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Abstract. Coral degradation is a major threat towards the biodiversity of coral-reef ecosystems, either through the
physical effects of environmental change, or biological agents such as crown-of-thorns (Acanthaster planci). Coral loss is
leading to significant declines in reef-fish assemblages, particularly those dependent on live coral as settlement sites. Most

reef fishes use olfactory stimuli at settlement; however, their ability to detect chemical stimuli from degraded corals or
A. planci is unknown. Here, olfactory responses of juvenile reef fishes to the presence of stressed corals andA. planciwere
tested. Juveniles of eight common coral-associated species were subjected to a series of pair-wise choice tests, where the

period of time spent in two differing water sources was noted. All species demonstrated a significant attraction towards
healthy coral ($76%), avoiding cues emitted by stressed coral colonies. When given the choice between a control water
(untreated reef water) and water containing chemical cues from A. planci, most species elicited no response. Finally, when

given the choice between chemical cues derived from feeding A. planci or the control, all species avoided A. planci

($70%). Our results indicated that juvenile reef fish are capable of distinguishing the state of coral health, but not directly
from disturbance agents.

Additional keywords: Chaetodontidae, chemosensory cues, coral degradation, habitat selection, Labridae, olfaction,
Pomacentridae.
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Introduction

Coral-reef ecosystems are becoming seriously degraded, as

evidenced by a global decline in coral cover (Gardner et al.
2003; Bellwood et al. 2004; Feary et al. 2007a, 2007b). This loss
has been attributed to a range of factors, including the over-

fishing of herbivorous species (e.g. Jackson et al. 2001; Mumby
and Steneck 2008; Rasher et al. 2013), changing environmental
conditions, such as increasing temperatures, turbidity and sed-
imentation (Fitt et al. 2001; Lough and van Oppen 2009;

Wenger et al. 2012) and outbreaks of biological disturbance
agents such as the devastating crown-of-thorns (COTs) starfish,
Acanthaster planci (Kenchington and Kelleher 1992; Feary

et al. 2007b; Baird et al. 2013). COTs are found on coral reefs
throughout the Indo-Pacific, normally occurring in low densi-
ties. However, at times of outbreak, they can have a dramatic and

immediately devastating effect on coral reefs, in some instances
killing up to 80% of corals (e.g. Moran 1986; Baird et al. 2013).
Coral loss, in turn, is causing significant declines in the biodi-
versity and abundance of reef-associated organisms such as

coral-reef fishes (Jones et al. 2004; Munday 2004; Feary et al.

2007a, 2007b; Pratchett and Berumen 2008; Munday et al.

2009). Evaluating the severity of this threat depends on

knowledge of how individuals and populations respond to

different levels of coral stress or degradation. In particular, the
behavioural mechanisms used by reef fishes to avoid coral

degradation or circumstances that would be detrimental to their
survival are poorly understood.

The effects of habitat degradation appear to be greatest for

reef fish species that depend on coral for food, shelter and living
space (e.g. Booth and Beretta 2002; Feary et al. 2007a; Munday
et al. 2009). Coral degradation is known to severely affect the
growth and mortality of reef-associated fishes (Munday 2001;

Schlaepfer et al. 2002; Blondel et al. 2006; McCormick 2009).
However, coral loss may be most critical at the time of larval
settlement to the reef, when the majority of species are depen-

dent on coral for recruitment sites (Jones et al. 2004). Most reef
fishes demonstrate strong habitat selection at settlement, includ-
ing selection for particular substrate types (Tolimieri 1995;

Öhman et al. 1998; Holbrook and Schmitt 2002; Feary et al.

2007b). Juvenile fishes have the ability to sense and avoid
degraded reefs (Lecchini et al. 2013, Dixson et al. 2014);
however, their ability to avoid initial degradation processes

(such as increased levels of stress, COTs or the effect of COTs
consuming corals) remains uninvestigated.

The use of olfactory cues in settlement-site selection is well

documented (Atema et al. 2002; Kingsford et al. 2002; Dixson
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et al. 2008, 2011). Experiments involving olfactory choice
flumes have shown that juveniles can respond to a variety of

chemical cues, including substratum types (Dixson et al. 2008;
Lecchini et al. 2005a, 2005b; Lecchini andNakamura 2013), the
presence of conspecific fishes (Sweatman 1988; Booth 1992;

Booth andWellington 1998; Lecchini and Nakamura 2013) and
the presence of other fish species (Vail and McCormick 2011;
Dixson et al. 2012). However, the degree to which fish can

distinguish differences in the health of coral tissues, solely by
olfaction, is not yet fully understood (Lecchini et al. 2013).
Corals in the process of being eaten by crown-of-thorns are
likely to be emitting a cocktail of chemical stimuli that may

indicate the presence of a poor settlement site. Likewise, COTs
themselves may have unique chemical signatures, and, in
outbreak situations, it may be advantageous to avoid settling

anywhere near them. However, olfactory responses of juvenile
fishes to crown-of-thorns, either feeding or not feeding, have not
been investigated.

Given that a major decline in the health of reef habitats has
already occurred, and may reach catastrophic levels within the
next 50 years (Hughes et al. 2003; Hoegh-Guldberg et al. 2007;
McCormick et al. 2010), our understanding of how fishes

respond to habitat loss or agents of disturbance must be
expanded quickly. To this end, the overall aim of the present
study was to assess the ability of newly recruited coral-reef fish

juveniles to discriminate among chemical cues from coral
differing in health states and the presence of A. planci. Specifi-
cally, we used olfactory choice flumes to assess choices

between (1) healthy and degraded coral tissue, (2) the presence
and absence of COTs (non-feeding) and (3) the presence and
absence of COTs (feeding). We predicted that juveniles would

have the ability to chemically detect and avoid stressed corals,
and the presence of COTs both when feeding, and, not feeding
on corals. The study targeted eight common coral-reef fish
known to be strongly associated with live coral habitats, in

Kimbe Bay (Papua New Guinea), including five species of
damselfish (Pomacentridae), two species of wrasse (Labridae)
and one butterflyfish species (Chaetodontidae).

Materials and methods

Study location and species

The study was conducted at Kimbe Bay, Papua New Guinea
(5812.5300S, 150822.8010E), between October 2013 and May
2014 at Mahonia Na Dari Research and Conservation Centre.

The focal species for the study consisted of eight common coral
specialist species, including the following: five species of
damselfish (Pomacentridae), namely, Dascyllus melanurus,

D. reticulatus, Chrysiptera arnazae (formerly C. parasema),
Pomacentrus moluccensis and P. aurifrons; two species of
wrasse (Labridae), namely, Halichoeres melanurus and Lab-

richthys unilineatus, and one butterflyfish (Chaetodontidae)
species,Chaetodon octofasciatus.All eight species were used to
test responses to coral health. However, because of the limited

availability of the other species, only four core damselfish
species, namely,D.melanurus,D. reticulatus,C. arnazae andP.
moluccensis, were used throughout; hence, they were subjected
to olfactory trails testing both the effect of coral health and the

presence of A. planci.

Collection of juveniles

Newly settled juveniles (,2.5cm SL) were collected from small
coral colonies (10� 10cm) on areas of nearby inshore reef

(2–20 m depth). Juveniles were anesthetised with clove oil and
then collected with hand nets. Following their capture, fish were
allowed to recover for a 2-h period before being subjected to

olfactory discrimination trials. Juveniles were housed in small
groups of conspecifics, in aquaria, up until this point. All fish
demonstrated active swimming behaviour in the holding

aquaria, indicative of recovery from the anaesthetic. Fish that
were housed in aquaria for periods exceeding 12 h were fed live
Artemia nauplii following exposure to the trials. Newly recruited
juveniles were used instead of ‘naı̈ve’ larvae caught in light

traps, because this allowed for a greater number of samples to be
collected within the period of time available.

Choice flume apparatus

The responses of juveniles to olfactory cues were tested using a

two-channel choice-flume (13� 4 cm), developed by Atema
et al. (2002). The apparatus allows for pairwise choice experi-
ments to be conducted, in which individual fish can move freely

between water flowing from two different sources. Water from
two alternate sources was gravity-fed into the choice-flume,
which was partitioned along half its length. Recruits were

released in the downstream end of the flume (as per Coppock
et al. 2013), where the exploration of both water sources was
possible, allowing for the selection of a preferred source. Water
flow was maintained at a constant speed of 100 mL min�1

throughout all trials and dye tests were conducted before each
trial to ensure that laminar flows were apparent.

For each trial, a single recruit was placed in the downstream

end of the flume and left to acclimate for 2min.During this period,
the fish was able to swim throughout the chamber. At the end of
the acclimation period, the position of the fishwithin the chamber

was recorded at 5-s intervals for the duration of 2 min. This was
followed by a 1-min rest period, during which the water sources
were altered, providing a control for potential chamber side

preferences. Following this alteration, the entire test, including
the acclimation period, was repeated. Any fish that did not swim
throughout the chamber during the acclimation period were
removed from the trials, because it was not deemed to have

assessed the choices available. Of the 323 fish acclimated, 58
were removed before olfactory trials were conducted.

Experimental design

In each trial, recruits were given the choice between either a

water source that had been treated with a specific chemical cue
(stressed coral v. healthy coral, COT v. reef water, or COT and
coral v. reef water) and a water source that had not been treated

with any chemical cues (the control). Reef water collected at
high tide, from the same reef as the juvenile fishes and coral
colonies, was used as a base (control) water source throughout

the trails and collected daily. Chemical discrimination trials
were run on 15–20 individual fish of each species per treatment.
No fish was used more than once.

(a) Coral health treatments

Healthy coral treatment water was prepared by soaking small

live coral colonies (10� 10 cm) in 20 L of reef water for a period
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of 2 h. Water for the stressed-coral treatment was prepared in a
manner similar to that for the coral treatment. Specifically, small

colonies of Acropora spp. (10� 10 cm) were soaked in 20 L of
reef water, with an air source for a period of 24 h. During this
time, coral displayed copious mucus production, discolouration
of tissue and bleaching. Excess mucous was removed from the

surface of thewater of the treatment before conducting the trials.
This prevented any blockages from occurring within the appa-
ratus set up. In all instances, the reef water used in producing the

water treatments containing specific chemical cues was derived
from the same area of reef as the juvenile fishes being tested.

(b) Acanthaster planci treatments

Water from Acanthaster planci treatment (non-feeding) was
prepared by soaking a single small crown of thorns starfish
(#30cm) in 50 L of reef water, with an air source for a period of

24 h. Treatment water where the starfish was allowed to feed
was prepared in a manner akin to that of the non-feeding
Acanthaster water. A single small crown-of-thorns starfish

(#30cm) and small Acropora spp. coral colony (10� 10 cm)
were soaked in 50 L of reef water, with an air source, for a period
of 24 h. Acropora digitifera was used in coral treatments

throughout, because Coppock et al. (2013) noted limited pre-
ferences towards individual branching coral species.

Statistical analysis

Kolmogorov–Smirnov (K–S) tests were used to compare the
total proportion of time that individual recruits spent in different
streams of water (sensu: Munday et al. 2009; Dixson et al.

2010). The time spent in treatment water was recorded for each
individual by summing the number of 5-s intervals a fish spent in

the treatment water over the total 4-min period (maximum
count: 48). The median was calculated from the 15–20 replicate
trials for each comparison. The null hypothesis was that the
presence of chemical cues would provoke a limited response;

thus, a uniform distribution would occur between the two water
sources. Where observed and expected distributions differed
significantly, a preference for a particular water source could be

stated. Thus, before statistical analysis, it was hypothesised that
no significant differences would arise between (1) the presence
of healthy coral cues v. those derived from stressed coral colo-

nies, (2) between a control water (untreated reef water) and
chemical cues emitted by a non-feeding COT, and (3) between a
control water (untreated reef water) and the presence of chem-

ical cues, indicating the presence of a feeding COT.

Results

Coral health treatments

All species exhibited a dramatic avoidance of water from
stressed coral treatments, preferring, instead, to spend the

majority of each trial in water from the healthy coral treatment
(on average, $76% of time was spent in healthy coral water;
Fig. 1). This pattern was consistent across all the species tested.

Acanthaster planci treatments

Acanthaster planci treatment (non-feeding)

Three of the four species tested (D. melanurus,D. reticulatus

andP.moluccensis) showed no preference or avoidance reaction
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Fig. 1. Response of test species to olfactory cues, indicating alterations to coral health. Focal species

wereChaetodon octofasciatus,Dascyllus melanurus,D. reticulatus,Chrysiptera arnazae,Pomacentrus

moluccensis, P. aurifrons, Halichoeres melanurus and Labrichthys unilineatus. Boxes show the

percentage of time that recruits spent in healthy coral cue-treated water (white boxes) v. in water

containing cues derived from stressed coral (grey boxes). This includes the median percentage time

(horizontal line), standard error (vertical rectangle) and total range (vertical line). Species are denoted on

the x-axis. All P-values are significant at P, 0.0001.
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towards the presence of chemical cues emitted from A. planci in
isolation (Fig. 2). That is, they spent approximately equal time in
waters containing COT chemical cues (but not coral) and the

base (control) water, which lacked specific chemical cues. One
species, C. arnazae, showed a slight but significant preference
for the treatment water containing A. planci chemical cues over

the base (control) water (54 v. 46%, K–S¼ 0. 53, P, 0.05).

Acanthaster planci treatment (feeding)

When pair-wise choice tests were run to examine any
response towards the presence of chemical cues from feeding
A. planci, all species demonstrated a significant avoidance
(Fig. 3). The majority of each trial, therefore, was spent in the

reef water that lacked specific chemical cues (control) (70%).
The strongest reactions in this instance were exhibited by
D. reticulatus and C. arnazae, where 79% of the trial period

was spent in the reef water with no associated cues. This level of
avoidance was close to that observed in the stressed coral
treatment.

Discussion

The present study is the first to investigate whether the che-
mosensory system of juvenile reef fishes aids choices between
not only, healthy and stressed coral colonies, but also in the
avoidance of the most destructive agent of disturbance on coral

reefs, namely, the crown-of-thorns. Our results supported the
hypothesis that habitat-quality cues are critical in determining
settlement patterns in many coral-reef fish species. When

exposed to pairwise olfactory choice trials, all species demon-
strated a strong preference for water sourced from live healthy
corals, as opposed to the water derived from corals under

stressed conditions. Similarly, when exposed to the scent of
coral tissue that was being consumed by A. planci, the same

strong response was apparent. Settlers spent upward of 70% of
the trial period choosing to associate with the reef-water treat-

ment that did not contain the A. planci feeding cue. However,
most juvenile fishes exhibited no detectable avoidance of
A. planci individuals that were not feeding. Overall, our findings

suggested that a coral stress signal needs to be elicited before
fishes exhibit an olfactory response. Once present, juveniles will
immediately elicit strong avoidance behaviour. However, a
COT alone is not considered a threat.

For coral-reef fishes, there is a strong selective advantage for
being able to select suitable habitat at the end of the larval stage
because this is critical to post-settlement survival and success

(Schlaepfer et al. 2002; Munday et al. 2009 McCormick 2009;
McCormick et al. 2010). Settling on to healthy habitat can be
advantageous for individual growth (Munday 2001; Blondel

et al. 2006), body condition (Berumen et al. 2005) and repro-
ductive output (Conradt et al. 1999;Morris andDavidson 2000).
Our results are consistent with those by McCormick et al.

(2010), who demonstrated that two species of settlement-stage
damselfish preferentially select for live coral colonies (over
bleached or dead), through a combination of visual and olfactory
cues (P. moluccensis,P. ambionensis). Similarly, Lecchini et al.

(2013) also demonstrated that several species of reef fish
(e.g. families Pomacentridae, Acanthuridae and Aulstomidae)
showed a distinct preference for water from areas dominated by

coral, over those dominated by algae. Furthermore, these results
both corroborate and expand on the results of our previous study
Coppock et al. (2013), which demonstrated both preferences

towards water treated with live coral, and avoidances towards
water treatedwith degraded coral, when bothwere tested against
reef water with no specific chemical cues. It is clear that reef

fishes are very responsive to chemical cues coming from the
corals themselves.
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Acanthaster planci is clearly a specialised coral predator that
grazes extensively on live coral cover (Yamaguchi and Braham

1974), frequently causing significant coral mortality and adding
to the degradation of coral-reef environments (Goldberg and
Wilkinson 2004; Pratchett et al. 2009). For fish species with

strong or obligate association with live coral colonies, it might
be considered advantageous for them to be able to detect the
predators of their coral hosts and predict potential degradation in

advance. However, when recruits were exposed to the A. planci
treatment water, where the starfish was unable to feed, in most
instances, little or no reaction was apparent. This suggests that
the association betweenCOTs and damaged coral is not frequent

enough, either in evolutionary or ecological time scales, to
represent a significant problem at settlement. The slight prefer-
ence of C. arnazae to the presence of COTs has no obvious

explanation.
The fact that this avoidance ofA. planci only occurredwhen a

live coral colony was present in the treatment water implies that

it is the response of the coral to predation that the recruits are
responding to, and not the presence of the starfish per se. Indeed,
when predation was apparent in these treatments, the coral in
question was seen to secrete large volumes of mucus. Chemi-

cally sensing nearby death is a powerful determinant of individual
behaviour. Although this phenomenon is usually observed in
relation to the death of a conspecific, the ‘smell’ of death comes

in multiple forms, each of which has both direct and indirect
effects on behaviour (Peacor and Werner 2001; Trussell et al.
2004; Byrnes et al. 2006; Long et al. 2007; Hay 2009). This may

be particularly important where a species is reliant on its coral
host for its own survival. Thus, where the coral is producing
defensive responses in reply to being predated on, this is likely to

act as a deterrent for settlement.
Although it is acknowledged that waters from the stressed-

coral and feeding-A. planci treatments are particularly potent,
and, as such, the avoidance reactions particularly strong, the

use of chemical cues in avoiding habitats that would be
disadvantageous to future survival and fitness is still demon-
strated. The question now remains to understand the degree at

which this becomes detectable, so as to establish at what
concentration coral degradation would be damaging to successful
recruitment.

Previous studies have shown evidence of rapid ontogenetic
change inmorphology and behaviour at or soon after the point of
settlement (Leis and Yerman 2012). Thus, preferences for coral
species may differ depending on whether juveniles are tested

before or after settlement (Danilowicz 1996). Because all our
focal individuals had already settled, patterns of choice may not
necessarily reflect choices that were made at settlement. How-

ever, almost all studies that have compared settlement choices in
pre-settlement larvae and post-settlement juveniles have found
identical patterns, regardless of ontogenetic phase (e.g. Öhman

et al. 1998; Dixson et al. 2008). For these species, therefore, it
may be possible to infer settlement choices in pre-settlement
larvae through olfactory trials carried out on post-settlement

juveniles, and drawing conclusions in this manner is not incor-
rect. Likewise, because the majority of juveniles used through-
out the trials were collected from live, healthy coral colonies,
there is the potential that exposure to this chemical signal might

influence the results seen in the choice flume. Ideally, future

research needs to focus on the use of larval recruits, to avoid this
influencing the results.

In conclusion, the results of the study corroborated the
importance of olfactory cues in directing recruits away from
inappropriate habitats, and towards areas of live coral, thus

helping avoid areas of degraded coral that would be detrimental
to their fitness. Clearly, the presence of A. planci in the absence
of coral is not perceived as a threat. However, at times of

outbreak, when predation on corals is high, juveniles are likely
to show strong avoidance to affected areas. If settlers fail to find
suitable habitat, widespread recruitment failure is likely to
occur, with long-term consequences for a wide variety of

coral-associated fishes.
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