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ABSTRACT
Coral reefs surrounding the islands lying close to the coast are unique to the Great
Barrier Reef (GBR) in that they are frequently exposed to disturbance events
including floods caused by cyclonic rainfall, strong winds and occasional periods
of prolonged above-average temperatures during summer. In one such group
of islands in the southern GBR, the Keppel Island archipelago, climate-driven
disturbances frequently result in major coral mortality. Whilst these island reefs
have clearly survived such dramatic disturbances in the past, the consequences of
extreme mortality events may include the loss of genetic diversity, and hence adaptive
potential, and a reduction in fitness due to inbreeding, especially if new recruitment
from external sources is limited. Here we examined the level of isolation of the Keppel
Island group as well as patterns of gene flow within the Keppel Islands using 10
microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian
cluster analysis and assignment tests indicated gene flow is restricted, but not absent,
between the outer and inner Keppel Island groups, and that extensive gene flow
exists within each of these island groups. Comparison of the Keppel Island data
with results from a previous GBR-wide study that included a single Keppel Island
population, confirmed that A. millepora in the Keppel Islands is genetically distinct
from populations elsewhere on the GBR, with exception of the nearby inshore
High Peak Reef just north of the Keppel Islands. We compared patterns of genetic
diversity in the Keppel Island populations with those from other GBR populations
and found them to be slightly, but significantly lower, consistent with the archipelago
being geographically isolated, but there was no evidence for recent bottlenecks or
deviation from mutation-drift equilibrium. A high incidence of private alleles in the
Keppel Islands, particularly in the outer islands, supports their relative isolation and
contributes to the conservation value of the archipelago. The lack of evidence for
genetic erosion, in combination with our observation that the North Keppel Island
population samples collected in 2002 and 2008, respectively, exhibited a pairwise
genetic distance of zero, supports previous published work indicating that, following
bleaching, Acropora corals in the Keppel Islands predominantly recover from
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regrowth of small amounts of remaining live tissue in apparently dead coral colonies.
This is likely supplemented by recruitment of larvae from genetically similar, less
disturbed populations at nearby reefs, particularly following extreme flood events.

Subjects Ecology, Genetics, Marine Biology
Keywords Acropora millepora, Microsatellites, Gene flow, Population structure, Genetic diversity,
Coral reef management

INTRODUCTION
Coral reefs along the East Australian coastline are shaped by a range of factors and

forces that include coastal geomorphology, freshwater inundation and sediment runoff,

hydrodynamics, unusually warm summer sea surface temperatures caused by climate

warming, as well as local weather patterns. These forces cause recurring perturbations

and in some regions result in frequent, high levels of coral mortality. One of the largest

inshore reef systems of the southern Great Barrier Reef (GBR) is comprised of the fringing

reefs surrounding the 15 islands of Keppel Bay, located ∼12 km from the mainland coast.

The Keppel Islands are renowned for their high disturbance regime, causing repeated

widespread coral mortality. A major flooding event occurred here in 1991 (Byron &

O’Neill, 1992; Furnas, 2003; Jones & Berkelmans, 2014), which caused bleaching and a

mortality of almost 85% of all corals and total mortality of Acropora spp. down to 1.3 m

below lowest tide level (van Woesik, DeVantier & Glazebrook, 1995). Thermal mass coral

bleaching affected >60% of the corals in this area in 1998, 2002 and 2006 and caused

significant coral cover loss (e.g., ∼40% loss in 2006; Jones, Berkelmans & Houston, 2011),

particularly in shallow (0–6 m) reef areas (Berkelmans et al., 2004; Jones et al., 2008;

Diaz-Pulido et al., 2009).

Typically, larval recruitment on tropical reefs occurs either from local, sexually mature

and healthy corals or from nearby and occasionally distant source populations. Spatial and

temporal patterns of recruitment are often variable and can be driven by factors such as

local wind patterns, prevailing winds, the direction and strength of wind-driven currents,

the proximity of other reefs, water depth, and structural complexity (Hughes et al., 2000;

Whitaker, 2004; Underwood et al., 2007; van Oppen et al., 2008; Almany et al., 2009). Prelim-

inary genetic analyses indicate the Keppel Islands are likely an isolated system (van Oppen

et al., 2011). Because larval input from external sources is generally considered crucial for

recovery on reefs that have suffered extensive coral mortality (Lukoschek et al., 2013), it is

important to validate that larval dispersal into the Keppel Island archipelago is restricted.

However, the importance of external larval sources may be overestimated if partial, rather

than whole colony, mortality is common and rapid regrowth of surviving tissues ensues

(Riegl & Piller, 2001; Gilmour et al., 2013), a process that is a key mechanism of recovery

from bleaching for Acropora spp. in the Keppel Islands (Diaz-Pulido et al., 2009).

Here we examine the mechanisms underlying recovery in the common reef-building

coral, Acropora millepora (Cnidaria; Scleractinia; Acroporidae), in the Keppel Islands using
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Figure 1 Maps of sampling locations of Acropora millepora (black circles) from: (A) van Oppen et al.
(2011) and (B) this study. Colour plots (C) to (I) are TESS results using the admixture model and K = 5,
in which each bar represents an individual coral colony and the five colours represent the five genetic
clusters. Plots (C) to (H) correspond to reefs sampled in boxes (C) to (H) on map (A), while plots (J) to
(I) correspond to reefs sampled in map (B).

a population genetics approach. Specifically, we explore genetic structure, connectivity and

diversity on nine shallow reefs throughout the Keppel Island region using high-resolution

DNA microsatellite markers. We also compare population genetic diversity and local

population genetic structure of A. millepora in the Keppel Islands to that of 19 reefs

spanning much of the latitudinal range of the GBR and including one of the nine Keppel

Island reefs sampled six years earlier (van Oppen et al., 2011). We discuss the implications

of our findings in terms of the future management of the Keppel Island reefs.

MATERIAL AND METHODS
The Keppel Bay Island archipelago lies ∼30 km north of the mouth of the Fitzroy

River near Rockhampton (Fig. 1). Like much of the inshore GBR, the reefs principally
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Figure 2 Image showing a typical shallow water reef in the Keppel Island archipelago, dominated by
Acropora millepora. Photo credit: Alison Jones.

fringe the bay heads of the islands and, to a lesser extent, the rocky coastal headlands

(Hopley, 2006). Wherever substantial reefs exist, these are dominated by large

stands of fast-growing ‘structural’ species such as the acroporids, pocilloporids

and poritids (Jones, Berkelmans & Houston, 2011). One such coral, A. millepora

(Scleractinia: Acroporidae), grows prolifically between 0–6.0 m (lowest astro-

nomical tide) forming shallow, expansive reef flats on the leeward shores of is-

lands in the Bay (Fig. 2). A. millepora is a common and ecologically important

species on the GBR, particularly on the inshore reefs. Like most Acroporidae,

A. millepora reproduces sexually via a single annual broadcast spawning event, and to a

lesser extent via asexual reproduction through fragmentation (Smith & Hughes, 1999).

CORAL SAMPLING
Branches of A. millepora were collected between December 2008 and April 2009 under

the Great Barrier Reef Marine Park Authority collection permit numbers G09/30237.1

and G08/26114.1, and their genotypes were determined at 10 microsatellite loci. The nine

sampled reefs (Halfway Island, Outer Rocks, Man and Wife Rocks, Barren Island, North

Keppel Island, Passage Rocks, Miall Island, Halftide Rocks and Humpy Island; Fig. 1) were

chosen to include both inshore and offshore islands within the archipelago.
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At each site, 29–50 samples were collected from colonies located at depths between

0–6.0 m by removing a single branch from each colony. Samples were preserved in absolute

ethanol. Samples at each site were collected from areas less than 500 m2, targeting colonies

>5 m apart on haphazard swim trajectories using SCUBA. This approach minimises the

likelihood of sampling colonies generated asexually via fragmentation from the source

colony, as fragments of A. millepora on reef flat habitats are rarely dispersed further than

4 m from their source colonies and typically have low survival and reattachment rates

(Smith & Hughes, 1999).

GENETIC CHARACTERISATION
DNA was extracted from the preserved samples based on a slightly modified version of

the method by Wilson et al. (2002). PCR primers and protocols for the ten microsatellite

loci are described in van Oppen et al. (2011) and Wang, Zhang & Matz (2009). Twelve

microsatellite markers were used in the PCR reactions and run in four multiplex reactions

(Table S1); however, two loci were not used because of inconsistent amplification success.

DATA ANALYSIS
MegaBACE Genetic Profiler Software Suite version 2 (GE Healthcare, Little Chalfont, UK)

was used to determine the fragment sizes (alleles) of all samples. All automatic scoring

was checked manually, and samples that yielded ambiguous or no signal were re-amplified

and re-run or removed from the analysis. The new data acquired in this study were first

analysed separately and subsequently combined with previously obtained data on the

same species and using the same loci, but from 20 GBR locations spanning 12◦ of latitude

(van Oppen et al., 2011) and including one site in the Keppel Islands (Nth Keppel Island).

Because the van Oppen et al. (2011) data were scored with a different software package

(CEQ8800 system software, version 10), the possibility existed that alleles were scored

differently and a shift in allele size had occurred between the two methods. A subset of 3–5

samples from the van Oppen et al. (2011) data set harbouring the most common alleles was

therefore selected for each locus, and rescored using the MegaBACE software. Based on this

comparison, the allele sizes of all samples and loci were adjusted to match the van Oppen et

al. (2011) study. The combined data set of the two studies is available in Data S1.

The probabilities of identity by random sexual mating (Waits, Luikart & Taberlet, 2001)

were calculated using an AMOVA (Analysis of Molecular Variance) approach (Excoffier,

Smouse & Quattro, 1992) in GenAlEx v6.501 (Peakall & Smouse, 2006). Individuals sharing

the same multilocus genotype (MLG) were inferred to be clone mates if probabilities of

identity by random sexual mating were small. If asexual reproduction was inferred, all but

one individual with this MLG were removed prior to further data analysis.

Genotypic Linkage Disequilibrium (LD) was assessed in GENEPOP (web version

4.0.10) by estimation of exact p-values using the Markov chain method (Raymond &

Rousset, 1995) using default settings. A previous study for A. millepora using the same

loci that included one site (Nth Keppel) from the Keppel Islands, showed that despite

the presence of null alleles, heterozygote deficits were mostly due to biological rather

than methodological factors (van Oppen et al., 2011). Despite the occurrence of some
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instances of deviations from HWE (Table S2), all analyses were therefore conducted on

data uncorrected for null alleles.

Genetic diversity, population structure, gene flow and isolation by
distance
Various aspects of genetic diversity and uniqueness were estimated in GenAlEx v6.501

including the number of alleles per locus (Na), allelic richness (Ar), allelic evenness

(Ae), observed (HO) and expected (HE) heterozygosities and private alleles. Differences

in rarefacted allelic richness (using 22 individuals per site, the smallest sample size in the

data set) between the nine Keppel Island sites and the 19 other sites from throughout the

GBR were assessed in FSTAT 2.9.3 using a Mann–Whitney U test (Goudet, 1995).

Populations that have experienced a recent reduction in their effective population

size exhibit a reduction in the allele numbers and transient heterozygous (HO) excess at

polymorphic loci compared to that under HWE (HE) (Cornuet & Luikart, 1996). If HWE

is assumed (i.e., no recent bottleneck), there is an equal probability of having a positive or

a negative difference between the observed and the expected heterozygosities. In contrast,

following a recent bottleneck, heterozygous excess is expected to occur more often than

heterozygous deficit. Therefore, if the number of loci for which there is heterozygous

excess is significantly larger than that for which there is a heterozygous deficit, a recent

bottleneck can be inferred (Luikart & Cornuet, 1998). The heterozygosity distribution

under the assumption of HWE and the infinite allele mutation model was calculated for

each of the nine Keppel Island sites and for each locus in the software package Bottleneck

1.2.02. Bottlenecks are also expected to change the allele frequency distribution (Cornuet &

Luikart, 1996). Therefore, the allele frequency distribution was established to see whether it

was approximately L-shaped (as expected under HWE) or not.

Population structure within the Keppel Islands and the combined data sets was esti-

mated using FST values calculated using an AMOVA approach (Excoffier, Smouse & Quat-

tro, 1992) in GenAlEx v6.501 (Peakall & Smouse, 2006) with significance tested using 999

permutations. Genetic differentiation between sites was estimated in the following ways:

(1) FST values were calculated using an AMOVA approach in GenAlEx v6.501. To assess the

significance of differentiation between sites, we applied a Fisher exact test (Goudet, 1995)

using Genepop v4.0 with the default Markov chain parameters. Statistical significance for

all pairwise tests was adjusted for multiple comparisons by the B-Y False Discovery Rate

(FDR) method (Narum, 2006). (2) Jost’s (2008) actual measure of differentiation (Dest) was

computed in SMOGD version1.2.5 (Crawford, 2010). To visualise the genetic relationships

among populations, the genetic distance measures between pairs of Keppel Island sites

were plotted using a Principal Coordinates Analysis (PCoA) with GenAlEx v6.501. To

determine whether there was a pattern of isolation-by-distance (IBD), pairwise Dest values

were regressed onto over-water distances between sites and significance tested using Mantel

permutation test in IBD Web Service (Jensen, Bohonak & Kelley, 2005).

Two fully Bayesian model-based clustering methods implemented in the programs

STRUCTURE ver. 2.3.3 (Pritchard, Stephens & Donnelly, 2000) and TESS ver. 2.3 (Chen et

al., 2007; François & Durand, 2010) were used to further examine spatial genetic structure
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for the Keppel Islands (n = 370) and Keppel Islands plus the GBR (n = 1,292) datasets.

STRUCTURE analyses were conducted using both the admixture and no-admixture

models, each with correlated allele frequencies, using the sampling sites as prior

(LOCPRIOR), which has been shown to better resolve genetic structure when there is

low genetic divergence (Hubisz et al., 2009). MCMC chains used a burn-in of 50,000 chains

followed by 500,000 of MCMC replications. Ten independent chains were run for each K

from K of 1 to 9 for the KI data and K of 1 to 15 for the combined data. In each case, the

most likely value of K was evaluated using the method of Evanno, Regnaut & Goudet (2005)

as implemented in STRUCTURE HARVESTER (Earl, 2009). STRUCTURE implements

an algorithm that puts a strong emphasis on the prior of the existence of clusters, which

may make it prone to errors when geographical sampling is discrete along clines (Chen et

al., 2007). TESS aims to address this issue by using a spatially continuous prior based on

the geographical coordinates of each sampled individual. TESS was run using the CAR

admixture model, which assumes spatial autocorrelation of the genomes of individuals

in closer geographical proximity compared with those further apart. The strength of this

autocorrelation is represented by a spatial interaction parameter (ψ), which was set to the

default value of 0.6 for analysis. TESS was run with a burn-in of 10,000 sweeps followed by

25,000 sweeps, with 20 independent runs conducted for each value of K from K of 2 to 9 for

the KI data and K of 2 to 15 for the combined KI plus GBR data (TESS does not implement

analyses for K = 1). For each value of K, the ten runs with the lowest DIC scores were used

to calculate the average DIC and evaluate the most likely number of genetic clusters. The

coefficient of ancestry was calculated for each individual across all runs for the most likely

value of K in CLUMPP version 1.1.2 (Jakobsson & Rosenberg, 2007) and results visualized

with the program DISTRUCT version 1.1 (Rosenberg, 2004).

GeneClass2 (Piry et al., 2004) was used to examine first generation migrants (i.e., recent

gene flow) within the Keppel Island archipelago (only the Keppel Island data were used for

this analysis). In the first step of this analysis, migrants were identified using the criteria

and computational algorithm of Rannala & Mountain (1997) with 10,000 simulated

genotypes and an alpha of 0.01. The test statistic Lh was used as not all potential source

populations had been sampled (Paetkau et al., 2004). Migrants were excluded from the

data set, and this adjusted data set served as the reference data set to which migrants

were assigned. Migrants were assigned to populations if the assignment probabilities were

greater than 0.1.

RESULTS
Genetic diversity
All loci were polymorphic in all populations sampled, with numbers of alleles rang-

ing from 2 to 17 (Table S2). Expected heterozygosities ranged from 0.232 to 0.885

(Table S2). Three MLGs in the Keppel Islands data set were repeated twice each; two of

these MLGs occurred at Barren Island and one at Man & Wife Rocks. One sample from

each pair was removed prior to further analyses. The resulting data set consisted of 370

MLGs from nine locations. Five, three, three, six, one, one, and two instances (out of 45
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Table 1 Pairwise Dest values, below diagonal, p-values above diagonal.

Barren
Island

Halftide
Rocks

Halfway
Island

Humpy
Island

Man & Wife
Rocks

Miall
Island

Nth Keppel
Island

Outer
Rocks

Passage
Rocks

Barren 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Halftide 0.253 0.027 0.001 0.001 0.001 0.001 0.001 0.001

Halfway 0.212 0.012 0.024 0.001 0.017 0.392 0.088 0.001

Humpy 0.192 0.038 0.015 0.001 0.080 0.020 0.016 0.003

Man & Wife 0.176 0.077 0.054 0.059 0.001 0.002 0.009 0.001

Miall 0.239 0.042 0.017 0.010 0.084 0.070 0.037 0.001

Nth Keppel 0.221 0.030 0.001 0.018 0.064 0.011 0.097 0.001

Outer 0.175 0.040 0.009 0.020 0.041 0.014 0.010 0.001

Passage 0.242 0.119 0.091 0.032 0.125 0.100 0.089 0.110

Notes.
Most values are statistically significant; non-significant values have shaded background, and p-values larger than adjusted α are printed in bold face (adjusted α= 0.012).

pairwise comparisons within each population) of LD were observed in Barren Island,

Outer Rocks, Man & Wife Rocks, Halftide Rocks, Nth Keppel Island, Humpy Island, and

Passage Rocks, respectively (Table S3). No cases of LD were observed in the Miall and

Halfway Island populations.

In the combined data set, rarefacted allelic richness was slightly, but statistically

significantly lower between the Keppel Island populations and all other GBR populations

included in this study (6.7 vs. 7.3 alleles respectively, p = 0.006). Plots of allelic evenness

(Figs. S1A and S1B) confirm that, with the exception of Man & Wife Rocks, genetic

diversity is consistently lower in the Keppel Islands compared to elsewhere on the

GBR. The Bottleneck analyses indicated all loci in all populations fit the mutation-drift

equilibrium, and there were no deviations from an L-shaped allele frequency distribution,

suggesting no recent bottlenecks have occurred.

Private alleles were found in 54 out of 1,292 colonies of A. millepora from the combined

GBR-Keppel Islands data set, 23 (43%) of which occurred in the Keppel Islands. Given the

relatively small sample size from Keppel Island populations (320 out of 1,292, i.e., 25% of

the total sample size), private alleles are overrepresented in this archipelago. Twenty-one of

the 23 Keppel Island samples with private alleles were from the outer island group.

Population structure, gene flow and isolation by distance
AMOVA showed that 5% of the total variance in the Keppel Island data set was partitioned

among populations (Global FST = 0.055, p < 0.001). Pairwise FST values were significant

for all comparisons (B-Y FDR; αCRIT = 0.012) except for Halfway Island-Miall Island,

Halfway Island-Nth Keppel Island and Miall Island-Nth Keppel Island (Table S4). The

Barren Island population was highly divergent, with most FST values >0.1. Twenty-six

of 36 pairwise Dest values were statistically significant, and the Dest values also indicated

that the Barren Island population was highly divergent, with most values>0.2 (Table 1).

This pattern is clearly visualised in the PCoA of pairwise Dest values (Fig. S2). There was

no evidence of IBD (r2
= 0.07, p = 0.150; Fig. S3), which is consistent with the pattern

of some geographically disparate pairs of sites being genetically similar (e.g., Halfway
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Island vs. Nth Keppel Island; Humpy Island vs. Nth Keppel Island; Table 1), while other

geographically proximate sites are genetically divergent (e.g., Man & Wife Rocks vs.

Halftide Rocks; Table 1).

Forty-two of the 370 Keppel Island individuals included in this study were identified as

first generation migrants based on the GeneClass2 analysis (Table S5). In the outer Keppel

Islands, five out of 29 (Barren), three out of 28 (Man & Wife) and six out of 50 (Outer)

were identified as recent migrants. Four of these could not be assigned (i.e., had assignment

probabilities <0.1 to all sampled populations), seven had the greatest probabilities for

assignment to other outer reefs, three had high assignment probabilities to both inner and

outer Keppel Island populations, while none were assigned to inner island populations

only. Of the 28 migrants identified in the inner islands, 19 were assigned. Eight of these

were assigned to one or more of the outer island populations, six to both inner and outer

populations, and five to other inner island populations. These results suggest recent gene

flow has occurred both within and between island groups, and that gene flow occurs from

east to west and vice versa, but likely more frequently from east (outer islands) to west

(inner islands).

STRUCTURE using the admixture model indicated that two or three genetic clusters

best explained the genetic patterns of the multilocus genotypes of the 370 colonies of

A. millepora in the Keppel Islands, with highestΔK for K = 2 followed by K = 3 (Fig. S4).

Similarly, TESS DIC scores declined sharply between K = 2 and K = 3 and then declined

much more slowly while variances in DIC increased markedly, providing support for three

genetic clusters (Fig. S4). STRUCTURE using the no-admixture model did not provide a

clear result. TESS and STRUCTURE using the admixture model for K = 2 returned almost

identical genetic patterns, with Passage Rocks, Halftide Rocks, Halfway, Humpy, Miall and

Nth Keppel Islands forming a panmictic cluster, while Barren Island, Man & Wife and

Outer Rocks had some individuals from the panmictic cluster and others from the second

genetic cluster (Fig. S5). TESS for K = 3 returned a similar pattern to K = 2 except that

Man & Wife Rocks was distinct from Barren Island and Outer Rocks, with colonies that

did not belong to the panmictic cluster belonging to the third genetic cluster (Fig. S5).

By contrast, STRUCTURE for K = 3 found admixture between the panmictic and the

third genetic cluster within all individuals at Passage Rocks and approximately half the

individuals at Humpy Island (Fig. S5). This result, combined with the higherΔK for K = 2

than K = 3 suggests that, unlike TESS, the algorithm implemented in STRUCTURE was

unable to resolve Man & Wife Rocks as a distinct genetic cluster.

For the combined GBR plus Keppel Island data set, STRUCTURE results showed that

ΔK was highest for K = 2 followed by K = 3 and then peaked again at K = 5, while TESS

DIC values declined steeply between K = 2 and K = 5 and then declined more slowly

(Fig. S6). AlthoughΔK for K = 5 (ΔK = 20) was smaller than for K = 2 (ΔK = 230) and

K = 3 (ΔK = 35), all were much larger than for all other values of K (typicallyΔK < 1).

Given that TESS clearly delineated three genetic clusters for the Keppel Islands alone,

we present K = 5 for the combined dataset. All sites in the Keppel Island archipelago

were genetically distinct from GBR populations in the far northern, northern and central
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GBR reefs, as well as most southern GBR reefs except High Peak (Fig. 1), which may

receive larvae from the Keppel Islands via the predominantly north-east flowing sea surface

currents in this part of the GBR (Luick et al., 2007). In particular, Barren Island and some

individuals from Man & Wife and Outer Rocks belonged to a genetic cluster not found

elsewhere on the GBR. Temporal samples from Nth Keppel Island (July 2002, van Oppen

et al., 2011; van Oppen et al., 2008, this study) were genetically similar (Fig. 1) and had FST

values not significantly different from zero (results not shown).

DISCUSSION
Limited gene flow between inner and outer island clusters
The Barren Island population is a genetic outlier with Dest values ranging from 0.175 to

0.253 (Table 1), and most of the individuals sampled belong to a genetic cluster distinct

from any other cluster observed on the GBR (Fig. 1). The reasons underlying the extreme

genetic distinctiveness of this population are unclear. Outer and Man & Wife Rocks have

smaller numbers of individuals of the same distinct genetic affinity. Despite this, all three

outer island populations contain some individuals that are of the inner islands genetic

affinity. Further, they show a signature of admixture with some colonies being comprised

of the distinct as well as the more typical inner island genetic cluster, suggesting some level

of gene flow exists between outer and inner islands. This was confirmed by assignment

tests, which in addition suggested gene flow is higher from east to west than from west to

east, consistent with the predominant direction of sea surface currents (Luick et al., 2007).

A genetic parentage study of two coral reef fish species found that recent dispersal rates

were higher among the inner Keppel Islands than between Barren Island and the inner

islands (Harrison et al., 2012), consistent with our observations for A. millepora.

Coral larval competency is unlikely a limiting factor for gene flow of A. millepora as

larvae of this species are competent to metamorphose and settle around 4–5 days after

spawning (Babcock & Heyward, 1986), with maximum rates of metamorphosis occur

at eight days after spawning (Heyward & Negri, 1999). Maximum longevity of Acropora

coral larvae in the water column, however, is much longer (∼60–200 days) (Nishikawa,

Katoh & Sakai, 2003; Graham, Baird & Connolly, 2008). Larval dispersal is affected by

surface water circulation patterns. Numerical particle experiments indicate that during

the northward-current season (the austral summer in which coral mass spawning takes

place), cross-shelf particle dispersal is limited (Luick et al., 2007), likely contributing to

the population structure observed here. Alternatively, realised dispersal may be lower

than the actual dispersal potential due to maladaptation of outer island genotypes to

inner island environmental conditions and vice versa (Prada & Hellberg, 2014). While the

environmental factors light, temperature and habitat profile, current strength and reef

rugosity (3-D habitat complexity) do not show an east–west pattern (Jones, Berkelmans

& Houston, 2011) that explains the genetic differences observed between inner and outer

Keppel Island populations, further research is required to address the possibility that

maladapted genotypes are unable to survive despite cross-shelf dispersal and recruitment.
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Mechanisms of recovery
A. millepora populations in the Keppel Island archipelago are genetically isolated from

most other populations on the GBR (Fig. 1) and are therefore largely self-sustaining. Along

the GBR, south easterly trade winds dominate throughout the year but are seasonally

displaced by northerly monsoonal winds during the austral summer (Pickard, 1977). The

nearest mid-shelf reefs to the Keppel Islands are those of the Capricorn Bunker Group,

>65 km to the east. South easterly winds could theoretically drive recruitment between the

Capricorn Bunkers and the Keppel Island group, but A. millepora is relatively rare in the

former (M van Oppen, pers. obs., 2012) and these reefs therefore unlikely serve as a source

of larvae for the Keppel Island populations. A. millepora has a relatively high dispersal

potential due to its broadcast-spawning mode of reproduction and long larval competency

period. We hypothesise that, in the Keppel Islands, other coral species with similarly

high dispersal potential to A. millepora, as well as species that disperse over shorter

spatial distances, will also consist of primarily self-sustaining populations (although the

Capricorn Bunkers may be a source for high dispersal coral species that occur at higher

abundance there). This suggests that the archipelago is vulnerable to perturbations that

cause widespread high coral mortality, as recovery through the arrival of recruits from reefs

outside the Keppel Islands will be slow.

The 2002 Nth Keppel Island sample (collected prior to the 2002 bleaching event)

exhibited no evidence of a genetic bottleneck, which was unexpected given the high

mortality experienced during the 1998 mass bleaching event (Berkelmans et al., 2004).

The same population showed an FST value not significantly different from zero when

compared with the 2008 sample from the same location. In addition to the 2002 bleaching

event, a mass bleaching episode occurred in the Keppel Islands in 2006, causing ∼40%

loss in coral cover (Jones, Berkelmans & Houston, 2011). Given that severe bleaching

reduces reproductive output in the subsequent spawning season (Michalek-Wagner &

Willis, 2001; Jones & Berkelmans, 2011), and that it would take at least 2–3 years for new

recruits to reach reproductive maturity even for the fast-growing Keppel Island Acropora

spp. (Omori, 2010), there was little scope for local colonies that survived the 2002 and

2006 bleaching events to contribute to coral recovery through larval recruitment by 2008.

This, in combination with the lack of evidence for recent genetic bottlenecks in all Keppel

Island populations studied here (which were collected in 2008 and 2009), supports the

hypothesis that in spite of reports of widespread mortality, whole colony mortality was

actually low following the 2002 and 2006 bleaching events (although visual surveys that did

not examine cryptic remnant tissues indicated whole colony mortality was high) and that

tissue regrowth, rather than external recruitment, was the main mechanism of recovery

following the two bleaching events. This supports the work of Diaz-Pulido et al. (2009)

showing that coral recovery had occurred unexpectedly rapidly (within 12 months) after

bleaching from surviving tissues in apparently dead colonies. Coral recruitment during

this period was low (Diaz-Pulido et al., 2009) and instead, recovery must have occurred

through regrowth from cryptic remnant tissues, as supported by our genetic data. The

unusually high growth rates of Acropora spp. in the Keppel Islands (Diaz-Pulido et al., 2009;
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Jones & Berkelmans, 2010) appear to be key to this atypically rapid coral cover recovery

following disturbance.

Preliminary observations show that the speed of recovery following flood events is

slower than that following bleaching, likely reflecting the more common occurrence

of whole colony mortality in areas affected by fresh water inundation, despite its more

spatially restricted impact. For example, the 1991 flooding event (Byron & O’Neill, 1992;

Furnas, 2003; Jones & Berkelmans, 2014) caused total mortality of Acropora spp. down to

1.3 m below lowest tide (van Woesik, DeVantier & Glazebrook, 1995). Average coral cover at

the southern/western side of Nth Keppel Island (site 4 in Byron & O’Neill, 1992) dropped

from pre-flood levels of 51–75% to 10% post-flood (Byron & O’Neill, 1992) and had not

yet fully recovered by February 1995 (∼40%, R Berkelmans, 1995, unpublished data).

Similarly coral cover on the southern/western side of Halfway Island (site 20 in Byron &

O’Neill, 1992) dropped from 76–100% before the 1991 flood to 50% post-flood but were

fully recovered by August 1996 (∼84%, R Berkelmans, 1996, unpublished data). However,

reefs on the northern and eastern sides of these islands generally showed little coral loss

(Byron & O’Neill, 1992; van Woesik, DeVantier & Glazebrook, 1995). Our interpretation

of these observations, in light of the population genetic results presented here, is that

while whole colony mortality is more prominent during floods than bleaching, flooding

has a spatially more variable impact within the Keppel Islands. The slower recovery of

flood impacted southern and western sides of the islands was likely mostly due to larval

recruitment from northern and eastern sites.

Management implications
The lack of evidence for genetic erosion in this study demonstrates that, despite four high

mortality events including flooding in 1991, and bleaching in 1998, 2002 and 2006, the

resilience of coral populations in the Keppel Islands was high prior to late 2008—early

2009 when the sampling for this study was conducted. However, in this isolated reef

system, recruitment from external sources is limited, potentially placing future recovery

at risk if disturbance events are too frequent or are severe enough to cause widespread

whole-colony mortality.

The isolation of the Keppel Island archipelago and genetic distinctiveness of its coral

populations have implications for reef restoration actions and management interventions

that may be considered in the future. For instance, the introduction of coral genotypes

from elsewhere, with the intent to accelerate recovery and boost resilience (Hoegh-

Guldberg et al., 2008; van Oppen et al., 2014), may have positive effects as a consequence

of introducing new gene variants into the Keppel Island populations if introduced colonies

interbreed with the remaining native corals, but could also have adverse effects due to

outbreeding depression. This requires testing under controlled conditions before such

measures would be implemented. The Keppel Island corals possess a set of valuable traits,

including genetic distinctiveness, high growth rates and recovery potential, which, in

combination with their relative isolation from other reefs should afford these ecosystems a

high conservation status.
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CONCLUSIONS
Our microsatellite genotyping results demonstrate that populations of the common reef

builder, A. millepora, in the Keppel Islands fall into two clusters with limited gene flow;

those at the inner islands vs. those at the outer islands (i.e., Barren Island, Outer Rocks and

Man & Wife Rocks). Further, populations of this species in the Keppel Island archipelago

are self-sustaining and receive very little input from populations elsewhere on the GBR.

Genetic diversity analyses suggest coral recovery in the Keppel Islands often occurs from

surviving colony regrowth rather than by recruitment from external sources, especially

following bleaching. However, when whole colony mortality is widespread within a reef

but variable among reefs (as is the case with floods), recruitment from external, nearby

reefs that suffered low mortality can facilitate recovery.
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