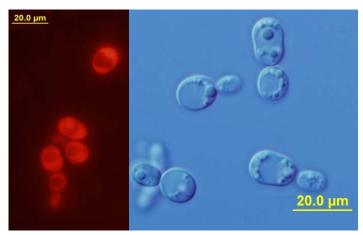


Methane Oxidation by the Oleaginous Yeast, *Rhodotorula glutinis* – Fact or Fiction?

Ali Razaghi, Obulisamy Kartik and Kirsten Heimann,


College of Marine and Environmental Science, James Cook University, Townsville, QLD 4811, Australia. Contact: kirsten.heimann@jcu.edu.au, Ph: +61 7 4781 5795

Significance

- With an atmospheric life span of 7-12 years, the warming potential of methane (CH₄) is 25 times greater than for carbon dioxide (CO₂) over a 25 year period.
- More than 63% of atmospheric CH4 (346 Tg Y-1) is derived from anthropogenic activities with landfills, oil and gas, and enteric fermentation being the main pollution sources.
- Methane oxidising organisms can fix CH₄, providing a biological carbon sink by converting CH₄ to biomass carbon.
- This biomass can then be used for the production of valueadding renewable products (e.g. bioplastics, pigments, and lipids) providing added positive inputs into the technoeconomics of CH₄ remediation.

Background

- Four species of CH₄-fixing yeasts were identified by Wolf *et al.*, (1980):
 - · Sporobolomyces roseus and S. gracilis
 - Rhodotorula rubra and R. glutinis
- The ability of R. glutinis to utilise CH4 as a sole carbon source was reported by Wolf *et al.* (1979, 1980).
- Reported CH₄-oxidation rates were: 0.18 μmol CH4.mg dry weight.
- *Rhodotorula glutinis* is a unicellular, oleaginous, saprophytic yeast (Fig. 1) with a high lipid (>60%) and high carotenoid contents.
- As C18:1 was reported as the dominant fatty acid, *R. glutinis* fatty acids have potential for bioplastic production and the carotenoids (β-carotene, torulene and torularhodin) have high values on the antioxidant market (feed additives in aquaculture, natural food colourants, pharmaceuticals).
- Therefore, this study investigated the CH₄-remediation potential of *R. glutinis* to evaluate benefits in a CH₄-remediation context.

Fig 1. (Left) Fluorescence micrograph of *R. glutinis* stained with Nile-blue (Right) Differential interference micrograph of budding yeast cells (1,000x)

Methods

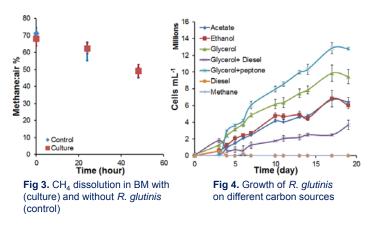

- <u>Cultivation</u>: *Rhodotorula glutinis* cultures were grown in fed-batch reactors at 30 °C without shaking in basal medium (BM).
- <u>Methane treatments</u>: *R. glutinis* was purged with 20% CH₄ in air in batch cultures and 5% CH₄ in air in fermenter batch mode (Fig. 2). BM supplemented with CH₄ without *R. glutinis* served as control for non-biological CH₄ dissipation.
- <u>Carbon substrate utilisation</u>: *R. glutinis* was cultured in BM supplemented with acetate, glycerol, glycerol-diesel, or glycerol peptone.
- Growth was measured spectrophotometrically at 540 nm and via direct cell counts using a Neubauer haemocytometer.

Fig 2. Cultivation of *R.glutinis* in fermenter batch-mode, incubated with 5% CH_4 in air.

Results

- Repetition of the exact same cultivation conditions used by Wolf *et al.* (1980) showed that *R. glutinis* did not fix CH₄;
- Instead observed CH₄ declines were due to dissipation of CH₄ in the medium (non-organism control, Fig. 3).
- Best growth was achieved when cultivated in basal medium supplemented with glycerol-peptone (1%+0.001% w/w), while no growth was observed with CH₄ as the sole carbon source (Fig. 4).
- 22-day β-carotene productivities of *R. glutinis* on glycerolpeptone supplemented BM were 0.05 mg.g⁻¹.dry weight.L⁻¹.

Conclusions

- Our results show that R. glutinis is not a methane-oxidising yeast and refutes earlier reports by Wolf et al. (1979, 1980).
 - Rhodotorula glutinis is not suitable for methane remediation.
- β-carotene productivities in glycerol-peptone-supplemented basal medium are not competitive with other natural sources.

References

Wolf, H. J., and R. S. Hanson. "Isolation and characterization of methane-utilizing yeasts." *Journal of General Microbiology* 114.1 (1979): 187-194. Wolf, H. J., M. A. R. C. I. A. Christiansen, and R. S. Hanson. "Ultrastructure of methanotrophic yeasts." *Journal of bacteriology* 141.3 (1980): 1340-1349.