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ABSTRACT

Leaf water contains naturally occurring stablédpes of oxygen and hydrogen in
abundances that vary spatially and temporally. M&ficiently understood, these can be
harnessed for a wide range of applications. Heeeeview the current state of knowledge
of stable isotope enrichment of leaf water, andeltsvance for isotopic signals incorporated
into plant organic matter and atmospheric gasesddis describing evaporative enrichment
of leaf water have become increasingly complex ¢ivee, reflecting enhanced spatial and
temporal resolution. We recommend that practitismboose a model with a level of
complexity suited to their application, and provgieédance. Atthe same time, there exists
some lingering uncertainty about the biophysicacpsses relevant to patterns of isotopic
enrichment in leaf water. An important goal fotute research is to link observed variations
in isotopic composition to specific anatomical giysiological features of leaves that reflect
differences in hydraulic design. New measuremetttrtiques are developing rapidly,
enabling determinations of both transpired and esterd'?0 andd’H to be made more
easily and at higher temporal resolution than presly possible. We expect these
technological advances to spur new developmerasiimnderstanding of patterns of stable

isotope fractionation in leaf water.
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INTRODUCTION

In this review, we focus on how stable isotop&ésadf oxygen and hydrogen vary in
leaf water. The stable isotope composition of \eafer significantly influences isotopic
signatures of a number of important biological atdospheric processes. For example, the
oxygen isotope composition of leaf water partlytcols the oxygen isotope compositions of
atmospheric C@(Farquhakt al. 1993; Cuntzt al. 2003; Welpet al. 2011) and atmospheric
O, (Doleet al. 1954; Hoffmanret al. 2004; Luz & Barkan 2011). Sugars and other
metabolites formed in leaves incorporate the legtewisotopic signal, which is then retained
in structural organic compounds, such as cellu{8seirer, Aellen & Siegwolf 1997; Roden,
Lin & Ehleringer 2000; Barbour 2007; Gessterl. 2014). The leaf water signal is also
preserved in leaf waxes (Smith & Freeman 2006; Szethal. 2010; Kahmeret al. 2013a;
Kahmen, Schefuss & Sachse 2013b), components chvdain persist in the environment for
millions of years (Eglinton & Eglinton 2008). Thueaf water derived isotopic signals can
be useful for constraining models of the globaboarcycle, reconstructing past climates,
retrospectively analysing plant physiological resg®s to the environment, and for assigning
geographic origins to plant materials and plantvéer products (Dawsoet al. 2002; Weskt
al. 2006b). All of these various applications relyaofirm understanding of the mechanisms
that control leaf water isotopic enrichment.

For plant water, isotopic abundances are genegajlyessed relative to the
international standard VSMOW (Vienna Standard M@aeran Water) (Coplen 2011). This

is accomplished using notation:

__ Rp—Rsta
6p_ Rsta ' 1)

whereR, is the isotope ratice(g., *%0/*°0 or?H/*H) of a plant water sample a4 is that

of the standard. The resultidgzalues are typically multiplied by 1000, so tHad telative
deviation of the isotope ratio of the sample frévattof the standard is expressed as per mil
(%o).

The stable isotope composition of plant watenikienced firstly by the plant’s
source water; this is mainly water taken up bysdaim the soil. Soil water for terrestrial
plants generally derives from local precipitatiorhe stable isotope composition of
precipitation can vary both geographically and terafly. The3'®0 andd’H of precipitation
have been shown to vary in conjunction with temfpee altitude, latitude, distance from the
coast, and with the amount of precipitation fallinga given event (Rozanski, Araguas-
Araguas & Gonfiantini 1993; Araguas-Araguas, Fragh& Rozanski 2000; Bowen 2010;



107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

Munksgaardkt al. 2012). A representation of geographic variatiothied™20 andd’H of
mean annual precipitation across the global lamse is shown in Figures 1A and 1B.

Any given precipitation event will mix into an exing soil water pool. Thus,
although there can exist relatively large variaiiod'®0 andd?H from one precipitation
event to the next (Munksgaaetal. 2012; Munksgaaret al. 2015), the soil water pool being
accessed by plants will likely be buffered to s@rint against these short term variations.
The extent to which the isotopic composition of sled water pool can be linked to
individual precipitation events is an area of catiieterest (Tang & Feng 2001; Broodtsal.
2010; Thomast al. 2013; Gesslegt al. 2014). It is particularly relevant, for examptie the
detection of long-term records of tropical cycl@awivity in tree rings (Milleiet al. 2006),
because tropical cyclones are predominantly assatisith isotopically light precipitation
(Gedzelman & Arnold 1994; Lawrence & Gedzelman 1986nksgaardet al. 2015). The
isotopic composition of soil water can also be @fd by evaporation. This causes the soil
water near the evaporating front to become enriaméD and*H compared to the soil water
at depth (Allison, Barnes & Hughes 1983; Barnes|8sén 1983).

For the most part, the isotopic composition ofexah non-transpiring plant organs
(i.e, roots, stems, etc.) has been shown to matclothhé water available to the plant in the
soil, indicating that there is little to no stalidetope fractionation associated with absorption
of water by roots and transport in xylem (White 9@9Bhleringer & Dawson 1992; Dawson
1993). The exception to this rule is t@&t has been observed to shift with water uptake
and/or transport in salt tolerant coastal plants & Sternberg 1993) and phreatophytic
desert shrubs (Ellsworth & Williams 2007). No sltaneous>*?0 fractionation was
observed, indicating that the cause of the iso&sfeet was specific only to hydrogen
isotopes in water and not oxygen isotopes, orttieaisotope effect for oxygen was too small
to be detected.

Transpiration results in isotopic enrichment &t $ites of evaporation within leaves.
The isotopically enriched water can then diffuseyafvom the evaporative sites into other
parts of the leaf. The resulting bulk leaf wateriehment generally shows a diurnal pattern,
with a daily maximum in the early afternoon asstadawith the minimum daily relative
humidity, and a daily minimum in the early mornirgdlecting a progressive relaxation of the
enrichment through the night (Figure 2). Enricheaf water can also be transported in the

phloem to developing sink organs such as seedar@-R). In the following sections, we



139
140
141
142
143
144
145
146
147
148
149
150
151
152

153

154
155
156
157
158
159
160

161

162
163
164
165
166
167
168
169
170

examine in detail the environmental and physiolalgiontrols over the stable isotope

enrichment of the evaporative sites and the bualkweter.

LEAF WATER
Evaporative sites

Isotopic enrichment of leaf water as a resulhefe&vaporative process of
transpiration was first observed by Gonfiangnal. (1965). In the same year, a model for
predicting the isotopic enrichment that should tpleee at the surface of an evaporating
body of water was published by Craig and Gordor%).9 This model can be applied to the
isotopic composition of water at the evaporatitesswithin leavesd;). Here, itis
convenient to express the isotopic compositiorhefdvaporative sites as enrichment in the
heavier isotopes compared to source water, to atdouthe influence of different source-
water isotopic signatures among plants. The emrggit of any plant water sample above

source water/Ay) can be expressed as

_ 6p=6s
Bp= 1+65 )

whered, is thed value of the plant water sample akds that of source water. Here again,

Dy, &, andds are often expressed as per mil. If this is trsectheds in the denominator on
the right side of the equation must be divided B9QL A list of the main symbols and
abbreviations used throughout the text is givehahle 1.

The Craig-Gordon model, as modified for applicatio leaves by subsequent authors
(Dongmanret al. 1974; Flanagan, Comstock & Ehleringer 1991; FaagqéhLloyd 1993),

can be approximated by

Aez S++Sk+(Av_Sk)://_j’ (3)

wherel. is the enrichment of evaporative site water alsmwgce waterg” is the equilibrium
fractionation between liquid water and vapayris the kinetic fractionation for combined
diffusion through the stomata and the boundaryrlaygis the isotopic enrichment of
atmospheric vapour compared to source wateraftd is the ratio of the water vapour mole
fraction in the air relative to that in the inteltakar air spaces. Thus/w; is the relative
humidity, but with the saturation water vapour miogetion in the denominator calculated
for leaf temperature rather than air temperatilfreeaf temperature and air temperature are
equal,wy/w; is exactly equal to the relative humidity of the arheA, is calculated with

respect to source water as shown in Egn 2, aggiddlly has a negative value due to the
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equilibrium isotope effect between liquid and vapolEquation 3 is a convenient
approximation for the precise form of the modelgagn by (Farquhar, Cernusak & Barnes
2007)

Wq

Ae=(1+¢") [(1+sk) (1_E)+%(1+A")]_1' (4)

Note that in Eqn 3, the calculation can be regoisformed with all isotopic terms expressed
as per mil, whereas for Eqgn 4, it is more straighithird to make the calculation with the
isotopic terms not expressed as per mil, and themuitiply the result by 1000 afterward to
return to per mil notation. In the supplementagtenial, we provide a Microsoft Excel
spreadsheet with a combined data set of leaf vedggrvations, which also contains a
worked example of how to perform the calculatioawgh in Eqn 4. The difference between
A calculated with Egn 3 and that calculated with Bqa small for oxygen, on the order of
0.1%. For hydrogen, it is larger, on the order of 2.

The equations shown above for predicilgassume isotopic steady state. Isotopic
steady state means that the isotopic compositidheothe transpired water vapour is equal to
that of the source water supplying the leaf (C&igordon 1965; Harwoost al. 1998;
Farquhar & Cernusak 2005). The condition of na@agy state, when the transpired water
has an isotopic composition differing from thatsofurce water, will be discussed below. In
general, it has been observed that leaf waterlemeat tends to be near to steady state
during the day in leaves that have relatively ogtemata and do not show a high degree of
succulence (Cernusakal. 2008).

The equilibrium fractionation varies as a functadriemperature (Bottinga & Craig
1969; Majoube 1971; Horita & Wesolowski 1994).cdin be calculated according to the
following equations (Majoube 1971), with that f8© shown first, followed by that foH:

1137 1 103-22156 5 0667x10™3

&5 (%o) = [e((mmz 273+T ) - 1] x 1000, (5)

( 24844 3 76248
E;(%O) — [e (273+T)2 2734T

. -3
+52.612x107%) 1] x 1000 . ©)

The right sides of the equations have been mudtigtiy 1000, so that is here expressed as
per mil. The symbat (%) in Eqn 5 refers to the isotope fractionationf, ande;} (%o) in
Eqn 6 refers to that f6H. TheT in these equations refers to the leaf temperatudegrees
Celsius. They in Egns 3 and 4 can be calculated as (Farogttedr 1989)

£f (%o) = 2875+197p ’ @)

rs+7p

__ 2515+17ry

EII;I (%0) rs+Tp

(8)



202 Theef (%o) is & for %0 expressed as per mil, agfd(%o) is the same foiH. Thersandry,

203 in Eqns 7 and 8 are the stomatal and boundary tagéstances, respectively {mmol?);

204 they are the inverses of the stomatal and bourldgey conductances. The 28 and 19 in Eqn
205 7 are fractionation factors for diffusion of wateolecules containinfO through the

206 stomata and boundary layer, expressed as perTind.values 25 and 17 in Eqn 8 are those
207 same fractionation factors faH (Merlivat 1978). It has been suggested thatehvesues

208  should be revised (Capptal. 2003). However, subsequent measurements indidadethe
209 fractionation factors originally assigned are tharencorrect values (Luz al. 2009).

210 If the water vapour in the air is in isotopic ddurium with source water, theds, will

211 approximately equale®. In that case, Eqn 3 will condense to

212 A= (% + &) (1 - %) . (9)

L

213 Equation 9 demonstrates the strong role that tlagive humidity termw,/w; plays in

214  determining the isotopic enrichment of leaf watethe sites of evaporation.

215 Figure 3 shows the relationships between obseatagtime bulk leaf water isotopic
216 enrichment and the air relative humidity and Cr@igrdon predictions for a large dataset
217  collected under natural field conditions acrosslasontinental rainfall gradient in northern
218 Australia (Kahmeret al. 2013a). The analysis shows both the importantkeofelative

219  humidity term in driving daytime leaf water staldetope enrichment (Figures 3A and 3C),
220 and that the Craig-Gordon equation captures mutheobbserved variation across a large-
221  scale environmental gradient (Figures 3B and 3D).

222 This analysis also highlights an important differe betweef’0 and’H. For'®0,

223  the air relative humidity predicts nearly as muehiation in the observed leaf water

224  enrichment as does the full Craig-Gordon modeh Witof 0.78 for the former versus 0.86
225  for the latter (Figures 3A and 3B). Fut, on the other hand, the air relative humidity

226  predicts only a little more than half the variatjgredicted by the full Craig-Gordon model,
227  with R? of 0.52 for the former versus 0.92 for the latféigures 3C and 3D). This

228 demonstrates the importance of the isotopic disibguim between air vapour and source
229  water for predicting\e for ?H in comparison t6®0. This disequilibrium can be expressed as
230 €'+A,. The contrast betweéh and*®0 in the sensitivity of\s to £"+A, comes about

231 because, fof’O, €, A,, and the difference between them are typicallylsimabsolute

232 value compared te,, whereas the opposite is true fot. For®H, the disequilibrium term
233 £'+A, can easily be larger thapin absolute value, with either positive or negatalues

234 possible. Thus, the predictAdfor *°0 is dominated by the kinetic fractionatiag, whereas



235 for ?H, the predicted\. is dominated by the equilibrium fractionatiaf, and by the air

236 vapour disequilibrium terng'+A,.

237 The role of the atmospheric vapour isotopic contfmrsin controllingA. can be

238  further appreciated by examining the limiting cageere relative humidity is saturated, such
239  thatwy/w=1. In this case, Eqn 3 reducesteA,; and, the isotopic disequilibrium between
240  air vapour and source water then contfls While this limiting scenario usually only

241  occurs at night, it emphasises the importancembspheric vapour in influencing leaf water
242 enrichment (Farquhar & Cernusak 2005; Helliker &fféhs 2007), as well as the general
243 importance of having a reasonably accurate estiofaig for predictingAe, especially with
244 respect tGH. In humid-zone epiphytes that use Crassulaceigmaetabolism, this

245  phenomenon creates an opportunity to reconstradstitope ratio of atmospheric water

246  vapour from the epiphyte’s organic matter (Hellikél4).

247

248  Bulk leaf water

249 The term ‘bulk leaf water’ generally refers to ater sample obtained by extraction
250 from a whole leaf. A bulk leaf water sample mayray not contain the water of the major
251  veins, depending on the sampling protocol of tlividual researcher. Leaf water excluding
252  the major veins has also been referred to as ‘lameiaf water’. It is important to note that in
253  the vast majority of plants, such a sample wilbadentain water associated with minor veins.
254  Here we usé, to refer to the isotopic composition of bulk leedter, and\, to refer to its

255  enrichment above source water.

256 Early measurements indicated that the Craig-Gordodel tended to overestimaige
257  (Allison, Gat & Leaney 1985; Leaneyal. 1985; Bariact al. 1989; Walkeret al. 1989;

258  Yakir, DeNiro & Gat 1990; Flanagast al. 1991; Walker & Lance 1991). To illustrate this
259  phenomenon, we compiled leaf water isotopic datanfa number of published datasets,
260 along with the Craig-Gordon prediction of leaf wad@richment corresponding to each

261 observation (Supplementary material). The datametains 118 species, sampled across a
262  range of tropical and temperate sites from botlheon and southern hemispheres. Itis
263 limited to daytime observations o @lants under natural field conditions. Figurerdgents
264  the results for the proportional difference betwtdenpredicted Craig-Gordon enrichment
265 and the observed bulk leaf water enrichmemy(1xs). The analysis confirms that observed
266 1-A/Ais larger than zero for botflO (P<0.001;n=722) andH (P<0.001:n=362), with

267  average proportional differences 0.12 % and 0.24 fofH.
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The explanation for the generally lower observeldie ofA, compared td\ has
attracted considerable research effort, becauséniportant to determine which leaf water
signal is most relevant to the various applicatitvad depend upon it. Two models have
been proposed to explain this pattern when stei@tly sonditions can reasonably be
expected: a two-pools model, based on two dispetés of water within the leaf, with one
of them being unenriched xylem water (Leares. 1985; Yakir, Deniro & Rundel 1989;
Yakir et al. 1990; Roden & Ehleringer 1999; Soeigal. 2015a); and an advection-diffusion,
or Péclet, model (Farquhar & Lloyd 1993; FarquhaB&n 2003; Barnes, Farquhar & Gan
2004).

If the two-pools model is assumed to comprise tinked source water and enriched
evaporative site water, it can be written as (Lgas@l. 1985; Songt al. 2015a)

A= (1 - @A, , (10)
whereqis the proportion of leaf water that is unenrickgtbm water, presumably residing
mainly in the major veins and ground tissue assediwith them. In this model, the
overestimation of\ by the Craig-Gordon model is due to the contritnufrom the
unenriched pool.

Rather than two discrete pools, the Péclet moelstibes gradients of enrichment
within the leaf water. In the Péclet model, adimtof less enriched water by the
transpiration stream opposes the back-diffusiosabpically enriched water from the
evaporative sites (Farquhar & Lloyd 1993). Wheweation overwhelms diffusion, the bulk
leaf water enrichment will be less than that presdidy the Craig-Gordon equation.
Accordingly, the proportional difference, /A, is predicted to increase with increasing
transpiration rate. This particular feature igraportant distinction between the Péclet
model and the two-pools model: the Péclet modalipte that the deviation of the bulk leaf
water from the Craig-Gordon predicted enrichmewtusth record information about the
transpiration rate. In contrast, the two-pools slabes not predict such an effect.

The Péclet number, which is dimensionless, reptesbe extent to which diffusion is
overwhelmed by advective counter-flow (lkeda 1988)was originally developed to
describe the ratio between convective and condeitat transfer by Jean Claude Eugene
Péclet, and has since been applied more genevallgscribe advection-diffusion effects on
mass transport processes in permeable media.e&eed, the Péclet numbér, can be
defined awl/D, wherev is the velocity of water movement (m)sl is the distance (m) from

the evaporative sites over which the Péclet effeatcurring, and is the diffusivity of the
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heavy isotopologue in water frs'). TheD is temperature dependent, and can be modelled

as a function of leaf temperature as (Cwatta. 2007),
(_ 577 )
Dy =97.5 x 107 %\ 1135/ (11)

Dy = 98.7 X 10-%¢ (755 , (12)
whereDog is the diffusivity for H%0, Dy is that for HHO, andT is leaf temperature in °C.
The velocity of advection can further be descriaskE/C, whereE is the transpiration rate
(mol m? s1), C is the molar concentration of water (5.55% il m®), andk is a scaling
factor to account for the tortuosity of the watattp The ternk/C gives the velocity as if
water were moving as a slab perpendicular to thiederface. The true velocity must be
faster than the slab velocity, because water mwovagortuous path through the leaf. The
scaling factok represents the ratio of the true velocity to tlab selocity. Combining the

above terms gives the following definition for tRéclet number:
_ kiE
“ ¢’

It is convenient to combinleand! into a single term, which has been called thecéffe path

length,L (Farquhar & Lloyd 1993):

=LE
o= (14)

(13)

Ignoring the water in veins for the moment, thel®é&model applied to the average leaf
lamina then predicts the following relationshipwibe evaporative site water enrichment
(Farquhar & Lloyd 1993):

A= A, (1‘;_"’) . (15)

Equation 15 indicates that the smaller the Péclptber, the more similax, will be toAe. It
also predicts a continuous isotopic gradient fromdites of evaporation to the source water,
modelled as an exponential decay along a cylinbfiica path.

Becausé] includes terms for both the effective path lermtid the transpiration rate,
a change in either one is predicted to alter ttaiomship betweeA, andA.. This is shown
schematically in Figure 5. In practice, valuestfa effective path length have been
difficult to determine directly. Thus, they havengrally been fitted using Eqns 14 and 15,
which therefore involves comparing observed bud ieater enrichment with the predicted
Craig-Gordon enrichment. One consideration thatcctead to biased estimatesloivhen
fitted in this way is that unenriched vein wateulbalso contribute to the difference between
A andA, as described by the two pool model. If this wiaeecasel- would be

overestimated if unenriched vein water were nobanted for prior to fitting Eqn 15.
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Farquhar and Gan (2003) improved upon the onertiioeal Péclet model described
above by separating Péclet effects in the leafmyded lamina. In practical terms, this
provides a means of combining the two-pool conoéplilution of leaf water enrichment by
relatively unenriched vein water with the laminaleémodel. Furthermore, it allows the
advection-diffusion behaviour to be expressed in water as well as in mesophyll water.
Such a consideration is important because some\aigms suggest that vein water can
become enriched YO (Ganet al. 2002; Garet al. 2003). Farquhar and Gan (2003)
suggested that most vein water should be founkanrtajor veins and associated ground
tissue, with the proportion of leaf water in higloeder minor veins being relatively small. If
the proportion of leaf water in minor veins weresidered negligible, the bulk leaf water

enrichment could then be described as (Farquhaag. Z&03),

D= A [pee™ 0 + (1= )

(16)

1—e‘W]
SO )

whereq is the proportion of leaf water in major veinsdan; is the total radial Péclet
number, equal to the sum of the lamina radial RPécleber,], and the veinlet Péclet
number,[d . Equation 16 allows for part of the differencéviEenA, andAe to be
accounted for by the relatively unenriched veinaxatritting mesophyll effective path
lengths with Eqn 16 should therefore provide mewdistic estimates than with Eqn 15, but
has the added complexity that values need to bgreskforg, andd ; (e.g. Ripulloneet al.
2008), or these need to be fitted simultaneousty. @anet al. 2003).

A convenient way to probe observed leaf wateojsiat composition for evidence of
Péclet effects is to plot the proportional differerbetweed, andA, as a function of
transpiration rate. Such plots have yielded végiadsults, with some authors finding a
positive relationship, as predicted by the Pécledeh (Barbouet al. 2000b; Ripullonest al.
2008; Loucost al. 2015), and others, either no detectable relatipraha negative
relationship (Roden & Ehleringer 1999; Cernusakng/& Farquhar 2003; Soreg al. 2013;
Rodenet al. 2015; Songet al. 2015a). For our combined dataset given in th@leapentary
material and shown in Figure 4, we find no relastup between Iy /A and transpiration
rate for eithe\’®0 or A’H.

Given the conceptual realism in the Péclet matbgs been difficult to explain why
in some cases there is no observable relationgtipeen 1A /A. andE. One explanation
might be changes in the effective path lengthasspiration rate varies (Kahmetal. 2008;
Songet al. 2013; Loucot al. 2015). Water supply to the mesophyll is predomilyavia

the minor veins (Sack & Holbrook 2006). Once ia thesophyll, water movement to the
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sites of evaporation can proceed through thredlpbpathways: symplastic movement
through plasmodesmata, transcellular movement acelsmembranes through aquaporins,
and apoplastic flow in cell walls that are not sided (Steudle, Murrmann & Peterson 1993).
Although it can reasonably be expected that mosit flill occur through the apoplast
(Brodribb, Feild & Jordan 2007), each of these watys is nonetheless likely to be
associated with its own effective path length (Banb& Farquhar 2004), and the possibility
exists that the relative activity of these pathwangs/ change with transpiration rate. In
addition, water may not always evaporate in thenitic of the stomatal pore (Rockwell,
Holbrook & Stroock 2014; Buckley 2015), as is getigrassumed. These considerations
have potential to obscure the positive relationslgipwveen 1A /A. andE that is predicted by
the Péclet model, because changdsdould compensate for changedinthereby
decoupling] from E (Cernusak & Kahmen 2013; Soaal. 2013).

The idea that xylem can be variably coupled toniesophyll to give distinct pools of
water of different volume and function within theaf has been suggested in relation to leaf
hydraulics (Zwieniecki, Brodribb & Holbrook 2007 a@nyet al. 2012), and would support
the idea of isotopic compartmentalisation of leatev (Yakiret al. 1989; Yakir 1992; Yakir
et al. 1994). Looking at the rehydration kinetics ofMes of different species, Zwieniecai
al. (2007) considered three observed patterns of biidrdesign: 1) where the vein is
hydraulically separated from the rest of the I@xfivhere the epidermis is hydraulically
linked to the veins through the bundle sheath eskter) but the mesophyll remains separated,
and 3) where all tissues are equally well coupkedure 6). Such compartmentalisation
could be created by both the internal organisaifdeaf tissues, leading to variable degrees
of physical contact between different structures] by the number, activity, and resistance
of the different pathways for water movement. Asenable hypothesis, based on these
observations, is that different residence timesaatur for different pools of water within
the leaf, introducing further variation into obsedwelationships betweenAL/A. andE,
because some pools of water would carry a memopyesfious leaf water enrichment
conditions, whereas others would not.

Conifer needles fit within Design 1 of Figure 6neisting of a singular vascular
bundle surrounded by transfusion tissue and a-thaled endodermis, which likely
provides high radial resistance and physical s¢éiparhetween xylem and mesophyll.
Consistent with this concept, it was recently obsérthat a two-pool model was sufficient to

explain the difference between the Craig-Gordowlipt®n and the observed bulk leaf water
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enrichment in two pine species (Rodeml. 2015). Water pools may also exist within the
mesophyll. InEucalyptus pauciflora (snowgum) mesophyll cells shrank equally during
transpiration (Canny & Huang 2006), wherea&ossypium hirsutum (cotton), cavity and
spongy mesophyll cells shrank more than matrixsd@hannyet al. 2012), suggesting that
different pools of water differentially supportedaporative demand. Leaf shrinkage of
tissues has also been linked more generally tddléne in extra-xylary hydraulic
conductance (Scofforet al. 2014), which could further contribute to hydraulic

compartmentalisation under conditions of watersstre

Progressive enrichment

Sampling leaf tissue at a sub-leaf scale has ledepatial patterns of isotopic
enrichment within leaves (Figure 7). Here, thedpa@ composition tends to become
progressively enriched towards the tip of the k&l out from the mid-vein (Bariat al.
1994; Wang & Yakir 1995; Helliker & Ehleringer 2008anet al. 2002; Santruceét al.
2007).

This spatial pattern was initially explained usangtring of lakes model, which
assumed a string of inter-connected pools of waiidin the leaf with differing isotope
compositions (Gat & Bowser 1991; Helliker & Ehlegar 2000; Helliker & Ehleringer
2002). Farguhar and Gan (2003) improved uponntimdel by including Péclet effects in
both mesophyll and veins (Figure 8). This enalplextiictions of progressive enrichment of
xylem water in monocot leaves with distance froe tlase of the leaf. The predictions
matched relatively well the observed pattern inazmgFarquhar & Gan 2003; Gahal.

2003). Ogéet al. (2007) then further improved upon this model byoporating non-steady
state effects.

The progressive enrichment observed in both marmud dicot leaves suggests that
back-diffusion occurs from the mesophyll back itite vein, allowing some evaporative
enrichment to be passed via the xylem from ceatndlbasal portions of the leaf to
downstream leaf sections. Such spatial variateontie described by three Péclet numbers
(Figure 8): 1) a radial Péclet number at the fatar between xylem and mesophyil ()
which allows for the leaf veinlet xylem water tacbene enriched above petiole water; 2) a
radial Péclet number associated with the mesopikglhe [0 ) which is likely to be small;
and 3) a longitudinal Péclet numbér j, allowing progressive enrichment of the xylem in

major veins in the direction of water movement, ebhis large, meaning mass transfer of
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enrichment is mainly driven by advection. A detiga of this two dimensional Péclet model
with component Péclet numbers is given by Farg&h@an (2003).

In a general sense, observations of progressivehement provide strong support for
the concept of Péclet effects in leaf water, bee@usreasing enrichment of vein water with
increasing distance from the midrib and the leakbaould not occur if some enriched water
did not back diffuse from the evaporative sites itfite veins, against the advective flow of

the vein water.

Transpired water

Water vapour leaving a leaf during transpiratioigioates directly from water at the
evaporative sites. Thus, it makes intuitive sehaethe isotopic composition of transpired
water vapour&e) should be related to that of evaporative siteew@). When the Craig-
Gordon model is written in a form that does notiass isotopic steady state, it predicts the

following relationship betweed. anddg:

o~ 6+ et + £k+(6v—65—sk)%. a7)

From Eqgn 17, it can be seen tBats a necessary component for predictagnder non-
steady state conditions. When steady state isreeshoe is set equal tds. Making this
substitution then leads to the widely used formatashown in Eqn 3. e is measured
experimentally, Eqn 17 provides a useful meanstifmating the isotopic composition of the
evaporative sites under non-steady state condiffdasvoodet al. 1998).

The steady-state assumptiondgtbeing equal tds results from mass balance
constraints on leaf water dynamics, as shown iridhewing equation (Dongmann 1974;

Farquhar & Cernusak 2005):

S = (8, — 8g) . (18)
HereW s the leaf water concentration abdis the isotope composition of leaf water. The
product of the two is termed isostorage (Farquh&etnusak 2005). The terf{ds-Og)
describes the difference between the isotopicdfuxater molecules intd%s) and out of
(Edg) the leaf, and thus can be viewed as the neuisofEquation 18 states that the rate of

change of leaf water isostorage is equal to théspétix of water into or out of the leaf.

d(Wéy) _

With the leaf at isotopic steady state, leaf watestorage would be constang(, m

0). Accordingly the net isoflux would be zero, sibhtd: must be equal td..
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Motivated by the need to address the conditiomkeuwhich isotopic steady state
occurs {.e, &=0s), several authors have used isotope ratio lagatispnetry coupled to a
gas exchange system to explore the variabili§:oh response to environmental conditions
(Wanget al. 2012; Simoniret al. 2013; Dubberet al. 2014; Songet al. 2015b). In a
laboratory study conducted on tobacco and citrargds, Simonin et al. (2013) observed that
Og was variable and deviated fraas long as instability was present in any of the
environmental and/or physiological variablegy, relative humidityd,, stomatal
conductance). This suggests that environmentaphgsiological stability is a prerequisite
for isotopic steady state to occur. In this copt#xshould be noted that even when
environmental and physiological parameters ardestétie condition of isotopic steady state
will not be achieved immediately (e.g. Simosetral. 2013). Rathere will move towardds
in an exponential manner with a time constant degtends on the leaf water concentration,
stomatal conductance, and the water vapour matéidrainside the leaf (Dongmarahal.
1974; Farquhar & Cernusak 2005). Setgl. (2015b) recently conducted a laboratory
experiment to monitor this type of exponentialécapry ofde in cotton leaves exposed to a
gas-exchange cuvette environment. They demondttiaét the time constant for the
approach obg to s agreed well with the prediction from the non-sieatate isotope theory
adapted to cuvette conditions.

Under field conditions, time constants for leatevaurnover can often be longer than
the frequencies at which natural variations in terafure, humidity, and stomatal
conductance occur. As a result, it has been arthadhe isotopic composition of transpired
water,dg, should rarely be precisely at steady state (WaiYgkir 1995; Harwoockt al.

1998; Simoniret al. 2013). A recent field study tracked diurnal vaoas indg for an oak

tree during distinct Mediterranean seasons anddfdliatds significantly deviated fromds

most of the time (Dubbeet al. 2014). Such an observation, resulting from direct
measurements @, provides support for the “steady state being’rargument, thereby
suggesting that the steady-state assumption sheulded with caution in field conditions
when applied t@s. However, this raises an interesting contrash @it the isotopic
composition of leaf water, which often appearsembar to steady state, at least for magy C
plants, during the day@., Figure 3). This highlights the difference betwelee isoflux

(Ede) and isostorageNd,) terms, with the latter being relatively bufferaghinst high

frequency variations.
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Non-steady state effects on leaf water enrichment

Non-steady state effects on leaf water isotopicckment, the isostorage term, are
expected to become important when stomatal condoetis low and/or when leaf water
concentrations are high. Most species probablywstignificant non-steady state behaviour
in A at night, due to low stomatal conductance (CerkuBate & Farquhar 2002; Cernusak,
Farquhar & Pate 2005; Set#ttal. 2006; Barnaret al. 2007; Cuntzt al. 2007). In addition,
non-steady state behaviour has been observed dbergpy in plant species with succulent
leaves (Sternberg, Deniro & Johnson 1986; Cernasalk 2008), and in some needle-leaved
species, when exposed to high vapour pressuratdedidow soil water availability, such
that stomatal conductance was relatively low (Pkndélliams & Leavitt 2005; Seibét al.
2006; Snydeet al. 2010).

Variation in leaf water isotopic enrichment unden-steady state conditions,f)
can be predicted as follows (Farquhar & Cernus@bs20

ata, 1-e™ ¢ dWAr,)

ALn_ AL - aw; o dt

, (19)

wherel, is the steady-state prediction of leaf water ism@nrichmenta™ is defined as

1+€*, o is defined as gk, Wis the lamina leaf water concentration (mof)m is time (s),
andg is the total conductance to water vapour of starpéis boundary layer (molfrs?).

Note thate™ andey, if they are expressed in per mil, should be didithy 1000 to calculate”
anday. Equation 19 has the tedy, on both the left and right sides of the equatsng so
needs to be solved iteratively. One way to doithigith the Solver function in Microsoft
Excel (Farquhar & Cernusak 2005). Alternativelyhtnen et al. (2008) suggested a simpler

method for solving the equation by introducing assumption that, over sufficiently small

AWALn)  WALn—(WALn)e—1

time steps—— »

, Where the subscriptl refers to the value at the

previous time step arf is the time elapsed since the previous time stédps definition can
be substituted into Eqn 19, which can then be solgeA,,, such that it only occurs on the
left side of the equation. The value oy, can then be calculated without need for iteration
(Kahmenet al. 2008). Another alternative is to assume a stepgé in parameters from one
time step to the next, so that the leaf water énment moves toward the new steady state in
an exponential fashion with a time constangpproximated bW/gw;. This also results in
equations that can be calculated without needdoation (Dongmanet al. 1974; Farquhar

& Cernusak 2005; Cun& al. 2007).
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Which leaf water model to use?

As seen above, models describing leaf water easiperenrichment have become
increasingly complex over time, from the simplestsion of the Craig-Gordon equation, to
non-steady state models (Dongmahal. 1974; Farquhar & Cernusak 2005), to the most
complex spatially-explicit models describing gradgeof enrichment under non-steady state
conditions (Cuntzt al. 2007; Ogéet al. 2007). Given the range of options availables it i
not always straight forward to decide which leatevanodel to use for a particular research
question. For some applications at larger tempandlspatial scales, the steady state Craig-
Gordon model (Eqgn 3) will be adequate and including-steady state effects and Péclet
effects will likely add complexity that does nogsificantly improve model outcomes.
Conversely, if water is sampled within a leaf ahtligh temporal resolution, a spatially-
explicit and non-steady state model may be reqyi@erteet al. 2007). Some studies have
tested the suitability of different models in spiecapplications. For example, Cernusak et
al. (2005) demonstrated that both the non-steatg sind whole-leaf Péclet models were
required to predict accurately diel variabilityleaf water enrichment iBucalyptus globul us.
Ogée et al. (2009) found that the oxygen isotopepmsition of tree ring cellulose was not
sensitive to the value assigned to the Péclettafeelength, implying that a simpler two-pool
model would have been adequate. At larger sgatigémaller temporal scale, the
requirement for a non-steady state model has befirmed when interpreting variation in
ecosystem-scale isofluxes (Xiabal. 2012; Santost al. 2014).

Here, we describe a general framework for decidihgn to apply different leaf
water models. Questions relating to 180 of oxygen evolution, such as studies of the
Earth’s Dole effect (Bender, Sowers & Labeyrie 1994ffmannet al. 2004), should for the
most part be well served by the steady state Geaigion prediction of\.. This is because
oxygen evolution takes place during the day whahweter is generally near isotopic steady
state, and because chloroplasts are mostly loc&t@dto the evaporative sites. The same
argument can be applied for questions relatindgfexts of photosynthesis @t%0 of
atmospheric C@(Farquhaet al. 1993; Cuntat al. 2003). However, in this case the impact
of exchange of atmospheric @@ith leaf water also continues at night. In ortteaccount
for the influence of dark respiration 8O of atmospheric C£a non-steady state model of
evaporative site water is needed (Cernwetak 2004; Seibtt al. 2006; Cuntzt al. 2007;
Santost al. 2014).
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For the most part, the influence of leaf watetapa@ enrichment on organic material
is mediated by photosynthesis. Again, becauseoplinthesis takes place during the day,
research questions relating®O andd’H of organic material should be served reasonably
well by steady state models. Here, there have beeed results as to whether Péclet effects
need to be considered. For isotopic signals olasdhted to leaf water, such &0 of
phloem sugars, a Péclet effect was required (Bartial. 2000b; Cernusaét al. 2003).
However, in applications that consider processaléu downstream from leaf water, such as
tree-ring formation, the relatively small Pécldeet becomes further damped, to the point
that there may be little advantage in includin@igéeet al. 2009; Gesslegt al. 2014; Song,
Clark & Helliker 2014).

For plant breeding applications aimed at disentaggffects of stomatal
conductance from those of photosynthetic capacitwater-use efficiency, it will likely be
advantageous to consider Péclet effects (Farq@umengion & Masle 1994; Barboet al.
2000a; Barbour 2007). In addition, Péclet effedgtklikely be particularly important in
studies aimed at linking leaf water stable isotopeposition with leaf hydraulic pathways
(Barbour & Farquhar 2004; Ferrabal. 2012; Songet al. 2013). On the other hand, for
applications aimed at using th&H of leaf waxes to reconstruct hydrological feasupé
ancient ecosystems, the simplest form of the stetatg Craig-Gordon equation will likely
suffice (Mclnerney, Helliker & Freeman 2011; Sachisal. 2012; Kahmermt al. 2013a).

SAMPLING CONSIDERATIONS AND METHODOLOGICAL ADVANCES

The isotopic analysis of plant waters presentgraber of analytical challenges.
These include difficulties of extraction, the nesigsto work with small quantities of water,
protecting the original composition of the watemgée, and avoiding undesirable influences
of dissolved compounds. Preventing post-samphgerative enrichment of leaf water
requires careful consideration of sample handlimd) storage. For example, even the time
taken to separate primary veins from leaf laminaresult in detectable isotopic enrichment
of the leaf lamina (Cernusakal. 2003).

There are three main ways of analysing the isotopmposition of plant water:
equilibration, prior extraction, and simultaneoxtr&ction. With equilibration methods, a
gas is equilibrated directly with the plant watdril it is still in the sample, and the gas is

then analysed for its isotopic composition. Witlopextraction, the water is taken out of the
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plant tissue before isotopic analysis, whereas siitiultaneous extraction the water is
removed from the plant as part of the analysis.

In equilibration methods, a gas is introduced m&ealed vessel with the sample,
such as a detached portion of stem, and the syst@Entained until the gas has effectively
equilibrated with the water that the sample comstéBcrimgeour 1995). Typically, for
oxygen isotopic analysis, pure €@r a CQ/gas mixture is stored over the sample at a
controlled temperature. The @@en exchanges oxygen with the water by the cacbon
acid/bicarbonate reaction, with a temperature dépeinfractionation. Direct equilibration of
CO, with twig and stem water showed good agreementjttan 0.5%q with assessments of
the 3'%0 of paired samples based on prior extraction (&gbur 1995). This direct
equilibration method may also be useful for analygithed'®0 of leaf water. However, a
limitation may be imposed by the very low rate dfugion of CG, in water, and of water in
water, so that the gas may primarily equilibratéhwine more exposed portion of the leaf
water. Thus, th&'®0 of the equilibrated COmay be more representative of the evaporative
site water, as opposed to the bulk leaf water; exy@ants are needed to test this.

Extraction methods aim for complete removal ofwaer from the sample, because
the removal of water by evaporation is typicallg@sgated with a fractionation. Thus, in the
event of a partial extraction, the water removeltl have a different isotopic composition
from that which remains. The most widely used peixtraction method is cryogenic vacuum
extraction (Ehleringer, Roden & Dawson 2000). Héne water is freed from the sample
using heat and vacuum, and then frozen onto aatimitesurface. For plant tissues,
cryogenic vacuum extraction is a tested and radiatéthod, and it typically serves as the
benchmark against which new methods are evaluddesever, it is relatively labour and
time-intensive. Several authors have proposed fincatons aimed at reducing these
restrictions (West, Patrickson & Ehleringer 2006andramini & Sternberg 2007; Koeniger
et al. 2011, Ignateet al. 2013; Orlowskiet al. 2013). For laser-based analysis of water
isotopes, cryogenic extraction also presents thélesige of transferring organic
contaminants that can mix with the water sampleanbe optical interference (Westl.
2010).

Recent years have seen the advent of laser-bastch| analysers with the capacity
to measure the stable isotope composition of watpour (e.g. Guptet al. 2009; Sturm &
Knohl 2010; Aemiseggest al. 2012; Griffis 2013). Using this type of analyseew

methods have been developed for simultaneous watkxction and analysis. Here, the leaf
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is placed in the extraction device and the resyiwater vapour is analysed as it is driven off
by heating. One example of such a system is arctimh module cavity ring down
spectroscopy system (IM-CRDS) (Berkelhameteal. 2013). The laser isotope analyser
relies on the absorption of an infrared laser phiseater vapour as it reflects inside a
chamber. For a typical liquid water injection, abé puL of water is vaporised when it is
injected into a chamber hotter than boiling poifhe vapour is then carried into the analyser
in a non-interfering gas. The IM-CRDS system mmsikir, except that the leaf sample is
heated inductively, and the vapour produced is taried into the laser analyser. A second
example of a simultaneous water extraction andyarsasystem uses a microwave oven to
heat the leaf sample (Munksgaa&tdl. 2014). This was termed ME-IRIS, for microwave
extraction isotope ratio infrared spectroscopye ME-IRIS system includes a microwave
and a condenser to moderate the water vapour coatien of air passing to the laser
analyser, so that it remains within the optimal sugg range. Advantages of ME-IRIS are
that it can handle larger sampleg(, whole leaves), and that it uses relatively lowtco
components, such as a domestic microwave oven.

A complication in these simultaneous extractiortirods is that some organic
compounds, for example alcohols, which can be pteésdeaf water, interfere significantly
with absorption peaks for the target isotopologndbke laser analyser. Two solutions have
been developed: a small furnace in-line which ksedown the interfering compounds, and
post-processing software that detects and flagyse®mthat potentially contain spectral
interference. The combination of the two toolssthgr appears sufficient to identify and/or
reduce the analytical errors associated with omgyamintaminants to acceptable levels (West
et al. 2011; Munksgaaredt al. 2014; Martin-Gémeet al. 2015).

Both IM-CRDS and ME-IRIS also suffer from memoffeets, often requiring two to
three sample analyses to overcome the influenegpoévious sample if its isotopic
composition was substantially different (Berkelhaenet al. 2013; Munksgaaret al. 2014).
The impact of the memory effect can be minimizecibanging the analytical sequence in
such a way as to avoid large jumps in isotopic amsitpn between adjacent samples. This
also highlights a further disadvantage of simultarseextraction methods; once analysed, the
same sample is not available for re-analysis. TWwherever possible, samples should be
collected in sufficient replication to overcome nagneffects and as back-up in the event
that a re-analysis is deemed necessary. The rde@amtage gained by simultaneous

extraction is the capacity to analyse sampleserfigid at the study site or in a temporary
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658 field laboratory, and to thereby have analyticalits in near real time so that they can

659  inform the proceeding sampling strategy and expemial design.

660 An interesting variant of an equilibration methartl simultaneous analysis of water
661 vapour stable isotopes by a laser analyser hasdm#ied to soil cores (Wassenahal.

662 2008). In this system, a soil core was placedimsi sealed, inflatable plastic bag. The

663 sealed bag was then left to equilibrate the wadgour in the headspace with the liquid water
664 in the soil sample. Following the appropriate &qration time, the plastic bag was

665 punctured with a needle connected to a piece aiguieeding directly into a laser analyser.
666  Thed'®0 andd®H of the liquid water in the soil sample could tHEninferred from the

667 temperature dependent equilibrium fractionatiomieen liquid and vapoug,. Such a

668  system may also be suitable for plant materialdvafstages would be the simplicity of the
669 equilibration compared to liquid water extractiand that isotope ratios of both oxygen and
670 hydrogen could be determined simultaneously. Ah thie direct equilibration of COa

671  question that would need to be addressed for ldawekether the water vapour in the

672 headspace primarily equilibrates with the evapeeasite, or whether it equilibrates with the

673  bulk leaf water.

674
675 CONCLUSIONS
676 Steady state leaf water isotopic enrichment isadiprelated to relative humidity in

677  natural environments, with the observed enrichndexteasing with increasing relative

678  humidity. Isotopic disequilibrium between sourcater and atmospheric vapour can also
679 have a relatively strong effect on steady statevieder isotopic composition. Observations
680 over a large scale environmental gradient in Aliatradicated that this effect is likely to be
681  stronger forH than for*?0. This difference in behaviour between the tvaidpes reflects
682 the relative magnitudes of the equilibrium and kmé&actionations in the Craig-Gordon

683 model of evaporative site enrichment. Equilibriaffects dominate foiH, whereas kinetic
684  effects dominate fot?O.

685 In a combined dataset including 118 species, waddhat observed bulk leaf water
686  was less enriched than the Craig-Gordon predicfionboth'®0 and®H, as has been shown
687  previously. Across the full dataset, the propaordilodifference between Craig-Gordon

688  predicted and observed bulk leaf water enrichmieotved no relationship with transpiration
689 rate. Explaining why Péclet effects are detectabkome situations, but not in others,

690 remains a challenge. Linking observed patterrieaifwater isotopic enrichment with
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691  specific hydraulic characteristics could provideatable way forward, especially with
692  respect to pathways for water movement from vearsvaporative sites.

693 The development of new technologies for quantgystable isotope ratios of

694  transpired water and water extracted from plastiis offers an opportunity to further our
695 understanding of the finer scale controls over Veafer stable isotope enrichment. For
696 example, measuring the isotopic composition ofdpimed water vapour provides a means of
697  detecting nuances of steady versus non-steadybshteviour, and it also has potential to
698  provide insight into whether slow turnover poolssexvithin the leaf water, indicative of
699  hydraulic compartmentalisation. Improving our ursdending of the environmental and
700  physiological controls over leaf water stable ipateenrichment will benefit the many

701 applications to which models of this process caagydied, and may additionally lead to

702 novel insights into hydraulic design and functianin leaves of terrestrial plants.
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Table 1. Symbols and abbreviations used in thie tex

Ae Isotopic enrichment of evaporative site water compared twcgowate

v Isotopic enrichment of bulk leaf water compareddarce water

AV Predicted na-steady state isotopic enrichment of bulk leaf v

iAW Isotopic enrichment of vapour compared to sourcem@ypically negative)
e 5'%0 or&°H of transpired water vapour

3 30 or&°H of bulk leaf water

Se 50 or°H of water at the evaporative sites within leaves

d 5'%0 or&°H of source water

dy 50 or&°H of atmospheric vapour

5o *0/™0 relative to the value of a standard (VSMOW farglwaters)

&H “H/*H relative to the value of a standard (VSMOW farglwaters

e Equilibrium isotope fractionation between liquidternand vapour

€k Kinetic isotopefractionation caused by diffusi of water vapot in air

O The Péclet number (representing the ratio betwdeaaiion and diffusion)
E Transpiration rate

L Effective path length for water movement through mieesophyll

W Leaf water concentration

g Stomatal conductance to water vapour

Wj Water vapour mole fraction in the atmospl

W, Water vapour mole fraction in the intercellular giiacesinside leave:
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Figure 1. Spatial distribution of hydrogen and oxygen igetoatios of precipitation over
land. These precipitation isoscapes were derivad fx long-term, global network of
observations (Welker 2000; IAEA/WMO 2011) and agjatistical and regression-based
model developed with the online workspace IsoMA#@gtapes Modeling, Analysis and
Prediction v 1.0http://isomap.ory Model structure, statistical results, and ispssamay be
accessed or downloaded from IsoMAP by referenabgkpys: 48170, 48171, 48236, and
48560 (West, 2015).
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Figure2. Diel variation in leaf, phloem, pod wall, seeddaylem wate5*20 (A) andd®H
(B). Samples were collected in Western AustratanfLupinus angustifolius grown as part
of an agricultural trial. Phloem sap was samptedhfpod tips, using a phloem bleeding
technique. Redrawn from Cernusak et al. (2002).
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Figure 3. Relationships between observed leaf water stabtepe enrichment for oxygen

(A™0,) and hydrogen/®H,) and the relative humidity of the air recordedhet time of

sampling (A and C) and the Craig-Gordon predictaicbments (B and D). Craig-Gordon

predicted enrichments were calculated with Eqn thefmain text. Samples were collected

during daytime from variouBucal yptus andAcacia species distributed over a sub-

continental rainfall gradient in northern AustraliGahmenet al. 2013a). The full dataset is

provided in the Supplementary Material. Panel Bedrawn from Kahmen et al. (2013a).
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Figure 4. Histograms showing the proportional differencesgen Craig-Gordon predicted
leaf water stable isotope enrichment®Q, andA?He) and observed bulk leaf water
enrichment 40, andA?H,) for A0 (A) andA®H (B). Craig-Gordon predicted
enrichments were calculated with Eqn 4 of the niei. The dataset combines observations
from several publications (Wang, Yakir & Avishaid Cernusalet al. 2002; Cernusakt

al. 2005; Kahmeret al. 2008; Kahmeret al. 2011; Kahmert al. 2013a; Songt al. 2013;
Songet al. 2014). The full dataset is provided in the Sup@atary Material.
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Figure5. A schematic representation of the Péclet modkdadfwater stable isotopic
enrichment (Farquhar & Lloyd 1993). The model dibss the average lamina leaf water
80 and®H enrichment relative to that at the evaporativessas a function of the interplay
between diffusion of isotopically enriched wateragwirom the evaporative sites and
advection of unenriched vein water toward the evaipee sites. The vein water is
transported along a path, the length of which gaa®a function of its tortuosity. The
average lamina leaf wat&l0 and®H enrichment decreases if the transpiration ralkegjs, or
when the scaled effective path length is longhétibf these conditions will impede the
diffusion of isotopically enriched water away frahe evaporative sites. In the figure, red
represents the highe$O and’H enrichment, yellow intermediate, and blue thedstv The
thickness of arrows indicates transpiration ratektae sinuosity of arrows indicates scaled
effective path lengths. Redrawn from Cernusakigaimen (2013).
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Figure 6. Schematic of three scenarios for leaf hydraudisigh describing the hydraulic
linkages between different tissues. The dark gineye in the middle is a water-filled vein,

solid lines depict water flow, with the thickerdis corresponding to higher flow, dashed lines

describe diffusion of water vapour, and @ denotgk resistance between tissue types. In

Design 1, the vein is relatively isolated hydraailllig from the rest of the leaf; in Design 2,

the epidermal tissues are hydraulically linkedhi vein by the bundle sheath extensions, but

the mesophyll remains relatively isolated; and @sign 3, all tissues are equally well linked

hydraulically. Reprinted from Zwieniecki et alO0@7).
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Figure7. Spatial variation in leaf water isotopic compiasitin a tree leaftucalyptus

pauciflora (A), a banana leaiMusa sp. (B), a cactus ster@arnegiea gigantea (C), and a

grass bladeyiscanthus sinensis (D). Progressive isotopic enrichment from theebiasthe

apex of the leaf/stem and from the middle towaeddtiges of the leaf/stem is a common
feature. Note that in the banana leaf, the pregresenrichment shows in the perpendicular
direction to the midrib, rather than along its l#BngThe left side of the banana leaf shows the
vein patterning. Scale bars are approximate. rEgyare modified from Santrucekal.

(2007), Stuart-Williams (unpublished), Engligtal. (2007), and Helliker and Ehleringer

(2000), respectively.
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Figure 8. A schematic representation of the Farquhar and(@@03) Péclet model that
predicts progressive enrichment of leaf water stémtopes along a leaf. Darker blue
indicates a higher level of stable isotope enrialimén the model, isotopically lighter water
is preferentially transpired leaving heavier watediffuse back into the xylem and be carried
further along the leaf. For this pattern to benoranced, the ratio of advection to diffusion
(Péclet number) has to be large in the longitudi@ction, and small in the radial direction.
In the figure,[ | is the longitudinal Péclet numbeét,, is the radial Péclet number associated
with veinlets, and] is the radial Péclet number associated with theopieyll in the leaf

lamina.
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