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Historically, vaccines have been designed to mimic the immunity induced by natural
exposure to the target pathogen, but this approach has not been effective for any parasitic
pathogen of humans or complex pathogens that cause chronic disease in humans, such as
Plasmodium. Despite intense efforts by many laboratories around the world on different
aspects of Plasmodium spp. molecular and cell biology, epidemiology and immunology,
progress towards the goal of an effective malaria vaccine has been disappointing. The
premise of rational vaccine design is to induce the desired immune response against the
key pathogen antigens or epitopes targeted by protective immune responses. \We advocate
that development of an optimally efficacious malaria vaccine will need to improve on nature,
and that this can be accomplished by rational vaccine design facilitated by mining genomic,
proteomic and transcriptomic datasets in the context of relevant biological function. In our
opinion, modern genome-based rational vaccine design offers enormous potential above
and beyond that of whole-organism vaccines approaches established over 200 years ago
where immunity is likely suboptimal due to the many genetic and immunological host-
parasite adaptations evolved to allow the Plasmodium parasite to coexist in the human
host, and which are associated with logistic and regulatory hurdles for production and

delivery.
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INTRODUCTION

Vaccines are the most efficient health care intervention for pre-
venting morbidity and mortality and improving public health,
except for water sanitation (World Health Organization [WHO],
2014a). The field of vaccinology originated in 1796 when Edward
Jenner protected James Phipps against smallpox by inoculation
with cowpox (Jenner, 1798; Baxby, 1999; Tuells, 2012). How-
ever, despite dedicated efforts to develop vaccines against a range
of viral, bacterial, or parasitic diseases, approximately one third
of all deaths (at least 15 million people each year) and 68%
of deaths in children under 5 years of age (5 million children
each year) are due to infectious diseases (World Health Orga-
nization [WHO], 2014b). Of these, three pathogens that cause
chronic infections — the Plasmodium parasite, human immun-
odeficiency virus (HIV) and Mycobacterium tuberculosis (TB);
known by public health officials as the “big three” — are the major
threats responsible for 10% of all deaths globally and more than
half the global burden of infectious diseases. Moreover, although
there is an extensive vaccine portfolio against viral and bacte-
rial pathogens, there are no licensed vaccines for any parasitic
infection of humans or for any chronic infections by complex
pathogens (World Health Organization [WHO], 2006; Moorthy
and Kieny, 2010). Indeed, there is only one therapeutic vaccine
approved by the US Food and Drug Administration (FDA) or
European Medicines Agency (EMA), for a metastatic hormone-
refractory prostate cancer (Provenge®, DendreonCorp, USA) but
this requires preparation of a personalized vaccine for each patient
and so is expensive (~$US93,000) and has very poor uptake. New

approaches for the development of vaccines against complex and
chronic pathogens are urgently needed. Malaria is an excellent
model for such approaches, being a complex pathogen which
causes chronic infections and one of the “big three” public health
targets.

The Malaria Vaccine Technology Road Map was published
in 2006 as the result of a collective effort by the malaria vac-
cine community'. A comprehensive update to this roadmap was
released in 2013 with the strategic goal to, by 2030, license
vaccines targeting Plasmodium falciparum and P. vivax with
a protective efficacy of at least 75% against clinical malaria
with a duration of protection of at least 2 years and booster
doses to be required no more frequently than annually?. In
the intervening years, there has been a call for global malaria
eradication, issued by Bill and Melinda Gates in October 2007
(Roberts and Enserink, 2007) and taken up the malaria com-
munity with a consensus community-based Malaria Eradication
Agenda®. Many experts consider that vaccines will play a key
role in the eradication process (Hall and Fauci, 2009; Plowe
etal., 2009) and vaccines will certainly be important to sustain
and improve on levels of control achieved by other interventions
such anti-malarial drugs, insecticide spraying and insecticide-
impregnated bed nets. Additionally, the Global Vaccine Action
Plan 2011-2020 compiled by stakeholders from the global health

1 http://www.malariavaccine.org/files/Malaria_Vaccine_TRM_Final_000.pdf
Zhttp://www.who.int/immunization/topics/malaria/vaccine_roadmap/en/

3http://www.who.int/malaria/elimination/maleraupdate.pdf
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community including the World Health Organization (WHO),
the United Nations Children’s Fund (UNICEF), the National
Institute of Allergy and Infectious Diseases (NIAID), and the
Bill & Melinda Gates Foundation (BMGF) included as a key
indicator of progress towards one of its six strategic objectives,
“proof of concept for a vaccine that shows greater or equal to
75% efficacy for HIV/AIDS, tuberculosis or malaria” by 2020
(World Health Organization [WHO], 2012).

However, despite intense effort for many decades by researchers
throughout the world, the development of a malaria vaccine
that meets the stated goals remains elusive (Sherman, 2009).
Almost all efforts have focused on the pre-erythrocytic or asex-
ual blood stages of P. falciparum although recent efforts have
been also directed to the sexual stage to provide ‘herd immu-
nity’ rather than confer individual protection as a consequence
of the malaria eradication agenda, as well as P. vivax (Schwartz
etal., 2012; World Health Organization [WHO], 2014b). An
efficacious pre-erythrocytic vaccine is considered ideal since it
would halt the development of the parasite in the liver stage
and thereby prevent the blood stage of the life cycle which is
the stage associated with the development of clinical symptoms,
as well as the transmission of the disease which occurs in the
sexual stage. The most advanced malaria vaccine candidate is
RTS,S, a hybrid virus-like particle containing the C-terminus of
the P. falciparum circumsporozoite protein (CSP) fused to hep-
atitis B surface antigen, expressed in Saccharomyces cerevisiae
together with hepatitis B surface antigen (Ballou and Cahill,
2007). Recently, regulatory approval for RTS,S/ASO1 targeted at
infants aged 6-14 weeks and administered through the routine
Expanded Program on Immunization (EPI) has been submitted
to the European Medicines Agency by GlaxoSmithKline follow-
ing pivotal Phase III evaluation at 11 sites in sub-Saharan Africa;
if the required regulatory approvals are obtained and the Phase
III safety and efficacy data are satisfactory, the WHO has indi-
cated that a policy recommendation for RTS,S may be granted
in 2015%. Although modeling estimates predict that this vaccine
should have a public health impact in terms of number of “deaths
averted” (Brooks etal., 2012; Nunes etal., 2013), the Phase III
efficacy of the vaccine for its intended outcome in the target
age group is very low and is not sustained (Duncan and Hill,
2011; Olotu etal., 2013). Specifically, after 18 months of follow-
up, efficacy against clinical malaria was only 27% among infants
aged 6-12 weeks at the first vaccination; among children aged 5-
17 months at first vaccination, vaccine efficacy was 46%; moreover,
these results were achieved on top of existing malaria interven-
tions including insecticide-treated bed nets used by 86 and 78%
of trial participants aged 6-12 weeks or 5-17 months, respec-
tively. Although the RTS,S data are encouraging, this milestone
has taken almost 30 years of extensive preclinical and clinical
development by GSK in partnership with the US Army, sup-
ported by more than US$200 million from the Bill & Melinda
Gates Foundation in addition to more than $350 GSK funds to
date, with an additional $260 million investment an‘ticipated5
(Ballou and Cahill, 2007).

“http://www.malariavaccine.org/files/MVI-GSK-RTSSfactsheetFINAL-web.pdf
Shttp://www.malariavaccine.org/files/MVI-GSK-FAQ-FINAL-web.pdf

CHALLENGES FOR MALARIA VACCINE DEVELOPMENT

The development of an effective vaccine against malaria has been
hindered by the complexity of the Plasmodium spp. parasite as
well as the host response to the parasite. Recent evidence indi-
cates that the Plasmodium parasite has co-evolved with the human
host for 1000s of years (Liu etal., 2010) with evolutionary co-
adaptation allowing for chronic persistence of the parasite in the
human host, and recurrent infections (Pierce and Miller, 2009).
The Plasmodium life cycle involves both invertebrate (mosquito)
and vertebrate (mammalian) hosts, with multiple stages within the
host (sporozoite, liver, asexual blood stage, sexual) and numerous
intracellular and extracellular environments in which the para-
site develops (Langhorne etal., 2008). Different host responses
are required to target these distinct life cycle stages — primar-
ily antibodies against the extracellular parasite stages exposed in
the peripheral circulation (sporozoites, asexual blood stage mero-
zoites) and T cells against the intracellular stages (hepatic/liver
stages) which are not accessible to circulating antibodies. In addi-
tion, the Plasmodium spp. parasite has alarge 23 megabase genome
that contains an estimated 5,300 putative proteins, many of which
are expressed in different stages of the life cycle (Gardner etal,,
2002). Moreover, many of these protein may exhibit allelic poly-
morphism (more than one allele existing for certain regions of
a protein, e.g., MSP1 or AMA1), antigenic polymorphism (point
mutations at the nucleotide level, e.g., CSP) often localized to B cell
or T cell epitopes, or antigenic variation (multi-copy variant sur-
faces antigens, e.g., var genes, rifins; Good etal., 1988; Takala and
Plowe, 2009; Kirkman and Deitsch, 2012; Barry and Arnott, 2014).
A vaccine must be effective against all antigenic or allelic variants
responses, to ensure efficacy against all variant circulating strains
in the field (Moorthy and Kieny, 2010). In addition to this selection
by the parasite of mutations that avoid the host protective immune
response and confer susceptibility to the disease, there is selection
by humans of mutations that confer resistance. Indeed, malaria
is considered to have had the greatest impact of all pathogens
in shaping the human genome with evidence that a number of
genetic polymorphisms within the human genome, including o-
thalassemia and hemoglobinopathies such as the sickle-cell trait,
have arisen due to evolutionary pressure exerted by the Plasmod-
ium parasite (Mackinnon and Marsh, 2010; Taylor etal., 2013).
The high mortality rate associated with malaria would be pre-
dicted to exert a powerful selective pressure on the human genome
by positively selecting any genetic mutation that confers protec-
tion against death to allow the Plasmodium parasite to persist in
the host and be transmitted (Pierce and Miller, 2009; Mackinnon
and Marsh, 2010). Other sophisticated immune evasion strategies
at the host-parasite interface include the ability of the parasite to
modulate the host immune response, reviewed extensively else-
where (Langhorne etal., 2008; Casares and Richie, 2009; Pierce
and Miller, 2009). These complex host—parasite interactions at the
genetic and immunological levels pose significant challenges for
vaccine development.

FEASIBILITY OF VACCINATION AGAINST MALARIA

In spite of these challenges, there is growing evidence supporting
the feasibility of developing an effective malaria vaccine. Field
studies have demonstrated a decreasing incidence and density
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of infection with age and exposure to natural infection, and
reduced frequency and severity of clinical illness, indicative of
the acquisition of anti-disease immunity (Baird, 1998; Doolan
etal., 2009). Also, passive transfer of polyclonal sera or puri-
fied immunoglobulin from individuals with lifelong exposure
to P. falciparum resulted in a significant reduction in blood-
stage parasitemia and recovery from clinical symptoms (Cohen
etal., 1961; Sabchareon etal., 1991). Those studies implicate anti-
bodies directed against blood stage antigens as the key immune
effectors in naturally acquired immunity. This protection is anti-
disease immunity but not anti-parasite immunity since most
individuals with long-term exposure in malaria endemic areas
who have developed effective clinical immunity will nonethe-
less continue to experience low-density, asymptomatic infections
(Okell etal., 2009). Longitudinal studies in malaria-endemic pop-
ulations suggest that immune responses to the pre-erythrocytic
stages probably have limited involvement in this anti-disease
immunity and that immunity to the pre-erythrocytic stage is
not naturally acquired (Owusu-Agyei etal., 2001; Tran etal,
2013). Nonetheless, epidemiological studies suggest that expo-
sure to low numbers of sporozoites, although not sterilizing,
can reduce the parasite load in the liver and lower blood stage
parasitemia, since the intensity of exposure to biting infectious
mosquitoes (entomological inoculation rate) has been signifi-
cantly associated with the incidence and density (but not preva-
lence) of P. falciparum parasitemia in children (Doolan etal,
2009).

More convincing evidence for the feasibility of vaccination
against malaria exists from studies focused on the experimental
induction of protective immunity, which have established that
sterile infection-blocking protective immunity directed against
the pre-erythrocytic stage can be achieved in mice and humans.
Considered for many years the “gold standard” for malaria vac-
cine development, sterile protection can be induced in mice,
non-human primates and humans by exposure to the bites of
radiation-attenuated P. yoelii, P. berghei, P. knowlesi, or P. falci-
parum infected mosquitoes, or by intravenous immunization with
isolated irradiated sporozoites, provided that the dose of radiation
is sufficient to attenuate the parasite such that it can invade the hep-
atocyte but not develop into the blood-stage (Nussenzweig etal.,
1967; Gwadz etal., 1979; Hoffman etal., 2002; Weiss and Jiang,
2012). The parasite is arrested in early liver stage development,
with each invading sporozoite giving rise to only a single hepatic
parasite. Murine and non-human primate studies establish that
the protective immunity induced by immunization with radiation
attenuated sporozoites (RAS) is directed against the liver stage par-
asite and mediated primarily by CD8" T cells and IFN-y (Schofield
etal., 1987; Doolan and Hoffman, 2000; Tsuji, 2010; Weiss and
Jiang, 2012). Recent studies have shown that protection in humans
can be induced in a dose-dependent manner by intravenous but
not intradermal immunization with radiation-attenuated, aseptic,
purified, cryopreserved P. falciparum sporozoites (Epstein etal.,
2011; Seder etal., 2013); five intravenous doses of 135,000 PfSPZ
(675,000 sporozoites in total) were required to achieve sterile
immunity in 6/6 volunteers. CD8" IFN-y-producing T cells in
the liver were implicated as the primary immune effector based
on non-human primate studies showing that high frequencies of

CD8™ T cells could be induced by intravenous but not intrader-
mal routes of immunization, and mouse studies showing that these
cells could protect (Epstein etal., 2011). These data are consistent
with an earlier proposal (Langhorne etal., 2008) that sporozoites
injected intravenously can enter the liver within seconds and be
processed and presented by liver-resident antigen-presenting cells
for induction of host immunity, whereas sporozoites inoculated
intradermally via mosquito bite may take minutes to hours to enter
the liver; or might may be taken up by a different type of antigen
presenting cell such as the skin-derived CD103" dendritic cells
(Bedoui etal., 2009).

Sterile immunity against Plasmodium sporozoite challenge
can be also induced in mice by homologous immunization
with infectious (live) wild type sporozoites while receiving a
prophylactic regimen of chloroquine (Beaudoin etal., 1977; Orjih
etal., 1982; Belnoue etal., 2004) or primaquine (Putrianti etal.,
2009). This immunity is directed against the liver stage and medi-
ated by CD4" and CD8™ T cells, but not antibodies (Belnoue
etal., 2004; Roestenberg etal., 2009). More recently, this obser-
vation has been translated to humans with the demonstration
that human subjects exposed three times to the bites of 10-15 P,
falciparum infected mosquitoes under the cover of chemoprophy-
laxis (ChemoProphylaxis and Sporozoites, CPS-immunization;
also known as infection—treatment—vaccination, ITV) were ster-
ilely protected against subsequent challenge with P. falciparum
sporozoites, but not P. falciparum-infected erythrocytes (Roesten-
berg etal., 2009; Bijker etal., 2013, 2014). This protection was
sustained for up to 2 years (Roestenberg etal., 2011) and was dose
dependent: complete protection was obtained in 4/5, 8/9, and
5/10 volunteers immunized three times with bites from 15, 10, or
5 P. falciparum-infected mosquitoes, respectively, and CPS immu-
nization is thus estimated to be about 20 times more efficient
than RAS immunization (Bijker etal., 2014). Since chloroquine
kills asexual blood stage parasites but not sporozoites or liver
stage parasites, in the CPS-model parasite infection is aborted
in the early phase of blood-stage infection allowing full liver-stage
development of the parasite. Consequently, CPS immunization
exposes the host to parasite antigens expressed in early and late
liver stages as well as early blood stages (Bijker etal., 2013). How-
ever, the protective immunity appears to be directed primarily
against the liver-stage of the parasite since CPS-immunized vol-
unteers showed no evidence of protection against blood-stage
challenge in vivo and IgG from CPS-immunized volunteers did
not inhibit asexual blood-stage growth in vitro (Bijker etal.,
2013). Moreover, this protection appears to be mediated by T
cells since protected subjects had significantly higher proportions
of CD4™ T cells expressing the degranulation marker CD107a
and CD8™ T cells producing granzyme B after in vitro restim-
ulation with P. falciparum-infected red blood cells (Bijker etal.,
2014), and antibodies to nine antigens representing different
stages of the P falciparum life cycle did not predict protec-
tion (Nahrendorf etal., 2014) even though CPS-immunization
induced functional antibodies against P. falciparum sporozoites
which could inhibit sporozoite traversal through hepatocytes and
liver-stage infection (Behet etal., 2014). The antigenic targets of
the CPS-induced T cell mediated are not yet known but this is
under investigation.
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In a variation on the CPS approach, the induction of robust
protective immunity by prophylactic administration of antibiotic
drugs which specifically inhibit apicoplast biogenesis during expo-
sure to intravenously or mosquito bite transmitted sporozoites was
reported in the P. berghei murine model (Friesen etal., 2010).
This approach was conceived to overcome limitations of 1TV
associated with drug resistance parasite populations. The correct
choice of antibiotic in this model allows for continued liver-stage
maturation and exponential expansion of attenuated liver-stage
merozoites from a single sporozoite and subsequent release into
the host peripheral circulation of merosomes (detached vesicles
containing liver stage merozoites) which are incapable of infecting
red blood cells, thereby halting the parasite life cycle prior to the
asexual blood stage. This immunity appears to be targeted at the
liver stage and mediated primarily by CD8" T cells and IFN-y.
This strategy is distinct from the RAS model where each sporo-
zoite gives rise to only a single attenuated liver-stage parasite, and
the primaquine chemoprophylaxis model where liver-stage devel-
opment is aborted before the onset of nuclear divisions (Putrianti
etal., 2009), and the chloroquine chemoprophylaxis model which
targets the early blood-stage (Belnoue etal., 2004; Roestenberg
etal., 2009).

Another area of active investigation is genetically attenu-
ated parasites (GAP) generated via targeted disruption of genes
essential for liver-stage or blood stage development (Mueller
etal., 2005). These have been comprehensively reviewed else-
where (Butler etal.,2011; Matuschewski etal., 2011; Nganou-
Makamdop and Sauerwein, 2013) and include GAPs that arrest
development early (Ap52/Ap36, ASAP1, ASLARP) or later
(AUIS3/UIS4, AEla, AE3, AFABI, AFABB/F, AFABZ, and
APKG) during liver stage development. In a first-in-human safety
and immunogenicity clinical trial, 5/6 volunteers administered
GAP sporozoites deleted of two P. falciparum pre-erythrocytic
stage-expressed genes (P52 and P36) via mosquito bite did not
develop blood stage parasitemia (Spring et al., 2013). However, the
development of peripheral parasitemia in one volunteer showed
that this double knockout GAP was incompletely attenuated.
Although no breakthrough blood infections were observed in a
study evaluating the P. yoelii Ap52/Ap36 GAP (Labaied etal,
2007), others observed developing P. berghei or P. falciparum liver
stages in vitro culture with the respective Ap52/Ap36 GAPs and
breakthrough blood infections in P. berghei Ap52/Ap36 GAP
immunized mice, showing that the Ap52/Ap36 GAP was not
adequately attenuated (Annoura etal., 2012). A minimal set of
screening criteria has been proposed to assess the adequacy of
genetically attenuation before advancing candidate GAPs into fur-
ther clinical development (Annoura etal.,, 2012). Most recently,
a triple gene deleted GAP (Pf Ap52/Ap36/Asapl) had been
shown to be completely attenuated in a humanized mouse model
(Mikolajczak etal., 2014).

Vaccination with chemically attenuated parasites is also being
pursued. In the original studies in mice, chemical attenuation
of P. yoelii or P. berghei sporozoites with the DNA sequence-
specific alkylating agent centanamycin conferred sterile immunity
in vivo following one to three intravenous doses (50/20/20K)
of centanamycin-treated P. yoelii or P. berghei sporozoites
(Purcell etal., 2008a,b). The level of protection, parasite-specific

antibodies, and IFN-y-producing CD8* T cell responses induced
by chemically attenuated sporozoites (CAS) were similar to
those induced by RAS. In the blood stage, Good etal., (2013)
have recently reported that a single immunizing dose of 10° P.
chabaudi parasitized red blood cells chemically attenuated with
centanamycin could protect against challenge with 10> homolo-
gous or heterologous (P. vinckei and P. yoelii) parasites in a CD4™"
T cell dependent manner (Good etal., 2013). Chemically attenu-
ated P. falciparum parasitized red blood cells are currently being
evaluated in the clinic (Good, personal communication).

Another whole organism based strategy directed at the blood
stage of the parasite life cycle was designed to induce T helper
1 (Th1) cell mediated immunity in the absence of antibodies by
immunizing with subpatent ultra-low dose parasitized erythro-
cytes followed by drug treatment (Pombo etal., 2002). This built
on observations that parasites in high density could cause apopto-
sis of parasite-specific T cells (Hirunpetcharat and Good, 1998; Xu
etal.,2002). Good et al. (2013) showed that malaria-naive humans
deliberately infected four times with approximately 30 viable para-
sitized red blood cells followed by drug treatment developed robust
T cell responses in the absence of antibody which prevented par-
asite growth in three of four individuals and delayed the onset of
parasite growth which remained subpatent in the fourth individual
(Pombo etal., 2002). Efficacy against a higher dose challenge post-
immunization was not assessed, and the contribution of residual
drug to this protection could not be excluded. This ultra-low dose
immunization approach has not yet been repeated in humans
or mice. However a subsequent study in the P. chabaudi model
demonstrated that three intravenous infections with a relatively
high dose of 100,000 P. chabaudi infected erythrocytes followed by
drug cure after 48 h and before microscopic patency could protect
mice against a 10-fold higher (10°) parasite challenge; mice had
robust cell-mediated immune responses and antibodies to mero-
zoite antigens but variant-specific antibodies were not detectable
(Elliott et al., 2005).

These proof-of-concept studies with whole organism based
vaccines show that experimental induction of sustained protective
immunity to Plasmodium spp. parasites is possible.

MALARIA VACCINE STRATEGIES

Evidence that immunity can be induced experimentally or
acquired naturally with age and/or exposure suggests two fun-
damental approaches to vaccine development (Good and Doolan,
2010):

(1) Induce robust immune responses against a selected panel of
antigens recognized as immunodominant in the context of
natural infection.

(2) Induce a broad immune response against a large number of
parasite antigens not necessarily recognized as immunodom-
inant in the context of natural infection in order to mimic the
immunity induced by the whole parasite.

Until recently, almost all malaria vaccine efforts have been
directed at the former approach. Most of these subunit efforts
have targeted only a very small number of target antigens, focus-
ing almost exclusively on CSP for the pre-erythrocytic stage and
MSP1 and AMAL1 for the blood stage (Schwartz etal., 2012; World
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Health Organization [WHO], 2014b) and investigating a variety of
vaccine delivery systems. A major emphasis has been on purified
recombinant proteins formulated with adjuvant, but viral vec-
tored approaches have become of increasing interest, particularly
for the pre-erythrocytic stage where induction of parasite-specific
T cell responses is desirable. These have been reviewed exten-
sively elsewhere (Bruder etal., 2010; Crompton etal., 2010b;
Anders, 2011; Schwartz et al., 2012; Birkett et al., 2013). However,
despite extensive efforts throughout the world spanning many
decades and in contrast to the immunity induced by experimental
immunization with variations of whole organism based vaccines,
candidate subunit vaccines against malaria have been poorly effi-
cacious (Schwartz et al.,2012; World Health Organization [WHO],
2014Db). Indeed, it is not surprising that a vaccine based on a sin-
gle antigen is unlikely to confer solid protection against a complex
multi-lifecycle stage parasite expressing thousands of proteins that
has co-evolved with the human host for millennia.

This marked lack of success in single-antigen subunit based
vaccines, combined with the recognition that an effective malaria
vaccine will likely need to be a multi-stage multi-immune
response vaccine (Doolan and Hoffman, 1997) given the chal-
lenges described above, has caused a resurgence of interest in
whole organism vaccine approaches, intended to reproduce the
protective immunity induced by exposure to the parasite in exper-
imental challenge models or naturally in the field. However, a
number of challenges are associated with whole organism based
vaccine strategies (Menard, 2005; Ballou and Cahill, 2007; Anders,
2011). Specific concerns with GAPs include potentially inadequate
attenuation, as already demonstrated with the Pf A52/Ap36 GAP
in the only human trial to date (Spring etal., 2013), and rever-
sion to virulence of a parasite that has co-evolved with the human
host for millennia if it is genetically modified in only one or a few
regions of its genome. Other concerns include logistical challenges
associated with manual dissection of sporozoites, route of admin-
istration, loss of viability upon cryopreservation, and cold-chain
requirements. Additionally, antigenic variability of the parasite
means that robust cross-protection from a single strain product is
essential. Thus, although promising results have been obtained in
preclinical models, it remains to be seen whether the many tech-
nical, logistical, and regulatory hurdles associated with large-scale
production and field deployment of live-attenuated parasites can
be overcome.

Even if these technical, logistical, and regulatory challenges can
be overcome, a key question is whether whole parasite approaches
will induce optimal immunity. Those approaches are essentially
similar to the classical “identify, isolate, and inject” approach pio-
neered in the late 17th century by Edward Jenner, which has proved
successful with a wide range of bacterial and viral pathogens, but
not yet any parasitic pathogens or any chronic diseases (reviewed
in Doolan etal., 2014). This could be attributed to the com-
plexity of parasites as compared to viruses and bacteria, with
larger genomes and multiple intracellular and extracellular life
cycle stages. Additionally, it is now well established that microbial
pathogens have evolved complex and efficient ways of counter-
acting and evading innate and adaptive immune mechanisms of
the host (Zepp, 2010). Thus, logically, robust immunity against
such pathogens would not be induced by strategies using the

whole pathogen intended to mimic experimentally that immunity
induced by natural exposure. Rather, effective vaccination would
require that we do better than nature, by inducing responses that
are quantitatively and/or qualitatively different immune response
to that induced by natural infection.

Inherent in this approach is the cumulative effect of multiple
potentially low level immune responses directed against a number
of antigens which may or may not be dominant parasite antigens,
which together exceed a response threshold sufficient to protect.
We proposed this “threshold of immune response concept” over
15 years ago (Doolan and Hoffman, 1997). Specifically, we pro-
posed that the intensity of an immune response will be determined
by the sum of a number of signals received by a T cell (or B cell)
with the appropriate receptor, and that although a single antigen
(with one or more target epitopes) could be sufficient to generate a
protective immune response if it is appropriately presented to the
immune system, a wide repertoire of specificities at the epitope
level (more antigens) should increase the probability of collec-
tively inducing a protective host immune response. Experimental
evidence that responses to a given antigen following protective
immunization in mice with RAS are not as high as antigen-specific
responses induced by vaccination with antigen-specific peptides,
recombinant protein or live vectors which nonetheless fail to pro-
tect validates this concept. In an elegant series of studies in the P
berghei model, Harty and colleagues were able to define a threshold
frequency of CD8™ T cells that predicted long-term sterile immu-
nity against sporozoite challenge, and showed that an extremely
high frequency of CD8" T cells (exceeding 8% of all circulating
CD8' T cells in BALB/c mice and 19% in outbred mice) was
required for both a single-antigen subunit vaccination (Schmidt
etal., 2008) and RAS immunization (Schmidt etal., 2010); this
level greatly exceeding the number of memory CD8" T cells
required for resistance to other pathogens.

A similar requirement for a protective threshold of antibody
production for parasite clearance following lethal challenge has
been demonstrated in a P. chabaudi model using MSP1-specific
transgenic CD4™ T cells in immunodeficient mice, where levels
of MSP1-specific antibody and the speed of their production cor-
related with the time of resolution of infection (Stephens etal.,
2005). In humans, in the field, a broad repertoire of antibody
responses to multiple antigens has been associated with protection
from clinical malaria (Osier etal., 2008; Crompton etal., 2010a).

These data suggest that to induce optimal protection against
malaria, vaccination with the whole parasite is not required, and
would likely be suboptimal. Rather, vaccination with only key
components of the parasite that have been rationally selected in
the context of relevant biological function would be preferable.

NOT ALL ANTIGENS ARE EQUAL

It is now generally recognized that not all antigens, or epitopes
within a given antigen, are equal in the context of host immu-
nity. The phenomenon whereby immune responses are mounted
against only one or a few of the entire repertoire of peptide
epitopes expressed on a given antigen, or antigens expressed by
a given pathogen, is termed immunodominance (Sercarz etal.,
1993; Akram and Inman, 2012). In theory, any of the proteins
expressed by the parasite genome may be a target of protective
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immune responses. However, many proteins expressed by the
parasite genome do not elicit immune responses, and for many
if not most of the subset which do elicit immune responses, the
response is not protective. Also in theory, a robust and effective
immune response directed against an accessible dominant tar-
get would be highly successful in eliminating the pathogen from
the host. However, as noted above, in many cases immune eva-
sion strategies have evolved to allow the pathogen to escape the
protective host response. Factors that could influence immun-
odominance, and their importance in protection, have not been
investigated in the context of a complex pathogen, although some
hypotheses exist (Doolan etal., 2014).

Although immunization with whole organisms preferentially
induces responses against immunodominant epitopes, responses
to subdominant T cell epitopes can contribute to controlling infec-
tion (Friedrich etal., 2007; Kloverpris et al., 2009; Ruckwardt et al.,
2010). Also, the ability to focus the immune response away from
dominant antigens or epitopes and towards subdominant anti-
gens or epitopes could be of value in chronic diseases where T cells
directed against the immunodominant antigens or epitopes might
be anergic but T cells specific for non-dominant epitopes might
be reactive. Translating this to infectious diseases where the devel-
opment of effective vaccines based on immunodominant antigens
has thus far not been successful (Good and Doolan, 2010), one
could speculate that the critical targets of protective immunity
may be those that are not dominant in the context of the whole
organism.

In support of this, although the CSP is the dominant sporo-
zoite surface protein and represents a target of immune responses
induced by immunization with radiation attenuated Plasmodium
sporozoites, those responses are much weaker than responses
induced by CSP-based subunit vaccines, and responses are also
directed against other non-CSP antigens (Doolan etal., 1997,
2000, 2003; Kumar etal., 2006; Gruner etal., 2007; Trieu etal.,
2011). Notably, sterile CD8" T-cell mediated immunity to sporo-
zoite challenge could be induced by immunization with RAS in
JHT transgenic mice that were tolerant to CSP, so this protec-
tion was directed against non-CSP antigens (Kumar etal., 2006).
Sterile protection could be also induced by RAS or CPS immuniza-
tion with transgenic P. berghei parasites in which the endogenous
CSP was replaced by that of P. falciparum or P. yoelii, respec-
tively, despite the absence of immune responses specific to the
CSP expressed by the parasite used for challenge (Gruner etal,
2007; Mauduit etal., 2010). Also, human volunteers protected
by immunization with RAS did mount CD8" and CD4™ T cell
and antibody responses to CSP but those responses were similar
to, or lower than, those in immunized volunteers who were not
protected against sporozoite challenge indicating that the RAS-
induced protective immune responses are directed predominantly
against non-CSP antigens (Doolan etal., 1997, 2000, 2003; Trieu
etal.,, 2011). Recently, using protein microarrays, we have iden-
tified a signature of 19 mostly uncharacterized antigens which is
strongly associated with RAS-induced protective immunity; reac-
tivity to any individual antigen did not correlate with protection
(Trieu etal., 2011).

Accumulating experimental data in preclinical and clinical
studies of malaria thus indicate that in fact not all antigens are

equal, that antigen selection is important, and that it is the
cumulative response to a number of key antigens that is important,
rather than a dominant response to a single antigen.

GENOME-BASED VACCINE DESIGN

The identification within the hierarchy of antigens (or epitopes)
expressed by the pathogen that are targets of protective immune
responses and that will stimulate effective immunity against that
pathogen is a key component of rational vaccine design (Rueck-
ert and Guzman, 2012). Cutting-edge technologies and screening
strategies to mine genomic sequence information for state-of-
the-art rational vaccine design, as well as genome-based rational
vaccine design strategies, and recently reviewed elsewhere (Doolan
etal,, 2014; Schussek etal., 2014). The challenge, then, is how to
select the key targets since there is no algorithm that can be applied
to identify the important antigens and epitopes. Advances in the
genomic era offer great potential, particularly when the genome of
the target pathogen is large, and large-scale genomic, proteomic
and transcriptomic datasets provide valuable resources to mine
for antigen discovery.

In the case of malaria, the recent availability of large-scale
genomic (Table 1), proteomic (Table 2), transcriptomic (Table 3)
and comparative data from P. falciparum and other Plasmodium
species provides an unprecedented opportunity to identify key
targets antigens of protective immunity amongst the large reper-
toire of antigens expressed by the whole parasite. Since 2002,
the genomes of seven Plasmodium parasites have been published,
including that for the two major human parasites (P. falciparum, P,
vivax) (Gardner et al., 2002; Carlton et al., 2008; Pain et al., 2008);
two non-human primate parasites (P. knowlesi, P. cynomolgi; Pain
etal., 2008; Tachibana etal., 2012), and three murine parasites (P.
yoelii 17XNL, P. berghei, P. chabaudi; Carlton etal., 2002; Hall
etal.,, 2005). Draft complete genomes are also available for the
avian malaria parasite P. gallinaceum, non-human primate para-
site P. reichenowi Denni, the lethal murine parasite P. yoelii YM, and
three different strains of P. falciparum (HB3,Dd2 and IT; Table 1).
Partial genome sequence is also accessible for 21 isolates of P.
falciparum and four isolates of P. vivax from geographically dis-
tinct areas of the world, as well as low coverage draft genomes
for the other two parasites infecting humans, P. malaria and P,
ovale. With the advent of next-generation sequencing technol-
ogy, the sequencing of genomes for an additional 105 Plasmodium
species/strains/isolates have been proposed by the malaria com-
munity®. These parasites include 50 P. falciparum field isolates
collected from patients in East Africa, America, and Asia; 24 P.
falciparum parasites representing both contemporary or historical
parasite strains, including strains used in drug and vaccine trials;
16 P. vivax isolates from Africa, America, and Asia; four non-
human primate parasites (P. reichenowi, P. cynomolgi, P. inui, P,
coatneyi, P. fragile); and complete sequence and closure of three
murine parasites (P. chabaudi, P. yoelii, and P. berghei and two
avian and reptile parasites (P. relictum and P. mexicanum). For
some of these parasites, a first partial assembly is already available
(Table 1).

Chttp://www.genome.gov/pages/research/der/pathogensandvectors/plasmodium
whitepaperv8.pdf
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In addition to this genomic data, the rapid development of
high throughput technologies for profiling the transcriptome,
proteome, metabolome, and interactome, including capillary lig-
uid chromatography, tandem mass spectrometry (LC-MS/MS),
Multidimensional Protein Identification Technology (MudPIT),
microarray DNA chip, yeast two-hybrid (Y2H) screening and most
recently RNA seq and NSR-seq (Winzeler, 2006) can be applied
for the rational identification of potential vaccine candidate
antigens.

In early studies, proteomes of four stages of the P. falciparum
parasite life cycle (sporozoites, merozoites, trophozoites, and
gametocytes) were revealed by MudPIT (Florens etal., 2002) as
well as the proteome of the asexual blood stages (trophozoites
and schizonts) and sexual stages (gametocytes and gamete) by
LC-MS/MS analysis (Lasonder etal., 2002). This P. falciparum
sporozoite proteome included a total of 1048 proteins of which
almost half (49%) were unique to this stage. The proteomes of
P. berghei oocysts and sporozoite were subsequently defined by
MudPIT in 2005, resulting in the identification of 1836 pro-
teins (Hall etal., 2005). Recently, nano-liquid chromatography
(nanoLC) coupled high-resolution MS was applied to profile the
proteome of highly purified salivary gland sporozoites from P.
falciparum and P. yoelii, identifying a total of 1991 P. falciparum
sporozoite proteins and 1876 P. yoelii sporozoite proteins (Lind-
ner etal.,, 2013).The liver stage proteome was defined in the rodent
host P. yoelii by LC-MS/MS resulting in the detection of 712 pro-
teins in the liver stage schizont proteome, with 174 of them more
abundant and/or detected only in the liver stage (Tarun etal.,
2008).

A study of P. falciparum infected erythrocytes, fractionated
through biotin-streptavidin interaction and analyzed by MudPIT,
identified 164 proteins of the 423 proteins that were enriched the
in biotin-labeled fractions and thus considered surface proteins.
Among these were known secreted proteins, such as Exp-1 and
Exp-2, and rhoptry proteins (RAP-1, -2, and -3, RhopH-2 and
-3; Florens etal., 2004). Another LC-MS/MS study of early stages
from P. falciparum clinical isolates detected 88 P. falciparum pro-
teins in the peripheral circulation (Acharya etal., 2009). More
recent analyses on the proteome of asexual trophozoites, early
gametocytes, and mature gametocytes from in vitro culture by
high accuracy (LC MS/MS) have identified over new 1000 par-
asite proteins, not previously identified (Silvestrini etal., 2010).
Most recently, proteomic analysis by MudPIT of P. falciparum
nuclei of ring, trophozoite and schizont stages has elucidated
the nuclear proteome of P. falciparum during intra-erythrocytic
development, consisting of over 800 proteins (Oehring etal.,
2012).

Elucidation of the gametocyte sex-specific proteomes of P. fal-
ciparum by LC-MS/MS resulted in the identification of 305 unique
proteins in the male gametocyte proteome and 170 unique pro-
teins in the female gametocyte proteome (Khan etal., 2005). The
identification of sex-specific proteins has brought new insight in
understanding the role of these proteins during the sexual differ-
entiation and thus proving the basis for identifying targets for the
interruption of transmission, either by drugs or vaccines.

Other comparative LC MS/MS proteomic studies of P. fal-
ciparum and P. berghei have identified novel proteins in the

pre-erythrocytic stages of the Plasmodium life cycle: 127 proteins
in the oocyst proteome, 450 proteins in oocyst-derived sporozoites
and 477 proteins in salivary gland sporozoites, for a total of 728
Plasmodium proteins, of which 250 were exclusively detected in
the oocyst/sporozoite stages when compared to the P. falciparum
blood stage proteome (Lasonder etal., 2008).

More recently, the proteome of P. vivax asexual schizonts
has been defined by analyzing fresh parasite isolates from
patients exposed to P. vivax by tandem MS/MS (Roobsoong et al.,
2011).

Complementing the proteomic analyses, a number of tran-
scriptomics studies have been undertaken, ranging from analysis
of gene transcription using random clones selected from genomic
DNA libraries to more recent global expression transcription
profile using oligonucleotide microarray, RNA-seq or NSR-seq.
Transcriptomic data are now available from multiple life-cycle
stages or gene knock-out mutants of P. falciparum and P. berghei
as well as multiple stages of P. yoelii (mosquito, erythrocytic and
liver stages; Table 3). Specifically, transcriptomic data available
for P. falciparum include genome-scale transcriptomic analyses
of nine different life cycle stages (3D7 strain) including salivary
gland sporozoite, early and late ring stage, early and late tropho-
zoite, early and late schizont, merozoite, and gametocyte stages (Le
Roch etal., 2003); the intraerythrocytic trophozoite and schizont
stages (Bozdech etal., 2003); the intraerythrocytic developmental
cycle of P. falciparum HB2, Dd2, and 3D7 strains (Llinas etal,,
2006); as well as 21 other P. falciparum lines from four subclonal
groups (3D7A/3D7B, 7G8, D10, HB3A/HB3B) during the asex-
ual intraerythrocytic developmental cycle at seven time points
post-infection (10, 20, 30, 34, 37, 40, or 43 h; Rovira-Graells
etal., 2012) plus analysis of parasites derived directly from blood
samples from 43 infected patients (Daily etal., 2007). The tran-
scriptome of high-purity stage [-V P. falciparum gametocytes is
also available (Young et al., 2005), as well as the transcript profiles
of rif and var genes at different stage of gametocytogenesis (Wang
etal., 2010).

In addition to genome-wide gene expression studies, RNA-seq
analysis of the P. falciparum transcriptome is available for multi-
ple time points during the intraerythrocytic developmental cycle
(Bartfai etal., 2010; Otto et al., 2010; Lopez-Barragan etal., 2011);
and two gametocyte stages (Lopez-Barragan etal., 2011). The
transcriptional profile of two pools of field isolates from malaria-
infected pregnant women and children has been also determined
by NSR-seq (Vignali etal., 2011).

For P. vivax, transcriptomic data include genome-scale tran-
scriptomic analyses throughout the intraerythrocytic cycle of three
distinct P. vivax isolates (Bozdech et al., 2008) as well as sporozoites
co-cultured with hepatocytes (Siau etal., 2008); and sporozoites,
gametes, zygotes, and ookinetes, and asexual blood stages obtained
from infected patients (Westenberger etal., 2010).

Plasmodium yoelii gene expression data are available for oocyst
sporozoites and salivary gland sporozoites (Mikolajczak etal.,
2008); three time points during the liver stage (24, 40, and
50 h post-infection), two time points during the mosquito
stage (midgut-oocyst sporozoites and salivary gland sporozoites;
Tarun etal., 2008), and two intraerythrocytic stages (Tarun etal.,
2008). P. berghei expression data are available for rings, young
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trophozoites, young schizonts, and mature schizonts (Hall etal.,
2005).

Other transcriptomic datasets include EST data from cDNA
libraries of P. falciparum (12,484 cDNA sequences), P. vivax (9,633
cDNAs), P. yoelii (11,262 cDNAs), and P. berghei (1,518 cDNAs)
(Watanabe etal., 2007; Tarun etal., 2008), as well as 7,683 P. falci-
parum 3D7 ESTs generated from mixed asexual stages and SAGE
data (Patankar etal., 2001; Gunasekera et al., 2003, 2004).

These genome-wide genomic, proteomic, and transcriptomics
analyses (Tables 1-3) have revealed potential antigens expressed
in the sporozoite and intrahepatic stages and novel proteins on
the surface of malaria-infected erythrocytes that may play a role
in pathogenesis and immunity, and that may represent potential
new vaccine candidates.

Several novel parasite surface antigens have been discovered
(Florens etal., 2002, 2004; Lasonder etal., 2002; Le Roch etal.,
2004; Sam-Yellowe etal., 2004) but, so far, this wealth of data
has yielded few new vaccine targets (Table 4; Duffy etal., 2012).
In our opinion, translation of this wealth of information from

the large-scale genomic, proteomic, and transcriptomic datasets
into practical application, such as the identification of promising
new target antigens for vaccine development, requires integrating
this knowledge with functional outputs such as biologically rele-
vant immune responses. Thus, in our laboratory, we are pursuing
immunomics-based approaches which integrate the disciplines of
genomics and immunology using biological samples from humans
or animals with immunity to the disease of interest to identify
the subset of pathogen-derived proteins or their epitopes that are
recognized by the host immune system (Klysik, 2001; Doolan,
2011). No vaccines derived from immunomics have yet reached
the stage of clinical testing but a number of promising candidate
antigens have been identified by us in the malaria model using
antibody based (Doolan etal., 2008; Crompton etal., 2010a; Trieu
etal., 2011) or T-cell based (Doolan etal., 2003; Doolan, 2011).
We are using peripheral blood mononuclear cells (T cells) and
plasma/sera (antibodies) from individuals experimentally immu-
nized with RAS or CPS or naturally exposed to malaria for
proteome-wide immune screening assays using clinically relevant

Table 4 | Plasmodium antigens identified from genome-based datasets.

Antigen Model

Main finding Reference

Ag2/CelTOS P falciparum RAST cell screening;
P yoelii and R berghei murine

immunization/challenge

Thirty-four pre-erythrocytic P yoelii murine immunization/challenge

antigens

PY03011, PY03424, and
PY03661: pre-erythrocytic

P yoelii murine immunization/challenge

antigens

PyTmp21(PY06414):

pre-erythrocytic antigen

P yoelii murine immunization/challenge

PbS20 and PbTRAP P berghei murine immunization/challenge

pre-erythrocytic antigens

PyTAM: blood-stage antigen P yoelii murine immunization/challenge

Py01157: sexual and sexual P yoelii murine immunization/challenge

stage antigen

One of four highly reactive P falciparum proteins Doolan (in preparation),

identified by T cell based screening of 27 putative Doolan etal. (2003),
proteins with RAS immunized volunteers; Bergmann-Leitner etal.
conferred cross-species protection against P yoelii  (2010)
and P berghei sporozoite challenge.

Only three antigens (P33p[Py52] [PY01340], Ag2
[PyCelTOS], and Ag5[PY00419] elicited CDS* T

cell responses but none conferred protection.

Mishra etal. (2011)

The combination of the three antigens (but not Limbach etal. (2011)
individual antigens) conferred sterile protection
against P yoelii sporozoite challenge in a high
proportion of mice.

PyTmp21 elicited functional immunity that Chen etal. (2014)
significantly reduced liver stage parasite burden
following P yoelii sporozoite challenge.
Systematically evaluated H(2b)-restricted peptides ~ Hafalla etal. (2013)
predicted from genome-wide analysis, and
identified two epitopes as targets of CD8* T cells
induced by whole parasite vaccines; CD8* T cells
specific for the PbTRAP epitope but not the PbS20
epitope inhibited liver stage parasite development
in vivo

PyTAM elicited functional immunity that conferred  Cherif etal. (2014)
significant protection against mortality from lethal
P yoelii challenge infection.

Py01157: conferred partial protection against Zhang etal. (2012)
challenge with non-lethal P yoelii 17XNL, but not

against challenge with lethal P yoelii 17XL.
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selection criteria to identify the key antigens and their epitopes
recognized by recall Plasmodium-specific immune responses in
protective human models. Data generated to date establish proof-
of-concept for both T cell and antibody based approaches to
identify from genomic datasets the subset of antigens and epitopes
which represent promising candidates for next generation malaria
vaccine development (Doolan, 2011; Matuschewski etal., 2011;
Doolan etal., 2014; Table 4).

In the initial proof-of-concept study (Doolan etal., 2008) for
the application of protein microarray technology for antigen
discovery, a protein microarray with 250 pre-erythrocytic P. fal-
ciparum proteins were probed with sera from individuals with
sterile immunity or no immunity against experimental challenge
following vaccination with radiation-attenuated P. falciparum
sporozoites, partial immunity acquired by natural exposure, or no
previous exposure to P. falciparum, to identify 72 highly reactive
P. falciparum antigens. Subsequently, a larger protein microarray
containing 2,320 P. falciparum proteins fragments (correspond-
ing to 1200 P. falciparum proteins, ~25% of the proteome) was
screened with plasma from clinically divergent groups of indi-
viduals immunized with P. falciparum irradiated sporozoites and
identified a signature of 16 antigens strongly associated with
RAS-induced sterile protective immunity; responses to any indi-
vidual antigen were not associated with protection (Trieu etal.,
2011). Using this same protein microarray, plasma from children
and young adults naturally exposed to malaria in an endemic
area of Mali were screened and 46 novel proteins significantly
associated with a reduction of re-infection in the subsequent
malaria season were identified (Crompton etal., 2010a). One P.
falciparum antigen identified by T cell based screening of RAS-
immunized volunteers (Doolan etal., 2003), known as Ag2 or
CelTOS (Kariu etal., 2006), has been shown to be a target of
cross-species protection in the murine model (Bergmann-Leitner
etal., 2010). Another P. yoelii antigen, PyTmpl, could induce
immune responses that reduced liver stage parasite burden in vivo
(Chen etal., 2014), and three other P. yoelii antigens in combi-
nation (but not individually) could induce sterile immunity in
a high proportion of immunized mice (Limbach etal., 2011).
Two P. yoelii blood stage antigens, PyTAM and Py01157, have
been also associated with partial protection in the murine model
(Zhang etal., 2012; Cherif etal., 2014; Table 4). These data sup-
port the potential of genome-based antigen discovery. Assessment
of the protective capacity of promising new antigens discovered
by genome-based screening is currently a bottleneck in the pre-
clinical development pipeline. Development and refinement of a
high throughput screening system would overcome this obstacle
and allow the development of a rationally designed genome-based
vaccine against malaria.

CONCLUSION

We advocate a modern genome-based approach to rational vaccine
design which takes advantage of the wealth of genomic, pro-
teomic, and transcriptomic datasets, using biological samples from
humans or animals with immunity to the disease of interest and
functionally relevant screening criteria to identify the key anti-
gens and their epitopes targeted by protective immune responses.
With this focus, we can improve on nature. In the case of malaria,

validated human challenge models provide a valuable resource for
genome-based antigen discovery. Moreover, this information can
be integrated with other omic-based and cutting-edge immuno-
logical based approaches. For example, systems immunology
could be applied to identify immune signatures that distinguish
a protective immune response from a non-protective one. The
many technological and intellectual advances in the omics era
offer great potential for the development of rationally designed
vaccines against malaria as well as other pathogens that have thus
far proved elusive.
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