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ABSTRACT 
 

Shallow coastal habitats support diverse communities of larval and juvenile fishes, 

providing refuge from predation while facilitating growth. The function of shallow coastal 

habitats as nurseries has created considerable interest in managing these areas. However, 

shallow coastal habitats may be important for benefits that extend beyond nursery function. 

Contemporary research suggests large bodied fishes also occur in shallow coastal habitats, 

and that predation may be a more common activity within nursery habitats than previously 

thought. Shallow coastal habitats may be utilised frequently by large bodied fishes and 

provide additional ecological functions for these poorly studied fish communities. 

Few studies have considered cross-shore sampling of the shallow coastal habitat 

mosaic, thus current knowledge on how fish communities may differentially use micro-

habitats within the shallow coastal habitats is limited. For this thesis the shallow coastal 

habitat mosaic was delineated into three continuous micro-habitats: the littoral, intertidal and 

subtidal habitats. The littoral habitat occurs at the interface of the terrestrial and the marine 

environment and is fully exposed during low tides. Contiguous from the littoral habitat, the 

intertidal habitat is exposed at varying depths depending on daily tidal cycles. Extending 

seaward from the intertidal habitat is the subtidal habitat that is always inundated with water. 

Although some research has focused individually within one of these micro-habitats, no 

research is yet to consider them as a broader connected ecosystem.  

A shallow coastal habitat mosaic in Cleveland Bay, northern Queensland, Australia, 

was sampled using a large (115 mm) mesh monofilament gill net over a one year period. The 

community of large bodied fishes (> 200 mm) was defined and their distribution across the 

mosaic of littoral, intertidal and subtidal habitats identified. Further, the influence of salinity, 

temperature, and dissolved oxygen on fish community structures was also investigated. In an 
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attempt to determine drivers of habitat use, ecological functions including life history stage, 

reproductive activity and foraging activity which may potentially influence how large bodied 

fishes use the habitat mosaic were investigated. 

A total of 1119 individuals from 26 families and 36 species were sampled, though 

four families accounted for 79.1% of the total sample (Latidae, Polynemidae, Ariidae, and 

Carcharhinidae). Fish communities sampled were diverse and significant differences in 

community structure were present between habitats. The littoral and subtidal communities 

were significantly different from each other with the intertidal community sharing some 

species-specific characteristics with both the littoral and subtidal. Teleosts were the dominant 

group in the littoral and intertidal habitats while sharks dominated the subtidal habitat. Very 

few habitat generalists, species that occurred in all three habitats, were sampled. Clear habitat 

preferences and avoidance occurred with most of the dominant species entirely absent from at 

least one of the habitats. A relationship between environmental factors (temperature, 

dissolved oxygen and salinity) and fish assemblages was identified. These patterns are likely 

driven by a combination of biological and ecological processes, however further research will 

be necessary to better understand the role of these processes in shaping the large bodied fish 

communities of shallow coastal waters. 

Life history stage was defined for 977 individuals from 26 families and 28 species. 

Reproductive and foraging activity was determined for the most abundantly sampled teleost 

and sharks. Ontogenetic shifts in habitats use were apparent with juvenile teleosts dominant 

in the littoral habitat while adult teleosts were dominant in the intertidal habitat (few teleosts 

were caught in the subtidal habitat). In contrast to teleosts, sharks were mostly present as 

young-of-the-year (YOY) and juveniles, suggesting the intertidal and subtidal habitats both 

act as a shark nursery (only three sharks were captured in the littoral habitat). Interestingly, 

YOY sharks were more common in the intertidal habitat as compared with the subtidal 
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suggesting an ontogenetic shift in habitat use occurs for young sharks as well. Imminent 

spawning activity (defined by the presence of hydrated oocytes in the ovaries of females) was 

only observed in E. tetradactylum in all three habitats. Shark reproductive activity (defined 

by visible eggs or embryos and an enlarged/distended uterus) was observed in one shark, 

Rhizoprionodon taylori, with parturition observed in the subtidal habitat. Active foraging was 

evident in L. calcarifer, E. tetradactylum and P. argenteus with gut contents suggesting foraging 

occurred throughout the habitat mosaic. Some species specific foraging behaviours were 

identified with L. calcarifer consuming mostly teleosts in the littoral habitat, and crustaceans 

in the intertidal habitat. The behaviour of switching prey may allow L. calcarifer to exploit 

and dominate the littoral and intertidal habitats. Teleosts prey items were also predominant in 

the guts of R. taylori and Carcharhinus tilstoni/limbatus though opportunistic foraging was 

observed with Arius spp. eggs common in both shark guts. The use of the intertidal and 

subtidal habitats by young sharks may be encouraged by a seasonal abundance of nutrient 

rich food sources such as Arius spp. eggs.  

This thesis illustrates that large bodied fish are common in the shallow coastal habitat 

mosaic and that the habitat mosaic provides many benefits beyond nursery function. Future 

research should sample both large and small fish communities simultaneously to completely 

understand the importance of shallow coastal waters to all fishes regardless of size or life 

history stage. The efficacy of future management will benefit from an understanding of all 

fish communities within, and ecological services provided by shallow coastal water 

ecosystems. 
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The shallow waters of marine coastal habitats are crucial components of tropical 

marine ecosystems. The increased availability of sunlight to shallow coastal habitats allows 

primary producers, such as algae and seagrasses to flourish (Burke et al. 2001). The primary 

producers are the basis for extensive and productive food webs and ecosystems (Orth et al. 

2006, Eyre et al. 2011). Shallow coastal habitats are very diverse in structure and may include 

estuaries, mudflats, wetlands and mangrove forests. The combined high productivity and 

diversity in structure of shallow coastal habitats allows a diverse array of fish species to 

inhabit these areas (Groombridge et al. 2000). 

Shallow coastal habitats are highly dynamic environments that are exposed to large 

fluctuations in environmental factors (i.e. depth, temperature, salinity) driven by tidal, lunar 

and/or seasonal cycles (Blaber et al. 1989). The tidal variation in vertical space magnifies 

these parameters creating a habitat that may be extreme in temperature, salinity and oxygen 

levels. For example, during daytime low tides, temperatures may rise causing dissolved 

oxygen to decrease producing a hypoxic environment in which few marine fish can survive 

(Horn et al. 1999). Freshwater input can also cause rapid changes in salinity within shallow 

coastal habitats. For example, salinity can fluctuate during monsoon seasons when freshwater 

floods inundate the coastal habitat (Duke & Wolanski 2001). Shallow coastal habitats are also 

subjected to storm events such as cyclones, tsunamis and storm surges which can alter habitat 

structure and function, or extreme weather events can create permanent morphological 

changes (Krishnamurthy 2010). In comparison to offshore waters, shallow coastal habitats 

are chaotic environments with little environmental stability. 

Shallow coastal habitats are an important source of protein for the global community 

by producing 90% of marine fish catch (Sherman 1993, Hinrichsen 1998). Moreover, the fish 

consumption per capita has undergone a global increase from 9.9 kg in 1960 to 16.4 kg in 
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2005 (FAO 2008) indicating that the dependence on shallow coastal habitats for marine-

based protein is increasing. In many developing countries, marine based protein can comprise 

up to 50% of the total protein consumption (FAO 2008). Clearly, shallow coastal habitats are 

very important ecosystems that contribute to the food security of the global community. 

Human civilizations preferentially settle close to coastal habitats to benefit from and 

exploit available resources such as fertile farmland, freshwater and aquatic food sources 

(Kennett & Kennett 2006). Currently, 61% of the world’s human population occurs along 

coastal margins (Agardy et al. 2005) and not surprisingly habitat degradation is an 

increasingly common concern (Airoldi & Beck 2007, Hanski 2011). Anthropogenic habitat 

degradation can create biological changes with a decline of marine organisms such as sea 

turtles, marine mammals, fish and marine invertebrates resulting in species extinctions and 

profound shifts in ecosystems (Beck et al. 2001, Wen et al. 2010, Santos et al. 2011, Verdiell-

Cubedo et al. 2012a). The global human population of 2000 was estimated to increase 47% 

by 2050 (UN 2004), which will further exacerbate anthropogenic pressures on coastal 

ecosystems. 

The effects of fishing on shallow coastal habitats can be detrimental (Thronson & 

Quigg 2008, Wen et al. 2010). Ecological shifts can occur in fish communities when the 

overfishing of single species extends to a point that even carefully managed rebuilding and 

recovery efforts may fail (Trimble et al. 2009). The consequences of extreme overfishing was 

observed in some Canadian fisheries where impoverished populations and large scale shifts in 

ecosystem structure and function was responsible for a 50% reduction in harvests over a 30 

year period (Hutchings et al. 2012). While humans remain dependent on marine based protein 

for sustenance, it is essential to better understand those ecosystems that support protein 

production. 
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If current trends in shallow coastal habitat usage continue, effective management and 

conservation practices of all human activities will be crucial in maintaining healthy and 

productive shallow costal habitats. Shallow coastal habitats will require adaptive and 

effective management to meet global marine protein demands. To mitigate anthropogenic 

impacts practices such as habitat restoration, marine protected area declarations, fisheries 

management and ecosystem-based assessments (Agardy 2003) are increasingly utilised. 

However, management intervention can more effective when strategies are developed and 

designed around a robust and comprehensive knowledge of the impacted species or 

ecosystem. 

Current knowledge suggests shallow coastal habitats are important nurseries for 

teleosts (Lazzari et al. 2003, Franco et al. 2006), sharks (Castro 1993, Francis 2013) and rays 

(Goodman et al. 2011, Dale et al. 2013). Nursery habitats offer larval and juvenile fish refuge 

from predators while providing increased access to food sources. For example, Able et al. 

(2013) identified a surf zone in New Jersey as functioning as an important nursery habitat for 

three species of teleost, Pomatomus saltatric, Mugil curema and Trachinotus carolinus, with 

the habitat utilised as a nursery throughout the year. The nursery function of shallow coastal 

habitats highlights their ecological value and contribution to marine ecosystems. Thus, 

shallow coastal habitats are areas of interest for fisheries management. 

Contemporary research has suggesting shallow coastal habitats support large and 

mature fishes (Tobin et al. 2014) that use these habitats for ecological functions such as 

foraging (Chong et al. 1990, Krumme et al. 2008), spawning (Præbel et al. 2009, Quinn et al. 

2012) and parturition (Dibattista et al. 2008). For example, Franco et al. (2006) identified 

shallow coastal seagrasses as critical spawning habitat for adult grass gobies, Zosterisessor 

ophiocephalus while McCallister et al. (2013) describe the importance of shallow coastal 
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habitats in Florida for a parturition by a diverse array of tropical sharks. Identifying the 

additional ecological values that shallow coastal habitats support is necessary in order for 

management to preserve these functions. 

The knowledge that shallow coastal habitats are important nursery habitats (Blaber et 

al. 1995, Ryer et al. 2010, Able et al. 2013) has been a focus of management for natural 

resource managers, however these habitats may provide additional ecosystems functions 

which may be excluded from current management practices. Mitigating the effects of human 

populations on coastal ecosystems requires a comprehensive understanding of the fish 

communities that utilise them and why. I aim to address this knowledge gap by identifying 

large bodied fish communities in a shallow coastal habitat mosaic and to determine possible 

drivers of habitat use within this thesis. 

The shallow coastal habitat mosaic in Townsville, Australia functions as a nursery 

habitat for sharks (Simpfendorfer & Milward 1993, Chin et al. 2013) and supports local 

commercial gill net fisheries (Harry 2011, Tobin et al. 2014) that target mostly teleosts 

including Lates calcarifer (barramundi), Platycephalus fuscus (flathead) and Eleutheronema 

tetradactylum (blue threadfin). A purposed plan to extend the Townsville Port (POTL 2010) 

may alter the structure of the shallow coastal habitat mosaic and thus alter the fish 

communities that use them. Clearly there is a need to understand what communities of fish 

use the coastal habitat and why. Such knowledge is mandatory to guide management and 

mitigate potential development impacts on the fish communities within. 
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1.1 PROJECT STRUCTURE AND OUTPUTS 

This study was designed to fill a critical knowledge gap that is “What large bodied fish 

use the habitat mosaic of shallow coastal waters, and what functions do species gain 

from those habitats?”  

The specific project aims were to: 

1. describe the large bodied fish (> 200 mm) communities that inhabit the littoral, 

intertidal and subtidal habitats of a tropical shallow water costal mosaic in 

North Eastern Australia, and  

2. identify the ecological functions (reproduction, foraging and nursery) that 

species gain from those habitats 

 



 

 

CHAPTER 2. LARGE TROPICAL FISHES AND THEIR 

USE OF THE NEARSHORE LITTORAL, 

INTERTIDAL AND SUBTIDAL HABITAT MOSAIC 
 

 

 

Plate 2. Gillnet sampling in the intertidal habitat (photo credit Centre for Sustainable Tropical 
Fisheries and Aquaculture) 
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2.1 INTRODUCTION 

Shallow coastal habitats are often identified as supporting important nursery function 

as a result of a high abundance of larval and juvenile teleosts (Blaber & Blaber 1980, Faunce 

& Serafy 2006, Nagelkerken 2009) as well as young-of-the-year and juvenile sharks 

(Simpfendorfer & Milward 1993). Nursery habitats provided refuge from predators and 

increased food sources to larval and juveniles fishes (Blaber et al. 1995, Baker & Sheaves 

2009a, Able et al. 2013). Shallow coastal habitats are diverse and encompass a wide range of 

habitat types including estuaries, mangroves and wetlands. Sheaves (2009) suggested that 

these habitats create a coastal ecosystem mosaic that links freshwater, brackish and marine 

habitats. The coastal ecosystem mosaic is connected to offshore waters through the export of 

nutrients, fish migrations, and provides a habitat for the reproduction of many offshore 

species (Sheaves 2009). This connectivity means that shallow coastal habitats may be 

important habitats that contribute to critical life history stages of many offshore species 

(Nagelkerken 2009). 

Effective management of the coastal ecosystem mosaic is becoming progressively 

more challenging because of increasing industrial activities and the continual development of 

coastal communities (Stallings 2009, Morley et al. 2012). Few shallow coastal habitats have 

been undisturbed by coastal development and modifications (Blaber et al. 2000). In addition, 

fishing pressure is often high in these easily accessible habitats (Jackson et al. 2001, Cooke & 

Cowx 2004). Such cumulative pressures have resulted in impoverished fish communities 

(Shahidul Islam & Tanaka 2004, Courrat et al. 2009). In order for management to 

successfully mitigate these impacts, we must first understand what species occur in the 

shallow coastal habitat mosaic and what function these areas may provide. 
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The continuous nature of the shallow coastal habitat mosaic means clearly defining 

individual habitats is often difficult. Unfortunately, few studies clearly define the micro-

habitats of the shallow coastal habitat mosaic and often variant terminology is used. For 

example a range of definitions exist for describing intertidal and subtidal habitats (Sheaves 

1992, Dorenbosch et al. 2004, Nagelkerken & van der Velde 2004), with some authors 

combining the two habitats into an overall near shore environment (Robertson & Duke 1987). 

In addition, Verdiell-Cubedo et al. (2012b) defined the littoral habitat of a coastline as having 

a maximum depth < 1 m while Layman (2000) sampled a shallower depth range (<0.4 m) and 

introduced the term “shallow-surf zone” in place of littoral habitat. Here we consider the 

shallow coastal habitat mosaic to be comprised of three contiguous micro-habitats – the 

littoral, intertidal and subtidal habitats (see Fig. 2.1). The littoral is bound on the landward 

margin by the highest astronomical tide (HAT) and on the seaward margin by the smallest 

high tide and is fully exposed during low tides. The abutting intertidal extends from the 

smallest high tide, to the lowest astronomical tide (LAT) and is inundated to varying extents 

except on the lowest astronomical tide. The subtidal habitat extends seaward beyond the LAT 

and is contiguous with the wider offshore environment. 

No study has yet considered the littoral, intertidal and subtidal habitats concurrently to 

understand how fish communities may structure themselves among these available habitats. 

Shallow coastal habitats are dynamic environments, therefore assuming similarities among 

fish communities across habitats may be incorrect. For instance, Tobin et al. (2014) sampled 

the intertidal habitat of Cleveland Bay, Australia, describing seasonal use by 30 species of 

teleost and 14 species of sharks and rays. However, it is apparent from the work of 

Simpfendorfer and Milward (1993) in the adjoining subtidal habitat that community structure 

varies markedly with the subtidal dominated by sharks rather than teleosts. Of the few studies 

that have concurrently sampled adjacent intertidal and subtidal habitats, Castellanos-Galindo 
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et al. (2010) concluded the fish communities within the intertidal contained a distinct subset 

of species from those within the subtidal.  

In addition to habitat effects, fish communities may also be influenced by the 

environment. For example, Schaffler et al. (2013) identified juvenile fish communities within 

a coastal seagrass habitat were structured not only by habitat complexity but also gradients of 

temperature and salinity. Clearly determining fish species composition and how the fish 

species utilise littoral, intertidal and subtidal habitats requires concurrent sampling of fish 

communities and monitoring of abiotic variables. 

Previous research on littoral, intertidal and subtidal habitats has identified these 

habitats as nurseries from the high abundances of juvenile fishes inhabiting these areas 

(Blaber et al. 1989, Sheridan & Hays 2003, Ooi & Chong 2011). However, contemporary 

research is suggesting the abundance of large bodied fishes could be greatly underestimated 

in the coastal shallow water mosaic due to sampling method biases (Baker & Sheaves 2006, 

Tobin et al. 2014). Many of the sampling methods that have been used in littoral, intertidal 

and subtidal habitats are selective for small, slow moving animals (Faunce & Serafy 2006) 

and are not amenable for large mobile ones. Therefore, this study describes the community of 

large bodied fish (> 200 mm) within three habitats of a shallow embayment on the north east 

coast of Australia. The littoral, intertidal and subtidal habitats were sampled seasonally with 

the use of large-mesh gillnets over a one year period. Additionally, the abiotic influences on 

the fish communities were investigated to provide an understanding of the importance of 

these factors in defining community structure. 

2.2 METHODS 
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2.2.1 Study Site and Sampling Methodology 

Cleveland Bay is an embayment on the north-eastern coast of Australia near 

Townsville, Queensland that is approximately 27 km wide and covers an area of 225 km2 

with fringing mangrove forest, mud and sand flats occurring on the landward edge (Fig. 

2.1a). The sampled area within Cleveland Bay was located within the north-western aspect of 

the bay (Fig. 2.1b) and subjected to semidiurnal tides with a maximum range of 4.2 meters. 

The landward margin of the littoral habitat was defined by a sharp gradient (1:10) spanning 

approximately 50 metres followed by a gradual gradient (< 1:100) of compact sand and mud 

ending at the lowest point of high tide (Fig. 2.1c). The littoral habitat was exposed throughout 

much of the tidal cycle and was fringed by patchily distributed Rhizophora stylosa, Ceripos 

tagal, and Avicennia marina mangroves near the terrestrial margin. The intertidal habitat was 

generally > 1000 m in width, and similarly composed of compact sand and mud. Seaward 

from the intertidal habitat, the subtidal habitat has a similar gradient to the intertidal with 

compact sand giving way to softer mud. These definitions generally represent the littoral, 

intertidal and subtidal micro-habitats within the study site as the actual positions of the HAT 

and LAT were not rigorously surveyed. 

Sampling occurred on a seasonal basis from September 2012 to August 2013 

(Summer; Dec. – Feb., Autumn; March – May, Winter; June – Aug., Spring; Sep. – Nov.) 

and the littoral, intertidal and subtidal habitats were sampled at least twice each within each 

season. As far as was feasible, each habitat was randomly sampled across the available range 

of tidal states (high, low, ebb and flood tides) and thus heights (water depth). A balanced and 

structured sampling design was not possible due to the limiting effects of local weather 

conditions. Winds stronger than 15 knots generated small surf that prevented sampling in the 

intertidal and littoral habitats of the sampling site, and logically the littoral habitat was 

inaccessible on low tides. Depth was recorded at the start and end of each sample and an 
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average depth taken to represent each sample. Salinity, temperature and dissolved oxygen 

were recorded with an YSI Multi-Probe (Model 85; YSI Incorporated) for each sample 

Fish communities were sampled with a single monofilament gillnet (300 m x 2.5 m 

constructed with 18 ply, 115 mm stretched mesh monofilament). Net length was limited to 

200 m while sampling in the subtidal habitat to reduce the risk of interactions with local 

marine mega fauna such as Dugong dugong. The sampling net was always deployed 

perpendicular to the shoreline and allowed a minimum soak time of 30 minutes. Each time 

the net was deployed and retrieved was considered a sample. The geographic location of each 

deployment was recorded using a GPS and sampling effort mapped within each habitat. 

Captured individuals were identified to species level where possible and measured (fork 

length for teleosts, stretched total length for sharks, and disc width for rays, mm). Teleost of 

the family Ariidae were identified to family level only. Two tropical sharks, Carcharhinus 

tilstoni and Carcharhinus limbatus are not distinguishable based on phenotypic 

characteristics alone (Harry et al. 2012) and hybridisation also occurs (Morgan et al. 2012); 

as such individuals were identified as C. tilstoni – C. limbatus complex. 

2.2.2 Data Analysis 

Non-parametric testing was used to describe the effect of habitat on depth, water 

temperature, salinity and dissolved oxygen. Box plots were used to demonstrate the relative 

variability in each of these factors across habitats. 

Catch-per-unit-effort (CPUE) was calculated for each species within each sample as 

number of fish caught per 100 m net hour and was used as an index of relative abundance. 

Initially the effect of habitat on community structure was explored at the broad taxonomic 

level of teleost, shark and ray. A chi squared contingency table using count data tested if each 

taxonomic group was similarly represented within each habitat. A three-way analysis of 
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variance (ANOVA) tested the influence of taxonomic group, season and habitat type (littoral, 

intertidal and subtidal) on relative abundance. The effect of habitat on diversity was explored 

with species richness (N). The effect of habitat on length of fish captured was tested with 

ANOVA on the most abundant species sampled to meet the requirements of ANOVA 

analysis. Where significant differences were apparent, post hoc analyses were used to define 

homogenous groups. 

To further explore the influence of habitat and season on community composition, 

non-parametric multi-dimensional scaling (nMDS) was performed using the software 

PRIMER (v.6.2.1). A Bray-Curtis similarity matrix was created based on log transformed 

count data. To nullify the effects of samples with few fish and the limited sampling from 

weather constraints, samples were randomly grouped within each combination of habitat and 

season. Log transformation buffers the influence of highly abundant species, and the removal 

of rare species (n < 5 individuals across all habitats) avoids these species driving the results. 

Analysis of similarity (ANOSIM) tested for difference in fish community structure between 

habitats and seasons. Where significant differences were detected, similarity percentage 

(SIMPER) analysis was used to identify species with the highest contributions to each fish 

community (Clarke 1993). A similarity index (ratio of similarity/standard deviation) was also 

calculated for each species to evaluate each species importance as a discriminating species 

for each fish community.  

To determine if relationships occurred between the fish communities and four 

environmental variables (water temperature, salinity, dissolved oxygen and habitat) a 

canonical correspondence analysis (CCA) was used. Water temperature (°C), salinity (ppt) 

and dissolved oxygen (%) were treated as continuous variables while habitat was treated as a 

categorical variable. The CCA was produced using the vegan package (Oksanen et al. 2013) 
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in the statistical software ‘R’ (R Development Core Team 2008). A permutation test (499 

permutations) was used to determine the significance of the environmental variables on the 

community sampled. 

2.3 RESULTS 

2.3.1 Nearshore habitat sampling and characteristics 

A total of 72 net shots were completed in the nearshore habitat; 11 net shots in the 

littoral habitat, 38 net shots in the intertidal habitat and 23 net shots in the subtidal habitat. 

The water depth varied significantly among all habitat comparisons with a mean depth of 

0.98 m ± 0.04 s.e. for littoral habitat samples, 1.48 m ± 0.06 s.e. for the intertidal and 3.66 m 

± 0.07 s.e. for the subtidal (Kruskal-Wallis, d.f. = 2, P < 0.001)(Fig. 2.1a) with outliers 

indicating sampling conducted at the deepest and shallowest points during the tidal change. 

Water temperature varied significantly among habitats (Kruskal-Wallis, d.f. = 2, P < 0.001) 

with a gradient of decreasing temperatures across the littoral (mean 27.60°C ± 0.55 s.e.), 

intertidal (mean 26.40°C ± 0.26 s.e.) and subtidal (mean 25.60°C ± 0.27 s.e.) habitats (Fig. 

2.1b). Post hoc analysis demonstrated a significant difference between the littoral and 

subtidal habitats, and clearly temperature was most stable in the littoral habitat (Fig 2.1b). 

Salinity did not vary among habitats (average salinity of 34.25 ± 0.35 s.e. for the littoral, 

35.08 ± 0.12 s.e. for the intertidal and 35.18 ± 0.08 s.e. for the subtidal habitat)(Kruskal-

Wallis, d.f. = 2, P = 0.26), though salinity was clearly most stable in the subtidal habitat (Fig. 

2.1c). Dissolved oxygen within the littoral (mean 89.35% of saturation ± 1.49 s.e.) and 

intertidal (mean 91.27% of saturation ± 0.59 s.e.) and subtidal (mean 87.11% of saturation ± 

0.37 s.e.) varied significantly between habitats (Kruskal-Wallis, d.f. = 2, P = 0.001). Post hoc 

analysis demonstrated a significant difference occurred between the intertidal and the subtidal 

habitats (Fig. 2.1d).  
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2.3.2 Nearshore Community Characteristics 

A total of 1119 individuals from 26 families comprising of 36 species were sampled 

from the inshore habitat mosaic. Three teleosts (Latidae, Polynemida, and Ariidae) and one 

shark (Carcharhinidae) family dominated (79.1%) the community (Table 2.1). The overall 

community was dominated by teleosts (69.6%) with 25 species from 19 families; fewer 

sharks (24.6%) with 7 species from 2 families; and a small contribution of rays (5.8%) with 5 

species from 5 families. The proportion of each taxonomic group varied among the three 

habitats (2, df = 4, P < 0.001) with teleosts dominant in the littoral and intertidal habitats, 

while sharks were dominant in the subtidal habitat (Fig. 2.3). Rays were absent from the 

littoral habitat and made minor contributions to the intertidal and subtidal communities. 

Within the littoral and intertidal habitats, teleost were 2.8 and 2.2 times more likely to occur, 

respectively, compared to the subtidal. In contrast, within the subtidal sharks were 10.7 and 

47.3 times more likely to occur, respectively, than the intertidal and littoral (Fig. 2.3). Rays 

were 1.71 times more likely to occur in the intertidal than the subtidal habitat. More species 

were sampled in the intertidal (n = 34) than in the littoral (n = 18) and subtidal habitats (n = 

19). The relative abundance of animals present was influenced by a significant interactive 

effect between habitat and taxonomic groups (F4,71 = 17.1; P < 0.001). The dominant 

taxonomic group in the littoral and intertidal were teleosts with sharks dominant in the 

subtidal, in contrast the least dominant taxonomic group or less common were sharks and 

rays in the littoral and rays in the intertidal and subtidal (Fig. 2.4). 

Species-specific use patterns of the habitat mosaic were clear. Of the 17 most 

commonly sampled species (> 5 individuals) only 5 were present across all habitats with the 

remaining 12 absent in one of the three habitats (Table 2.1). No species was present in only 

one habitat. The most dominant species (Lates calcarifer) was not sampled in the subtidal 

habitat. The second and third most dominant species were teleosts Eleutheronema 



Chapter 2 Large Inshore tropical fish and their use of the littoral, intertidal and subtidal 
habitat mosaic 

 

16 
 

tetradactylum and Arius spp which occurred in all habitats. In contrast, the three most 

dominant sharks (Rhizoprionodon taylori, Carcharhinus fitzroyensis, and Carcharhinus 

tilstoni/limbatus) and the most dominant ray (Anoxypristis cuspidata) were not sampled in the 

littoral habitat, but occurred in the intertidal and subtidal habitats. Only one shark 

(Carcharhinus amboinensis) occurred in all three habitats, though there was a clear 

preference for the subtidal habitat as compared to the intertidal and more so the littoral 

habitat. 

To determine if fish length distribution varied between habitats, the nine most 

abundant species were analysed; L. calcarifer, E. tetradactylum, Arius spp., R. taylori, C. 

fitzroyensis, C. tilstoni/limbatus, A. cuspidata, C. amboinensis, and P. argenteus. 

Significantly smaller E. tetradactylum were sampled in deeper subtidal waters than in the 

shallower waters of the littoral (Tukey HSD, P < 0.05), or the intertidal habitats (Tukey HSD, 

P < 0.05). The trend was reversed for C. amboinensis and A. cuspidata with significantly 

larger individuals sampled in the deeper subtidal waters as compared with the shallower 

intertidal waters (Tukey HSD, P < 0.05; P < 0.001, respectively). For L. calcarifer and P. 

argenteus fork length did not vary between the littoral and intertidal habitats (ANOVA, d.f. = 

1, P = 0.5228; d.f. = 1, P = 0.1346). Additionally, Arius spp. fork length did not vary between 

the littoral, intertidal and subtidal habitats (ANOVA, d.f. = 2, P = 0.1346). 

2.3.3 Habitat Effect on Community Structure 

The fish communities structure varied significantly among habitats (ANOSIM R-

statistic = 0.249, P = 0.046) but not seasons (ANOSIM R-statistic = 0.04, P = 0.367). The 

multiple pairwise comparison tests identified the littoral habitat community differed 

significantly from the subtidal community (R-statistic = 0.707, P = 0.006), though the 

intertidal community was not distinct from either the littoral (R-statistic = -0.061, P = 0.592) 



Chapter 2 Large Inshore tropical fish and their use of the littoral, intertidal and subtidal 
habitat mosaic 

 

17 
 

or the subtidal (R-statistic = 0.271, P = 0.058). The nMDS ordination clearly showed 

separation of the littoral and subtidal communities with the intertidal community bridging the 

intermediate space (Fig. 2.6). 

SIMPER analysis identified a clear shift between teleosts discriminating the 

communities of the littoral and intertidal habitats and sharks discriminating the subtidal 

habitat. Four teleost species, four teleost and one shark species, and three sharks and one 

teleost species were considered discriminating species for the littoral, intertidal and subtidal 

communities respectively (Table 2.2). The teleost, Eleutheronema tetradactylum, was the 

only species identified as being discriminant all three habitat communities. Among all three 

habitats, the two most discriminating species contributed a similar cumulative contribution of 

around 64% (Table 2.2). However, the similarity index (ratio of similarity/standard deviation) 

of the two most discriminating species within each habitat displayed large variations (range 

0.76 – 7.02) suggesting the discriminating strength of species varied considerably among 

habitats (Table 2.2).  

The CCA revealed a relationship occurred between the fish communities and three 

environmental variables; habitat, salinity and temperature (Table 2.3). The effects of salinity 

and temperature were largely independent as indicated by the perpendicular vectors (Fig. 

2.7). The subtidal habitat was separate from the temperature, DO and salinity vectors, 

whereas the littoral and intertidal were parallel to the temperature vector. Further, the CCA 

clearly separates the subtidal and the littoral habitats with the intertidal between. Three 

sharks, C. fitzroyensis, C. amboinensis and R. taylori, occurred in greater numbers in the 

subtidal habitat while C. tilstoni/limbatus were more closely associated with the intertidal 

habitat and occurred near the salinity vector. Seven species of teleosts occurred between the 

littoral and intertidal habitats. Eleutheronema tetradactylum and C. amboinensis are located 

between the intertidal and subtidal. Mugil cephalus, P. argenteus and S. commersonianus 
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showed strong association with the temperature vector. Anoxypristis cuspidata did not occur 

near any environmental vector or near the three habitats suggesting an environmental 

interactive effect or other environmental influences may affect their distribution. 

2.4 DISCUSSION 

The present study has contributed valuable knowledge about the large bodied fish 

communities within a nearshore shallow water mosaic and their use of the littoral, intertidal 

and subtidal habitats within. Prior research has generally been confined to sampling only one 

of these nearshore habitats (Simpfendorfer & Milward 1993, Tobin et al. 2014) and thus 

provides incomplete information about the diversity and dynamism of nearshore fish 

communities. The three habitats within the sampled shallow water mosaic had distinct 

community structures. Teleosts dominated the littoral habitat, sharks dominated the subtidal 

habitat, and the bridging intertidal habitat represented a mix of teleosts, sharks and rays. 

However, many of the species sampled were infrequently present with common species 

absent from at least one habitat. Our results demonstrate that the structure of large bodied fish 

communities may vary markedly between adjacent nearshore habitats. Importantly, this study 

demonstrated that the community of fish found in nearshore subtidal habitats cannot predict 

the community of fish found in the nearby littoral habitat. 

While a small group of species were common generalist users of the littoral, intertidal 

and subtidal habitats, most of the abundant species demonstrated strong habitat preference 

patterns. Four teleost (Arius spp., E. tetradactylum, P. kaakan, and N. soldado) and one shark 

(C. ambionensis) species were generalist users, suggesting there were no barriers to generalist 

use and that each habitat served a useful purpose or ecological role. While generalist use may 

suggest species actively reside within each habitat for a specific purpose, alternatively habitat 

use could be as simple as moving between two adjacent habitats. Movement corridors have 
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been described for leopard sharks, Triakis semifasciata, in Monterey Bay where adult females 

navigate through tidal channels to access intertidal foraging opportunities opened by flooding 

tides (Carlisle & Starr 2010). In the case of our study, more focused research is required to 

understand whether the four teleost and one shark species specifically reside within each 

habitat to attain a benefit, or alternatively use the intertidal habitat as a simple movement 

corridor. Additionally, identifying other movement corridors through adjacent habitats such 

as rivers and tidal channels would provide valuable information on species that were not 

present in one or two of the sampled micro-habitats. 

Multiple ecological functions (nursery, foraging, and refuge) have been identified as 

being fulfilled within shallow coastal habitats for larvae and juvenile teleosts (Abrahams & 

Kattenfeld 1997, Blaber & Blaber 1980, Sheaves 2001), but for large bodied teleosts the 

ecological importance is uncertain. A common focus of historical research in shallow coastal 

habitats was that these habitats benefit larvae and juvenile teleosts by providing a number of 

ecological functions including nursery, foraging, and refuge (Lasiak 1981, Shenker & Dean 

1979, Weinstein 1979). Contemporary research is starting to expand the concept of multiple 

ecological functions which may be provided by shallow coastal habitats by sampling larger 

mature fishes. However, batoid (i.e. rays and skates) communities have been described 

utilising shallow (1 – 3 m) coastal habitats possibly as a result of their unique dorso-ventrally 

flattened body suggesting batoids may play key roles in ecological structuring of coastal 

habitats (Vaudo & Heithaus 2012). Additionally, large teleosts and sharks have been 

described occurring in very shallow (<1 m) coastal waters (Tobin et al. 2014) possibly to 

utilise the habitats for similar ecological services which juveniles utilise these areas – 

increase foraging and refuge from offshore predation threats. Contemporary research is 

clearly demonstrating that shallow coastal habitats serve many functions beyond the 
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protection of small and juvenile fishes (Baker and Sheaves 2009, Vaudo & Heithaus 2009, 

Tobin et. al. 2014). 

Shallow coastal habitats may be attractive foraging grounds as the foraging success of 

large bodied teleosts increases (Sheaves 2001) because prey animals within shallow habitats 

have fewer options for evading predation. The higher abundances of teleosts in the littoral 

and intertidal may indicate these habitats are important for teleost foraging. Indeed Baker and 

Sheaves 2007 found that depth did not influence predation rates across a shallow depth 

gradient (0.2 to 3 m), highlighting that the shallow-water refuge paradigm may be too 

simplistic. The shallowest waters of our study site occurred in the littoral habitat where 

mangrove stands also occurred. While mangrove prop roots and pneumatophores may 

provide shelter for some small fishes (Laegdsgaard & Johnson 2001, Nagelkerken et al 

2008), Primavera (1997) demonstrated continued foraging success (albeit at diminished rates) 

of L. calcarifer in such environments. For species such as L. calcarifer, P. argenteus, S. 

commersonianus, and P. fuscus, which occurred in higher abundances in the littoral and 

intertidal, these habitats may provide optimal foraging conditions and opportunities not 

present in the subtidal habitat. However future work, such as tethering experiments, is needed 

as the higher predator densities we have described may not mean higher foraging rates 

(Sheaves, 2001). 

Sharks are known to utilise shallow coastal waters for parturition (Feldheim et al. 

2014) and foraging (Kinney et al 2011), with many coastal bays identified as important 

nursery areas for young-of-the-year (YOY) and juvenile sharks (Simpfendorfer & Milward 

1993). However, our study indicates depth limits may occur with few shark individuals (n = 

3) present in the littoral community. While clearly some shark species commonly enter 

shallow littoral waters (Carlisle & Starr 2010, Chin et al. 2013a, Chin et al. 2013b), sharks 

where uncommon in the mangrove fringed littoral habitat sampled by this study. Three of the 
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four most dominant sharks sampled preferred the subtidal habitat over the intertidal habitat 

with R. taylori, C. fitzroyensis and C. amboinensis abundances 10-fold, 13-fold and 2-fold 

higher respectively in the deeper water habitat. In contrast, frequently sampled C. 

tilstoni/limbatus and S. lewini were generally twice as likely to be sampled in the intertidal 

habitat compared with the subtidal habitat. Although the littoral habitat was not as frequently 

sampled as the intertidal and subtidal habitats, sampling frequency is considered sufficient to 

be confident in the relative abundance estimates produced. In fact, the relatively shallow 

nature of the littoral habitat may have increased the probability of shark capture as gill nets 

become less selective when set in waters shallower than the depth of the net (White et al 

2013). It seems clear that in the shallow habitat mosaic sampled in this study, the littoral 

habitat did not offer any service of benefit to local shark populations. 

Concluding that a species obtains certain ecological services from simple presence or 

absence within a habitat should be done with some caution (Beck et al 2001). For some 

species, presence within a particular habitat may occur as a trade-off between multiple needs 

and/or benefits. For example, the behaviours of young-of-the-year Sphyrna lewini in 

Kāne’ohe Bay Hawaii suggests that preferred refuge habitats were occupied over habitats 

which provided an increase in foraging opportunities but had higher predation threats (Lowe 

2002). This trade-off is highly detrimental to the YOY condition as prey abundance was 

insufficient to increase growth and higher rates of natural mortality resulted. Clearly, 

confidently understanding the benefits obtained by fish species from coastal habitats requires 

concurrent consideration and assessment of multiple benefits and services. 

Shallow coastal waters (<1 m) have been identified as supporting high abundances 

and diverse communities of rays (Vaudo & Heithaus 2009, Jirik & Lowe 2012). For example, 

Vaudo and Heithaus (2009) sampled an elasmobranch community of a shallow intertidal sand 

flat in Shark Bay, Australia and sampled 12 species of rays. Comparisons between adjacent 
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subtidal habitats identified significantly higher abundances and diversity of rays in the 

shallow intertidal sand habitats (< 1 m) than the deeper subtidal habitats (1 – 2 m)(Vaudo & 

Heithaus 2009). In contrast to Shark Bay, only 5 rays were sampled in Cleveland Bay, and 

within this group two species A. cuspidata and R. neglecta were clearly dominant. In 

addition, no rays were sampled in the littoral habitat. Ray presence among the three sampled 

Cleveland Bay habitats contrasts current knowledge of shallow water ray communities being 

more diverse and with higher species abundances than deeper subtidal habitats (Matern et al. 

2000, Craig et al. 2010, Jirik & Lowe 2012). Sampling method may explain these differences. 

For example Vaudo and Heithaus (2009) employed visual survey techniques while boating, 

and our study relied on sampling with static gillnets, a method that may be selective against 

disc shaped rays (White & Potter 2004). The commonly sampled rays, Anoxypristis cuspidata 

and R. neglecta, have morphological protuberances increasing the likelihood of capture by 

gillnet (White et al. 2013). It is possible the sampling technique of this study under-sampled 

the disc shaped ray fauna, particularly within the littoral habitat where feeding pits were often 

observed during field sampling. Unfortunately the often turbid nature of the sampled habitats 

precludes visual surveys though seine or fence netting may prove to be a better sampling 

technique for the disc-shaped rays. 

For some Pristis species, littoral habitats have been identified as important nurseries. 

Simpfendorfer et al. (2010) described young but relatively large (1 – 1.5 m) juvenile Pristis 

pectinata preferring very shallow (< 50 cm deep) mud and sandy bank waters in Florida, 

suggesting theses habitats may provide ecological services such as foraging, refuge from 

predation and physiological growth advantages. However, we observed no Anoxypristis 

cuspidata in the shallow littoral waters of Cleveland Bay and possibly the absence of 

predation threat allows use of deeper waters in tropical Australia. We did observe a possible 

ontogenetic shift in habitat use, with larger A. cuspidata sampled in the deeper subtidal 
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habitat with smaller animals occurring in the intertidal habitat. This is similar to the 

ontogenetic effects of habitat use described for Pristis microdon in western tropical Australia 

(Whitty et al. 2009). 

Habitat selection by fishes is often driven by physical properties such as temperature 

or salinity of the water mass encountered (Harrison and Whitfield 2006, Vaudo and Heithaus 

2009). For example, the exploitation of thermal gradients allows for an increased rate of 

feeding, digestion and thus growth for some sharks (Sims et al. 2001, Simpfendorfer et al. 

2005, Vaudo and Heithaus 2009). Similarly variations in salinity have been demonstrated to 

affect food intake and thus growth rates in teleosts (Bœuf & Payan 2001, Harrison and 

Whitfield 2006). In our Cleveland Bay site, temperature was hottest and salinity most 

variable in the shallow littoral habitat. Temperature of the subtidal habitat was generally two 

degrees cooler than the littoral habitat and salinity was much more stable in the subtidal 

habitat. These clear patterns may have a causative relationship with the species abundance 

patterns we have described, however other factors such as turbidity, water turbulence and 

wave frequency may also play a role in shaping species distributions and community 

structures. Moreover, resource partitioning may influence species’ habitat choices when 

important resources such as prey are limited (Sala and Ballesteros, 2001). The findings of 

Kinney et al (2011), who quantified resource partitioning in young sharks inhabiting the 

deeper waters of Cleveland Bay, may have some relevance in the describing the unique 

species patterns we have described in the adjoining shallow habitat mosaic. Future research 

should explore the role of resource partitioning in shaping the communities this study has 

described. 

A review of literature clearly demonstrates that nursery function is a common 

declaration of an important function shallow coastal waters offer for teleosts, rays and sharks. 

(Blaber 1980, Beck et al. 2001, Hajisamae and Chou 2003, Tse et al. 2008). However, 
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contemporary research is building a repertoire of additional functions that shallow coastal 

waters may serve including teleost spawning (Tobin et al 2014), shark and ray parturition 

(Farrugia et al., 2011) and predation (Sheaves 2001, Baker and Sheaves, 2009). Accordingly, 

successful management initiatives must consider these additional functions to ensure the 

conservation of the community of fishes and the functions those species attain from these 

habitats. Current management of the shallow water coastal habitats mosaic without the 

knowledge of the ecological benefits and services they provide may risk disrupting the 

structure of fish communities and/or alter ecosystem functions. Species that occur in fewer 

habitats may be less resilient to environmental change or anthropogenic pressures due to their 

limited habitat use (Munroe et al. 2014). The species-specific habitat preferences observed 

for most species suggests that the loss or modification of one habitat could severely disrupt 

the community structure and population persistence. Clearly, future research conducted in 

shallow coastal habitats should consider the wide range of possible available species and life 

history stages, as well as the range of ecological services that may be provided. 
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2.5 Tables and Figures 

 

 
Figure 2.1 Location of study site in (a) Queensland, Australia, (b) aerial view of the littoral, 
intertidal and subtidal habitats in Cleveland Bay, and (c) cross section of littoral, intertidal 
and subtidal habitats. The dashed line marks the lowest astronomical tide (LAT) and the 
dotted line marks the highest astronomical tide (HAT). 
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Table 2.1 Summary of fish sampled in the littoral, intertidal and subtidal habitats ordered by 
total count. Relative abundance within each habitat is calculated as number of fish per 100 m-
1 net hr -1. Mean fork length and length range is also presented. 

 

Family Name Total Count Littoral Intertidal Subtidal Fork Length (mm) 

Latidae Lates calcarifer 330 6.02 4.48   558 (355 - 1005) 
Polynemidae Eleutheronema tetradactylum 180 1.26 1.63 1.94 375 (160 - 585) 

Ariidae Arius spp. 106 1.21 1.15 0.69 367 (250 - 800) 
Carcharhinidae Rhizoprionodon taylori 101   0.22 2.23 517 (350 - 620) 
Carcharhinidae Carcharhinus fitzroyensis 58   0.09 1.33 606 (405 - 1150) 
Carcharhinidae Carcharhinus tilstoni/limbatus 58   0.83 0.49 574 (395 - 1590) 

Pristidae Anoxypristis cuspidata 54   0.85 0.37 864 (607 - 1240) 
Carcharhinidae Carcharhinus amboinensis 39 0.10 0.24 0.64 653 (471 - 1060) 

Haemulidae Pomadasys argenteus 32 0.97 0.26   321 (225 – 380) 
Mugilidae Mugil cephalus 23 0.05 0.48   460 (397 - 555) 
Carangidae Scomberoides commersonianus 22 0.24 0.37   417 (330 - 620) 
Haemulidae Pomadasys kaakan 17 0.19 0.22 0.07 370 (305 - 470) 
Sciaenidae Nibea soldado 15 0.29 0.17 0.02 344 (245 - 390) 
Sphyrnidae Sphyrna lewini 15   0.24 0.10 406 (340 - 605) 
Mugilidae Liza vaigiensis 14 0.49 0.09   511 (400 - 680) 

Polynemidae Polydactylus macrochir 12 0.29 0.13   619 (450 - 750) 
Rhinopteridae Rhinoptera neglecta 7   0.13 0.02 - 

Platycephalidae Platycephalus fuscus 5 0.15 0.04   575 (530 - 610) 
Megalopidae Megalops cyprinoides 4 0.15 0.02   410 (365 - 470) 
Synodontidae Synodus variegatus 4   0.02 0.07 249 (215 - 275) 
Sphyrnidae Sphyrna mokarran 3     0.07 1207 (1090 - 1280) 

Chirocentridae Chirocentrus dorab 2     0.05 325 (325 - 325) 
Leptobramidae Leptobrama muelleri 2   0.04   221 (197 - 245) 

Rhinidae Rhynchobatus australiae 2   0.02 0.02 1182 (934 - 1430) 
Scatophagidae Selenotoca multifasciata 2   0.04   200 (185 - 215) 

Carangidae Parastromateus niger 1   0.02   210 

Carangidae Scomberoides tala 1   0.02   385 

Carangidae Caranx ignobilis 1   0.02   215 

Carcharhinidae Negaprion acutidens 1 0.05     479 

Dasyatidae Himantura granulata 1   0.02   170 

Drepanidae Drepane punctata 1   0.02   235 

Lobotidae Lobotes surinamensis 1 0.05     350 

Lutjanidae Lutjanus argentimaculatus 1 0.05     380 

Rhinobatidae Glaucostegus typus 1   0.02   390 

Scombridae Scomberomorus queenslandicus 1     0.02 600 

Sparidae Acanthopagrus berda 1   0.02   225 

Triacanthidae Triacanthus biaculeatus 1   0.02   230 
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Figure 2.2 Box plots summarising the a) depth, b) temperature, c) salinity and d) dissolved oxygen characteristics recorded within the littoral, 
intertidal and subtidal habitats. The box represents the interquartile range and includes the median as a solid line; the whiskers represent the 
minimum and maximum values; and outliers are represented by circles.

a b 

c d 
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Figure 2.3 The proportion of teleosts, sharks and rays sampled from the littoral, intertidal and 
subtidal habitats. Note: white - teleosts, stripes - sharks, and grey- rays.
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Figure 2.4 The standardized catch per unit effort (log transformed) of teleosts, sharks and rays caught with the littoral, intertidal and subtidal 
habitats.  Error bars are 95% confidence intervals.  Note: (  ) Teleosts, (  ) Sharks and (  ) Rays.  Homogenous groups are identified as group 
a and as group b. 
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Figure 2.5 Box plots of logged transformed fork length compared among habitats for a) Eleutheronema tetradactylum, b) Arius spp., c) Lates 
calcarifer, d) Pomadasys argenteus, e) Anoxypristis cuspidata, f) Rhizoprionodon taylori, g) Carcharhinus tilstoni/limbatus, h) C. amboinensis 
and c) C. fitzroyensis.
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Figure 2.6 Non-metric multi-dimensional scaling ordination plot of the sampled fish 
communities across seasons and the littoral, intertidal and subtidal habitats during September 
2012 to August 2013. 
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Table 2.2 SIMPER analysis results across habitats with the average similarity and species 
contribution for fish species contributing up to 80% of the cumulative average similarity. 

Species 
Average 

Abundance 
Average 
Similarity 

Similarity/SD 
Contribution 

% 

Cumulative 
Contribution 

% 

Littoral (Av. Similarity: 55.93%)      

Lates calcarifer 3.08 24.85 7.02 44.42 44.42 

Pomadasys argenteus 1.52 11.90 3.97 21.28 65.70 

Arius spp. 1.52 7.60 1.14 13.59 79.28 

Eleutheronema tetradactylum 1.35 5.21 1.01 9.32 88.60 

      

Intertidal (Av. Similarity: 33.43%)      

Eleutheronema tetradactylum 1.78 14.17 1.41 42.39 42.39 

Lates calcarifer 2.04 7.02 0.76 20.99 63.37 

Carcharhinus tilstoni/limbatus 0.89 2.68 0.64 8.01 71.38 

Arius spp. 1.04 2.41 0.52 7.22 78.61 

Scomberoides commersonianus 0.6 1.14 0.39 3.41 82.02 

      

Subtidal (Av. Similarity: 33.32%)      

Rhizoprionodon taylori 1.65 14.15 1.27 42.46 42.46 

Carcharhinus fitzroyensis 1.33 7.23 0.78 21.71 64.17 

Eleutheronema tetradactylum 0.99 3.65 0.64 10.94 75.11 

Carcharhinus tilstoni/limbatus 0.73 3.64 0.57 10.91 86.02 
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Figure 2.7 A canonical correspondence analysis biplot created from the species and 
environmental data. The environmental data was habitat (littoral, intertidal and subtidal), 
temperature (°C), dissolved oxygen (%) and salinity (ppt). The black arrays show the 
continuous variables with the length of the vector indicating strength of relationship while the 
direction corresponds to the species associated. The grey squares are the nominal variables 
designated as habitats. The species (solid black circles) are abbreviated as follows: Acus; 
Anoxypristis cuspidata, Rneg; Rhinoptera neglecta, Slew; Sphyrna lewini, Camb; 
Carcharhinus amboinensis, Cfit; Carcharhinus fitzroyensis, Rtay; Rhizoprionodon taylori, 
Ctil/Clim; Carcharhinus tilstoni/limbatus, Nsol; Nibea soldado, Etet; Eleutheronema 
tetradactylum, Mcep; Mugil cephalus, Parg; Pomadasys argenteus, Pkaa; Pomadasys kaakan, 
Scom; Scomberoides commersonianus, Aspp; Arius spp., Lvai; Liza vaigiensis, Pmac; 
Polydactylus macrochir, Lcal; Lates calcarifer. 
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Table 2.3 Summary of results of Canonical Correspondence Analysis (CCA) including 
environmental averages.  Permutation test of significance for first canonical axis:  F = 7.442 , 
P <0.001. 

 

 Axis 1 Axis 2 Axis 3 

Accumulate Constrained Eigenvalues 0.5056 0.2405 0.1752 

Proportion Explained 0.4874 0.2319 0.1689 

Cumulative Proportion 0.4874 0.7193 0.8882 

 

 

Permutation results on Variables df F P 
Average 

Littoral Intertidal Subtidal 
Salinity 1 3.8829 0.0040 34.25 35.08 35.18 

Temperature 1 3.3301 0.0140 27.60 26.40 25.60 

DO 1 2.0214 0.2001 64.79 75.16 84.88 

Habitat 2 3.0169 0.0040 - - - 
 

 



 

 

CHAPTER 3. ECOLOGICAL INFLUENCES ON A LARGE 

BODIED FISH COMMUNITY IN A SHALLOW 

COASTAL HABITAT MOSAIC 
 

 

Plate 3. Developed shark embryos observed in Rhizoprionodon taylori  
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3.1 INTRODUCTION 

It is widely acknowledged that shallow coastal waters commonly function as nursery 

habitats, as these areas provide both an increase in food source access (Blaber et al. 1995) and 

refuge from predation (Paterson & Whitfield 2000). The refuge function of nursery habitats has 

generally been supported by the relatively low abundance of piscivorous fishes (Shenker & Dean 

1979, Robertson & Duke 1987). However, large piscivorous fishes do occur within some shallow 

coastal habitats (Tobin et al 2014, Chapter 2 in press), and have also been described in nursery 

habitats (Bennett 1989, Baker & Sheaves 2006). Bennett (1989) seine net sampled fish 

communities of a South African beach and concluded that the area functioned as a nursery 

habitat; however it was also noted that larger and mature fishes of different species were 

commonly caught by local rod and reel anglers. Although shallow coastal habitats may be 

commonly identified as serving important nursery function, other ecological functions may co-

occur.  

Studies that describe nursery function invariably use sampling gears biased towards small 

bodied fishes. Sampling small bodied and juvenile fishes is most efficient with small mesh seine 

nets, (Faunce & Serafy 2006), however seine gear is ineffective in capturing large bodied fishes 

(> 200 mm) that may occur in the sampled habitats (Baker & Sheaves 2006). Thus, conclusions 

on the functions of shallow coastal habitats may be limited to the nursery function due to biased 

sampling of fish communities. Large bodied fishes may co-occur and possibly be attracted to 

these habitats for other ecological functions. Sampling in shallow coastal habitats with a wide 

range of sampling gears would allow for less biased interpretation about the services these 

habitats offer to fish communities. 

Nursery habitats (Blaber & Blaber 1980) reduce predation (Sheaves 2001), and increase 

foraging success for juvenile fish (Lasiak 1981, Abrahams & Kattenfeld 1997), sharks (Heupel & 
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Simpfendorfer 2008) and rays (Simpfendorfer et al. 2010). However, contemporary research 

suggests that these habitats may provide further ecological functions for larger bodied fishes, 

including foraging (Krumme et al. 2008), refuge (Sims et al. 2001) and reproduction (Dibattista et 

al. 2008, Præbel et al. 2009). For example, Baker and Sheaves (2005) described many small 

piscivorous fishes in shallow coastal habitats and concluded that predation/foraging within these 

habitats may affect the structure of shallow coastal fish communities. In another study, adult 

spotted halibut (Verasper variegatus) were identified utilising the shallow coastal habitat of 

Matsukawa-ura, Japan as a nursery and as an adult foraging habitat (Wada et al. 2011). 

Regardless of the dorso-ventrally flattened advantage of the halibut by Wada et al. (2011) and the 

small size of piscivorous (generally < 100 mm) identified in Baker and Sheaves (2005), additional 

research indicates that body shape and size may not be a limiting factor for large fish accessing 

shallow coastal habitats (Tobin et al. 2014).  

Spawning in shallow coastal habitats has been observed for many fish species including 

killifish (Taylor 1990), puffers (Yamahira 1996), and Artic charr (Low et al. 2011). The benefits 

of spawning in shallow habitats may include elevated oxidation and incubation temperatures for 

eggs (Strathmann & Hess 1999) while also reducing predation (Tewksbury II & Conover 1987). 

However, eggs must be suitably adapted for the surviving the shallow water environment (Taylor 

1999) such as adopting spherical shapes that reduce desiccation and by having high levels of 

carotenoids to facilitate oxygen transport (DeMartini 1999). Adult surf smelt, Hypomesus 

pretiosus, spawn in the shallow coastal habitats of Puget Sound during spring tides with preferred 

spawning sites characterised by low solar radiation, medium to high wave action, and north-

facing aspect (Quinn et al. 2012). Atlantic silverside, Menidia menidia, spawn as high tides peak 

allowing spawning individuals to access the very upper regions of the intertidal zone (1.2 – 2.4 m 

above mean low water) where fertilised eggs are attached to algae mats, a tactic that increases egg 

survivorship due to reducing exposure to predators (Middaugh et al. 1981, Tewksbury II & 
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Conover 1987). Clearly, some shallow coastal habitats support spawning and knowledge about 

these critical habitats can ensure continued effective management. 

Anthropogenic activities are increasingly threatening shallow coastal habitats. The 

impacts of coastal development (Thronson & Quigg 2008, Wen et al. 2010, Sundblad & 

Bergström 2014), dredging (Bonvicini pagliai et al. 1985, Bilkovic 2011) and agriculture 

(Primavera 2006, Schock et al. 2014) have been well documented. Anthropogenic activities if left 

unregulated may permanently modify fish communities in shallow coastal habitats (Blaber et al. 

2000, Stallings 2009, Morley et al. 2012). Robust knowledge of what fishes occur in these 

habitats and what services these habitats offer to inhabiting fishes is required for management to 

be continuously effective and to ensure efficient utilisation of coastal habitats for fisheries. 

Further, identifying if the services that fish attain preferentially occur in the littoral, intertidal 

and/or subtidal habitats would provide additional information for management and may aid in 

determining if conservation is warranted. Chapter 2 described a distinct community of large 

bodied teleosts, sharks and rays utilising a shallow coastal habitat mosaic in tropical Australia. 

Habitat partitioning was evident among the habitat mosaic with sharks dominating the deeper 

subtidal water community, while teleosts dominated the shallower littoral community and a mixed 

community of sharks, rays and teleosts occurred in the bridging intertidal habitat. Why this 

partitioning of taxonomic groups occurs is the focus of this chapter and may be better understood 

by investigating the potential ecological functions offered. 

The aim of this chapter was to identify the ecological services that may be gained by large 

bodied fishes (> 200 mm) using the inshore habitat mosaic of littoral, intertidal and subtidal 

zones. Life history stage, reproductive activity and foraging traits were explored. The information 

obtained provides invaluable knowledge on the ecological functions of these habitats to the large 
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bodied fish community and increases our understanding of the functions of shallow coastal 

habitats to ensure effective fishery management. 

3.2 METHODS 

3.21Field Sampling 

The shallow coastal habitat mosaic sampled is described in Chapter 2.  

3.2.2 Life History Traits  

Identifying if any ontogenetic shifts in habitat use, or if life history stages had a specific 

habitat requirement, the presence of life history stages were investigated. Most teleosts sampled 

were released alive requiring life history stage to be inferred from published maturity indices. 

Juveniles were classified as any fish smaller in length-at-50% maturity while larger fish were 

classified as adults. This life history classification method was validated by macroscopic 

investigation of gonads from a sub-sample of teleosts using criteria of West (1990). Shark and ray 

life history traits included the group young-of-the-year (YOY) – in addition to juveniles and 

adults. YOY sharks were identified during sampling by the presence of an umbilical scar 

indicating recently born shark. Juvenile and adult sharks, similarly to teleosts, were identified 

based on published maturity indices. Also, some validation of life history stage was possible by 

examination of clasper calcification in males by determining the level of calcification (1 – not 

calcified, 2 – partially and 3 – fully calcified). Not calcified claspers indicated a YOY shark, 

while partially represented juveniles and fully represented adults. A sub-sample of female sharks 

were used to determine life history stage through macroscopic examination of the uterus 

development (see Table 3.4). 

Life history stages were initially explored at broad taxonomic level of teleosts, sharks and 

rays. The influence of habitat on the life history stages of teleosts and sharks was explored using 

Pearson’s Chi squared test. The effect of habitat on life history stage was examined at the 
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individual species level for the more commonly sampled species. When estimating life history 

stage from length, individuals sampled categorized as the C. tilstoni/limbatus complex were 

assumed to be C. tilstoni based on Harry (2011) identifying an increased abundance of C. tilstoni 

in Cleveland Bay than C. limbatus. 

3.2.3 Reproductive Activity 

Macroscopic investigation of uteruses for female sharks was used to infer the reproductive 

function of the shallow coastal habitat mosaic for the shark community. Uterus condition was 

based on the criteria of Walker (2005)(Table 3.2). For analysis, female reproductive activity was 

simplified into active (stages 4-6) and inactive (stage 1-3). Reproductive activity was explored 

using Pearson’s chi squared test to compare the proportion of active and inactive females between 

habitats. Male sharks were excluded as there is no inactive and active stage present mature male 

sharks. The effect of habitat on sex ratio was explored using a Pearson’s chi squared test. Sex 

ratios were explored with the most abundantly sampled sharks (R. taylori. C. fitzroyensis, C. 

amboinensis and C. tilstoni/limbatus) and the presence of claspers indicated male sharks and the 

absence indicated female sharks. 

3.2.4 Foraging Activity 

The foraging activity was explored by examining stomach fullness indices, digestive state 

of stomach contents, and identifying ingested prey items. Sufficient samples were available for 

three teleost (L. calcarifer, E. tetradactylum and P. argenteus) and two sharks (R. taylori and C. 

tilstoni/limbatus). Stomach fullness was estimated by expressing stomach weight as a proportion 

of whole specimen weight as described by Mychek-Londer and Bunnell (2013):  

(
 𝑝𝑟𝑒𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑔

𝑓𝑖𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑔
) ∗ 100 = 𝑆𝑡𝑜𝑚𝑎𝑐ℎ 𝑓𝑢𝑙𝑙𝑛𝑒𝑠𝑠 (𝑆) 
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The fish weight from the predator was determined using published length-weight 

relationships obtained from Fishbase.org (Froese & Pauly 2014). One-way ANOVA tested the 

effect of habitat on stomach fullness, however if assumptions of ANOVA were violated a 

Kruskal-Wallis test was used.  

Stomach contents were then examined and contents identified into the following 

taxonomic groups: teleosts, crustaceans, molluscs, annelids and echinoderms. Some contents were 

unable to be classified which were in advanced stages of digestion and thus were listed as 

unidentifiable. Stomach contents were classified according to digestive stage with 1 indicating no 

digestion or little digestion, whereas a value of 4 indicates an advance stage of digestion 

(Espinoza et al. 2013)(Fig. 3.1). The effect of habitat on digestive stage for each prey item in 

teleost and shark stomach contents was explored using Pearson’s Chi squared test for the most 

abundantly sampled species.  

3.2.5 Permits and Ethics 

Research presented in this thesis was conducted in accordance with James Cook 

University animal ethics permits A1933 and A1566. 

3.2 RESULTS 

Life history stage was classified for 977 individuals from 16 families and 28 species 

(Table 3.1). Reproductive activity analysis was possible for four teleosts (L. calcarifer, E. 

tetradactylum, P. argenteus and P. kaakan) and four sharks (R. taylori, C. fitzroyensis, C. 

amboinensis and C. tilstoni/limbatus)(Table 3.2). Foraging activity was analysed for species with 

at least five samples from two or more habitats and included three teleosts (L. calcarifer, E. 

tetradactylum and P. argenteus) and two sharks (R. taylori and C. tilstoni/limbatus)(Table 3.2). 
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3.2.1 Life History Traits 

The overall teleost community was dominated by adults (66%), though the proportion of 

adults and juveniles varied among habitats (2, d.f. = 2, P < 0.0001). Adults dominated the 

intertidal and the subtidal habitats (68% and 95%, respectively). In contrast to the teleost 

community, the shark community was predominately immature young-of-the-year (34%) and 

juveniles (27%), with fewer mature specimens (39%). Habitat did influence the proportion of life 

history stages present (2, d.f. = 4, P < 0.0001) with YOY dominant in the intertidal and adults 

dominant in the subtidal (64% and 49%, respectively). With exception of one adult specimen the 

ray community was entirely juvenile.  

Of the four most abundant teleosts (L. calcarifer, E. tetradactylum, P. argenteus and P. 

kaakan), species specific patterns in life history stage were present (Fig. 3.2). Lates calcarifer was 

the only species for which habitat influenced life history with juveniles the dominant life history 

stage in the littoral habitat (56%) compared to adults in the intertidal (60%). Adult E. 

tetradactylum was the only life history stage present in the littoral habitat and adults were 

dominant in the intertidal and subtidal habitats (Fig. 3.2), while P. argenteus and P. kaakan were 

only present as adults (Fig. 3.2). 

Of the four most common species, (R. taylori, C. fitzroyensis, C. amboinensis, and C. 

tilstoni/limbatus) the proportion of life history stages varied among habitats (2, d.f. = 2, P < 

0.0001) with YOY dominant in the intertidal and adults dominant in the subtidal. Adult R. taylori 

were dominant in the intertidal and subtidal habitat (100% and 77%, respectively)(Fig. 3.2). No 

YOY R. taylori were sampled in any habitat. In contrast, C. fitzroyensis occurred exclusively as 

YOY in the intertidal (100%) while juveniles dominated over YOY in the subtidal (78%)(Fig. 

3.2). In contrast to C. fitzroyensis, even numbers of YOY and juvenile C. amboinensis occurred in 

the intertidal (Fig. 4) whereas in the subtidal only juveniles occurred (Fig. 3.2). Additionally, C. 
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tilstoni/limbatus had equal proportions of YOY and juveniles in the intertidal and juvenile C. 

tilstoni/limbatus were dominant in the subtidal habitat (Fig.3.2). 

One ray species, Anoxypristis cuspidata, was numerous enough to examine the influence 

of habitat on life history stage. However, no habitat effect was present in either intertidal or 

subtidal habitats as A. cuspidata occurred exclusively as juveniles (Fig. 3.2). No YOY or mature 

specimens were sampled. 

3.2.2 Reproductive Activity 

Imminent spawning was only detected in one teleost, E. tetradactylum; however imminent 

spawners were present in all three habitats (Fig. 3.3). The proportion of imminent spawning E. 

tetradactylum females was universally low across all habitats, and habitat did not influence the 

presence of imminent spawners (2, d.f.  = 2, P = 0.86). 

Although imminent spawning was not detected in L. calcarifer, P. argenteus and P. 

kaakan, multiple stages of ovarian development and spent stages were observed. Developing 

ovaries were observed for all four species of teleosts, however not within all habitats (Fig. 3.3). 

For L. calcarifer, developing ovaries were only observed in the intertidal. In contrast, developing 

ovaries were observed in all three habitats for E. tetradactylum and in the intertidal and subtidal 

for P. argenteus and P. kaakan. Spent ovaries were only observed for E. tetradactylum, L. 

calcarifer, and P. kaakan (Fig. 3.3). Similar to the observations for developing ovaries, spent 

ovaries were only observed in the intertidal for L. calcarifer, whereas for E. tetradactylum they 

occurred in all three habitats and in the intertidal and subtidal for P. kaakan.  

All four teleost species showed sex specific patterns. For E. tetradactylum the samples 

were mostly females (3.4 females : 1 male), and there was no influence from habitat (2, d.f. = 2, 

P = 0.982). Lates calcarifer occurred mostly as males (1 female : 4.4 males) and the ratio was 

consistent in the littoral and intertidal habitats. A total of 6 females and one male were sampled 
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for P. kaakan, all in the intertidal habitat with an additional three females in the subtidal habitat. 

For P. argenteus only females were sampled. 

Only one shark, R. taylori, was observed to be reproductively active (Fig. 3.4). Adult R 

taylori were only sampled in the intertidal habitat, with two of seven females reproductively 

active. However, the subtidal habitat had 19 of 30 females with reproductively active uteruses 

exhibiting stages 4 and 5 (Fig. 3.4). Additionally, 7 pregnant sharks and 3 sharks in the act of 

parturition were captured in the subtidal habitat. No additional shark species were reproductively 

active. 

Three species of sharks were present exclusively as YOY and/or juveniles - C. 

fitzroyensis, C. amboinensis and C. tilstoni/limbatus – with similar sex ratios (1 : 1.20, 1 : 1.24 

and 1 : 0.94, respectively). The sex ratio of females to males for R. taylori was 1 : 0.23.  

3.2.3 Foraging Activity 

Lates calcarifer stomach fullness did not differ between habitats (ANOVA, d.f. = 1, P = 

0.09) (Fig. 7a), but digestive stage did (2, d.f. = 4, P < 0.0001) (Fig. 3.6a). Advanced stage 

digestion (stage 4) and empty stomachs were common in the littoral, whereas in the intertidal 

stage 3 and stage 2 digested stomachs dominated samples (Fig. 3.7a). Stomachs containing one 

prey category comprised 38% of the stomachs sampled. Identified prey items for L. calcarifer 

included P. kaakan, P. argenteus, mullet sp. and prawns (tiger, Penaeus esculentus and banana 

prawn, P. merguiensis) mantis shrimps and crabs. The stomachs sampled in the littoral were 

dominated by teleosts (90%) with few crustaceans (7%), while in the intertidal stomachs were 

dominated by crustaceans (68%) and some teleosts (24%).  

For E. tetradactylum stomach fullness did not vary among habitats (ANOVA, d.f. = 2, P = 

0.173) (Fig. 7b), but digestive stage did (2, d.f. = 8, P < 0.001) (Fig. 3.5b). There were more 

stage 3 and stage 4 digested stomach contents in the intertidal than in the subtidal and littoral 
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habitats (Fig. 3.6b). Stomachs containing one prey category comprised 31% of stomachs sampled. 

Many of the identifiable prey items for E. tetradactylum were prawns (tiger and banana prawns), 

crabs, mantis shrimps, and few bivalves. Most fish prey items were in advanced stages of 

digestion preventing species identification. In contrast to L. calcarifer, E. tetradactylum stomach 

contents in the littoral, intertidal and subtidal were dominated by teleost prey. Crustaceans were 

only present in stomach contents in the intertidal and contributed 40% to the total prey items in 

the intertidal habitat. However, an additional prey item, molluscs, was found in 3% of stomachs in 

the intertidal habitat that was not present in L. calcarifer stomach contents.  

In contrast to L. calcarifer and E. tetradactylum, P. argenteus stomach fullness index did 

vary between the littoral and intertidal habitats (ANOVA, d.f. = 1, P = 0.041) with less full 

stomachs occurring in the littoral (Fig. 3.5c). However, digestive stage of stomach contents did 

not vary between habitats (ANOVA, d.f. = 4, P = 0.062) (Fig. 3.6c). Stomachs containing one 

prey category comprised 20% of stomachs sampled. Pomadasys argenteus had a more varied diet 

compared to L. calcarifer and E. tetradactylum with bivalves, sand dollars, mantis shrimps, crabs, 

prawns, polychaetes, and teleosts found within its stomachs. P. argenteus stomach contents were 

dominated by molluscs (44%). Teleost prey items were present in only 9% of stomachs in the 

intertidal. 

The stomach fullness index of R. taylori did not differ between habitats (ANOVA, d.f. = 

1, P = 0.97) (Fig. 3.7a), however digestive stages of stomach contents did (2, d.f. = 4, P < 0.05) 

with stage 4 digestion more common in the subtidal than in the intertidal habitat (Fig. 3.8a). 

Stomach contents containing one prey category comprised 44% of stomachs sampled. The prey 

items of R. taylori stomachs were dominantly comprised of teleosts in the intertidal and subtidal 

habitats (65% and 61%, respectively). However, crustaceans comprised a greater percentage of 

stomach contents in the intertidal than in the subtidal (22% and 3%, respectively). Crustacean 
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prey items were dominantly prawns, with teleost prey items in advance stages of digestion 

preventing species identification. However two eggs from Arius spp. were identified in one 

stomach of R. taylori and no remains of a teleost were identified. 

The stomach fullness index of C. tilstoni/limbatus did not differ between habitats 

(ANOVA, d.f. = 1, P = 0.94) (Fig. 3.7b) and the digestive stages of stomach contents did not 

differ between habitats (2, d.f. = 3, P = 0.73) (Fig 3.8b). In comparison to R. taylori, C. 

tilstoni/limbatus stomach contents were only comprised of one prey category -teleosts. However a 

unique teleost prey item occurred, eggs of Arius spp. (with no teleost remains), in 41% of 

stomachs sampled for C. tilstoni/limbatus. 

3.3 DISCUSSION 

This study presents new information on how a previously undefined large bodied fish 

community (see Chapter 2, in press) use the shallow waters of coastal ecosystem mosaic that 

includes littoral, intertidal and subtidal habitats. Previous research has identified shallow water 

coastal habitats as important nurseries for teleosts, sharks and rays (Kimirei et al. 2013, 

McCallister et al. 2013, Cerutti-Pereyra et al. 2014) however, as this study has identified the 

shallow coastal habitat mosaic supports additional ecological functions and benefits. A 

community of mature teleosts and a co-occurring community of young-of-the-year and juvenile 

sharks and rays were identified within the shallow coastal habitat mosaic. Active spawning or 

parturition was rare, only occurring in one teleost and one shark; however the habitat mosaic 

clearly supports important reproductive activities for some species. In addition, foraging among 

the shallow coastal habitat mosaic may be an important activity for some teleosts and sharks. It is 

apparent that sampled shallow coastal habitats provided valuable ecological functions for the 

large teleosts, rays and shark communities that have not previously been described. 
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The teleost community was dominated by large and mature fishes. However, the 

distribution of juvenile teleosts suggested some components of the habitat mosaic support nursery 

function, as juveniles were more likely in the shallow littoral teleosts community as compared to 

the deeper intertidal and subtidal teleosts communities. This observed pattern further suggests an 

ontogenetic shift in habitat use by teleosts with offshore movement occurring with maturity. 

Shifts in habitat use with ontogeny are described for many species of fishes, though typically on 

larger spatial scales than described here (Laurel et al. 2009, Chin et al. 2013, Félix-Hackradt et al. 

2014). For example, yellow snapper, Lutjanus argentiventris, use shallow coastal waters as 

juveniles before migrating to deep offshore waters with increasing size and maturity (Aburto-

Oropeza et al. 2009). Species making shifts in habitat use with ontogeny often travel 10 to 100s of 

kilometres, whereas this study demonstrated an ontogenetic shift may occur on a much finer scale 

of a few hundred meters. Habitat partitioning by ontogenetic stage was evident in the most 

common teleost L. calcarifer. Juvenile L. calcarifer were dominant in the littoral habitat, while in 

the intertidal habitat L. calcarifer were mature and generally larger. Further replication of this 

study with increased spatio-temporal aspects would be beneficial to determine if ontogeny and 

habitat portioning is replicated in alike micro-habitats. Clearly, the littoral habitat offers 

advantages to juveniles when it is inundated by high tides as juvenile fishes dominate the fish 

community. 

Many shark species utilise shallow coastal habitats as young-of-the-year and juveniles 

(Castro 1993, Simpfendorfer & Milward 1993, Carlson 2002) benefiting from increase access to 

prey, refuge from predators and warmer waters that benefit physiological processes and thus 

growth. The sampling in this study further supports the use of shallow coastal habitats by YOY 

and juvenile sharks, with very few mature specimens sampled. Further, in the Cleveland Bay 

study area the intertidal habitat may extend the nursery function of the adjoining subtidal habitat 

previously identified as a shark nursery (Simpfendorfer & Milward 1993). 
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Habitat partitioning may also benefit fishes through minimising competition between 

species for limited resources (Simpfendorfer et al. 2005, Taylor et al. 2011, Heithaus et al. 2013). 

Habitat partitioning was evident in the shallow coastal habitat mosaic with teleosts dominant in 

the shallow waters and sharks dominant in deeper waters. Habitat partitioning occurring within 

marine communities has been described previously (Prochazka 1998, Fairclough et al. 2008, 

Sheaves et al. 2014b). Sheaves et al. (2014b) demonstrated resource partitioning between two co-

occurring sparid fishes, Acanthopagrus australis and A. pacificus, with the A. pacificus diet 

dominated by crustaceans while the A. australis diet was dominated by bivalves. The spatial 

partitioning of habitat use described in the shallow coastal habitat mosaic may allow sharks and 

teleosts to co-occur in shallow coastal waters without competing for prey.  

It is generally accepted that shallow coastal waters are important shark and ray nurseries, 

however some large and mature sharks may also utilise these habitats (Heithaus & Dill 2002, 

Knip et al. 2012). For example, broadnose sevengill sharks, Notorynchus cepedianus, are large 

sharks (up to 3 m) commonly found in shallow coastal waters (Ebert 2003, Williams et al. 2011). 

Further, large and mature female leopard sharks, Triakis semifasciata , will aggregate in shallow 

waters throughout California for physiological advantages (Hight & Lowe 2007). However in this 

study, mature sharks were limited to only one small bodied species R. taylori (mean FL of 50 cm) 

and large sharks were rare. The similarity of R. taylori length with the lengths of other species 

present as YOY and juveniles, suggests that habitat use may not be partitioned by maturity but by 

body size.  

Spawning is a critical activity for the population persistence of teleosts. Spawning sites 

vary among teleosts, with some sites characterised by turbulent fast moving waters to ensure 

fertilisation and/or transport to nursery habitats (Johannes 1978, Bakun & Parrsh 1982, Boehlert 

& Mundy 1988) or habitats containing suitable substrates for egg attachment (Hoshikawa et al. 
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2004, Polte & Asmus 2006). For example, capelins, Mallotus villosus, in northern Norway select 

intertidal habitats for spawning thus subjecting eggs to marked fluctuations in temperature and 

salinity (Præbel et al. 2009). However, capelin eggs have physiological and bio-mechanical 

adaptations (Præbel et al. 2009) to survive in the intertidal habitat and eggs benefit from less 

exposure to waterborne predation. During this study only one teleost, E. tetradactylum, was 

observed in imminent spawning condition. Imminent spawners of E. tetradactylum were present 

in all three habitats suggesting the shallow coastal ecosystem mosaic as an overall spawning 

habitat with no specific micro-habitat preferred. Interestingly Tobin et al. (2014) identified 10 

species of teleosts in imminent spawning condition from the very same intertidal habitat sampled 

here. However a relatively dry wet season occurred during the sampling period possibly 

interrupting normal spawning behaviour (Scoppettone et al. 2000). The identification of 

developing and spent ovaries in L. calcarifer, P. argenteus and P. kaakan suggests spawning still 

occurred in these species, though the physical conditions of the shallow coastal habitat appeared 

not conducive to supporting spawning for the sampled year.  

The need to forage is often a significant driver in habitat choice and use for many species 

within shallow coastal habitats (Savino & Stein 1989, Milinski 1993) .However, a species need to 

forage requires a balance against predation risk. Shallow coastal habitats are commonly referred 

to refuges for larval and juvenile teleosts as the relative abundance of large bodied predators is 

low. However the relatively high abundance of small larval and juvenile teleosts within a habitat 

may logically be expected to attract predators. Indeed, L. calcarifer was commonly sampled in 

littoral habitats with stomach contents dominated by small teleost prey. Body size did not limit 

the foraging success for L. calcarifer in the littoral habitats (Primavera 1997, Lundvall et al. 

1999) and thus, the refuge function for larvae and juvenile teleosts may be dampened in some 

habitats. In contrast, stomach contents of intertidal L. calcarifer were dominated by crustaceans, 
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suggesting a prey switching behaviour that allows barramundi to exploit and dominate more than 

one habitat.  

The prey items of both E. tetradactylum and P. argenteus were most diverse in the 

intertidal habitat indicating the intertidal habitat may provide a greater diversity of possible prey 

than either the littoral or subtidal habitat. Alternatively, E. tetradactylum and P. argenteus may 

have increased foraging success in the intertidal habitat due to unknown factors that promotes 

more successful foraging. For example, Brenner and Krummer (2007) described variable foraging 

success in the four-eye fish, Anableps anableps, meditated by magnitude of tide as well as 

daylight. Successful foraging occurred mostly during daylight and on large magnitude tides 

increasing foraging access to intertidal algae, grapsid crabs and insects. The relative importance 

of the littoral, intertidal and subtidal habitats to the foraging of each species requires further 

investigation as stomach contents do not necessarily reflect localised abundance of all potential 

prey. The stomach contents observed likely reflect species-specific foraging success rather than 

the relative abundance of prey themselves. 

Similarly to teleosts, the sharks sampled had a preference for teleost prey with a lesser 

contribution by crustacean prey. Different metabolic demands of different life history stages may 

explain the variation in foraging behaviour between shark species. Rhizoprionodon taylori were 

generally sexually mature adults whilst C. tilstoni/limbatus were generally YOY and juveniles. 

The variations in life history stages between R. taylori and C. tilstoni/limbatus may suggest an 

increase in energy demands for early life growth and subsequent maturation between the two 

species. Barry et al. (2008) determined a growth rate of 226 and 325 mm year-1 for 0 and +1 age 

classes of C. limbatus indicating high rates of growth which would need to be supported by 

frequent successful foraging and increased rates of metabolism. Opportunistic foraging was also 

evident with Arius spp. eggs commonly found in stomachs of C. tilstoni/limbatus. Seasonal 
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opportunistic foraging has been observed in in other species of teleosts, specifically involving the 

opportunistic foraging on nutrient dense teleosts eggs. Samoilys (1997) observed a planktivorous 

fish, Caesio spp., opportunistically feeding on the eggs of coral trout, Plectropomus leopardus, 

during the coral trout’s seasonal spawning period. The parturition of some coastal shark species 

may occur simultaneously with seasonally available resources to allow YOY and juveniles an 

increase in foraging opportunities. Additionally, resource partitioning may also occur between R. 

taylori and C. tilstoni/limbatus allowing both species to utilise the shallow coastal habitat mosaic 

without competing for resources. Kinney et al. (2011) determined resource partitioning within a 

communal shark nursery in Cleveland Bay, Australia and suggested that R. taylori fed on a more 

specialised diet to possibly avoid competition with other shark species in the habitat. However, 

determining drivers for foraging activity within the shallow coastal habitat mosaic on stomach 

content alone is limited. Stomach content analysis is highly variable due to the rate of digestion 

varying between species, water temperature, and identification of prey items (Baker et al. 2014). 

It is clear that the shallow coastal habitat mosaic can support foraging activity and that 

determining drivers of foraging activity requires further consideration. 

As anthropogenic pressures on shallow coastal habitats are likely to continue and possibly 

increase as a results of the dependency of human populations on the productivity of these 

environments further creating pressure for management to mitigate these threats. Management is 

more effective when complete and accurate knowledge of the ecological values of habitats are 

understood and are incorporated into current management practices. This research demonstrates 

that shallow coastal habitats are of ecological importance to large bodied fish communities, 

supporting important refuge, reproduction and foraging activities. The disruption or elimination of 

these habitats through port expansion or land reclamation (POTL 2010) may have profound 

effects on the coastal ecosystem mosaic. Without a concentrated effort to fully understand the 
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ecological importance of coastal habitats, the large bodied fish communities of the shallow 

coastal habitat mosaic may become permanently altered.  
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3.4 Tables and Figures 

 

Table 3.1 Summary of fish, sharks and rays sampled from the littoral, intertidal and subtidal 
habitats that were utilised for ecological analysis according to total count sampled. 

 

Family Name Total Littoral Intertidal Subtidal 
Latidae Lates calcarifer 328 124 204 - 

Polynemidae Eleutheronema tetradactylum 178 25 75 78 
Carcharhinidae Rhizoprionodon taylori 97 - 9 88 
Carcharhinidae Carcharhinus fitzroyensis 58 - 4 54 
Carcharhinidae Carcharhinus tilstoni/limbatus 58 - 38 20 

Pristidae Anoxypristis cuspidata 54 - 39 15 
Carcharhinidae Carcharhinus amboinensis 39 2 11 26 

Haemulidae Pomadasys argenteus 31 19 12 - 
Mugilidae Mugil cephalus 23 1 22 - 
Carangidae Scomberoides commersonianus 22 5 17 - 
Haemulidae Pomadasys kaakan 17 4 10 3 
Sphyrnidae Sphyrna lewini 15 - 11 4 
Mugilidae Liza vaigiensis 14 10 4 - 

Polynemidae Polydactylus macrochir 12 6 6 - 
Platycephalidae Platycephalus fuscus 5 3 2 - 

Megalopidae Megalops cyprinoides 4 3 1 - 
Synodontidae Synodus variegatus 4 - 1 3 
Sphyrnidae Sphyrna mokarran 3 - - 3 

Rhinopteridae Rhinoptera neglecta 3 - 3 - 
Leptobramidae Leptobrama muelleri 2 - 2 - 

Rhinidae Rhynchobatus australiae 2 - 1 1 
Carangidae Parastromateus niger 1 - 1 - 
Carangidae Scomberoides tala 1 - 1 - 
Scombridae Scomberomorus queenslandicus 1 - - 1 

Triacanthidae Triacanthus biaculeatus 1 - 1 - 
Carcharhinidae Negaprion acutidens 1 1 - - 
Rhinobatidae Glaucostegus typus 1 - 1 - 
Dasyatidae Himantura granulata 1 - 1 - 
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Table 3.2 Summary of the number of species and cumulative samples sizes for each taxonomic 
group and ecological service investigated. 

 

 Teleosts Sharks Rays 

Ecological Service Species Samples Species Samples Species Samples 

Life History  24 645 7 271 5 61 

Reproductive Activity 4 84 4 70 - - 

Foraging Activity 3 151 2 55 - - 
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Figure 3.1 Examples of stomach content in the four stages of 
digestion. Note: a) stage 1, b) stage 2, c) stage 3 and d) stage 4 
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Table 3.3 Characteristics of the macroscopic stages for female teleosts ovaries. Adapted from 
West (1990) and Pember (2006). 

 

Stage Macroscopic Characteristics 

I 
Immature; ovaries are not developed and thin, 
no oocytes present 
 

II/III 

Developing; ovaries are no longer thin and 
exhibit a slight increase in size, few oocytes 
visible 
 

IV Maturing; ovaries occupy increased percentage 
of body cavity, large oocytes become visible 
 

V 

Spawning imminent; ovaries are fully engorged 
and occupy 75% of the body cavity, hydrated 
oocytes visible 
 

VI 

Spent; ovaries are flaccid and have a 
purplish/bruised appearance. Few hydrate 
oocytes may still be visible 
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Table 3.4 Characteristic of macroscopic stages for female shark uteruses. Adapted from Walker 
(2005). 

 

Stage Macroscopic Characteristics 

I 
Immature; uterus is uniformly thin 
and tubular 
 

II 

Uncertain; uterus has an enlarger 
portion posteriorly, but is still thin 
and tubular 
 

III 
Uncertain; uterus is tubular and 
enlarged 
 

IV 
Mature; eggs visible 
macroscopically in utero 
 

V 
Mature; developing embryos are 
macroscopically visible in utero 
 

VI Mature; uterus is enlarged and 
distended 
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Figure 3.2 Life history stage proportions for nine most commonly sampled species across the littoral, intertidal and subtidal 
habitats. Note: stripes – YOY, dark grey – juveniles, and light grey – adults. 



Chapter 3 Ecological influences on a large bodied fish community in a shallow coastal habitat mosaic 
 

59 
 

 
Figure 3.3 The proportions of ovary stages for Eleutheronema tetradactylum, Lates calcarifer, Pomadasys 
argenteus and Pomadasys kaakan among the littoral, intertidal and subtidal habitats. Note: stage 1 - white, 
stage 2 - light grey, 3- medium grey, stage 4 – dark grey, stage 5 – black, and stage 6 - stripes. 
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Figure 3.4 The proportion of the reproductive stages of Rhizoprionodon taylori 
uteruses in each habitat. Note: stage 1 – white, stage 2 – light grey, stage 3- dark 
grey, stage 4 – black and stage 6 - stripes. 
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Figure 3.5 Mean (+/- SE) stomach fullness index for a) Lates calcarifer, b) Eleutheronema tetradactylum and c) Pomadasys argenteus across the 
littoral, intertidal and subtidal habitats. 

 

a b c 
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Figure 3.6 Proportion of digestive stages of stomach contents for a) Lates calcarifer, b) Eleutheronema tetradactylum and c) 
Pomadasys argenteus across the littoral, intertidal and subtidal habitats. Note: digestive stages represented by colours; black – 
stage 1, dark grey – stage 2, light grey – stage 3 and white – stage 4.  
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Figure 3.7 Mean (+/- SE) stomach fullness index for a) Rhizoprionodon taylori and b) Carcharhinus tilstoni/limbatus between the 
intertidal and subtidal habitats. 

 

  

a b 
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Figure 3.8 Proportion of digestive stages of stomach contents for a) Rhizoprionodon taylori and b) Carcharhinus tilstoni/limbatus 
between the intertidal and subtidal habitats. Note: digestive stages represented by colours; black – stage 1, dark grey – stage 2, light 
grey – stage 3 and white – stage 4. 
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CHAPTER 4. GENERAL DISCUSSION 
 

 

Plate 4. Catfish eggs, Arius spp., found in the stomach of a Australian/Common Blacktip 
shark, C. tilstoni/limbatus 
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Shallow coastal habitats are utilised by a diverse community of fishes, yet these 

environments and the communities within them are subjected to extreme variability in 

physical characteristics. These environments have daily cyclic tides that inundate and expose 

habitats causing variations in temperature, salinity and dissolved oxygen. Further, increasing 

threats from anthropogenic influences make these areas a priority for management practices. 

Until recently, shallow coastal habitats have been a focus for research as a result of their 

importance in supporting and nurturing larval and juvenile fishes by functioning as a nursery 

habitat. However, contemporary research suggests that shallow coastal habitats may be 

utilised by large and mature fishes (Tobin et al. 2014) for ecological functions that extend 

beyond the nursery function. The ecological importance of shallow coastal habitats for 

foraging (Baker & Sheaves 2005), spawning for teleosts (Dibattista et al. 2008, Præbel et al. 

2009) and parturition for elasmobranchs (Márquez-Farías 2007) has been previously 

described. The findings of this thesis extends our knowledge of the importance of shallow 

coastal habitats by describing a previously unknown community of large bodied fishes and 

how these communities benefit from utilising the shallow coastal habitat.  

This thesis demonstrated that many species of large bodied fishes use shallow coastal 

habitats and that habitat use is driven by species-specific needs. Some species use the 

environment for specific ecological requirements such as spawning, parturition, refuge and 

foraging, whereas a combination of ecological services may be utilised by other species. 

Clearly the nursery paradigm often associated with shallow coastal habitats needs to be 

redefined or extended, because considering shallow coastal habitats only as nurseries will 

stifle long-term management. Further, management needs to consider all the ecological 

functions that shallow coastal habitats provide for entire fish communities (larvae, juveniles 

and adults) to ensure effective resource management. This thesis suggests that future 

management for shallow coastal habitats should adopt a risk-based management approach to 
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effectively manage all aspects (fishing resources, anthropogenic and natural environmental 

impacts, and conservation) associated with these complex systems. 

Distinctly different communities of teleosts, sharks and rays were observed in the 

littoral, intertidal and subtidal habitats, identified in Chapter 2. Teleosts were the dominant 

taxonomic group in the littoral and intertidal habitats, and Chapter 3 identified that juveniles 

dominated the littoral habitats, while adults dominated the intertidal habitat. Juvenile teleosts 

occur in increased abundances in shallow habitats, likely to seek refuge from predators and to 

forage within these habitats (Boesch & Turner 1984, Baker & Sheaves 2009b). Thus, juvenile 

teleosts may use the littoral habitat for a nursery function. However, the high abundances of 

adult teleosts in the intertidal habitat suggest it functions as a refuge from offshore predators. 

Additionally, Chapter 3 identified juvenile sharks and rays utilising the intertidal and subtidal 

habitats as a nursery. Simpfendorfer and Milward (1993) identified that the extensive subtidal 

areas of Cleveland Bay function as a nursery for neonate, young-of-the-year and juvenile 

sharks and rays. The results of this thesis demonstrated that the nursery function of the 

subtidal habitat extends into the intertidal habitat suggesting that shark nurseries may be more 

spatially vast than currently thought. 

Environmental influences, such as turbidity, salinity and temperature, are known to 

affect the spatial distribution of sharks (Hight & Lowe 2007, Ortega et al. 2009), teleosts 

(Castellanos-Galindo & Krumme 2013, Schaffler et al. 2013) and rays (Schlaff et al. 2014). 

The littoral habitat was characterised by a high abundance of teleosts and limited presence of 

sharks. However one teleost, L. calarifer, was the dominant teleost in the littoral habitat. 

There were no physical barriers preventing additional species of teleosts and sharks from 

utilising the littoral habitat, suggesting the dynamic nature of the habitat may influence the 

distribution and abundances of teleosts and sharks. For instance, barramundi, L. calcarifer, 
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are a catadromous finfish and their use of the littoral habitat may correlate with their ability to 

withstand changes in salinity levels. Whereas many species of sharks are stenohaline, thus 

occupy a narrow salinity range which would limit their use of the littoral habitat. For 

example, juvenile pigeye sharks, C. amboinensis, will shift their home ranges when wet 

season flooding decreases salinities in shallow coastal habitats to areas with optimal salinity 

levels (Knip et al. 2011). The limited distribution of the shark community suggests the 

variability in salinity and/or the increased temperature may not be conducive for young-of-

the-year and juveniles sharks to reach maturation, thus limiting their distribution to the 

intertidal and subtidal habitats. 

Critical life events, such as teleost spawning and shark parturition, often occur in 

habitats that are spatially discrete and have a unique set of physical and environmental 

conditions. Identifying and managing these habitats is critical for conserving populations of 

fishes that would otherwise be exploited or impacted by anthropogenic activities. Multiple 

shark nursery areas are protected by marine park declarations (Chapman et al. 2009, Lynch et 

al. 2013) and teleost spawning sites are also protected from fishing practices (Evans et al. 

2008, Teske et al. 2010), emphasising that habitats that fulfil these functions are valued for 

conservation. However, this thesis identified that teleost spawning and shark parturition was 

not common in the littoral, intertidal and subtidal habitats. Additional ecological functions, 

foraging, refuge and nursery, were identified within the shallow coastal habitat suggesting the 

value of the shallow coastal habitat mosaic for spawning or parturition may be limited, but 

the additional functions may warrant conservation.  

The results of this thesis illustrate the global challenge in managing the impacts of 

coastal development and fishing on species of conservation interest (Iwasaki & Shaw 2008, 

Gaines et al. 2010, Davies & Baum 2012). This is observed from the abundance of narrow 
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sawfish, Anoxyprists cuspidata, a species listed as globally endangered (IUCN Red List) in 

the intertidal and subtidal habitats. It is prohibited to take A. cuspidata by Queensland 

fisheries management regulations and in international agreements (CITES) Appendix I 

however, incidental capture still occurs (Tobin et al. 2014) and coastal development may 

impact their preferred habitats. The habitat preferences of A. cuspidata identified in this 

thesis may be useful for designing effective adaptive management should fishing or coastal 

development negatively impact the intertidal and subtidal populations. For example, 

commercial net fishing occurs throughout the shallow coastal habitat mosaic, and restricting 

the use of net fishing to the littoral habitat would remove the risk of A. cuspidata to incidental 

capture. Although there may be some negative consequences for restricting commercial net 

fishing in the shallow coastal habitat mosaic, the risk of capture and the possible impact to 

the populations of A. cuspidata would be minimised. Moreover, if the presence of A. 

cuspidata is seasonal then spatial closures may only need to occur when A. cuspidata are 

present creating an effective management approach that balances fisheries and species 

conservation. Clearly, this thesis has identified valuable information on the distribution of A. 

cuspidata in the shallow coastal mosaic, however further research focusing on spatial 

distribution of A. cuspidata beyond the shallow coastal mosaic is needed before 

implementation of management policies that would reduce access or limit fishing gear as 

these habitats are highly productive for many target fishery species. 

Clearly, shallow coastal habitats are complex ecosystems where one function cannot 

define their value (Sheaves et al. 2014a). Acknowledging that shallow coastal habitats may 

provide value that extends beyond sustaining larvae and juveniles will allow research to fully 

assess the ecological functions of shallow coastal habitats and determine effective 

management for these complex systems. 
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4.1 Future research  

Large bodied fishes comprise a greater proportion of the fish communities associated 

with shallow coastal habitats than existing knowledge suggests. Further research should 

include the sampling of additional shallow coastal habitats to understand if the fish 

communities and their distinct community structuring within Cleveland Bay is unique, or is 

in fact, a previously unidentified characteristic of shallow coastal habitats. In addition, 

determining seasonal and inter-annual effects on fish communities is required to increase our 

understanding of these habitats and thus effective management. 

Previous studies have identified that fish communities migrate between adjacent 

habitats (Wright et al. 1990, Irlandi & Crawford 1997, Castellanos-Galindo et al. 2010) 

suggesting the fish communities identified in this thesis may migrate within the shallow 

coastal habitat mosaic. Incorporating telemetry research would provide detailed information 

on how species move between the littoral, intertidal and subtidal habitats that may not be 

apparent by gear sampling alone. 

Sampling the disc-like ray community using gillnets was inefficient as they are less 

likely to entangle. Multiple types of gear (i.e. seine nets, long line, and dip nets) should be 

utilised to provide complete and accurate information on the ray community sampled. 

Multiple gear sampling would also aid in foraging analysis by identifying prey items that 

characterise each habitat. Additionally, utilising tethering experiments  would also provide 

insight into foraging behaviours within the fish communities by observing active foraging. 

Identifying if these habitats support unique prey communities, and how those prey 

communities are consumed by predators would further extend our understanding of the 

possible foraging function these habitats may support. 
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