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Abstract
Bleaching episodes caused by increasing seawater temperatures may induce mass coral

mortality and are regarded as one of the biggest threats to coral reef ecosystems worldwide.

The current consensus is that this phenomenon results from enhanced production of harm-

ful reactive oxygen species (ROS) that disrupt the symbiosis between corals and their endo-

symbiotic dinoflagellates, Symbiodinium. Here, the responses of two important antioxidant

defence components, the host coenzyme Q (CoQ) and symbiont plastoquinone (PQ) pools,

are investigated for the first time in colonies of the scleractinian coral, Acropora millepora,
during experimentally-induced bleaching under ecologically relevant conditions. Liquid

chromatography-mass spectrometry (LC-MS) was used to quantify the states of these two

pools, together with physiological parameters assessing the general state of the symbiosis

(including photosystem II photochemical efficiency, chlorophyll concentration and Symbio-
dinium cell densities). The results show that the responses of the two antioxidant systems

occur on different timescales: (i) the redox state of the Symbiodinium PQ pool remained sta-

ble until twelve days into the experiment, after which there was an abrupt oxidative shift; (ii)
by contrast, an oxidative shift of approximately 10% had occurred in the host CoQ pool after

6 days of thermal stress, prior to significant changes in any other physiological parameter

measured. Host CoQ pool oxidation is thus an early biomarker of thermal stress in corals,

and this antioxidant pool is likely to play a key role in quenching thermally-induced ROS in

the coral-algal symbiosis. This study adds to a growing body of work that indicates host cel-

lular responses may precede the bleaching process and symbiont dysfunction.
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Introduction
Elevated seawater temperatures in conjunction with high solar irradiance disrupt the relation-
ship between reef-building corals (Cnidaria: Scleractinia) and their dinoflagellate symbionts
(Symbiodinium sp.) [1] and have been implicated in causing mass coral bleaching events [2–4].
Although the molecular events underlying the loss of Symbiodinium cells via exocytosis [5]
and apoptosis [6] remain unclear, it is broadly accepted that coral bleaching is preceded by oxi-
dative stress: the excessive formation of reactive oxygen species (ROS) which eventually over-
whelm the antioxidant defence capacity of the symbiosis [7–9]. Initial impairment of
photosynthesis is thought to increase ROS formation in the symbionts, leading to oxidative
damage in the host, which then initiates bleaching [7]. Several potential primary damage sites
have been identified in Symbiodinium during thermal stress, including photosystem II (PSII)
reaction centres [10–12], antenna pigments [13], the Calvin cycle [14], and the thylakoid mem-
branes [15]. Other evidence suggests that the primary site of thermal damage in Symbiodinium
varies among coral species and symbiont types [16] which may explain some of the apparent
contradictory results to date. In addition, there is increasing evidence suggesting that the cni-
darian host plays a more significant role in the bleaching cascade than previously thought
because thermal stress can compromise host cells prior to damaging the symbiont [17–20] and
because bleaching can occur in darkness, independent of photosynthetically produced ROS
[21]. Nonetheless, it is clear that the coral host has substantial antioxidant potential, indicating
ROS scavenging during exposure to thermal and irradiance stress is essential in both symbiotic
partners in order to prevent bleaching [22–26]. Hence, oxidative stress is likely to reflect an
imbalance between the antioxidant capacity of both partners and the performance of the elec-
tron transport chains (ETC) of coral mitochondria and Symbiodinium chloroplasts [7].

As components of both antioxidant defence systems and the electron transport chains that
generate ROS, the prenylquinones coenzyme Q (CoQ; ubiquinone) and plastoquinone (PQ)
and their respective reduced (antioxidant) forms ubiquinol (CoQH2) and plastoquinol (PQH2)
may play key roles in the bleaching response. These redox carriers play an integral role in elec-
tron transport (CoQ/CoQH2 in the mitochondrial ETC and PQ/PQH2 in the photosynthetic
ETC) but also have important antioxidant functions within mitochondrial [27], cellular [28]
and thylakoid [29] membranes. The reduced forms of these prenylquinones are highly effective
lipid peroxidation chain breakers, and are involved in the regeneration of other antioxidants
such as ascorbate and α-tocopherol [28, 30–32]. In addition, PQH2 is an effective singlet oxy-
gen (1O2) quencher in chloroplasts [33, 34]. Consequently, shifts in the proportion of reduced
to oxidised prenylquinones (%CoQH2; %PQH2) have been used to infer oxidative stress and
ROS scavenging activity in plant models [30, 33, 35, 36].

Little is known about how the coral CoQ and symbiont PQ pools respond to hyperthermal
stress. In a proof of concept study, Lutz et al. [37] demonstrated that the Acropora millepora
CoQ and the Symbiodinium PQ pool redox states are maintained predominantly in their
reduced forms (a prerequisite for antioxidant action), and acute heat-stress causes increased
oxidation of the coral CoQ pool consistent with evidence that oxidative stress occurs in both
host and symbiont [23, 24, 38]. However, due to the acute nature of the stress applied, it is
unclear whether the observed oxidative shift was a consequence of metabolic failure, or
whether the CoQ pool is sensitive to prolonged elevated temperature stress under more ecolog-
ically relevant conditions.

Here, quantitative liquid chromatography-mass spectrometry (LC-MS) was used to estimate
the redox states of host CoQ and Symbiodinium PQ pools in colonies of the scleractinian coral
A.millepora during experimentally-induced bleaching under ecologically relevant temperature
conditions. The data on CoQ and PQ pool redox status, in combination with PSII
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photochemical efficiency, chlorophyll concentration and Symbiodinium density estimates were
used to follow the effects of thermal stress on the state of the symbiosis over time.

Materials and Methods

Ethics Statement
All necessary permits were obtained for the described field studies. Specimens for this study
were collected under permit number G09/30237.1, issued by the Australian Government’s
Great Barrier Reef Marine Park Authority. The locations of sample collection are not privately-
owned, and no endangered or protected species were collected.

Reagents
All reagents, and the standards ubiquinone-9 (CoQ9) and ubiquinone-10 (CoQ10), were pur-
chased from Sigma Aldrich (USA). Plastoquinone-9 (PQ9) was a kind gift from Professor Ewa
Swiezewska from the Polish Academy of Sciences, Poland. All solvents used were HPLC grade
(Mallinckrodt, Australia).

Experimental design
Twelve A.millepora colonies roughly 50 cm in diameter containing type C2 Symbiodinium
(ITS1 terminology, see below) were collected from Pelorus Island, Great Barrier Reef, Australia
(18°33’ S/146°29’ E) in May 2010. Colonies were transferred to the Australian Institute of
Marine Science (Townsville) and divided into a total of 24 fragments, each comprising approx-
imately 25 branches. Fragments were arranged in eight indoor tanks in a balanced randomised
block design, resulting in the allocation of twelve coral fragments (three per tank) to each of
the control and thermal stress temperature treatments (27°C and 32°C, respectively). All tanks
were continuously supplied with fresh, 1 μm filtered seawater at a rate of 1.5 L min−1 from 500
L reservoirs in a temperature-controlled room maintained at 27 ± 0.5°C (two reservoirs per
treatment). Each reservoir was heated with two titanium heaters (3 kW) controlled by a
CR1000 datalogger (Campbell Scientific) and a temperature sensor in the treatment tanks. All
tanks were fitted with a small power head pump to maintain water movement and an air stone
and pump to provide aeration. UV-filtered 400 Wmetal halide lights (BLV, Germany) were
mounted above each tank and provided an average underwater light intensity of 350μmol pho-
tons m−2 s−1 (12:12 h light:dark cycle). The UV-filters were used to minimise UV-radiation-
induced bleaching [39].

The colony fragments were acclimated for two weeks prior to starting the experiment, then
seawater temperatures in four tanks were ramped at a constant rate (0.7°C d-1) to 32 ± 0.5°C
over seven days; the remaining four control tanks were maintained at 27°C for the entire dura-
tion of the experiment (Fig 1). The heat stress temperature was chosen to represent an ecolog-
ically relevant 1°C above the estimated local bleaching threshold of approximately 31°C for
nearby Orpheus Island, Great Barrier Reef (18°35’ S/146°29’ E; ~31°C: [40]). Coral branches
were sampled at four time points during the experiment: at the end of the acclimation period
(t = 0 d), upon reaching the 32°C target temperature in the hyperthermal stress treatment
(t = 7 d), and after five (t = 12 d) and ten days (t = 17 d) at 32°C. At each time point, coral nub-
bins (approximately 50 mm in length) were collected from each coral fragment after six hours
of light (n = 12 in control and heat treatment, respectively) and from a subset of fragments
after six hours of darkness (n = 9 in control and heat treatment, respectively). Samples were
immediately snap-frozen in liquid nitrogen at time of collection to quench the PQ and CoQ
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pool redox states. Total sample size was optimised to ensure all samples could be processed in
less than four weeks after sampling to ascertain the redox stability of the extracts.

Photosystem II photochemical efficiency
Photosystem II (PSII) photochemical efficiency, expressed as maximum quantum yield ((FM−
FO)/FM = FV/FM) was measured daily with a Diving-PAM (Walz Gmbh, Germany) from three
randomly chosen branches per coral fragment two hours before the start of the light cycle [41].
A 6 mm fibre optic probe was placed perpendicular to the surface at least 20 mm from the tip
of the branch and 3 mm from the coral tissue surface (controlled via a rubber spacer) to obtain
the measurements. Minimum fluorescence (FO) was measured using a weak pulsed measuring
light (< 0.15 μmol photons m−2 s−1; gain = 3) and maximum fluorescence (FM) was measured
upon application of a saturating pulse of light (> 4000 μmol photons m−2 s−1).

Prenylquinone quantification
Coral nubbins for prenylquinone extraction were stored in liquid nitrogen for a maximum of
48 hours. Nubbins were extracted using a 1:1 mixture of isopropanol and ethyl acetate contain-
ing 0.1 μMCoQ9 (internal standard). Coral CoQ10 and Symbiodinium PQ9 pools were quanti-
fied by LC-MS using a slightly modified method of Lutz et al. [25]. In brief: prenylquinones
were resolved using a Phenomenex Kinetex C18 column (150 mm × 4.6 mm, 2.6 μm particle
size) on an Agilent 1100 series HPLC (Agilent, USA) coupled to a Bruker Esquire 3000 (Bruker
Daltonics, USA). Absolute quantities of the prenylquinones were calculated from calibration
plots obtained from standard compounds containing 0.1 μMCoQ9 (internal standard). CoQ
and PQ redox states (%PQH2 and %CoQH2) were expressed as the proportion of reduced to
total (oxidised + reduced) prenylquinone. Coral CoQ data could potentially be biased by CoQ
of Symbiodinium; however, symbiont CoQ was not detected with the method applied here,
either because Symbiodinium type C2 contains a different isoform than the host CoQ10 or
because concentrations are below the detection limit [37].

Symbiodinium densities
For Symbiodinium densities, one coral nubbin per coral fragment and time point was immedi-
ately processed at midday (n = 12 in control and heat treatment, respectively). Coral nubbins

Fig 1. Temperature logger data for the experimental period. Thermal log of the four temperature sensors placed in heated (32°C) and control (27°C)
seawater aquarium tanks for the duration of the experimental period. Two temperature sensors were used per treatment. Dashed lines indicate sampling time
points.

doi:10.1371/journal.pone.0139290.g001
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were airbrushed in individual plastic bags in 4 mL of 0.2 μm filtered seawater. The slurry was
homogenised using a Turrax disperser (IKA, Germany) to break down aggregates and was cen-
trifuged at 3000 g. The supernatant was removed and the pellet resuspended in 1 mL of 10%
formalin in phosphate buffer saline (PBS). Symbiodinium cells were counted under a light
microscope (eight technical replicates per sample) using a haemocytometer (depth 0.1 mm).

Calculation of surface area and chlorophyll concentrations
Tissue remaining on the coral nubbins was removed by soaking in diluted commercial bleach
(0.5% NaClO) overnight. Surface areas of the coral nubbins were determined using a wax dip-
ping technique [42]. Chlorophyll concentrations (a and c2) were measured from aliquots of the
prenylquinone extracts on a microplate reader (Powerwave, Bio-Tek Instruments, USA) [43]
and determined using the equations presented in Ritchie et al. [44].

Symbiodinium genotyping
The Symbiodinium genotypes were identified based on sequence differences in the nuclear
ribosomal DNA internal transcribed spacer 1 (ITS1) region using single-strand conformation
polymorphism (SSCP) analysis as described by van Oppen et al. [45]. Total coral and Symbio-
dinium DNA was extracted using a modified protocol [46] and the Symbiodinium ITS1 region
amplified with fluorescently labelled Sym ITS1 PCR primers for SSCP analysis on non-dena-
turing polyacrylamide gels. The symbiont genotype was determined by comparison of manu-
ally scored gel images of known reference standards run in parallel with the samples [47]. SSCP
profiles from all colonies were single bands identical to type C2 Symbiodinium (GenBank
Accession AF380552) sensu van Oppen et al. [45].

Transmission electron microscopy (TEM)
At each time point, one coral branch was sampled in four coral fragments per treatment, trans-
ferred directly into fixative (1.25% glutaraldehyde + 0.5% paraformaldehyde in 0.2 μm filtered
seawater) and stored at 4°C until required. Fixed coral nubbins were decalcified in a formic
acid:fixative mixture (1:3), with the solution changed every 12 h until complete dissolution of
the skeleton. Three individual polyps per sample were postfixed in osmium and subsequently
dehydrated with increasing concentrations of ethanol followed by dry acetone. Dehydrated
samples were infiltrated in increasing concentrations of Araldite resin before being cured for
24 h at 60°C. Longitudinal sections, 90-nm thick, were collected on copper grids and imaged at
120 kV in a JEOL 2100 TEM.

BLAST analysis
The A.millepora transcriptome [48], the Acropora digitifera genome [49] and the cnidarian pro-
tein and nucleotide database at NCBI were searched for enzymes involved in CoQ redox reactions.
Homologue proteins and gene sequences were identified using BLAST (blastp, blastx, tblastx,
tblastn) at http://blast.ncbi.nlm.nih.gov and http://marinegenomics.oist.jp, and the A. digitifera
annotation available at http://bioserv7.bioinfo.pbf.hr/Zoophyte/index.jsp [50]. All identified
sequences were assessed against the SwissProt database (http://www.uniprot.org/).

Statistical analysis
Linear mixed models [51, 52] were applied to assess treatment effects using time (sampling
day), treatment (control vs. heated) and the interaction as fixed effects and a random intercept
for each coral fragment to account for repeated measures of the same colonies. FV/FM, %PQH2
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and %CoQH2 data were power transformed; PQ concentration was log transformed. Model
comparison was conducted using Akaike’s information criterion (AIC). Tank effects were non-
significant (fixed) and redundant (random), and thus discarded to avoid overfitting in all mod-
els. First order autocorrelation covariate structure was determined as best model fit in all mod-
els. Multiple pairwise comparisons were corrected using the false discovery rate following
Hochberg and Benjamini [53]. All statistical analyses were conducted using SPSS version 17.0.

Results
A.millepora colony fragments exposed to hyperthermal stress (32°C) showed clear symptoms
of bleaching, when compared to ambient (27°C) treatment controls (Fig 2A–2D). In the ther-
mal stress treatment group, Symbiodinium cell densities were reduced by 25.7% after five days
and by 82.4% at the end of the experiment (Fig 2E). No significant changes were observed in
cellular chlorophyll concentrations (a and c2) during the experiment (mean = 29.6 ± 4.5 pg
cell−1; p = 0.46). Mortality was low; of the 24 colony fragments used, only two of the 12 exposed
to thermal stress showed signs of necrosis, patchy tissue sloughing and algal overgrowth. No
further data were collected for these fragments after day 13 and 15, respectively, when symp-
toms of mortality were first observed. PSII photochemical efficiency (FV/FM ± 95% confidence
interval (CI)) remained stable in control colonies (mean = 0.68 ± 0.1) but declined markedly in
the 32°C treatment group concomitant with the loss of Symbiodinium cells after day 9 (Fig 2F;
p< 0.001; Table 1). The declining trend of FV/FM was observable from the third day after heat-
ing commenced; however, FV/FM did not differ significantly from control samples until day
five (t-test; F1,278 = 10.683; p = 0.0012). TEM images showed no impact on the Symbiodinium
thylakoid membrane or cell wall structure in the first seven days of the experiment; however,
disintegrated internal organelles were observed in 7% of the cells examined (total 1502). After
five days exposure to 32°C (t = 12 d), all of the remaining Symbiodinium cells exhibited both
structurally compromised thylakoid membranes and widespread disintegration of organelles in
the cytoplasm (Fig 3). While damage to internal structures was apparent, cell walls appeared
intact and no fragmented symbiont cells were observed.

The Symbiodinium PQ pool was predominantly reduced at the start of the experiment,
and remained approximately constant during the first twelve days of heat stress (from t = 0 h
to 12 d: mean = 90.8 ± 1.4% in light and 87.3 ± 4.2 in dark); note that the PQ redox state
(%PQH2 ± 95% CI) did not differ significantly between the light and dark periods (Fig 2G;
Table 1). However, the heat stressed colonies exhibited a highly significant 12% (light) and
11% (dark) decline in PQH2 at the end of the experiment (at t = 17 d, mean = 78.9 ± 3.5% and
76.2 ± 5.1%; respectively; p< 0.002). When normalised per Symbiodinium cell, this decline in
PQH2 coincided with an apparent five-fold increase in total PQ concentration (PQ + PQH2)
from 1.49 ± 0.23 pmol cell−1 (mean, t = 0 d to 12 d) to 5.11 ± 2.06 pmol cell−1 at t = 17 d (Fig 2I;
p = 0.008) in the heat treatment.

Whereas the redox state of the PQ pool remained essentially stable for 12 days, the coral
CoQ pool (%CoQH2 ± 95% CI) became oxidised more rapidly in response to the hyperthermal
stress. CoQH2 declined from 89.4 ± 1.0% to 80.9 ± 2.6 in the light, and from 89.7 ± 1.1% to
82.3 ± 3.3% in the dark, within the first seven days of the experiment (i.e. at the end of the heat-
ing phase from 27°C to 32°C; Fig 2H; p< 0.002). In the 32°C treatment group, %CoQH2 con-
tinued to decline steadily over the next ten days to 77.3 ± 2.9% (light) and 75.4 ± 7.9% (dark).
As in the case of the plastoquine pool, light and dark estimates of %CoQH2 did not differ sig-
nificantly. Likewise, total CoQ (CoQ + CoQH2; normalised per coral surface area) did not dif-
fer between control and heat stress, remaining stable throughout the experiment (Fig 2J; Light:
mean = 0.41 ± 0.03 nmol cm−2; p = 0.36; Dark:mean = 0.40 ± 0.03 nmol cm−2; p = 0.21).
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Discussion

Coenzyme Q pool redox state
The results presented here demonstrate that the A.millepora host CoQ redox state is sensitive
to hyperthermal stress, exhibiting an overall 13% decline of CoQH2 in response to the stressor
(Fig 2H). This oxidative shift was not caused by an increase of de novo synthesised CoQ, as the
total CoQ concentration (CoQ + CoQH2) did not increase during the heat stress. Oxidation of
the CoQ pool occurred early in the thermal stress treatment, upon reaching 32°C (after seven
days with a daily temperature increase of approximately 0.7°C per day) and prior to any mea-
surable loss of Symbiodinium cells from the host tissue. Oxidation of the CoQ pool occurred
before a major decline in PSII photochemical efficiency was observed, i.e., while the effects of
the hyperthermal stress on the Symbiodinium photosynthesis apparatus were still limited (FV/
FM > 0.65). Moderate irradiance levels (350 μmol photons m−2 s−1) were used in order to
avoid major light stress concomitantly with the applied hyperthermal stress [2, 54, 55]. Maxi-
mum daily irradiance at 1–3 m depths regularly exceeds 1000 μmol photons m−2 s−1 for nearby
(< 25 km), equally turbid Great Palm Island waters [56]. The results therefore indicate that the
A.millepora CoQ pool is oxidised significantly in response to hyperthermal stress in the
absence of strong light exacerbating ROS leakage from the symbiont [57, 58]. Although a con-
tribution of photosynthetically derived ROS to the observed CoQ pool oxidation cannot be dis-
counted, the results presented here add to a growing body of work that indicates host cellular
responses may precede the bleaching process and symbiont dysfunction [5, 17–20, 59]. In

Fig 2. Effects of thermal stress on physiological parameters of the scleractinian coral Acropora millepora. Images of representative coral nubbins
demonstrating the visual difference in Symbiodinium cell densities within A.millepora tissues under control (27°C) (A—B) and thermal stress (32°C) (C—D)
conditions at day 17 (end of experiment). Scale bars = 1 mm. Thermal stress effects on (E) Symbiodinium density; (F) photosystem II photochemical
efficiency; (G) plastoquinone (%PQH2) and (H) coenzyme Q (%CoQH2) pool redox states; (I) total plastoquinone concentration (PQ + PQH2) per
Symbiodinium cell and (J) total coenzyme Q concentration (CoQ + CoQH2) per coral surface area over the course of the experiment. All data points are
means ± 95%CI; * indicate significant differences between control and treatment at p < 0.05; n = 6–12 (see Table 1 for details).

doi:10.1371/journal.pone.0139290.g002

Table 1. Linear mixedmodel testing for differences in temperature treatments (27°C = control; 32°C = stress) during a hyperthermal bleaching
experiment of Acroporamillepora containing Symbiodinium type C2.

Factor

Treatment Timea Treatment × time

n df F p df F p df F p

FV/FM 12b 22.0 104.2 <0.001 201.8 15.8 <0.001 201.8 13.8 <0.001

%PQH2 (light) 12b 22.1 12.0 0.002 48.8 21.6 <0.001 48.8 6.3 0.001

%PQH2 (dark) 9c 19.6 10.0 0.005 41.1 9.6 <0.001 41.1 5.7 0.002

Total PQ cell-1 6 9.0 5.5 0.043 17.9 7.7 0.002 17.9 5.5 0.008

Total chlorophyll cell-1 6 10.4 0.6 0.46 20.8 0.2 0.88 n/a

%CoQH2 (light) 12b 22.1 24.5 <0.001 41.2 17.0 <0.001 41.2 14.8 <0.001

%CoQH2 (dark) 9c 15.9 22.5 <0.001 33.6 12.8 <0.001 33.6 6.3 0.002

Total CoQ cm-2 (light) 12b 22.3 0.9 0.36 42.0 3.5 0.023 42.0 0.2 0.91

Total CoQ cm-2 (dark) 9c 15.9 1.7 0.21 34.4 2.0 0.135 n/a

CoQ, coenzyme Q; %CoQH2, coenzyme Q pool redox state; FV/FM, maximum quantum yield; PQ, plastoquinone; %PQH2, plastoquinone pool redox

state.
a FV/FM was measured daily (18 time points), other measurements at four time points.
b,c replication number given is for the full set. Due to dropouts, for the last time point n = 10 (b) and n = 8 (c).

p-values significant at α < 0.05 are highlighted in boldface.

doi:10.1371/journal.pone.0139290.t001
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addition, other thermal stress-related responses such as transcriptional and physiological
changes that were not measured here are expected to occur in both coral symbiosis partners
prior to host CoQ pool oxidation. For example, other reported early changes include a reduc-
tion in epithelial tissue, signs of increased apoptosis in the gastrodermis, and changes to the
transcriptome, which have been associated with an upregulation of chaperone and antioxidant
defence genes alongside transcriptional changes that, by analogy to vertebrate models, are
assumed to be linked to apoptosis [18, 25, 26, 60–63]. It should also be noted that the heat/light
sensitivity of the photosynthetic apparatus varies among different symbiont types and that this
affects host sensitivity to bleaching [64–66]; however, bleaching susceptibility differs widely
among different coral genera despite often hosting the same Symbiodinium types [67–69]. Con-
sidering this, the results presented here require confirmation in other symbiont-host associations
prior to postulation of a generalized physiological response during the bleaching cascade. None-
theless, the oxidative shift in the CoQ redox state observed here is among the earliest knownmet-
abolic changes in the coral partner in response to a realistic temperature level.

Fig 3. Representative transmission electron micrographs documenting the effects of thermal stress on the internal structure of endosymbiotic
Symbiodinium cells within tissue of Acroporamillepora. (A) Symbiodinium exposed to 27°C showing intact organelles and thylakoid membranes (black
arrow). (B) First signs of degraded internal structures in some Symbiodinium cells after 7 days of heat stress (white arrows). Note the intact structure of the
thylakoid membranes (black arrow). (C and D) Symbiodinium exposed to 32°C revealing degraded internal structures (white arrows). Scale bars, 1 μm; ch,
chloroplast; nu, nucleus.

doi:10.1371/journal.pone.0139290.g003
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Coenzyme Q pool redox state regulation. CoQ/CoQH2 is present (in varying quantities)
in all intracellular membranes of every animal with the highest concentrations found in the
mitochondrial membranes at the primary site of ROS production [32, 70]. In eukaryotes, CoQ
redox processes are relatively complex (Fig 4; for relevant enzymes identified in Acropora sp.
see S1 Table). Within mitochondrial membranes, CoQH2 is continuously regenerated by the
respiratory chain (complex I, II and alternative NAD(P)H dehydrogenases) [71] and other
mitochondrial enzymes (glycerol-3-phosphate dehydrogenase, electron-transferring flavopro-
tein dehydrogenase, dihydroorotate dehydrogenase; [72]). In other membranes, several
enzymes catalyse CoQ reduction including a NADH-cytochrome b5 reductase [73] and a dis-
tinct, unresolved NADPH-CoQ reductase [74]. Interestingly, a cytosolic NAD(P)H:quinone

Fig 4. Schematic diagram of electron transfer reactions using the coenzymeQ (CoQ) pool in the coral mitochondrial and plasmamembrane
electron transport. Respiratory “linear” electron flows (black arrows) proceed from NADH in the mitochondrial matrix to H2O via the CoQ pool and the
enzyme complexes I, II, III, and IV, forming ubiquinol (CoQH2) as an intermediary product. The electron flows via complexes I, III and IV occur (mostly) via
tunnelling or micro-diffusion of CoQ/CoQH2 in I-II-IV supercomplexes rather than via the larger mobile CoQ pool [72]. “Non-linear” electron flows (dark blue
arrows) proceed from electron donors (e.g. NAD(P)H) via several quinone dehydrogenases to the CoQ pool, and to H2O from CoQH2 via AOX. Plasma
membrane electron transport occurs from NAD(P)H to H2O via one or more type of NAD(P)H-CoQ reductases, the plasmamembrane CoQ pool and Ecto-
NOX. CoQH2 ROS scavenging occurs continuously in O2 metabolism primarily via chain breaking of lipid peroxidation (LPO) caused by O2

•− and H2O2.
Abbreviations: AOX, alternative oxidase; cyt-c, cytochrome c; DHAP, dihydroxyacetone phosphate; DHO, dihydroorotate; DHODH, dihydroorotate
dehydrogenase; Ecto-NOX, external quinone oxidase; ETFred/ox, reduced/oxidised electron-transferring-flavoprotein; ETFDH, electron-transferring-
flavoprotein dehydrogenase reduced/oxidised; Ecto-NOX, external quinone oxidase; GPDH, glycerol-3-phosphate dehydrogenase; G-3-P, glycerol-
3-phosphate; H2O2, hydrogen peroxide; LPO, lipid peroxidation; pmNDH/mNDH, plasmamembrane/mitochondrial NAD(P)H dehydrogenases; OA, orotate;
O2

•−, superoxide.

doi:10.1371/journal.pone.0139290.g004
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reductase (NQO1; formerly DT-diaphorase) [75]–the most studied CoQ reducing enzyme–
appears to be absent in cnidarians along with other NQO genes [76].

In contrast to the reduction of the CoQ pool, CoQH2 is oxidised by direct interaction with
ROS, in particular lipid peroxyl radicals and the lipid peroxidation initiating perferryl radicals
(Fe3O2

•−) found in all membranes [28], by complex III and alternative oxidases (AOX) of the
mitochondrial ETC [77], and by the external oxidases of the plasma membrane electron trans-
port (Ecto-NOX; [78]). Considering the known CoQ pool redox mechanisms of other animals,
the oxidative shift in the CoQ redox state in A.millepora can therefore be attributed to: (1) an
increase in ROS scavenging by CoQH2; (2) a decline in net CoQ reduction by the mitochon-
drial ETC; (3) extra-mitochondrial pathways; or 4) any combination of these processes.

Coenzyme Q pool reactive oxygen species scavenging in corals. Attributing the thermal
stress-induced oxidative shift in CoQ redox state of A.millepora to a specific physiological
mechanism is difficult, primarily because current understanding of CoQ functions in the coral-
Symbiodinium symbiosis is very limited and existing methods cannot distinguish between
functionally and spatially different CoQ pools present in different organelles [79]. Theoreti-
cally, a net decline in CoQ reduction caused by the mitochondrial ETC or extra-mitochondrial
pathways are conceivable by postulating a decline in CoQ reducing or an increase in CoQH2

oxidising enzyme activities; however, no such direct impact of thermal stress on the CoQ pool
has been demonstrated so far. In particular, the emerging consensus that the complexes
I-III-IV occur mostly as supercomplexes further complicates attributing shifts in the CoQ
redox state to a specific location in the mitochondrial ETC as electron transfer in these super-
complexes appears to occur via tunnelling or microdiffusion of CoQ/CoQH2 rather than via a
mobile CoQ pool in mitochondrial membranes [72].

Short term heat stress in the bleaching model Aiptasia has been reported to cause the degra-
dation of host mitochondria prior to symbiont impairment and to lead to the downregulation
of genes associated with ATP production and electron transport at the site of, and downstream
from, cytochrome c [19]. However, the report did not include any genes upstream of complex
III (Fig 4), thus there is no indication that the CoQ pool reducing side of the mitochondrial
ETC was affected. A recent transcriptional analysis provided further evidence of the thermal
stability of complex III gene expression in A.millepora [80] but analyses at the enzyme activity
level in cnidarians remain outstanding. The visible, pre-bleaching mitochondrial damage in
Aiptasia [19] would be expected to incapacitate the mitochondrial ETC and potentially lead to
CoQ oxidation due to a decline in electron flux to the pool; however, there is currently no data
available to lend support to such a model. On the other hand, an inefficient mitochondrial
ETC is likely leading to the increased formation of ROS [8, 59, 81], in particular during daytime
hyperoxia [24, 82]. Thus, even though it is possible that any components of the CoQ pool
redox mechanisms are affected by thermal stress, attributing the oxidative shift in the CoQ
redox state to increased CoQH2 ROS scavenging in response to hyperthermal stress currently
provides the most parsimonious explanation.

In mammals, oxidative shifts in the CoQ pool redox state have been observed in a variety of
pathological conditions that are associated with oxidative stress [35, 36, 83]. These oxidative
shifts are understood to result from an increasingly challenged antioxidant defence [28]. In cni-
darian-Symbiodinium symbioses, it has been repeatedly demonstrated that the cnidarian host
reacts to thermal stress and high light by increasing its antioxidant activities, which indicates
an increased requirement to detoxify ROS in the host tissues [7, 38, 54, 84–86]. ROS formation
also occurs in aposymbiotic cnidarians upon exposure to light and elevated temperatures,
although in symbiosis, the hyperoxia caused by algal photosynthesis aggravates the coral’s
innate ROS formation because it increases relative to oxygen concentration [24, 59, 87–91].
Bleaching in symbiotic cnidarians can also be triggered in the absence of photosynthetically
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produced ROS by thermal stress in darkness [21]. It is not yet understood what role non-
photosynthetically produced ROS play in this dark-bleaching; however, mitochondria would
appear to be the most likely origin for these ROS. Mitochondria (the primary source of ROS in
animals) are the location of the highest cellular CoQ/CoQH2 concentration in eukaryotes [28,
78]. Here, superoxide (O2

•−) and other ROS are generated by enzymes involved in the ETC,
particularly the NADH dehydrogenase of complex I, and the interface between the CoQ pool
and complex III [91, 92]. The co-localisation of the ROS producing respiratory ETC and the
CoQ pool within mitochondrial membranes is likely an important factor in the high antioxi-
dant effectiveness of CoQH2 [28, 93]. In addition to ROS generation by the coral, ROS leakage
from Symbiodinium probably exceeds the host’s innate ROS generation [24, 57, 58]. Moreover,
impaired or damaged photosynthetic ETC may further increase ROS formation and, ulti-
mately, ROS leaking into the host [7, 8, 94]. The expulsion of Symbiodinium cells by the coral
host has therefore been regarded as a protective mechanism: the coral prevents further ROS
leakage from Symbiodinium into host cells by removing the primary source of ROS production
and also by reducing tissue hyperoxia during daylight exposure [95, 96]. The CoQ pool likely
provides an early line of antioxidant defence because ROS leaking from Symbiodinium cells
would need to cross the host-derived symbiosomal membrane, which like all animal mem-
branes is expected to contain CoQ/CoQH2 [32, 70]. Nonetheless, it would be expected that an
increase in Symbiodinium cellular ROS concentrations to a point where leakage into the host
occurs would manifest as a distinct decline in PSII photochemical efficiency. However, a major
decline in FV/FM was only observed here after significant CoQ pool oxidation had already
occurred (Fig 2F and 2H). This suggests that ROS leakage is unlikely to be a major contributing
factor to the initial oxidation of the CoQ pool, although this cannot be ruled out in the later
stages where a major decline in FV/FM was observed.

Plastoquinone pool redox state
In contrast to the host CoQ pool redox state, the Symbiodinium PQ redox state remained stable
until the point at which PSII photochemical efficiency was severely impaired and coral nubbins
were distinctly bleached (Fig 2C and 2D). The observed initial stability of the PQ redox state,
despite hyperthermal stress, is consistent with short-term acute heat stress results [37]. By anal-
ogy with high light stress [29, 97], the oxidative shift due to hyperthermal stress could be
caused by increased ROS scavenging of PQH2 within Symbiodinium chloroplasts or changes in
photosynthetic ETC such as increased plastid terminal oxidase activity. PQH2 is a highly effec-
tive quencher of 1O2 [33, 34] and, like CoQ, acts as a lipid peroxidation chain breaker either
directly or via the regeneration of α-tocopherol [30, 31]. Even though irradiance was main-
tained at a moderate level during the experiment described here, the applied temperature stress
caused chronic photoinhibition of PSII, which is commonly reported in coral bleaching experi-
ments (e.g. [14, 15, 98]) and a known indicator of ROS formation within the photosynthetic
ETC [99].

A five-fold increase in PQ pool concentrations was recorded concomitantly with the
observed PQ pool oxidation (Fig 2I). Newly synthesized PQ is predominantly in the reduced
form (PQH2, not PQ) [97], thus the observed oxidative shift in the PQ pool at this stage should
be the result of increased non-enzymatic formation of PQ from PQH2 after its interaction with
ROS, which are increasingly generated by a thermally damaged photosynthetic ETC [7, 14, 81,
94]. In plants and algae, a considerable proportion of the PQ pool is associated with the chloro-
plast plastoglobuli which are thought to act as PQH2 reservoirs [100, 101]. Consequently, the
size of the PQ pool increases when plants and algae are exposed to conditions that induce the
formation of 1O2, such as high light exposure [29, 33, 97]. Accordingly, the increase in the total
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PQ pool observed here could be seen as a cellular protective mechanism against the oxidative
stress caused by the increasingly impaired photosynthetic ETC. The lack of compromised cell
walls in the TEM images (Fig 3) implies that this increase is unlikely to be the result of a nor-
malisation artefact: i.e. loss of structurally compromised cells during the extraction procedure,
thus underestimating cell counts. Nonetheless, the concomitant loss of internal cellular struc-
ture and the highly compromised state of thylakoid membranes at this time point indicate a
need for further experimental work before a definitive protective mechanism can be attributed
to de novo synthesised (reduced) PQ during bleaching.

Conclusions
This study demonstrated that hyperthermal stress in A.millepora was associated with oxida-
tion of the coral host CoQ pool redox state. This oxidation occurred prior to any measurable
loss of Symbiodinium cells from the host and major decline in PSII photochemical efficiency.
Thus the oxidation of CoQ pool redox state is among the earliest known impacts of hyperther-
mal stress on the cellular chemistry of the coral host and adds to a growing body of work that
indicates host cellular responses may precede the bleaching process and symbiont dysfunction.
Furthermore, the Symbiodinium PQ pool redox state remained unaffected by hyperthermal
stress until PSII photochemical efficiency was severely impaired. At this stage, the PQ pool
exhibited a five-fold increase in concentration and a distinct oxidative shift.

Supporting Information
S1 Table. Enzymes involved in coenzyme Q pool redox reactions identified in the Acropora
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