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The  demographic  structure  of  populations  in both  more  developed  and  less  developed  countries  is
changing:  increases  in  life  expectancy  and declining  fertility  have  led to older  populations  and  smaller
households.  The  implications  of  these  demographic  changes  for the  spread  and  control  of infectious
diseases  are not  fully  understood.  Here  we use  an  individual  based  model  with  realistic  and  dynamic
age  and  household  structure  to demonstrate  the  marked  effect  that  demographic  change  has  on  disease
transmission  at  the  population  and  household  level.  The  decline  in fertility  is  associated  with  a  decrease
in  disease  incidence  and  an  increase  in the age  of  first infection,  even  in the  absence  of  vaccination  or
other  control  measures.  Although  large  households  become  rarer  as  fertility  decreases,  we  show  that
there is  a proportionate  increase  in  incidence  of  disease  in  these  households  as  the  accumulation  of  sus-
ceptible  clusters  increases  the  potential  for explosive  outbreaks.  By modelling  vaccination,  we provide

a  direct  comparison  of the  relative  importance  of  demographic  change  and  vaccination  on  incidence  of
disease.  We  highlight  the  increased  risks  associated  with  unvaccinated  households  in  a low  fertility  set-
ting  if vaccine  behaviour  is  correlated  with  household  membership.  We  suggest  that  models  that  do  not
account  for  future  demographic  change,  and  especially  its  effect  on  household  structure,  may  potentially
overestimate  the  impact  of vaccination.

© 2015  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND
. Introduction

The demographic structure of a population is a key deter-
inant of patterns of contact and hence of infectious disease

pread, with implications for the design of effective control meas-

res. Households in particular are recognised as an important
ocus of disease transmission, due to the duration and intensity
f contacts occurring within them (Hope-Simpson, 1970). Over
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time, demographic processes such as birth, death, aging, mar-
riage and divorce modify age and household structure. During the
20th century, the populations of more developed countries expe-
rienced demographic changes—increases in life expectancy and
decreases in fertility—that have led to older populations living in
smaller households. Drivers of these demographic changes include
improvements to public health, and social and economic transfor-
mation associated with the growth of urban industrial societies
(Livi-Bacci, 1997). Similar trends are occurring, at differing rates,
among less developed countries. Understanding how changes in

the demographic structure of a population affect disease trans-
mission is a necessary step towards the design of more effective
strategies for disease control (John, 1990; Manfredi and Williams,
2004).
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Mathematical models can help improve our understanding of
ow infectious diseases spread and inform decision making about
ow they can be controlled (Anderson and May, 1992; Keeling and
ohani, 2007). To capture the full impact of changes in demogra-
hy on disease spread, a model must represent age and household
tructure, as well as how these evolve over an extended period of
ime. Compartmental models of disease transmission that include
ither age or household structure are well established (Hethcote,
000; Hall and Becker, 1996; House and Keeling, 2009). However,
ombining both age and household structure in a single model
s challenging due to the combinatoric growth in the number of
ompartments required to capture variations in household compo-
ition and disease status. An assumption of many existing models
s that population structure exhibits an age distribution that does
ot change over time (i.e.,  it is demographically stable). While rea-
onable over short time frames, for example a single influenza
eason, this assumption is clearly unrealistic when considering
he long term dynamics of an endemic disease, or the long term
mpacts of vaccination programs. Models that incorporate demo-
raphic processes have been proposed, but typically assume either
tationary or exponentially growing populations (John, 1990), and
nly rarely include household structure (Glass et al., 2011). Models
hat do incorporate non-stationary age structure have demon-
trated significant implications for both patterns of disease and the
ffectiveness of vaccine programs (Manfredi and Williams, 2004;
inkenstädt and Grenfell, 2000; Williams and Manfredi, 2004; Gao
nd Hethcote, 2006; Iannelli and Manfredi, 2007; Cummings et al.,
009; McDonald, 2012; Merler and Ajelli, 2014; Liu et al., 2014;
arziano et al., 2015).
An alternative approach is individual based models, which

xplicitly simulate each member of a population together with
heir demographic characteristics, social contacts and disease sta-
us. These models allow much greater flexibility in representing the
eterogeneity present in real populations. They have been used

or simulating outbreak scenarios in realistically structured (i.e.,
ontaining both age and household structure) static and dynamic
opulations (Eubank et al., 2004; Ferguson et al., 2005; Ajelli and
erler, 2009; Guzzetta et al., 2011; Silhol and Boëlle, 2011). To

ate, these models do not explicitly capture the long-term impact
f demographic changes to both age and household structure that
nderpin the contact patterns most relevant to disease transmis-
ion.

We have previously described a parsimonious individual based
odel of household structure and dynamics capable of simulating a

ange of non-stationary demographic scenarios (Geard et al., 2013).
ere we use this model to show how demographic processes alter

he age and household structure of a population, and the effects
his has on patterns of contact, disease transmission and vaccine
mpact.

. The model

We  model a population of individual people characterised by
heir age, sex, and the household in which they currently reside.
ver time, people are born, age, enter into and leave couples
nd households, and eventually die. The dynamics of these demo-
raphic processes are parameterised using age- and sex-specific
ortality and fertility rates, and calibrated against observed pat-

erns of household formation and dissolution (see Supplementary
nformation for detail). By choosing appropriate rates, a variety of
emographic scenarios can be simulated, including stable, expo-

entially growing, and non-stationary populations (Geard et al.,
013). Here we focus on a population moving from a high to a low
ertility setting, using current and historical Australian census and
urvey data to calibrate our model. The key demographic trends
s 13 (2015) 56–64 57

included are an increase in life expectancy and a decrease in birth
rate, together with social factors such as an increase in the average
age of childbearing and an increase in the rate of couple separation.

This demographic model is overlaid with a Susceptible, Infec-
tious, Removed disease transmission model, with contact and
transmission simulated in the community and household settings.
As our primary focus is the role of household transmission, we
aggregate contacts occurring outside of the household—in locations
such as schools, workplaces and public spaces—into a matrix of age-
specific community contact rates. We  assume these contact rates
to be age-assortative; that is, people are more likely to come into
contact with others of a similar age to themselves (Mossong et al.,
2008). These contact rates are derived from the age structure of
the population and empirically observed activity levels (Hethcote,
1996; Mossong et al., 2008) (see Supplementary information for
detail). Within the community, we make the standard assumption
for large populations that transmission is frequency dependent. As
the age structure of the population evolves over time, we  recalcu-
late the community contact rates at five yearly intervals. Contacts
occurring within households are determined directly by the struc-
ture of the model population. Here we assume tha all individuals
within a household mix  equally with one enother, irrespective of
age. The degree to which household transmission is frequency or
density dependent is not well-established—and most likely varies
by disease (van Boven et al., 2010)—and can be varied within the
model.

Thus, the probability of a susceptible person in age class i becom-
ing infected in a given time step (here, 1 week) depends on the
prevalence of disease in their household and in the broader com-
munity, and is given by 1 − e−�i,NH , where the force of infection �i,NH

on an individual in age class i, in a household of size NH is given by

�i,NH
= qh

IH
(NH − 1)˛ + qc

∑

j

�ij
Ij
Nj

(1)

where qh and qc are transmission coefficients for household and
community transmission, IH and NH are, respectively, the number
of infectious people and the total number of people in the suscepti-
ble person’s household,  ̨ specifies the degree to which household
transmission is frequency (  ̨ = 1) or density (  ̨ = 0) dependent, �ij is
the average number of community contacts between a person in
age class i and people in age class j, and Ij and Nj are, respectively,
the number of infectious people and the total number of people in
age class j. In addition to endemic transmission, we also allowed
for the importation of infection from sources external to the pop-
ulation. At each time step, a susceptible individuals could become
infected from an external source with a small probability.

In this study, we  parameterised the demography of our pop-
ulation model based on historical Australian census and survey
data from 1910 to 2010 (Australian Bureau of Statistics, 2008, 2009,
2010a,b; de Vaus, 2004; Wilkins et al., 2011) (see Supplementary
information for detail). As data were only available on the aver-
age size of households in the Australian population in 1910, initial
household size distributions were estimated using a zero-truncated
Poisson distribution (Jennings et al., 1999). The model is stochastic,
and each scenario was  simulated 10 times; unless otherwise noted,
results reported represent means and standard deviations across
each set of simulations. Starting populations for all simulations
were created by running the model for 200 years, using the earliest
available demographic rates, to reach an endemic disease equilib-
rium. Final population sizes in each simulation were approximately
225,000. Importation of cases from an external source (equiva-

lent to 5 × 10−6 cases per person per week on average) was used
to prevent epidemic fade-out due to stochasticity. The model is
implemented in Python and source code is available from http://
bitbucket.org/ngeard/simodd-pub.

http://bitbucket.org/ngeard/simodd-pub
http://bitbucket.org/ngeard/simodd-pub
http://bitbucket.org/ngeard/simodd-pub
http://bitbucket.org/ngeard/simodd-pub
http://bitbucket.org/ngeard/simodd-pub
http://bitbucket.org/ngeard/simodd-pub
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ig. 1. The evolution of (A) age distribution (years) and (B) household size distri-
ution of a simulated population over 100 years, showing the demographic shift
owards an older population living in smaller households.

. Results

.1. Effects of demographic change on population structure and
ixing behaviour

The demographic changes modelled here have a marked effect
n population structure. Using historic demographic rates, the
edian age of the model population increases from 23 to 40 years

Fig. 1A), while mean household size decreases from 4.5 to 2.6 peo-
le (Fig. 1B), comparable to both the increase in median age from
2 to 37 years and reduction in mean household size from 4.5 to
.6 that have been observed in the Australian population during the
0th century (Hugo, 2001). In turn, these shifts affect how people
ix  in a population. As the population ages, the relative proportion

f community contacts that are made with adults increases for all
ge groups (Fig. 2A,B). With data-driven assumptions about rates
f household formation and dissolution, we can also infer how pat-
erns of household contact change as fertility declines (Fig. 2C,D). As
ouseholds become smaller, the overall level of contact occurring in
his setting decreases and patterns of contact between age groups
hange. In particular, children have less contact with siblings and
elatively more with their parents.

.2. Effect of demographic change on disease dynamics

For our baseline scenario, we chose parameters corresponding
o a highly transmissible “measles-like” illness. The duration of
nfection for each case was sampled from an Erlang distribution

k = 5, � = 2) with a mean duration of 2 weeks, roughly equivalent
o the generation time of measles (Finkenstädt and Grenfell, 2000).
ommunity and household transmission coefficients (qc = 0.01 and
h = 0.8) were chosen such that a randomly selected individual
s 13 (2015) 56–64

in a fully susceptible population would infect around 17 individ-
uals in total, and 80–100% of their household. We  assume that
household transmission is frequency dependent (  ̨ = 1), but also
explore the effect of density dependent household transmission.
As described above, a key feature of our model is the inclusion of
realistic household structure. To establish the independent effect
of household mixing on disease dynamics during the shift to a low
fertility setting, we compared our baseline scenario to a scenario
in which there was  no household transmission (qh = 0), and com-
munity transmission was re-calibrated to ensure that a randomly
selected individual in a susceptible population would still infect
around 17 individuals (qc = 0.017).

Incidence of disease decreases over the 100 year period simu-
lated, from approximately 25 to 10 cases per 1000 people annually,
in the absence of any vaccination (Supplementary information, Fig.
S1A). This decrease in incidence occurs at an equivalent rate in
simulations both with and without household mixing, suggesting
that declining fertility, rather than change in household structure,
is the key driver. As the prevalence of disease in the popula-
tion falls, it takes longer for a susceptible child to be exposed
to infection, and the average age of infection increases from
approximately 4.5 to 10.5 years with households and approxi-
mately 9 years without households (Supplementary information,
Fig. S1B). The decrease in incidence was observed irrespective of
whether frequency or density dependent household transmission
was used, as could be expected given the high transmissibility asso-
ciated with the household setting (Supplementary information, Fig.
S2).

While overall disease incidence is similar with or without house-
holds, the inclusion of household mixing has a stronger effect on
the distribution of incidence by age (Fig. 3A,B), reducing incidence
in infants and children aged less than 5 years. Children in both sce-
narios make an equivalent number of daily contacts; however, the
inclusion of household structure alters who  these contacts are with.
Fewer contacts are made with the general pool of predominantly
susceptible children in the community, and more are made with
household members, including parents, who  by virtue of their age
are more likely to be immune and hence pose a lower risk. This dif-
ference in incidence by age is more pronounced in the low fertility
setting (Fig. 3B). Smaller households typically contain a greater pro-
portion of adults, which intensifies the potential “cocooning” effect
of households.

Disease incidence increases with household size, both with and
without household mixing (Fig. 3C,D). Larger households are more
likely to have experienced recent birth events and hence more
likely to contain susceptible infants. The relationship between inci-
dence and household size is stronger in the low fertility setting
(Fig. 3D). That is, even as large households become less common
in the population (Fig. 1B), the relative risk of infection associated
with being born into them (compared to smaller households) is
greater.

The increased risk associated with large households in the low
fertility setting is a consequence of changes to patterns of suscepti-
bility in households. In the high fertility setting, disease prevalence
is also high and the average age of infection is low. Thus, each child
born into a household will tend to be infected before the birth of
their younger siblings. By the time subsequent children are born
to a household, their older siblings will already have been infected
and acquired immunity, so there will be limited opportunity for
onward transmission within the household. In contrast, in the low
fertility setting, when disease prevalence is lower and the average
age of infection is higher, there is a longer window of opportunity

for households to accrue additional children prior to the introduc-
tion of disease. In high fertility households, this delay enables the
accumulation of greater numbers of susceptible children prior to a
household outbreak (Fig. 4A).
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Fig. 2. Contact matrices from a sample simulation run showing age-specific rates of contact in the community (A and B) and households (C and D) in the high (A and C) and
low  (B and D) fertility settings. The contacts of individuals aged 75–100 years have been binned. Equivalent colour scales are used for each pair (A,B and C,D) of matrices.
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ommunity contact is age-assortative, and changes in the matrix structure over ti
ge-assortative contact between couples and among siblings, as well as inter-gener
hift  towards households containing fewer children.

The presence of multiple susceptible children in a household
oses two risks. First, there are more opportunities for disease

ntroduction arising from contact between a susceptible household
ember and infection in the wider community. Second, the clus-

ering of susceptible children provides ideal conditions for onward
ransmission within the household. Indeed, the proportion of cases
or which the source was a household member increases with
ousehold size, and also over time (Fig. 4B). Thus, in the low fer-
ility and low prevalence setting, more cases will occur in larger
ouseholds than might be expected, given their relative scarcity in
he population.

It is important to note that population-level observations can
e misleading as a guide to disease dynamics within households.
ver the entire population, the level of transmission within the
ousehold appears to remain constant or even decrease slightly
ver time (Fig. 4B, dashed line). However, for a case occurring in

 household of a particular size, the probability that the source of
nfection is a household member actually increases over time, for
ouseholds of all sizes (Fig. 4B, solid lines). The apparently con-
radictory population-level trend reflects the demographic shift
owards smaller households (Figure 1B), which experience lower
evels of transmission within the household.
.3. Interactions between demographic change and vaccination

Demographic context can affect vaccine impact (Metcalf et al.,
011), and both changing demography and vaccination have
flect the shift towards an older population. The household contact matrices show
l contact between parents and children. Changes in the matrix structure reflect the

contributed to observed reductions in disease such as measles
(Merler and Ajelli, 2014). To ascertain the effect of household
structure on vaccination, we compared two control scenarios
to the baseline scenario described above. Each control scenario
introduced vaccination in year 60 of the simulation, corresponding
to the era when uptake of childhood vaccination against disease
such as measles and pertussis became widespread in Australia. In
the individual vaccination scenario, each infant born after vaccine
introduction had an independent probability v of being vaccinated
and receiving lifelong immunity. In the household-based vaccina-
tion scenario, the probability of vaccination was evaluated at the
household level, recognising that the vaccine status of children
from the same household is likely to be correlated (Smith et al.,
2004). In this scenario, the first infant born into a household after
vaccine introduction was vaccinated with probability v. Thereafter,
subsequent infants born into a household were vaccinated only if
their older siblings were. Across the population, an equal propor-
tion of infants were vaccinated in both scenarios.

The simulated vaccine interventions further reduce popula-
tion susceptibility, with associated impact on disease incidence
(Fig. 5A,B). However, the impact of the vaccine intervention
depends critically upon our assumptions about the households that
vaccinated people belong to. If children born to the same household

share vaccination status (as in the household-based vaccination
scenario), then the reduction in incidence is less than if the decision
to vaccinate is made independently for each child, across a range of
coverage levels (Fig. 5C). The additional disease burden under the
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Fig. 3. Incidence with and without household mixing by age group (A and B) and household size (C and D) in the high (A and C) and low (B and D) fertility settings. Error
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ars  show standard deviation over 10 independent simulation runs. With househo
articularly in the smaller households that predominate in the low fertility setting.
eing born into them is greater.

ousehold-based vaccination scenario is evident across age classes
ut is greatest in younger age groups, who may  be most likely to
xperience severe disease (Fig. 5D).

These differences are a consequence of the effect that each vac-
ination scenario has on the distribution of susceptibility across
ouseholds. Vaccinating children at random, irrespective of the
ousehold they belong to, reduces the size of susceptible clusters
cross households of all sizes, reducing the risk of disease introduc-
ion and onward transmission (Supplementary information, Fig.
3). In contrast, vaccinating children by household reinforces the
lustering of susceptibility observed in the low fertility setting, par-
icularly among larger households (Supplementary information,
ig. S4). Randomly targeted vaccination is unlikely to ever be a
ealistic policy option (House and Keeling, 2009); however, these
esults illustrate the potential for a vaccine’s impact to be over-
stimated if household clustering is not accounted for.

. Discussion

Demographic change can have a profound impact on the struc-
ure of populations, and consequently on mixing patterns, and the
pread and control of infectious diseases. Here we have used an
ndividual based model with evolving age and household structure
o explore the effects of demographic change on mixing behaviour
nd disease dynamics. In agreement with existing age-structured
odels (Manfredi and Williams, 2004; Ferrari et al., 2013; Merler

nd Ajelli, 2014), lower fertility levels lead to reduced incidence at
he population level and an increase in the average age at infection,
ven in the absence of vaccination and other factors.

However, because our model explicitly includes households,
t also demonstrates how changes in a population’s demog-

aphy affect mixing behaviour and disease incidence at the
ub-population level, and it is here that we make three impor-
ant and perhaps surprising observations. First, even a relatively
imple model of contact that includes just household and
ing, infants and young children benefit from the “cocooning” effect of households,
ver, while large households are rarer, the relative risk of infection associated with

community locations can produce contact matrices (Fig. 2) that
recapture key features of empirically observed contact patterns:
high levels of household mixing within age groups, corresponding
to interactions among siblings (in younger age groups) and between
couples (in older age groups), and secondary “wings” reflecting
inter-generational contact between parents and children (Mossong
et al., 2008). As populations age and smaller households become
more common, the relative contribution of adults to mixing in
the household setting increases, both among adults, and between
adults and children. The increase in relative contribution of adults
to mixing behaviour in the low fertility setting accords with recent
observations of the importance of adults as sources of infection
in children (Schellekens et al., 2005; Jardine et al., 2010). Second,
even as large households become less common in a population, the
risk of infection associated with being born into these households
increases (Fig. 3D). In the low fertility setting, lower disease preva-
lence provides increased opportunity for susceptible children to
accumulate in large households (Fig. 4A). These susceptible clusters
increase both the opportunity for infection to enter a household,
and the potential size of the resulting outbreak when it does. Finally,
the impact of vaccination will be reduced if vaccine status is corre-
lated within households (Fig. 5), as observed in previous studies of
populations with static household structure (Ball and Lyne, 2002;
House and Keeling, 2009). The persistence of susceptible clusters in
non-vaccinating households allows higher levels of endemic trans-
mission compared to a scenario in which unvaccinated children are
distributed at random in a population. Given the important role
of parents in vaccination decisions, both psychological and envi-
ronmental factors support the likelihood of shared vaccine status
among siblings (Luman et al., 2003; Smith et al., 2004).

A major challenge when modelling historical disease scenarios

is the absence of data to parameterise mixing behavior, and inter-
pret how changes in the age structure of a population will translate
into patterns of contact (Manfredi and Williams, 2004; Merler and
Ajelli, 2014). Studies aiming to quantify mixing behaviour related
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Fig. 4. Patterns of susceptibility and transmission within households during the
shift from a high to low fertility setting. Each series shows mean values and standard
deviations across 10 independent simulation runs. (A) The average number of sus-
ceptible people in a household at the time of disease introduction (excluding the
index case) by household size; (B) the proportion of infections for which the source
was  a household member, over the whole population (dashed line), and by house-
hold size (solid lines), estimated using the relative force of infection acting from
community and household sources in Eq. (1). Overall, larger households accumu-
late  larger susceptible clusters between outbreaks, and experience higher levels of
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as maternal immunisation and cocooning (Coudeville et al., 2008).
ithin household transmission. Clustering of susceptibility and household trans-
ission increases in households of all sizes.

o the transmission of respiratory illness were first conducted in the
990s (Edmunds et al., 1997; Wallinga et al., 1999). The POLYMOD
tudy provided one of the largest data sets on patterns of contact
itherto gathered (Mossong et al., 2008) and has, as a consequence,
ecome a de facto standard for parameterising models of disease
pread. However, while broad in scope (covering eight European
ountries), POLYMOD captures social behaviour in a specific geo-
raphic and temporal context, and it is arguably inappropriate to
se in earlier time periods or for populations with different social
tructures. Recent studies in urban and rural regions of China (Read
t al., 2014), Thailand (Stein et al., 2014) and Vietnam (Horby et al.,
011) are starting to improve our understanding of how contact
atterns vary across different societies and cultures.

Furthermore, the contact matrices used in compartmental mod-
ls also typically do not capture variation in the intensity of
ixing in different settings, although a recent method for construc-

ing matrices directly from demographic data does allow contacts
ccurring in different locations to be weighted (Fumanelli et al.,
012). Compartmental models also fail to capture the heterogene-

ty of mixing behaviour within a given age group that arises from
he household setting. An entry in a contact matrix describes the

verage level of contact between people in two age classes. How-
ver, the real contact patterns of two adults of the same age will be
ery different if, for example, one lives alone while the other lives
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with a partner and children. From the other perspective, house-
holds of the same size will have very different contact patterns
depending on the age of their members. For example, three-person
households could consist of two  young parents with a newborn
infant, two older parents whose youngest child has yet to leave
home, or a single parent with two school age children. In each case
the mixing behaviour and disease risk are likely to differ.

The individual based model described here addresses these chal-
lenges by explicitly simulating how mixing behaviour arises from
the demographic structure of populations. Age and household size
distributions are often available, or can be estimated, for histori-
cal populations. Drawing on census and survey sources, our model
enables us to estimate mixing behaviour in a way  that captures
both a natural and important way in which populations cluster and
mix  within heterogeneous groups (households), as well as plausi-
ble patterns of interaction between those groups, defined in terms
of the age-specific patterns of community contact of each of their
members. Our model focuses on the changes wrought by demo-
graphic change on age and household structure. However, it is likely
that, during the 20th century, other social factors would have influ-
enced mixing behaviour, such as changing patterns of travel, work
participation and childcare. In the absence of historic contact data,
we have assumed that the total number of community contacts
that a person makes has remained constant over time, such that all
changes to contact patterns are a result of changing age and house-
hold structure, and that community contacts are independent of
household size. In its current form, our model balances the com-
plexity necessary to produce the household dynamics associated
with changing demography against parsimony in choice of model
parameters.

Similarly, we have modelled an infection with “measles-like”
characteristics in order to illustrate how changes to a population’s
demographic structure affect the spread of disease. Calibration
against historical data could enable more specific predictions about
particular diseases, but such calibration efforts must confront two
challenges. First, as demonstrated here and elsewhere (Merler and
Ajelli, 2014; Marziano et al., 2015), the dynamics of an infec-
tious disease are dependent on the demographic trajectory of
a population. The data, both demographic and epidemiological,
required for calibration of disease transmission in the presence of
demographic instability are scarce, particularly for historical time
periods. Second, historical data that are available can be biased by
understanding of disease characteristics at the time of their col-
lection. For example, in the pre-vaccine era, pertussis infection in
adults was not commonly recognised, and historic measurements
of disease prevalence are likely to underestimate true incidence
(Gunning et al., 2014).

Our findings demonstrate the potential for changes in pop-
ulation’s demography to affect its experience of disease, with
significant interactions between fertility rates and the household
size distribution. This important context must be appreciated when
interpreting the past and likely future impact of vaccine strategies.
Experience with the combined measles, mumps and rubella vaccine
has shown that vaccination programs can have unintended long
term effects, such as the potential for decreased levels of maternal
immunity among children born to vaccinated mothers (McLean,
1995; Waaijenborg et al., 2013). Our model further highlights the
contribution of changes in population structure to the long-term
impact of vaccines. The ability to track patterns of disease and sus-
ceptibility at the household level is particularly important when
evaluating vaccine strategies that explicitly target households in
an effort to provide local herd immunity for young infants, such
We have used the model described here to compare the effective-
ness of alternative antenatal and postnatal vaccination strategies
(Campbell et al., submitted for publication).
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Fig. 5. Combined impact of vaccination and demographic change on annual disease incidence. Annual incidence for the baseline scenario with no vaccination (A), and the
h tion. 
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left  axis). (C) Vaccine impact in 2010, after 40 years of vaccination, for varying level
isease incidence by age group, aggregated over the final 20 years of simulation, fo

Households, and their changing structure, could also help in
nderstanding of vector borne diseases. For example, it has been
emonstrated that an observed decrease in prevalence and accom-
anying increase in average age of dengue hemorrhagic fever in
hailand can be accounted for by changes in birth and death rate
Cummings et al., 2009). However, household clustering of dengue
ases has been observed, particularly in rural settings (Getis et al.,
003). Households are also an obvious foci for control measures
uch insecticides and screening, suggesting that it may  be worth
xploring the possible impact of future changes in household struc-
ure.

In countries with established vaccination programs, our results
ighlight how the correlation of vaccination status within house-
olds can exacerbate the formation of susceptible clusters. We
ight expect the risk of outbreaks to be further heightened if

nder-immunisation is associated with larger households, and if
hese households are geographically co-located. Evidence of this
eightened risk can be seen in measles outbreaks occurring among
he large family groups prevalent in ultra-orthodox communities
n Jerusalem (Stein-Zamir et al., 2012). The recent development of

 global Vaccine Confidence Index suggests that addressing trust
n vaccination is a challenge that transcends political and cultural
oundaries (Larson et al., 2015).

Finally, our results highlight the importance of considering
uture demographic trends when evaluating the introduction of
accine programs to new countries. It is clear that the decision to
ntroduce a new vaccination program into a country must take into
onsideration the local factors that may  affect it’s success. Rubella
accination is a canonical example, where the benefits associated
ith vaccination must be balanced against the risks that insuffi-

ient coverage may  lead to an increase in average age of infection,

esulting in an increase in congenital rubella syndrome (Lessler
t al., 2013). Previous studies have focused on the role played by
hanges in age structure that result from declining fertility (Gao
nd Hethcote, 2006; Metcalf et al., 2012), but the implications of
Also shown are weekly incidence plots for a pair of representative simulation runs
fective vaccine coverage under individual and household vaccination scenarios. (D)
coverage under individual and household vaccination scenarios.

broader changes in contact patterns have been less frequently con-
sidered. The simulations reported here have focused on a vaccine
introduced at an advanced stage of demographic transition. Some
less developed countries are likely to experience similar patterns of
demographic change in the future. If these countries follow a similar
path to that experienced by more developed countries, disease inci-
dence may  reduce even in the absence of vaccination, but clustering
of unvaccinated sub-populations will pose ongoing challenges to
control and elimination.
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