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Abstract
Background: The Plasmodium purine salvage enzyme, hypoxanthine guanine xanthine phosphoribosyl
transferase (HGXPRT) can protect mice against Plasmodium yoelii pRBC challenge in a T cell-dependent
manner and has, therefore, been proposed as a novel vaccine candidate. It is not known whether natural
exposure to Plasmodium falciparum stimulates HGXPRT T cell reactivity in humans.

Methods: PBMC and plasma collected from malaria-exposed Indonesians during infection and 7–28 days
after anti-malarial therapy, were assessed for HGXPRT recognition using CFSE proliferation, IFNγ
ELISPOT assay and ELISA.

Results: HGXPRT-specific T cell proliferation was found in 44% of patients during acute infection; in 80%
of responders both CD4+ and CD8+ T cell subsets proliferated. Antigen-specific T cell proliferation was
largely lost within 28 days of parasite clearance. HGXPRT-specific IFN-γ production was more frequent
28 days after treatment than during acute infection. HGXPRT-specific plasma IgG was undetectable even
in individuals exposed to malaria for at least two years.

Conclusion: The prevalence of acute proliferative and convalescent IFNγ responses to HGXPRT
demonstrates cellular immunogenicity in humans. Further studies to determine minimal HGXPRT
epitopes, the specificity of responses for Plasmodia and associations with protection are required.
Frequent and robust T cell proliferation, high sequence conservation among Plasmodium species and absent
IgG responses distinguish HGXPRT from other malaria antigens.

Published: 7 June 2009

Malaria Journal 2009, 8:122 doi:10.1186/1475-2875-8-122

Received: 23 January 2009
Accepted: 7 June 2009

This article is available from: http://www.malariajournal.com/content/8/1/122

© 2009 Woodberry et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19500406
http://www.malariajournal.com/content/8/1/122
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Malaria Journal 2009, 8:122 http://www.malariajournal.com/content/8/1/122
Background
Malaria remains a major public health problem and
approximately 1 million people continue to die annually
from Plasmodium falciparum malaria [1]. Correlates of
immune protection remain poorly characterized. Of the
current malaria vaccine strategies, few have been shown to
protect humans from malaria. Irradiated sporozoites con-
fer protection [2,3] and ultra low dose blood parasitized
red blood cells (pRBC) have been shown to induce potent
cell mediated immunity that may contribute to enhanced
resistance to P. falciparum infection [4,5]. The pre-erythro-
cytic stage vaccine RTS,S confers partial but not complete
protection against clinical disease [6-8], and a DNA-MVA
heterologous prime-boost regimen can protect against
sporozoite challenge [9]. All of these strategies elicit cellu-
lar immune responses, which contribute to protection
[10,11]. Since T cell mediated protection has been dem-
onstrated in the absence of antibodies [4,12-17], the iden-
tification of parasite antigens targeted by cellular
responses is required to better understand the develop-
ment of immunity to disease and to identify novel anti-
gens that warrant consideration as potential vaccine
candidates.

In mice, the Plasmodium purine salvage enzyme, hypoxan-
thine guanine xanthine phosphoribosyl transferase
(HGXPRT), is a target of protective T cells as evidenced by
adoptive transfer studies [18]. Because of this, HGXPRT
has been proposed as a novel vaccine candidate. HGXPRT
is located in electron-dense regions within merozoites and
in vesicles within the cytoplasm of infected red cells [19].
Since P. falciparum is incapable of de novo purine synthesis,
HGXPRT is an important enzyme, and is highly conserved
amongst Plasmodium spp. [20]. The key role of HGXPRT,
the substantial sequence homology and the demonstra-
tion that T cells specific for Plasmodium yoelii and P. falci-
parum HGXPRT in the absence of antibodies confer
protection against pRBC challenge in a mouse model
raises the question as to whether this region is recognized
by humans. Accordingly, this study was designed to deter-
mine whether T cell responses to Plasmodium HGXPRT, a
blood stage antigen, are induced in humans following
natural Plasmodium exposure. These data confirm that
HGXPRT is a target of cell-mediated immunity in humans
with frequent and robust T cell responses detected during
acute infection.

Methods
Study subjects and samples
Subjects were recruited in Timika, a lowland region of
Papua, Indonesia, with endemic unstable malaria trans-
mission of multidrug-resistant P. falciparum and Plasmo-
dium vivax and annual malaria incidence of 876 per 1,000
person-years [21-23]. Venous blood was collected from
patients with acute uncomplicated falciparum malaria

who presented to community or hospital outpatient clin-
ics with fever or history of fever within 48 hours and any
parasitaemia, the majority of whom were enrolled in trials
of artemisinin combination therapy [22,23]. In a subset of
these patients longitudinal samples were collected
approximately 7 and 28 days following anti-malarial drug
treatment. Two groups of controls were enrolled; (i)
asymptomatic malaria-exposed controls, resident in
Timika district for at least two years, with no fever or
symptoms of malaria within the preceding two weeks and
(ii) healthy Australian Red Cross Blood Service donors
and laboratory volunteers not exposed to malaria. Plasma
and PBMC were cryopreserved for later analysis.

Written informed consent was obtained from all subjects.
The study was approved by the Ethics Committees of the
National Institute of Health Research and Development,
Ministry of Health, Jakarta, Indonesia, Menzies School of
Health Research and the Australian Red Cross Blood Serv-
ice.

Recombinant protein, synthetic peptides and mitogens
Plasmodium falciparum cDNA K1 isolate, PlasmoDB
PF10_0121 [24] coding for HGXPRT was cloned into a
pT7-7 expression vector and subsequently transformed
into SΦ606 (ara, Δpro-gpt-lac, thi, hpt, F-) E. coli cells. The
enzyme was then purified to homogeneity to a concentra-
tion of ≈7.5 mg ml-1 as described [25]. Mass spectrometry
confirmed a molecular weight of 26,231 Da. Recom-
binant protein was tested for toxicity and mitogenicity in
bulk splenocyte cultures prior to use. 1.6–2.0 μg of HGX-
PRT protein was used in functional assays. Additionally,
twenty two peptides corresponding to the entire P. falci-
parum K1 isolate HGXPRT sequence [26] were produced at
the Queensland Institute of Medical Research. Peptides
were 20 amino acids in length, overlapping each other by
10 amino acids. 1.6 μg of individual peptides at a purity
of >85% were evaluated in functional assays.

Recombinant hexahistidine tagged full-length P. falci-
parum merozoite surface protein 5 (MSP5) [27] and the
mitogen phytohaemagglutinin (PHA, Sigma, Missouri,
USA) at 5 μg/ml, were used as positive controls.

Sample evaluation
PBMC from 73 patients with acute and/or convalescent
malaria were tested for HGXPRT protein recognition in
proliferation and/or ELISPOT assays. The limited number
of available cells restricted the number of patients in
whom both assays could be performed (Table 1 and Table
2) to 12 subjects Plasma from all 73 subjects evaluated for
cellular responsiveness were tested for HGXPRT-reactive
immunoglobulins. PBMC from 15 healthy Australian
blood donors not exposed to malaria were tested as con-
trols in the proliferation and ELISPOT assays. Plasma
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from 37 healthy Australian blood donors were tested as
controls in the HGXPRT ELISA.

CFSE proliferation assay
PBMC resuspended at 1 × 106/mL in PBS 0.1% FCS (Gib-
coBRL, Life Technologies) were stained with 0.4 μM CFSE
(Molecular Probes, CellTrace, Oregon, USA) for five min-
utes at 37°C and washed according to the manufacturer's
instructions. PBMC were then resuspended in RPMI-1640
medium supplemented with 10% FCS (GibcoBRL), 2 mM
glutamine, 100 μg per ml streptomycin and 100 units per
ml penicillin (GibcoBRL), and incubated at 37°C in 5%
CO2 for six days in the presence or absence of antigen or
peptides. On day 6 cells were stained with cell surface
antibodies (anti-CD3, CD4 and CD8; Pharmingen, BD
Biosciences, CA, USA), resuspended in 1% paraformalde-
hyde (Sigma) and tested for fluorescence using a Becton
Dickinson FACSCalibur with CellQuest™ Pro version
5.2.1. FACS data were analysed using FlowJo (version 7,
Tree Star, Inc. Oregon, USA). Background proliferation
was determined by measuring proliferation in media
alone. Antigen specific responses were corrected for back-
ground proliferation (mean acute background being 11%
[n = 37]) and responses ≥ 10% above background were
considered positive) and reported as the percentage of
dividing cells. Three acute and one day 28 PBMC sample
were excluded from analyses because background media
proliferation exceeded 20% and prohibited the determi-
nation of positive or negative responses.

CD4+ T cell depletion
A Dynal® CD4 positive isolation kit (Dynal Biotech, Nor-
way) was used in accordance with the manufacturer's
instructions. Cells were stained with anti-CD3, CD4 and

CD8 antibodies (Pharmingen) and analysed by flow
cytometry to ensure the efficiency of CD4+ T cell removal
was ≥ 97%. CD4+ T cell depleted PBMC were tested in pro-
liferation assays as described above.

Ex-vivo interferon gamma (IFN-γ) ELISPOT assay
400 000 PBMC were added to individual wells of mixed
acetate plates (MAIPS4510, Millipore, UK) previously
coated with 5 μg/ml anti-human IFN-γ mAb (clone 1-
D1K, Mabtech, Sweden). The ELISPOT plates were incu-
bated overnight at 37°C in 5% CO2, and then washed and
developed with 1 μg/ml biotinylated anti-human IFN-γ
mAb (clone 7-B6-1, Mabtech) followed by streptavidin-
alkaline phosphatase (AP) (1:1000 Mabtech) and colori-
metric AP Kit (BioRad, Hercules, CA, USA). Spots were
counted by eye. Positive cytokine responses were based on
a chi-square comparison of the odds ratio of IFN-γ secret-
ing cells in the test well and control well [28]. The
mitogen PHA was used as a positive control.

HGXPRT ELISA
NUNC Maxisorp plates coated at 4°C overnight with 0.5
μg/ml HGXPRT protein were blocked for one hour with
5% skim milk in PBS containing 0.05% Tween (Sigma)
(PBS-T) and washed with PBS-T. 50 μl of plasma, diluted
in PBS-T (1:800 dilution), was added to the plate and the
assay was incubated for one hour. Anti-human total IgG
HRP (1:2000 dilution, Zymed, California, USA) was
added and the colour developed using TMB (Zymed). The
colour reaction was stopped with 1 M HCl and the
absorbance read at 450 nm. The binding of antibodies in
plasma from 37 unexposed donors was used to define the
cut-off (mean OD + 3 SD) of positive responses at 38 μg/
mL. ChromPure human IgG (Jackson ImmunoResearch

Table 1: Patients with acute and convalescent malaria in which proliferative responses were tested

Day 0 Day 28*
HGXPRT proliferation No HGXPRT proliferation

Subjects 15 19 12
Mean age (range) 24 (7–55) 25 (12–44) 25 (8–43)
Female/male 6/9 7/12 5/7
Mean parasites/μL (range) 13 153 (2 324–30 800) 24 102 (255–305 200) 0

* responses were not stratified by HGXPRT proliferation due to the paucity of proliferation at day 28.

Table 2: Patients with acute and convalescent malaria in which ELISPOT responses were tested

Day 0* Day 28
HGXPRT response No HGXPRT response

Subjects 12 10 9
Mean age (range) 25 (3–50) 23 (13–43) 30 (7–60)
Female/male 2/10 4/6 4/5
Mean parasites/μL (range) 4911 (423–15 912) 0 0

* responses were not stratified by HGXPRT recognition due to the paucity of IFNγ secretion at day 0.
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Laboratories, Pennsylvania, USA) was used as a standard
following dilution in PBS to 0–300 ng/mL, permitting
quantitation of antibody responses.

Cytometric bead array
Cell culture supernatant from CFSE labelled PBMC were
collected 18, 36 and 65 hours following no antigen, HGX-
PRT or PHA stimulation. Supernatant samples were tested
for IL-2, IL-4, IL-6, IL-10, TNF and IFN-γ using a Th1/Th2
cytometric bead array kit (BD Biosciences, California,
USA) according to the manufacturer's instructions.

Statistical methods
Data were analysed using SPSS for Windows (version 15
SPSS Inc, Chicago, Illinois, USA). The Mann-Whitney U
test or Kruskal-Wallis method were used for nonparamet-
ric comparisons, and Student's t-test or one-way analysis
of variance for parametric comparisons. For categorical
variables, percentages and corresponding 95% confidence
intervals (95% CI) were calculated using Wilson's
method. Proportions were examined using χ2 with Yates'
correction or by Fisher's exact test.

Results
HGXPRT-specific T cell proliferation during acute malaria 
and in convalescence
To evaluate whether P. falciparum exposure induced T cell
responses that recognize HGXPRT, cross-sectional PBMC
collected during acute symptomatic malaria and one
month after anti-malarial treatment were tested for prolif-
eration in response to recombinant HGXPRT. During
acute malaria HGXPRT was recognized by 44% (15/34) of
subjects (Table 1). In 80% (12/15) of responders, both
CD4+ and CD8+ T cells proliferated to HGXPRT protein
with no significant differences between the two cell types
(Figure 1A). In two additional subjects only CD4+ T cells
responded and in another only CD8+ T cells proliferated.
Median proliferative responses were 29% (range 10–74)
and 31% (range 13–71) for CD4+ and CD8+ T cells respec-
tively. There was no significant difference in the age, gen-
der, or baseline parasitaemia between the 15 subjects with
proliferative responses and the 19 without (Table 1). In
the PBMC collected 28 days following anti-malarial treat-
ment, proliferative responses were significantly less fre-
quent, with HGXPRT CD4+ T cell proliferation detected in
only one subject (1/12, p = 0.035, Figure 1A).

To confirm the short duration of HGXPRT proliferative
responses, eight additional acute malaria subjects with
paired day 0 and day 7 and/or day 28 post treatment sam-
ples were tested for proliferation in response to recom-
binant HGXPRT. PBMC proliferated to HGXPRT in five
subjects (62.5%) during acute malaria (day 0), in only
one patient seven days after treatment and in none by day
28, despite PHA responsiveness at each time point (Figure

1B). These data confirm the cross sectional results where
proliferative responses were most frequent during acute
disease.

None of the PBMC from 15 malaria-unexposed controls
proliferated in response to HGXPRT protein. PHA
induced CD4+ and CD8+ T cell proliferation in all subjects
tested with no significant difference in the magnitude of
PHA responses between the patients with malaria and
non-exposed controls.

CD8+ T cells do not proliferate after CD4+ T cell depletion
The frequent detection of CD8+ T cell proliferation in
response to soluble HGXPRT in acute malaria indicated
that responsiveness differed between humans and the
experimental murine malaria model [18]. To determine
whether the HGXPRT CD8+ T cell proliferation was
dependent on CD4+ T cell co-activation, CFSE prolifera-
tion was tested following CD4+ T cell depletion in three
acute malaria subjects who had demonstrated CD4+ and
CD8+ T cell responses to HGXPRT. In each subject, CD8+

T cells failed to proliferate in response to HGXPRT follow-
ing CD4+ T cell depletion (Figure 2) despite responding to
PHA. These data suggest a general requirement for CD4+ T
cells for optimal CD8+ T cell proliferation in response to
HGXPRT protein in the in vitro cell culture system. Non-
depleted PBMC from three acute symptomatic exposed
and three unexposed subjects that did not proliferate in
response to HGXPRT also failed to respond following
CD4+ T cell removal. This suggests that suppression by reg-
ulatory CD4+ T cells, known to be increased in falciparum
malaria [29], did not account for the failure to respond to
HGXPRT.

Recognition of HGXPRT peptides
The frequent detection of HGXPRT T cell proliferation in
PBMC from people with acute malaria suggests that HGX-
PRT is antigenic. To partially map the region within the
protein targeted by T cell responses, peptides 20 amino
acids in length with a 10 amino acid overlap based on the
Plasmodium K1 sequence were synthesized. The alignment
of P. falciparum, P. vivax and human HG(X)PRT protein
sequences shows 39% identity (Figure 3). Due to con-
straints on PBMC availability from acute malaria patients,
we combined peptides to create an N-terminal pool (con-
taining 10 peptides covering the first 110 amino acids)
and a C-terminal pool. Both peptide pools were tested for
the ability to stimulate T cells from eleven acute malaria
subjects in CFSE proliferation assays.

T cells from 36% (4/11) of subjects proliferated to the
peptide pools. The N-terminal peptide pool was recog-
nized by two subjects (with CD4+ T cell proliferation in
one subject and CD4+ and CD8+ T cells proliferation in the
other) and the C-terminal peptide pool was recognized by
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Lymphocyte proliferation to HGXPRT in acute and convalescent malariaFigure 1
Lymphocyte proliferation to HGXPRT in acute and convalescent malaria. CD4+ and CD8+ T cell division following 
PBMC stimulation with HGXPRT expressed as the percentage of CFSE dim cells following background subtraction. A. PBMC 
response in 34 acute (day 0) and 12 convalescent (day 28) subjects. The proportion with proliferation at day 28 was signifi-
cantly less than at day 0 (p = 0.035). No HGXPRT proliferation was detected in 15 malaria unexposed controls. The horizontal 
solid line represents the group median and the dotted line the background cut-off for positive responses. B. Longitudinal HGX-
PRT responses in 5 subjects during acute malaria (day 0) and 7 and 28 days after drug treatment.
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two subjects (with CD4+ and CD8+ T cell proliferation in
both). CD4+ T cell responses were of a similar magnitude
to CD8+ T cell responses (data not shown). No responses
were detected in PBMC from 9 unexposed control blood
donors.

As Plasmodium spp have an additional eight amino acids
compared to human HG(X)PRT at the N-terminus, pep-
tides #1 and #2 covering the first 30 amino acids from the
N-terminal were evaluated in proliferation assays (Figure
3). PBMC from six selected acute malaria subjects known
to respond to HGXPRT were evaluated and three
responded to the peptides with CD4+ and CD8+ T cell pro-
liferation, demonstrating T cell recognition of the N-ter-
minus in a subset of individuals.

Cytokine production in response to HGXPRT
IFN-γ has been identified as a cytokine capable of mediat-
ing potent anti-malarial immunity [30]. Therefore, PBMC
collected during acute infection and in convalescence
were tested for IFN-γ production in response to recom-
binant HGXPRT using ELISPOT. In contrast to the early
detection of T cell proliferative responses, IFN-γ secretion
was greater in convalescence (53%, 10/19 day 28) than
during acute infection (17%, 2/12 day 0; p = 0.065), with
significantly more numerous spot-forming cells (p = 0.04,
Figure 4). All PBMC produced IFN-γ in response to PHA
and no HGXPRT responses were detected in unexposed
control samples. There were no significant differences in
age, sex, baseline parasitaemia or response to treatment
between the HGXPRT ELISPOT responders and non-
responders (Table 2).

Among the 12 samples with sufficient cells to permit the
evaluation of both HGXPRT proliferation and IFN-γ secre-
tion, convalescent day 28 samples from six subjects
responded in the ELISPOT assay but did not proliferate to
HGXPRT. Two additional convalescent samples
responded in neither assay. For the acute samples; three
did not respond in the ELISPOT or proliferation assay
while only proliferation was detected in the fourth sam-
ple. These results indicate dissociation between T cell pro-
liferation and IFN-γ secretion in the T cell response to
HGXPRT.

To examine whether the loss of proliferative responses in
convalescence may be associated with Th2 cytokine pro-
duction, culture supernatants from acute and convales-
cent PBMC (n = 4) following HGXPRT stimulation were
also tested for IL-2, IL-4, IL-6, IL-10 and TNF cytokines. IL-
6 (range 0.85–11.9 ng/mL), IL-10 (range 0.005–0.08 ng/
mL), and TNF (range 0.03–4.4 ng/mL) were detected in
supernatants from all acute and convalescent PBMC at
each time-point (18, 36 and 65 hours) following HGXPRT
stimulation. However, as noted for IFN-γ only IL-10 secre-

Loss of proliferation to HGXPRT following CD4+ T cell depletionFigure 2
Loss of proliferation to HGXPRT following CD4+ T 
cell depletion. Detection of HGXPRT-specific CD4+ or 
CD8+ T cells from a representative patient with acute falci-
parum malaria; (A) before and (B) after CD4+ T cell deple-
tion. Day 6 CFSE CD8+ and CD4+ T cell proliferative 
responses in response to (C) no antigen and (D) HGXPRT 
before and (E) after CD4+ T cell depletion. The percentages 
represent the proportion of CFSE low CD4+ and CD8+ T 
cells in culture. A similar result was observed in two other 
subjects.

A.  PBMC   B.  CD4+ T cell depletion 

 

  
   

          D. PBMC HGXPRT 
 

          CD8+ T cells        39%          CD4+ T cells         60% 
 

  

   

   E. CD4+ T cell depletion HGXPRT 
 
   CD8+ T cells        0%        
 

Day 0 

Day 6 

C.  PBMC no antigen 
 
CD8+ T cells          7%                  CD4 T+ cells       24% 
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tion increased in convalescence (day 7 or day 28) relative
to paired acute infection samples, by a median of 35%
(IQR 32–55%; p = 0.005).

No detection of Plasmodium HGXPRT-specific IgG
HGXPRT reactive immunoglobulin was assessed in the
plasma of 80 Timika residents with acute malaria and 34
convalescent samples. The set included all people in
whom cellular responses were tested plus an additional
85 asymptomatic Timika residents exposed to malaria for
a minimum of two years. HGXPRT-specific IgG responses
were not detected during acute infection nor 28 days after
treatment in any subject, including when plasma was
tested at a 1:400 dilution. The lack of HGXPRT-specific
IgG responses contrasted with the frequent detection of
convalescent IgG antibody responses to MSP5 in the same
samples [27] (Figure 5).

Discussion
This study represents the first characterisation of human
cellular responses to Plasmodium HGXPRT, a blood stage

antigen demonstrated to be recognized by protective T
cells in pre-clinical studies [18]. Cellular recognition of
Plasmodium HGXPRT during acute and convalescent
malaria was identified, with antigen-specific proliferation
frequently detected during acute infection but rarely in
convalescence, and IFN-γ secretion detected predomi-
nantly during convalescence. These data show that HGX-
PRT is immunogenic in humans and suggest natural acute
exposure frequently results in expansion of HGXPRT-spe-
cific T cells, which secrete IFN-γ in convalescence.

T cell proliferative responses to protein and peptides
derived from Plasmodium HGXPRT were mediated by both
CD4+ and CD8+ T cells, and CD8+ T cell proliferation was
CD4+ T cell-dependent in accord with data from human
studies with other antigens [31,32]. The frequent detec-
tion of HGXPRT proliferation only during acute infection
is in agreement with longitudinal studies reporting short-
lived proliferative responses following acute infection
[33,34], but contrasts with other studies showing dimin-
ished proliferative responses during acute malaria infec-

Plasmodium and Homo sapiens HG(X)PRT sequence alignmentFigure 3
Plasmodium and Homo sapiens HG(X)PRT sequence alignment. Sections highlighted in grey, and marked with an 
asterix [*] show identical amino acids in the four sequences. A colon [:] indicates highly conserved amino acids and a single dot 
[.] indicates reasonable conservation between the Plasmodial (accession number; XP_001614435, P07833, P20035) and human 
HG(X)PRT (NP_000185) sequences.

 
                 5          15         25         35         45         55         
Pf K1        MPIPNNPGAG ENAFDPVFVK DDDGYDLDSF MIPAHYKKYL TKVLVPNGVI KNRIEKLAYD  
Pf FCR-3     MPIPNNPGAG ENAFDPVFVN DDDGYDLDSF MIPAHYKKYL TKVLVPNGVI KNRIEKLAYD  
Pv           MKIPNNPGAG ENALEPIYIK DDDGYDIDTF LIPDHYKNYI TKVLIPNGVL KNRIEKLAFD  
Human        MATRS-PGV- ------VISD DEPGYDLDLF CIPNHYAEDL ERVFIPHGLI MDRTERLARD  
             *   . **.        :  . *: ***:* *  ** ** : :  :*::*:*::  :* *:** *  
 
                 65         75         85         95        105        115         
Pf K1        IKKVYNNEEF HILCLLKGSR GFFTALLKHL SRIHNYSAVE MSKPLFGEHY VRVKSYCNDQ  
Pf FCR-3     IKKVYNNEEF HILCLLKGSR GFFTALLKHL SRIHNYSAVE TSKPLFGEHY VRVKSYCNDQ  
Pv           IKQVYRNEEF HVICLLKGSR GFFSALLKYL NRIHNYSSTE SPKHLYVEHY VRVKSYCNDQ  
Human        VMKEMGGHHI VALCVLKGGY KFFADLLDYI KALNRNSDRS IP---MTVDF IRLKSYCNDQ  
             : :   ...:   :*:***.   **: **.:: . ::. *  .  .      .: :*:*******  
 
                125        135        145        155        165        175         
Pf K1        STGTLEIVS- EDLSCLKGKH VLIVEDIIDT GKTLVKFCEY LKKFEIKTVA IACLFIKRTP  
Pf FCR-3     STGTLEIVS- EDLSCLKGKH VLIVEDIIDT GKTLVKFCEY LKKFEIKTVA IACLFIKRTP  
Pv           SLDRIEIVS- EDLSCLKDKH VLIVEDIIDT GKTLLKFCEY LKKFEVKTIA ITCLFIKRTP  
Human        STGDIKVIGG DDLSTLTGKN VLIVEDIIDT GKTMQTLLSL VRQYNPKMVK VASLLVKRTP  
             * . ::::.  :*** *..*: ********** ***: .: .  ::::: * :  ::.*::****  
 
                185        195        205        215        225                
Pf K1        LWNGFKADFV GFSIPDHFVV GYSLDYNEIF RDLDHCCLVN DEGKKKYKAT SL 
Pf FCR-3     LWNGFKADFV GFSIPDHFVV GYSLDYNEIF RDLDHCCLVN DEGKKKYKAT SL 
Pv           LWNGFKADFV GFSIPDAFVV GYSLDYNEKF RDLDHLCLVN DEGIKKFR-- -- 
Human        RSVGYKPDFV GFEIPDKFVV GYALDYNEYF RDLNHVCVIS ETGKAKYKA- -- 
                *:*.*** **.*** *** **:***** * ***:* *::. : *  *::      
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tion and heightened responses in convalescence [35-37].
These differences may be due to the properties of the anti-
gens tested and the genetic background and immune sta-
tus of the population evaluated. In the current study,
HGXPRT T cell proliferative responses diminished as the
parasite burden was cleared in parallel with the increased
detection of IFN-γ and IL-10 secretory responses. The loss
of detectable HGXPRT-specific proliferative responses in
convalescence may reflect the maturation of T cell
responses from an acute primarily proliferative phase to
an effector phase with elevated IL-10 [38], alternatively,
the parasite-specific CD4+ T cell responses may be deleted
as occurs following rodent Plasmodium infection [39].

The more prevalent detection of HGXPRT-specific IFN-γ
responses in convalescence was in accordance with other
studies [36,40]. IFN-γ effector function appeared inde-
pendent of the parasite burden and independent of prolif-
eration. The dissociation between proliferative and
secretory responses is in agreement with studies of HGX-
PRT T cell responses in a murine model of natural immu-
nity (Yawalak Panpisutchai, personal communication)
and human responses to other malaria antigens [41-43].

Limitations of this study include an inability to study
HLA- and ethnically-matched malaria unexposed con-

Lymphocyte IFN-γ secretion to HGXPRT in acute and conva-lescent malaria: Ex-vivo ELISPOT detection of IFN-γ secre-tion following HGXPRT stimulationFigure 4
Lymphocyte IFN-γ secretion to HGXPRT in acute 
and convalescent malaria: Ex-vivo ELISPOT detec-
tion of IFN-γ secretion following HGXPRT stimula-
tion. PBMC responses in 12 acute (day 0) and 19 
convalescent (day 28) subjects are shown after background 
subtraction. Spot forming cells were significantly more 
numerous during convalescence (p = 0.04). The horizontal 
solid line represents the group median and the dotted line 
the background cut-off for positive responses.
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Antibody responses to P. falciparum HGXPRT and MSP5Figure 5
Antibody responses to P. falciparum HGXPRT and MSP5. Plasma IgG responses in 37 unexposed donors, 85 malaria 
exposed asymptomatic controls and 80 people with acute malaria (72 tested for MSP5 recognition). The solid line represents 
the group median and the dotted line the cut-off for positive responses as defined in the methods.
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trols, however, the use of Australian controls showed that
proliferative responses in the malaria-exposed individuals
were not non-specific or a mitogen response. Given the
sequence conservation between Homo sapiens and Plasmo-
dium HG(X)PRT, it is possible that the cellular responses
identified in the present study may recognize structures
close to self; also there is potential for HGXPRT vaccina-
tion to induce autoimmunity. While further development
of this antigen would require exclusion of these possibili-
ties, the characterisation of minimal epitopes conserved
among Plasmodium species but distinct from human
HG(X)PRT would mitigate against this potential.

No HGXPRT IgG reactivity was identified in the study
cohort tested, suggesting natural exposure fails to stimu-
late memory B cell responses. The absence of HGXPRT
IgG was not caused by lack of sufficient malaria exposure
or a deficit in IgG production as all asymptomatic subjects
had lived in a malaria-endemic area for a period of at least
two years, and plasma MSP5 IgG responses were fre-
quently detected in the same patients [27]. The absence of
IgG reactivity distinguishes HGXPRT from the majority of
other malaria antigens.

The detection of both CD4+ and CD8+ HGXPRT reactive T
cells and the absence of HGXPRT specific IgG responses in
people with acute malaria indicates that natural exposure
generates different immune responsiveness to that of the
P. yoelii experimental murine malaria model. Such differ-
ences illustrate the importance of evaluating immunolog-
ical responses in human infection.

Conclusion
CD4 T cells recognizing HGXPRT confer protection in a
murine malaria model and the current study now demon-
strates robust T cell proliferation to Plasmodium HGXPRT
protein and peptides during human malaria infection.
Further studies to determine minimal HGXPRT epitopes,
the specificity of responses for Plasmodium spp. and asso-
ciations with protection are required. Frequent and robust
T cell recognition, high sequence conservation among
Plasmodium spp. and absent IgG responses distinguish
HGXPRT from other malaria antigens.
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