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Abstract
A kinetic theory model is developed for positron-impact ionization (PII) with neutral, rarefied

gases. Particular attention is given to the sharing of available energy between the post-ionization

constituents. A simple model for the energy-partition function that qualitatively captures the

physics of high-energy and near-threshold ionization is developed for PII, with free parameters that

can be used to fit the model to experimental data. By applying the model to the measurements of

Kover and Laricchia [1] for positrons in H2, the role of energy-partitioning in PII for positron ther-

malisation is studied. Although the overall thermalisation time is found to be relatively insensitive

to the energy-partitioning, the mean energy profiles at certain times can differ by more than an

order of magnitude for the various treatments of energy-parititioning. This can significantly impact

the number and energy distribution of secondary electrons.
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I. INTRODUCTION

An understanding of the behavior of positrons in gases underpins many areas of tech-

nology and scientific research [2–6]. Of particular interest are applications to the medical

imaging technique of Positron Emission Tomography (PET) [7]. To optimize PET technolo-

gies and quantify the associated radiation damage requires a thorough understanding of the

processes by which an energetic positron (and the secondary species) thermalise. It has been

shown recently by Sanche and co-workers [8–11] that the secondary electrons created via ion-

ization can cause significant DNA damage. The number of secondary electrons ejected along

the positron track is on the order of 104 per MeV of primary radiation produced in water

[12, 13], so it is clear that particular attention needs to be paid to the ionization process.

Although there has been extensive research on electrons in gases, positrons remain signif-

icantly less well understood. Specific collisional processes are avilable to the positron which

do not exist for electrons, e.g. annihilation with an electron and positronium formation

[14, 15]. Although the impact from either a sufficiently energetic positron or electron can

ionize a gas molecule, the ionization process differs in a crucial way; ionization by positron

impact is a particle-conserving process with respect to positrons, while ionization by elec-

tron impact is non-particle-conserving with respect to electrons [16–20]. The two types

of ionization will be referred to as ‘positron-impact ionization’ (PII) and ‘electron-impact

ionization’ (EII) respectively. In the framework of kinetic theory, Ness [21] developed a

collision operator for EII but no positron equivalent has yet been developed. Instead, previ-

ous investigations [22–27] have generally treated positron ionization as a simple excitation

process which effectively assumes that the scattered positron receives all of the available

post-ionization energy, although [28] has highlighted the effects of the secondary electron

energy distribution.

In this paper, a PII equivalent of the EII collision operator of Ness is derived for the

first time. Macroscopic transport coefficients, such as mean energy and flux drift velocity,

are compared for a simple benchmark model using both a kinetic theory approach based

on the Boltzmann equation, and Monte Carlo simulation. Particular attention is paid to

the effect of energy-sharing between post-ionization constituents, and the influence that

different energy-partitioning models have on transport. A basic energy-partitioning model

that captures, at least qualitatively, the physics of high energy and near-threshold positron
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ionization is proposed, which can then be fitted to the rather limited experimental data that

is available. The new kinetic theory model is used to investigate the transport of positrons in

dilute H2 gas using a recently-compiled complete set of cross sections [5], and the proposed

energy-partitioning model fitted to the experimental data of Kover and Laricchia [1].

II. THEORY

A. The kinetic equation and its multi-term solution

The fundamental equation describing a swarm of positrons moving through a dilute

gaseous medium subject to an electric field, E, is the Boltzmann kinetic equation for the

phase-space distribution function f ≡ f (r,v, t) [25]:

(
∂

∂t
+ v · ∇+

qE

m
· ∂
∂v

)
f = −J (f) , (1)

where t is the time, and r, v, q and m are the position, velocity, charge and mass of the

positron respectively. The right hand side describes the effect of collisions on the distribution

function at a fixed position and velocity. Essentially, the Boltzmann equation is an equation

of continuity in phase-space [29]. Solving equation (1) for the distribution function yields all

relevant information about the system. Macroscopic transport properties including mean

energy and drift velocity can then be found via averages over the ensemble as detailed

in Section IIC. The purpose of this paper is to investigate the effect of ionization, so for

simplicity we will consider only spatially-homogeneous situations.

If there is a single preferred direction in the system, e.g. due to an electric field in plane

parallel geometry, then the angular dependence of the velocity component can be adequately

described by an expansion in terms of Legendre polynomials [30], i.e. if f (v, t)→ f (v, µ, t),

where µ = v̂ · Ê, then

f (v, t) =
∞∑
l=0

fl (v, t)Pl(µ), (2)

where Pl is the l-th Legendre polynomial [31]. Substituting the expansion (2) into equa-

tion (1) and equating the coefficients of Legendre polynomials results in the following coupled

partial differential equations for the fl in energy-space,
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∂fl
∂t

+
∑
p=±1

∆
(p)
l

qE

m

(
U

1
2 ∂

∂U
+ p

(
l + 3p+1

2

)
2

U
− 1

2

)
fl+p = −Jl (fl) (l = 0, 1, 2, . . . ,∞) , (3)

where U = 1
2
mv2, Jl is the Legendre decomposition of the collision operator, and

∆
(+1)
l =

(l + 1)

(2l + 3)
,

∆
(−1)
l =

l

(2l − 1)
.

Equation (3) represents an infinite set of coupled partial differential equations for the

expansion coefficients, fl. In practice, one must truncate the series (2) at a sufficiently high

index, l = lmax. The history of charged particle transport in gases has been dominated by

the ‘two-term approximation’ [32], i.e., where only the first two terms have been included.

The assumption of quasi-isotropy necessary for the two-term approximation is violated in

many situations, particularly when inelastic collisions are included [33] or when higher order

moments are probed [34]. Such an assumption is not necessary in our formalism. Rather, lmax

is treated as a free parameter to be increased until some convergence or accuracy criterion

is met.

B. Collision operators in the multi-term representation

To solve equation (3) we require the collision operators for all of the relevant collisional

processes, and their representations in terms of Legendre polynomials, Jl. If we assume

that the neutral background gas is at rest and in thermal equilibrium at a temperature

T0, then the background medium has a Maxwellian distribution in velocity space and the

collision operator is linear in the swarm approximation [35]. Below we detail the specific

kinetic theory forms of the collision operator for conservative elastic and inelastic collisions,

particle-loss collisions such as annihilation and positronium formation, and ionization, which

is the focus of this work. A further expansion of each collision integral with respect to the

ratio of swarm particle mass to neutral particle mass, m/m0, has been performed. Because

this ratio is small for positrons (and electrons), only the leading term of this expansion for

each collision process and in each equation of the system (3) was taken into account.
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The total collision operator can then be separated for each of the different types of

processes, eg.

J = Jel + J in + Jann + JPs + J ion,

where the right hand side terms represent the elastic, inelastic, annihilation, positronium

formation and ionization collision operators respectively. Microscopic scattering information

is included via the appropriate scattering cross sections [36, 37]. It is more natural to work

with the collision frequency rather than the scattering cross sections directly. A collision

frequency, ν, is defined for a particular process by

ν(U) ≡ n0

√
2

m
U

1
2σ(U), (4)

where σ is the corresponding cross section of the process.

1. Conservative elastic and inelastic collisions

For particle-conserving elastic and inelastic collisions we assume the Wang-Chang et

al. [38] semi-classical collision operator and its limiting cases. For an elastic collision, if

all terms proportional to the mass ratio are neglected there is no energy transfer during a

collision. To obtain a non-zero expression, a first-order mass ratio approximation is required

[39], i.e.

Jel
l (fl) =

−
2m
m0
U−

1
2
∂
∂U

[
U

3
2νel

1 (U)
(
f0 + kT0

∂f0
∂U

)]
l = 0,

νel
l (U)fl l ≥ 1,

where νel
l = n0

√
2
m
U

1
2

(
σel

0 − σel
l

)
, and σl is defined from the differential scattering cross

section [36], σ(U, µ), via,

σl (U) = 2π

∫ π

0

dµPl (µ)σ(U, µ).

If the background gas has internal degrees of freedom then, to zeroth order in the mass

ratio, energy exchange can still occur through excitation and de-excitation of those internal

states. Hence, unlike the isotropic part of the elastic collision integral, the scalar part of

the inelastic collision integral does not vanish under a zeroth order mass assumption. The

Legendre decomposed form of the inelastic collision operator in the cold gas limit is given
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by [40, 41]

J in
l (fl) =

∑
j

ν in
j (U) fl −


(
U+Uj

U

) 1
2
ν in
j (U + Uj) fl (U + Uj)

0

l = 0,

l ≥ 1,
(5)

where the subscript j denotes the available inelastic channels, such as excitations and ro-

tations, with an associated inelastic scattering cross section σin
j (U), and a threshold energy

Uj. It is implicit in the above equation that there is no thermal excitation of internal states.

2. Annihilation and positronium formation

Positron annihilation and positronium formation occur through distinctly different phys-

ical mechanisms. However, from a transport theory perspective they each represent a unidi-

rectional particle loss process, and hence the form of their collision operators are identical.

Since there is no post-collision scattering the collision operator is simply [42],

J loss
l (fl) =

∑
k

ν loss
k (U)fl,

where k are the available loss process channels, and ν loss
k is the collision frequency for the

kth loss process corresponding to the cross section σloss
k (U).

3. Ionization

Ionization by electron impact is fundamentally different from ionization by positron im-

pact. Since the ejected electron is of the same species as the impacting particle, EII is a

non-particle-conserving process, i.e., the indistinguishability of electrons leads to a gain in

the number of electrons in the swarm. Since the scattered positron can be distinguished

from the ejected electron, PII is a particle-conserving process. A different collision operator

needs to be used for each case. In previous studies, PII was treated as a simple excitation

process, which ignores the possible partitioning of energy between the scattered positron and

ejected electron. In what follows, we develop an explicit expression for the PII operator.

Following the approach of [21], the details of which are given in Appendix A, the PII
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collision operator takes the form

J ion
l (fl) = ν ion (U) fl (U)−


∫ (

U ′

U

) 1
2

P (U,U ′)ν ion (U ′) f0(U ′)dU ′

0

l = 0,

l ≥ 1,
(6)

where U ′ is the impact particle energy, and ν ion is the collision frequency for ionization,

corresponding to an ionization cross section. The P (U,U ′) term is the energy-partitioning

function, defined such that P (U,U ′)dU represents the probability of the positron having an

energy in the range U + dU for an incident positron of energy U ′. The energy-partitioning

function has the following properties:

P (U,U ′) = 0 for U ′ < U + UI ,∫ U ′−UI

0

P (U,U ′)dU = 1 for U ′ ≥ U + UI ,

where UI is the ionization threshold energy, i.e., the energy needed to overcome the electron

binding. The energy-sharing, which is determined by the energy-partitioning function P , is

a major theme in the present work. It will be shown in Section IV that different energy-

partition models significantly affect positron transport.

C. Transport properties

The cross sections and collision operator terms represent the microscopic picture of

positron interactions with the medium. The macroscopic picture, e.g. transport proper-

ties that represent experimental measurables, are obtained as averages of certain quantities

with respect to the distribution function, f . Among the transport properties of interest in

the current manuscript are the number density, n, flux drift velocity, W , and mean energy,

ε, of the positron swarm, which can be calculated via [35]

n = 2π

(
2

m

) 3
2
∫
dU U

1
2f0(U),

W =
1

n

2π

3

(
2

m

)2 ∫
dU Uf1(U),

ε =
1

n
2π

(
2

m

) 3
2
∫
dU U

3
2f0(U).
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The focus of this paper is the ionization process, so it is also useful to calculate the average

ionization collision rate defined by

αion =
1

n
2π

(
2

m

)2 ∫
dU U

1
2ν ion(U)f0(U).

III. THE NUMERICAL APPROACH FOR A MULTI-TERM SOLUTION

In this section we detail a numerical solution of the system of coupled ordinary differential

equations, (3), once an l-index truncation has been applied.

A. Method of lines

The Method of Lines (MOL) [43, 44] is a technique for solving PDEs in which all but one

dimension is discretized. In developing a numerical solution to the Boltzmann equation, we

choose to first discretize the energy- (or equivalently, speed-) space. In general, applying the

MOL to linear PDEs results in a system of equations of the form

M
d

dt
u = Lu, (7)

where [u]i = ui(t) ≡ u(xi, t), and L and M are matrices resulting from the discretization

process, commonly known as the “Stiffness Matrix” and “Mass Matrix” respectively [45]. The

formerly continuous variable x has been discretized into a set of xi for i = 0, 1, ..., n. The

MOL formalism allows easy implementation of linear boundary conditions or constraints

via the mass matrix. Let the discretized boundary conditions and constraints of (7) be

represented by Gu = 0, where G is a matrix and 0 represents a vector of zeros. Then

clearly d
dt

Gu = G d
dt

u = 0 and, provided the initial solution satisfies the constraints,

M
d

dt
u = Lu, (8)

where M and L are the modified mass and stiffness matrices,

M =

 G

M

, L =

 0

L

 .
In a pure MOL approach, the system of ODEs, (8), are solved analytically. However,

one is eventually forced to discretize the time variable as well for complicated systems of
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equations, such as those arising from the discretization of the Boltzmann equation. In this

work we choose to discretize the time dimension with a first-order implicit Euler method [46],

for its good stability properties. Applying the implicit Euler method to equation (7) or (8)

gives

(M− hL) un+1 = Mun (9)

where un and un+1 are the solution vector, u, at times tn and tn+1, and h = tn+1 − tn is

the time step. For linear systems, equation (9) can be solved directly with linear algebra

techniques.

B. Finite difference representation in energy-space

The finite difference method [47] is a local approximation method which seeks to replace

the continuous derivatives by a weighted difference-quotient of neighboring points. It is

widely used, simple to program, and leads to sparse matrices with band structures approx-

imating derivatives [48]. Similar to the work of Winkler and collaborators [16, 49, 50], the

system of ODEs is discretized at centered points using a centered difference scheme, i.e.,

df(U, t)

dx

∣∣∣∣
Ui+1/2

=
f(Ui+1, t)− f(Ui, t)

Ui+1 − Ui
,

f(Ui+1/2, t) =
f(Ui+1) + f(Ui)

2
.

Although a general form can be constructed for an arbitrary grid, the simplest case is for

evenly spaced points, i.e.

Ui = i∆U 0 ≤ i ≤ n,

where ∆U is a constant. Discretizing at the center between two solution nodes results in

a system of linear equations that is underdetermined. The extra information is naturally

provided by boundary conditions which are appended to the system.

C. Initial and boundary conditions

In positron experiments [14], unmoderated positrons have a peak in their emission energy

spectrum of around half an MeV, which then lose energy rapidly via collisions. There is little
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information about the initial source distribution in thermalisation experiments [51]. For our

purposes, we wish to probe the influence of PII collisions, and accordingly choose an initial

distribution with a mean energy far above the ionization threshold so that a large range of

the ionization cross section can be sampled during relaxation. One of the source distributions

used by Campeanu and Humberston [51] in their investigations of helium is a distribution

that is constant in speed space up to some sufficiently high cut-off value, vmax =
√

2Umax/m,

i.e. f0(v) = Θ (vmax − v)C, where Θ(x) is the Heaviside step function. The mean energy of

this distribution function is given by ε = 3
5
Umax. We will use this type of initial distribution

for our investigations of thermalisation and shall choose Umax to be sufficiently high to sample

the ionization cross sections accordingly.

The system of coupled equations (3) requires boundary conditions on the expansion

coefficients fl. Winkler and collaborators [16, 49, 50] have analyzed the multi-term, even-

order approximation, and discovered that the general solution of the steady-state hierarchy

contains 1
2

(lmax + 1) non-singular and 1
2

(lmax + 1) singular fundamental solutions when U

approaches infinity, and the physically relevant solution has to be sought within the non-

singular part. They give the boundary conditions necessary for the determination of the

non-singular physically relevant solution as

fl(U = 0) = 0 for odd l,

fl(U = U∞) = 0 for even l,

fl(U > U∞) = 0 for all l,

where U∞ represents a sufficiently large energy. In practice, U∞ has to be determined in

a prior calculation, and is chosen such that the value of f0(U∞) is less than 10−10 of the

maximum value of f0.

IV. RESULTS AND DISCUSSION

In this section we will apply both the kinetic theory technique detailed in the previous

sections, and a Monte Carlo simulation [52], to describe positron transport in a benchmark

model, and positron transport in real H2 gas. Comparisons are made to EII where possible.

Particular attention is given to the role of energy-partitioning between the scattered and
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ejected particles post-ionization, and a simple energy-partitioning model is proposed to

capture the underlying physics.

A. Positron ionization benchmarking

We first discuss several benchmark models for EII which can act as a test bed for our

numerical techniques and solution model. The Lucas-Saelee [53] model is a popular bench-

mark, but focuses on the differences between excitation and ionization rather than energy-

partitioning specifically. Taniguchi et al. [54] modified the partition function of the Lucas-

Saelee model, which assumes a distribution with all energy-sharing fractions equiprobable,

to instead share energy equally between the two electrons, but found that it did not alter the

transport coefficients significantly. Instead, Ness and Robson [42] proposed a step model for

testing energy-sharing for EII, which was shown to have some variation for the partitionings

they investigated. The details of the model are:

σel
0 − σel

l = 10 Å2
, (10)

σin =

 1 Å2

0

U ≥ 10 eV,

U < 10 eV,

σion =

 1 Å2

0

U ≥ 15 eV,

U < 15 eV,

m0 = 25 amu,

T0 = 0 K.

Transport coefficients for EII calculated using kinetic theory are compared against the results

of Ness and Robson, and the Monte Carlo simulations in Table IV of Appendix B. The results

support the integrity of our methods and solutions. Transport coefficients for PII under this

model are given in Table I for varying energy sharing fractions, Q, where Q = U
U ′−UI

. As

described in Appendix A the collision operator (6) breaks down when Q = 0, hence there

is no value given in Table I corresponding to the kinetic model for positrons with Q = 0.

No previous positron impact calculations exist for model (10), so the transport properties

from our kinetic theory model are compared solely against an independent Monte Carlo
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simulation in Table I. The uncertainty in the Monte Carlo simulations has been estimated

to be less than 1% for the ionization collision rates, and less than 0.5% (generally less than

0.3%) for the drift velocity and mean energy. The two approaches give αion/n0, ε and W

values which differ by less than 0.6%, 0.3% and 0.3% respectively, over the range of reduced

electric fields and available energy fractions, all of which are within the corresponding Monte

Carlo uncertainty.

As the reduced field, E/n0, is increased, the velocity distribution function samples more

of the ionization process leading to a greater ionization rate and a stronger dependence of

the transport coefficients on the post-collision energy partitioning as shown in Table I.

The convergence of transport coefficients for 1000 Td with increasing lmax is shown in

Table II. Since an even-order approximation is required for the appropriate boundary con-

ditions, the lmax are odd in our calculations. Clearly the two-term approximation (lmax = 1)

leads to an over-estimation of the ionization rate, mean energy and flux drift velocity by

approximately 2%. Indeed six terms are required to achieve convergence to four significant

figures.

Table II: Convergence of transport properties with lmax for PII model (10) at 1000 Td and Q = 1/2.

αion/n0 ε W

lmax (10−15m3s−1) (eV) (105ms−1)

1 12.77 18.23 5.460

3 12.47 17.96 5.350

5 12.48 17.95 5.349

7 12.48 17.95 5.349

The variation of mean energy with Q for PII at a reduced electric field of 800 Td is shown

in Figure 1. For PII, the mean energy of the positron swarm increases monotonically with the

energy-sharing fraction, Q. This behavior is to be expected, as the ejected electron directly

removes energy from the positron swarm. The ionization collision frequency increases with

energy in model (10), so that the greater the energy of the swarm, the higher the rate of

ionization collisions. Hence αion/n0 also increases monotonically with Q. The flux drift

velocity, W in contrast, decreases with increasing Q. The effect of collisions is to randomize

the directions of the swarm particles, such that an increase in the ionization rate decreases the
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Table I: Comparison of average ionization rates, αion/n0, mean energies, ε, and flux drift velocities,

W , for PII for model (10) for different reduced fields E/n0 and energy sharing fractions Q. Columns

‘Current’ correspond to the current kinetic theory calculations, and columns ‘MC’ are the results

of the Monte Carlo simulation. Note, Q = AFE corresponds to “all fractions equiprobable”.

E/n0 αion/n0 ε W

(Td) Q (10−15m3s−1) (eV) (105ms−1)

Current MC Current MC Current MC

300 0 1.711 6.869 2.767

1/4 1.720 1.718 6.919 6.931 2.722 2.730

1/3 1.725 1.719 6.940 6.942 2.711 2.706

1/2 1.740 1.739 6.983 6.979 2.693 2.689

2/3 1.757 1.761 7.021 7.023 2.677 2.676

3/4 1.767 1.774 7.041 7.040 2.671 2.664

1 1.807 1.804 7.098 7.087 2.654 2.648

AFE 1.745 1.739 6.979 6.981 2.699 2.701

500 0 4.856 9.210 3.951

1/4 4.915 4.917 9.379 9.375 3.819 3.822

1/3 4.955 4.949 9.446 9.450 3.789 3.780

1/2 5.060 5.055 9.579 9.588 3.738 3.739

2/3 5.211 5.208 9.716 9.714 3.697 3.697

3/4 5.288 5.293 9.788 9.789 3.678 3.678

1 5.565 5.599 10.03 10.05 3.627 3.628

AFE 5.119 5.107 9.589 9.577 3.754 3.755

800 0 9.903 13.30 5.260

1/4 10.21 10.23 13.75 13.76 4.986 4.992

1/3 10.39 10.40 13.93 13.93 4.922 4.925

1/2 10.84 10.83 14.32 14.33 4.816 4.818

2/3 11.40 11.41 14.79 14.81 4.719 4.725

3/4 11.68 11.70 15.07 15.09 4.672 4.678

1 12.92 12.95 16.27 16.31 4.518 4.527

AFE 10.92 10.94 14.38 14.36 4.850 4.857
13



average velocity of the swarm. The transport properties for the ‘all fractions equiprobable’

(AFE) distribution are very similar to that of the equal-energy sharing case.

The variation of mean energy with Q for EII at 800 Td is shown in Figure 2. The mean

energy profile is symmetrical about Q = 0.5 due to the indistinguishability of post-collision

electrons, and for 800 Td has a concave shape with a minimum value corresponding to

equal energy-sharing. It should be noted that, in contrast to PII where the mean energy

always increases with Q, the exact nature of the EII mean energy profile depends on how

the distribution function samples the elastic, inelastic and ionization cross sections. The

variation in the transport properties for EII with respect to Q for the fields considered

is small, suggesting that EII is relatively insensitive to the exact nature of the energy-

partitioning for the model (10). Ness and Makabe [55] have shown that for EII in argon the

choice of energy-sharing fraction can in fact cause differences of ∼ 25%, so that care must

still be taken when choosing the energy-partitioning function.

The qualitative shape of the Q-dependence of the mean energy for PII is insensitive to the

reduced electric field, and the range of values for a particular reduced field is considerably

larger than that for EII. In previous positron studies [16, 18, 24, 56], PII has been treated as

a standard excitation process. The current results suggest that PII is particularly sensitive

to the form of the energy-partitioning and, if real-world PII differs significantly from the

model of pure scattering with excitation, large errors can result. To comment on this, we

need to develop a realistic model of PII energy-partitioning.
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Figure 1: Variation of mean energy, ε, with energy sharing fraction, Q, for PII model (10) at a

reduced field of 800 Td.
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Figure 2: Variation of mean energy, ε, with energy sharing fraction, Q, for EII model (10)at a

reduced field of 800 Td.
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B. Positron ionization energy-partitioning model

We now wish to develop a model for post-ionization energy-partitioning that captures

the following basic physical behaviors:

1. For high impact energies, the positron ionization scattering cross section approaches

the electron ionization scattering cross section. The first Born approximation [57] is

valid for high impact energies and shows a heavy bias towards the case where the

scattered positron leaves the collision with almost all of the energy which is available

post-collision.

2. For impact energies near the ionization threshold, there is significant correlation be-

tween the scattered positron and ejected electron. In the Wannier theory [58] originally

developed for near-threshold EII, the repulsion between the two electrons cause them

to emerge with similar energies but in opposite directions. In terms of the interaction

potential between the two electrons, one may talk about a Wannier ‘ridge’ upon which

the system is in an unstable equilibrium. Klar [59] was the first to adapt Wannier’s

classical idea to PII. As in Wannier’s theory the energy is predicted to be shared

equally, however now the positron and electron emerge in similar directions due to the

Coulomb attraction. Ashley et al. [60] measured the positron ionization cross-section

in helium which they were able to accurately represent by a power law, albeit different

to that derived by Klar. Ihra et al. [61] extended the Wannier theory to be consistent

with both Klar and experiment. The success of these power law models justifies the

assumption of equal energy-sharing at near-threshold impact energies, although recent

experiments [62] suggest a slight asymmetry. It should be noted that the positron and

electron escape in similar directions with similar energies and are highly correlated, so

no clear distinction between ionization and continuum state positronium can be made

[14].

3. Ionization at intermediate energies appears to be a combination of the above two

effects, i.e. a strong peak in the energy-sharing distribution corresponding to the

scattered positron leaving with all the available energy, and a second peak occurring

when the positron and electron emerge with similar energy and direction and in a

highly correlated state. This feature has been shown in the studies of atomic hy-
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drogen by Brauner et al. [63] and measured experimentally in H2 by Laricchia and

co-workers [1, 62].

To capture simply the above three characteristics we propose a model consisting of an

exponentially decaying function, ghigh(Q), to represent the high impact energy ionization,

and a rational polynomial (sometimes called the Cauchy or Lorentz distribution), glow(Q)

centered around equal energy-sharing to represent the near-threshold ionization i.e.,

ghigh(Q) = Ahigh exp(βhighQ), (11)

glow(Q) = Alow

[
β2

low + (Q− 0.5)2]−1
, (12)

where Q is the fraction of the available energy, Ahigh and Alow are normalization constants,

and βhigh and βlow are free parameters to be fitted. An energy-fraction-partitioning function

which depends only on the impact energy and Q can then be constructed as

g(U ′, Q) = w(U ′)ghigh(Q) + (1− w(U ′)) glow(Q), (13)

where w(U ′) is chosen as a hyperbolic tan function to transition smoothly between ghigh and

glow, i.e.,

w(U ′) =
1

2

[
1 + tanh

(
γ
U ′ − UI

q
− δ
)]

, (14)

where q is the elementary charge, and γ and δ are free parameters that control where and

how sharp the transition is. The relationship between energy-fraction-partitioning function,

g(U ′, Q), and the energy-partitioning function, P (U,U ′), used in equations (6) and (A7) is

given simply by

g(U ′, Q)Q = P (U,U ′)U.

In the following subsections we shall investigate a test model with reasonable values for

the free parameters which can serve as a future benchmark model, and then fit the energy-

partitioning model to real experimental H2 data.

1. Test model

In this subsection we investigate the effect that the energy-partitioning model (11)-(14)

has on positron transport for a range of reduced electric field strengths. The parameters for
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the energy-partitioning function are

βhigh = 10,

βlow = 0.05, (15)

γ = 0.05,

δ = 3.5,

with the same cross sections, neutral temperature and mass as the model (10). The energy-

partition function for model (15) is displayed in Figure 3.

Figure 3: Variation of the energy-fraction-partition function with impact energy, relative to the

ionization threshold, and energy sharing fraction, Q, for parameters (15)

Transport properties calculated via kinetic theory and Monte Carlo are shown in Table

III. The kinetic theory and Monte Carlo results agree to within 0.4%. Also included in the

table for 800 Td and 5000 Td are the swarm properties assuming the energy-partitioning

was replaced by only glow or ghigh respectively. At 800 Td, the swarm properties for the full

energy-partitioning model are close to that which results from the inclusion of only glow,

which indicates that the distribution is generally sampling the even energy-sharing part of

the full energy-partitioning distribution. At the higher field of 4000 Td the swarm properties

are now close to those that come from allowing only ghigh to have an effect. As the field has
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Table III: Comparison of average ionization rate, αion/n0, mean energies, ε, and flux drift velocities,

W , for PII for model (15). The superscripts a and b refer to w(U) = 0 and w(U) = 1 respectively.

Columns “Current” correspond to the current kinetic theory calculations, and columns “MC” are

the results of Monte Carlo simulation.

E/n0 αion/n0 ε W

(Td) (10−15m3s−1) (eV) (105ms−1)

Current MC Current MC Current MC

800 10.92 10.90 14.40 14.37 4.810 4.814

800a 10.86 10.85 14.35 14.32 4.816 4.820

800b 12.48 12.37 15.82 15.70 4.555 4.585

1600 26.29 26.26 34.12 34.04 6.331 6.348

2400 40.97 40.88 65.56 65.42 6.910 6.932

3200 53.97 53.85 104.1 103.9 7.201 7.229

4000 64.95 64.90 144.8 145.0 7.491 7.517

4000a 49.18 49.11 86.49 86.52 9.509 9.527

4000b 66.96 66.64 149.5 149.2 7.150 7.178

increased, the distribution has shifted from sampling mostly the even sharing region, to the

region that is heavily biased towards the positron getting large amounts of available energy.

2. Model for positron-impact ionization in H2

Laricchia and co-workers [1, 62] have measured experimentally the energy-sharing of post-

ionization species for PII for a specific impact energy and angle. Their results for ionization

by a 100 eV positron, where both the positron and electron emerge at the same angle of

0 degrees, are included in Figure 4. It is evident that there is a bias towards the positron

getting all or large amounts of the available energy, with a secondary peak close to equal

energy-sharing due to electron-positron correlation effects. Our model predicts that this

peak should occur at exactly Q = 0.5, but experiments show that there is a slight energy-

sharing asymmetry in positron ionization, such that the peak actually occurs at Q > 0.5 [62].

A more sophisticated energy-partitioning model will need to take this effect into account.
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We have performed a non-linear least squares calculation to fit the free parameters of model

(11)-(14) to the experimental data, which were determined to be,

βhigh = 5.88,

βlow = 0.0468, (16)

γ = 0.0584,

δ = 3.45.

The fitted profile is shown in Figure 4 and qualitatively reproduces the main features of

the experiment. It should be noted that at the 0 degree scattering angle the secondary

peak is particularly dominant, and if one were to average the triple differential cross section

over all angles, a similar form with a reduced secondary peak would result. Due to the

lack of experimental data at a variety of angles, we will assume that the angle-integrated

cross section has the exact same shape as the 0◦ angle cross section for the purpose of this

paper, which will have the effect of exaggerating the equal energy-sharing part of the full

energy-sharing distribution. The parameters in equation (16) have been chosen to ensure a

smooth transition between glow and ghigh while ensuring that the relative weights give the

fit to experiment for an impact energy of 100 eV. The full, three dimensional energy-sharing

distribution is qualitatively similar to Figure 3.
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Figure 4: Differential PII cross section for an impact energy of 100 eV, as a function of the energy

sharing fraction, Q. KL 1998 is the experimental data of Kover and Laricchia [1] for the triply

differential cross section for an impact energy of 100 eV and ejection angle of 0◦. The model fit has

been calculated with the parameters (16) and by assuming that the triply differential cross section

is the same at all ejection angles.
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C. Positrons in molecular Hydrogen

In the previous subsection, a model for the post-ionization energy-sharing for PII from

H2 was proposed. In this subsection, the effect of the energy sharing on transport properties

is investigated for PII in rarefied H2. The set of H2 cross sections employed are those

compiled in [5, 27] and using the elastic cross section of [70] calculated with a convergent-

close-coupling formalism [64] up to 1000 eV, extrapolating where necessary. It is clear that

the ionization process, which turns on at 15.4 eV is particularly important, and dominates

at energies above 50 eV .
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Figure 5: Cross section set for positron scattering in H2. References are given in text.

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Energy (units of eV)

C
ro

ss
 s

ec
tio

n 
(u

ni
ts

 o
f A

2 )

 

 

elastic
vib. exc. v1 
vib. exc. 02
vib. exc. 01
Ps form.
el. exc. B1Σ
el. exc. X−C
el. exc. X−E
ionization

In order to assess the importance of energy-partitioning on ionization we investigated the

time-dependence of the mean energy for a source of positrons in H2 gas at 293 K, as they relax

to thermal equilibrium in the absence of an electric field. The source distribution is chosen to

be uniform in velocity space up to the 1000 eV cutoff, which is equivalent to an initial mean

energy of 600 eV. The thermalisation profiles for the energy-partitioning model (16), and

using the PII collision operator with Q = 0.5 (equal energy-sharing), and Q = 1 (standard

excitation form) are shown in Figure 6. There are two distinct regions of rapid relaxation,

one due to ionization at high energies and one due to the vibrational modes at lower energies.

The first occurs on time scales of between 0.1 and 2 ns Amagat, while the second at about 5

ns Amagat, which shows that the relaxation due to inelastic collisions is very rapid. While

in the ionization-dominated region, the three profiles show significant differences in mean

energy of up to an order of magnitude. The profile corresponding to Q = 1.0 has the highest

mean energy since the positron loses the least amount of energy during an ionization collision

in that limit. It takes significantly longer to relax until the positron energies fall below the

ionization region, and thus they will experience more ionization collisions. The Q = 0.5

profile shows the lowest mean energy since the ejected electron removes large amounts of

energy from the swarm, and exits the ionization region quickest. The “real” H2 model profile
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sits between the even energy-sharing and standard excitation profiles as expected, since it

is essentially a mixture of the two. At lower energies, once ionization collisions become

insignificant, all three energy partitioning profiles coalesce, resulting in essentially the same

total thermalisation times.

Although the total thermalisation time is essentially insensitive to the form of the ioniza-

tion energy-partitioning, the large differences in mean energies in the ionization-dominated

region can have other important effects. In a space-dependent situation, the higher mean

energies can allow the positron to travel larger distances during thermalisation. This is

important to PET simulations since the resolution of PET images is dependent on the dis-

tances traveled between positron emission and annihilation [7]. Similarly, the higher the

mean energy, the longer the positron swarm can significantly sample the ionization cross

section, and hence the more secondary electrons that are created via PII. It is the secondary

electrons created in the human body during PET scans that can cause DNA damage [8–11].

Furthermore, the exact energy profile of the secondary electrons will be dependent on the

form of the PII energy-partitioning.
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Figure 6: Mean energy temporal relaxation of a positron swarm in H2 at 293 K. The initial source

distribution is uniform in speed space up to 1000 eV. The H2 model ionisation parameters are given

in equation (16) and are compared with constant energy sharing fractions of Q = 0.5 and Q = 1.0.
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V. CONCLUSION

Ionization by positron impact is a fundamentally different process than ionization by elec-

tron impact. Applications such as PET demand increasingly accurate models for positron

transport, so it is important to be able to describe the ionization process in detail. To this

end, a kinetic theory model with a general PII collision operator has been developed for

the first time. The key feature of the ionization collision operator is the energy-partition

function, which controls how the available energy is shared between the post-collision con-

stituents.

The kinetic theory results were compared against a Monte Carlo simulation for a sim-

ple test model (10), which may serve as a new benchmark for ionization. The transport

properties calculated differed between the two approaches by less than 0.6% over a range of

reduced electric fields and available energy fractions, which is within their respective uncer-

tainties. The sensitivity of the transport properties to the energy-sharing fraction Q for PII
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was shown to be significant, and much greater than that of EII. Thus large errors can result

in real-world applications if PII is not treated carefully.

A simple energy-partition function was developed to capture qualitatively the underlying

physics of PII. At high impact energies, the scattered positron leaves the collision with almost

all of the available energy, while at near-threshold impact energies the Wannier theory [58]

suggests that the both the scattered positron and ejected electron share approximately half of

the available energy. In reality, there is a slight energy-sharing asymmetry in near-threshold

positron ionization [62] and a more sophisticated energy-partitioning model will need to take

this asymmetry into account. The model parameters were fit to the experimental results of

Kover and Laricchia [1] for positrons in H2 with good qualitative agreement.

Using the newly constructed H2 energy-partitioning function, we investigated the tem-

poral relaxation of a positron swarm from a high energy source (600 eV) to thermalisation

at room temperature, and compared the equal-energy sharing model with the common ap-

proach of treating the PII as a standard excitation process. In the ionization-dominated

region there can be more than an order of magnitude in difference in the mean energy pro-

files, and hence the choice of energy-partition function has a significant effect on the number

of ionization collisions and the energy distribution of the secondary electrons created, which

is particularly important for radiation damage modeling [10]. Our modeling also suggests

that the spatial relaxation will be sensitive to the energy-partitioning, which is a topic to

be further investigated.
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Appendix A: Derivation of positron-impact ionization operator

The case of EII has been treated by Ness [21], and we follow this work closely to derive the

PII collision operator. For simplicity, we consider one ionization process with a neutral in

the ground state, but the generalization is straightforward. To derive the collision operator

we will consider the scattering of positrons into and out of an element of phase space, drdv.

Let us consider a beam of positrons incident upon the background neutrals which are at

rest. The flux of incident positrons, I, in drdv is

I = vf (r,v, t) dv.

If σion(v) is the the total ionization cross section for an incoming positron of speed v, then

the number of ionization collisions in drdv per unit time per neutral is,

Iσion(v) = vf(r,v, t)σion (v) dv,

and hence, the total rate of positrons scattered out of the element drdv for n0 neutral

particles due to ionization is

J ion
out(f)drdv = n0vσ

ion(v)f(r,v, t)drdv. (A1)

In EII, either the primary or ejected electrons (which are indistinguishable) from an

ionization event somewhere else in phase space may be scattered into the element drdv.

Since one can distinguish between electrons and positrons, the PII equivalent is simpler. Let

us consider a new element of phase space with the same configuration space location but

new velocity space location, i.e., drdv′. Similar to (A1), the total number of PII in drdv′

per unit time is

n0v
′σion(v′)f(r,v′, t)drdv′. (A2)

The momentum post-ionization is shared between the scattered positron and the ejected

electron. We define a quantity B(v,v′), such that B(v,v′)dv is the probability of the

positron having a velocity between v and v + dv after ionization, given that the incident

positron has velocity v′. Assuming the neutral particle remains a bystander at rest during

the process (to zeroth order in the mass ratio, m/m0), then by conservation of momentum,

v′ = v + v̄,
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where v̄ is the velocity of the ejected electron. It follows from equation (A2) and the

definition of B(v,v′) that the number of positrons that enter drdv per unit time due to an

ionization event in drdv′ is

n0v
′σion(v′)f(r,v′, t)B(v,v′)dvdrdv′.

Integrating over all possible incident velocities thus yields the total rate of positrons scattered

into drdv due to PII, i.e.,

J ion
into(f)drdv = n0drdv

∫
v′σion(v′)f(r,v′, t)B(v,v′)dv′.

The total PII collision operator is then the difference in the rates of positrons scattered

into and out of the element drdv, i.e., J ion = J ion
out − J ion

into,

J ion(f) = n0vσ
ion(v)f(r,v, t)− n0

∫
v′σion(v′)B(v,v′)f(r,v′, t)dv′. (A3)

If we assume central forces, then the scattering cross section and partition function are

dependent only on the magnitudes of the pre- and post-collision velocities, and the angle

between them, i.e., v, v′ and v̂ · v̂′. We may then further define a differential scattering

cross section for ionization, σion (v, v′; v̂ · v̂′), such that σion (v, v′; v̂ · v̂′) dv is the number of

positrons scattered into the range dv about v due to incident electrons of velocity v′ divided

by incident flux,

σion (v, v′; v̂ · v̂′) dv = σion (v′)B (v, v′; v̂ · v̂′) dv. (A4)

The partition function satisfies a normalization condition so that

σion(v′) =

∫
σion (v, v′; v̂ · v̂′) dv.

Substituting equation (A4) into equation (A3) gives the PII collision operator

J ion(f) = n0vσ
ion(v)f(v)− n0

∫
v′σion (v, v′; v̂ · v̂′) f(v′)dv′.

This operator is particle-number-conserving, i.e.∫
J ion(f)dv =

∫
n0vσ

ion(v)f(v)dv − n0

∫∫
v′σion (v, v′; v̂ · v̂′) f(v′)dv′dv

= n0

∫
vσion(v)f(v)dv − n0

∫
v′f(v′)dv′

∫
σion (v, v′; v̂ · v̂′) dv

= n0

∫
vσion(v)f(v)dv − n0

∫
v′σion(v′)f(v′)dv′

= 0,
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as required.

a. Legendre decomposition

For central scattering forces the partition function can be decomposed in terms of Leg-

endre polynomials, i.e.,

Bl(v, v
′) = 2π

∫ 1

−1

B(v,v′)Pl (µ) dµ,

where µ = v̂ · v̂′. For isotropic scattering, Bl(v, v
′) = 0 for l ≥ 1. Multiplying equation (A3)

by Pl (cosχ), and integrating over all angles leads to

J ion
l (fl) = n0vσ

ion(v)fl(v)−

n0

∫∞
0
v′σion (v′)B0(v, v′)f0(v′)v′2dv′ l = 0,

0 l ≥ 1.
(A5)

We now seek to represent equation (A5) in terms of energy rather than speed, i.e., U = 1
2
mv2.

The probability of a positron having a speed in the range v + dv after ionization, for an

incident positron of speed v′ is

v2dv

∫
B (v, v′; v̂ · v̂′) dv̂ = B (v, v′) v2dv,

≡ P (U,U ′) dU, (A6)

where U and U ′ are the post- and pre-collision positron energies respectively, and now the

right-hand-side term of equation (A6) represents the probability of a positron having an

energy in the range U + dU after ionization for an incident positron of U ′. The energy

partitioning function, P (U,U ′), has the following properties:

P (U,U ′) = 0 U ′ < U + UI∫ U ′−UI

0

P (U,U ′)dU = 1 U ′ ≥ U + UI .

Finally, we can represent equation (A5) in terms of energy and the energy-partition

function, P (U,U ′),
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J ion
l (fl) = n0

√
2U

m
σion(U)fl(U)−

 n0

√
2
mU

∫∞
0
U ′σion (U ′)P (U,U ′)f0(U ′)dU ′

0

l = 0,

l ≥ 1,

(A7)

b. Modified Frost-Phelps operator

If the scattered positron leaves the collision with an exact fraction, Q, of the available

energy, U ′ − UI , where UI is the threshold energy, then the energy-partition function has

the form,

P (U,U ′) = δ (U −Q(U ′ − UI)) ,

=
1

Q
δ

(
U ′ −

(
U

Q
+ UI

))
,

and the integral in equation (A7) reduces to,

J ion
l (fl) = ν ion(U)fl(U)−


1
Q

(U
Q

+UI)
1
2

U
1
2

ν ion
(
U
Q

+ UI

)
f0

(
U
Q

+ UI

)
0

l = 0,

l ≥ 1,
(A8)

where ν ion(U) = n0

√
2U
m
σion(U) is the ionization collision frequency. Equation (A8) can be

considered a ‘modified Frost-Phelps’ operator. A similar result for EII was given in [65]. In

the case where the positron gets all of the available energy, i.e., Q = 1, equation (A8) reduces

to the standard Frost-Phelps operator, (5), as required. Clearly, equation (A8) breaks down

when Q = 0.

Appendix B: Electron impact ionization benchmarks

Transport coefficients for EII are given in Table IV, in which they are compared to the

results of Ness and Robson [42]. Due to the indistinguishability of post-collision particles,

the results for Q and 1−Q with respect to EII are identical, and so we consider only Q > 0.5.

The modified Frost-Phelps form of the collision operator (A8) breaks down when Q = 0,

hence there is no value given in Table IV corresponding to Q = 0 and Q = 1 (if one of

the electrons gets the fraction Q = 1 of the available energy, then the other receives Q = 0
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and the same problem is encountered). The EII calculations using our kinetic theory model

agree closely with both our Monte Carlo simulations and the kinetic theory approach in

[42]. There are generally differences of less than 0.6% and 0.3% in the ionization rate and

mean energy respectively, between the present kinetic theory results and both the Monte

Carlo simulation and [21] over the whole range of reduced fields and energy sharing fractions,

except for the AFE case. An error is present in the AFE calculations of [21]. Values for the

AFE case have been re-calculated using a similar Burnett function [66] expansion to that of

Ness and Robson (which are included in Table IV enclosed within square brackets) which

agree closely with our calculations. In reference [21], the bulk drift velocities are given,

which must not be confused with the flux drift velocity [67–69]. The two types of transport

coefficients can be significantly different when there a non-conservative effects. Following

[69] we have solved the first level of spatially-inhomogeneous equations, which come from

a density gradient expansion [66], in addition to equation (3) to determine the bulk drift

velocity. Both the flux and bulk drift velocities generally agree to within 0.3% between the

three calculation methods over the range of fields and energy-sharing fractions considered.
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Table IV: Comparison of average ionization rate, αion/n0, mean energies, ε, flux drift velocities,

Wflux, and bulk drift velocities Wbulk for EII for model (10) for different reduced fields E/n0 and

energy sharing fractions Q. The first column lists the current kinetic theory calculations, the second

column lists the results of our Monte Carlo simulations, and the third includes the kinetic theory

calculations of Ness and Robson [42]. The values enclosed in square brackets have been performed

using a similar Burnett function expansion to that of Ness and Robson. Q = AFE corresponds

to ‘all fractions equiprobably’. Note: there was an error in the AFE case in the original Ness and

Robson work [42].

E/n0 αion/n0 ε Wflux Wbulk

(Td) Q (10−15m3s−1) (eV) (105ms−1) (105ms−1)

Current MC [42] Current MC [42] Current [42] Current MC [42]

300 0 1.620 1.61 6.739 6.73 2.780 3.236 3.23

1/4 1.598 1.611 1.60 6.737 6.741 6.73 2.752 2.754 3.200 3.204 3.20

1/3 1.595 1.596 1.60 6.739 6.741 6.73 2.748 2.749 3.194 3.196 3.20

1/2 1.591 1.589 1.59 6.742 6.744 6.74 2.744 2.745 3.189 3.192 3.19

AFE
1.600 1.606 1.51 6.733 6.746 6.75 2.756 2.755 3.198 3.206 3.19

[1.60] [6.73] [3.21]

500 0 4.643 4.68 9.009 8.99 3.920 4.752 4.74

1/4 4.504 4.515 4.51 9.007 9.007 9.01 3.835 3.839 4.632 4.644 4.63

1/3 4.482 4.492 4.49 9.013 9.023 9.01 3.823 3.822 4.617 4.617 4.62

1/2 4.464 4.452 4.47 9.017 9.028 9.02 3.814 3.816 4.604 4.606 4.61

AFE
4.511 4.525 4.37 9.000 9.007 9.04 3.846 3.843 4.635 4.647 4.62

[4.52] [9.00] [4.64]

800* 0 9.736 9.62 13.17 13.21 5.112 6.284 6.25

1/4 9.413 9.422 9.41 13.01 13.02 13.01 4.953 4.957 6.108 6.118 6.11

1/3 9.357 9.372 9.37 12.99 12.99 12.99 4.933 4.936 6.090 6.092 6.09

1/2 9.320 9.339 9.33 12.97 12.98 12.97 4.919 4.922 6.079 6.095 6.08

AFE
9.461 9.445 9.20 13.03 13.02 13.09 4.968 4.976 6.137 6.137 6.12

[9.46] [13.02] [6.13]
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