
  

 

Abstract—Groundwater contamination is one of the serious 

environmental problems. Effective remediation strategies 

require accurate characteristics of contamination sources. 

Contamination source identification approaches need accurate 

flow and contaminant transport simulation models. In order to 

obtain reliable solutions, the simulation models need to be 

provided with reliable hydrogeologic information. In real life 

scenarios usually sparse and limited hydrogeologic information 

is available. In this study two hydraulic conductivity sampling 

networks are ranked based on their effectiveness in identifying 

reliable contamination source characteristics. Using multiple 

realizations of hydraulic conductivity fields, and the location 

and size of the contaminant plume at different monitoring 

stages, an index of reliability is estimated for each hydraulic 

conductivity sampling network. It is demonstrated that the 

source characteristics identified by utilizing the sampling 

network with higher index of reliability results in more 

accurate characterization of contamination sources. Therefore 

the developed methodology provides a tool to select an 

appropriate hydrogeologic sampling network for more efficient 

characterizing of contamination sources. 
 

Index Terms—Groundwater contamination, uncertainty, 

hydraulic conductivity, reliability. 

 

I. INTRODUCTION 

Groundwater contaminations can result from inappropriate 

industrial operations, waste disposal, and mining activities. 

The two most common real-world scenarios which need to be 

assessed precisely in contaminated groundwater systems are: 

1) existing groundwater contamination from past activities, 

and 2) possible contamination that may rise from proposed 

future activities [1]. Characterization of contamination 

plumes and designing effective remediation plans require an 

accurate characterization of contamination sources. The (1) 

location, (2) activity duration, and (3) magnitude of injected 

pollutant fluxes are three important characteristics which 

enable engineers and managers to delineate and control 

contamination plumes. The contamination sources are 

characterized using an optimization method which aims to 

minimize the difference between simulated and measured 

contaminant concentrations at monitoring locations.  

The simulation model should replicate the actual migration 
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of contaminants in a groundwater aquifer. The groundwater 

hydrogeologic parameter values and boundary conditions are 

essential inputs to the simulation model. However, the 

hydrogeologic parameter values are inherently uncertain and 

imprecise, and acquiring data is a time consuming and cost 

extensive procedure. Therefore, a new methodology is 

developed to evaluate the reliability of the available 

hydrogeologic information with respect to its contribution to 

the accuracy of contaminant source characterization process. 

Amirabdollahian and Datta [2] presented an overview on 

pollutant source identification techniques and discussed 

some of the relevant issues in this area. The linked simulation 

optimization technique characterizes the contamination 

sources by an internal linkage between flow and contaminant 

transport simulation models and the selected optimization 

technique [3]-[5].  

The solution of water flow and transport model requires 

the knowledge of various soil hydrogeologic parameters as 

well as the determination of boundary conditions, which are 

subjected to different sources of uncertainty. Tiedeman and 

Gorelick [6] studied the model parameter uncertainty 

(hydraulic conductivity and recharge factor) in the design of 

clean up strategy in a Vinyl Chloride contaminated system.  

In a Long Term Monitoring (LTM), the uncertainty in the 

hydrogeological condition needs to be addressed to be able to 

track successfully the contamination plume. Mugunthan and 

Shoemaker [7] evaluated the efficiency of the LTM designs 

by their performance in simultaneously interpolating many 

equally likely plume configurations that may be possible for a 

given set of hydrogeological data. Their model minimizes the 

monitoring installation, sampling, and analyzing costs. The 

optimization is constrained by the relative error in the 

estimation of total mass over all grid points at which the 

interpolation was performed. Amirabdollahian and Datta [8] 

studied the effect of hydrogeologic parameter value 

uncertainty in optimal characterization of contamination 

sources.  

An uncertainty analysis is a vital component of the 

contaminant characterization which feeds the risk analysis 

and the economic targets. In this study the un-modeled 

uncertainty associated with hydrogeologic parameter value is 

addressed. The hydraulic conductivity uncertainty has major 

impact on the accuracy of the flow and contaminant transport 

models. A new framework is developed to evaluate the 

impact of the adopted hydraulic conductivity sampling 

network on the accuracy of contamination source 

characterization model. Therefore, the acquired information 

about the accuracy of identified source characteristics can be 

used to design low risk remediation plans. The following 

sections discuss: the linked simulation-optimization 

contaminant source identification methodology; the model 
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for analysis of reliability of available flow field information 

(sampled hydraulic conductivity data); and, the performance 

evaluation of the proposed methodology for an illustrative 

study area. It is followed by the discussion of solution results 

and conclusions. 

 

II. THE LINKED SIMULATION OPTIMIZATION 

CONTAMINATION SOURCE IDENTIFICATION 

The source identification model consists of an 

optimization algorithm which switches the inverse source 

characterization process to a forward simulation model. The 

optimization model generates candidate unknown source 

fluxes (decision variables) which are utilized to estimate 

resulting contaminant concentrations at monitoring wells in a 

forward simulation model. Finally the optimal solution is 

obtained by minimizing the differences between observed 

and simulated values. The objective function for the 

optimization problem is defined as follow. 

2 2

1 1

( ) / ( )

nk nob
k k k
iob iob iob
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Min F Cest Cobs Cobs 

 
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max0 1,...,iq q i N                                (3) 

 

where nk, nob and N are the total number of concentration 

observation time periods, available monitoring locations and 

candidate source locations, respectively. k
iob

Cest and 

k
iob

Cobs are the concentration estimated by the simulation 

model and the observed concentration at the observation 

location iob and at the end of time period k, respectively. qi is 

the contaminant release flux for the candidate location i. 

maxq is the upper bound for contaminant release fluxes. α is a 

constant and it should be sufficiently large so that errors at 

low concentrations do not dominate the solution [5]. The 

objective function is constrained by the flow and transport 

simulation models (Eq. (2)). Eq. (3) limits the candidate 

contaminant flux values, at each potential location, to an 

upper bound. 

The Adaptive Simulated Annealing (ASA) optimization 

algorithm is utilized in this study. Simulated Annealing (SA) 

starts from a feasible solution and an objective function. A 

new solution is randomly selected from its neighbors and the 

objective function is evaluated for the new selected solution. 

If the new solution has a better objective function value, the 

most recent solution is accepted and the search moves to a 

new point and continues from there. If the new solution is not 

better than the current one, the new solution may or may not 

be accepted depending on the acceptance probability. The 

acceptance probability is strongly influenced by the choice of 

a parameter T. ASA is a variant of SA in which the algorithm 

parameters that control the temperature schedule and random 

selection are automatically adjusted according to the 

algorithm progress. This makes the algorithm more efficient 

and less sensitive to the user defined parameters required to 

be estimated in SA [9]. 

In this study the available spatially sparse hydraulic 

conductivity parameter values are interpolated to the whole 

aquifer using an interpolation method. The flow and transport 

simulation models use a set of interpolated conductivity data 

to estimate the contaminated concentration at the monitoring 

locations. The choice of hydraulic conductivity sampling 

locations affects the reliability of flow and transport 

simulation models.  

 

III. RELIABILITY EVALUATION 

A. Generation of Hydraulic Conductivity Field 

An interpolation algorithm estimates the spatial 

distribution of parameter values. Using a limited available 

number of hydraulic conductivity data points, different 

realizations of a hydraulic conductivity field can be 

estimated. Usually one single interpolation technique does 

not work well for all simulations. The geostatistical 

interpolation algorithms provide a framework for the 

incorporation of the spatial variability. However, they are 

computationally demanding, and also to obtain accurate 

results they require a large number of data points with known 

values. Mugunthan and Shoemaker [7] compared the 

efficiency of three interpolation algorithms: Inverse squared 

Distance weighting (ID); Ordinary Kriging (OrK); and 

Quantile Kriging (QK). The ID is a simple deterministic 

method, whereas OrK and QK are non-deterministic 

geostatistical methods. They showed that the OrK and ID 

almost perform equally well. However, the ID method was 

chosen over OrK due to the ease of computation.  

Following the result of Mugunthan and Shoemaker [7] and 

considering the fact that in real life usually a limited number 

of data points with known values are available, the ID 

method is utilized. Note that Kriging needs a carefully 

selected sample variogram and an appropriate 

log-transformation of the data. To acquire the accurate 

statistical properties of data, a substantial number of 

measurements is required. However, usually in real 

contaminated sites the number of available hydraulic 

conductivity measurements is limited (compared to the size 

of study area) and not enough to accurately estimate the 

statistical properties of hydraulic conductivity distribution 

for the entire study area.  

Using the ID method, the value of variable Z at the 

un-sampled location x0, 
*

0( )Z x , is estimated based on the 

data from the surrounding locations, ( )iZ x , as Eq. (4).  

*
0

1

( ) ( )

n

i i

i

Z x w Z x



                            (4) 

where wi are the weights related to the each ( )iZ x value and n 

is the number of the closest sampled data points used for the 

interpolation purpose. The weights are estimated using Eq. 

(5). 
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where di is the distance between the estimated point and the 

sample. Usually n is selected based on the spatial correlation 

between the available data points. However, to have an 

accurate estimation of the statistical correlation, a substantial 

number of measurements is required. Therefore, usually in 

actual study areas, the n value is selected based on the 

experience and judgment of the decision maker.  

Based on the decision of the n value, different realizations 

of the hydraulic conductivity field can be estimated from a 

given set of sampling locations. In this study for the 

evaluation purpose, four realizations of the hydraulic 

conductivity field is generated for each set of sampling 

locations. The ID interpolation algorithm involves 

generations of equally likely flow conditions using 25, 50, 

75, and 100 percent of the actual available data points as the 

number of closest neighbors included in the interpolation. 

B. Hydraulic Conductivity Uncertainty Calculation 

Contaminants are injected from sources at unknown times 

and are spread over a groundwater aquifer. The accuracy of 

spatial and temporal estimates of the concentrations depends 

on the accuracy of the hydraulic conductivity field. The index 

of spatial uncertainty and variability of a hydraulic 

conductivity field is estimated using Eq. (6). 
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where 
, ,i j kl

k
 and , ,i j klk are the hydraulic conductivity value at 

location i, j, and kl using the ηth realization and the average 

hydraulic conductivity value at location i, j , and kl using all 

realizations, respectively. R is the total number of 

realizations. , ,i j kl  is estimated for all cells in a finite 

difference discretized study area.  

C. Contamination Plume 

The contamination plume boundaries are identified using 

the available contaminant monitoring concentrations. The ID 

method using all available concentration measurements 

estimates the spatial concentrations at any given time. 

To ensure realistic spatial estimates, a threshold value is 

required to be considered to define the plume boundary at 

monitoring times. The plume boundary as defined by a 

threshold concentration magnitude is estimated with respect 

to the measured contaminant concentrations at any given 

time. At each monitoring time stage, the measured 

concentrations are interpolated throughout the aquifer using 

the ID interpolation algorithm. Then the lower twenty five 

percentile value of all interpolated or measured 

concentrations is defined as the threshold for the plume 

boundary at a given time. 

The finite difference numerical method is used to estimate 

the contaminant concentrations. Any particle of contaminant 

starts migration from the contamination source. At any given 

location, the uncertainty in the hydraulic conductivity value 

at that specific location affects the accuracy of the estimated 

concentration. The inaccuracy generally propagates along the 

flow direction due to the transport of the contaminants over 

the aquifer. In this way the inaccuracy is propagated through 

the migration of the plume over the whole aquifer.  

D. Reliability Estimation 

The index of reliability for a selected hydraulic 

conductivity sampling locations is estimated using the 

characterized contaminant plumes and indices of spatial 

uncertainty and variability of hydraulic conductivity. The 

salient steps in the proposed methodology are described 

below: 

Step 1: The indices of spatial uncertainty and variability of 

conductivity are estimated for all discretized cells using Eq. 

(6). 

Step 2: The monitoring time stage counter is set to 1 (k=1). 

Step 3: The measured contaminant concentrations at time 

stage k are interpolated throughout the study area (Ci,j,kl.) 

Step 4: The lower twenty five percentile value of the 

interpolated or measured concentrations is defined as the 

plume boundary threshold (λ). 

Step 5: For all cells,  
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Step 6: For all t ≤ k if , ,
t
i j kl =1 then , ,

k
i j kl =1. 

Step 7: Increase the time counter by 1. If k≤ nk (nk in the 

total number of monitoring time stages), repeat steps 3 to 6 

for each monitoring time stage. 

Step 8: Estimate the reliability index (µ) using Eq. (7). 

 

, , , ,

1 1 1 1

1/ ( ( ))

Nlaynk Nrow Ncol
k
i j kl i j kl

k i j kl

  
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                  (7) 

 

where Nrow, Ncol, and Nlay are the number of rows, columns 

and layers of the finite difference discretized study area. µ is 

estimated for any given set of hydraulic conductivity 

sampling locations. The sampling network with higher 

reliability index is expected to result in higher accuracy in 

estimation of contaminant source characteristics.  

 

IV. PERFORMANCE EVALUATION 

The method for estimation of the reliability index for a 

given hydraulic conductivity sampling network is 

demonstrated in a three-dimensional hypothetical 

contaminated aquifer. Performance of the developed 

methodology is evaluated using a hypothetical study area and 

synthetic hydraulic conductivity data. An advantage of using 

synthetic data, for the evaluation purpose, is that the actual 

source characteristics used to simulate the aquifer responses 

and also the hydrogeologic data are known, which allows for 

testing of the developed methodology, independent of field 
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data reliability. 

A. Study Area 

The study area is 1500 m long, 1000 m wide and 30 m 

deep. It is discretized into 30 rows, 20 columns and two 

layers. The plan view of the study area is illustrated in Fig. 1. 

The top, bottom and left side boundaries have specified 

heads, and the right hand side one has variable head 

boundary conditions. The location of active extraction wells 

(sinks), the candidate contamination source locations, and 9 

monitoring wells are shown by triangular signs, square signs, 

and numbers, respectively. The hatched boxes show two 

hydraulic conductivity sampling networks. Two of the 

contamination sources are active and actual and one is 

dummy (not actual source). The contaminant fluxes are 

specified constant in every stress period. The study period is 

divided into five stress periods. Table I shows the length of 

stress periods, and the extraction wells, and contaminant 

sources properties. 

 
TABLE I: CHARACTERISTICS OF THE CONTAMINATION SOURCES AND EXTRACTION WELLS 

 Location Stress Period 

 Row Column Layer 
1 

183 days 

2 

183 days 

3 

183 days 

4 

183 days 

5 

2196 days 

Contamination 

Source 

Flux (kg/day) 

12 11 1 70 90 35 20 20 

15 15 1 Dummy Source 

20 13 1 95 85 75 50 0 

Extraction well 

Flow rate (L/day) 

22 7 1 100 

23 16 1 500 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Study area. 

 

In the evaluation process, it is assumed that all the aquifer 

hydrogeologic parameter values are known without any error 

except the hydraulic conductivity (K). Table II shows the 

aquifer parameters and characteristics.  

B. Flow Field 

The flow field is analogous to the real hydrogeologic 

condition in field. The actual hydraulic conductivity values 

are generated randomly throughout the study area, 

considering a heterogeneous hydraulic conductivity field. 

The study area is divided into grids each 50 m long, and 50 m 

wide for the purpose of specifying hydraulic conductivity 

values. Considering a two-layer three-dimensional model, for 

each location two K values corresponding to the 10 m and 20 

m depths are required.  

A realistic presentation of porous medium can include a 

hydraulic conductivity field distributed as a Log-Normal 

function through space [10]. When the K is log-normally 

distributed and Y=log K, then the parameter Y can be 

generated from a normal distribution function with mean 

Y and standard deviation Y . A truncated Latin Hypercube 

Sampling (LHS) is utilized to produce more efficient 

estimates than those obtained from random sampling of the 

distribution function. In the LHS the probability distribution 

function is divided into non-overlapping, equal-probability 

intervals. The sample is taken from each interval and 

permuted in a way that the correlation of the field is 

accurately presented [11]. The sampling is truncated to the 

values which are within (0.6 Y , 1.4 Y ) range. For the 

values located at the depth of 10 m, the mean and standard 

deviation are 20 m/day and 15% of the mean, respectively. 

The distribution function utilized for the 20 m depth has a 

mean value of 15 m/day, and the standard deviation is 0.15 

(Constant Head Boundary H=25 m) 
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times mean value. Using the Kriging interpolation technique, 

the actual hydraulic conductivity field for the evaluations is 

generated. Fig. 2 shows the K values for the aquifer first 

layer. 

C. Hydraulic Conductivity Sampling Network 

Two sets of hydraulic conductivity sampling locations are 

considered. Assuming the budgetary limitations, 20 samples 

are collected in both cases. However, different sampling 

locations are selected for each network. In Fig. 1, sampling 

networks are shown. The black boxes located on the 

boundaries show Sampling Network A, and the red boxes 

located within the study area, show Sampling Network B. 

The plan view shows, 10 locations for each network. Note 

that samples are collected for both layers at two depths (10 m 

and 20 m). Therefore, in total 20 samples are collected in 

each case.  

 

 
Fig. 2. The actual hydraulic conductivity field, first layer (unit is m/day). 

 

 
(a) 

 
(b) 

Fig. 3. Generated hydraulic conductivity fields using the ID interpolation 

algorithm and n=20. (unit is m/day): (a) using sampling network A, (b) using 

sampling network B. 

 

In real life cases, samples are collected at selected 

locations, then analyzed and corresponding hydraulic 

conductivity values are obtained. In this example, the 

illustrative study area (Fig. 2) is the representative of the 

actual field. Therefore, the hydraulic conductivity 

measurement values corresponding to the sampling locations 

are obtained using the hydraulic conductivity field as 

described in the section “Hydraulic Conductivity Field”. 

The flow simulation model (MODFLOW) requires 

hydraulic conductivity values at all the finite difference 

discretized cells. The ID interpolation algorithm is utilized to 

generate the entire hydraulic conductivity fields using data 

collected at sampling locations A and B (Fig. 3). 

As Fig. 3 shows, the interpolated conductivity fields using 

sampling network A and B are not identical. Although, both 

hydraulic conductivity sampling data are collected from one 

actual field, different interpolated values are generated. The 

differences among Fig. 2, Fig. 3(a) and Fig. 3(b) demonstrate 

the source of un-modelled uncertainty in flow simulation 

model. In real aquifers, precise hydrogeological 

characteristics are not available. Therefore, the only typical 

available data are as the fields shown in the Fig. 3(a) and Fig. 

3(b).  

 

 
(a) 

 
(b) 

Fig. 4. Index of spatial uncertainty and variability of hydraulic conductivity. 

( , ,i j kl ): (a) sampling network A, (b) sampling network B. 

 

TABLE II: AQUIFER PARAMETERS AND CHARACTERISTICS 

Length (m) 1500 

Width (m) 1000 

Depth (m) 30 

Porosity  0.25 

Longitudinal Dispersivity (m) 35 

Horizontal Dispersivity (m) 3.5 

Vertical Dispersivity (m) 0.35 

Specific Storage (m-1) 0.2 

 

D. Index of Spatial Uncertainty and Variability of 

Conductivity 

At this stage four realizations for each sampling network A 

1 

2 
3 

4 

5 

6 

7 
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(Constant Head Boundary H=25 m) 

1500 m 

S1 

S2 
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and B, are generated. The realizations are obtained as 

solutions of the ID interpolation algorithm implementation 

using n= 5, 10, 15 and 20 (Eq. (4)). Then the index of 

uncertainty and variability of conductivity is estimated using 

Eq. (6). Fig. 4 shows the estimated index values obtained 

using sampling network A and B. 

E. Contamination Plume 

The 9 contamination monitoring locations are shown in 

Fig. 1. The contaminant samples are collected at 16 time 

stages (every 6 months). The measured concentrations at 

each monitoring stages are interpolated using ID 

interpolation algorithm. As the result, the contaminant 

concentration is estimated throughout the aquifer.  

 

 
Fig. 5. Contamination plume 183 days after source activation. 

 

Fig. 5 shows the contamination plume 183 after the 

activation of sources. The maximum estimated 

concentrations at this time stage is 84 (mg/L). The plume 

threshold is 21 (mg/L). Note that for the purpose of 

uncertainty quantification, the contaminant source 

characteristics are unknown and the only available 

information is the concentrations measured at monitoring 

locations. 

F. Reliability index 

The contamination plumes at 16 monitoring periods are 

utilized to estimate , , k
i j kl  for i= 1: 30; j=1: 20; kl=1: 2 and 

k=1: 16. The reliability index is estimated using Eq. (7). 

Following the steps in Fig. 1, the estimated uncertainty index 

(µ) for sampling network A and B are 76×10-3 and 74×10-3, 

respectively. Therefore, using hydraulic conductivity 

sampling network A will result in more accurate identified 

source characteristics. The source characteristics identified 

using sampling network A are more reliable for designing 

contamination management or remediation plans in this study 

area. 

 

V. RESULTS AND DISCUSSION 

The developed methodology was utilized to rank two 

hydraulic conductivity sampling networks with respect to 

their effectiveness in identify reliable contaminant source 

characteristics. It was concluded that network A outperforms 

network B. Since the illustrative study area was utilized for 

the performance evaluation, the actual contaminant source 

characteristics are available (Table I). Note that this 

information is not available in real fields and the following 

analysis is for the methodology evaluation purpose only. 

Using the ASA based linked simulation-optimization 

source identification algorithm (Eqs. (1-3)) the contaminant 

source characteristics are identified. The linked 

simulation-optimization was executed two times using 

sampling network A and B one at a time.  

Using both sampling networks, the identified fluxes for 

source 2 at all stress periods is zero. It shows that using data 

from both networks, the locations of actual sources are 

identified accurately. Therefore, both models correctly 

identified the actual source locations. The Normalized 

Absolute Error of Estimation (NAEE%), computed using Eq. 

(8), is utilized to quantify the error in the estimated source 

fluxes. 

 

1

1

% 100

SP
estimate actual
ii ii

ii
SP

actual
ii

ii

q q

NAEE

q






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


                 (8) 

 

where estimate
iiq and actual

iiq are the estimated and actual source 

fluxes for stress period ii, respectively. SP is the total number 

of stress periods. The estimated NAEE% for source 1 and 3 

are defined in Table III. The estimated NAEE% values 

confirm the results obtained by estimated reliability index 

(µ). The sampling network A outperforms sampling network 

B by 5.66% and 13.64% for source 1 and 3, respectively. 

 
TABLE III: THE NORMALIZED ABSOLUTE ERROR OF ESTIMATION (%) AND 

INDEX OF UNCERTAINTY 

 Index of 

Reliability 

Source 1 Source 2 

using Sample Network A 76 × 10-3 1.53 10.43 

using Sample Network B 76 × 10-4 7.19 24.07 

 

In this study, the utilized contaminant monitoring locations 

were selected arbitrarily. The proposed methodology has the 

potential for application to design monitoring networks 

dedicated to the contamination source identification. The 

monitoring locations can be selected in the regions where the 

level of uncertainty in the flow field is low. The simultaneous 

design of hydraulic conductivity sampling locations and 

monitoring network can be used to decrease the uncertainty 

in the contamination source identification. 

 

VI. CONCLUSION 

This study presents a methodology to rank the reliability of 

hydraulic conductivity sampling networks in reducing 

uncertainty in contamination source characterization. In 

contaminated groundwater aquifers, the source of pollution is 

unknown in terms of location, activity duration, and flux. 

Moreover, limited field hydraulic conductivity information is 

generally available due to the budgetary constraints. In this 

study multiple realizations of a hydraulic conductivity field 

for different sampling networks is utilized. Then the index of 

reliability for each selected hydraulic conductivity sampling 

International Journal of Environmental Science and Development, Vol. 6, No. 7, July 2015

517



  

network is estimated. This index is shown to be correlated to 

the accuracy of contamination source characterization.  

The contamination source identification model which 

utilized the hydraulic conductivity data with higher index of 

reliability is expected to deliver more accurate results.  

The developed methodology provides the decision makers 

with a tool to select an effective hydraulic conductivity 

sampling network to reduce the uncertainty associated with 

lack of adequate hydrogeologic information. The reduction 

in contamination source identification uncertainty will 

eventually decrease the cost of management and remediation 

plans, and increase the reliability of any decision taken on 

management of the contaminated aquifer. 
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