
Computational Visual Media

DOI 10.1007/s41095-015-0021-5 Vol. 1, No. 3, September 2015, 229–238

Research Article

Fast OBJ file importing and parsing in CUDA

Aidan L. Possemiers1 (�), Ickjai Lee1

c© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Alias – Wavefront OBJ meshes are a

common text file type for transferring 3D mesh

data between applications made by different vendors.

However, as the mesh complexity gets higher and

denser, the files become larger and slower to import.

This paper explores the use of GPUs to accelerate

the importing and parsing of OBJ files by studying

file read-time, runtime, and load resistance. We

propose a new method of reading and parsing that

circumvents GPU architecture limitations and improves

performance, seeing the new GPU method outperforms

CPU methods with a 6×– 8× speedup. When running

on a heavily loaded system, the new method only

received an 80% performance hit, compared to the

160% that the CPU methods received. The loaded

GPU speedup compared to unloaded CPU methods was

3.5×, and, when compared to loaded CPU methods,

8×. These results demonstrate that the time is right

for further research into the use of data-parallel GPU

acceleration beyond that of computer graphics and high

performance computing.

Keywords parsing; OBJ; vertex buffer object (VBO);

general-purpose programming on the

graphics processing unit (GPGPU);

compute unified device architecture

(CUDA)

1 Introduction

Graphics processing units (GPUs) have seen

a lot of interest, outside their original purpose

of rendering computer graphics, as they offer

considerable computation speedups over their

1 James Cook University, PO Box 6811, Cairns, QLD 4870,

Australia. E-mail: A. L. Possemiers, aidan.possemiers@

jcu.edu.au (�); I. Lee, ickjai.lee@jcu.edu.au.

Manuscript received: 2015-08-25; accepted: 2015-08-29

CPU counterparts in particular use cases [1–

3]. While research into N-body simulations, global

illumination, fluid dynamics, and other exciting

simulations have drawn the majority of the attention

[1–3]; this paper focuses on the more “mundane”

elements of programming, such as file importing and

parsing, to show that these, too, can take advantage

of the modern GPU and their impressive potential

for parallelization.

The area of importing and parsing has seen

relatively little interest as GPU architecture and

runtime differences mean that algorithms either are

unsuitable, or require heavy rework to see any

marginal speedup. There has been research into

natural language parsing [4, 5] and integrating the

GPU into the file system under Linux [6], but

the closest related research has been limited to

optimizing and running queries in SQL or on data

stored in XML [7, 8]. GPU hardware, however,

has not been neglected and, with the demand for

higher performance and higher resolution devices,

it is very difficult these days to find a device

that does not have any form of integrated GPU —

from cell phones to automobiles — and it is time

to start using this untapped resource (http://

www.nvidia.com/object/cuda home new.html).

The ready availability of these GPU embedded

devices means that when programming we can

now remove the assumption that a GPU might

not be available, and that they are only limited

to rendering graphics. Parallel optimized search,

sort and reduction algorithms can run 30 or

more times faster than their linear counterparts

(https://developer.nvidia.com/Thrust).

The concept of general-purpose programming on

the graphics processing unit (GPGPU) is not a

new one but neither is it a solved problem. It is

often that, to make an algorithm run fast on the

229

230 Aidan L. Possemiers, Ickjai Lee

GPU, one has to re-invent said algorithm, conversely,

sometime tasks are “embarrassingly parallel”, such

that minimal change is necessary. In this research we

look at a task (importing an OBJ mesh to OpenGL)

and investigate how a very linear task on the CPU

can be re-written so that it can take advantage of the

data-driven parallelization that the GPU provides.

We chose to use the Alias – Wavefront OBJ file

type as it is an open format, generally accepted as

universal, and used in engines, development tools,

and simulations, unlike binary files which can be

software and platform specific. While we focus on

this small edge-case, the minor differences between

the text-based file types mean that STL or PLY

could also be similarly implemented for the GPU.

Our contributions include:

• basic asynchronous reading with parallel

element delimiting;

• element indexed proxy structures with parallel

element parsing;

• fast vertex buffer object (VBO) indexing

through Thrusts parallel removal, sort, and scan

as well as custom parallel functions.

2 Preliminaries

GPGPU has been around since the support

of floating point numbers and shaders on the

GPU in 2001 [9]. NVIDIA’s compute unified

device architecture (CUDA) removed the layer of

abstraction by replacing graphics related concepts

like textures and pixels with more familiar concepts

like threads, vectors, and arrays, and since

its release in 2007 other alternatives such as

OpenCL and direct compute have emerged (http://

www.nvidia.com/object/cuda home new.html). The

greatest strength of GPGPU over regular CPU code

is the massive parallelization that the hardware

allows with particular use cases toting 60× or more

speedups over their CPU counter parts [1–3].

While the potential of a 60× or more speedup

creates a lot of excitement about GPGPU, the reality

is the limitations the GPU imposes often mean,

without heavy modification, most linear algorithms

will actually run slower on a GPU. While GPUs are

capable of running millions of threads at the same

time, the actual clock speeds can be magnitudes

slower than their CPU counterparts. There is also

the effect of the underlying architecture: while a

CPU is task parallel, a GPU is data parallel or,

more precisely, Kernel parallel. This is a version of

single instruction, multiple data (SIMD) as the GPU

contains multiple processing cores that perform the

same operation on multiple data all in parallel: hence

data parallel [10]. This not only means that CPU

algorithms, but also multi-core algorithms, cannot

run on a GPU without modification. Assuming the

task is data parallel, dynamic memory allocation

is also a heavy overhead as it requires global

synchronization. While there have been attempts

to circumvent this limitation [9, 11], the general

consensus is to pre-allocate memory. This limits the

use cases; either memory has to be over allocated,

assuming the worst case, or the number of return

values has to be already known and pre-allocated.

Amdahl’s law [12, 13] is another big hurdle for

GPGPU and parallel processing in general, which

demonstrates the potential speedup of a linear

algorithm on a fixed problem size, as the algorithm is

made more parallel and run on more cores. While it

ignores costs like memory overhead and data transfer

rate — which benefits GPUs as these are expensive

for it to perform — the law is considered a double

edged sword: it stipulates that as the number of cores

increases, there is a diminishing performance return

limited by the percentage of the code that is run in

serial. For example, if the serial fraction of code

exceeds 1%, the speedup can never exceed 100×,

no matter how many processors are used [12, 13].

Taking Amdahl’s law into account for data parallel,

GPGPU programming means coming up with more

inventive ways to parallelize serial code sections as

often applications use task parallelization to create

a speedup.

CUDA is NVIDIA’s foray into making GPGPU

programming more accessible by extending C/C++

to take advantage of their GPU architecture

(http://www.nvidia.com/object/cuda home new.html).

CUDA works by splitting the code into two sections:

host code, that runs on the CPU and system

memory; and device code, that runs on whichever

GPU the current CUDA context is using. Host code

resembles C/C++ and is compiled by the native

C/C++ compiler other than when it calls device

code, or uses CUDA functions, in which it has to be

230

Fast OBJ file importing and parsing in CUDA 231

compiled under NVIDIA’s CUDA compiler. Device

code or Kernels resemble C/C++ as well but with

certain functionalities, like realloc, missing, due to

the GPU architecture and instruction set differences.

Though with each new version of CUDA more and

more C++ features are added.

Kernel functions are run in parallel by blocks of

threads, with a maximum of 1024 threads per block

on a device with compute capability 2.0+. These

thread blocks are run on in grid of a maximum size

of (231 − 1) blocks in the x direction with compute

capability 3.0+ [11]. Blocks are processed by stream

multiprocessors with threads processed in warps of

32 parallel threads with the warp scheduler picking

which warp in a block to be executed. A grid can

be launched in one dimension and a thread’s global

index is found by adding its thread index inside the

block in the x direction, to its block index multiplied

by its block dimension, both in the x direction. This

one-dimensional threadID is used to access relevant

information from the GPU’s memory, such as the

particular element in an array that is to be acted

upon by this thread. By accessing and writing to

memory in this manner we are practicing memory

coalition within our warps.

Memory coalition is a high-priority CUDA

“best practice” (http://docs.nvidia.com/cuda/cuda-

c-best-practices-guide/); as mentioned before, each

thread runs the same operation, and accessing

concurrent memory in a warp is necessary to take

full advantage of the architecture. Avoiding branch

divergence is another best practice, and occurs when

there is a decision statement like if or switch. Only

threads that share the same path are executed

synchronously, with the other paths running after

the first path has been finished or a barrier is met.

It can be avoided by having branches logically occur

on separate warps, avoiding the diverged branches

having to be run separately.

Thrust is a C++ template library for CUDA,

based on the Standard Template Library (STL)

(https://developer.nvidia.com/Thrust). Thrust

provides access to two vector templates: one that

stores data on the GPU or device, and the other

that stores it in system memory or the host. These

generic containers allow simple transfer between the

two memory locations; however, the real strength of

the Thrust library comes with access to simple, yet

powerfully parallel algorithms: Count, Sort, Scan,

Reduce, Remove, and Unique. These algorithms,

when combined with our context-specific predicate

functions and other custom parallel code, can be

used to simply and easily circumvent traditionally

linear code section.

We chose to use the Alias – Wavefront OBJ file

type as it is an open format, generally accepted as

universal, and used in engines, development tools,

and simulations. Unlike PLY or STL, OBJ files store

3D mesh data as a series of single line elements

prefixed by a character sequence: “#” for human

readable commenting; “v” for vertex coordinates;

“vt” for texture coordinates; “vn” for vertex normal

vector; and finally “f” for the draw ordered indices of

the other arrays that are used to build the triangles

of the mesh in 3D [14]. Figure 1 shows how a single

triangle might be stored in this file type.

Importing OBJs on the CPU is traditionally very

linear. As Algorithm 1 shows, it is broken into 3

stages: read the file line by line and parse the data

into temporary vectors, pack unique vertices into

dictionary and store draw ordered indices, unpack

vertices and pass vertex coordinate, UV coordinate,

normal vector and index arrays’ to OpenGL.

3 Framework

3.1 Importing

To begin the import, first the text file must be passed

to the GPU’s memory. This is a major hurdle that

must be overcome as the GPU itself does not have

access to the hard drive nor does it have any way

to access the file system in the same manner as the

this is a comment

v 0.000000 0.000000 0.000000

v 1.000000 1.000000 0.000000

v 0.000000 0.000000 1.000000

vt 0.000000 0.000000

vt 0.000000 1.000000

vt 1.000000 0.000000

vn 1.000000 1.0000000 1.000000

vn 1.000000 0.5000000 1.000000

vn 1.000000 1.0000000 1.000000

f 1/1/2 2/2/3 3/3/1

Fig. 1 OBJ file sample.

232 Aidan L. Possemiers, Ickjai Lee

Algorithm 1: Serial OBJ reading on the CPU

Input: OBJ file.

Output: V vector of 3D coordinates,

UV vector of 2D coordinates,

N vector of normal vectors,

I vector of indices.

/*CPU OBJ Read*/

for each line in OBJ file do

if line == vertex then

Parse line as vertex

append vertex to tempV

else if line == uv then

Parse line as uv

append uv to tempUV

else if line == normal then

Parse line as normal

append uv to tempNormal

else if line == face then

Parse line as face

Use face indices to build packedVertex from tempV,

tempUV and tempN

if dictionary contains packedVertex then

append index to I

else

append dictionary.size to I

add packedVertex to dictionary

end if

end if

end for

for each packedVertex in dictionary do

append packedVertex.vertex to V

append packedVertex.uv to UV

append packedVertex.normal to N

end for

return V, UV, N, I

CPU does. The data must be read into the system

memory by the CPU: this creates a bottleneck as it

takes time for the CPU to read the file, during which

time, the GPU is sitting idle with nothing to process.

Figure 2 shows our method of speeding up the

overall system by reading the data in chunks. As

the current chunk is read, the GPU searches for

delimiting characters in the previously read chunk

and records their position, per character, in parallel.

This works fine if the GPU delimits the chunk faster

than the CPU can read them. However, if the file is

pre-buffered, due to O/S caching or the GPU model

is simply not powerful enough, the GPU section will

cause a bottleneck, with the CPU idling, waiting to

Fig. 2 Import stage.

read in the next chunk. To prevent this CPU idling,

the GPU kernel is fired off from a separate CPU

thread. The main CPU thread checks if the thread

running the GPU kernel is finished; if not, the CPU

will read in more data while it waits.

This minor tweak creates a load balancing

effect that takes into account different hardware

configurations and bus speeds, as well as other

elements that could un-balance the two processes.

3.2 Parsing and indexing

As shown in Fig. 3, once the full file has been read

to GPU memory, it is parsed, in parallel, into an

array of interim objects; this section of the code is

embarrassingly parallel, as the information in each

line, at this stage, is un-reliant on any other piece

of information as long as order is preserved. This

also circumvents the GPU issue, in the lack of fast

232

Fast OBJ file importing and parsing in CUDA 233

Fig. 3 Reading and parsing stage.

dynamic memory allocation, as we know the total

number of elements from the delimitation step, yet

not how many of each element type. These proxies

store the data type (in the OBJ case this is vertex,

UV, normal, face and unknown) and have memory

allocated equivalent to nine 32-bit integers (the

amount needed to store indices for a single triangle)

for the parsed values to be stored in binary format.

If there is any undesired information, like comments,

it is tagged as unknown and removed using Thrust’s

remove. If the file is formatted correctly in blocks

of single data types, there is minimal warp branch

divergence, as the kernel only diverges at the end of

each block of types.

The face elements are then used to build an

array of packed vertices that are a raw, draw

order representation of the mesh. Each PackedVertex

object holds the vertex’s 3D coordinate, 2D texture

coordinate and normal vector as well as its draw

index: its current index in this array.

The final act of the import, before the arrays are

passed to OpenGL for rendering, is to remove the

duplicated; data by removing created when triangles

share common vertices. In a perfect situation n

triangles would only require n + 2 vertices. To

display the mesh correctly, even if vertices share

the same 3D coordinate, their normal vector may

be different to allow for a sharp/smooth edge, or

their 2D coordinate might be different to optimize

texture space. To save file space OBJ files index

each individual data element removing duplicates;

OpenGL, however indexes each unique combination

of these data elements. The combination of these

elements is the same as those in a PackedVertex

minus the extra value: the draw order index.

Algorithm 2 outlines the process of parallel VBO

indexing with the vector of PackedVertices as input,

and outputs the vectors to be passed as arrays to

OpenGL. The code shows branching parallelism, as

the whole block is run from the CPU which fires

off the Kernel Code sections which run on the GPU.

While the Kernels are running, the main thread waits

for them to finish, then continues to the next section.

Figure 4 shows this process visually, by breaking

down each step of our algorithm. PackedVertices are

represented by capital letters with their draw order

index, with duplicates using the same letter.

Step 1, we sort the data so that identical vertexes

are clustered together in a Thrust parallel sort,

which has a complexity of O(n log n). The predicate

function we use to sort, looks at each value of each

element, and uses strict weak ordering, first by 3D

coordinate, then 2D coordinate and finally normal

vector, to give us the clusters of duplicates. As

we have already stored the original index of each

PackedVertex, we don’t need to preserve order.

Step 2, we create an array of unsigned integers the

same size as the sorted packed vertices array. This

will eventually be used to build the OpenGL index

buffer.

Step 3, in parallel, we assign 1 to the element that

shares the same index as the first packed vertex in

each cluster of duplicates: a complexity of O(n).

Step 4, we run a Thrust inclusive scan on the new

array, which sets the value of an element to the sum

of all previous elements: another complexity of O(n).

Step 5, we use the original draw index of the

packed vertex to reorder the integer array, which

gives us the index array of the unique packed vertices

to pass to an OpenGL index buffer object. This

step is once again embarrassingly parallel, and as

such has a complexity of O(n). Though, when

the threads write the new ordering, they are not

accessing contiguous memory inside the warp, and

as such, the process slightly suffers from an almost

234 Aidan L. Possemiers, Ickjai Lee

Algorithm 2: Parallel VBO indexing

Input: OBJ file.

Output: V vector 3D coordinates,

UV vector 2D coordinates,

N vector normal vectors,

I vector indices.

/*GPU VBO Indexing Host code*/

Thrust::Sort by vertex, uv, and normal //Step 1

create tempI length of P //Step 2

/*Kernel Code*/ //Step 3

for all p do

if threadID == 0 or P[threadID] != P[threadID − 1]

then

tempI[threadID] = 1

end if

end for

/*End Kernel Code*/

Thrust::Inclusive Scan tempI //Step 4

create I length of P

/*Kernel Code*/ //Step 5

for all p do

I[P[threadID].Index] = temp[threadID]

end for

/*End Kernel Code*/

Thrust::Unique P //Step 6

create V, UV, N length of P

/*Kernel Code*/

for all p do

V[threadID] = P[threadID].vertex

UV[threadID] = P[threadID].uv

N[threadID] = P[threadID].normal

end for

/*End Kernel Code*/

return V, UV, N, I

/*End Host Code*/

Fig. 4 Parallel VBO indexing.

negligible, time wise, lack of memory cohesion.

Step 6, we show the unique packed vertex array.

This array is then split into 3 separate arrays of

vertex coordinates, texture coordinates, and normal

vectors, and along with the indexed array, are passed

to OpenGL.

Over all complexity of the indexing process is

O(n log n) running in parallel.

4 Methodology

Getting the mesh data quickly into OpenGL for

rendering, or modification, is the primary driving

force of this research. With that in mind, overall

speed of the import and parse is of the most

importance. There are, however, considerations to

be made as the hardware specification differences

shown in Table 1 between the CPU and GPU,

make a direct implementation comparison difficult.

While purely comparing parse times of the two

systems would be ideal — this would always lead

to a distinct GPU advantage due to most of the

problem being “embarrassingly parallel” — the real

world limitations of GPGPU are the cost of memory

transfers, and arranging data in a manner that GPUs

can process. Therefore all the tests observe the total

runtime, from reading the file from a hard drive, to

outputting the final arrays for OpenGL.

Using the total runtime also allows for

a wider set of sample cases. 3D modelling

applications: Autodesk Maya (http://www.

autodesk.com.au/products/maya/overview), and

MeshLab (http://meshlab.sourceforge.net/), both

output their total import times for OBJ meshes.

Both these applications are complex systems

that do much more than simply import a

mesh so — the open source — Tiny OBJ Loader

(http://syoyo.github.io/tinyobjloader/) was also

Table 1 Hardware differences

Device i7 2600K GTX 970 GTX 750

Cores 4(8) 1664 512

Base (MHz) 3400 1050 1020

Boost (MHz) 3800 1178 1087

Memory (GB) 8 3.5(4) 2

TDP (W) 95 145 55

234

Fast OBJ file importing and parsing in CUDA 235

used as a direct code to code comparison. The last

limitation accounted for was the operating system

caching the file after it was first imported. Initial

testing showed great time variances for all methods

but, only on the first import of a particular file. We

determined that this was due to caching so all data

gathered after insured that the file was cached first.

The mesh used, Asian dragon, was sourced

from Stanford’s 3D scanning repository provided

generously by XYZ RBG Inc. and is shown in Fig. 5

(http://graphics.stanford.edu/data/3Dscanrep/).

4.1 Import test

The mesh was first taken into Pixologics Zbrush

and decimated at intervals of 10%. Table 2 shows

the breakdown for each of the meshes and how the

decimation level effects the total number of elements

(lines) needed to parse, in relation to the number

of triangles to render. The overall import speed

tests were run 11 times for each application at each

decimation level, with the first result discarded to

account for O/S caching, as eliminating its effect was

Fig. 5 XYZ RBG Asian dragon.

Table 2 Mesh breakdown

Decimated to Lines in file Triangles to render

10% 3,248,494 721,886

20% 6,497,011 1,443,778

30% 9,745,561 2,165,668

40% 12,994,030 2,887,560

50% 16,242,535 3,609,450

60% 19,491,049 4,331,342

70% 22,739,554 5,053,232

80% 25,988,068 5,775,124

90% 29,236,573 6,497,014

100% 32,485,087 7,218,906

found to be impossible.

4.2 Under load test

In the second experiment, we ran the tests, but only

for the un-decimated mesh (100% in Table 2) but

this time with a CPU loading application in the

background, flooding all cores with a normal priority

process to test the robustness of each application.

4.3 GPU comparision test

The final experiment compared the GPU method

on two different GPUs, looking at the time that

the reading section and parsing/indexing section

take and comparing these values while running on

two different pieces of GPU hardware. Due to the

memory limitations of a lower end card — with re-

writing the code to use a buffer was determined to

be out of scope — the experiments were run 11 times

on the mesh decimated to 60%: the first results were

again, discarded.

5 Results

In parallel parsing the mesh runs 5×– 8× faster

under CUDA on the GPU, than it does sequentially

in C++ on the CPU. Figure 6 shows the overall

runtime of each method, with the GPU methods

running considerably faster than the CPU methods.

Autodesk Maya, one of the most widely used 3D

applications, unsurprisingly, ran consistently faster

than the other two CPU applications. As there

is no source code available for its OBJ importing

code, it is difficult to tell if this is due to some

CPU multithreading, or just a more efficient data

structure behind the scenes.

The open source Tiny OBJ Loader runs on a

single thread, and follows a similar algorithm to the

one in Algorithm 1. Its import times were almost

Fig. 6 Import time comparison.

236 Aidan L. Possemiers, Ickjai Lee

Fig. 7 GTX 970 speedup per mesh comparison.

Fig. 8 Load comparison.

Fig. 9 GPU comparison.

exactly in between Maya and MeshLab, which ran

the slowest, and as such, taking into account the

Maya optimizations, serveing as the code to code

comparison.

The GTX 970 with its 4 GB of memory, easily

fits both the large mesh file and the parsed arrays

in memory in all cases. However, the GTX 750

with 2 GB of memory, could only handle up to the

60% mesh before running out. Excluding the memory

limitation the GTX 750, while slower than the GTX

970, has almost half the total power draw of the

tested CPU, and yet, for this case, outperformed the

CPU methods by a factor of 5×.

Figure 7 shows the percentage speedup that the

GTX 970 has over the three different CPU methods

as well as an average. This average speedup is almost

always aligned with the speedup compared with that

of Tiny OBJ Loader.

When running the tests again on a loaded system

(Fig. 8) the speedup between the loaded GPU

and the loaded CPU method was the same as

the unloaded speedup. The GPU method, with an

approximate 3× speedup, still ran faster on a loaded

CPU system than the CPU method running on an

unloaded system.

Figure 9 shows us a glimpse of Amdahl’s law in

effect by comparing GPU times, with minor micro

benchmarking to split the read and parse times

from the file import time. The GTX 970 may

have a slightly faster core clock speed, but it has

3× the number of CUDA cores; however the major

performance differs only in the highly parallel parse

and index section.

6 Discussion/conclusions

With this research we have successfully proven that

GPUs can speed up parsing of OBJ mesh files.

However, as cores increase, further speedup is only in

the parsing and indexing section of the code, showing

the effect of Amdahl’s law.

As talked about earlier, Amdahl’s law states that

the potential parallel speedup, for any fixed amount

of processing, is limited by the amount of code run in

serial. The reading section of our solution is mostly

serial as it requires the CPU to fetch the file data for

the GPU before any parallel processing can occur.

While we have borrowed some parallel time from

later processing, by calculating line ends at the same

time as the CPU fetches blocks, we are still bound

by the time that the CPU takes to fetch the whole

file. Theoretically, the temporary objects themselves

could be filled out at the read stage instead of just

the line starts, once again borrowing more time.

However, as the later face data relies on the data

before it, that is as much parallelization as could be

done without having all data accessible to the GPU

236

Fast OBJ file importing and parsing in CUDA 237

simultaneously.

Due to simplicity of Amdahl’s law, it makes it

difficult to calculate direct values for how much

improvement could be made. In its original form, it

doesn’t take into account differences in: clock speed

between the GPU and CPU; GPU shared memory;

or data transfer rates between the two systems.

There have been several attempts to refine the law

for the multicore era [12, 13] but none applying it to

GPU – CPU applications. That being said, its effects

are still felt, for if we were to, hypothetically, increase

the number of cores further, we would still see

performance increases: these would be diminishing,

as the serial sections of code floods the results.

The modification that would lead to the greatest

speedup of the parsing and indexing section of

code would most likely be some form of mesh

preprocessing, either at the read step, or when the

file is first exported. Removing comments or render

information costs roughly 2 seconds on the 100%

mesh, as at that point n is the total number of lines in

the file whereas later, when indexing, n is only the

total number of triangle a factor of approximately

4.5× less in our file examples. By parsing the proxy

objects at read time, comments could be ignored and

culled per chunk, therefore eliminating this overhead.

7 Future work

In this paper we have shown that GPUs are

capable of parsing OBJ files upwards 5× faster than

current CPU methods. This is achieved by creating

algorithms that take advantage of the strengths

of the GPU, while avoiding their weaknesses. By

comparing our method with applications (Maya,

MeshLab, as well as Tiny OBJ Loader) we provide

strong evidence to this case. Though we see

significant speedups, there is more work to be done,

especially in the read areas of our code.

Understanding the effect of Amdahl’s law shows

us that the read section of our code requires further

parallelization for the whole system to benefit.

Lack of direct access to the file system makes this

very difficult; however, there are several researched

options worth investigating. GPUfs [6] or direct

memory access with GPUDirect, both under Linux,

are very interesting, as then, GPU thread blocks

could be used to both read and parse, cutting down

on serial sections, so that as cores increase so would

performance. Using an RAM disk to store the data

for import could be another option, as the GPU

could have direct access to the files though NVIDIA’s

shared memory, or via pinned memory addressing.

Future technologies like NVlink could also see more

hardware support for GPU access, with potential

speed increases there.

Other than just speeding up the current use case,

this method could be applied to other different data

types. Adding support for hierarchical data at parse

time would allow us to process other 3D file types

like FBX, Maya ASCI, STL, and PLY. This could

be done by modifying this method into an open

source development tool like Blender, which already

features some acceleration from CUDA.

Beyond just 3D data, comma separated values

would be easily read by this system as it is currently

implemented. With hierarchical data handling

JDON and XML files could also be parsed in much

the same way as the other data types.

Open Access This article is distributed under the

terms of the Creative Commons Attribution License which

permits any use, distribution, and reproduction in any

medium, provided the original author(s) and the source are

credited.

References

[1] Nyland, L.; Harris, M.; Prins, J. Chapter 31. Fast N-

body simulation with CUDA. In: GPU Gems 3, 677–

696, 2007.
[2] Rinaldi, P. R.; Dari, E. A.; Vénere, M. J.; Clausse, A.

A lattice-Boltzmann solver for 3D fluid simulation on

GPU. Simulation Modelling Practice and Theory Vol.

25, 163–171, 2012.
[3] Stone, J. E.; Hardy, D. J.; Ufimtsev, I. S.; Schulten, K.

GPU-accelerated molecular modeling coming of age.

Journal of Molecular Graphics and Modelling Vol. 29,

No. 2, 116–125, 2010.
[4] Hall, D.; Berg-Kirkpatrick, T.; Canny, J.; Klein, D.

Sparser, better, faster GPU parsing. In: Proceedings

of the 52nd Annual Meeting of the Association for

Computational Linguistics, Vol. 1, 208–217, 2014.
[5] Johnson, M. Parsing in parallel on multiple cores and

GPUs. In: Proceedings of the Australasian Language

Technology Association Workshop, 29–37, 2011.
[6] Silberstein, M.; Ford, B.; Keidar, I.; Witchel, E.

GPUfs: Integrating a file system with GPUs. ACM

Transactions on Computer Systems Vol. 32, No. 1,

Article No. 1, 2014.

238 Aidan L. Possemiers, Ickjai Lee

[7] Bakkum, P.; Skadron, K. Accelerating SQL database

operations on a GPU with CUDA. In: Proceedings of

the 3rd Workshop on General-Purpose Computation

on Graphics Processing Units, 94–103, 2010.
[8] Si, X.; Yin, A.; Huang, X.; Yuan, X.; Liu, X.;

Wang, G. Parallel optimization of queries in XML

dataset using GPU. In: Proceedings of 2011 Fourth

International Symposium on Parallel Architectures,

Algorithms and Programming, 190–194, 2011.
[9] Du, P.; Weber, R.; Luszczek, P.; Tomov, S.; Peterson,

G.; Dongarra, J. From CUDA to OpenCL: Towards a

performance-portable solution for multi-platform GPU

programming. Parallel Computing Vol. 38, No. 8, 391–

407, 2012.
[10] Keutzer, K.; Massingill, B. L.; Mattson, T. G.;

Sanders, B. A. A design pattern language for

engineering (parallel) software: Merging the PLPP

and OPL projects. In: Proceedings of the 2010

Workshop on Parallel Programming Patterns, Article

No. 9, 2010.
[11] Ghorpade, J.; Parande, J.; Kulkarni, M.; Bawaskar, A.

GPGPU processing in CUDA architecture. Advanced

Computing: An International Journal Vol. 3, No. 1,

105–120, 2012.
[12] Heath, M. T. A tale of two laws. International Journal

of High Performance Computing Applications Vol. 29,

No. 3, 320–330, 2015.
[13] Hill, M. D.; Marty, M. R. Amdahl’s law in the

multicore era. Computer Vol. 41, No. 7, 33–38, 2008.
[14] Murray, J. D.; vanRyper, W. Encyclopedia of Graphics

File Formats, 2nd edn. O’Reilly Media, 1996.

Aidan L. Possemiers is currently

pursuing his honours in information

technology at James Cook University,

in Cairns, Australia. He is involved

with research and development in the

fields of gamification and ecotourism.

His other research interests include

GPGPU, data visualisation, embeded

systems, photogrammetry, modelling, and animation.

Ickjai Lee obtained his Ph.D. degree

in 2002 from the School of Electrical

Engineering and Computer Science,

University of Newcastle, in Australia.

After a year as a postdoctoral research

fellow at the Business and Technology

Laboratory in the University of

Newcastle, Australia, he joined the

School of IT at James Cook University, Australia. He

has been actively involved in working on broad areas of

geoinformatics and intelligence informatics. His reserach

interests include geospatial data mining, Internet of

things, Voronoi/Delaunay tessellations, data structure and

modelling, smart cities/homes, GIS, and health informatics.

Other papers from this open access journal are available free

of charge from http://www.springer.com/journal/41095.

To submit a manuscript, please go to https://www.

editorialmanager.com/cvmj.

238

