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Abstract 
 

Network-based approaches are emerging as valuable tools for the analysis of complex genetic 

structure in both wild and captive populations. NetView P combines data quality control with the 

construction of population networks based on mutual k-nearest-neighbours thresholds applied to 

genome-wide SNPs. The program is cross-platform compatible, open-source and efficiently operates 

on data ranging from hundreds to hundreds of thousands of SNPs through multiprocessing in Python. 

We used the pipeline for the analysis of pedigree data from simulated (n = 750, SNPs = 1279) and 

captive Silver-lipped Pearl Oysters (n = 415, SNPs = 1107), wild populations of the European Hake 

from the Atlantic and Mediterranean (n = 834, SNPs = 380) and Gray Wolves from North America (n 

= 239, SNPs = 86,103). The population networks effectively visualize large- and fine-scale genetic 

structure within and between populations, including family-level structure and relationships. NetView 

P comprises a network-based addition to other population analysis tools and provides user-friendly 

access to a complex network analysis pipeline through implementation in Python. 

 

Introduction 
 

The interaction of evolutionary forces such as genetic drift, gene flow, natural and artificial selection 

gives rise to genetic structure within and between populations. Revealing the extent of such structure 

can provide valuable insights into the history and evolutionary trajectory of natural populations 

(Holsinger & Weir 2009; Frean et al. 2013) and is frequently used to correct population stratification 

in genome-wide  association  studies (Price  et al. 2006, 2010). An understanding of population 

structure is also crucial for the management of genetic resources in conservation and breeding 

programs. For instance, in natural populations neutral and adaptive differentiation of populations can 

be used for the evaluation and delineation of conservation management units (Crandall et al. 2000; 

Palsbøll et al. 2007; Funk et al. 2012). In captive populations, family assignments and relationships 

are highly relevant to the avoidance of inbreeding and choosing individuals for selective breeding 

programs (Hayes et al. 2006; Lind et al. 2009, 2012). 

 



 

In the past decade, innovations in genome-wide sequencing methods and analytical tools have 

allowed for the recovery of large-scale genomic information, particularly with respect to non-model 

species (Miller et al. 2007; Baird et al. 2008; Peterson et al. 2012; Catchen et al. 2013; Ellegren 

2014). However, in both natural and captive populations, the final analysis of such data critically 

depends on methods that can effectively reveal and visualize genetic structure within and between 

populations. A variety of approaches are commonly employed for this purpose, such as STRUCTURE 

(Pritchard et al. 2000) or Discriminant Analysis of Principal Components (DAPC) (Jombart et al. 

2010). Model-based analyses are rooted in population genetic theory, but can depend on complex 

statistical approaches and make stringent assumptions on the data. Non-parametric approaches usually 

make fewer assumptions, but it can be difficult to visualize populations in a reduced dimensional 

space, especially in data sets that consist of closely related sub-populations (Neuditschko et al. 2012). 

 
Network theory is emerging as a promising alternative to traditional methods of population analysis 

(Dyer & Nason 2004; Rozenfeld et al. 2008; Moalic et al. 2011; Neuditschko et al. 2012; Kivelä et al. 

2014). In the graph-theoretical approach, the data is depicted by the topology of a network. In a 

population genetics context, multi-locus genotype data can be used to construct networks of 

individuals (Moalic et al. 2011; Neuditschko et al. 2012) or pre-determined populations (Dyer & 

Nason 2004; Rozenfeld et al. 2008; Noutsos et al. 2014). Network analyses lack many of the 

assumptions of model-based approaches, such as underlying population models or prior geographical 

clustering (Kivelä et al. 2014) and can depict connectivity and information flow within and between 

populations (Rozenfeld et al. 2008; Neuditschko et al. 2012; Kivelä et al. 2014). Their use for 

population analysis has been exemplified in the desert cactus Lophocereus schottii (Dyer & Nason 

2004), the metapopulation system of the seagrass Posidonia oceania (Rozenfeld et al. 2008), a 

hybridization study of two micro-algae of the genus Fucus (Moalic et al. 2011) and diverging species 

of the plant Aquilegia (Noutsos et al. 2014). 

 
In contrast to these studies, the network analysis and visualisation pipeline NetView (Neuditschko et 

al. 2012) was developed for genome-wide data and was successfully applied to bovine and human 

populations including hundreds of individuals and tens of thousands to millions of SNPs (Neuditschko 



 

et al. 2012). NetView is currently implemented as a manually operated pipeline, which is largely 

inefficient for the analysis of multiple data sets or parameter values and does not facilitate access for 

the wider community. Furthermore, its initial application was based on relatively divergent 

populations (Neuditschko et al. 2012). However, wild populations display complex genetic structure 

(Lind et al. 2007; Arnaud-Haond et al. 2008; Milano et al. 2014; Pujolar et al. 2014; Cronin et al. 

2015) and captive breeding programs may depend on the identification of closely-related individuals 

and families in successive generations (Lind et al. 2012). 

 
In this study, we developed a comprehensive implementation of NetView in Python. NetView P is 

cross-platform compatible, open-source and supports multiprocessing for efficient data analysis over a 

wide range of parameters. We demonstrate the application of the program on simulated and empirical 

pedigrees of the Silver-lipped Pearl Oyster (Pinctada maxima) from Indonesia (Jones et al. 2013b; a), 

wild populations of the European Hake from the Atlantic and Mediterranean (Merluccius merluccius, 

Milano et al. 2014) and divergent populations of Gray Wolves from North America (Canis lupus, 

Cronin et al. 2015). We show that the networks can effectively visualize population- or family-level 

assemblages and relationships. Sample sizes ranged from below a hundred to several hundred 

individuals, genotyped at hundreds to tens of thousands of SNPs. 

 

Materials and Methods 
 

NetView P 
 
 

NetView P connects  the general components of network-based analysis pipelines described in 

NetView: (i) quality control of raw data, (ii) computation of a genetic distance matrix, (iii) 

construction of a network, (iv) detection of community structure (optional) and (v) visualisation of 

the final network topology (Neuditschko et al. 2012). As in the original implementation of NetView, 

the initial quality control and calculation of a shared-allele distance matrix (1-IBS) are carried out in 

PLINK v1.07(Purcell et al. 2007; Neuditschko et al. 2012). However, network construction and 

clustering were originally implemented manually through the super-paramagnetic clustering algorithm 

SPC (Blatt et al. 1996; Barad 2003) in the software Sorting Points Into Neighbourhoods (SPIN) 



 

(Tsafrir et al. 2005). In order to develop an open-source, cross-platform version of NetView in 

Python, the SPC and SPIN were omitted from NetView P. Instead, the initial network construction 

using mutual k-nearest-neighbour (mk-NN) thresholds was adopted from Barad (2003). The resulting 

components of the graph can optionally be connected through a minimum spanning tree (MST) 

determined by Prim’s algorithm (Prim 1957). More precisely, given a symmetrical pairwise distance 

matrix X and the number of nearest neighbours k, we first construct Gmut  (n, k) where individuals 

(nodes) Xi and Xj are connected by an undirected edge Eij if Xi ∈ k-NN(Xj ) and Xj ∈ k-NN(Xi) (Maier et 

al. 2007). In order to recover a connected network, the undirected edges of the minimum spanning tree 

associated with X are added to Gmut if Eij ∉ Gmut. The weight of each edge is assigned the genetic 

distance between Xi and Xj. 

A connected graph is sometimes required for downstream detection of community structure, such as 

with SPC or Infomap (Rosvall & Bergstrom 2008). However, edges derived from the MST can affect 

the positioning of nodes that link cluster previously not connected through mutual k-NN. We 

therefore included additional edge colouration in the final network files in order to gauge their effect 

on the placement of connecting nodes. It should be noted that the construction of a connected network 

is optional and can be switched off, providing the user with a clear representation of individual, 

communities of samples at a particular value of k. The open-source, information-theoretic 

community-detection algorithm Infomap (Rosvall & Bergstrom 2008) was implemented as a 

replacement for SPC. However, like other network-based methods for population analysis we anchor 

our interpretations in the network topologies, rather than community structure (Dyer & Nason 2004; 

Rozenfeld et al. 2008; Moalic et al. 2011; Kivelä et al. 2014). Finally, it should be noted that the 

network construction is independent of prior information and based on the genetic distances between 

individuals, unlike methods that require pre-determined populations such as FST  or Discriminant 

Analysis of Principal Components (DAPC) (Jombart et al. 2010). 
 
 

The network topologies are dependent on a single user-defined threshold parameter, the number of 

mutual nearest-neighbours (k). There is currently no appropriate optimisation for k (Neuditschko et al. 

2012), but the effect of the parameter on the connectivity of the networks offers an intriguing 



 

possibility to investigate population structure at different levels of genetic similarity, alternatively 

focusing on fine-scale structure (connecting fewer, more closely related samples at small k) or large- 

scale patterns of admixture (connecting more distantly related samples at large k) (Neuditschko et al. 

2012). As suggested by Neuditschko et al. (2012), an appropriate, empirical value is k = 10. 

Nevertheless, the networks should generally be explored within a reasonable range of the parameter 

(e.g. k = 5 - 40) and  a stepwise reduction in k is recommended for small sample collections 

(Neuditschko et al. 2012). It should be noted that the application of the mutual nearest-neighbour 

threshold is not based on established population models, but rather uses a simple machine learning 

algorithm on a given similarity matrix. However, we will show with simulated and empirical data that 

it can effectively recover and visualize population structures, including family-level assemblages and 

relationships. 

 
The general workflow of the pipeline is outlined in Figure 1. The computational implementation is 

open-source and cross-platform compatible through Python. Parameters and options can be specified 

through a command line version or a simple, user-friendly GUI. Input formats are the PED/MAP for 

PLINK (directly compatible with STACKS, Catchen et al. 2013) or a simple matrix of SNPs. 

Alternatively, a pre-computed symmetrical distance matrix can be specified, which allows the user to 

implement their preferred quality control parameters or distance measures. This makes the pipeline 

applicable to any data from which such a distance matrix can be calculated, e.g. for the study of 

biogeographical provinces (Moalic et al. 2012). Connected networks can be constructed by including 

edges from the MST. Node colours and shapes are generated according to an additional attribute file 

(e.g. specifying colours for sampling site, population, sex, phenotype or pedigree) or automatically 

derived from the clustering results of Infomap. The final network files are formatted as edge lists and 

can be loaded into compatible visualisation platform such as Pajek (Batagelj & Mrvar 1998), iGraph 

(Csardi & Nepusz 2006), Gephi (Bastian et al. 2009) or Cytoscape (Smoot et al. 2011). 



 

Simulated Data 
 
 

In order to evaluate the capacity of the pipeline to detect family-level assemblages and relationships 

through successive generations, we simulated a data set of SNPs based on population parameters of P. 

maxima using QMSim (Sargolzaei & Schenkel 2009). The initial founder generation was the last of 

1000 historic simulations containing 430 individuals each, equal to the effective population size of 

wild P. maxima (Lind et al. 2007). From this founder population, 20 males and 20 females were used 

for breeding, each mating producing 50 offspring. The genome map is comparable to the oyster 

linkage map from (Jones et al. 2013b), comprising 14 chromosomes with 4200 SNPs placed 

proportional to the chromosomes lengths. The simulation was run for 10 discrete generations with 

random selection of parents and genotypes provided for the last three generations (F8, F9, F10). For 

demonstration, we reduced the final dataset (n = 3000, SNPs = 4200) to three randomly selected 

families of F10 and included their parental families from the previous generations F8 and F9. 

 
Empirical Data 

 
 

We assembled three empirical data sets of wild and captive populations, comprising variable numbers 

of samples and SNPs. The first data set is comparable to the simulated dataset for P. maxima and 

contained the geographical origin or ancestry of samples, pedigree records and 1,147 EST-derived 

single nucleotide polymorphism (SNP) markers previously developed by(Jones et al. 2013b; a). SNPs 

were derived from farmed oysters over two consecutive generations (F1 and F2), initially founded from 

three natural populations (F0, Aru Islands, Bali, West-Papua) and reared at two commercial sites in 
 

Indonesia. Pedigree records identified a total of twenty-nine putative, heterogeneously sized families, 

twelve in F1 and seventeen in F2. These were labelled with their respective generation, ancestry line of 

dame and sire, and a family number, if multiple ancestry combinations were present (A = Aru, B = 

Bali, W = West-Papua, U = Unknown; e.g. F1-UW-1 or F2-AW-2). For visual simplicity and 

complete validation of the recovered pedigree structure, we only included families for which both 

parents were available and had been genotyped. This yielded a total of fourteen families: three in in F- 

0, ten in F1 and three in F2. 



 

The second data set contained was derived from a study on the European Hake (M. merluccius) 

(Milano et al. 2014) and included wild fish from nineteen geographically distinct sites within the 

Mediterranean and Atlantic, genotyped at 380 EST-derived SNPs (pairwise FST = 0.004 - 0.028). The 

third data set comprised eight variably differentiated, wild populations of the Gray Wolf (Canis lupus) 

from North America (mean FST = 0.0342 - 0.3448), genotyped at 123,801 SNPs (Illumina 170K 

CanineBeadChip) including three game management units (GMUs) (Cronin et al. 2015). Additional 

network files for the wild founder populations and the full pedigree of simulated and captive P. 

maxima can be found in the Data Availability section and Supporting Materials (S1). In general, we 

expected the networks to recover population structures as determined for neutral markers by Milano et 

al. (2014) and recover the diverse relationships between wolf populations by Cronin et al. (2015). We 

also expected the networks to accurately depict the relationships (parents, half-siblings) between 

families and generations, as determined by the simulated and external pedigree records for P. maxima. 

 
Network  Construction 

 
 

In the computational implementation, all data sets were first subjected to quality control using PLINK 

v1.07 (Purcell et al. 2007). Samples and SNPs were excluded based on frequency of missing data (> 

0.1), minor allele frequency (< 0.01) and significant derivation from Hardy-Weinberg equilibrium (P 

< 0.001), as recommended by Neuditschko et al. (2012). Quality control produced the final data sets 

for the simulation (n = 750, SNPs = 1279), captive P. maxima (n = 415, SNPs = 1107), M. merluccius 

(n = 834, SNPs = 380) and C. lupus (n = 239, SNPs = 86103). A shared-allele distance matrix (1-IBS) 

was then calculated for each data set in PLINK v1.07. Connected networks were constructed at k = 10 

(with MST), which captured both fine- and large-scale genetic structure as suggested in the original 

implementation by Neuditschko et al. (2012). In addition, the simulated data was constructed without 

edges from the MST. The final network visualisations were based on the organic and circular layouts 

from Cytoscape (Neuditschko et al. 2012). The NetworkAnalyzer (Doncheva et al. 2012) plugin was 

used for M. merluccius and C. lupus to generate the degree centrality for each node (the number of 

direct connections to other nodes, here proportional to node size) which has been used to distinguish 

‘unrelated’ individuals in population networks (Neuditschko et al. 2012). A brief discussion on the 



 

effect of k on the network topologies, as well as the application of the Infomap clustering and a 

comparison of results from PCA/DAPC for P. maxima can be found in the Supporting Material (S2- 

S4). 

 
Results 

 

European Hake and Gray Wolves 
 
 

The network of the European Hake (Figure 1) agreed with structure detected in putatively neutral 

markers by Milano et al. (2014). The weak, but statistically significant break between populations 

from the Atlantic and the Mediterranean was clearly visualized in the network topology and the 

separation in the network corresponded to the genetic discontinuity observed in the Eastern Atlantic 

and the Alboran Sea (Milano et al. 2014). The networks showed relatedness of some samples from the 

southern Atlantic with samples from the Mediterranean, particularly from Algeria. These results also 

support observations of a higher rate of genetic contribution from individuals in the Atlantic to 

individuals from Algeria (see orange nodes in Figure 1) (Milano et al. 2014). 

 
The networks of the Gray Wolves showed a division into several distinct populations (Figure 3). The 

Great Lakes population from Montana and the population from New Mexico appeared the most 

divergent, indicated by their isolated location and single edges (MST) between individuals linked to 

their respectively proximate populations. The US Northern Rocky Mountains population (Idaho, 

Minnesota, and Wyoming) formed an admixed cluster and included some individuals from British 

Colombia. Wolves from British Colombia linked closely with one part of the population in mainland 

Southeast Alaska (GMU1C), which in turn linked with wolves in GMU1A and GMU1B. The latter 

two units also showed a close relationship with the island-based GMU2 and GMU3, which were 

otherwise clearly differentiated in the networks. Further sub-structure within both Interior and 

Southeast Alaska (GMU2) was evident. The interior population of Alaska appeared more divergent 

from Southeast Alaska, but demonstrated linkage to some individuals from the Rocky Mountains and 

British Colombia. A single individual representing GMU1D was located near Interior Alaska. Lastly, 



 

several distinct outliers could be detected by their low degree centralities and single edges removing 

them from the main communities, including one anomalous individual from Idaho linked with New 

Mexico. 

 
Silver-lipped Pearl Oyster 

 
 

Simulated 
 
 

We first constructed a visualization of the simulated dataset without edges derived from the MST 

(Figure 4A). In this construction, assignment of individuals to their respective families is nearly 

complete, with each generation ordered manually and highlighted with different node colours (F8: 

purple, F9: green, F10: orange). The exceptions were two genetically distinct individuals in F10- 

FAM44, visibly separated from their native family. Although this network accurately determines the 

family clusters and assignments as simulated in the pedigree (Figure 4B), it does not depict 

information on the general relationships between the families. If we include the edges of the MST (red 

edges, Figure 5) the network visualization starts to reflect the relationship between the families and 

generations. For instance, on a fine-scale, parents (dark red nodes) of F9 and in some cases of F10 

(F10-FAM43, -FAM48) are connected to their progeny family by the edges of the MST. Sometimes 

parents are drawn away from their families (e.g. F8-FAM1-7550 or F9-FAM30-8504) and are clearly 

visible in connecting successive generations. This parentage assignment was limited in F10, as for 

instance demonstrated by two parents in F9-FAM39, which did not connect to their respective 

offspring families F10-FAM44 and -FAM48. However, the general pedigree structures can be 

discerned (cf. Figure 4B), with the lower part of the graph from F8-FAM8 representing the lineage L2 

with two F10 families F10-FAM43 and -FAM48 nested within their progenitor families in F8 and F9. 

This was also the case for the families from L1, which were connected by MST edges according to the 

simulated pedigree (cf. Figure 3B). Although the designation into generations and parentage 

assignment may be more complex in the absence of prior information, the networks accurately assign 

individuals to their respective families and with additional information such as known pedigree and 

MST edges, accurately reflect inter-generational and parentage relationships. 



 

Empirical 
 
 

The network of three generations of captive oysters recovered the family-level population structure 

mostly as expected from the external pedigree records (Figure 6). All families in F1 and F2 could be 

accurately distinguished, including half-sibling relationships between F1-BB-1 and F1-BB2, as well 

as F1-BB-3 and F1-BB-4 (asterisk, Figure 6). Parents from the three founder populations (triangular 

nodes) were located within or in the immediate vicinity of their offspring in F1. However, for parents 

in the second generation (rectangular nodes) parental assignment was limited to F2-WW-1, with one 

parent of F2-BW-1 and F2-BW3 retained in F1-WW-1. Genetically distinct individuals belonging to 

the families were also recognisable, as seen in two samples of F0-ARU near F0-BAL and F0-ARU, 

and two samples in F1-WW-1. In the founder generation, the two more closely related populations 

from BAL and WPA (Lind et al. 2007) clustered together, which was likely facilitated by a relatively 

small number of samples from WPA. Admixture between ARU and BAL was also evident, largely 

corresponding to the wild population structure of P. maxima from Indonesia (see Supplementary 

Material S1). All in all, the genetic structure determined from previously assembled pedigrees was 

accurately visualized in the networks, representing both family-level relationships and parental 

assignments in F1 and (partially) in F2. 

 

Discussion 
 
 

NetView P is a comprehensive, cross-platform and open-source computational implementation of the 

original NetView (Neuditschko et al. 2012). The pipeline is based on the construction of a population 

network using mutual k-nearest-neighbours thresholds on a genetic distance matrix calculated from 

genome-wide SNPs. NetView P is applicable to commonly encountered data from both natural and 

captive populations in diverse population settings. The networks constructed in this study revealed 

large- and fine-scale patterns of population structure within and between closely related families over 

three consecutive generations in the Silver-lipped Pearl Oyster, the oceanic divide of the European 

Hake in  the Atlantic and Mediterranean and patterns  of differentiation  and admixture in wild 

populations of the Gray Wolf. 



 

The structure of the wild populations corresponded to the results expected from the studies by Milano 

et al. (2014) and Cronin et al. (2015). For instance, the transplantation of several wolves from British 

Colombia into the Rocky Mountains populations from Idaho, Minnesota and Wyoming (Cronin et al. 

2015) was evident in the networks, showing some wolves from British Colombia clustering distinctly 

within the admixed population from the Rocky Mountains. Furthermore, the discrete clustering of 

populations from New Mexico and Minnesota is consistent with previous data from genome-wide 

SNPs (vonHoldt et al. 2011; Cronin et al. 2015). The large-scale divide between the Atlantic and 

Mediterranean populations of the European Hake observed in the networks also corresponded to 

previous results (Milano et al. 2014), particularly considering a relatively low resolution from 380 

predominantly neutral SNPs. Milano et al. (2014) discovered fine-scale structure in a small number of 

putatively selected SNPs, corresponding to regional divisions within the Atlantic and Mediterranean. 

However, the application of the pipeline to a very small number of markers, as is often the case for 

markers that are under possible selective pressures, remains to be investigated. 

 
The networks of pearl oysters recovered the simulated and real-world families and family-level 

relationships over three consecutive generations, including founder parentage and half-siblings in the 

first generation. However, recognition of parentage was limited in the second generation, although 

parents were still drawn out from their native family clusters in the networks. Considering that routine 

hatchery practices often involve mass spawning and communal rearing of families, coupled with high 

fecundities and the expense of keeping detailed pedigree records (Lind et al. 2009, 2012), our study 

shows that retrospective genotyping of adult oysters could be used to determine the genetic structure 

of families in captive populations of P. maxima. Breeding strategies based on kinship information of 

individuals critically depend on the identification and accurate assignment of individuals to family 

groups (Russello & Amato 2004; Ivy & Lacy 2012; Lind et al. 2012). The ability to reveal fine-scale 

genetic relationships between individuals and families could be applicable to commercial or 

conservation breeding programs, particularly where no prior pedigree information is available. In 

addition to the validation of the networks by previously collected pedigree records, our baseline 



 

simulation further supports the capacity to recover family-level structure and relationships with 
 

NetView P. 
 
 

Overall, the pipeline was effective for detecting both large- and fine-scale genetic structure at k = 10. 

The performance of the method has also been shown to be adequate when employing a small number 

of samples per population (n < 20) combined with a step-wise reduction of k (Neuditschko et al. 

2012). Nevertheless, the networks should be investigated within a reasonable range of the parameter, 

which is supported by the computational implementation, allowing the generation of networks within 

a user-defined range of k. Intriguingly, the choice of the parameter allows for the effective 

investigation of admixture between populations at larger values of k (connecting more distantly 

related individuals), whereas smaller values of the parameter allow for the examination of fine-scale 

genetic sub-structure (connecting more closely related individuals) (Neuditschko et al. 2012). 

Therefore, the value of the parameters also depends on the questions that are asked about the data and 

may be applicable to a broad range of applications in population genetics. Furthermore, genetically 

distinct individuals are immediately recognisable, including anomalous samples away from their 

supposed family or population of origin (for instance, one wolf from Idaho linked to New Mexico). 

NetView P could therefore also be used for detecting unexpected genetic relatedness or incorrect 

sample assignments, knowledge of which may be useful for breeding programs or phylogenetic 

studies (Neuditschko et al. 2012). 

 
It should be noted that the degree of divergence between groups is only approximated by the general 

location of clusters in the networks and the association of edge width and genetic distance. Additional 

investigations into the quantitative degree and statistical significance of differentiation or ecological 

exchangeability of populations may therefore be useful when considering problems such as the 

delineation of conservation management units (Crandall et al. 2000; Palsbøll et al. 2007). Finally, the 

original clustering algorithm SPC (Blatt et al. 1996) was replaced with the optional community 

detection algorithm Infomap (Rosvall & Bergstrom 2008) in order to provide an integrated and user- 

friendly implementation of the pipeline in Python. However, its application to genetic population data 

remains to be appropriately investigated. Objective methods for delineating communities in the 



 

networks may be particularly useful when prior information about the populations (e.g. geographical 

location or pedigree records) is lacking. A discussion and implementation of the wide variety of 

algorithms available for this purpose (Girvan & Newman 2002; Pons & Latapy 2006; Rosvall & 

Bergstrom 2008; Ahn et al. 2010; Rodriguez & Laio 2014) was, however, beyond the scope of this 

study. Regardless, it is often of more immediate interest to relate available population information 

(e.g. geographical location, pre-defined populations or pedigree records) to the genetic structure that 

emerges from the data. Here, this structure is determined solely  from genetic  similarities and 

supplemented with meta-data that can be readily visualized in the network topologies generated by 

NetView P. 

 
As the acquisition of high-quality population genomics data is becoming increasingly cost-effective, 

population structure analyses can now be carried out for hundreds of individuals, in both model and 

non-model species, with thousands to hundreds of thousands of high-quality SNPs. NetView P 

provides a network-based addition to model-based approaches of population analysis with the 

potential to reveal large- and fine-scale patterns of genetic structure in wild and captive populations. 

The implementation of the pipeline is computationally efficient through multiprocessing capabilities 

and can generate high-definition visualisations of complex genetic structure. In addition to other 

available methods of network analysis, such as popgraph for R (Dyer & Nason 2004) or 

EDENetworks (Kivelä et al. 2014) the integrated pipeline is now accessible in Python and can be used 

for the exploration and visualization of population structure derived from genome-wide SNPs. 
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Data Accessibility 
 
 

NetView P 
 
 

The computational implementation is freely available at: https://sourceforge.net/projects/netview- 

genomics/ . The distribution includes a detailed manual, example data and binaries for Infomap 

(Linux) and PLINK v1.07 (Linux, Windows). 
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Pinctada  maxima:  http://dx.doi.org/10.5061/dryad.p3b3f 
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Canis  lupus:  http://dx.doi.org/10.5061/dryad.284tf 
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Figure Legends 
 

Figure 1. Workflow for NetView P. Dashed boxes denote optional processes and input files. 
 

Figure 2. Organic network of M. merluccius (n = 849) at k = 10 (with MST), based on 380 SNPs. 
Colour shades represent sampling locations within the Atlantic (green) and the Mediterranean (blue), 
edge width is proportional to the genetic distance between individuals. Several genetically distinct 
individuals are connected by single edges at the periphery of the network and orange nodes highlight 
a close relationship of Algerian samples with the Atlantic. 

 
Figure 3. Organic network of C. lupus from North America (n = 239) at k = 10 (with MST), based on 
86,103 SNPs. Edge width represents the genetic distance between individuals. Colours and labels 
denote sampling sites, including three Game Management Units (GMUs) in Southeast Alaska. The 
network visualisation clearly shows connectivity of individuals between populations and fine-scale 
genetic structure in populations from Alaska. 

 
Figure 4. Organic network of simulated data (n = 750) at k = 10 (without MST) based on 1279 SNPs) 
(A) and family pedigree from data simulation with QMSim (B). Simulations were derived from a 
historic founder population (1000 generations) with random selection of 20 males and 20 females 
producing 50 offspring each over 10 discrete generations. Genotypes were generated for the last three 
generations (F8, F9, F10) and three families were randomly selected in F10, including their parental 
families in F8 and F9. Colours represent generation (purple: F8, green: F9, orange: F10). Individuals 
are accurately assigned to their respective families and unconnected networks have been ordered 
manually to represent the pedigree from the simulation. 

 
Figure 5. Circular network of simulated data (n = 750) at k = 10 (with MST) based on 1279 SNPs. 
The general placement of the individual families reflects the pedigree of the data, with edges from the 
MST (red) connecting most parents (darkred) to their offspring families in F9 and F10. Node colours 
reflect generation (purple: F8, green: F9, orange: F10) and families and parents are labelled according 
to the simulated pedigree. 

 
Figure 6. Circular network of captive populations of P. maxima in F0 to F2 (n = 415) at k = 10 (with 
MST), based on 1107 SNPs. Node colours and labels depicts family assignment of individuals based 
on previously assembled pedigree records. Families and relationship between families and individuals 
are clearly visible in the network topology. Asteriks (*) denote half-sibling relationships between F1- 
BB-1 and F1-BB-2, as well as F1-BB-3 and F1-BB-4. Triangular nodes denote parents of F0 and 
rectangular nodes denote parents of F1.Red edges are derived from the MST. 
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