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Abstract 

Background: There is an urgent need for vector control tools to supplement long-lasting insecticidal nets (LLINs) 
and indoor residual spraying; particularly in the Solomon Islands where the primary vector, Anopheles farauti, is highly 
anthropophagic and feeds mainly outdoors and early in the evening. Currently, the only supplementary tool recom-
mended by the World Health Organization is larval source management (LSM). The feasibility and potential effec-
tiveness of LSM requires information on the distribution of anophelines, the productivity of larval habitats and the 
potential impacts of larval control on adult fitness.

Methods: The distribution of anophelines in Central and Western Provinces in the Solomon Islands was mapped 
from cross-sectional larval habitat surveys. The composition and micro-distribution of larval instars within a large 
permanent river-mouth lagoon was examined with a longitudinal survey. Density-dependent regulation of An. farauti 
larvae was investigated by longitudinally following the development and survival of different densities of first instars 
in floating cages in a river-mouth lagoon.

Results: Five anopheline species were molecularly identified from a range of fresh and brackish water habitats: An. 
farauti s.s., An. hinesorum, An. lungae, An. nataliae and An. solomonis. The most common habitats used by the primary 
malaria vector, An. farauti, were coastal lagoons and swamps. In the detailed study of lagoon micro-productivity, An. 
farauti was non-uniformly distributed with highest densities found at collections sites most proximal and distal to 
the mouth of the lagoon. The survival of An. farauti larvae was more than twofold lower when larvae were held at the 
highest experimental density (1 larva per 3.8 cm2) when compared with the lowest density (1 larva per 38 cm2).

Conclusions: The only documented major malaria vector collected in larval surveys in both Central and Western 
Provinces was An. farauti. Lagoons and swamps, the most common, largest and (potentially) most productive larval 
sites of this malaria vector, were “few, fixed and findable” and theoretically, therefore, amenable to successful LSM. 
However, the immense scale and complexity of these ecosystems in which An. farauti larvae are found raises ques-
tions regarding the ability to effectively control the larvae, as incomplete larviciding could trigger density dependent 
effects resulting in increased larval survivorship. While LSM has the potential to significantly contribute to malaria 
control of this early and outdoor biting vector, more information on the distribution of larvae within these extensive 
habitats is required to maximize the effectiveness of LSM.
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Background
The Solomon Islands is currently implementing country-
wide intensified malaria control using universal distribu-
tion of long-lasting insecticidal nets (LLINs) and indoor 
residual spraying (IRS). Unfortunately, the main malaria 
vector in the Solomon Islands, Anopheles farauti, dis-
plays behavioural resistance to indoor vector control by 
blood feeding predominantly when people are outdoors 
[1]. This behavioural shift first occurred in response to 
IRS with DDT in the 1970s [2, 3] and has persisted in the 
Solomon Islands with LLINs being the primary malaria 
vector control strategy [4–7]. Despite the early and out-
door biting behaviour of An. farauti, LLINs and IRS have 
had a significant impact on malaria transmission. How-
ever, achieving malaria elimination will require addi-
tional vector control to minimize outdoor transmission. 
The only outdoor strategy recommended by the World 
Health Organization is larval source management (LSM) 
[8] and this has the potential to limit transmission both 
indoors and outdoors. Larval source management is only 
recommended in areas where the larval habitats are few 
in number, fixed in location and easily accessible [9]. To 
ascertain the feasibility of implementing LSM in the Sol-
omon Islands, information on the types of larval habitats 
utilized by vectors including their location in proximity 
to villages is needed.

Nine species of anophelines occur in the Solomon 
Islands: six members of the An. punctulatus group: An. 
farauti, An. irrenicus, An. hinesorum, An. punctulatus, 
An. koliensis and An. rennellensis [10, 11]; as well as three 
members of the An. lungae complex: An. lungae, An. sol-
omonis and An. nataliae [12]. Of these, the only known 
malaria vectors in the Solomon Islands are An. farauti, 
An. punctulatus and An. koliensis. Anopheles punctula-
tus and An. koliensis became uncommon after IRS with 
DDT was extensively used for malaria vector control 
tool in the 1970s [13]. Larvae of An. farauti, are found 
within a kilometre of the coast in both fresh and brackish 
water (≥70 % seawater) [14, 15]. Freshwater larval habi-
tats of An. farauti include both natural and man-made 
depressions such as drains, vehicle tracks, foot prints, 
pig wallows and ground-pools [5, 16] that are depend-
ent on rainfall [17, 18]. Large numbers of An. farauti are 
believed to be associated with large, permanent, brackish 
water lagoons or swamps that form behind sandbars that 
block the flow of water into the sea [17–19] as high adult 
biting densities and malaria parasite rates are associated 
with villages proximal to these coastal habitats [20, 21].

The population dynamics of mosquitoes are influenced 
by both intrinsic and exogenous processes [22–25]. If den-
sity effects operate on mosquito larvae in large larval habi-
tats, the impact of interventions targeting anopheline larval 
abundance will be disproportionate to the density of the 

anopheline populations’ (linear reductions in populations 
may not result in linear reductions in productivity or fit-
ness). The majority of studies on density-dependent regu-
lation of mosquito larvae in small aquatic habitats were 
conducted under controlled laboratory or in “semi-field” 
conditions. Generally, these studies have shown that pheno-
typic traits which mediate individual fitness (e.g. body size) 
in larvae and adults are optimized at low larval population 
densities [26–28]. Studies to define density-dependence of 
mosquitoes in large larval habitats are needed. In the Solo-
mon Islands, An. farauti use large lagoons as well as smaller 
and more temporary aquatic sites as larval habitats [19]. 
Prior to attempting larval control in the Solomon Islands, 
data on the distribution and abundance of categories of lar-
val habitats are required and the potential role of larval den-
sity dependence on adult fitness needs to be defined.

Methods
Study sites
The study was conducted in Central and Western Prov-
inces in the Solomon Islands where small villages are 
mainly found in coastal areas. The climate of the region is 
hot and wet; the median annual rainfall in Central Prov-
ince is 2837 mm (based on 43 years of data collected from 
Tulagi; [29]). Annual rainfall estimates for Western Prov-
ince are 2667 mm from Gizo (based on 28 years of data 
up to 1952; [29]) and 3725  mm from Munda (based on 
11 years of data from 1999–2009; Solomon Islands Bureau 
of Meteorology, Unpublished data). Although rain falls 
throughout the year, relatively less rain falls between May 
to September. The mean annual temperature on the coast 
is 26  °C and is reasonably constant throughout the year. 
Mean daily temperatures range between 24 and 30  °C. 
Malaria is primarily transmitted by An. farauti s.s.

Larval distribution
The distribution of anophelines was investigated by lar-
val presence-absence surveys. The surveys were focused 
within 2 km of the coast line, as this is where villages are 
located. Larval habitats were categorized as one of six 
classes and locations recorded by GPS. Surveys were con-
ducted from August to September 2011 in Central Prov-
ince (9°0′S, 159°45′E) and in February and May 2013 in 
Western Province (8°0′S, 157°0′E). In Central Province, 
14 villages were surveyed on the islands of Ngella Sule 
and Tulagi Islands. In Western Province, 54 villages were 
surveyed on the islands of Vella Lavella, Ranonnga, Gizo, 
Kolombangara, Vonavona, Kohinggo and New Geor-
gia Islands. Potential larval habitats were sampled with 
250  ml dippers and larval samples were stored in 70  % 
ethanol in micro-centrifuge tubes for subsequent identi-
fication by molecular analysis of the internal transcribed 
spacer region II (ITS2) of the ribosomal DNA [30].
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Lagoon micro‑habitats
The micro-distribution of larval instars at different sites 
within a large permanent river-mouth lagoon in Haleta 
village, Central Province, Solomon Islands was evaluated 
[7]. The lagoon was a known larval habitat that forms 
when surface water run-off accumulates behind a sand 
bar that prevents drainage to the sea. After periods of 
heavy rain, the sandbar breaks and releases the accumu-
lated water to the ocean and the area of the larval habitat 
is reduced. Hereafter, this larval habitat will be referred 
to as the lagoon. The numbers of the different anophe-
line larval instars were monitored daily at five stations 
(1 × 5 m; Fig. 1) along the northern edge of the lagoon 
over 10 consecutive days from the 2nd–11th December 
2012. Each station was sampled once daily by 10 dips 
with a standard 250 ml dipper. The number of larvae by 
instar was recorded per dip. The water temperature and 
salinity was concurrently measured at each station with 
a thermometer and a hand held refractometer (Atago Co. 
Ltd, Japan), respectively.

Density dependent development
Density-dependent regulation of mosquito larvae was 
investigated by seeding first instar An. farauti larval at 
different densities into floating larval cages encompass-
ing a surface are of 380 cm2 (diameter 22 cm; Fig. 2). The 
larval cages permitted exchange of water and microfora 

with the habitat in which they were placed but excluded 
the entry of predators or other fauna. The larval cages 
tracked the temperature, nutrition and other environ-
mental conditions in the permanent larval habitat in 
which they were placed.

Wild-caught female An. farauti captured by human 
landing catches (HLC) (see [1, 7, 31]) were used to gen-
erate the F1 first instars used here. Ethical approvals for 
conducting HLC were obtained from the National Health 
Research and Ethics Committee, Solomon Islands (02-
05-2011), the James Cook University Human Research 
Ethics Committee, Australia (H4122) and the Univer-
sity Hospitals Case Medical Centre Institutional Review 
Board for Human Investigation, USA (05-11-11). Blood-
fed specimens from HLCs were isolated and placed into 
70 ml plastic specimen jars holding a piece of damp cot-
ton-wool covered with filter paper on the bottom as an 
oviposition substrate. The top of each oviposition cham-
ber was covered with mosquito netting overlaid with 
damp cotton-wool to ensure high humidity. Filter papers 
with eggs wer transferred into a petri dish containing 
rain water for hatching. F1 first instars from wild-caught 
females were mixed and allocated to larval cages at densi-
ties of 10, 25, 50 and 100 per larval cage (i.e. 1 larva per 
38, 15.2, 7.6 and 3.8 cm2, respectively) with five replicates 
of each density. For each treatment group the survival 
of larvae was monitored daily over 10 consecutive days 

1

234

5

Fig. 1 Images and locations of the sampling stations used to examine micro-productivity of An. farauti larvae in Haleta Village, Central Province, 
Solomon Islands
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from the 2nd–11th December 2012. Larval survival was 
defined as total larval present at a time point divided by 
the total released into the cage.

Statistical analysis
For the larval distribution study, three related data 
sources were created: (1) the geo position of each site 
surveyed (shapefile); (2) the field survey conducted dur-
ing each site survey (tabular); and (3) the molecular data 
containing the species identifications of the larval sam-
ples (tabular) [32]. The data for each source was linked 
with a unique identifier that was allocated to each site 
during the PDA-based survey.

For lagoon micro-productivity, a dataset was con-
structed that detailed the total number of anophelines 
per dip, and scored for presence as 0 (negative) or 1 
(positive for larvae) for each dip [32]. The influence of 
location (sampling stations) on both the presence and 
density of larvae was analysed with generalized linear 
models (GLMs). The influence of the two environmen-
tal factors, water temperature and salinity, with both 
the presence and density of larvae was analysed with 
generalized linear mixed models (GLMMs) with loca-
tion as a subject variable to account for repeated sam-
pling. The distributions for the models were: (1) binary 
data (presence or absence) fitted to a binomial distri-
bution with a logit link function and (2) count data 
(density) fitted to a negative binomial distribution with 
a log link function because data were not normally 
distributed.

The density-dependent regulation of mosquito larvae 
was analysed using a Cox regression to compare the sur-
vival of mosquito larvae held at different densities [32]. 
The Cox regression determined the relative risk of dying 
(hazard ratios) for each density group compared with 
the lowest density tested (10 larvae per cage [1 larva per 
38 cm2]). The model was weighted by the replicate num-
ber to account for longitudinal sampling. All analyses 
were conducted using the R package V3.1.2 [33].

Results
Larval distribution
Anopheline larvae were collected from 108 larval habi-
tats (58 sites in Central Province and 50 sites in West-
ern Province) (Figs.  3, 4). Overall 391 specimens of 
five species were identified by PCR: An. farauti s.s., An. 
hinesorum, An. lungae, An. nataliae and An. solomonis. 
Anopheles farauti s.s. and An. hinesorum were the most 
abundant and widespread species found in both prov-
inces. Anopheles lungae and An. nataliae were present 
but less common in both provinces. Anopheles solo-
monis was only found in Central Province. The anophe-
lines were found across a range of larval habitats: coastal 
lagoons and swamps, drains, transient pools, man-hade 
holes, riverine and spring wells (Table  1). Both An. far-
auti s.s. and An. hinesorum were found in all habitat 
classes, with the highest prevalence habitat being coastal 
lagoons and swamps. The most commonly used habitat 
for An. lungae was riverine areas.  

Lagoon micro‑productivity
A total of 408 anopheline larvae were collected; 56  % 
(n =  227) were early instars (I–II) and 44  % (n =  181) 
were late instars (III–IV). The location of the sampling 
station along the length of the lagoon influenced both 
the presence (χ2 = 13.26, df = 4, p = 0.001) and density 
(χ2 = 22.92, df = 4, p < 0.001) of larvae per dip. The lar-
val density was highest at the monitoring stations most 
proximal and distal from the sandbar behind which the 
lagoon formed (stations 1 and 5; Table 2). The water tem-
perature was fairly uniform across the sampling stations, 
ranging from 30.8 to 31.6  °C, with salinity diminishing 
from 1 ppt at the station closet to the sandbar to 0 ppt at 
the site most distal from the sandbar (Table 2). Evidence 
for an impact of either presence or density of larvae by 
either water temperature (β = 0.37, df = 43, p = 0.359; 
β  =  0.001, df  =  43, p  =  0.995, respectively) or salin-
ity (β = −0.11, df = 43, p = 0.904; β = 0.109, df = 43, 
p = 0.301, respectively) was not found.

Density dependent development in the lagoon
The survival of An. farauti larvae was more than twofold 
lower when larvae were held at the highest experimental 

Lid with mesh opening 

Foam ring for floata�on

Plas�c container with 
mesh opening  on 
bo�om

Fig. 2 Replicate mesh cages used to manually manipulate the densi-
ties of 1st instar An. farauti within the lagoon in Haleta Village, Central 
Province, Solomon Islands
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density (100 per cage or 1 larva per 3.8 cm2) when com-
pared with the lowest density (10 per cage or 1 larva per 
38 cm2; Hazard ratio [HR] = 2.11, se = 0.21, p = 0.0003; 
Fig.  5). The survival of larvae at densities of 25 (1 larva 
per 15.2 cm2) and 50 (1 larva per 7.6 cm2) per cage was 
not significantly different from 10 per cage (25 larvae: 
HR = 1.24, se = 0.23, p = 0.351; 50 larvae: HR = 1.45, 
se = 0.21, p = 0.082).

For the lowest experimental density (10 per cage)  the 
surviving larvae (n = 31) all pupated with a cumulative 
14 adults emerging by day 9 following larval release into 
the cages. The development rate was delayed at higher 
densities. Adults emergence was not seen from any of the 
other densities with the exception of two undersized (by 
visual inspection) adults from the highest density cage 
(holding 100 larvae). Only 8 of the surviving 68 (11.7 %) 
larvae pupated by day 10 in the 25 larvae per cage experi-
mental density while only 10 of the surviving 131 larvae 
(7.6  %) pupated in the 100/cage experimental density. 
Larval and pupal sizes diminished with increasing den-
sity based on a visual inspection.

Discussion
During mosquito surveys conducted in the early 1970s, 
An. farauti, An. punctulatus and An. koliensis were 
found on all the main islands in the Solomon Islands 
except Temotu Province [13, 34]. In the Solomon 
Islands, extensive DDT-IRS was conducted during the 
1960s and 1970s and had a significant impact on popula-
tion densities: after repeated spray rounds these highly 
endophagic species became difficult to find [2, 34, 35]. 
Both An. punctulatus and An. koliensis were found on 
Malaita in 1987 [36], with this being the last record of 
An. koliensis in the Solomon Islands. Anopheles punctu-
latus was found during the 1990s on both Guadalcanal 
and Malaita [10, 37]. Mosquito surveys have not been 
conducted since the early 1970s in Central Province [3]. 
In Western Province, a limited survey was conducted 
(in Titiana village) during the early 1990s and only An. 
farauti was found [37]. The malaria vectors, An. punctu-
latus and An. koliensis, were not identified in this study 
during the extensive larval habitat surveys in Central 
and Western Provinces.

Fig. 3 Species distribution of Anopheline fauna based on larval surveys conducted in Central Province, Solomon Islands. The Islands included in the 
survey were Ngella Sule and Tulagi Islands
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After the 2009 faunal surveys in Santa Isabel, it was 
proposed that increased competition for larval sites by 
An. hinesorum may have inhibited the prevalence and 

range of An. punctulatus and An. koliensis [5]. This is 
significant for malaria transmission because An. hineso-
rum in the Solomon Islands is primarily zoophagic (e.g., 
a non-vector of human malaria) [5, 10, 37]. On Santa 
Isabel, Central and Western Provinces, An. hinesorium 
occupied sites normally associated with An. punctu-
latus and An. koliensis such as drains and semi-perma-
nent ground pools. The larval surveys in this study only 
focused on coastal areas because this is where most 
villages (and malaria) are found and this would have 
excluded freshwater sites distant from the coast.

The distribution of An. farauti larvae was not uniform 
among five sampling sites within a large coastal lagoon. 
The density and presence of larvae was highest at the 
proximal and distal sites relative to the sandbar that cre-
ated the lagoon but this was not associated with either 
temperature or salinity. Similar studies on Guadalcanal 
during 2007–08 [19] also found that An. farauti distribu-
tion was not uniform within large coastal larval habitats. 
While the habitats in Guadalcanal and Central Provinces 
were both coastal and were formed when water flow into 

Fig. 4 Species distribution of Anopheline fauna based on larval surveys conducted in Western Province, Solomon Islands. The Islands included in 
the survey were Vella Lavella, Ranonnga, Gizo, Kolombangara, Vonavona, Kohinggo and New Georgia Islands

Table 1 Aquatic larval habitats utilized by  the five 
anopheline species found in  Central and  Western Prov-
inces, Solomon Islands

Habitat 
type

Species and number of sites occupied (%)

An. 
farauti

An. hine-
sorum

An. 
lungae

An. 
nataliae

An. solo-
monis

Lagoon or 
swamp

19 (55.9) 20 (45.5) 4 (26.7) 4 (40.0) 0 (0.0)

Drains 3 (8.8) 8 (18.2) 1 (6.7) 0 (0.0) 0 (0.0)

Transient 
pools

2 (5.9) 1 (2.3) 3 (20.0) 0 (0.0) 0 (0.0)

Man-
made 
holes

7 (20.6) 5 (11.4) 0 (0.0) 1 (10.0) 1 (50.0)

Riverine 1 (2.9) 7 (15.9) 7 (46.7) 4 (40.0) 1 (50.0)

Spring 
well

2 (5.9) 3 (6.8) 0 (0.0) 1 (10.0) 0 (0.0)
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the ocean was blocked by a sand mouth, the Guadalca-
nal sites were larger streams that were blocked by sand-
bars whereas the site in Central Province was a lagoon 
resulting from surface water runoff trapped by a sandbar 
from flowing into the ocean. On Guadalcanal the density 
and prevalence of larvae was highest near the mouth of 
the steam and declined as the sampling stations moved 
inland where the water became deeper and faster flow-
ing. On Guadalcanal, larval densities were also positively 
associated with aquatic emergent plants and filamentous 
algae [19].

Evidence for potential density dependent develop-
ment effects were seen within the river-mouth lagoon. 
The survival of larvae at the highest density in the cages 
was nearly two-fold less than that when held at the 

lowest density. Confirming density dependent impacts 
will require careful quantitative documentation of the 
density of larvae in natural habitats and the impacts of 
density on adult mosquito fitness; in addition potential 
density dependent impacts will need to be teased apart 
from exogenous influences. The implications of density 
dependent effects for malaria control remain unclear. 
Potentially, if anopheline growth is under strong density 
dependent regulation, control measures may become 
proportionately less effective as larval densities dimin-
ish because the remaining individuals could compen-
sate with enhanced reproduction and survival [38, 39]. 
Understanding the concurrent roles of exogenous and 
density dependent factors on population growth is cru-
cial for predicting the response of vector populations to 
control strategies.

Conclusion
Anopheline surveys in two provinces found an extensive 
distribution of An. farauti but did not find either An. 
punctulatus or An. koliensis. This suggests that these 
two formerly dominant malaria vectors, An. punctula-
tus and An. koliensis, are uncommon if not eliminated 
from Central and Western Provinces. The primary vec-
tor, An. farauti, remains and has a habit of feeding early 
and outdoors when humans are not protected by LLINs 
and IRS. While the primary larval habitat of An. farauti 
in the Solomon Islands are river-mouth lagoons and 
large swamps which are “few (in number), fixed (perma-
nent) and findable (located close to villages)” [40] and 
thereby fulfil, in theory, the attributes that should make 
these larval habitats amenable to LSM, it is unclear 
if the large size of these habitats are “fixable” without 
more information on the distributions and densities of 
larvae within the complex habitats (swamps encom-
passing extensive vegetation an multiple microhabitats) 
that they occupy.
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