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 54 

ABSTRACT 55 

 Leaf water contains naturally occurring stable isotopes of oxygen and hydrogen in 56 

abundances that vary spatially and temporally.  When sufficiently understood, these can be 57 

harnessed for a wide range of applications.  Here, we review the current state of knowledge 58 

of stable isotope enrichment of leaf water, and its relevance for isotopic signals incorporated 59 

into plant organic matter and atmospheric gases.  Models describing evaporative enrichment 60 

of leaf water have become increasingly complex over time, reflecting enhanced spatial and 61 

temporal resolution.  We recommend that practitioners choose a model with a level of 62 

complexity suited to their application, and provide guidance.  At the same time, there exists 63 

some lingering uncertainty about the biophysical processes relevant to patterns of isotopic 64 

enrichment in leaf water.  An important goal for future research is to link observed variations 65 

in isotopic composition to specific anatomical and physiological features of leaves that reflect 66 

differences in hydraulic design.  New measurement techniques are developing rapidly, 67 

enabling determinations of both transpired and leaf water δ18O and δ2H to be made more 68 

easily and at higher temporal resolution than previously possible.  We expect these 69 

technological advances to spur new developments in our understanding of patterns of stable 70 

isotope fractionation in leaf water.   71 

 72 

  73 
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INTRODUCTION 74 

 In this review, we focus on how stable isotope ratios of oxygen and hydrogen vary in 75 

leaf water.  The stable isotope composition of leaf water significantly influences isotopic 76 

signatures of a number of important biological and atmospheric processes.  For example, the 77 

oxygen isotope composition of leaf water partly controls the oxygen isotope compositions of 78 

atmospheric CO2 (Farquhar et al. 1993; Cuntz et al. 2003; Welp et al. 2011) and atmospheric 79 

O2 (Dole et al. 1954; Hoffmann et al. 2004; Luz & Barkan 2011).  Sugars and other 80 

metabolites formed in leaves incorporate the leaf water isotopic signal, which is then retained 81 

in structural organic compounds, such as cellulose (Saurer, Aellen & Siegwolf 1997; Roden, 82 

Lin & Ehleringer 2000; Barbour 2007; Gessler et al. 2014).  The leaf water signal is also 83 

preserved in leaf waxes (Smith & Freeman 2006; Sachse et al. 2010; Kahmen et al. 2013a; 84 

Kahmen, Schefuss & Sachse 2013b), components of which can persist in the environment for 85 

millions of years (Eglinton & Eglinton 2008).  Thus, leaf water derived isotopic signals can 86 

be useful for constraining models of the global carbon cycle, reconstructing past climates, 87 

retrospectively analysing plant physiological responses to the environment, and for assigning 88 

geographic origins to plant materials and plant-derived products (Dawson et al. 2002; West et 89 

al. 2006b).  All of these various applications rely on a firm understanding of the mechanisms 90 

that control leaf water isotopic enrichment.   91 

For plant water, isotopic abundances are generally expressed relative to the 92 

international standard VSMOW (Vienna Standard Mean Ocean Water) (Coplen 2011).  This 93 

is accomplished using δ notation: 94 

 �� = ������	
���	

 , (1) 95 

where Rp is the isotope ratio (e.g., 18O/16O or 2H/1H) of a plant water sample and RStd is that 96 

of the standard.  The resulting δ values are typically multiplied by 1000, so that the relative 97 

deviation of the isotope ratio of the sample from that of the standard is expressed as per mil 98 

(‰).   99 

 The stable isotope composition of plant water is influenced firstly by the plant’s 100 

source water; this is mainly water taken up by roots from the soil.  Soil water for terrestrial 101 

plants generally derives from local precipitation.  The stable isotope composition of 102 

precipitation can vary both geographically and temporally.  The δ18O and δ2H of precipitation 103 

have been shown to vary in conjunction with temperature, altitude, latitude, distance from the 104 

coast, and with the amount of precipitation falling in a given event (Rozanski, Araguas-105 

Araguas & Gonfiantini 1993; Araguas-Araguas, Froehlich & Rozanski 2000; Bowen 2010; 106 
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Munksgaard et al. 2012).  A representation of geographic variation in the δ18O and δ2H of 107 

mean annual precipitation across the global land surface is shown in Figures 1A and 1B.   108 

 Any given precipitation event will mix into an existing soil water pool.  Thus, 109 

although there can exist relatively large variation in δ18O and δ2H from one precipitation 110 

event to the next (Munksgaard et al. 2012; Munksgaard et al. 2015), the soil water pool being 111 

accessed by plants will likely be buffered to some extent against these short term variations.  112 

The extent to which the isotopic composition of the soil water pool can be linked to 113 

individual precipitation events is an area of current interest (Tang & Feng 2001; Brooks et al. 114 

2010; Thomas et al. 2013; Gessler et al. 2014).  It is particularly relevant, for example, to the 115 

detection of long-term records of tropical cyclone activity in tree rings (Miller et al. 2006), 116 

because tropical cyclones are predominantly associated with isotopically light precipitation 117 

(Gedzelman & Arnold 1994; Lawrence & Gedzelman 1996; Munksgaard et al. 2015).  The 118 

isotopic composition of soil water can also be affected by evaporation.  This causes the soil 119 

water near the evaporating front to become enriched in 18O and 2H compared to the soil water 120 

at depth (Allison, Barnes & Hughes 1983; Barnes & Allison 1983).   121 

 For the most part, the isotopic composition of water in non-transpiring plant organs 122 

(i.e., roots, stems, etc.) has been shown to match that of the water available to the plant in the 123 

soil, indicating that there is little to no stable isotope fractionation associated with absorption 124 

of water by roots and transport in xylem (White 1989; Ehleringer & Dawson 1992; Dawson 125 

1993).  The exception to this rule is that δ2H has been observed to shift with water uptake 126 

and/or transport in salt tolerant coastal plants (Lin & Sternberg 1993) and phreatophytic 127 

desert shrubs (Ellsworth & Williams 2007).  No simultaneous δ18O fractionation was 128 

observed, indicating that the cause of the isotope effect was specific only to hydrogen 129 

isotopes in water and not oxygen isotopes, or that the isotope effect for oxygen was too small 130 

to be detected.   131 

 Transpiration results in isotopic enrichment at the sites of evaporation within leaves.  132 

The isotopically enriched water can then diffuse away from the evaporative sites into other 133 

parts of the leaf.  The resulting bulk leaf water enrichment generally shows a diurnal pattern, 134 

with a daily maximum in the early afternoon associated with the minimum daily relative 135 

humidity, and a daily minimum in the early morning reflecting a progressive relaxation of the 136 

enrichment through the night (Figure 2).  Enriched leaf water can also be transported in the 137 

phloem to developing sink organs such as seeds (Figure 2).  In the following sections, we 138 
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examine in detail the environmental and physiological controls over the stable isotope 139 

enrichment of the evaporative sites and the bulk leaf water.   140 

 141 

LEAF WATER 142 

Evaporative sites 143 

 Isotopic enrichment of leaf water as a result of the evaporative process of 144 

transpiration was first observed by Gonfiantini et al. (1965).  In the same year, a model for 145 

predicting the isotopic enrichment that should take place at the surface of an evaporating 146 

body of water was published by Craig and Gordon (1965).  This model can be applied to the 147 

isotopic composition of water at the evaporative sites within leaves (δe).  Here, it is 148 

convenient to express the isotopic composition of the evaporative sites as enrichment in the 149 

heavier isotopes compared to source water, to account for the influence of different source-150 

water isotopic signatures among plants.  The enrichment of any plant water sample above 151 

source water (∆p) can be expressed as  152 

 ∆�= �����
���

	 , (2) 153 

where δp is the δ value of the plant water sample and δs is that of source water.  Here again, 154 

∆p, δp, and δs are often expressed as per mil.  If this is the case, the δs in the denominator on 155 

the right side of the equation must be divided by 1000.  A list of the main symbols and 156 

abbreviations used throughout the text is given in Table 1.   157 

 The Craig-Gordon model, as modified for application to leaves by subsequent authors 158 

(Dongmann et al. 1974; Flanagan, Comstock & Ehleringer 1991; Farquhar & Lloyd 1993), 159 

can be approximated by  160 

 ∆�≈ �� + �� + �∆� − ��� ��
��

 , (3) 161 

where ∆e is the enrichment of evaporative site water above source water, ε+ is the equilibrium 162 

fractionation between liquid water and vapour, εk is the kinetic fractionation for combined 163 

diffusion through the stomata and the boundary layer, ∆v is the isotopic enrichment of 164 

atmospheric vapour compared to source water, and wa/wi is the ratio of the water vapour mole 165 

fraction in the air relative to that in the intercellular air spaces.  Thus, wa/wi is the relative 166 

humidity, but with the saturation water vapour mole fraction in the denominator calculated 167 

for leaf temperature rather than air temperature.  If leaf temperature and air temperature are 168 

equal, wa/wi is exactly equal to the relative humidity of the air.  The ∆v is calculated with 169 

respect to source water as shown in Eqn 2, and it typically has a negative value due to the 170 
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equilibrium isotope effect between liquid and vapour.  Equation 3 is a convenient 171 

approximation for the precise form of the model, as given by (Farquhar, Cernusak & Barnes 172 

2007) 173 

 ∆�= �1 + ��� ��1 + ��� �1 − ��
��

� + ��
��

�1 + ∆�� − 1 . (4) 174 

Note that in Eqn 3, the calculation can be readily performed with all isotopic terms expressed 175 

as per mil, whereas for Eqn 4, it is more straightforward to make the calculation with the 176 

isotopic terms not expressed as per mil, and then to multiply the result by 1000 afterward to 177 

return to per mil notation.  In the supplementary material, we provide a Microsoft Excel 178 

spreadsheet with a combined data set of leaf water observations, which also contains a 179 

worked example of how to perform the calculation shown in Eqn 4.  The difference between 180 

∆e calculated with Eqn 3 and that calculated with Eqn 4 is small for oxygen, on the order of 181 

0.1‰.  For hydrogen, it is larger, on the order of 1 to 2‰.   182 

 The equations shown above for predicting ∆e assume isotopic steady state.  Isotopic 183 

steady state means that the isotopic composition of the the transpired water vapour is equal to 184 

that of the source water supplying the leaf (Craig & Gordon 1965; Harwood et al. 1998; 185 

Farquhar & Cernusak 2005).  The condition of non-steady state, when the transpired water 186 

has an isotopic composition differing from that of source water, will be discussed below.  In 187 

general, it has been observed that leaf water enrichment tends to be near to steady state 188 

during the day in leaves that have relatively open stomata and do not show a high degree of 189 

succulence (Cernusak et al. 2008).   190 

 The equilibrium fractionation varies as a function of temperature (Bottinga & Craig 191 

1969; Majoube 1971; Horita & Wesolowski 1994).  It can be calculated according to the 192 

following equations (Majoube 1971), with that for 18O shown first, followed by that for 2H: 193 

 �!��‰� = #$� %.%'(
�)('*+�)×-'�../%01

)('*+�2.-334×-5'� − 16 × 1000 , (5) 194 

 �8��‰� = #$� )/.9//
�)('*+�)×-'�(1.)/9

)('*+�:2.32×-5'� − 16 × 1000 . (6) 195 

The right sides of the equations have been multiplied by 1000, so that ε+ is here expressed as 196 

per mil.  The symbol �!�(‰) in Eqn 5 refers to the isotope fractionation for 18O, and �8�(‰) in 197 

Eqn 6 refers to that for 2H.  The T in these equations refers to the leaf temperature in degrees 198 

Celsius.  The εk in Eqns 3 and 4 can be calculated as (Farquhar et al. 1989) 199 

 ��!�‰� = 2;<��=<>
<��<>

 ,  (7) 200 

 ��8�‰� = 2:<��4<>
<��<>

 .  (8) 201 
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The ��!�‰� is εk for 18O expressed as per mil, and ��8�‰� is the same for 2H.  The rs and rb 202 

in Eqns 7 and 8 are the stomatal and boundary layer resistances, respectively (m2 s mol-1); 203 

they are the inverses of the stomatal and boundary layer conductances.  The 28 and 19 in Eqn 204 

7 are fractionation factors for diffusion of water molecules containing 18O through the 205 

stomata and boundary layer, expressed as per mil.  The values 25 and 17 in Eqn 8 are those 206 

same fractionation factors for 2H (Merlivat 1978).  It has been suggested that these values 207 

should be revised (Cappa et al. 2003).  However, subsequent measurements indicated that the 208 

fractionation factors originally assigned are the more correct values (Luz et al. 2009).   209 

 If the water vapour in the air is in isotopic equilibrium with source water, then ∆v will 210 

approximately equal –ε+.  In that case, Eqn 3 will condense to  211 

 ∆�≈ ��� + ��� �1 − ��
��

� . (9) 212 

Equation 9 demonstrates the strong role that the relative humidity term wa/wi plays in 213 

determining the isotopic enrichment of leaf water at the sites of evaporation.   214 

 Figure 3 shows the relationships between observed daytime bulk leaf water isotopic 215 

enrichment and the air relative humidity and Craig-Gordon predictions for a large dataset 216 

collected under natural field conditions across a sub-continental rainfall gradient in northern 217 

Australia (Kahmen et al. 2013a).  The analysis shows both the importance of the relative 218 

humidity term in driving daytime leaf water stable isotope enrichment (Figures 3A and 3C), 219 

and that the Craig-Gordon equation captures much of the observed variation across a large-220 

scale environmental gradient (Figures 3B and 3D).   221 

 This analysis also highlights an important difference between 18O and 2H.  For 18O, 222 

the air relative humidity predicts nearly as much variation in the observed leaf water 223 

enrichment as does the full Craig-Gordon model, with R2 of 0.78 for the former versus 0.86 224 

for the latter (Figures 3A and 3B).  For 2H, on the other hand, the air relative humidity 225 

predicts only a little more than half the variation predicted by the full Craig-Gordon model, 226 

with R2 of 0.52 for the former versus 0.92 for the latter (Figures 3C and 3D).  This 227 

demonstrates the importance of the isotopic disequilibrium between air vapour and source 228 

water for predicting ∆e for 2H in comparison to 18O.  This disequilibrium can be expressed as 229 

ε++∆v.  The contrast between 2H and 18O in the sensitivity of ∆e to ε++∆v comes about 230 

because, for 18O,  ε+, ∆v, and the difference between them are typically small in absolute 231 

value compared to εk, whereas the opposite is true for 2H.  For 2H, the disequilibrium term 232 

ε++∆v can easily be larger than εk in absolute value, with either positive or negative values 233 

possible.  Thus, the predicted ∆e for 18O is dominated by the kinetic fractionation, εk; whereas 234 
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for 2H, the predicted ∆e is dominated by the equilibrium fractionation, ε+, and by the air 235 

vapour disequilibrium term, ε++∆v.   236 

 The role of the atmospheric vapour isotopic composition in controlling ∆e can be 237 

further appreciated by examining the limiting case where relative humidity is saturated, such 238 

that wa/wi=1.  In this case, Eqn 3 reduces to ε++∆v; and, the isotopic disequilibrium between 239 

air vapour and source water then controls ∆e.  While this limiting scenario usually only 240 

occurs at night, it emphasises the importance of atmospheric vapour in influencing leaf water 241 

enrichment (Farquhar & Cernusak 2005; Helliker & Griffiths 2007), as well as the general 242 

importance of having a reasonably accurate estimate of ∆v for predicting ∆e, especially with 243 

respect to 2H.  In humid-zone epiphytes that use Crassulacean acid metabolism, this 244 

phenomenon creates an opportunity to reconstruct the isotope ratio of atmospheric water 245 

vapour from the epiphyte’s organic matter (Helliker 2014).   246 

 247 

Bulk leaf water 248 

 The term ‘bulk leaf water’ generally refers to a water sample obtained by extraction 249 

from a whole leaf.  A bulk leaf water sample may or may not contain the water of the major 250 

veins, depending on the sampling protocol of the individual researcher.  Leaf water excluding 251 

the major veins has also been referred to as ‘lamina leaf water’.  It is important to note that in 252 

the vast majority of plants, such a sample will also contain water associated with minor veins.  253 

Here we use δL to refer to the isotopic composition of bulk leaf water, and ∆L to refer to its 254 

enrichment above source water.   255 

 Early measurements indicated that the Craig-Gordon model tended to overestimate ∆L 256 

(Allison, Gat & Leaney 1985; Leaney et al. 1985; Bariac et al. 1989; Walker et al. 1989; 257 

Yakir, DeNiro & Gat 1990; Flanagan et al. 1991; Walker & Lance 1991).  To illustrate this 258 

phenomenon, we compiled leaf water isotopic data from a number of published datasets, 259 

along with the Craig-Gordon prediction of leaf water enrichment corresponding to each 260 

observation (Supplementary material).  The dataset contains 118 species, sampled across a 261 

range of tropical and temperate sites from both northern and southern hemispheres.  It is 262 

limited to daytime observations of C3 plants under natural field conditions.  Figure 4 presents 263 

the results for the proportional difference between the predicted Craig-Gordon enrichment 264 

and the observed bulk leaf water enrichment (1-∆L/∆e).  The analysis confirms that observed 265 

1-∆L/∆e is larger than zero for both 18O (P<0.001; n=722) and 2Η (P<0.001; n=362), with 266 

average proportional differences 0.12 for 18O and 0.24 for 2H.   267 



9 

 

 The explanation for the generally lower observed value of ∆L compared to ∆e has 268 

attracted considerable research effort, because it is important to determine which leaf water 269 

signal is most relevant to the various applications that depend upon it.  Two models have 270 

been proposed to explain this pattern when steady state conditions can reasonably be 271 

expected:  a two-pools model, based on two discrete pools of water within the leaf, with one 272 

of them being unenriched xylem water  (Leaney et al. 1985; Yakir, Deniro & Rundel 1989; 273 

Yakir et al. 1990; Roden & Ehleringer 1999; Song et al. 2015a); and an advection-diffusion, 274 

or Péclet, model (Farquhar & Lloyd 1993; Farquhar & Gan 2003; Barnes, Farquhar & Gan 275 

2004).   276 

 If the two-pools model is assumed to comprise unenriched source water and enriched 277 

evaporative site water, it can be written as (Leaney et al. 1985; Song et al. 2015a) 278 

 ∆?= �1 − @�∆� , (10) 279 

where φ is the proportion of leaf water that is unenriched xylem water, presumably residing 280 

mainly in the major veins and ground tissue associated with them.  In this model, the 281 

overestimation of ∆L by the Craig-Gordon model is due to the contribution from the 282 

unenriched pool.   283 

 Rather than two discrete pools, the Péclet model describes gradients of enrichment 284 

within the leaf water.  In the Péclet model, advection of less enriched water by the 285 

transpiration stream opposes the back-diffusion of isotopically enriched water from the 286 

evaporative sites (Farquhar & Lloyd 1993).  When advection overwhelms diffusion, the bulk 287 

leaf water enrichment will be less than that predicted by the Craig-Gordon equation.  288 

Accordingly, the proportional difference, 1-∆L/∆e, is predicted to increase with increasing 289 

transpiration rate.  This particular feature is an important distinction between the Péclet 290 

model and the two-pools model: the Péclet model predicts that the deviation of the bulk leaf 291 

water from the Craig-Gordon predicted enrichment should record information about the 292 

transpiration rate.  In contrast, the two-pools model does not predict such an effect.   293 

 The Péclet number, which is dimensionless, represents the extent to which diffusion is 294 

overwhelmed by advective counter-flow (Ikeda 1983).  It was originally developed to 295 

describe the ratio between convective and conductive heat transfer by Jean Claude Eugene 296 

Péclet, and has since been applied more generally to describe advection-diffusion effects on 297 

mass transport processes in permeable media.  For leaves, the Péclet number, ℘, can be 298 

defined as vl/D, where v is the velocity of water movement (m s-1), l is the distance (m) from 299 

the evaporative sites over which the Péclet effect is occurring, and D is the diffusivity of the 300 
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heavy isotopologue in water (m2 s-1).  The D is temperature dependent, and can be modelled 301 

as a function of leaf temperature as (Cuntz et al. 2007), 302 

 A! = 97.5 × 10�=$�� 0((
+5%/0� , (11) 303 

 A8 = 98.7 × 10�=$�� 0((
+5%/0� , (12) 304 

where DO is the diffusivity for H2
18O, DH is that for H2HO, and T is leaf temperature in °C. 305 

The velocity of advection can further be described as kE/C, where E is the transpiration rate 306 

(mol m-2 s-1), C is the molar concentration of water (5.55×104 mol m-3), and k is a scaling 307 

factor to account for the tortuosity of the water path.  The term E/C gives the velocity as if 308 

water were moving as a slab perpendicular to the leaf surface.  The true velocity must be 309 

faster than the slab velocity, because water moves in a tortuous path through the leaf.  The 310 

scaling factor k represents the ratio of the true velocity to the slab velocity.  Combining the 311 

above terms gives the following definition for the Péclet number:  312 

 ℘ = �FG
HI  . (13) 313 

It is convenient to combine k and l into a single term, which has been called the effective path 314 

length, L (Farquhar & Lloyd 1993):   315 

 ℘ = ?G
HI . (14) 316 

Ignoring the water in veins for the moment, the Péclet model applied to the average leaf 317 

lamina then predicts the following relationship with the evaporative site water enrichment 318 

(Farquhar & Lloyd 1993): 319 

 ∆?= ∆� ���5℘
℘

� .   (15) 320 

Equation 15 indicates that the smaller the Péclet number, the more similar ∆L will be to ∆e.  It 321 

also predicts a continuous isotopic gradient from the sites of evaporation to the source water, 322 

modelled as an exponential decay along a cylindrical flow path.   323 

 Because ℘ includes terms for both the effective path length and the transpiration rate, 324 

a change in either one is predicted to alter the relationship between ∆L and ∆e.  This is shown 325 

schematically in Figure 5.  In practice, values for the effective path length L have been 326 

difficult to determine directly.  Thus, they have generally been fitted using Eqns 14 and 15, 327 

which therefore involves comparing observed bulk leaf water enrichment with the predicted 328 

Craig-Gordon enrichment.  One consideration that could lead to biased estimates of L when 329 

fitted in this way is that unenriched vein water could also contribute to the difference between 330 

∆L and ∆e, as described by the two pool model.  If this were the case, L would be 331 

overestimated if unenriched vein water were not accounted for prior to fitting Eqn 15.   332 



11 

 

 Farquhar and Gan (2003) improved upon the one dimensional Péclet model described 333 

above by separating Péclet effects in the leaf xylem and lamina.  In practical terms, this 334 

provides a means of combining the two-pool concept of dilution of leaf water enrichment by 335 

relatively unenriched vein water with the lamina Péclet model.  Furthermore, it allows the 336 

advection-diffusion behaviour to be expressed in vein water as well as in mesophyll water.  337 

Such a consideration is important because some observations suggest that vein water can 338 

become enriched in 18O (Gan et al. 2002; Gan et al. 2003).  Farquhar and Gan (2003) 339 

suggested that most vein water should be found in the major veins and associated ground 340 

tissue, with the proportion of leaf water in higher order minor veins being relatively small.  If 341 

the proportion of leaf water in minor veins were considered negligible, the bulk leaf water 342 

enrichment could then be described as (Farquhar & Gan 2003), 343 

   ∆?= ∆� �@J$�℘K + �1 − @J� ��5℘
℘

  , (16) 344 

where φx is the proportion of leaf water in major veins, and ℘r is the total radial Péclet 345 

number, equal to the sum of the lamina radial Péclet number, ℘, and the veinlet Péclet 346 

number, ℘rv.  Equation 16 allows for part of the difference between ∆L and ∆e to be 347 

accounted for by the relatively unenriched vein water.  Fitting mesophyll effective path 348 

lengths with Eqn 16 should therefore provide more realistic estimates than with Eqn 15, but 349 

has the added complexity that values need to be assigned for φx and ℘r (e.g. Ripullone et al. 350 

2008), or these need to be fitted simultaneously (e.g. Gan et al. 2003).   351 

 A convenient way to probe observed leaf water isotopic composition for evidence of 352 

Péclet effects is to plot the proportional difference between ∆e and ∆L as a function of 353 

transpiration rate.  Such plots have yielded variable results, with some authors finding a 354 

positive relationship, as predicted by the Péclet model (Barbour et al. 2000b; Ripullone et al. 355 

2008; Loucos et al. 2015), and others, either no detectable relationship or a negative 356 

relationship (Roden & Ehleringer 1999; Cernusak, Wong & Farquhar 2003; Song et al. 2013; 357 

Roden et al. 2015; Song et al. 2015a).  For our combined dataset given in the supplementary 358 

material and shown in Figure 4, we find no relationship between 1-∆L/∆e and transpiration 359 

rate for either ∆18O or ∆2H.   360 

 Given the conceptual realism in the Péclet model, it has been difficult to explain why 361 

in some cases there is no observable relationship between 1-∆L/∆e and E.  One explanation 362 

might be changes in the effective path length as transpiration rate varies (Kahmen et al. 2008; 363 

Song et al. 2013; Loucos et al. 2015).  Water supply to the mesophyll is predominantly via 364 

the minor veins (Sack & Holbrook 2006).  Once in the mesophyll, water movement to the 365 
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sites of evaporation can proceed through three parallel pathways: symplastic movement 366 

through plasmodesmata, transcellular movement across cell membranes through aquaporins, 367 

and apoplastic flow in cell walls that are not suberised (Steudle, Murrmann & Peterson 1993).  368 

Although it can reasonably be expected that most flow will occur through the apoplast 369 

(Brodribb, Feild & Jordan 2007), each of these pathways is nonetheless likely to be 370 

associated with its own effective path length (Barbour & Farquhar 2004), and the possibility 371 

exists that the relative activity of these pathways may change with transpiration rate.  In 372 

addition, water may not always evaporate in the vicinity of the stomatal pore (Rockwell, 373 

Holbrook & Stroock 2014; Buckley 2015), as is generally assumed.  These considerations 374 

have potential to obscure the positive relationship between 1-∆L/∆e and E that is predicted by 375 

the Péclet model, because changes to L could compensate for changes in E, thereby 376 

decoupling ℘ from E (Cernusak & Kahmen 2013; Song et al. 2013).   377 

 The idea that xylem can be variably coupled to the mesophyll to give distinct pools of 378 

water of different volume and function within the leaf has been suggested in relation to leaf 379 

hydraulics (Zwieniecki, Brodribb & Holbrook 2007; Canny et al. 2012), and would support 380 

the idea of isotopic compartmentalisation of leaf water (Yakir et al. 1989; Yakir 1992; Yakir 381 

et al. 1994).  Looking at the rehydration kinetics of leaves of different species, Zwieniecki et 382 

al. (2007) considered three observed patterns of hydraulic design:  1) where the vein is 383 

hydraulically separated from the rest of the leaf; 2) where the epidermis is hydraulically 384 

linked to the veins through the bundle sheath extension, but the mesophyll remains separated, 385 

and 3) where all tissues are equally well coupled (Figure 6).  Such compartmentalisation 386 

could be created by both the internal organisation of leaf tissues, leading to variable degrees 387 

of physical contact between different structures, and by the number, activity, and resistance 388 

of the different pathways for water movement.  A reasonable hypothesis, based on these 389 

observations, is that different residence times will occur for different pools of water within 390 

the leaf, introducing further variation into observed relationships between 1-∆L/∆e and E, 391 

because some pools of water would carry a memory of previous leaf water enrichment 392 

conditions, whereas others would not.   393 

 Conifer needles fit within Design 1 of Figure 6, consisting of a singular vascular 394 

bundle surrounded by transfusion tissue and a thick-walled endodermis, which likely 395 

provides high radial resistance and physical separation between xylem and mesophyll.  396 

Consistent with this concept, it was recently observed that a two-pool model was sufficient to 397 

explain the difference between the Craig-Gordon prediction and the observed bulk leaf water 398 
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enrichment in two pine species (Roden et al. 2015).  Water pools may also exist within the 399 

mesophyll.  In Eucalyptus pauciflora (snowgum) mesophyll cells shrank equally during 400 

transpiration (Canny & Huang 2006), whereas in Gossypium hirsutum (cotton), cavity and 401 

spongy mesophyll cells shrank more than matrix cells (Canny et al. 2012), suggesting that 402 

different pools of water differentially supported evaporative demand.  Leaf shrinkage of 403 

tissues has also been linked more generally to the decline in extra-xylary hydraulic 404 

conductance (Scoffoni et al. 2014), which could further contribute to hydraulic 405 

compartmentalisation under conditions of water stress.   406 

 407 

Progressive enrichment 408 

 Sampling leaf tissue at a sub-leaf scale has revealed spatial patterns of isotopic 409 

enrichment within leaves (Figure 7).  Here, the isotopic composition tends to become 410 

progressively enriched towards the tip of the leaf and out from the mid-vein (Bariac et al. 411 

1994; Wang & Yakir 1995; Helliker & Ehleringer 2000; Gan et al. 2002; Santrucek et al. 412 

2007).   413 

 This spatial pattern was initially explained using a string of lakes model, which 414 

assumed a string of inter-connected pools of water within the leaf with differing isotope 415 

compositions (Gat & Bowser 1991; Helliker & Ehleringer 2000; Helliker & Ehleringer 416 

2002).  Farquhar and Gan (2003) improved upon this model by including Péclet effects in 417 

both mesophyll and veins (Figure 8).  This enabled predictions of progressive enrichment of 418 

xylem water in monocot leaves with distance from the base of the leaf.  The predictions 419 

matched relatively well the observed pattern in maize (Farquhar & Gan 2003; Gan et al. 420 

2003).  Ogée et al. (2007) then further improved upon this model by incorporating non-steady 421 

state effects.   422 

 The progressive enrichment observed in both monocot and dicot leaves suggests that 423 

back-diffusion occurs from the mesophyll back into the vein, allowing some evaporative 424 

enrichment to be passed via the xylem from central and basal portions of the leaf to 425 

downstream leaf sections.  Such spatial variation can be described by three Péclet numbers 426 

(Figure 8):  1) a radial Péclet number at the interface between xylem and mesophyll (℘rv) 427 

which allows for the leaf veinlet xylem water to become enriched above petiole water; 2) a 428 

radial Péclet number associated with the mesophyll tissue (℘) which is likely to be small; 429 

and 3) a longitudinal Péclet number (℘l), allowing progressive enrichment of the xylem in 430 

major veins in the direction of water movement, which is large, meaning mass transfer of 431 
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enrichment is mainly driven by advection.  A derivation of this two dimensional Péclet model 432 

with component Péclet numbers is given by Farquhar & Gan (2003).   433 

 In a general sense, observations of progressive enrichment provide strong support for 434 

the concept of Péclet effects in leaf water, because increasing enrichment of vein water with 435 

increasing distance from the midrib and the leaf base would not occur if some enriched water 436 

did not back diffuse from the evaporative sites into the veins, against the advective flow of 437 

the vein water.   438 

 439 

Transpired water 440 

 Water vapour leaving a leaf during transpiration originates directly from water at the 441 

evaporative sites.  Thus, it makes intuitive sense that the isotopic composition of transpired 442 

water vapour (δE) should be related to that of evaporative site water (δe).  When the Craig-443 

Gordon model is written in a form that does not assume isotopic steady state, it predicts the 444 

following relationship between δe and δE:    445 

 �� ≈	�G +	ε� +	εM + ��� −	�G −	εM� ��
��

 . (17) 446 

From Eqn 17, it can be seen that δE is a necessary component for predicting δe under non-447 

steady state conditions.  When steady state is assumed, δE is set equal to δs.  Making this 448 

substitution then leads to the widely used formulation shown in Eqn 3.  If δE is measured 449 

experimentally, Eqn 17 provides a useful means of estimating the isotopic composition of the 450 

evaporative sites under non-steady state conditions (Harwood et al. 1998).   451 

 The steady-state assumption of δE being equal to δs results from mass balance 452 

constraints on leaf water dynamics, as shown in the following equation (Dongmann 1974; 453 

Farquhar & Cernusak 2005): 454 

 
N�OPQ�

NR = 	E�δU − δV�	.   (18) 455 

Here W is the leaf water concentration and δL is the isotope composition of leaf water.  The 456 

product of the two is termed isostorage (Farquhar & Cernusak 2005).  The term E(δs-δE) 457 

describes the difference between the isotopic flux of water molecules into (Eδs) and out of 458 

(EδE) the leaf, and thus can be viewed as the net isoflux.  Equation 18 states that the rate of 459 

change of leaf water isostorage is equal to the net isoflux of water into or out of the leaf.  460 

With the leaf at isotopic steady state, leaf water isostorage would be constant (i.e., 
N�OPQ�

NR =461 

0�.  Accordingly the net isoflux would be zero, such that δE must be equal to δs.   462 
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 Motivated by the need to address the conditions under which isotopic steady state 463 

occurs (i.e., δE=δs), several authors have used isotope ratio laser spectrometry coupled to a 464 

gas exchange system to explore the variability of δE in response to environmental conditions 465 

(Wang et al. 2012; Simonin et al. 2013; Dubbert et al. 2014; Song et al. 2015b).  In a 466 

laboratory study conducted on tobacco and citrus leaves, Simonin et al. (2013) observed that 467 

δE was variable and deviated from δs as long as instability was present in any of the 468 

environmental and/or physiological variables (e.g., relative humidity, δv, stomatal 469 

conductance).  This suggests that environmental and physiological stability is a prerequisite 470 

for isotopic steady state to occur.  In this context, it should be noted that even when 471 

environmental and physiological parameters are stable, the condition of isotopic steady state 472 

will not be achieved immediately (e.g. Simonin et al. 2013).  Rather, δE will move toward δs 473 

in an exponential manner with a time constant that depends on the leaf water concentration, 474 

stomatal conductance, and the water vapour mole fraction inside the leaf (Dongmann et al. 475 

1974; Farquhar & Cernusak 2005).  Song et al. (2015b) recently conducted a laboratory 476 

experiment to monitor this type of exponential trajectory of δE in cotton leaves exposed to a 477 

gas-exchange cuvette environment.  They demonstrated that the time constant for the 478 

approach of δE to δs agreed well with the prediction from the non-steady state isotope theory 479 

adapted to cuvette conditions.   480 

 Under field conditions, time constants for leaf water turnover can often be longer than 481 

the frequencies at which natural variations in temperature, humidity, and stomatal 482 

conductance occur.  As a result, it has been argued that the isotopic composition of transpired 483 

water, δE, should rarely be precisely at steady state (Wang & Yakir 1995; Harwood et al. 484 

1998; Simonin et al. 2013).  A recent field study tracked diurnal variations in δE for an oak 485 

tree during distinct Mediterranean seasons and found that δE significantly deviated from δs 486 

most of the time (Dubbert et al. 2014).  Such an observation, resulting from direct 487 

measurements of δE, provides support for the “steady state being rare” argument, thereby 488 

suggesting that the steady-state assumption should be used with caution in field conditions 489 

when applied to δE.  However, this raises an interesting contrast with δL, the isotopic 490 

composition of leaf water, which often appears to be near to steady state, at least for many C3 491 

plants, during the day (e.g., Figure 3).  This highlights the difference between the isoflux 492 

(EδE) and isostorage (WδL) terms, with the latter being relatively buffered against high 493 

frequency variations.   494 

 495 
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Non-steady state effects on leaf water enrichment 496 

 Non-steady state effects on leaf water isotopic enrichment, the isostorage term, are 497 

expected to become important when stomatal conductance is low and/or when leaf water 498 

concentrations are high.  Most species probably show significant non-steady state behaviour 499 

in ∆L at night, due to low stomatal conductance (Cernusak, Pate & Farquhar 2002; Cernusak, 500 

Farquhar & Pate 2005; Seibt et al. 2006; Barnard et al. 2007; Cuntz et al. 2007).  In addition, 501 

non-steady state behaviour has been observed during the day in plant species with succulent 502 

leaves (Sternberg, Deniro & Johnson 1986; Cernusak et al. 2008), and in some needle-leaved 503 

species, when exposed to high vapour pressure deficits or low soil water availability, such 504 

that stomatal conductance was relatively low (Pendall, Williams & Leavitt 2005; Seibt et al. 505 

2006; Snyder et al. 2010).   506 

 Variation in leaf water isotopic enrichment under non-steady state conditions (∆Ln) 507 

can be predicted as follows (Farquhar & Cernusak 2005):   508 

 ∆?W= ∆? − X*XY
Z��

∙ ��5℘
℘

∙ \�]∆^_�
\`  , (19) 509 

where ∆L is the steady-state prediction of leaf water isotopic enrichment, α+ is defined as 510 

1+ε+, αk is defined as 1+εk, W is the lamina leaf water concentration (mol m-2), t is time (s), 511 

and g is the total conductance to water vapour of stomata plus boundary layer (mol m-2 s-1).  512 

Note that ε+ and εk, if they are expressed in per mil, should be divided by 1000 to calculate α+ 513 

and αk.  Equation 19 has the term ∆Ln on both the left and right sides of the equation, and so 514 

needs to be solved iteratively.  One way to do this is with the Solver function in Microsoft 515 

Excel (Farquhar & Cernusak 2005).  Alternatively, Kahmen et al. (2008) suggested a simpler 516 

method for solving the equation by introducing the assumption that, over sufficiently small 517 

time steps, 
\�]∆^_�

\` ≈ ]∆^_��]∆^_��5%
∆�

 , where the subscript t-1 refers to the value at the 518 

previous time step and ∆t is the time elapsed since the previous time step.  This definition can 519 

be substituted into Eqn 19, which can then be solved for ∆Ln, such that it only occurs on the 520 

left side of the equation.  The value for ∆Ln can then be calculated without need for iteration 521 

(Kahmen et al. 2008).  Another alternative is to assume a step change in parameters from one 522 

time step to the next, so that the leaf water enrichment moves toward the new steady state in 523 

an exponential fashion with a time constant, τ, approximated by W/gwi.  This also results in 524 

equations that can be calculated without need for iteration (Dongmann et al. 1974; Farquhar 525 

& Cernusak 2005; Cuntz et al. 2007).   526 
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 527 

Which leaf water model to use? 528 

 As seen above, models describing leaf water evaporative enrichment have become 529 

increasingly complex over time, from the simplest version of the Craig-Gordon equation, to 530 

non-steady state models (Dongmann et al. 1974; Farquhar & Cernusak 2005), to the most 531 

complex spatially-explicit models describing gradients of enrichment under non-steady state 532 

conditions (Cuntz et al. 2007; Ogée et al. 2007).  Given the range of options available, it is 533 

not always straight forward to decide which leaf water model to use for a particular research 534 

question.  For some applications at larger temporal and spatial scales, the steady state Craig-535 

Gordon model (Eqn 3) will be adequate and including non-steady state effects and Péclet 536 

effects will likely add complexity that does not significantly improve model outcomes.  537 

Conversely, if water is sampled within a leaf and at high temporal resolution, a spatially-538 

explicit and non-steady state model may be required (Ogée et al. 2007).  Some studies have 539 

tested the suitability of different models in specific applications.  For example, Cernusak et 540 

al. (2005) demonstrated that both the non-steady state and whole-leaf Péclet models were 541 

required to predict accurately diel variability in leaf water enrichment in Eucalyptus globulus.  542 

Ogée et al. (2009) found that the oxygen isotope composition of tree ring cellulose was not 543 

sensitive to the value assigned to the Péclet effective length, implying that a simpler two-pool 544 

model would have been adequate.  At larger spatial but smaller temporal scale, the 545 

requirement for a non-steady state model has been confirmed when interpreting variation in 546 

ecosystem-scale isofluxes (Xiao et al. 2012; Santos et al. 2014).   547 

 Here, we describe a general framework for deciding when to apply different leaf 548 

water models.  Questions relating to the δ18O of oxygen evolution, such as studies of the 549 

Earth’s Dole effect (Bender, Sowers & Labeyrie 1994; Hoffmann et al. 2004), should for the 550 

most part be well served by the steady state Craig-Gordon prediction of ∆e.  This is because 551 

oxygen evolution takes place during the day when leaf water is generally near isotopic steady 552 

state, and because chloroplasts are mostly located near to the evaporative sites.  The same 553 

argument can be applied for questions relating to effects of photosynthesis on δ18O of 554 

atmospheric CO2 (Farquhar et al. 1993; Cuntz et al. 2003).  However, in this case the impact 555 

of exchange of atmospheric CO2 with leaf water also continues at night.  In order to account 556 

for the influence of dark respiration on δ18O of atmospheric CO2, a non-steady state model of 557 

evaporative site water is needed (Cernusak et al. 2004; Seibt et al. 2006; Cuntz et al. 2007; 558 

Santos et al. 2014).   559 
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 For the most part, the influence of leaf water isotopic enrichment on organic material 560 

is mediated by photosynthesis.  Again, because photosynthesis takes place during the day, 561 

research questions relating to δ18O and δ2H of organic material should be served reasonably 562 

well by steady state models.  Here, there have been mixed results as to whether Péclet effects 563 

need to be considered.  For isotopic signals closely related to leaf water, such as δ18O of 564 

phloem sugars, a Péclet effect was required (Barbour et al. 2000b; Cernusak et al. 2003).  565 

However, in applications that consider processes further downstream from leaf water, such as 566 

tree-ring formation, the relatively small Péclet effect becomes further damped, to the point 567 

that there may be little advantage in including it (Ogée et al. 2009; Gessler et al. 2014; Song, 568 

Clark & Helliker 2014).   569 

 For plant breeding applications aimed at disentangling effects of stomatal 570 

conductance from those of photosynthetic capacity on water-use efficiency, it will likely be 571 

advantageous to consider Péclet effects (Farquhar, Condon & Masle 1994; Barbour et al. 572 

2000a; Barbour 2007).  In addition, Péclet effects will likely be particularly important in 573 

studies aimed at linking leaf water stable isotope composition with leaf hydraulic pathways 574 

(Barbour & Farquhar 2004; Ferrio et al. 2012; Song et al. 2013).  On the other hand, for 575 

applications aimed at using the δ2H of leaf waxes to reconstruct hydrological features of 576 

ancient ecosystems, the simplest form of the steady state Craig-Gordon equation will likely 577 

suffice (McInerney, Helliker & Freeman 2011; Sachse et al. 2012; Kahmen et al. 2013a).   578 

 579 

SAMPLING CONSIDERATIONS AND METHODOLOGICAL ADVANCES  580 

 The isotopic analysis of plant waters presents a number of analytical challenges.  581 

These include difficulties of extraction, the necessity to work with small quantities of water, 582 

protecting the original composition of the water sample, and avoiding undesirable influences 583 

of dissolved compounds.  Preventing post-sampling evaporative enrichment of leaf water 584 

requires careful consideration of sample handling and storage.  For example, even the time 585 

taken to separate primary veins from leaf lamina can result in detectable isotopic enrichment 586 

of the leaf lamina (Cernusak et al. 2003).   587 

 There are three main ways of analysing the isotopic composition of plant water:  588 

equilibration, prior extraction, and simultaneous extraction.  With equilibration methods, a 589 

gas is equilibrated directly with the plant water while it is still in the sample, and the gas is 590 

then analysed for its isotopic composition.  With prior extraction, the water is taken out of the 591 
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plant tissue before isotopic analysis, whereas with simultaneous extraction the water is 592 

removed from the plant as part of the analysis.     593 

 In equilibration methods, a gas is introduced into a sealed vessel with the sample, 594 

such as a detached portion of stem, and the system maintained until the gas has effectively 595 

equilibrated with the water that the sample contains (Scrimgeour 1995).  Typically, for 596 

oxygen isotopic analysis, pure CO2 or a CO2/gas mixture is stored over the sample at a 597 

controlled temperature.  The CO2 then exchanges oxygen with the water by the carbonic 598 

acid/bicarbonate reaction, with a temperature dependent fractionation.  Direct equilibration of 599 

CO2 with twig and stem water showed good agreement, to within 0.5‰, with assessments of 600 

the δ18O of paired samples based on prior extraction (Scrimgeour 1995).  This direct 601 

equilibration method may also be useful for analysis of the δ18O of leaf water.  However, a 602 

limitation may be imposed by the very low rate of diffusion of CO2 in water, and of water in 603 

water, so that the gas may primarily equilibrate with the more exposed portion of the leaf 604 

water.  Thus, the δ18O of the equilibrated CO2 may be more representative of the evaporative 605 

site water, as opposed to the bulk leaf water; experiments are needed to test this.   606 

 Extraction methods aim for complete removal of the water from the sample, because 607 

the removal of water by evaporation is typically associated with a fractionation.  Thus, in the 608 

event of a partial extraction, the water removed will have a different isotopic composition 609 

from that which remains.  The most widely used prior extraction method is cryogenic vacuum 610 

extraction (Ehleringer, Roden & Dawson 2000).  Here, the water is freed from the sample 611 

using heat and vacuum, and then frozen onto a collecting surface.  For plant tissues, 612 

cryogenic vacuum extraction is a tested and reliable method, and it typically serves as the 613 

benchmark against which new methods are evaluated.  However, it is relatively labour and 614 

time-intensive.  Several authors have proposed modifications aimed at reducing these 615 

restrictions (West, Patrickson & Ehleringer 2006a; Vendramini & Sternberg 2007; Koeniger 616 

et al. 2011; Ignatev et al. 2013; Orlowski et al. 2013).  For laser-based analysis of water 617 

isotopes, cryogenic extraction also presents the challenge of transferring organic 618 

contaminants that can mix with the water sample and cause optical interference (West et al. 619 

2010).   620 

 Recent years have seen the advent of laser-based, optical analysers with the capacity 621 

to measure the stable isotope composition of water vapour (e.g. Gupta et al. 2009; Sturm & 622 

Knohl 2010; Aemisegger et al. 2012; Griffis 2013).  Using this type of analyser, new 623 

methods have been developed for simultaneous water extraction and analysis.  Here, the leaf 624 



20 

 

is placed in the extraction device and the resulting water vapour is analysed as it is driven off 625 

by heating.  One example of such a system is an induction module cavity ring down 626 

spectroscopy system (IM-CRDS) (Berkelhammer et al. 2013).  The laser isotope analyser 627 

relies on the absorption of an infrared laser pulse by water vapour as it reflects inside a 628 

chamber.  For a typical liquid water injection, about 1 µL of water is vaporised when it is 629 

injected into a chamber hotter than boiling point.  The vapour is then carried into the analyser 630 

in a non-interfering gas.  The IM-CRDS system is similar, except that the leaf sample is 631 

heated inductively, and the vapour produced is then carried into the laser analyser.  A second 632 

example of a simultaneous water extraction and analysis system uses a microwave oven to 633 

heat the leaf sample (Munksgaard et al. 2014).  This was termed ME-IRIS, for microwave 634 

extraction isotope ratio infrared spectroscopy.  The ME-IRIS system includes a microwave 635 

and a condenser to moderate the water vapour concentration of air passing to the laser 636 

analyser, so that it remains within the optimal measuring range.  Advantages of ME-IRIS are 637 

that it can handle larger samples (e.g., whole leaves), and that it uses relatively low cost 638 

components, such as a domestic microwave oven.   639 

 A complication in these simultaneous extraction methods is that some organic 640 

compounds, for example alcohols, which can be present in leaf water, interfere significantly 641 

with absorption peaks for the target isotopologues in the laser analyser.  Two solutions have 642 

been developed:  a small furnace in-line which breaks down the interfering compounds, and 643 

post-processing software that detects and flags analyses that potentially contain spectral 644 

interference.  The combination of the two tools together appears sufficient to identify and/or 645 

reduce the analytical errors associated with organic contaminants to acceptable levels (West 646 

et al. 2011; Munksgaard et al. 2014; Martín-Gómez et al. 2015).   647 

 Both IM-CRDS and ME-IRIS also suffer from memory effects, often requiring two to 648 

three sample analyses to overcome the influence of a previous sample if its isotopic 649 

composition was substantially different (Berkelhammer et al. 2013; Munksgaard et al. 2014).  650 

The impact of the memory effect can be minimized by arranging the analytical sequence in 651 

such a way as to avoid large jumps in isotopic composition between adjacent samples.  This 652 

also highlights a further disadvantage of simultaneous extraction methods; once analysed, the 653 

same sample is not available for re-analysis.  Thus, wherever possible, samples should be 654 

collected in sufficient replication to overcome memory effects and as back-up in the event 655 

that a re-analysis is deemed necessary.  The main advantage gained by simultaneous 656 

extraction is the capacity to analyse samples in the field at the study site or in a temporary 657 
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field laboratory, and to thereby have analytical results in near real time so that they can 658 

inform the proceeding sampling strategy and experimental design.     659 

 An interesting variant of an equilibration method and simultaneous analysis of water 660 

vapour stable isotopes by a laser analyser has been applied to soil cores (Wassenaar et al. 661 

2008).  In this system, a soil core was placed inside a sealed, inflatable plastic bag.  The 662 

sealed bag was then left to equilibrate the water vapour in the headspace with the liquid water 663 

in the soil sample.  Following the appropriate equilibration time, the plastic bag was 664 

punctured with a needle connected to a piece of tubing feeding directly into a laser analyser.  665 

The δ18O and δ2H of the liquid water in the soil sample could then be inferred from the 666 

temperature dependent equilibrium fractionation between liquid and vapour, ε+.  Such a 667 

system may also be suitable for plant materials.  Advantages would be the simplicity of the 668 

equilibration compared to liquid water extraction, and that isotope ratios of both oxygen and 669 

hydrogen could be determined simultaneously.  As with the direct equilibration of CO2, a 670 

question that would need to be addressed for leaves is whether the water vapour in the 671 

headspace primarily equilibrates with the evaporative site, or whether it equilibrates with the 672 

bulk leaf water.   673 

 674 

CONCLUSIONS 675 

 Steady state leaf water isotopic enrichment is closely related to relative humidity in 676 

natural environments, with the observed enrichment decreasing with increasing relative 677 

humidity.  Isotopic disequilibrium between source water and atmospheric vapour can also 678 

have a relatively strong effect on steady state leaf water isotopic composition.  Observations 679 

over a large scale environmental gradient in Australia indicated that this effect is likely to be 680 

stronger for 2H than for 18O.  This difference in behaviour between the two isotopes reflects 681 

the relative magnitudes of the equilibrium and kinetic fractionations in the Craig-Gordon 682 

model of evaporative site enrichment.  Equilibrium effects dominate for 2H, whereas kinetic 683 

effects dominate for 18O.   684 

 In a combined dataset including 118 species, we found that observed bulk leaf water 685 

was less enriched than the Craig-Gordon predictions for both 18O and 2H, as has been shown 686 

previously.  Across the full dataset, the proportional difference between Craig-Gordon 687 

predicted and observed bulk leaf water enrichment showed no relationship with transpiration 688 

rate.  Explaining why Péclet effects are detectable in some situations, but not in others, 689 

remains a challenge.  Linking observed patterns of leaf water isotopic enrichment with 690 
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specific hydraulic characteristics could provide a tractable way forward, especially with 691 

respect to pathways for water movement from veins to evaporative sites.   692 

 The development of new technologies for quantifying stable isotope ratios of 693 

transpired water and water extracted from plant tissues offers an opportunity to further our 694 

understanding of the finer scale controls over leaf water stable isotope enrichment.  For 695 

example, measuring the isotopic composition of transpired water vapour provides a means of 696 

detecting nuances of steady versus non-steady state behaviour, and it also has potential to 697 

provide insight into whether slow turnover pools exist within the leaf water, indicative of 698 

hydraulic compartmentalisation.  Improving our understanding of the environmental and 699 

physiological controls over leaf water stable isotopic enrichment will benefit the many 700 

applications to which models of this process can be applied, and may additionally lead to 701 

novel insights into hydraulic design and functioning in leaves of terrestrial plants.   702 
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Table 1.  Symbols and abbreviations used in the text.   

∆e Isotopic enrichment of evaporative site water compared to source water 
∆L Isotopic enrichment of bulk leaf water compared to source water 
∆Ln Predicted non-steady state isotopic enrichment of bulk leaf water 
∆v Isotopic enrichment of vapour compared to source water (typically negative) 
δE δ18O or δ2H of transpired water vapour 
δL δ18O or δ2H of bulk leaf water 
δe δ18O or δ2H of water at the evaporative sites within leaves 
δs δ18O or δ2H of source water 
δv δ18O or δ2H of atmospheric vapour 
δ18O 18O/16O relative to the value of a standard (VSMOW for plant waters) 
δ2H  2H/1H relative to the value of a standard (VSMOW for plant waters) 
ε+ Equilibrium isotope fractionation between liquid water and vapour 
εk Kinetic isotope fractionation caused by diffusion of water vapour in air 
℘ The Péclet number (representing the ratio between advection and diffusion) 
E Transpiration rate 
L Effective path length for water movement through the mesophyll 
W Leaf water concentration 
g Stomatal conductance to water vapour 
wa Water vapour mole fraction in the atmosphere 
wi Water vapour mole fraction in the intercellular air spaces inside leaves 
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Figure 1.  Spatial distribution of hydrogen and oxygen isotope ratios of precipitation over 

land. These precipitation isoscapes were derived from a long-term, global network of 

observations (Welker 2000; IAEA/WMO 2011) and a geostatistical and regression-based 

model developed with the online workspace IsoMAP (Isoscapes Modeling, Analysis and 

Prediction v 1.0; http://isomap.org). Model structure, statistical results, and isoscapes may be 

accessed or downloaded from IsoMAP by referencing job keys: 48170, 48171, 48236, and 

48560 (West, 2015).   
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Figure 2.  Diel variation in leaf, phloem, pod wall, seed, and xylem water δ18O (A) and δ2H 

(B).  Samples were collected in Western Australia from Lupinus angustifolius grown as part 

of an agricultural trial.  Phloem sap was sampled from pod tips, using a phloem bleeding 

technique.  Redrawn from Cernusak et al. (2002).   
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Figure 3.  Relationships between observed leaf water stable isotope enrichment for oxygen 

(∆18OL) and hydrogen (∆2HL) and the relative humidity of the air recorded at the time of 

sampling (A and C) and the Craig-Gordon predicted enrichments (B and D).  Craig-Gordon 

predicted enrichments were calculated with Eqn 4 of the main text.  Samples were collected 

during daytime from various Eucalyptus and Acacia species distributed over a sub-

continental rainfall gradient in northern Australia (Kahmen et al. 2013a).  The full dataset is 

provided in the Supplementary Material.  Panel D is redrawn from Kahmen et al. (2013a).   
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Figure 4.  Histograms showing the proportional difference between Craig-Gordon predicted 

leaf water stable isotope enrichment (∆18Oe and ∆2He) and observed bulk leaf water 

enrichment (∆18OL and ∆2HL) for ∆18O (A) and ∆2H (B).  Craig-Gordon predicted 

enrichments were calculated with Eqn 4 of the main text.  The dataset combines observations 

from several publications (Wang, Yakir & Avishai 1998; Cernusak et al. 2002; Cernusak et 

al. 2005; Kahmen et al. 2008; Kahmen et al. 2011; Kahmen et al. 2013a; Song et al. 2013; 

Song et al. 2014).  The full dataset is provided in the Supplementary Material.   
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Figure 5.  A schematic representation of the Péclet model of leaf water stable isotopic 

enrichment (Farquhar & Lloyd 1993).  The model describes the average lamina leaf water 
18O and 2H enrichment relative to that at the evaporative sites as a function of the interplay 

between diffusion of isotopically enriched water away from the evaporative sites and 

advection of unenriched vein water toward the evaporative sites.  The vein water is 

transported along a path, the length of which varies as a function of its tortuosity.  The 

average lamina leaf water 18O and 2H enrichment decreases if the transpiration rate is high, or 

when the scaled effective path length is long.  Either of these conditions will impede the 

diffusion of isotopically enriched water away from the evaporative sites.  In the figure, red 

represents the highest 18O and 2H enrichment, yellow intermediate, and blue the lowest.  The 

thickness of arrows indicates transpiration rates and the sinuosity of arrows indicates scaled 

effective path lengths.  Redrawn from Cernusak and Kahmen (2013).    
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Figure 6.  Schematic of three scenarios for leaf hydraulic design describing the hydraulic 

linkages between different tissues.  The dark grey circle in the middle is a water-filled vein, 

solid lines depict water flow, with the thicker lines corresponding to higher flow, dashed lines 

describe diffusion of water vapour, and Ø denotes high resistance between tissue types.  In 

Design 1, the vein is relatively isolated hydraulically from the rest of the leaf; in Design 2, 

the epidermal tissues are hydraulically linked to the vein by the bundle sheath extensions, but 

the mesophyll remains relatively isolated; and in Design 3, all tissues are equally well linked 

hydraulically.  Reprinted from Zwieniecki et al. (2007).   
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Figure 7.  Spatial variation in leaf water isotopic composition in a tree leaf, Eucalyptus 

pauciflora (A), a banana leaf, Musa sp. (B), a cactus stem, Carnegiea gigantea (C), and a 

grass blade, Miscanthus sinensis (D).  Progressive isotopic enrichment from the base to the 

apex of the leaf/stem and from the middle toward the edges of the leaf/stem is a common 

feature.  Note that in the banana leaf, the progressive enrichment shows in the perpendicular 

direction to the midrib, rather than along its length.  The left side of the banana leaf shows the 

vein patterning.  Scale bars are approximate.  Figures are modified from Santrucek et al. 

(2007), Stuart-Williams (unpublished), English et al. (2007), and Helliker and Ehleringer 

(2000), respectively.   
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Figure 8.  A schematic representation of the Farquhar and Gan (2003) Péclet model that 

predicts progressive enrichment of leaf water stable isotopes along a leaf.  Darker blue 

indicates a higher level of stable isotope enrichment.  In the model, isotopically lighter water 

is preferentially transpired leaving heavier water to diffuse back into the xylem and be carried 

further along the leaf.  For this pattern to be pronounced, the ratio of advection to diffusion 

(Péclet number) has to be large in the longitudinal direction, and small in the radial direction.  

In the figure, ℘l is the longitudinal Péclet number, ℘rv is the radial Péclet number associated 

with veinlets, and ℘ is the radial Péclet number associated with the mesophyll in the leaf 

lamina.   
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