energies in the two types of media. Substi-
tuting (A.41) into (A.38) it follows that

ϵ̃ =
3

2
kbT0 +

1

2
m0W

2

(
νeff(ϵ)

ν̃eff(ϵ̃)

)2
ν̃m(ϵ̃)

νm(ϵ̃)
− 2

3
ϵ̃2
ν′A(ϵ̃)

νe(ϵ̃)
, (A.42)

which gives the sought after expression: a non-linear relation for the soft-condensed phase mean
energy ϵ̃ purely in terms of the dilute gas phase mean energy ϵ, drift W , and medium structure
factor s(ϵ). In general this relation must be solved numerically, and results are presented in Section
A.4.1. The process for finding soft-condensed phase transport coefficients from dilute gas phase
information is then as follows;

1. Find νm and ν′A by fitting dilute gas phase mean energy, ϵ, and drift velocity, W , according
to the functional forms (A.39) and (A.40).

2. Include coherent scattering effects which, for isotropic scattering, is found simply from ν̃m =

νms.
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3. Solve (A.42) for soft-condensed phase mean energy, ϵ̃, which can then be used to find other
condensed-phase transport coefficients.

In the spirit of other popular approaches used in transport physics [548,554] we seek to represent
equation (A.42) in terms of an ‘effective electric field’, Eeff, i.e. what is the electric field needed in
the dilute gas phase limit, to generate the same average energy in the soft-condensed phase:

ϵ̃ (E) = ϵ(Eeff) ≡ ϵ. (A.43)

Using (A.39), (A.40) becomes

ϵ =
3

2
kbT0 +

1

2
m0

(
qEeff
mνeff

)2

− 2

3
ϵ2
ν′A
νe

. (A.44)

Combining (A.44) with (A.38) yields an expression for the effective electric field strength in terms
of the actual applied electric field strength and various collision frequencies evaluated at ϵ:

Eeff = E
νeff(ϵ)

ν̃eff(ϵ)

√
ν̃m(ϵ)

νm(ϵ)
, (A.45)

= E
νeff(ϵ)

ν̃eff(ϵ)

√
s(ϵ), (A.46)

where (A.46) is a simplification for isotropic scattering. The effective field is non-linearly dependent
on the mean energy, and solving (A.45) with (A.44) is mathematically equivalent to solving (A.42)
Effective fields calculated for a simplistic test model and real liquid are presented in Section A.4.1.

Once the mean energy and drift velocity valid in soft-condensed matter have been found,
diffusion coefficients can then be derived from the relations given in Section A.3.2. It should be
emphasized that the relations for diffusion in the soft-condensed phase require only energy and
drift velocity data in the dilute gas phase. This is in the spirit of MTT, however relations could
be derived which facilitate more direct computation between the diffusion coefficient sets.

A.4.1 Benchmark model

The benchmark model of a system of hard spheres described in Section A.3.3 is once again em-
ployed.

Mean energy and drift velocity

The spatially homogeneous transport coefficients, i.e. mean energy and drift velocity, were cal-
culated from (A.42) and (A.41) for the hard-sphere model. Figures A.10 and A.11 compare the
variation of swarm mean energy and drift velocity with reduced electric field of the modified MTT
approach with those of the standard MTT and Boltzmann solutions. The modified MTT technique
generally gives better prediction than the standard MTT. This is a consequence of using ‘effective
collision frequencies’ fitted from the Boltzmann dilute gas phase transport coefficients, which serve
to reduce some of the errors involved with MTT. Comments from Section A.3.3 regarding the
qualitative behaviour of the standard MTT mean energy and drift velocity are all still appropriate
here.

In Figure A.12 the relationship between the actual reduced electric field strength and the
effective electric field strength as described by (A.45), for the two MTT approaches. Generally
transport in a structured medium requires a lower electric field to generate the same energies and
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Figure A.10: Variation of the swarm mean energy with reduced electric field, for various volume
fractions Φ, for a dense gas of hard spheres. Fluid results are compared with those from a multi-
term Boltzmann equation solution [1].
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Figure A.11: Variation of the swarm flux drift velocity with reduced electric field, for various
volume fractions Φ, for a dense gas of hard spheres. Fluid results are compared with those from a
multi-term Boltzmann equation solution [1].

drift velocity as transport in a dilute gas, which is a reflection of the reduction in the momentum
transfer due to coherent scattering effects. At high fields, Eeff approaches E as expected. Although
Eeff is calculated from the same expression, there are small differences evident between the standard
and modified MTT results. This is due to (A.45) being evaluated at slightly different dilute gas
phase energies; the former using a MTT calculation while the latter uses the Boltzmann solution
information directly. It is thus expected that modified MTT predictions are more accurate.
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Figure A.12: Variation of the reduced effective electric field, Eeff, with reduced electric field for
various volume fractions Φ, for a dense gas of hard spheres.

Diffusion coefficients

The diffusion coefficients can then be found from (A.28) and (A.33) using the homogeneous trans-
port quantities as inputs, and are shown in Figures A.6 and A.7. The diffusion coefficients found
from the modified MTT are generally more accurate than the standard MTT, which is to be ex-
pected from using more accurate inputs. Phenomenologically, comments made in Section A.3.3
still apply here. A breakdown of the low order fluid model entirely for the two largest volume
fractions, Φ = 0.3 and Φ = 0.4, in the region where the dense gas phase collision frequency varies
sharpest is again seen.
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Figure A.13: Variation of the transverse diffusion coefficient with reduced electric field for various
volume fractions Φ, for a dense gas of hard spheres. Fluid results are compared with those from a
multi-term Boltzmann equation solution [1].
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Figure A.14: Variation of the longitudinal diffusion coefficient with reduced electric field for various
volume fractions Φ, for a dense gas of hard spheres. Fluid results are compared with those from a
multi-term Boltzmann equation solution [1].

A.4.2 Liquid argon

We now apply the modified MTT technique to the case of positrons in liquid argon at 84 K.

Drift velocity and mean energy

Figure A.15 details the variation of positron swarm mean energy with the reduced electric field in
gaseous and liquid argon. Previously, when using the standard MTT approach, the mean energy
exhibited peculiar, inaccurate and unphysical behaviour. Here the modified MTT approach yields
results with accuracy comparable to the test hard-sphere case. The dilute gas and liquid profiles
also now converge at high field strengths. Although the effects of inelastic processes become signi-
ficant at approximately 100 Td, the inaccuracies that one would expect from neglecting inelastic
processes are suppressed in Figure A.15 by the collision frequency fitting process. This is some-
what fortuitous as the coherent scattering effects are becoming suppressed in this region, and the
approximation of a coherent effective collision frequency model is minimized.
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Figure A.15: Variation of the swarm mean energy with reduced electric field, for dilute gaseous
and liquid argon at 84 K. Fluid results are compared with those from a multi-term Boltzmann
equation solution [1] and Monte-Carlo simulation [31].
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The variation of the drift velocity with reduced electric field is highlighted in Figure A.16. The
new model used to obtain liquid phase drift velocities from the dilute gas phase drift velocities is
shown to produce the required qualitative behaviour, again successfully demonstrating structure-
induced NDC. The accuracy is generally within the 10 to 20 percent expected from using a MTT
approximation. The discrepancy in the low field region we believe to be a consequence of different
extrapolation methods used by the Boltzmann and fluid numerical algorithms to evaluate the
structure factor and process cross sections at low energies.
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Figure A.16: Variation of the swarm flux drift velocity with reduced electric field, for dilute gaseous
and liquid argon at 84 K. Fluid results are compared with those from a multi-term Boltzmann
equation solution [1] and Monte-Carlo simulation [31].

The relationship between the actual reduced electric field strength and effective reduced electric
field for liquid argon are shown in Figure A.17. The largest difference between the two profiles
occurs at the lowest field strengths, which then converge as the field increases as required. Again
the effective field is generally greater than the actual, reflecting the mostly increased mean energy
and drift velocity exhibited by swarm in the liquid phase in Figures A.8 and A.9, reflecting the
enhanced efficiency of the field to pump energy into the swarm due to the reduced momentum
exchange associated with coherent scattering.
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Figure A.17: Variation of the reduced effective electric field, Eeff, with reduced electric field, for
dilute gaseous and liquid argon at 84 K. Fluid results are compared with those from a multi-term
Boltzmann equation solution [1] and Monte-Carlo simulation [31].
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Diffusion coefficients

The variation of the transverse and longitudinal diffusion coefficients with reduced electric field
are detailed in Figures A.18 and A.19. Although the accuracy of these higher order quantities
has decreased, the modified MTT approach still yields a good qualitative description of the liquid
phase diffusion behaviour. Despite significant discrepancies between the predicted and expected
transverse diffusion coefficients at high field strengths, the longitudinal diffusion coefficients do
behave qualitatively well in this region. However, similiar to the behaviour observed for the test
hard-sphere situation, for regions in which NDC occurs, our low order MTT theory breaks down,
as evident in Figure A.19. Extra correction terms may once again need to be included to account
for this.
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Figure A.18: Variation of the transverse diffusion coefficient with reduced electric field, for dilute
gaseous and liquid argon at 84 K. Fluid results are compared with those from a multi-term
Boltzmann equation solution [1] and Monte-Carlo simulation [31].
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Figure A.19: Variation of the longitudinal diffusion coefficient with reduced electric field, for dilute
gaseous and liquid argon at 84 K. Fluid results are compared with those from a multi-term
Boltzmann equation solution [1] and Monte-Carlo simulation [31].
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A.5 Summary
In this appendix, a fluid model has been developed primarily to gain physical insight as well
as simplify computations, which generalizes many of the relations for dilute gas phase systems
to soft-condensed systems, including the Wannier energy relation and the generalized Einstein
relations for diffusion. We have applied these relations to a benchmark model and to positrons
in liquid argon, and compared favourably the results with a full multi-term Boltzmann solution
[1, 315]. The low-order momentum-tranfer theory approximation was shown to break down in
argon, and a modified approach was developed using simple relations that evaluate soft-condensed
phase transport properties from a knowledge of transport properties in the dilute gas phase and
structure factors for the medium. The modified fluid model relations provide excellent qualitative
agreement and generally good quantitative agreement. Given the ease of implementation and
ability to capitalize on existing transport literature, the fluid models developed will be beneficial
tools for predicting the transport properties in soft-condensed matter from existing gas phase data.
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