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1 Executive summary 

The Reef Rescue Marine Monitoring Program (herein referred to as the MMP) undertaken in the 

Great Barrier Reef (GBR) lagoon assesses the long-term effectiveness of the Australian and 

Queensland Government’s Reef Water Quality Protection Plan and the Australian Government Reef 

Rescue initiative. The MMP was established in 2005 to help assess the long-term status and health of 

GBR ecosystems and is a critical component in the assessment of regional water quality as land 

management practices are improved across GBR catchments. The program forms an integral part of 

the Reef Plan Paddock to Reef Integrated Monitoring, Modelling and Reporting Program supported 

through Reef Plan and Reef Rescue initiatives. This report details the sampling that has taken place 

under the Reef Rescue Marine Monitoring Program: Terrestrial discharge into the Great Barrier Reef 

(project 3.7.2b) for the 2011/12 sampling year, led by James Cook University (JCU). 

This report is been presented in three sections 

A. Characteristics of the 2011-12 wet season with focus on Herbert River.  

 Measurements of annual and long-term flow 

 Variation in water quality variables for the 2012 wet season sampling 

 Comparison of mixing profiles 

 Comparison of historical measurements 

 Key findings 

B. Mapping of flood plumes 

 Methodology: MODIS true colour and L2 products 

 Mapping Outputs: MODIS true colour and L2 products 

 Estimation of the exposure of GBR and marine ecosystems to plumes and pollutants (TSS 

and DIN) 

 Key findings 

C. Case studies of 2011-12. Summary of new work, new direction, revised methodology and the 

main outputs of the sampling year. For 2011-12, four case studies will be presented including  

 Initiation of phytoplankton sampling in Wet Tropic flood plumes 

 Measurement of light conditions in the Herbert and Tully River flood plumes (2010 – 12) 

There are also five appendices which report more detailed data or information including 

 Appendix 1 – Publications and supplementary material. 

 Appendix 2 – Detailed site data for all sites measured over the 2011/2012 reporting period. 

 Appendix 3 - Detailed data for the light measurements summarised in Case Study 

 Appendix 4 – Report on “Salinity Profiles in the Great Barrier Reef: a comparison between 

model outputs and in-situ data” 

 Appendix 5 – Report on comparison on water quality concentrations collected in the Tully 

river and plume conditions. (Already submitted in late 2012).  
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1.1 Measurements of water quality in the 2011-12 wet season 

1.1.1 Flow characteristics of the 2011-12 wet season. 

Sampling of flood plumes in the GBR was successfully conducted during the 2011-12 wet season with 

river plumes associated with 13 sampling occasions in the Herbert River and 8 sampling occasions in 

the Tully Rivers with wet season sampling occurring betwen November and March. In addition, two 

sampling trips were carried out outside the wet season in September and June. Water sampling in 

flood plume periods also occurred once in both the Cape York region (3rd April, 2012) and the Fitzroy 

region (26th March, 2012). 

The sampling in the Herbert region consisted of 3 fixed transects for repeated sampling during the 

wet season extending to (a) the Northern region of Hinchinbrook Island, (b) moving around the 

southern tip of Hinchinbrook Island, and (c) along the path taken by the Palm Island Barge from the 

Lucinda to Palm Island.  Each of these transects were sampled a minimum time of 6 occasions over 

the course of the 2011-12 wet season.  Sampling in the Tully took place along the fixed transect that 

had been previously established in the region (Devlin et al., 2011, 2012c), allowing for an assessment 

of the water quality at sites through time. Samples in the Fitzroy and Cape York were carried out 

over a transect in each region, visited once during the 2011-12 wet season.  

Sampling within water associated with high flow and the onset and duration of flood plumes 

included the collection of water samples for the analysis of Total Suspended sediment (TSS), 

Chlorophyll-a (Chl-a), Coloured Dissolved Organic Matter (CDOM), dissolved and Particulate 

nutrients (nitrogen and phosphorus), salinity, temperature, photosystem II inhibiting herbicide (PSII 

herbicides), chlorophyll-a (chl-a) and phytoplankton counts. Depth profiling was undertaken (Seabird 

CTD) in the Fitzroy, Herbert and Tully river plumes. A PAR sensor was available for light attenuation 

measurements in the Herbert and Tully River plume sampling. Within each sampling region, grab 

samples have been taken for the measurement of pesticides. Additionally, pesticide sampling in the 

Herbert also incorporated passive samplers (Kennedy et al., 2012). This event sampling of pesticides 

was initiated last year and is run through the University of Queensland (UQ) and JCU to investigate 

the concentrations of pesticides measured with passive, grab and bioassay sampling.   

Data collected from the Fitzroy, Herbert, Tully, and Cape York regions are summarised in Table 1-1, 

showing the number of field trips, total number of samples collected, the period of sampling within 

the wet season, and the water quality characteristics for each transect. Range of statistical 

measurements are shown for temperature, salinity, chlorophyll-a (chl-a), total suspended solids 

(TSS), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), particulate nitrogen 

(PN) and particulate phosphorus (PP) for each transect within regions. The mean values of chl-a 

(grouped across transects) range from 0.67µg/L (Fitzroy) to 3.74 µg/L (Tully to Sisters) compared 

against a wet season guideline of 0.63 µg/L. Mean TSS concentrations range from 6.89mg/L (Tully to 

Sisters) to 21.57 mg/L (Fitzroy) compared against a wet season guideline of 2.0mg/L. The maximum 

value of DIN (26.34 µM) for the sampling year over all transects is recorded at South Mission Beach 

on the 11th February, 2012. 

1.1.2 Cape York 

The sampling in Cape York underscored the importance of monitoring water quality over the whole 

GBR.  There were particularly high values of DIN, ranging from 3.14 to 7.64 µM, and high values of 
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PN, ranging from 0.3 to 19.2 µM, with an average of 5.3 µM.  The high levels of PN and DIN suggest 

that PN may be an important source of DIN, potentially through the remineralisation of DIN from the 

high concentrations of PN. The maximum values of TSS are also high (95.0 mg/L) which is in a similar 

range to the maximum TSS value in the Southern Herbert. Large areas of Cape York are under 

grazing (Waterhouse et al., 2012) and may be the source of high sediment loads (see Brooks et al., 

2013). In addition, Cape York is a very shallow area with fine sediment particles on the seabed, 

which is very susceptible to wind-driven resuspension. Note that this is very preliminary data and 

only reflects a single event over a single year. Further work in Cape York is planned for the 2012-

2013 wet season and may provide more guidance to why these high levels of TSS and DIN are 

occurring. 

1.1.3 Tully 

A water quality gradient was evident from the Tully River mouth north to Sisters Island and a 

concentration gradient is measured from the river mouth across sites along the salinity mixing curve. 

Water quality gradients would are a natural phenomenon out of GBR rivers, however gradients are 

greatly skewed through onset of anthropogenic pollutant loads.  Consistently high concentrations of 

DIN and chl-a have been recorded in the Tully region both through the 2010-2011 wet season 

(Devlin et al., 2012) and in the six sampling occasions in the 2011-12 wet season. TSS measurements 

ranged between 1.8 mg/L to 20.0 mg/L measured on the 11th February, 2012. The mean±1 SD of all 

chl-a and TSS measurements were 0.8±0.6 µg/L and 6.9±4.6 mg/L respectively. Sampling in wet 

season/high flow conditions are not directly comparable to the wet season water quality guidelines, 

however comparisons against these guidelines do provide a reference point as which to compare the 

wet season means, particularly over repeated sampling occasions and variable flow conditions.  

Light attenuation was measured this year using a depth profiler, in order to increase our 

understanding of the role of light attenuation over the time scales at which we measure flood 

plumes.  

Pesticides were detected in grab samples and were found to be persistent throughout the wet 

season sampling. Diuron was detected in all samples, though at low concentrations under water 

quality guidelines.  

1.1.4 Herbert  

In the 2011-12 wet season, the program maintained a strong link to a catchment monitoring 

program to better understand the relationship between catchment to reef and the influx of 

pesticides into the marine zone.  Sampling in the flood plume was, where possible, concurrent with 

sampling occurring under the Hebert River monitoring program along the Herbert River and sub-

catchment (Brodie pers. comm.). taken in the plume reflect concentrations that are influenced by 

both flow and wind regimes, with low flow conditions characterised by higher salinities but still 

recording high measurements of DIN and DIP, possible due to ressuspension. The Hebert region over 

the wet season showed high values of chl-a, TSS, and DIN.  The chl-a concentrations ranged from 0.2 

to 10.2 µg/L, TSS concentrations ranged from 2.0 up to maximum of 92 mg/L measured in the 

Hinchinbrook channel, and the DIN concentration ranged from 0.2 to 16.9 µM.  

Data collected from the Herbert marine region shows a coupling between flow discharge and wind 

regime driving high WQ constituents concentration over the whole wet season, with the highest 

concentration peaks related to the highest flow measurements. The elevated concentrations of 

dissolved nutrients across all sampling occasions suggest that this small, but important coastal area 
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of the GBR is nutrient enriched. These high nutrient values, coupled with the persistent high values 

of chl-a biomass mean that for several weeks to months of the year, the inshore coastal system 

adjacent to the Herbert is eutrophic. Further synthesis of other biological monitoring programs 

under the MMP is required to link these eutrophics symptoms to biological impact. However, in the 

absence of biological data for this report, we can conclude the water quality within the Herbert 

marine area, both north and south transects has reduced water quality over broad temporal (weeks) 

and spatial (> 50 km north and 30 km south) scales. 
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Table 1-1: Summary of transects that were completed during the 2011-2012 wet season only under the MMP and extreme weather programs. Minimum 

(min), maximum (max), mean and standard deviation (SD) are calculated over multiple sites and multiple dates within each river plume water surface and 

are provided as a guidance of the range of values within each sampling transect.  Concentrations per site and date are shown in Appendix 2 and discussed in 

greater detail in the following sections.  

NRM 
Region 

Transect 
No. of 

Field Trips 
No.  of 
Sample 

Start Date End Date   Temp (˚C) Salinity 
Chl-a 
(µg/L) 

TSS 
(mg/L) 

DIN 
(µM) 

DIP 
(µM) 

PN 
(µM) 

PP 
(µM) 

Cape 
York 

Kennedy  & 
Normanby 

1 17 26-03-12 26-03-12 

min 31.30 0.09 0.20 2.80 3.141 0.097 0.286 0.065 

max 33.80 32.09 5.34 95.00 7.639 0.355 
19.20

5 0.517 

mean 32.85 13.62 1.36 16.48 5.014 0.243 5.266 0.272 

SD 0.64 11.57 1.26 22.13 1.400 0.077 6.222 0.145 

Wet 
Tropics 

Tully to Sisters 5 50 05-01-12 31-03-12 

min 27.03 26.21 0.27 1.80 1.356 0.097 0.286 0.032 

max 31.79 35.05 3.74 20.00 26.344 0.678 7.639 0.452 

mean 29.54 30.57 0.76 6.89 4.357 0.396 2.598 0.215 

SD 1.19 2.43 0.63 4.79 4.724 0.131 1.844 0.121 

Northern Herbert 7 36 28-11-11 31-03-12 

min 27.93 23.26 0.20 2.60 0.214 0.129 0.071 0.032 

max 32.07 35.01 10.15 34.00 5.711 0.581 4.641 0.646 

mean 29.33 31.56 1.36 9.66 2.269 0.386 2.210 0.230 

SD 0.86 2.98 1.82 7.87 1.409 0.115 1.359 0.199 

Southern Herbert 6 46 29-11-11 30-03-12 

min 27.29 4.45 0.20 2.00 0.928 0.097 0.143 0.032 

max 30.66 35.07 7.48 92.00 16.920 0.646 
19.63

3 1.679 

mean 28.94 27.90 1.78 14.07 5.295 0.363 5.140 0.279 

SD 0.95 7.18 1.71 15.80 4.649 0.164 5.658 0.304 

Herbert to Palm 
Island 

6 20 29-11-11 30-03-12 

min 27.33 24.74 0.20 2.50 0.857 0.194 0.357 0.032 

max 31.16 34.80 5.87 29.00 4.998 0.710 8.996 0.452 

mean 29.05 31.87 1.83 11.96 2.177 0.382 2.671 0.232 

SD 1.25 2.79 1.63 7.29 1.336 0.160 2.391 0.147 

Fitzroy Fitzroy to Keppels 1 14 03-04-12 03-04-12 

min 25.60 19.01 0.20 15.00 1.571 0.710 0.143 0.032 

max 27.33 33.28 2.14 31.00 3.284 2.583 3.427 0.291 

mean 26.30 26.91 0.67 21.57 2.162 1.446 1.637 0.137 

SD 0.52 4.63 0.80 5.64 0.511 0.606 1.045 0.088 
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1.1.5 Fitzroy 

Intermediate to high values of the water quality parameters were measured in the Fitzroy River 

Plume one the 3rd April, 2012. The chl-a concentrations ranged from 0.2 to 2.1 µg/L, with 

concentrations much lower than had been measured in the previous year (Devlin et al., 2012).  TSS 

concentrations were all high, ranging from 15 to 31 mg/L, with DIN concentration ranged from 1.6 to 

3.3 µM and DIP ranging from 0.7 to 2.6 µM. Thus values of DIN and DIP were sufficient to initiate 

phytoplankton growth, but the high sediment conditions would likely be controlling growth through 

light limitation reflective in the low measurements of chl-a concentrations.  

 

1.2 Mapping the movement and extents of flood plume  

Important steps were undertaken to improve our capacity to identify and monitor the exposure of 

GBR ecosystems to plumes and anthropogenic water quality influences (nutrients and sediments). 

These steps include the development of new innovative methods based on MODIS satellite images, 

the production of synoptic maps describing the spatial and temporal movements of GBR river 

plumes and pollutants (TSS and DIN) discharged through plumes, and the evaluation of the exposure 

of GBR ecosystems to plumes waters, TSS and DIN.  

1.2.1 Methods  

Two families of supervised classification methods based on MODIS were developed: a true-color or 

qualitative method based on supervised classification of spectrally enhanced MODIS true colour 

images, and a L2 or quantitative method using threshold values on MODIS images calibrated into 

water quality proxies (TSS CHL, CDOM proxies). A method was also developed to map the exposure 

of GBR ecosystems to TSS and DIN (Alvarez-Romero et al., 2013). This method incorporates outputs 

from the qualitative method and spatially distributed load data to produce TSS and DIN exposure 

maps. 

1.2.2 Mapping outputs 

Mapping outputs that can be created from these two methods include (i) river plume maps (full 

extent) and composites at different temporal (daily, annual, multi-annual) and spatial (GBR, NRM, 

River) scales, (ii) plume water type maps (primary, secondary, tertiary) and composites at different 

temporal (daily, weekly, annual) and spatial (GBR, NRM, River) scales and (iii) maps of annual and 

multi-annual exposure maps (2007-2011) to TSS and DIN.  

A selection of significant mapping outputs are presented in this report and Figure 1-1 and include 

river plume (full extent) and plume water type annual frequency maps as well as exposure (TSS and 

DIN, annual and multi-annual time scale) maps. The plume frequency maps (full extent) illustrate the 

movement of riverine waters (Figure 6-8), but do not provide information on the WQ composition of 

the water. Plume water types are associated with different levels and combination of pollutants and 

the plume water type maps help clustering WQ stressors into three broad categories of risk (Figure 

6-9). Further information on the respective constituents of the plume waters, in particular the 

respective movement of sediment and dissolved inorganic nitrogen through the exposure mapping 

exercise (Figure 6-12), allows us to further understand the potential movements of pollutants which 

are carried within the plume water. Finally, integrating the annual exposure maps into a long-term 

exposure map based on three categories of exposure (high, medium, low) provides a simple 

overview of surface exposure over time for TSS and DIN (Figure 6-13). 



21 
 

Figure 1-1: significant mapping outputs: a) Extent and frequency of plume waters during the 2011-
2012 wet season from the true colour classification (qualitative method). b) Frequency of 
occurrence of plume water types (primary, secondary and tertiary) measured over the 2011-12 
wet season in the Burdekin (top) and Mackay-Whitsundays NRMs (bottom), c) 2010-11 exposure 
maps for TSS and DIN.  

 

Extent and frequency of plume water types reflects the intensity, duration and constituent 

concentrations of the river discharge and are strongly linked to the catchment hydrology and land 

use practices. The Burdekin (Figure 6-11b) and Fitzroy catchments, which are under extensive 

agricultural development, are associated with a larger area of turbid primary waters. Inversely, the 

dominance of secondary water types (plume water with reduced TSS concentration) in the Mackay-

Whitsunday (Figure 6-11c) or Northern Wet Tropics NRMs are linked to fertilised agriculture 

(predominantly sugarcane). Tertiary waters (CDOM dominated) are logically located offshore and 

constitute the transitional waters between plume-affected and ambient water. Spatial variability in 
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pollutant exposure is further validated by the TSS and DIN exposure maps (annual or inter-annual 

scale; Figure 6-12 and Figure 6-13).  

1.2.3 Evaluation of the exposure of GBR ecosystems to plumes and anthropogenic water 

quality influences (nutrients, sediments)  

The map of the annual frequency of occurrence of plumes during the 2011-12 wet season build from 

the qualitative approach (Figure 6-8), was used to describe the spatial variability in the areal extend 

of plume waters in 2011-12 and described ecosystems affected by river plume waters. The total 

plume area over the 2011-12 wet season reached 218906 km2, i.e., 63% of the GBR Marine 

Park (Table 6-2). However, the total area within the high to very high frequency category (i.e., 

affected by plumes 13 to 22 weeks per wet season) was a much lower total area (66870 km2, i.e., 

19% of the GBR Marine Park), ranging from 2672km2 (i.e., 7%) in Burnett-Mary to 24,721km2 (i.e., 

24%) in Cape York (Table 6-3). The largest area of coral reefs that has experienced high to very high 

frequency of flood plumes was Cape York (2557 km2 or 24% of the Cape York reefs) and Mackay-

Whitsundays (266 km2 or 8 % of the Mackay-Whitsundays reefs). The largest area of seagrass to 

experience these high to very high frequency of flood plumes was Cape York (2355.4 km2 km2 or 95.1 

% of the Cape York reefs) and Burdekin (581.1km2 or 99.9 % of the Burdekin reefs). While seagrass 

beds are less extended in Burnett-Mary, Fitzroy Mackay-Whitsunday and Wet Tropics (< 230 km2) 

more than 96 % of the seagrass meadows in these NRM have also experienced very high frequency 

of flood plume. Note that there are issues with plumes mapped in Cape York, potentially related to 

local processes (e.g., resuspension) that non plumes are being identified as plume water. Further 

work in the validation of algorithms in Cape York is underway so care needs to be taken with the 

analysis of plume maps in this region. 

The spatial and temporal (2007-2011) variability in exposure of GBR and marine ecosystems to TSS 

and DIN was evaluated from the maps of annual and multi-annual exposure maps (2007-2011) to 

TSS and DIN (Figure 6-14 and Figure 6-15). TSS and DIN exposure of 2011, a wet season in which 

record discharges occurred, illustrated the degree of exposure that can be expected under extreme 

weather conditions (Devlin et al., 2012a). TSS and DIN exposure mapping for 2010-11 identifies up to 

5,970 km2 and 5,131 km2 of the marine areas of the Wet Tropics and Burdekin regions, respectively, 

which are exposed to flood plumes carrying high DIN loads (i.e., areas classified as “high” or “very 

high” exposure to DIN). These areas represent 19% and 11% of the total marine portion of the Wet 

Tropics and Burdekin regions, respectively. Furthermore up to 5,131 km2 (11%) of the Burdekin and 

7,998 km2 (9%) of the Fitzroy regions are classified as “high” to “very high” exposure for TSS. It is the 

intersection of the frequency of flood plumes, the proximity of the ecosystems and the load 

dispersal that allows us to estimate risk to the ecosystem. At this time, we have not integrated the 

2012 load data required to calculate the surface exposure of the 2012 plume waters and cannot 

compare the long-term surface exposure mapping with the 2011 area. 
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1.3 Case studies for 2011-2012 wet season 

 

Case study Main outcomes 

Initiation of 
phytoplankton 
sampling in Wet 
Tropic plumes 
 

A targeted investigation of the response of plankton communities during 

flood plumes in nutrient enriched flood plumes will give insight into the 

processes potentially releasing the COTS larvae from food limitation in this 

region, which is a pre-requisite to develop future management strategies for 

a pre-emptive response to COTS outbreaks. 

Measurement 
of light 
conditions in 
the Herbert and  
Tully River flood 
plumes (2010 – 
12 

Light attenuation profiles plus supporting environmental data (CDOM, chl-a 

and TSS) was collected at two regions over the 2011-12 wet season from the 

Tully and Herbert marine region.  

This initial report on the attenuation of light in wet season conditions show 

that it would be possible to model/simulate light attenuation data from TSS, 

CDOM and chl-a concentrations measured in-situ. Our first results show good 

correlations between the light attenuation coefficients and the optically 

active components of total suspended sediment, coloured dissolved organic 

matter and chlorophyll a. The data collected in the Herbert and Tully on the 

February 12th compared to all other sampling dates underline the necessity 

to do further research to study particular cases when the Kd coefficient is not 

linearly related to the 3 OACs. 
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2 Acronyms and Abbreviations 

AIMS ................. Australian Institute of Marine Science 

CDOM ............... Coloured Dissolved Organic Matter 

Chl a .................. Chlorophyll a 

CSIRO ............... Commonwealth Scientific and Industrial Research Organisation 

DERM ................ Queensland Department of Environment and Resource Management 

DIN .................... Dissolved inorganic nitrogen 

DIP .................... Dissolved inorganic phosphorus 

EnTox ............... National Research Centre for Environmental Toxicology, 

University of Queensland 

GBR .................. Great Barrier Reef 

GBRMP ............. Great Barrier Reef Marine Park 

GBRMPA .......... Great Barrier Reef Marine Park Authority 

JCU ................... James Cook University 

MA ..................... Macroalgae 

ML ..................... Mega-litres 

MTSRF .............. Marine and Tropical Sciences Research Facility 

N ........................ Nitrogen 

NASA ................ National Aeronautics and Space Administration 

NRM .................. Natural Resource Management 

NTU ................... Nephelometric Turbidity Units 

PCA ................... Principal Component Analysis 

PN ..................... Particulate Nitrogen 

PP ...................... Particulate Phosphorous 

PSII herbicide ... Photosystem II inhibiting herbicide 

PSII-HEq ........... PSII – Herbicide Equivalent 

QLD ................... Queensland 

RRMMP ............. Reef Rescue Marine Monitoring Program 

RRRC ................ Reef and Rainforest Research Centre Ltd 

SE ...................... Standard Error 

SPM ................... Suspended particulate matter 

TSS ................... Total suspended solids 

OAC’s………………Optically active components 
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3 Introduction 

3.1 Marine Monitoring Program 

The Reef Rescue Marine Monitoring Program (herein referred to as the MMP) undertaken in the 

Great Barrier Reef (GBR) lagoon assesses the long-term effectiveness of the Australian and 

Queensland Government’s Reef Water Quality Protection Plan (Reef Plan) and the Australian 

Government’s Reef Rescue initiative. The MMP was established in 2005 to help assess the long-term 

status and health of GBR ecosystems and is a critical component in the assessment of regional water 

quality as land management practices are improved across GBR catchments. The program forms an 

integral part of the Reef Plan Paddock to Reef Integrated Monitoring, Modelling and Reporting 

Program (P2R program) supported through Reef Plan and Reef Rescue initiatives.  

Water quality in the GBR is influenced by an array of factors including land-based runoff and river 

flow, point source pollution, and extreme weather conditions. Monitoring the impacts of terrestrial 

discharge into the GBR is undertaken within the flood plume monitoring component of the MMP, 

which targets sampling of the high flow events which input large volumes of terrestrially sourced 

pollutants through river discharge to the GBR. Results presented in this report summarise the flood 

data collected over the 2011-2012 wet season.  

Because of the large size of the GBR Marine Park (350,000 km2), the short-term nature and 

variability of runoff events (hours to weeks) and the often difficult weather conditions associated 

with floods, it is difficult and expensive to launch and coordinate comprehensive runoff plume water 

quality sampling campaigns across a large section of the GBR (Devlin et al., 2001; Furnas, 2003). To 

counter this variability this project, led by James Cook University (JCU), runs a multi-pronged 

assessment of the exposure of selected GBR inshore reefs to material transported into the lagoon 

from GBR Rivers. Plume water quality data is measured through a combination of in-situ water 

quality measurements taken at peak and post flow conditions in targeted catchments throughout 

the wet season. River plume extent, frequency and duration are measured through the use of 

remote sensing products.  

3.2 Sampling design 

The flood plume monitoring is part of a water quality assessment for the MMP which includes 

baseline and event sampling (Johnson et al., 2010, 2011). This monitoring is run in partnership with 

the other MMP sub-programs including water quality (Schaffelke et al., 2010, 2011, 2012, in press; 

Kennedy et al., 2011, 2012; Bentley et al., in press; Brando et al., 2011; in press), coral monitoring 

(Thompson et al., 2010, 2012) and seagrass monitoring (McKenzie et al., 2010, 2012; in press). These 

reports are available on GBRMPA webpage, http://www.gbrmpa.gov.au/resources-and-

publications/publications/annual-reef-rescue-marine-monitoring-science-report. Synthesis of these 

outcomes is ongoing, however reporting of the outcomes are part of the Paddock to Reef Report 

Card and are presented as combined marine monitoring reported in the integrated report card.  

The three main facets of the marine flood plume monitoring program are: 

A. Assessment of the transport and processing of nutrients, suspended sediment and pesticides. 

Delivered through water quality monitoring in flood plumes. Measurement of water quality 

parameters presented against salinity gradients for each catchment and each event to describe 

the movement and transport of water quality parameters. 

http://www.gbrmpa.gov.au/resources-and-publications/publications/annual-reef-rescue-marine-monitoring-science-report
http://www.gbrmpa.gov.au/resources-and-publications/publications/annual-reef-rescue-marine-monitoring-science-report
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B. Estimation of the extent and exposure of flood plumes to reefs and seagrass beds related to 

prevailing weather and catchment conditions. Delivered through spatial mapping of plume 

extent and frequency. Information acquired from remote sensing products including true colour 

processing of plume waters and the application of water quality algorithms (Chlorophyll, 

Coloured Dissolved Organic Matter {CDOM} and Total Suspended Solids). Catchment runoff 

events involve space scales ranging from hundreds of metres to kilometres and time scales from 

hours to weeks, thus the use of remote sensing products at appropriate time and space scales is 

useful as a key indicators of cause and effect. 

C. Incorporation and synthesis of monitoring data into GBR wide understanding of anthropogenic 

water quality conditions, water models, the MMP and Paddock to Reef reporting. Synthesis and 

reporting of flood plume water quality data and exposure mapping into the MMP. Further work 

on the integration and reporting of water quality data collected under this sub-program and the 

long-term water quality sub-program is currently being investigated by JCU, CSIRO and AIMS 

researchers through Reef Rescue R&D funding (see 

http://www.rrrc.org.au/reefrescue/index.html).  

Data from the flood monitoring feeds into the validation of existing models and the development of 

regionally based remote sensing algorithms (Brando et al., 2008; 2010). Water quality collected in 

flood plume waters is targeted at measuring the conditions during first flush and high flow event 

situations to identify the duration and extent of altered water quality conditions. Data collected 

under the MMP also feeds into the ongoing P2R program reporting.  

3.3 Outline of report 

The focus of the monitoring for the MMP is to better understand how extreme weather events 

affect water quality conditions in the GBR.  The catchments targeted for intensive sampling were 

chosen in line with the overall aims of the MMP and with real time flooding information.  The Tully 

River catchment is the wettest catchment in all of Australia and therefore floods every year.  This 

catchment is the ideal location to assess the long-term effectiveness of the Reef Plan as data can be 

collected every year.  Repeated sampling in the Tully adds value to the long-term data set we already 

have for this region (1994 – 2012).  However, the main focus of sampling for 2011-12 took place in 

the Herbert River and represents the largest Wet Tropics catchment that flows into the GBR.The wet 

season in 2011-12, as with 2010-11, started with onset of early flows in the Wet Tropics during 

October and November, and extended into April 2012. It was characterised by many smaller episodic 

flows but no large cyclonic associated flow period. Heavy and consistent rain also continued in the 

Wet Tropics region later in the wet season, peaking in late March. Samples were taken from the 

Cape York region down to the Fitzroy River. All sites are identified on Figure 3-1.This report presents 

the results of the flood monitoring undertaken in the 2011-12 wet season as part of the 

requirements under MMP. The methods and results are presented in three sections: Part A reports 

all water quality measured over the four marine areas. Part B presents maps of flood plumes, a tool 

used to estimate surface exposure of ecosystems in the GBR to a range of water quality conditions. 

Part C presents a number of case studies as part of the larger water quality story, including: (i) 

Phytoplankton sampling in the Wet Tropics; (ii) Light measurements in the Tully and Herbert region; 

(iii) Use of a Water Quality metric, and (iv) Reporting on the focus catchment – Herbert. Appendix 3 

summarises the details associated with the light measurements and Appendix 2 is the publication 

describing the surface exposure mapping process  

http://www.rrrc.org.au/reefrescue/index.html
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Figure 3-1: Location of the Marine Monitoring Sites sampled in the 2011-2012 wet season under 
the MMP terrestrial discharge program. Site locations for the four regions sampled (Fitzroy, Tully, 
Herbert and Normanby) are identified as blue circles. 
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PART A: 2011-2012 WET SEASON SAMPLING 

4 Characteristics of the 2011-2012 wet season sampling 

4.1 Introduction 

During the wet seasons, coastal and inshore areas adjacent to the catchments are regularly exposed 

to flood waters, carrying high concentrations of suspended solid and nutrients and pesticides into 

the marine environment. From November 2011 to April 2012, frequent sampling of the Herbert and 

Tully River flood plumes was conducted to collect water quality data during a number of significant 

flood events.. Sites within the Herbert region extended towards the north at the top of the 

Hinchinbrook channel and also from the Seymour and Herbert river mouths down to the southern 

end of Hinchinbrook Island.  Sites within the Tully plume were located between the Triplet Islands in 

the south, to Sisters Island in the north and including sites at the Tully and Hull River mouths, 

additional coastal locations, Dunk Island and Bedarra Island  (Figure 4-1). The sampling area includes 

areas within a high to moderate flood plume exposure area from the Tully-Murray River identified by 

water quality exceedances during previous wet seasons (Devlin et al., 2012c; Schaffelke et al., 2012) 

and an area of high frequency of plume coverage (Devlin and Schaffelke, 2009; Devlin et al., 2012). 

The aim of the pesticide monitoring for the Herbert River transect was to assess temporal and 

spatial variation in the concentrations of photosystem II herbicides during the wet season from 16th 

December 2010 to the 15th April 2011 using both passive (time integrated and event) and grab 

sampling (point in time) sampling techniques. Additional grab samples for pesticides were also 

collected in the Tully region. 

 

 

Figure 4-1: Location and 
geographical information for the 
water quality sites sampled in the 
Wet Tropics (Tully and Herbert 
Rivers) (2011-12) 

 

 

 

 

 

. 
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The sampling in Fitzroy (Figure 4-2) and Cape York (Figure 4-3) occurred once only and were linked 

to substantive flooding events in response to a late season flow. The numbers of sites per region 

over sampling date are listed in Table 4-1. Samples carried out on the 9th and 10th September, 2011 

and on the 29th June, 2012 in the Tully region were not included in the analysis and statistical 

summaries, but used in a comparison between wet and dry periods. 

 

 

Figure 4-2: Location and geographical 
information for the water quality sites 
sampled in the Fitzroy (Rosslyn Bay to 
North Keppels) (2011-12). 

 

 

 

 

 

 

 

 

Figure 4-3: Location and geographical 
information for the water quality sites 
sampled in the Cape York region (Normanby 
River) (2011-12). 
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Table 4-1: Summary of sites sampled per river/region that were completed during the 2011-2012 
wet season under the MMP, including samples carried out on the 9th and 10th September, 2011 
and on the 29th June, 2012 in the Tully region. 

Data count per NRM/Date River Region 

YEAR sample date Herbert Tully Fitzroy Cape York 

2011 09/09/11   5     

2011 10/09/11   3     

2011 28/11/11 6       

2011 29/11/11 10       

2011 19/12/11 6       

2011 20/12/11 10       

2012 05/01/12   13     

2012 20/01/12 6       

2012 21/01/12 10       

2012 11/02/12   14     

2012 13/02/12 6       

2012 14/02/12 11       

2012 05/03/12 9 2     

2012 06/03/12 15       

2012 08/03/12  1 10     

2012 30/03/12 10       

2012 31/03/12  2 11     

2012 26/03/12   
 

  17  

2012 03/04/12     14  
 2012 29/06/12    11 

 
  

 

4.2 Sample collection 

Water sampling took place over three marine NRM regions, including Cape York (Normanby and 

Kennedy Rivers), the Wet Tropics (Herbert and Tully Rivers), and the Fitzroy (Fitzroy Rivers). Water 

sampling was carried out by TropWater staff from the Catchment to Reef research group, James 

Cook University. Further sampling was also undertaken by boat operators located in the Tully and 

Fitzroy areas and by co-researchers located in Cooktown. Appropriate training and discussion of 

logistics was carried out with these individuals prior to the water sampling. 

This section outlines briefly the sampling and analysis methodology associated with the sampling 

and monitoring of flood plume water quality. Further detailed instructions and guidelines are 

provided in the annual QA/QC reports produced by the MMP program (GBRMPA, in press). 

Documents are available at http://www.gbrmpa.gov.au/resources-and-

publications/publications/annual-reef-rescue-marine-monitoring-science-report 

Plume (grab) sampling was carried out on small vessels, taking surface water samples from multiple 

sites for a suite of water quality measurements (Table 4-2) and measurement of depth profiles 

http://www.gbrmpa.gov.au/resources-and-publications/publications/annual-reef-rescue-marine-monitoring-science-report
http://www.gbrmpa.gov.au/resources-and-publications/publications/annual-reef-rescue-marine-monitoring-science-report
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through the water column. The timing of the sampling depended on the type of event and the 

logistics of vessel deployment. Most samples were collected inside the visible area of the plume, 

although some samples were taken on and outside the edge of the plume for comparison.  

Surface samples were collected using a clean, rinsed bucket in the top meter of water, taken at each 

site. From this sample, nutrient samples are taken using sterile 60 mL syringes and pre-rinsed three 

times with the seawater to be sampled. For dissolved nutrients, a 0.45 μm disposable membrane 

filter was then fitted to the syringe and a 10 mL samples were collected in polypropylene screw top 

sample tubes, pre-rinsed with filtered water. Particulate and total nutrient samples are not filtered 

but are otherwise collected in the same way. The tubes were then stored either on ice in an 

insulated container or in a freezer, depending on the sampling vessel. CDOM samples are collected 

using a 60 mL syringe fitted with a 0.2 μm disposable membrane filter into glass bottles and kept 

cool and dark until analysis by the TropWater laboratory, which should occur within 24 hours of 

collection generally (on occasion up to 72 hours). Individual 1-L samples were collected for 

suspended sediments and chlorophyll-a analysis. These are also placed on ice and filtered within 24 

hours. At every third to fourth site (dependent on size of sampling area), samples were collected for 

phytoplankton enumeration and pesticides. Depth profiles were taken at each site in the Herbert, 

Tully and Fitzroy transects with a SeaBird profiler, collecting depth profiles of salinity, temperature, 

dissolved oxygen and light attenuation (see Table 7.2). Salinity profiles were taken at all sites. 

Pesticide monitoring during flood plume events has focussed on three main activities. These include: 

1. Extended temporal monitoring at three sites from the mouth of the Herbert River using both 

grab and passive sampling (See Table 4-3) 

2. Additional grab sampling during flood plume events. 

For the Herbert transect, SDB-RPS empore discs were deployed in either with a diffusion limiting 

membrane for periods of between 16 – 34 days to monitor time integrated concentrations.  The 

discs were attached by cable tie to a surface marker buoy that was held in place by weights at the 

bottom.  Grab samples were taken at the beginning and the end of each passive sampling period. 

This sampling will facilitate a comparison of time integrated and event passive sampler 

concentration estimates and point in time grab concentrations throughout the wet season. The 

pesticide sampling design in outlined in Table 4-3. Note that detailed outputs from the pesticide 

sampling will be presented in the companion MMP report (Bentey et al., in press). 
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Table 4-2: Summary of chemical and biological parameters sampled for the MMP flood plume 
monitoring. 

Type of data Parameter Comments Reported 

Physico chemical Depth (m) Taken continuously 
through the water 
column at each site. 
Sampled with a 
SeaBird profiler 

 

 Salinity  

 Temperature (˚C)  

 Turbidity (ntu)  

 Light Attenuation (PAR) (Tully only)  

Water quality Dissolved nutrients (µM) Surface sampling 
only 

 

 Particulate Nutrients (µM)  

 Chlorophyll-a (µg/L)  

 Phaeophytin (µg/L)  

 Total Suspended solids(mg/L)  

 Coloured Dissolved Organic Matter 
(443 m

-1
) 

 

 Pesticides (PS-II herbicides) (ng/L) Not at all sites  

Biological Phytoplankton counts Not at all sites No 

 

Table 4-3: Summary of Pesticide sampling design, including dates and locations of passive and grab 
sampling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transect Transect

Date Taken Date

Period of 

deployment

28-Nov-11 Y 28-Nov-11

19-Dec-11 Y 19-Dec-11

20-Jan-12 Y 20-Jan-12

13-Feb-12 Y 13-Feb-11

06-Mar-12 Y 06-Mar-12

31-Mar-12 Y 31-Mar-12

29-Nov-11 Y 29-Nov-11

20-Dec-11 Y 20-Dec-11

21-Jan-12 Y 21-Jan-12

13-Feb-12 Y 13-Feb-12

06-Mar-12 Y 06-Mar-12

30-Mar-12 Y 30-Mar-12

09-Sep-11 Y

05-Jan-12 Y

11-Feb-12 Y

31-|Mar-12 Y

14-Apr-11 Y
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4.3 GBR catchment flow conditions 

The wet season in 2011-12 started comparatively late with high flows in the Wet Tropics during the 

November and December, and extended into April 2011. It was characterised by the early onset of 

flow in the Wet Tropics, with high flow conditions in the Wet Tropics and Normanby Rivers in late 

October. Further high flow was experienced in the Tully and Herbert rivers in December. However, 

most rivers experienced the highest flow of the season in early to late March, with a long period of 

rain from March to April over the GBR catchments. High flow peaks were experienced in the Fitzroy 

on the 23rd and 30th March, respectively.  

Total annual discharge of flow into the Great Barrier Reef from October 2011 to October 2012 was 

recorded as approximately 5.0×107 megalitres, making it the 5th highest flow measurement out of 

the last 12 years (Figure 4-4). It was under 40% of the volume of freshwater that moved into the GBR 

over 2010-11 but still was a substantial year, bolstered by early and late flow conditions. The 

unusual characteristic from this year was that the high flow conditions were associated with low 

pressure systems and not driven by cyclonic conditions.  Flow conditions in comparison to the long-

term mean and median are presented in Table 4-4. It also shows the relative difference between the 

2011-12 discharge and the long-term median flow. In the Wet Tropics region the Daintree, Russel, 

South Johnstone and Tully only exceeded the long-term median by over 1 to 1.9 times. The 

discharges from the southern rivers were much higher, with 2011-12 flow exceeding long-term 

median by 2.8 (Fitzroy), 2.9 (Burdekin) and up to 3.7 (Pioneer).  The discharge from the Burdekin 

River was over 15 million megalitres, over 2.9 times the long-term median flow. The Mackay 

Whitsunday Rivers all exceeded the long-term median flow by >3.5 times, and in the case of the 

Pioneer River, over 3.7 times with 1.3 megalitres. Large differences were recorded in the southern 

dry tropics with the Fitzroy River flow 2.8 times the long-term median flow with a discharge of 8.0 

million megalitres. The Burnett River flow was still above the long-term median (2.1) with 0.6 million 

megalitres, but this was substantively lower than the 2010-2011 flow of 8.4 million megalitres. Flow 

data (measured as total annual flow) shows that river discharge into the GBR has consistently 

increased for the past 6 years as compared to the first 6 years (2000-2005) (Fig. 4-4). This increase in 

flow has been a key driver in measurements of ecosystem decline, including seagrass metrics  (see 

McKenzie et al., 2012) and coral health metrics (see Thompson et al., 2012). The large volume of 

flow is one of the main factors in the amount of plume area (see Álvarez-Romero et al, 2013) 

(Appendix 2). The summary of the plume events and the number of days in which flow exceeded a 

long-term 95th percentile is shown in Table 4-4. 
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Figure 4-4: Total annual discharge for all main NQ GBR rivers from 2000 to the current reporting 

year.  

 

Table 4-4.The 75th and 95th percentile flow (ML/day) for the major GBR rivers (based on flow 
between 2000 to 2011) 

river station 
75th %ile 

(ML) 
95th %ile  

(ML) 

No days (2012) 
exceed 75th 
percentile 

No days 
(2012) 

exceed 95th 
percentile 

Daintree  108002A              1,921               8,958                    24                      8  

Barron 110001D              1,034               6,150                    18                      6  

Russell     111101D              3,230             12,306                    16                      5  

N Johnstone   112004A              5,315             16,817                    12                      7  

S Johnstone 112101B              2,368               7,084                    14                      5  

Tully   113006A              9,401             29,045                    20                      7  

Herbert 116001F            18,802             62,079                      8                      3  

Burdekin 120006B              6,753           117,062                    26                      9  

Proserpine 122005A                   44                  408                    32                    11  

Fitzroy  130005A              3,642             65,655                    35                    12  

Burnett 136007A                 315               4,339                    30                    10  
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Table 4-5: Annual freshwater discharge (ML) for the major GBR rivers (based on Water Year of October to September). 

Region River 
Annual long-term 

median river 
discharge 

Annual long-term 
mean river 
discharge 

Annual long-term 
standard deviation 

river discharge 

Total year 
discharge 

2011/2012 

Difference between 
2011/2012 flow and 
long-term median 

Ratio between 
2011/2012 flow and 
long-term median 

CapeYork Normanby*  2,645,979   2,883,826   1,518,587  1,148,732 -1,497,247 0.4 

Wet Tropics Daintree 704,855 820,423 478,554  1,355,022   650,167  1.9 

Wet Tropics Barron 572,543 702,675 483,060  775,182   202,639  1.4 

Wet Tropics Russell 993,921 981,019 348,547  1,291,799   297,878  1.3 

Wet Tropics Mulgrave 728,135 795,461 380,793  1,057,191   329,056  1.5 

Wet Tropics North Johnstone 1,758,010 1,821,213 670,616  3,033,579   1,275,569  1.7 

Wet Tropics South Johnstone 849,969 824,351 320,106  979,588   129,619  1.2 

Wet Tropics Tully 2,942,599 2,988,902 1,158,085  3,617,072   674,473  1.2 

Wet Tropics Herbert*  5,017,480   6,040,528   4,069,852  6,876,065  1,858,585  1.4 

Burdekin Burdekin 5,312,474 7,490,778 8,285,097  15,556,615   10,244,140  2.9 

Mackay Whitsunday O'Connell 307,272 291,155 208,999  285,883  -21,389  0.9 

Mackay Whitsunday Pioneer 355,228 639,895 733,960  1,312,054   958,134  3.7 

Mackay Whitsunday Proserpine 14,598 23,614 20,622  51,939   37,341  3.6 

Mackay Whitsunday Plane 142,406 194,543 220,787  516,811   374,405  3.6 

Fitzroy Fitzroy 2,899,774 4,690,607 5,564,235  8,005,893   5,106,119  2.8 

Burnett Burnett 286,668 377,474 364,909  589,504   302,837  2.1 

Total 
 

17,868,451 22,642,112 
 

 46,452,927   28,585,784  2.6 

 

Note: Long-term (LT) median discharges were estimated from available long-term time series and included data up until wet season 1999 – 2000. Annual river discharge 

was calculated for the period between October 1
st

 to September 30
th

 of the following year. * For the Normanby and Herbert rivers suitable long-term time-series data are 

not available and the median of the available data has been used to allow for comparison of the river flow in 2011-12 relative to previous years. Colours highlight years 

where flow exceeded the median by >1.5 to 2 times (yellow), >2 to 3 times (orange), and >3 times (red). All data supplied by the Queensland Department of Environment 

and Resource Management. 
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4.4 Regional flow characteristics 

Flow characteristics are presented below for the three rivers that were the focus of the flood plume 

water quality sampling, including Normanby Rivers (Figure 4.5), Tully River (Figure 4-8), Herbert 

River (Figure 4-10) and the Fitzroy River (Figure 4-12). 

4.4.1 Normanby 

Long-term flow data is not yet available for the Normanby River; however, the flow recorded in 

2011-12 did reach a peak of 43,000 ML on March 12th, 2012. The total annual discharge from the 

Normanby River in 2011-12 reached 1,148,732 ML (Figure 4.6) 

 

Figure 4-5: Daily discharge from the Normanby River at Kalpower Crossing for the 2011-12 wet 

season.  

 

Figure 4-6: Long-term records of the total annual flow (2000 – 2012 water year, 1st October to 30th 
September) measured for the Normanby River at Kalpower Crossing. 
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4.4.2 Tully 

The discharge from the Tully River was approximately 3.6 million ML in 2011-12, which is just above 

1.2 times the long-term median flow. It follows six years of flow above the long-term median 

discharge (Table 4-5, Figure 4-8). The peak flows were sporadic throughout the wet season between 

late November 2011 and March 2012 (Figure 4-7) and were comparable to those recorded in 

previous years with a peak flow of 63,539 ML on 28th March, 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7: Daily discharge from the Tully River at Euramo for the 2011-12 wet season. 

 

 

 

Figure 4-8: Long-term records of the total annual flow (2000 – 2012 water year, 1st October to 30th 
September) measured for the Tully River at Euramo. 
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4.4.3 Herbert 

The discharge from the Hebert River was approximately 6.9 million ML over the 2011-12 water year 

(Figure 4-10). The flow data collected at the Ingham sites has only data recorded from 2009 and thus 

comparison with long-term median is not available. Total annual flow was recorded at 2.8 million ML 

with a peak flow measurement of 230,129 ML on the 21st March 2012 (Figure 4-9). Other significant 

peaks of flow occurred early as an early first flush on the 21st October with 10918 ML of flow and a 

further onset of flow on 26th November with 15,698 ML. A significant peak was also recorded on the 

5th February with 230,129 ML. This wet season was characterised by early onset of flow (October - 

November) and continuing through to late June.  

 

Figure 4-9: Daily discharge from the Herbert River at Ingham for the 2011-12 wet season. 

 

 

Figure 4-10: Long-term records of the total annual flow (2000 – 2012 water year, 1st October to 
30th September) measured for the Herbert River at Ingham.  
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4.4.4 Fitzroy 

The wet season was characterised by extended periods of flow above the 95th percentile between 

December 2011 and May 2012 (Table 4-4). The discharge from the Fitzroy River was approximately 

8.0 million ML over the 2011-12 water year (Figure 4-12), which was the fourth highest volume of 

flow recorded in the last 10 years. Higher flow conditions were measured from February to April, 

with a peak flow of 240,886 ML on the 27th March, 2012 (Figure 4-11). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11: Daily discharge from the Fitzroy River at the Gap for the 2011-12 wet season.   

 

Figure 4-12: Long-term records of the total annual flow (2000 – 2012 water year, 1st October to 
30th September) measured for the Fitzroy River at the Gap. 
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4.5 Water Quality 

4.5.1 Fitzroy 

Water sampling occurred during a flooding event in early April. The sampling followed two fixed 

transects that had been established in the previous year, one spanning from the Fitzroy River to 

Keppel Reef and the other extending from Rosslyn Bay to North Keppel (Figure 4-13).  Data is 

presented for the 2011-2012 wet season (Table 4-6) with additional data presented from 2011 for 

comparison (Table 4-7). 

 

 

 

Figure 4-13: Sampling sites in the Fitzroy 
marine region. 

 

 

 

 

 

 

 

 

 

 

Table 4-6: Summary of water quality data collected at the five Fitzroy transects sampled during the 
2011-2012 wet season  

Fitzroy 
transect* 

No of 
samples 

Statistical 
measurement 

DIN 

(M) 
DIP 

(M) 
TSS 

(mg/L) 
Chl-a 

(g/L) 
CDOM 
(m

-1
) 

Salinity 
(0.5m) 

Fitzroy 
mouth to 
Keppel Reef 

14 Minimum 1.57 0.71 15.00 0.20 0.20 19.01 

Maximum 3.28 2.58 31.00 2.14 2.14 33.28 
Mean 2.16 1.45 21.57 0.67 1.10 26.91 
SD 0.51 0.61 5.64 0.80 0.67 4.63 
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Table 4-7: Summary of water quality data collected at the five Fitzroy transects sampled during the 
2010- 2011 wet season  

Fitzroy 
transect* 

No of 
samples 

Statistical 
measurement 

DIN 

(M) 
DIP 

(M) 
TSS 

(mg/L) 
Chl-a 

(g/L) 
CDOM 
(m

-1
) 

Salinity 
(0.5m) 

Fitzroy 
mouth to 
Keppel Reef 

62 Minimum 1.5 0.14 9.6 0.2 0.14 3.1 

Maximum 13.9 1.34 38.0 22.4 3.2 34.6 
Mean 4.9 0.46 22.7 2.5 1.1 26.2 
SD 2.8 0.25 6.2 4.3 0.89 8.8 

Rosslyn Bay 
to North 
Keppels 

22 Minimum 1.29 0.13 17.0 0.2 0 19.93 
Maximum 7.78 1.52 33.0 9.08 1.47 37.20 
Mean 2.81 0.56 21.3 1.92 0.41 32.69 
SD 1.60 0.33 4.0 2.54 0.44 5.23 

Mackay 
(South) 

12 Minimum 1.6 0.39 1 0.27 0.02  
Maximum 2.8 0.68 3.2 4.81 0.46  
Mean 2.3 0.55 2.0 1.58 0.24  
SD 0.36 0.09 0.78 1.21 0.16  

Shoalwater 
Bay 

12 Minimum 1.5 0.2 17 0.5 0.3 19.9 
Maximum 7.8 1.9 33 9.1 1.5 33.3 
Mean 3.7 0.65 21.3 3.2 0.7 4.8 
SD 1.9 0.4 4.0 3.0 0.4 28.8 

Gladstone to 
Heron Island 

12 Minimum 1.8 0.3 3.4 0.2 0.02 28.4 
Maximum 2.8 0.47 13 2.7 0.28 34.8 
Mean 1.9 0.33 7.5 0.7 0.12 33.1 
SD 0.4 0.07 4.1 1.3 0.32 2.4 

 

 

Comparisons with ambient and guideline values are offered to compare the average wet season 

concentrations with reported ambient and guideline values and are not for guideline reporting 

purposes.  Statistical measurements for the main water quality components show that dissolved 

nutrients exceeded the long-term ambient concentrations (Schaffelke et al., 2012) with a minimum 

value for DIN and DIP of 1.6 µM and 0.7 µM, respectively. Maximum values for dissolved nutrients 

were 3.3 µM for DIN and 2.6 µM for DIP. The maximum value of DIN was much lower than what was 

recorded the previous year in the extreme flooding of the Fitzroy (13.9 µM) but the maximum DIP 

value recorded in 2012 exceeded that of the previous year (1.3 µM). Ambient values for DIN and DIP 

have been set at 0.2 and 0.05 µM respectively, showing that there was high nutrient enrichment 

during this time, particularly with the DIN concentrations. The TSS values were also elevated, with 

values ranging from 15 mg/L to 31 mg/L measured on the Fitzroy to Keppel transect. The persistence 

of high TSS values across both Fitzroy transects in the previous year potentially indicates that the 

smaller, mobile fraction of the TSS component does move offshore and over coral reef 

environments.   

Measurements for key parameters are presented against five salinity groupings to demonstrate the 

change in the water quality parameters as they move away from the river mouth into the offshore 

coastal environment (Figure 4-14). There are high TSS values measured in the low salinity ranges but 

generally the mean TSS concentration is above 10 mg/L across the salinity gradient. It would be 

expected that the TSS values would fall as the water moves north and away from the river mouth, 

but these high values may be indicative of the TSS inorganic fraction dropping out and the onset of 

biological production with the high values of chl-a, CDOM and smaller mobile particles dominating 
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the TSS component. DIN and DIP both show conservative mixing as they move through the salinity 

gradient, particularly DIP in the lower salinity ranges. Comparing Fitzroy data across the years (Figure 

4-15) shows that the mean concentrations of some water quality variables is consistent over time, 

particularly for DIN, TSS and Chl-a. However the range and peak of the high concentrations can alter 

the structure of the boxplot, particularly in the repeated sampling associated with the large flow 

events in 2010-11. There are years which show significant difference in both mean and spread of 

data, notably for DIP, where the mean associated with data collected in this sampling year (11/12) is 

much higher than previous years.   

 

Figure 4-14:  Selected water quality parameters (TSS, DIN, DIP, PN, PP and Chl-a) presented for five 
salinity ranges for the data collected during the 2011-12 wet season in the Fitzroy region. Box plot 
presents the median (dark black line), the 25th and 75th percentiles (rectangle) and 3 standard 
deviations (vertical dashed lines), for the data sampled within the Fitzroy River plume. Numbers in 
brackets stand for the minimum (inclusive) and maximum (exclusive) salinity value for each class. 
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Figure 4-15: Comparison of five previous events (07/08, 08/09, 09/10, 10/11, 11/12) for key 
parameters (TSS (mg/L), Chl-a (µg/L)Comparison of five previous events for key pa-1) for water 
quality data collected within the Fitzroy transects. Box plot presents the median (dark black line), 
the 25th and 75th percentiles (rectangle), 3 standard deviations (vertical dashed lines), and outlines 
(circles), for the data sampled within the Fitzroy River plume. 
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4.5.2 Tully 

Water sampling occurred over a number of dates (N = 5) to capture the temporal influence of the 

Tully River plume through repeated periods within the 2011-2012 wet season. The Tully transect is 

the longest time series of wet season data and forms a valuable contribution to our understanding 

of the variation in wet season concentrations. The Tully sampling occurred from the mouth of the 

Tully River north to the East of Sisters Island (N = 50) (Figure 4-16). During the dry season another 3 

field trips were carried in the Tully region (9-10/Sep/2011 and 29/Jun/2012), sampling a total of 17 

sites. Data from these extra field trips was not included in the statistics summaries presented for the 

Tully 2011-2012 wet season campaign, but used for comparison only. 

 

 

 

 

Figure 4-16: Location of the 
sampling sites within the 
Tully marine area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical measurements for the main water quality components (Table 4-8) show that dissolved 

nutrients were significantly higher than long-term ambient values as reported in Furnas, (2003) and 

Schaffelke et al., (2012) at all transects. The minimum values for DIN ranged from 1.3  3.0 M and 

minimum DIP values ranged from 0.10 – 0.40 µM. The maximum values for DIN ranged from 1.9  

26.3 M and maximum DIP values ranged from 0.4 – 0.70 µM.  The extremely high value of DIN 

(26.3 M) was recorded at South Mission Beach on 11th February, 2012 at a salinity of 32.4. This high 

value may be influenced by resuspension through the plume conditions. In all sampling occasions, 

the maximum DIN exceeded 1.3 M and this is reflective in the high mean value (4.4 M) of DIN 

over all sampling occasions in the 2011-2012 wet season. Surprisingly DIN was still elevated in the 
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last sampling period (2.6±1.1 µM, mean ± 1SD, in the 29th June, 2012) suggesting that nutrient 

enrichment in this area occurs over much longer time frames than previously reported (Devlin et al., 

2011; 2012). Ambient values for DIN and DIP have been set at 0.2 M and 0.05 M respectively, 

indicating that there has been nutrient enrichment at all these transects over the entire sampling 

period, including the dry season campaigns (i.e., from September 2011 to June 2012). The TSS values 

were also elevated, with maximum values ranging from 4.5 – 20 mg/L for the wet season period.  

However the persistence of high TSS values through the Tully River plume (e.g., max. of 28 mg/L in 

the 29th June, 2012 under an estimated1 river discharge of 5450 ML/d) indicates that even under 

small river discharge (dry season period), high TSS values can be observed possible due to 

resuspension processes. 

The range of chl-a values indicates high phytoplankton production in the plume waters, with Chl-a 

ranging from 0.3 3.7 g/L. Mean values of Chl-a all exceed 0.5 µg/L, even in the earlier and later 

sampling occasions. These high values over a relatively large time period are indicative of persistent 

occurrences of high phytoplankton numbers in response to the large inorganic nutrient supply and 

non-light limiting conditions.  

CDOM values represent the extent of the freshwater influence. Schroeder et al., (2012) suggests that 

0.14 mCDOM represents a salinity of 30±4 (mean ± range). All values of CDOM in samples between 

early January and late March were higher than 0.14 m
showing a clear freshwater signal. CDOM 

values in September 2011 and June 2012 are low and indicate that freshwater influence in these 

periods is minimal. 

Water quality data was integrated over salinity ranges to demonstrate the mixing profiles through 

the salinity gradient (Figure 4-17). All the measurement WQ parameters were variable over the 

salinity gradient, without any significant trend (p > 0.06 in a Kruskal-Wallis test), except for DIP that 

exhibited an increasing values over the salinity gradient (p < 0.001 in a Kruskal-Wallis test). Note that 

in comparison with data from the previous year, salinity ranges are high (p < 0.001, Kruskal-Wallis 

test), all measuring salinity above 25 (Figure 4-18). This small salinity range is reflected in the Salinity 

× WQ boxplots, where the mean concentrations of most water quality variables do not reduce over 

salinity. This is particularly true for the variable measurements of PN, PP, TSS, DIN and chl-a. DIP 

measurements are shown to increase in these higher salinities, reflecting processes of desorption 

from PP. 

 

 

 

 

 

 

 

                                                           
1 Due to the absence of data for the Euramo station at the Tully River, data from the Gorge station was used 

instead. A multiplicative correction factor of 3.594, determined from a temporal comparison between these 
two stations, was applied to extrapolate the Euramo discharge based on the Gorge discharge.  
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

Table 4-8: Summary of water quality data collected at the Tully River plume transect sampled 
during the 2011-12 wet season. Data sampled over three transects during the dry season are also 
presented (i.e., 09/09/2011, 10/09/2011 and 29/06/2012). 

Sample 
date 

No of 
samples Stats 

Temperature 
(˚C) Salinity 

CDOM 
(/m) 

TSS 
(mg/L) 

Chl-a 
(µg/L) 

DIN 
(µM) 

DIP  
(µM) 

PN  
(µM) 

PP  
(µM) 

2011-09-09 5 

min 23.17 16.28 0.05 4.20 0.27 1.214 0.323 0.571 0.065 

max 24.12 34.85 0.11 9.70 1.42 1.999 0.420 1.214 0.097 

mean 23.88 30.10 0.08 6.58 0.76 1.523 0.377 1.000 0.081 

SD 0.40 7.90 0.04 2.56 0.43 0.418 0.049 0.371 0.023 

2011-09-10 3 

min 22.07 23.87 
 

3.80 0.30 
    max 23.93 34.62 

 
9.00 0.94 

    mean 23.00 30.83 
 

6.10 0.62 
    SD 0.93 6.03   2.65 0.32         

2012-01-05 13 

min 28.46 31.98 0.10 1.80 0.30 1.571 0.420 0.286 0.032 

max 29.22 35.05 0.40 9.60 1.19 5.140 0.678 4.569 0.452 

mean 28.92 33.36 0.19 4.49 0.55 2.454 0.504 2.624 0.240 

SD 0.24 0.89 0.08 2.59 0.30 1.147 0.079 1.303 0.143 

2012-02-11 14 

min 30.38 28.44 0.10 7.80 0.53 2.999 0.291 0.714 0.032 

max 31.79 33.51 0.97 20.00 1.07 26.344 0.549 7.139 0.226 

mean 30.97 31.51 0.44 12.79 0.61 6.830 0.477 2.261 0.129 

SD 0.44 1.54 0.35 3.80 0.20 7.677 0.087 2.028 0.069 

2012-03-05 2 

min 29.28 29.56 0.18 3.30 0.27 
    max 29.28 30.86 0.25 4.50 0.84 
    mean 29.28 30.21 0.22 3.90 0.56 
    SD   0.92 0.05 0.85 0.40         

2012-03-08 10 

min 29.71 26.21 0.15 2.10 0.27 1.356 0.097 0.357 0.032 

max 30.56 29.48 0.38 9.50 3.20 5.783 0.355 3.284 0.291 

mean 30.04 27.95 0.23 4.12 0.91 2.439 0.248 1.821 0.167 

SD 0.29 0.88 0.09 2.15 0.90 1.659 0.097 1.092 0.111 

2012-03-31 11 

min 27.03 26.75 0.24 2.90 0.53 2.856 0.226 0.500 0.194 

max 28.72 30.28 0.90 15.00 3.74 11.780 0.355 7.639 0.420 

mean 28.01 28.55 0.47 5.27 1.10 4.917 0.307 3.534 0.315 

SD 0.48 1.24 0.22 3.60 0.91 3.078 0.042 2.379 0.068 

2012-06-29 11 

min 22.07 23.87 0.10 3.00 0.20 1.142 0.097 0.286 0.032 

max 23.00 34.37 0.29 28.00 2.14 4.641 0.517 13.779 0.323 

mean 22.51 30.71 0.15 11.38 0.63 2.616 0.252 3.057 0.116 

SD 0.26 3.95 0.06 7.62 0.55 1.164 0.159 3.938 0.085 

wet season 
only 

50 

min 27.03 26.21 0.10 1.80 0.27 1.356 0.097 0.286 0.032 

max 31.79 35.05 0.97 20.00 3.74 26.344 0.678 7.639 0.452 

mean 29.54 30.57 0.32 6.89 0.76 4.357 0.396 2.598 0.215 

SD 1.19 2.43 0.22 4.79 0.63 4.724 0.131 1.844 0.121 
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Figure 4-17: Selected water quality parameters (TSS, DIN, DIP, PN, PP and Chl-a) presented for five 
salinity ranges for the data collected during the 2011-12 wet season in the Tully region. Box plot 
presents the median (dark black line), the 25th and 75th percentiles (rectangle), 3 standard 
deviations (vertical dashed lines), and outlines (circles), for the data sampled within the Tully River 
plume. Numbers in brackets stand for the minimum and maximum salinity value for each class. 

 

Combining the data over the past three years (2010-2012) and presenting the mean concentrations 

over equidistant salinity groupings allows a better representation of the mixing process over the full 

range of salinity concentrations (Figure 4-19). Reduction over salinity is variable depending on the 

parameter, but strong linear mixing curves are shown for both chl-a and TSS. Measurements of DIN 

and DIP stay high through the salinity ranges. Salinity over four depths (Figure 4-20) that salinity is 

only reduced in the top layer (0.5m) over most periods with the exception of the sampling occasion 

that follows the large flow event in March. 

 

Figure 4-18: Salinity measured in the Tully region in the four the last wet season campaign plus the 
current one. Box plot presents the median (dark black line), the 25th and 75th percentiles 
(rectangle), 3 standard deviations (vertical dashed lines), and outlines (circles). 
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Figure 4-19: Water quality concentrations integrated over salinity ranges collected within the Tully 
River plume. Data is presented from sampling years 2010 – 2012. Water quality data presented for 
TSS, Chl-a, DIN, and DIP only. 

 

Figure 4-20: Salinity measurements over four depths for the Tully river sites.  
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4.5.3 Tully - pesticide measurements 

Grab samples collected in a transect extending from the mouth of the Tully River, detected the 

presence of three herbicides (diuron, hexazinone and imidacloprid). Diuron was detected at all sites, 

however, hexazinone and imidacloprid were detected only at the Tully River mouth. For a full 

analysis of pesticides collected under this and other MMP programs, please refer to Bentley et al., 

(2012).  

 

4.5.4 Cape York 

The first set of data collected from the Far Northern GBR shows some surprising results with 

elevated DIN and high chlorophyll biomass values. However it is difficult to identify the coastal 

processes occurring in the Cape York region as we have no previous historical data and this set of 

data was taken over two days only. The data collected does identify that all water quality variable 

are high within the sampling period, indicating that there is some anthropogenic influence from the 

Cape York catchments which may be influenced by the area of catchment under grazing. Sites were 

sampled over two transects, one along and out of the Normanby River and one slightly north of the 

Normanby river (Figure 4-21).  

Statistical measurements for the main water quality components (Table 4-9) show that dissolved 

nutrients is are higher than long-term ambient values as reported in Furnas, (2003) and Schaffelke et 

al., (2012). The values for DIN ranged from 3.1  7.6 M and DIP values ranged from 0.10 – 0.36 M. 

Ambient values for DIN and DIP have been set at 0.2 M and 0.05 M respectively, indicating that 

there has been nutrient enrichment at all these transects over the entire sampling period 

(September 2011 to June 2012). The TSS values were also elevated, with values ranging from 2.8 – 

95 mg/L. However these are much lower TSS values than measured in other regions through wet 

season sampling and the only high value (95 mg/L) was measured at the Normanby river mouth. Chl-

a ranges from 0.2ug/L to 2.oug0ug/L, and whilst at times some of these values exceed the (annual) 

water quality guideline (GBRMPA, 2009), they are lower than values measured in the Hebert, Tully 

and Fitzroy regions.  Thus there are elevated concentrations, but associated with the dissolved 

nutrient fraction and not the TSS concentrations. The highest values of chl-a and DIN are recorded 

out upstream at sites which may represent freshwater/estuarine environments and thus the marine 

water quality guidelines do not apply. Freshwater and enclosed coastal guidelines for DIN are not 

available for Cape York (Moss et al., 2009) and thus difficult to draw conclusions from any existing 

guideline.  At this point, with a small dataset and only two sampling occasions, the inference from 

the data collected would be the values for both nutrients and chl-a are higher than would have been 

expected, and further sampling is highly recommended.  
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Figure 4-21: Location of (a) Kennedy 
River and (b) Normanby River for 
Cape York monitoring.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-9: Summary of water quality data collected at the Normanby River plume transect 
sampled during the 2011-12 wet season. 

Sample date 
No of 

samples Stats 
Temperature 

(˚C) Salinity 
CDOM 
(/m) 

TSS 
(mg/L) 

Chl-a 
(µg/L) 

DIN 
(µM) 

DIP  
(µM) 

PN  
(µM) 

PP  
(µM) 

Kennedy     
River          

2012-03-26 
5 

min 
 

21.40 1.08 2.80 0.89 3.498 0.129 0.714 0.194 

max 
 

32.09 3.68 7.40 1.91 5.497 0.323 2.927 0.387 

mean 
 

26.32 2.10 4.63 1.53 4.522 0.258 2.023 0.258 

SD 
 

5.40 1.39 2.44 0.56 1.000 0.112 1.161 0.112 

Normanby 
River          

2012-03-26 
14 

min 31.30 0.09 0.71 2.90 0.20 3.141 0.097 0.286 0.065 

max 33.80 26.70 5.37 95.00 5.34 7.639 0.355 19.205 0.517 

mean 32.85 11.59 2.83 18.24 1.36 5.012 0.245 5.726 0.269 

SD 0.64 10.69 1.60 23.05 1.34 1.487 0.073 6.493 0.150 

 

 

(a)Kennedy R. 

sites 
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Figure 4-22: Selected water quality parameters (TSS, DIN, DIP, PN, PP and Chl-a) presented for five 
equidistant salinity ranges for the data collected during the 2011-12 wet season in the Cape York 
region. Box plot presents the median (dark black line), the 25th and 75th percentiles (rectangle), 3 
standard deviations (vertical dashed lines), and outlines (circles), for the data sampled within the 
Normanby River plume. Numbers in brackets stand for the minimum and maximum salinity value 
for each equidistant class. 

Mixing profiles for six water quality parameters show that TSS is only elevated in the lower salinity 

ranges and associated more with the river sites than the coastal areas (Figure 4-22). DIN 

concentrations are high at the lower salinity, reduce but increase again at higher salinities, remaining 

elevated at the high salinity end (max salinity = 26.7). DIP reduces conservatively through the salinity 

curve. PN and PP are high in lower salinities and then increase and decrease across the salinity 

gradient reflecting a mixture of uptake, desorption and adsorption processes. Chl-a is high in lower 

salinities, and stays elevated through the salinity gradient and the plume waters.  

 

4.6 Conclusions 

Whilst these initial results in Cape York are surprising and hint at processes that usually occur in a 

more anthropogenic influenced catchment, it is difficult at this time to make any broad conclusions 

based on the limited data set. Further work in Cape York and further north is essential in 

understanding flood plume processes in less impacted catchments and is needed for anchoring the 

deviation of other data away from these measurements. A large integrated sampling program with 

JCU and CSIRO is planned for 2012-13 and will target increased sampling of this area to provide more 

details on this initial work and further data for validation of water types around Cape York.  
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5 Focus catchment – Herbert 

5.1 Transect information 

Water sampling occurred over a number of dates (N = 12) to fully capture the spatial and temporal 

influence of the Herbert River plume through repeated periods within the Wet Season (N = 100). The 

Herbert sampling occurred over three separate transects. The northern transect was from Lucinda 

up to Gould Island. The southern transect was from the mouth of the Herbert River around the 

bottom of Hinchinbrook Island along a north-easterly direction. The third transect included five sites 

located from Lucinda jetty to Palm Island (Figure 5-1). Note that due to logistics, the last two barge 

sites (Barge 4 and Barge 5) were only sampled once.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: Location of (a) Northern Transect, (b) Southern Transect  and (c) Palm Island Transect 
for Herbert River monitoring.  
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5.2 Spatial variability 

The spatial variability of key water quality parameters, are shown in Figure 5-2 over equidistant 

salinity ranges.  The minimum salinity collected with all transects is 4.5, which was sampled at the 

Herbert River mouth. However, the majority of the salinity data (97 data points out of a possible 

100) had salinity > 17. An ANOVA test indicated that DIN, PN and chl-a present different 

concentrations over a salinity gradient, whereas TSS, DIP and PP exhibited no significant variation 

(Table 5-1). Some of the WQ parameters did not exhibit normal distribution, even after log 

transformation, for this cases a Kruskal-Wallis ANOVA was used instead of a parametric one. 

 

 
Figure 5-2: Water quality parameters (TSS, DIN, DIP, PN, PP and Chl-a) integrated over salinity 
classes. Box plot presents the median (dark black line), the 25th and 75th percentiles (rectangle), 3 
standard deviations (vertical dashed lines), and outlines (circles), for the data sampled within the 
Herbert River plume. Numbers in brackets stand for the minimum and maximum) salinity value for 
each class. 

 
 
 
Table 5-1: Statistical summary of the parametric (ANOVA) test and non-parametric (Kruskal-Wallis) 

test applied to selected environmental parameters against salinity. 

parameter test type test value df p-value 

log(TSS) ANOVA 1.479 4 0.214 

log(DIN) ANOVA 19.081 4 < 0.001 

DIP Kruskal-Wallis 6.977 4 0.137 

PN Kruskal-Wallis 12.508 4 0.014 

PP Kruskal-Wallis 7.385 4 0.117 

chl-a Kruskal-Wallis 11.569 4 0.021 
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5.3 Temporal variation in water quality data 

The Herbert River transect was identified as the focus catchment for this sampling year, thus 

targeted for more frequent sampling over the wet season. The frequency of these measurements 

over a longer time period (28-Nov-2011 to 31-Mar-2012) allows a more robust analysis of temporal 

changes in the flood plume waters and a preliminary understanding of the longer term influence of 

the higher water quality concentrations associated with the Herbert River floods.  

 

 

Table 5-2: Summary of water quality data collected at the Herbert River plume transect sampled 
during the 2011-12 wet season. 

Transect  Sample Date Temp (C) Chl-a (µg/L) TSS (mg/L) CDOM 440 DIN DIP 

North Herbert 

28/11/2011 min 28.8 0.20 3.40 0.05 1.29 0.13 

  max 29.6 4.27 22.00 0.67 5.71 0.39 

  mean 29.2 1.37 6.97 0.33 2.43 0.29 

19/12/2011 min 28.5 0.53 3.90 0.12 1.78 0.52 

  max 28.9 1.87 6.60 0.46 2.36 0.55 

  mean 28.7 1.11 5.58 0.26 2.18 0.53 

20/01/2012 min 28.9 0.20 10.00 0.09 0.21 0.19 

  max 30.2 1.78 34.00 0.30 1.57 0.48 

  mean 29.5 0.70 18.00 0.19 0.79 0.36 

13/02/2012 min 30.7 0.27 7.60 0.25 3.64 0.36 

  max 32.5 1.87 20.00 0.60 4.57 0.58 

  mean 31.6 0.77 13.92 0.44 4.12 0.46 

05/03/2012 min - 0.27 2.60 0.07 1.14 0.39 

  max - 10.15 27.00 0.87 2.00 0.42 

  mean - 2.35 7.60 0.36 1.59 0.41 

31/03/2012 

min  0.8 3.4 0.28 2.9 0.3 

max  1.6 6.8 0.8 4.8 0.3 

mean  1.17 4.6 0.51 3.8 0.3 

Southern  Herbert 

29/11/2011 min 28.8 0.2 2.1 0.1 0.9 0.3 

  max 29.6 5.0 16.0 0.4 3.1 0.5 

  mean 29.2 2.1 8.8 0.2 1.6 0.4 

20/12/2011 min 28.5 0.6 7.1 0.1 1.9 0.4 

  max 28.9 3.6 20.0 0.6 4.5 0.6 

  mean 28.7 1.9 11.7 0.3 3.2 0.6 

21/01/2012 min 28.9 0.2 15.0 0.0 1.1 0.1 

  max 30.2 7.5 61.0 0.7 5.6 0.6 

  mean 29.5 3.4 28.6 0.4 3.1 0.3 

14/02/2012 min 30.7 0.3 7.5 0.3 3.2 0.2 

  max 32.5 5.3 16.0 1.6 12.5 0.5 

  mean 31.6 1.6 11.9 0.8 6.6 0.4 

06/03/2012 min - 0.5 2.0 0.2 1.1 0.2 

  max - 3.2 92.0 1.7 16.9 0.4 

  mean - 1.4 14.6 0.6 5.7 0.3 

30/03/2012 

min 28.5 0.2 3.5 0.4 3.0 0.2 

max 32.5 1.3 11.0 1.4 16.8 0.4 

mean 29.7 0.8 7.4 0.8 10.4 0.3 

48 sites visited from 02/1994 to 
02/1999 

min  0.25 1.36  0.24 0.01 
max  4.62 49.16  8.09 0.56 
mean  1.63 11.13  2.60 0.15 
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Statistical measurements for the main water quality components show that dissolved nutrients is 

significantly higher than long-term ambient values as reported in Furnas (2003) and Schaffelke et al. 

(2012) at all transects with the minimum value for DIN ranging from 0.1 – 3.6 M and minimum DIP 

values ranging from 0.1 – 0.5 M.  The Herbert sites, as with the majority of sites collected in this 

program, are collected as rivers are flowing and are not directly comparable to any dry season values 

or an annual mean.   However, sites in the Herbert marine zone have been sampled predominately 

in higher salinities, and thus would be comparable to the wet season values reported in Schaffelke et 

al., (2012) and Furnas (2003). In addition, repeated sampling during the wet season for both Tully 

and Herbert provide data across a range of flow conditions and represent an extended period of 

time during the wet season and reflect ongoing water quality conditions over a period of days to 

weeks to months.  In all sampling occasions, the maximum DIN exceeded 2 M and this is reflective 

in the high mean value (3.7 M) of DIN over all sampling occasions. Surprisingly DIN was still 

elevated in the last sampling period (29th June, 2012) suggesting that nutrient enrichment occurs 

over much longer time frames than previously thought (Devlin et al., 2012A). Ambient values for DIN 

and DIP typically measure 0.2 M and 0.05 M respectively (Schaffelke et al., 2012), indicating that 

there has been nutrient enrichment at all these transects over the entire sampling period 

(September 2011 to June 2012). The TSS values were also elevated, with maximum values ranging 

from 6.6 – 92 mg/L. However the persistence of high TSS values through the Herbert River plume 

indicates that the smaller, mobile fraction of the TSS component is available for at least three 

months of the 2012 wet season, and also that resuspension may play an important role sustaining 

elevated TSS concentrations. These parameters compared to previous wet season sampled carried 

out from January, 1994 to January, 1999 (n = 48), did not show significant difference (p > 0.05, 

Wilcoxon Rank paired test), indicating that the coastal areas influenced by the Herbert River 

normally present high WQ parameters during the wet season. An exception occurred for DIN, which 

presented elevated values compared to previous sampling periods (W = 277, p < 0.001). 
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Figure 5-3: Changes in concentration over time for three key parameters (TSS, Chl-a and DIN) 
measured in the Herbert River flood plumes. Timing of sampling occurred November 2010 to late 
March 2011. 

 

Figure 5-3 illustrates the changes in concentrations of three key water quality components in the 

flood plume over time, averaged over sites within the northern and southern transects.  

Concentrations of TSS increased over time at all sites, reaching a peak in mid-January (Fig. 5-1a). Chl-

a concentrations are high over the wet season (Nov to April), particularly in sites within the southern 

transect (Fig. 5-1b). DIN concentrations showed a general trend of increasing with peak after the 

high flow (Fig. 5-1c). Similar temporal trend between river discharge and the other two WQ 

parameters (i.e., TSS and chl-a) were not observed, suggesting a no-clear timing between river 

discharge and the observed elevated WQ parameters concentrations. 

The other notable output from this data shows that the measurements of many of the water quality 

variables where high through all the data points, particularly chl-a, which measured between 0.2 – 

10.2 µg/L for all sites, with a mean of 1.76 µg/L for the whole wet season. The colour of the water 

was green in all sampling trips, and whilst colour assessment is not a reliable way of estimating 

production, it does indicate that the coastal waters out from the Herbert River mouth and around 

Hinchinbrook Island are extremely productive and may potentially be eutrophic with high DIN, and 

sufficient light to drive high phytoplankton biomass. 
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Figure 5-4: Predominantly wind direction for the two weather stations (Ingham, 18.6494˚S and 

146.1769˚N and Cardwell, 18.2544˚S and 146.0192˚N).  

Potential causes for the high WQ parameters concentration over the whole sampling period with 

apparently no correlation with river discharge were investigated by the calculation of the 

Spearman's rank correlation coefficient. A nonparametric correlation coefficient was computed 

because most of the variables did not present normal distribution. The Spearman's rank correlation 

coefficient was used to compare all the key WQ parameters presented in Figure 5-2 considering also 

salinity, the average of the Herbert River discharge calculated for the 5 previous days of each 

sampling date (Flow*, megalitres per day, hereafter ML/d), the underwater light extinction (KdPAR, 

m-1), and the u-component of the wind speed. 5-day average for the Herbert River discharge was 

arbitrarily selected as a way to represent a potential delay between the river gauge measurements 

(approx. distance 30 km from river mouth) until water reaches the sampling site (within 1 – 50 km 

from river mouth). Wind was considered in as a way to account for any potential resuspension that 

may affect the WQ constituent’s concentration. Wind data was obtained for two coastal stations 

(Cardwell, 18.2544˚S and 146.0192˚N, and Ingham, 18.6494˚S and 146.1769˚N) from the Australian 

Bureau of Meteorology (http://www.bom.gov.au/climate/data-services/), and it covers the whole 

sampling period. Ideally data form Lucinda station should be used instead, however no data for 

Lucinda was available for the period of interest due to the station breakdown caused by the TC Yasi 

passage. Because most of the wind was from the east during the sampling period (Figure 5-4), daily 

wind data measured at 06:00, 09:00 and 15:00 was decomposed into u-component (Figure 5-5). In 

addition, winds with negative u-component were assigned value zero, assuming that the larger fetch 

area at eastern of the sampling sites are much more efficient on wind and current generation than 

the wind blowing from land. The wind u-component was then paired against the WQ parameters 

considering the smallest time lag between wind measurements and the sampling time. Sites from 

the southern transect were assigned to the Ingham wind data, and northern sites to the Cardwell 

wind data.  In this approach we assumed that wind would have similar effect on each sampling site, 

and the waves and currents would result in resuspension, which may not be true due to the local 

bathymetry and topography. Sites depth vary between 1 to 28 m with an average of 10.45±7.84 m 

(±1 SD), and some site are totally exposed to NW to SW winds whereas some are inside the channel 

between Hinchinbrook Is. and the continent. There are two main water movements that can cause 

sediment resuspension: waves wind-generated and currents (wind and tide generated). Waves are 

more efficient on sediment resuspension than currents, especially on shallow areas, because waves 

http://www.bom.gov.au/climate/data-services/
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can impose to bottom sediment a regime of high and low pressures, promoting the sediment 

oscillation (Suhayda, 1986). This oscillation, which is caused by the orbital movement of the water 

particles under wave influence, weakens the mechanical and erosion strengths of the bed, leading to 

its fluidization and provoking thus a dramatic reduction on bed shear strength. Lou (1995) stated for 

Cleveland Bay that the swell waves are more efficient in reducing the bottom shear resistance than 

currents alone (more than 8 times), however currents play an important role in the transport of 

suspended sediment. In further approaches the orbital velocity of the particles next to the bottom 

and currents, wind and tide generated should be taken into account on the resuspension process 

quantification. 

The Spearman's rank correlation coefficient indicated high correlations between salinity – flow*, 

salinity – KdPAR, salinity – DIN and KdPAR – chl-a (Table 5-2). These are negative correlations and 

indicate that a higher flow discharge as occurred in the previous 5 days of the sampling date reduces 

the sampled sites salinity and that lower salinities are associated with higher DIN concentrations and 

higher KdPAR values (i.e., reduced water transparency). KdPAR was also positively correlated with 

chl-a (the higher the light availability, the higher the primary production). 

 

Figure 5-5: The wind speed u-component for the weather stations located in (a) Cardwell, 

18.2544˚S and 146.0192˚N and (b) Ingham, 18.6494˚S and 146.1769˚N. Red squares stand for the 

sampling dates, and red line shows the u-component temporal trend. 
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Table 5-2: Spearman’s rank correlation coefficient. Value in bold indicates correlation >36%, and 

all correlations are significative at p < 0.05, except for those values in italic, light grey. 

  Flow* Wind* Salinity KdPAR TSS chl-a DIN DIP PN PP 

Flow* 1 0.25 -0.61 0.00 -0.12 0.01 0.25 -0.26 0.37 0.25 
Wind* 0.25 1 0.10 -0.25 -0.13 -0.26 -0.46 0.10 0.02 -0.18 
Salinity -0.61 0.10 1 -0.60 -0.21 -0.38 -0.70 0.11 -0.59 -0.20 
KdPAR 0.00 -0.25 -0.60 1 0.48 0.61 0.51 -0.11 0.39 0.16 
TSS -0.12 -0.13 -0.21 0.48 1 0.46 0.29 -0.04 0.36 0.27 
chl-a 0.01 -0.26 -0.38 0.61 0.46 1 0.36 0.15 0.32 0.27 
DIN 0.25 -0.46 -0.70 0.51 0.29 0.36 1 -0.05 0.51 0.08 
DIP -0.26 0.10 0.11 -0.11 -0.04 0.15 -0.05 1 -0.07 -0.26 
PN 0.37 0.02 -0.59 0.39 0.36 0.32 0.51 -0.07 1 0.13 
PP 0.25 -0.18 -0.20 0.16 0.27 0.27 0.08 -0.26 0.13 1 

Flow* stands for the average flow calculated for the previous 5 days of the sampling date, and 

Wind* stands for the u-component of the wind speed (see text for explanation). 

In a second approach, the relationship between WQ parameters and the site distance from the 

Herbert River mouth was investigated by using generalized additive mixed model (GAMM) (Table 

5-3). A GAMM analysis was applied because it can account for the multitudinous variability intrinsic 

to a dataset resulted from samples being taken at varying runoff, salinity and wind regimes. GAMM 

was performed in R scripting language (R Development Core Team, 2009), with the package ‘mgcv’.  

The distance between each site and the Herbert River mouth was calculated taking into account the 

coastal line by using the cost distance tool in ArcGIS. Generalized Additive Mixed Model (GAMM) 

was used then to model WQ parameters (WQi in Eq. 1) as a function of distance from the Herbert 

River mouth. 

 

WQi<-gamm(WQi~s(distance),random=list(effect=~1),data=data1). (Eq. 1) 

 

In an exploratory analysis, four effects were tested as random effects: none effect at all, transect, 5-

day average river discharge, u-component of the wind, and their permutation. As a result, specific 

random effects were selected to be applied in GAMM analysis for each WQ parameter. These 

selections, as indicated on Table 5-3, were made based on the best performance measured by r-

squared, p-value and Akaike Information Criterion value (AIC, Sakamoto et al., 1986). Negative r-

squared (i.e., the chosen model fits worse than a horizontal line) and no-significant p-value were 

used as a model exclusion criteria within each WQ parameter. For the no-excluded models, the 

lowest AIC value was used to select the best one. If more the one model exhibited the lowest AIC 

value, the simplest model, with less random effects, was selected. Only DIP and PP presented 

suitable GAMM models based on the selection criteria chosen. Results of GAMM analysis are 

presented on Table 5.3. 
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Table 5-3: Generalized additive mixed model (GAMM) – statistical summary and random effect 

selection. Four statistical tests (r-squared, p-value, AIC and BIC) were used on model evaluation as 

a function of four random effects and their permutation: transect (t), 5-day average river 

discharge (d), u-component of the wind (w) and/or none. Line in bold indicates the best result 

within each WQ parameter for the smaller AIC and BIC values (green), significative p-value 

(yellow). Negative r-squered means that the chosen model fits worse than a horizontal line. In this 

case no GAMM model is presented (e.g., for TSS). 

  r-squared p-value AIC factor 
 

  r-squared p-value AIC factor 

Sa
lin

it
y 

0.069 0.053 626.943 t 
 

D
IN

 

0.101 0.046 342.759 t 

0.069 0.031 615.873 f* 
 

0.099 0.015 336.149 f* 

-0.054 0 339.453 w* 
 

-0.029 0 196.072 w* 

0.106 0.083 338.298 w*_t 
 

0.085 0.002 195.836 w*_t 

0.1 0.138 335.1 w*_t_f* 
 

0.085 0.002 197.836 w*_t_f* 

0.106 0.075 327.644 w*_f* 
 

0.116 0.008 193.278 w*_f* 

0.077 0.14 617.806 f*_t 
 

0.101 0.034 337.807 f*_t 

0.069 0.004 626.691 none 
 

0.101 0.006 341.851 none 

K
d

P
A

R
 

0.206 0 227.748 t 
 

P
N

 

0.066 0.024 360.039 t 

0.207 0 227.078 f* 
 

0.066 0.065 355.858 f* 

0.306 0 109.543 w* 
 

-0.011 0.105 206.942 w* 

0.305 0 111.25 w*_t 
 

-0.011 0.105 208.942 w*_t 

0.305 0 113.338 w*_t_f* 
 

-0.011 0.105 210.942 w*_t_f* 

0.302 0 110.969 w*_f* 
 

-0.002 0.192 207.507 w*_f* 

0.21 0.001 227.687 f*_t 
 

0.064 0.094 356.618 f*_t 

0.206 0 225.748 none 
 

0.066 0.024 358.039 none 

TS
S 

0.03 0.048 779.948 t 
 

D
IP

 

-0.009 0.495 -53.746 t 

0.027 0.057 775.694 f* 
 

-0.012 0.411 -65.629 f* 

-0.036 0.021 435.87 w* 
 

-0.108 0.127 -37.736 w* 

-0.036 0.021 435.87 w*_t 
 

-0.109 0.143 -36.71 w*_t 

0.01 0.136 441.362 w*_t_f* 
 

-0.105 0.152 -37.022 w*_t_f* 

-0.004 0.096 437.831 w*_f* 
 

-0.045 0.447 -38.86 w*_f* 

0.029 0.058 780.519 f*_t 
 

-0.01 0.441 -61.333 f*_t 

0.03 0.048 777.948 none 
 

-0.009 0.495 -55.746 none 

C
h

l-
a 

0.03 0.054 365.926 t 
 

P
P

 

-0.017 0.89 11.513 t 

0.08 0.105 366.517 f* 
 

-0.017 0.879 10.721 f* 

0.173 0 172.879 w* 
 

-0.058 0.313 24.386 w* 

0.276 0 177.92 w*_t 
 

-0.038 0.569 22.892 w*_t 

0.288 0 180.669 w*_t_f* 
 

-0.038 0.569 24.892 w*_t_f* 

0.257 0 176.149 w*_f* 
 

-0.052 0.415 22.654 w*_f* 

0.082 0.109 367.817 f*_t 
 

-0.017 0.935 12.139 f*_t 

0.074 0.084 364.731 none 
 

-0.017 0.89 9.513 none 

 

Salinity exhibited increasing values as the distance between the Herbert River mouth and sites 

increased, and in 50 km away from the river mouth salinity approaches the marine salinity (Figure 

5.6a). It is worthwhile to mention that the salinity model was dependent on the amount of river 

discharge computed as an average of the previous 5-day of the sampling date (Table 5-3). The 

underwater light attenuation (KdPAR, Figure 5.6b) was dependent on wind, and the longer the 

distance between river mouth and sampling site, the higher the water transparency, with values of 

equivalent secchi disc varying from 0.14 – 1 m (KdPAR = 1.44 secchi disk, Holmes 1970). Total 

suspended solids (TSS, Figure 5.6c) had no random factor, been dependent only on distance 

between sites and the Herbert River mouth (Table 5-3). 
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Figure 5-6: In-situ WQ parameters against distance from the Herbert River mouth for (a) salinity, 
(b) underwater light extinction (KdPAR, m-1), (c) total suspended solids (TSS, mg/L), (d) chlorophyll-
a (chl-a, µg/L), (e) dissolved inorganic nitrogen (DIN, µM), and (f) particulate nitrogen (PN, µM). 
See text and Table 5-4 for model explanation. 
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The lowest TSS concentrations were observed at sites within 40-50 km away from the river mouth. 

Interesting to note that wind (as u-component) and flow did not explain the TSS pattern observed in 

the field, indicating that other processes were influencing the movement of TSS.  Chlorophyll-a (chl-

a, Fig. 5-6d) was high close to the river mouth and reduced asymptotically up to 20 km away from it, 

getting stable after that. Chlorophyll-a model had wind as random effect suggestion that 

resuspension can affect primary production by injecting benthic diatoms into the water column, 

and/or by realising nutrients from the bottom sediment. Phytoplankton samples indicated that a 

higher number of benthic diatoms were associated with high chl-a concentrations (Devlin et al., 

2013). Dissolved inorganic nitrogen concentrations were dependent on river discharge and wind 

(Table 5-3), and higher values were close to the river mouth (Fig. 5-6e). This pattern supports the 

behaviour exhibited by chlorophyll-a, suggesting that river discharge and also bottom sediment 

resuspension can drive chl-a biomass. Particulate nitrogen follow the spatial DIN behaviour, but it 

was depend only on the distance between sites and the Herbert River mouth, suggesting that the 

land-based nitrogen input is the main driver of PN in the flood plume waters. 

Mixing profiles, with concentrations identified by date, show that the timing of the sampling and the 

intensity of flow are key drivers in driving the reduction of water quality concentrations through the 

salinity gradient (Figure 5.7). Concentrations of DIN are highest at the lowest salinities, and over the 

last sampling date reflecting continual flow and the high peak (220,000 ML) measured on the 18th 

March in the Herbert River.  

Mixing curve relationships are difficult to ascertain due to the low number of points at the lower 

salinity end. The higher salinity measurements reflects the low to medium flow conditions that were 

measured during the 2011-12 wet season and can be contrasted with the low salinity measurements 

from the 2010-11 year (Devlin et al., 2012C). Mixing curves are generally conservative for DIN, 

though there is high scatter at the higher end of the salinity potentially reflecting the uptake 

processes. DIP starts at low concentrations and increases through the higher salinities, suggesting 

desorption of DIP from the particulate fraction.  The highest Kd value, as would be expected is 

associated with the two highest TSS values, thought the higher chlorophyll values between 25 – 35 

µg/L look to also influence the light attenuation (Figure 5-8). 

Salinity data is presented at surface (0.5m) and variable depth (1, 5 and 10 m) as mean values for 

October to March 2012 (Figure 5-8). The average surface salinity for January to March was 32. Mean 

salinity at 5 m was reduced slightly but large differences in depth are not evident, indicating the well 

mixed condition of the water in the region affected by the Herbert River discharge. 
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Figure 5-7: Salinity mixing profiles presented for each sampling date for five water quality 
measurements including DIN, DIP, TSS, Chl-a and Kd. 
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Figure 5-8:  Depth-integrated exposure map for the Herbert marine region for salinity data. 

 

5.4 Pesticide monitoring results 

An intensive sampling campaign was undertaken in the Herbert catchment using a combination of 

grab and passive sampling techniques. Diuron, atrazine and simazine were the only herbicides 

detected in the grab samples, with diuron the most frequently detected and abundant. A greater 

number of herbicides were detected in the passive samplers including ametryn, hexazinone, 

tebuthiuron, metolachlor and imadicloprid (Figure 5-9).  For a full analysis of pesticides collected 

under this and other MMP programs, please refer to Bentley et al., (2012).  
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Figure 5-9: Summary of grab and passive sampling data collected in the Herbert River region. 
Please refer to Bentley et al., 2012 for full details of the pesticide monitoring program.  

 

5.5 Conclusions 

Data collected from the Herbert marine region shows conclusively that high nutrient enrichment is 

occurring over the wet season with the highest concentration peaks related to the highest flow 

measurements. However, concentrations of dissolved nutrients are high across all sampling occasion 

suggesting that this small, but important coastal area of the GBR is nutrient enriched. These high 

nutrient values, coupled with the persistent high values of Chl-a biomass mean that for several 

weeks to months of the year, the inshore coastal system adjacent to the Herbert is eutrophic. 

Further synthesis of other biological monitoring programs under the MMP is required to link these 

eutrophics symptoms to biological impact. However, in the absence of biological data for this report, 

we can conclude the water quality within the Herbert marine area, both north and south transects 

has reduced water quality over broad temporal (weeks) and spatial (> 50km north and 30km south) 

scales. The MMP program was run concurrently with the Herbert River catchment monitoring 

program and combining the catchment, river and plume data will be essential in identifying the 

source of pollutants and tracing source back to catchment activities. This work will be presented at a 

later date once catchment data has been reported. 
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PART B: FLOOD PLUME MAPPING  

6  GBR flood plumes 

6.1 Introduction 

   In 2010 the ACTFR (now TropWATER) was engaged by the GBRMPA to identify and map the risk 

and exposure of GBR ecosystems to anthropogenic water quality influences (nutrients, sediments 

and pesticides) to facilitate resilience mapping of the GBR for adaptive management purpose under 

a changing climate. River flood plumes are important pathway for terrestrial materials entering the 

sea, and a dominant source of coastal pollutants. Mapping the river plume extent, spatio-temporal 

variability, frequency, and duration help to develop risk models by mapping plume-affected areas 

which may experience acute or chronic high exposure to contaminants through river discharges. 

Knowledge of the areas and the type of ecosystem that is the most likely to be impacted by changing 

water quality help focus our understanding on what type of ecological impacts are occurring to 

those systems and better inform marine, coastal and catchment management. 

Remote sensed imagery has become a useful and operational assessment tool in the monitoring of 

flood plumes in the GBR. Combined with in-situ water quality sampling the use of remote sensing is 

a valid and practical way to estimate both the extent and frequency of plume (surface) exposure on 

GBR ecosystems. Ocean colour imagery provides synoptic-scale information regarding the 

movement and composition of flood plumes. Thus, in the past four years, remotely sensed data 

combined with in-situ sampling of flood plumes has provided an essential source of data related to 

the movement and composition of flood plumes in GBR waters (Bainbridge et al., 2012; Brodie et al.; 

2010; Devlin et al.; 2012a, b; Schroeder et al., 2012). Flood plumes have been mapped and the 

coverage of GBR ecosystems visually assessed using satellite imagery (Devlin and Schaffelke, 2009). 

A combination of aerial surveys and satellite imagery has also been employed in the GBR to 

determine areas of marine coastal ecosystems exposed to flood plumes (Brodie et al., 2010; Devlin 

et al., 2001; Devlin and Brodie, 2005; Schroeder et al., 2012). In combination with pollutant load, RS 

data have been further used to model the exposure of GBR marine ecosystems to land-based 

contaminants (Maughan and Brodie, 2009; Devlin et al., 2012a, b). The key findings, and detailed 

approaches undertaken to complete these assessments are summarised in Devlin et al. (2012b). 

 

6.2 Remote sensing /GIS methodologies 

Our efforts to improve methods of mapping and characterising GBR flood waters are continuing. For 

this reporting period we have used a combination of true colour and satellite imagery processed 

with bio-optical algorithms (Level 2 (L2) products)) to delineate the edge of the GBR plume and the 

dispersal of land-based pollutants with an increasing degree of confidence. The main catalogue of 

ocean colour satellite imagery used was that of the Moderate Resolution Imaging Spectroradiometer 

(MODIS) on-board the NASA Earth Observation System Terra and Aqua spacecrafts. In the GBR, 

Plume waters are driven by high river flow conditions, which are the periods in the monsoonal 

season that are typically associated with the passage of cyclones or low pressure systems (Devlin 

and Brodie, 2005).  
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Level-0 (L0) data corresponding to images during the summer/wet season (December to April 

inclusive) recorded between 2007 and 2012 were acquired from NASA’s Ocean Colour website 

(http://oceancolour.gsfc.nasa.gov). MODIS quasi-true colour (hereafter true colour) images and L2 

products (Chl-a, Coloured Dissolve Organic Matters and Detrital matter absorption coefficient 

(aCDOM-D) and TSS proxies) were derived from L0 data using the processing scheme and bio-optical 

algorithms available in SeaWiFS Data Analysis System - SeaDAS (Baith et al., 2001). A combined near 

infrared to short wave infrared (NIR-SWIR) correction scheme (Wang and Shi, 2007) was applied to 

level-1 products to overcome the atmospheric correction issues above turbid waters, commonly 

found in the nearshore regions of the GBR.  

The complex behaviour of coastal plumes is determined by various factors, including the Earth 

rotation effect (Coriolis effect), the catchment size, river discharge characteristics and the frequency 

and intensity of the high flow event, prevailing wind and current conditions, wind wave and tidal 

effects as well as topography/bathymetry and exit angle (e.g. Wolanksi et al., 2008; Devlin and 

Brodie, 2005; Devlin and Schaffelke, 2009). Coastal plumes are perfect examples of highly dynamic 

oceanographic structures, with spatial and temporal dynamical scales ranging from meters to 

hundreds of kilometres and from diurnal to weekly ranges, respectively, and for which remote 

sensing technologies are perfectly adapted tools.   

 

Figure 6-1: River plumes along Queensland Coast, MODIS true colour image from Aqua satellite, 
(NASA/GSFC, Rapid Response). 

 

To detect and map plumes remote sensors exploit their differences in colour from ambient marine 

waters (Figure 6-1). Water is transparent at blue and green wavelengths, but is strongly absorbing at 

longer wavelengths. Chlorophyll a, the primary photosynthetic pigment found in phytoplankton, has 

a primary absorption peak near 440 nm. CDOM absorption monotonically increases as wavelength 

decreases into the ultraviolet. Also, particulate scattering enhances reflectance (ratio of incoming to 

outgoing light) at longer wavelengths (Clarke et al., 1970, Morel and Prieur, 1977, McClain, 2009). 

http://oceancolor.gsfc.nasa.gov/
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The optical signature of a plume, its properties of absorption (measured by the attenuation 

coefficient of Photosynthetically Active Radiation – Kd(PAR)) and its colour are thus related to the 

presence and combination of these parameters called the optical active constituents (OACs) of the 

water (Figure 6-2).  

  

 

Figure 6-2: Relations between the colour, the properties of absorption [Kd(PAR)] and the optical 

active constituents of plume waters.  

 

Mapping was based on two innovative plume mapping techniques that combine MODIS true colour 

and L2 imagery. We mapped the full extent of the plume, the plume water types (primary, 

secondary, tertiary; e.g. Devlin and Schaffelke, 2009 and Devlin et al., 2012a), and surface exposure 

to pollutants by applying a combination of true colour images classification (defined later as 

“qualitative” method), as well as supervised classification of MODIS Level 2 satellite products using 

thresholds which link to the gradients of CDOM, chlorophyll, TSS in plume waters (referred as 

quantitative method).  At the time of completing this report, this method was still in development.   

Simply put, we developed a set of mapping techniques which allow us to map GBR plume 

movements and influence on coastal ecosystems despite complexity in the application of satellite 

remote sensing technics in optically coastal complex waters (Qin et al., 2007).  
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6.3 Mapping outputs 

 

The main products which are being developed under the MMP program include: 

(a) Daily maps and weekly composites of the full extent of plumes and plume water types;  

(b) Annual maps of the frequency of occurrence of river plume and of plume water types; 

(c) Annual and multi-annual maps of surface exposure to pollutants (TSS and DIN), linking 

pollutant load to the water type classifications; 

 

6.4 Overview of methods 

6.4.1  Full extent plume maps (qualitative and quantitative methods) 

Historically, visual interpretation of digitised true colour satellite images were performed to identify 

and delineate the full areal extent of the surface GBR flood plumes (Devlin and Schaffelke, 2009; 

Devlin et al., 2012a). In order to reduce human error originated from visual mapping, to allow the 

processing of a greater number of satellite images, and to provide greater detail on the composition 

of the plume, further automated (or quasi-automated) methods have been developed:   

(I) A “qualitative” method (Álvarez-Romero et al., 2013) based on classification of 

spectrally enhanced true colour images. This method involve converting true colour 

images from Red-Green-Blue (RGB) to Intensity-Hue-Saturation (HIS) colour schemes, 

the definition of 6 colour classes corresponding to plume areas and that describe a 

gradient in the river borne pollutants as well as 2 classes corresponding to non-plume 

areas (cloud and sun glint signatures), the creation of spectral signatures for these 

respective areas, and the utilization of the created spectral signature to map the full 

extent of the plume. Weekly plume composite were created to minimize the amount of 

area without data per image due to masking of dense cloud cover, common during the 

wet season (Brodie et al., 2010), and intense sun glint. We used the combined 6 colour 

classes to define the full extent of the plume. 

Analyses are realized in ArcGIS and a full description of the method is presented in 

Álvarez-Romero et al., 2013 and summarized in Figure 6.3a1.  

 

(i)  A “quantitative” method using the application of threshold values for delineating surface 

plume boundaries. This supervised method is based on MODIS L2 data calibrated into 

water quality (WQ)/OACs metrics. WQ metrics/ OACs chosen to delineate the full areal 

extend of the plume and plume water types are:  

- The water-leaving radiance measured at 667 nm (nLw(667)) and after atmospheric 

corrections. This parameter is sensitive to the suspended solids in the water column and 

has been shown correlated with plume location (Salisbury et al., 2004; Thomas and 

Weatherbee, 2006). It is used as proxy for TSS and to approximate the dispersal of 

sediments within plumes.   

- The Chl-a concentration, calculated by applying the GSM01 algorithm implemented in 

SeaDAS (Garver and Siegel, 1997; Maritorena et al., 2002). The GSM01 algorithm has 
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been shown with the best performance of the seaDAS algorithm for retrieving of 

chlorophyll-a concentration in GBR waters over a wide range of conditions (Qin et al., 

2007). 

- The absorption of CDOM+D at a wavelength of 443 nm, calculated based on the quasi-

analytical algorithm (QAA) (Lee et al., 2002). This QAA derives inherent optical 

properties (IOPs) of absorption and backscattering coefficients and has been shown to 

be appropriated for use within the GBR (Qin et al., 2002). The QAA derives the total 

spectral absorption and backscattering coefficients, which are decomposed into the 

spectral absorption coefficients associated with phytoplankton pigments and absorption 

of CDOM+D.  

These processes are summarised in Figure 6-4Error! Reference source not found.. Analyses 

are realized using a combination of software: SeaDAS, Matlab and ArcGIS.  

 

As with the qualitative approach, the purpose of this method is to integrate the dispersal 

patterns of pollutants from the coast to offshore. The distribution of satellite-retrieved [nLw, 

chl-a, CDOM+D] gradients along different river mouth-offshore sections is used to identify 

and validate water quality GBR thresholds above/under which OACs values are considered 

to be indicative of the full extent of the plume or respective plume water types presence 

(Figure 6-4). We used tertiary plume; identified by CDOM+D absorption value higher than 

0.05 m-1 and proportional to marine salinity value (e.g., Schroeder et al., 2012); to define the 

external boundary or full extent of the plume.  

 

6.4.2 Plume water type maps (qualitative and quantitative methods) 

Working with calibrated L2 MODIS images, Devlin et al. (2012b), have given significant insight into 

the characterization of the gradient of water types commonly found into the GBR river plumes. Each 

water type is associated with different levels and combination of pollutants and hence will impact on 

different components of the GBR ecosystems (Devlin et al., 2012b). Classification of surface waters 

into Primary, Secondary, and Tertiary water types can thus provide a mechanism to cluster 

cumulative WQ stressors into three (ecologically relevant) broad categories of risk magnitude 

(Petus et al., in review).  

These water types were defined as:  

- Primary waters, located in the immediate plume zone and characterised by high 

suspended sediment, light limitation and low salinity typically associated with the very 

near-shore areas and the initial stages of plume formation;  

- Secondary waters characterised by moderately elevated sediment however, with 

sufficient light and excess nutrients to support elevated phytoplankton growth, and;  

- Tertiary waters characterised by lower values of CDOM+D and Chl-a in comparison of 

the primary and secondary waters but still above ambient marine values. Tertiary water 

plumes constitute the transitional waters between plume-affected and ambient water. 
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Figure 6-3: Summary of the process followed to build plume water maps with examples of inputs 

and outputs: (a) Plume mapping process: different shadings represent steps (light gray), analyses 

within steps (white), intermediate outputs (dark gray), and final outputs (black); (b) A: MODIS-

Aqua true colour image used to create the spectral signature defining 6 color classes for GBR 

plumes (25/01/2011), B and C: daily 6-color class map (25/01/2011) and weekly composite (19 to 

25/01/2011) of 6-class map. D: reclassified map into weekly P, S, T composite (19 to 25/01/2011); 

E: Frequency of occurrence of the secondary water type in 2011; Figure C to E are zoomed in the 

Tully-Burdekin area (see red box on panel B). (Modified from Álvarez-Romero et al. 2013 and 

Devin et al., 2013) 
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Figure 6-4: Process for the delineation of plume water types based on MODIS imagery through the 
application of spectral thresholds on Level-2 products (chl-a, adg_443_gsm used as proxy for 
CDOM+D concentrations and nLw_667 used as proxy for the TSS concentrations) using the 
SeaWiFS Data Analysis System. 

 

 

Plume water types were mapped through the 2 methods: 

(I) Qualitative method: the six colour classes weekly composites defined through the 

qualitative method of Álvarez-Romero et al. (2013) were further reclassified into 3 

plume water types (primary, secondary, tertiary) roughly corresponding to the three 

water types defined by Devlin and Schaffelke (2009) and Devlin et al. (2012b) (Figure6-

3a2) The sediment-dominated waters or primary water type was defined as 

corresponding to colour classes 1 to 4 of Álvarez-Romero et al. (2013). The chl-a 

dominated waters or secondary water type was defined as corresponding to the bluish-

green waters (i.e., colour class 5 from Álvarez-Romero et al., 2013) and the tertiary 

water type was defined as corresponding to the colour class 6 of Álvarez-Romero et al. 

(2013).  

(II) Qualitative method: the distribution of satellite-retrieved [nLw, chl-a, CDOM+D] 

gradients along different river mouth-offshore sections was used to identify and validate 

water quality GBR thresholds above/under which OACs values are considered to be 

indicative of the respective water types presence (Figure 6-4). The tertiary plume water 

type is identified by CDOM+D absorption value higher than 0.05 m-1. The secondary 

plume water type, identified within MODIS imagery as having high concentrations of 

Chl-a and elevated CDOM+D, and the primary water type, identified within MODIS 

imagery as having high values of nLw(667) and elevated CDOM+D, were defined by a 

combination of chl-a, CDOM+D and TSS proxies (Figure 6-4). 
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6.4.3 Annual frequency of occurrence of plumes (qualitative and quantitative methods) 

Both qualitative and quantitative methods aimed to assess the pixels/areas regularly covered by 

flood plume.  

(i) Qualitative method: Weekly plume composites (i.e., presence/absence of plume) were 

overlaid to calculate the annual frequency of occurrence of plumes, representing the 

number of weeks plumes were present in each pixel during the wet season. The 

frequency of occurrence of flood plume was finally aggregated into frequency classes 

(low risk to high risk) based on a “Natural Break (or Jenks)” classification. Jenks is a 

statistical procedure (embedded in ArcGIS as one of the basic classification schemes) 

that basically analyses the distribution of values in the data and find the most evident 

breaks in it; i.e., the steep or marked breaks (Cromley and Mrozinski, 1997). 

(ii) Quantitative method: the same methodology was applied but without creation of the 

weekly composites. Daily data (i.e., presence/absence of plume) were overlaid to 

calculate the annual frequency of occurrence of plumes, representing the number of 

days plumes were present in each pixel during the wet season. 

The qualitative approach (finalised) was applied on all images available during wet seasons of 2007 

to 2012, while the quantitative one (still in development) was applied to the images of 2012 for 

comparison. 

 

6.4.4 Annual frequency of occurrence of plume water types (qualitative method) 

Weekly plume water type composites were assigned values of presence/absence of primary, 

secondary, or tertiary water type; and overlaid into an annual frequency map (Figure6-3a3). The 

annual frequency of occurrence for each water type was calculated as the number of weeks that a 

pixel value was retrieved as primary, secondary or tertiary water type, divided by the maximum 

number of weeks in a wet season (i.e., 22 weeks taken from the 1st of December to the 30th of 

April). This overlay of water type imagery created annual (wet season) frequency maps of 

occurrence to primary, secondary and tertiary water types for the whole GBR. 

 

6.4.5 Annual exposure maps to pollutants (DIN and TSS) 

Previously, integration of surface plume mapping with measures of annual river pollutant loads have 

provided both spatial and temporal information on the scale and content of GBR river plumes and 

their potential impact on the short and long-term water quality status of GBR waters (Devlin et al., 

2012a, b). This approach has been useful to distinguish differences in exposure to different 

pollutants at the NRM scale and for reporting seasonal and/or annual differences for each region. 

However, a known limitation to this original approach (Devlin et al., 2012b) is that loads have been 

distributed homogeneously across all respective marine regions. Differential patterns of diffusion 

and deposition of pollutants in the coastal waters (or dispersal patterns) were not taken into 

account. As a consequence, artificial “boundaries” or “acute” changes in exposure levels were 

created along the boundaries of marine NRM regions, resulting in some areas being associated 

(assigned) with higher or lower exposure levels that those expected or reported. 
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Improvements of the methods comprise now the inclusion of spatially distributed pollutant loads, 

i.e: the catchment load information for NRM and the integration of the differential patterns of 

diffusion and deposition of pollutants in the coastal waters. The methods of this approach are 

outlined briefly in the following three steps and Figure 6.5. Further details of each step are outlined 

in Álvarez-Romero et al., 2013. 

 

Step 1 - Scaling pollutant load information from GBR catchments 

Estimated TSS and DIN loads (calculated from measurements close to river mouths) were used to 

calculate the percentage of TSS and DIN delivered by each river in relation to the total TSS/DIN load 

from the catchments in all four selected NRMs (Wet Tropics, Burdekin, Mackay-Whitsundays, and 

Fitzroy). Annual loads from seven major rivers draining into the four selected NRMs were used to 

calculate their proportional contribution to the total pollutant load. End-of-system loads were 

estimated based on flow and water quality sampling in selected gauging stations (Joo et al., 2012) 

for five monitoring periods (2007-2011) for TSS and DIN. The proportional contributions were 

calculated by dividing the TSS and DIN annual loads of each river by the summed load for all rivers. 

 

 

Figure 6-5: improvement of the methods used to map the exposure of ecosystems to pollutants: 
(left) methods used in the previous MMP report assuming that loads are distributed 
homogeneously across all respective marine regions; (right) improved method integrating spatially 
distributed pollutants loads. P: primary, S: secondary and T: tertiary water types.  
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Step 2 - Calculate the spatially distributed DIN and TSS maps 

Grids representing the annual average distribution of TSS and DIN delivered by the seven major 

rivers in the study region were created for each river by multiplying their proportional contribution 

to the region-wide TSS and DIN loads with a cost-distance grid defining the maximum area of 

influence and the dispersal of pollutants in the sea (described below). The individual spatially 

distributed grids (one per river) were then summed to represent the full TSS and DIN load per cell; 

the overlap of two or more grids defined cells influenced by multiple rivers. 

ArcMap Spatial Analyst (ESRI, 2010) was used to create the annual cost-distance grids for each river 

based on three inputs: source locations (points representing river mouths), a maximum distance 

(measured from river mouths), and a “cost” grid (representing how easily the pollutants spread in 

the ocean):  

- The maximum distance for each river was calculated based on the volume of the largest 

flood event of the year (which was assumed to produce the largest plume) and the 

estimated extents of studied river plumes. 

- The cost surface (a grid defining the “cost” per unit distance or impedance to move 

planimetrically through each cell) was calculated independently for TSS and for DIN. This 

was done using the maps representing the annual average water-type value for each 

pixel and functions estimating the relationships between the water types and the TSS 

and DIN contaminants. 

 

Step 3: Calculate exposure by combining the frequency and the spatially distributed DIN and TSS 

maps 

Finally, to create the final maps of exposure, the annual frequency of plume occurrence grid and the 
grid representing the sum of spatially distributed TSS and DIN loads for all rivers were multiplied. We 
grouped exposure values in five categories of exposure (from very low to very high) to investigate 
spatial variation in exposure. 
 

Methods used are explained in details in Álvarez-Romero et al., 2013. The exposure maps were 

calculated using the frequency and average water-type maps computed from the true colour images 

(qualitative approach). Note that we aim to produce exposure maps from the quantitative 

supervised methodology as soon as the level 2 thresholds will be validated (Figure 6-6). We will then 

be able to compare and assess the best methodology to improve the mapping of exposure of GBR 

ecosystems to anthropogenic water quality influences.  
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Figure 6-6: methods used for the production of the exposure maps. Steps include: (1) the production of annually averaged water type maps (through the 
qualitative or quantitative methods), (2) the production of maps of spatially distributed pollutants or scaled load maps and, (3) the multiplication of the 
annual frequency maps by the annual scaled load maps.  
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6.4.6 Long-term exposure maps to pollutants (qualitative method) 

Annual exposure maps are useful to identify the year to year variation of the surface exposure 

categories but it can also be useful to develop a long-term surface exposure map that can identify 

the areas that are influenced strongly by the movement of surface pollutants calculated over a 

longer term basis. Annual exposure maps were overlaid and the pixel for each category was 

reclassified using the median pixel of the overlaid imagery. The median value of each pixel is 

identified as the “recalculated” exposure value for the long-term exposure map (Table 6.1). 

 

Table 6-1: The median value of each exposure category against the reworked median value. 

Annual Exposure - 5 categories 

  
Median 
(Value) 

Equ-distant 
score 

Very Low 0 0.2 

Low 0.201 0.4 

Moderate 0.401 0.6 

High 0.601 0.8 

Very High 0.801 1 

 

 

The median data was then classified (to represent the colour/exposure classes over three 

categories) using Jenks' Natural Breaks.  

 

6.4.7 Exposure of GBR and marine ecosystems to plumes and pollutants (TSS and DIN) 

(from the qualitative outputs). 

The exposure of GBR and marine ecosystems GBR is expressed simply as the area (km2) and/or 
percentage (%) of GBR marine park, coral reefs and seagrass meadows exposed to different 
categories of plume frequency or exposure categories for TSS and DIN. The marine boundaries used 
for the GBR Marine Park and each NRM region are those accepted officially by the Great Barrier Reef 
Marine Park Authority.  
 
Using the 2011-12 map of frequency of occurrence of plumes created from the qualitative method 
the areas and percentage of the GBR Marine Park, seagrass beds, and coral reefs exposed to 
different categories of plume frequency were calculated for the whole GBR and within each regional 
area. 
 

Using the annual exposure maps, the spatial and temporal (2007-2011) variability in exposure of 

marine ecosystems to pollutants was quantified in two ways (Álvarez Romero et al., 2013). First, the 

total GBR area in each exposure class for TSS and DIN was calculated. Second, the area of coral reefs 

and seagrass beds affected by different exposure categories were calculated. This analysis was 

undertaken for each year and the variation in total area and affected areas of these ecosystems was 

plotted to analyse variation through time. The total area and the affected area of the selected 
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ecosystems under different exposure categories to TSS and DIN were compared between years to 

understand inter-annual variability in exposure in relation to estimated loads.  

Finally, using the multi-annual exposure maps the areas (km2) of the GBR Marine Park, exposed to 3 

reclassified categories of TSS and DIN exposure were calculated. 

 

6.5 Results 

Our team has been developing methods and maps to identify and map the exposure of GBR 

ecosystems to plumes and anthropogenic water quality influences (nutrients, sediments). Results 

will be presented as a series of maps and tables.  

 

6.5.1 Movement and frequency of flood plume waters in GBR  

Using remote sensing tools and GIS processing, we can track the movement of GBR river plumes 

over the wet season (December to April, inclusive), where the areal extent of surface plume waters 

moved from zero to along the whole length of the GBR at different periods of the wet season. 

The movement of the Herbert River and Burdekin plume, as identified by true colour images, is 

depicted in Figure 6-7. The six images represent the movement of visible plume water through the 

months of January 2011 to April 2012. These series of true colour images illustrate the highly 

dynamic affecting the Herbert and Tully river plumes. Both are highly reactive system mainly 

controlled by the modulation of river discharge rates. Wind conditions primarily modulate the shape 

and orientation of plumes. We observe that western winds promote plumes advection on the 

continental shelf. When the river discharges are high and the plume well developed, this wind 

orientation increase the size of the plume and plumes can reach the coral reef. 

 

6.4.3 Annual frequency of occurrence of plumes 

The frequency of river plume computed from the qualitative and quantitative methods provides 

clear, visual information on the plume extent (Figure 6-8a, b). Note that this mapping exercise only 

identifies the surface plume waters and is not identifying scale or extent of impact.  

Applying the two different methods gives similar outcomes in the lower part of the map, but 

different in the upper areas of the GBR (Figure 6-8). In general, tendencies are similar with the two 

methods even if exposure levels are lower when using the L2 thresholds. This is particularly true 

in the Northern half of the GBR (Tully to Cape York) where we have: (i) high to very high exposure 

levels with the true colour classification (a) and, low to moderate exposure levels with the L2 

thresholds (b). These differences may result from differences in plume composition between the 

Wet and Dry tropics region or indicate that the L2 algorithms do not work well in Cape York. This is a 

shallow area with coral reefs and seagrass beds close to the coast and current algorithms seem to be 

failing in these waters. Further work is currently planned to increase sampling within Cape York 

marine waters to test and update the available algorithms. We are further investigating the 

thresholds and L2 products of the quantitative method through in-situ and satellite match-up and 

validation over different average-to-extreme climatic conditions (Petus et al., in review).   
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Figure 6-7: comparison of extents of Herbert and Burdekin riverine flood plumes as measured by MODIS true colour imagery during the main flood 
events of 2011 and 2012. Wind orientations measured at 9 am and 3pm in 2012 are indicated with white arrows and the locations of the Burdekin (B) 
and Herbert (H) rivers with red dots. 
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Figure 6-8: Extent and frequency of plume waters during the 2011-2012 wet season: a) true colour classification (qualitative method), b) L2 classification 
(quantitative method). Each mapped plume image is overlaid within GIS software to identify the areas of high frequency. Risk categories are defined by 
a “Natural Break (or Jenks)” classification: very Low: 1 to 3 weeks (1 to 21 days); Low: 4 to 7 weeks (22 to 49 days); moderate: 8 to 12 weeks (50 to 84 
days); high: 13 to 17 weeks (85 to 119 days); very high: 18 to 22 weeks (120 to 154 days)
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6.5.2 Plume water type maps  

Examples of plume waters types (primary, secondary, tertiary) composites computed from the 
qualitative and quantitative methods are presented in Figure 6-9, Figure 6-10 and Figure 6-11. 
Applying the two different methods gives similar outcomes as illustrated by the weekly water type 
composite grouping daily data from the 29th of March to 4th of April (Figure 6-9a, b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-9: Comparison between 2012 weekly water type composites computed from a) the 

qualitative approach, and b) the quantitative approach. Weekly composites encompass data from 

the 29th of March to the 4th of April. 

 

Flood plume water types over weekly (Figure 6-10) and annual (Figure 6-11) time scales provides 

synoptic information in monitoring the water quality conditions of GBR coastal waters. Figure 6-10 

presents the weekly secondary plume surfaces mapped for the Tully-Herbert marine region over the 

2011-12 wet season. Identifying the full extent of these secondary waters on weekly basis provides 

recurrent production maps (i.e., areas with mean chl-a = 1.3±0.6 μg L-1; Devlin et al., in press), and 

identifies the area in which high phytoplankton biomass production are likely to occur during the 

variable wet season conditions. Figure 6-11a indicates the type/composition and frequency of plume 

waters types (primary, secondary, Tertiary) affecting the different NRMs (from the coast to 

offshore). Note that this mapping exercise only identifies the surface water types and is not 

identifying scale or extent of impact. Coastal waters of the Burdekin NRM are frequently affected by 

primary water type (i.e. sediment dominated waters, Figure 6-11b), while the Mackay-Whitsunday 

Figure 6-11c or Northern Wet Tropics NRMs are dominated by the secondary water types. Tertiary 

waters (CDOM dominated) are logically located offshore and constitute the transitional waters 

between plume-affected and ambient water. 
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Figure 6-10: Weekly secondary plume maps for the Tully-Herbert marine region. 

 

 

6.5.3 Annual surface exposure to pollutants 

Exposure maps have been produced over the 2007 to 2011 wet seasons (Álvarez-Romero et al., 2013 

and Figure 6-12). The final surface exposure map presents the full extent of the plume but with the 

dispersal patterns of the surface pollutants identified to five main classes of surface exposure (very 

high, high, moderate, low and very low). Note that Cape York is not included as the exposure maps 

prior to 2011 do not have validated imagery from north of Cooktown. Further sampling in the Far 

North is a priority of both marine monitoring and remote sensing validation. 

Overall, we observed that the area estimated to be under major influence of DIN is larger than that 

under major influence of TSS (see for example the Fitzroy NRM in 2010-11; Álvarez-Romero et al., 

2013), which reflects the expected rapid deposition of sediment in areas near river mouths 

(Bainbridge et al., 2012).  
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Figure 6-11: Frequency of occurrence of plume water types (primary, secondary and tertiary) 
measured over the 2011-12 wet season: a) whole GBR, b) Burdekin NRM and c) Mackay-
Whitsundays NRM. 
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Figure 6-12: Surface exposure maps for TSS and DIN. 
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6.5.4 Long-term surface exposure to pollutants 

Recalculating the annual exposure maps to a long-term exposure map is useful to show all areas 

which have been exposed to surface plumes. Generally, an inshore to offshore spatial pattern is 

present for exposure to both DIN and TSS, with inshore areas within 20 km of the coast most likely 

to experience frequent flood plume water inundation as well as DIN and TSS exposure, and offshore 

areas rarely experiencing flood plume waters (Figure 6-13).  

 

Figure 6-13: Long-term surface exposure map for (a) TSS and (b) DIN in the GBR, excluding 
Cape York. Long-term values are calculated from overlaying the annual exposure maps and 
combining the five category system into a three class system 

 

6.5.5 Exposure of GBR and marine ecosystems to plumes and pollutants (TSS and DIN) 

6.5.5.1 Exposure of GBR and marine ecosystems to plumes during the 2011-12 wet season  

The frequency map obtained from the true colour classification (Figure 6-8a) was used to described 

GBR plume extent and frequency over the surface of coastal ecosystems. The cumulative area for 

plume waters discharging from the Burdekin, Fitzroy and all the Wet Tropics Rivers is shown in 

Figure 6-8a with a maximum area of greater than 218,000 km2 i.e., 63% of the GBR (Error! Reference 

source not found.) However, the actual area within the high to very high frequency category (13 to 

22 plume extents, aggregated weekly, for the period from December to April) is a much lower total 

area (66,870 km2), ranging from 2,672 km2 in Burnett-Mary to 24,721 km2 in Cape York (Table 6-3). 

The largest area of coral reefs that has experienced high to very high frequency of flood plumes is 

Cape York (2,557 km2 or 24% of the Cape York reefs) and Mackay-Whitsundays (266 km2 or 8% of the 

Mackay-Whitsundays reefs). The largest area of seagrass to experience these high – very high 

frequency of flood plumes is Cape York (2,355 km2 or 95.1 % of the Cape York reefs) and Burdekin 
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(581. km2 or 99.9% of the Burdekin reefs). While seagrass beds are less extended in Burnett-Mary, 

Fitzroy Mackay-Whitsunday and Wet Tropics (< 230 km2) more than 96% of the seagrass meadows in 

these NRM have experienced very high frequency of flood plume. It is the intersection of the 

frequency and movements of flood plumes, the proximity of the ecosystems and the load dispersal 

that control the exposure and risk of ecosystem to river plumes.  

 

Table 6-2: Areas (km2) and percentage (%) of the GBR, seagrass beds, and coral reefs exposed to 
different categories of surface plume frequency.  

  
  

Area  
(km

2
) 

  

  Plume frequency Category  Tot 
reached 

  

Tot not 
reached 

    Very low Low Medium High Very high 

 GBR 349330 
area  83684 43820 24532 21696 45174 218906 130424 

% 24% 13% 7% 6% 13% 63% 37% 

Coral 
reef 

24377 
area  11319 5229 2877 1965 1185 22575 1802 

% 46% 21% 12% 8% 5% 93% 7% 

seagrass 3758 
area  4 2 118 507 3121 3751 7 

% 0% 0% 3% 13% 83% 100% 0% 

 

 

Table 6-3: Areas (km2) and percentage (%) of the (a) GBR, (b) seagrass beds, and (c) coral reefs 
exposed to different categories of surface plume frequency within each regional area. 

a) Plume 
         

Region  Area  (km
2
) 

  
Plume frequency 

Category  Tot 
reached 

Tot not 
reached 

  Very low Low Medium High Very high 

Burdekin 46785 
area  14231 7885 1873 1448 5961 31397 15387 

% 30% 17% 4% 3% 13% 67% 33% 

Burnett-Mary 36633 
area  3469 4169 1370 1058 1614 11680 24953 

% 9% 11% 4% 3% 4% 32% 68% 

Cape York 99772 
area  11590 9661 11632 14412 10309 57603 42169 

% 12% 10% 12% 14% 10% 58% 42% 

Fitzroy 85032 
area  21326 10890 5086 2742 11735 51780 33252 

% 25% 13% 6% 3% 14% 61% 39% 

Mackay-
Whitsunday 

48329 
area  22519 4061 1774 2037 11834 42225 6104 

% 47% 8% 4% 4% 24% 87% 13% 

Wet Tropics 32170 
area  10549 7154 2798 2069 3721 26291 5879 

% 33% 22% 9% 6% 12% 82% 18% 

b) Coral Reef 
         

Region  
Area of 

coral reef  
(km

2
) 

  
Plume frequency 

Category  Tot 
reached 

Tot not 
reached 

  Very low Low Medium High Very high 

Burdekin 2951 area  2397 390 0 22 38 2847 104 
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% 81% 13% 0% 1% 1% 96% 4% 

Burnett-Mary 276 
area  44 224 3 1 4 276 0 

% 16% 81% 1% 0% 1% 100% 0% 

Cape York 10747 
area  2602 3034 2545 1882 675 10738 9 

% 24% 28% 24% 18% 6% 100% 0% 

`Fitzroy 4784 
area  2566 231 128 29 168 3122 1662 

% 54% 5% 3% 1% 4% 65% 35% 

Mackay-
Whitsunday 

3178 
area  2868 25 8 31 235 3167 11 

% 90% 1% 0% 1% 7% 100% 0% 

Wet Tropics 2441 
area  842 1325 193 15 65 2440 1 

% 34% 54% 8% 1% 3% 100% 0% 

c) Seagrass 
         

Region  
Area of 

seagrass 
(km

2
) 

  
Plume frequency 

Category  Tot 
reached 

Tot not 
reached 

  Very low Low Medium High Very high 

Burdekin 582 
area  0.2 0.3 0.2 2.1 579.0 582 0 

% 0.0% 0.0% 0.0% 0.4% 99.5% 99.9% 0.1% 

Burnett-Mary 64 

area    <0.01     63.7 64 0 

% 0.0% 0.0% 0.0% 0.0% 100.0% 100.0% 0.0% 

Cape York 2475 
area  3.0 1.6 115.2 500.8 1854.6 2475 0 

% 0.1% 0.1% 4.7% 20.2% 74.9% 100.0% 0.0% 

Fitzroy 221 
area  0.2 0.0   1.1 220.1 221 0 

% 0.1% 0.0% 0.0% 0.5% 99.4% 100.0% 0.0% 

Mackay-
Whitsunday 

229 
area  0.5 0.1 1.3 2.7 223.8 228 1 

% 0.2% 0.0% 0.6% 1.2% 97.7% 99.7% 0.3% 

Wet Tropics 187 
area  0.0   1.4 5.7 179.8 187 0 

% 0.0% 0.0% 0.7% 3.0% 96.1% 100.0% 0.0% 

 

6.5.5.2 Spatial and temporal variation in the exposure of GBR and marine ecosystems to 

pollutants (TSS and DIN) over the 2007 to 2011 wet seasons (Álvarez-Romero et al., 2013). 

Coastal-marine habitats (coral reefs and seagrass beds) exhibited a range of exposures to DIN and 

TSS (Figure 6-14), reflecting the differences in the dispersal of pollutants and the locations of the 

habitats. The area under moderate to high exposure to DIN was larger than that for TSS across all 

studied wet seasons. Data for 2011, a wet season in which record discharges occurred, illustrated 

the degree of exposure that can be expected under extreme weather conditions (Devlin et al., 

2012a), also manifested in the very extensive plumes within GBR coastal and offshore waters during 

this wet season (Figure 6-14). 
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Figure 6-14: Inter-annual variation in total area under different DIN/TSS exposure categories. A) 
Variation in exposure to DIN. This graph shows the large area under high exposure categories 
during 2011 (greatly influenced by the Fitzroy River: B) Variation in exposure to TSS; in contrast to 
DIN, the largest area under high TSS exposure categories occurred during 2008 (in this case, largely 
driven by the Burdekin River). In both graphs the horizontal bars connected by short horizontal 
bars correspond to the estimated loads of DIN (A) and TSS (B) for each wet season. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-15: Inter-annual variation in exposure of coral reefs and seagrass beds to DIN (A and C, 
respectively) and TSS (B and D, respectively). The exposed difference in exposure of habitats to 
TSS and DIN can be explained by their proximity to the coast, their location in relation to rivers 
contributing to the DIN load, and the estimated dispersal of both pollutants. In both graphs the 
horizontal bars connected by short horizontal bars correspond to the estimated loads of DIN (A 
and C) and TSS (B and D) for each wet season. 

 

Also worth noting are the differences in exposure of different habitats to DIN and TSS in response to 

the natural distribution of these habitats, as well as to the differences in the movement of 

pollutants. Overall, seagrass beds were commonly under higher exposure categories for both TSS 

and DIN, and most coral reefs were under low exposure categories, particularly for TSS. An 



89 
 

assessment of the variation in area covered by plumes (Figure 6-14) and the number of mapped 

coral reefs and seagrass beds in each marine region (Figure 6-15). We found strong inter-annual 

variation in the area under exposure of the two modelled pollutants (Figure 6-14). Differences in 

exposure were related to the sources of pollutants, and thus were strongly influenced by the 

proportional contributions of the different rivers to annual region-wide loads. The area of coral reefs 

and seagrass beds potentially affected by TSS and DIN exposure also varied considerably, with 

maximum numbers of coral reefs affected in 2011. TSS exposure was high in both 2008/9 and 

2010/11. While the exposed area can be large, the area influenced by high to very high exposure 

categories was a small component for both DIN and TSS, with the exception of DIN in 2011. As 

previously stated, the load data for 2012 are not yet available. Revised surface exposure of 

pollutants for this 2012 wet season will be presented once the annual load data for TSS, DIN has 

been finalised.   

 

6.5.5.3 Long-term exposure of GBR to pollutants (TSS and DIN) 

Surface exposure mapping identifies 22,149 km2 of the GBR Marine Park that is exposed to flood 
plumes carrying high DIN loads (i.e., areas classified as ‘‘high’’ exposure to DIN) since 2006 (Error! 
Reference source not found.). Surface exposure mapping identifies 5,860 km2 of the GBR Marine 
Park that is exposed to flood plumes carrying high TSS loads (i.e., areas classified as ‘high’ exposure 
to TSS) since 2006 (Table 6-4).  

 

Table 6-4: Normalised surface flood exposure data for DIN and TSS and recalculated area of 
exposure for the three classes only. 

 

 

 

 

 

 

 

 

It should nevertheless be emphasized that the 5-year period covered by the long-term exposure 
maps has been characterized by extreme weather events, with above median flows in many Great 
Barrier Reef Rivers. Record flow conditions were particularly measured for 2010-11 where a 
combination of three cyclones produced record flows in nearly all GBR rivers, particularly in the 
southern half of the GBR. The areas exposed to DIN and TSS in Figure 6-13 are thus representative of 
extreme weather conditions. 

 

Median 
value 

Exposure Area exposed 

DIN (µM) 

  0 – 0.05  low 113,692 km2 

0.05 – 0.15 medium 41,510 km2 

0.15 – 0.6  high 22,149 km2 

 
  TSS(mg/L) 

  0 – 0.5  low 134,750 km2 

0.05 – 0.15 medium 36,743 km2 

0.15 – 0.7  high 5,860 km2 
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6.6 Discussion and conclusions 

6.6.1 Overview 

River plume models underlie areas which may experience acute or chronic high exposure to river 

plume and pollutants. Knowledge of the areas and the type of ecosystem that is the most likely to be 

impacted by changing water quality help focusing our understanding on what type of ecological 

impacts are occurring to those systems and help marine, coastal and catchment management. As 

part of our efforts for the MMP in 2011-12, we have undertaken a number of important steps to 

improve our capacity to identify and monitor the exposure of GBR ecosystems to plumes and 

anthropogenic water quality influences (nutrients and sediments). These steps include the 

development of new innovative RS methods, the production of synoptic maps describing the spatial 

and temporal movements of GBR river plumes and pollutants (TSS and DIN) discharged through 

plumes, and the evaluation of the exposure of GBR ecosystems to plumes waters, TSS and DIN.  

 

6.6.2 Methods: 

We have achieved: 

 The development of a semi-automated qualitative method to delineate plumes (full extent) 

and plume water types (primary, secondary, tertiary) using MODIS true color images 

(qualitative method);  

 The exploration of an automated supervised quantitative method to delineate plumes and 

plume water types using MODIS L2 data and water quality thresholds (quantitative method). 

Our efforts to improve this quantitative method are continuing (Petus et al., in review);  

 The development of an innovative satellite method to map the exposure of GBR ecosystems 

to TSS and DIN (Álvarez-Romero et al., 2013). This method incorporates outputs from the 

qualitative method and spatially distributed load data to produce TSS and DIN exposure 

maps (Álvarez-Romero, 2013) from 2007 to 2011 (2012 load data are not yet available at the 

time of this report). 

MODIS images, offer frequent (daily) and synoptic (whole GBR scale) pictures of GBR coastal 

environments and thus can help with identification and mapping of GBR river plumes. Two families 

of supervised classification methods based on MODIS data have been investigated to map marine 

areas exposed to freshwater and the different plume water types: a true-color or qualitative method 

based on supervised classification of spectrally enhanced MODIS true colour images, and a L2 or 

quantitative method using threshold values on MODIS images calibrated into water quality proxies 

(TSS CHL, CDOM proxies) for delineating surface plume boundaries. Both methods present 

advantages and disadvantages: the true colour method offers a simple and objective method by 

clustering the information contained in MODIS true-colour composites (Red–Green–Blue bands), but 

relies on non-atmospherically corrected data, and usually the spectral signature used to classify 

images does not incorporate potential temporal and spatial variability. The L2 threshold method 

assume fixed WQ value/level/concentration thresholds and thus also ignores potential temporal and 

spatial variability, but does account for atmospheric correction. In addition, this method offers 

valuable quantitative information, such as the concentration of CDOM, TSS, or chl-a that are not 

directly available through the clustering of the true-colour composites (Petus et al. in review). 

Outputs from the qualitative method were further used in combination with pollutant load data and 
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dispersal functions for pollutants from the coast to offshore to model the exposure of GBR marine 

ecosystems to land-based contaminants. Automated (or semi-automated) methods developed in 

this MMP project reduce human error originated from visual mapping (previous reports) and limit 

the time of processing. 

Further development of the true color (quantitative) method include: (i) validate the method. This 

will be done through comparison between remote sensing derived products and in-situ water quality 

data. For example, comparison between the TSS and DIN annual exposure maps and in-situ TSS and 

DIN data is currently undertaken. First results are encouraging as they show a good agreement 

between exposure levels and pollutant concentrations measured in-situ over multi-annual time 

period. (ii) Produce annual exposure maps of Photosystem II inhibiting herbicides (PSII herbicides).   

The approach for modelling exposure to DIN (i.e., assuming conservative mixing) will be used for 

PSII. However, further investigation will be necessary to adjust the dispersal relationships i.e., 

relationship between PSII concentrations and color classes (see Figure 3 of Álvarez-Romero et al., 

2013) to calculate the annual cost surface for PSII. (iii) Increase the spatial resolution of water quality 

data used to calculate the spatially distributed DIN and TSS maps. In his present form, the true color 

method use annual loads of TSS and DIN from seven major rivers draining into four selected NRMs to 

calculate their proportional contribution to the total pollutant load. Increase the spatial resolution of 

these data would increase the precision of the mapping. One solution would be to re-run the model 

with the annual loads from the Source Catchments modelling for all of the 35 GBR catchments. This 

would nevertheless require establishment of dispersal relationships for the additional rivers and 

might require non-negligible processing time and effort to automate processing steps as much as 

possible. Work is also currently undertaken to refine the thresholds and L2 parameters used in the 

quantitative method through in-situ and satellite match-up (Petus et al., in review). Validation of this 

method over different average-to-extreme climatic conditions will be undertaken as described 

above. 

 

6.6.3 Mapping outputs: 

Mapping outputs that can be produced from the RS method developed include: 

 River plume maps (full extent) and composites at different temporal (daily, annual, multi-

annual) and spatial (GBR, NRM, River) scales. These maps are created from both true colour 

images (qualitative method) and through Level 2 products (qualitative method); 

 Plume water type maps (primary, secondary, tertiary) and composites at different temporal 

(daily, weekly, annual) and spatial (GBR, NRM, River) scales.  Maps are created from both 

qualitative and quantitative methods;  

 The development of annual and multi-annual exposure maps (2007-2011) to TSS and DIN. 

Maps are created from the qualitative method. 

A selection of significant mapping outputs are presented in this report and include river plume (full 

extent) and plume water type annual frequency maps as well as exposure (TSS and DIN, annual and 

multi-annual time scale) maps. The plume frequency maps illustrate the movement of riverine 

waters (Figure 6-8), but do not provide information on the composition of the water and water 

quality constituents. Plume water types are associated with different levels and combination of 

pollutants and the plume water type maps help clustering WQ stressors into three broad categories 

of risk (Figure 6-9). Further information on the respective constituents of the plume waters, in 
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particular the respective movement of sediment and dissolved inorganic nitrogen through the 

exposure mapping exercise (Figure 6-12), allows us to further understand the potential movements 

of pollutants which are carried within the plume water. Finally, integrating the annual exposure 

maps into a long-term exposure map based on three categories of exposure (high, medium, low) 

provides a simple overview of surface exposure over time for TSS and DIN (Figure 6-13). 

Extent and frequency of plume water types reflects the intensity, duration and constituent 

concentrations of the river discharge and are strongly linked to the catchment hydrology and land 

use practices. For example, the two larger catchments over the GBR, that are under extensive 

agricultural development (i.e. Burdekin [Figure 6-11b] and Fitzroy which have greater than 80% of 

area utilised for agriculture), are associated with a larger area of turbid primary waters (e.g. Devlin et 

al., 2003; Maughan and Brodie, 2009; Brodie and Waterhouse, 2009; Devlin and Brodie, 2005; Devlin 

et al., 2011). Inversely, the dominance of secondary water types (plume water with reduced TSS 

concentration) in the Mackay-Whitsunday (Figure 6-11c) or Northern Wet Tropics NRMs is in 

agreement with previous studies describing elevated concentrations of DIN to fertilised agriculture 

(predominantly sugarcane) in the Wet Tropics and Mackay Whitsunday regions. Tertiary waters 

(CDOM dominated) are logically located offshore and constitute the transitional waters between 

plume-affected and ambient water.  

Spatial variability in pollutant exposure is further validated by the TSS and DIN exposure maps 

(annual or inter-annual scale; Figure 6-12 and Figure 6-13). Results from the surface exposure 

confirm that the area between Townsville and Port Douglas experiences high exposure to surface 

DIN. Areas adjacent to the dry tropical rivers that is, the Burdekin and Fitzroy Rivers are exposed to 

high TSS values, most likely associated with grazing activities in adjacent catchments. 

At a smaller time scale (weekly time scale; Figure 6-10), the area of secondary flood plume types 

(i.e., areas with mean chl-a = 1.3±0.6 μg L-1; Devlin et al., in press) identifies the area in which high 

phytoplankton biomass production are likely to occur. The location and extent of the secondary 

plume waters are influenced by the onset of the primary plume through the river discharge and the 

local climatic and hydrodynamic conditions, mainly controlled by the magnitude and direction of 

wind stress (Dzwonkowski and Yan, 2005; Petus et al., in review b), tides (e.g. Valente and da Silva, 

2006), bathymetry (e.g. Lee and Valle-Levinson, 2012) and Coriolis force (Geyer et al. 2004). 

Mapping the annual frequency of the secondary water type (Figure 6-11, centre panel) gave a 

qualitative estimate of the area where high concentrations of chl-a have occurred during the 2011-

12 wet season. This data can be used as a baseline for ongoing investigation of impacts of increased 

nutrient discharges into Great Barrier Reef waters. These include the role of altered water column 

nutrient status on COTS outbreaks and the influence of agriculture and urban coastal settlement on 

regional water quality (Devlin et al., in press). 

 

6.6.4 Evaluation of the exposure of GBR ecosystems to plumes and anthropogenic water 

quality influences (nutrients, sediments) from the qualitative method outputs:  

We have achieved: 

 

 The evaluation of the exposure of GBR marine protected areas and marine ecosystems (in 

km2 and %) to plumes during the wet season 2011-2012 using the annual plume frequency 

map created from the qualitative method; 
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 The evaluation of the spatial and temporal (2007-2011) variability in exposure of marine 

ecosystems to TSS and DIN. 

 The evaluation of the long-term exposure of GBR marine protected areas to pollutants (TSS 

and DIN). 

A major factor which affects the level of exposure of ecosystems to flood plumes is the distance and 

direction from the pollutant source. It is the intersection of the frequency and movements of flood 

plumes, the proximity of the ecosystems and the load dispersal that control the exposure and risk of 

ecosystem to river plumes and land-based pollutants. Therefore, inshore regions with coral reefs 

and seagrasses in close proximity to the coast, and particularly river mouths, will experience 

frequent exposure to flood plumes, e.g. coral reefs offshore of Cairns and Port Douglas. The areas or 

ecosystems identified as having ‘high’ exposure to plume, TSS and DIN will experience surface plume 

waters that contain elevated concentrations of pollutants, which may potentially affect ecological 

processes. Despite elevated concentrations being measured across these exposure areas in periods 

of high flow, it is not possible to ascribe certainty that be linked to a measurable ecological impact. 

Exposure, as defined for this project, does not indicate certainty of an ecological impact on the 

plants and animals present within the plume. 

The map of the annual frequency of occurrence of plumes during the 2011-12 wet season build from 

the qualitative approach (Figure 6-8), was used to describe the spatial variability in the areal extend 

of plume waters in 2011-12 and described ecosystems affected by river plume waters. The total 

plume area over the 2011-12 wet season reached 218906 km2, i.e., 63% of the GBR Marine 

Park (Table 6-2). However, the total area within the high to very high frequency category (i.e., 

affected by plumes 13 to 22 weeks per wet season) was a much lower total area (66870 km2, i.e., 

19% of the GBR Marine Park), ranging from 2672km2 (i.e., 7%) in Burnett-Mary to 24,721km2 (i.e., 

24%) in Cape York (Table 6-3). The largest area of coral reefs that has experienced high to very high 

frequency of flood plumes was Cape York (2557 km2 or 24% of the Cape York reefs) and Mackay-

Whitsundays (266 km2 or 8 % of the Mackay-Whitsundays reefs). The largest area of seagrass to 

experience these high to very high frequency of flood plumes was Cape York (2355.4 km2 km2 or 95.1 

% of the Cape York reefs) and Burdekin (581.1km2 or 99.9 % of the Burdekin reefs). While seagrass 

beds are less extended in Burnett-Mary, Fitzroy Mackay-Whitsunday and Wet Tropics (< 230 km2) 

more than 96 % of the seagrass meadows in these NRM have also experienced very high frequency 

of flood plume.  

TSS and DIN exposure of 2011, a wet season in which record discharges occurred, illustrated the 

degree of exposure that can be expected under extreme weather conditions (Devlin et al., 2012a). 

TSS and DIN exposure mapping for 2010-11 identifies up to 5,970 km2 and 5,131 km2 of the marine 

areas of the Wet Tropics and Burdekin regions, respectively, which are exposed to flood plumes 

carrying high DIN loads (i.e., areas classified as “high” or “very high” exposure to DIN). These areas 

represent 19% and 11% of the total marine portion of the Wet Tropics and Burdekin regions, 

respectively. Furthermore up to 5,131 km2 (11%) of the Burdekin and 7,998 km2 (9%) of the Fitzroy 

regions are classified as “high” to “very high” exposure for TSS. At the time of completion of this 

report, we have not integrated the 2012 load data required to calculate the surface exposure of the 

2012 plume waters and cannot compare the long-term surface exposure mapping with the 2011 

area.  
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PART C: CASE STUDIES 

7 Initiation of phytoplankton sampling in flood plumes 

7.1 Introduction 

Our current state of knowledge reveals key gaps in our understanding of the role of phytoplankton 

communities in Great Barrier Reef waters, and the potential links to the crown of thorns (COTS) 

status. What is unknown in this link is if a change in phytoplankton community and/or size structure 

may play a role in the larval enhancement stage of the COTS life cycle, and if that change has been 

driven by changing water quality conditions in the Great Barrier Reef. International literature 

describes the role of phytoplankton size and community composition on the food web structure of 

all ecosystems (see references in Devlin et al., 2013). Alterations in nutrient stoichiometry, through 

increased N and P loads can have profound consequences on algal assemblages; nutrients 

introduced or released during the high flow events are rapidly taken up by pelagic and benthic algae 

and microbial communities, sometimes fuelling short-lived phytoplankton blooms and high levels of 

organic production. Increased contemporary concentrations of DIN and sometimes dissolved 

inorganic phosphorus (DIP) in flood plumes tend to promote phytoplankton species shifts to larger 

species of diatoms and dinoflagellates within the microphytoplankton community. A major long-

term downstream indirect effect of flood plumes is postulated to be the triggering of outbreaks of 

the coral-eating COTS, which continue to kill more coral on the GBR than any other process. The last 

three outbreaks of COTS originated north of Cairns, the only part of the main reef track regularly 

intercepted by flood waters. Each outbreak was first observed 3-5 years after the largest 3 flood 

events on record. It is now thought that the survival and growth of the larvae of COTS increases with 

increasing concentrations of large phytoplankton, e.g. after large flood events.   

A number of eutrophication indicators have been discussed that relate specifically to potential 

changes in the Great Barrier Reef (Fabricius et al. 2012; Cooper et al. 2007). These include: 

1. Presence of green water for days to weeks after peak flow events (Devlin and Brodie 2005). 

2. Changes in phytoplankton biomass as measured by increased chlorophyll a (Brodie et al. 2007). 

3. Increase in filter feeding organisms, particularly bio-eroding sponges and tubeworms (Fabricius 

2005; Hutchings et al. 2005; Fabricius et al. 2012). 

4. Change in foram communities (Uthicke et al. 2012). 

5. Change in coral colour (e.g., Porites sp.; Cooper et al. 2012). 

The nutrients introduced or released during flood events are rapidly taken up by pelagic and benthic 

algae and microbial communities (Alongi and McKinnon 2005), sometimes fuelling short-lived 

phytoplankton blooms and high levels of organic production (Furnas 1989; Furnas et al. 2005, 2011). 

This organic matter is cycled through the marine food web and transformed, e.g. into marine snow 

particles that may be deposited on to benthic communities, such as coral reefs, and can influence 

their structure, productivity, and health for long periods. Such cycling of organic matter ultimately 

uncouples event-driven inputs of nutrients from their long-term ecosystem effects (see for example, 

Anthony and Fabricius 2000; Fabricius and Wolanski 2000; Fabricius et al. 2003). Further, Brodie et 

al. (2005) and Fabricius et al. (2010) both identify enhanced nutrient supply in river run-off as critical 
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for enhanced A. planci larval survival, a scenario linked to Lucas (1982), who hypothesized that A. 

planci suffer high levels of larval starvation in the absence of phytoplankton blooms. 

Thus for the GBR it was suggested that only in periods of nutrient enrichment was phytoplankton 

likely to have sufficient biomass and be of the correct cell type and size to support COTS larvae to a 

successful settlement status (Brodie 1992). Agricultural and urban development of the GBR 

catchment has increased delivery of nutrients (N and P) to the GBR by several times and this delivery 

has occurred in pulses during wet season runoff events (e.g. Furnas 2003), resulting in large 

phytoplankton blooms (Devlin and Brodie 2005). Brodie et al. (2005) suggested that this increase in 

frequency and concentration of nutrient pulses, and hence, increased occurrence of large 

phytoplankton blooms, are the factors which allowed COTS outbreaks to occur. The area offshore 

from Cairns, where each of the three waves of COTS outbreaks began, is also known to be the area 

where nutrient rich river water enters the mid-shelf waters of the GBR on a regular basis (Brodie et 

al. 2005). The bioavailable nutrients (particularly DIN) causing the phytoplankton blooms in this area 

are known to be sourced from fertiliser runoff from primarily sugarcane cultivation, in the area 

between the Burdekin and Barron rivers (Waterhouse et al. 2012). COTS outbreaks seemed to be 

correlated in time with large discharge events from the Burdekin River and a recent model shows 

good correlation between the initiation of the waves of COTS outbreaks and high river discharge 

events in the Burdekin and Wet Tropics region (Fabricius et al. 2010). Further, with increases in river 

nutrient loads over the last 200 years, Fabricius et al.’s (2010) model shows that COTS outbreaks 

have likely increased in frequency, from one in 50-80 years to one every 15 years, which may be due 

to their finding that with every doubling of chlorophyll concentration (up to 3 µg l-1), the odds that A. 

planci larvae will complete development, from bipinnaria to settlement, increases by a factor of 8.3 

(Fabricius et al. 2010). These linkages are set out in Figure 3.2. 

Our recent and ongoing work looks at identifying phytoplankton community characteristics through 

sampling for phytoplankton in flood plume and wet season conditions. At this stage, all analyses are 

through microscopy and focusing on identification of the larger taxa size. Over the next year, we will 

work with CSIRO to sample the phytoplankton community through the wet season through both 

microscopy enumeration, phytoplankton pigments (HPLC) and associated light and environmental 

conditions 
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Figure 7-1: Step process through changing water quality conditions and the onset of COTS primary 
outbreak. 

7.2 Initial results 

Chlorophyll biomass is highly variable in the wet season, particularly after high flow events (Devlin 

and Schaffelke, 2009). Chlorophyll measurements are highest in the wet season, with over 90% of 

values exceeding the wet season water quality guideline (GBRMPA, 2009). Mean values calculated 

over regional areas range from 0.9 to 1.1 ug/L, with high values measured frequently over the Wet 

and Dry tropics with a high value of 25ug/L recorded in the Fitzroy flood plume in 1991 (Figure 7-2). 

These high values of chlorophyll biomass potentially represent a shift in the phytoplankton 

community for days and perhaps weeks after high flow period. This is more clearly seen in the 

percentage of times that Chl-a biomass has exceeded 0.8ug/L measured against the total number of 

samples measured within the long-term flood plume program (Table 3.1).  

 

Figure 7-2: Range of chlorophyll values 
measured in wet season and flood 
conditions (1991 – 2012) 
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Table 7-1: Number of samples where concentrations of chl-a have exceeded 0.8ug/L. Sampling 
period has been  calculated from the long-term plume water quality data set (1991 – 2012) 
currently held within JCU ACRS database (https://eresearch.jcu.edu.au/tdh/data/f31cbf35-2c03-
4c6f-a312-2f621b1fc5b5) 

River 
Sampling 
No 

No times Chl> 
0.8ug/L 

% 
exceedance 

Barron 77 57 74.03 

Burdekin 203 107 52.71 

Burnett 11 5 45.45 

Daintree 8 4 50.00 

Fitzroy 168 90 53.57 

Herbert 185 129 69.73 

Johnstone 57 30 52.63 

Kennedy River 3 3 100.00 

Mossman 9 5 55.56 

Normanby River 14 7 50.00 

Pioneer River 15 10 66.67 

Proserpine River 79 33 41.77 

Russell-
Mulgrave 168 110 65.48 

Tully 453 236 52.10 

 

Between 2010 and 2012, sampling was uneven through the four NRM regions, with the majority of 

the phytoplankton data collected in the Herbert and Tully regions. However, differences in the 

regions are most evident between the data collected in Cape York against the abundance and 

diversity of the phytoplankton data collected in the other three regions (Figure 7-3). These 

preliminary results suggest that the populations of phytoplankton are different between the far 

Northern and all other NRM regions; however more data is required before we can fully identify the 

variation in phytoplankton. There were high concentrations of chlorophyll measured in the Cape 

York samples so taxa may be dominated by the larger taxa measuring high biomass for small 

measures of abundance and diversity.  

 

 

 

 

 

 

 

Figure 7-3: Change in abundance and diversity of flood plume phytoplankton data collected over 
the four NRM regions in the 2010- 12 sampling region. 

https://eresearch.jcu.edu.au/tdh/data/f31cbf35-2c03-4c6f-a312-2f621b1fc5b5
https://eresearch.jcu.edu.au/tdh/data/f31cbf35-2c03-4c6f-a312-2f621b1fc5b5
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Initial data suggests abundance (N) and species (S) are highest in the days following a large flood 

event, and that numbers of taxa can differ significantly between events, due to timing of flow and 

between catchments (Figure 7-4). Note again, these are very preliminary findings and further data 

needs to be analysed before a full analysis can be made.   

 

 

 

 

 

 

 

Figure 7-4: Change in abundance and species of phytoplankton taxa within and between events.  

Mapping can also be used to define areas of high productivity (Figure 7-5) and allow us to estimate 

the probability of where high chlorophyll biomass values will occur. This spatial representation of the 

conditions and understanding how the phytoplankton community can be predicted by the range of 

chlorophyll biomass can allow a better understanding of the high risk areas for COTS larval 

enhancement. Mapping of water types (Álvarez-Romero et al., 2013) show a significant correlation 

between the secondary water type and high values of chlorophyll biomass (> 0.5ug/L). The 

production maps (Figure 7-5) identify areas which have been exposed to a high frequency of 

secondary plume water type, and thus to surface waters with high concentrations of Chl-a. The area 

of high production offshore around Cape Grafton and pushing towards Green Island is also the area 

identified in the COTS outbreak initiation stage (Brodie et al., 2005 and Fabricius et al., 2010).  
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Figure 7-5: Areas of high productivity 

(identified as secondary plume waters 

above 0.8µg/L). This is calculated for the 

2009 period as an example only. 

Frequency of occurrence is calculated from 

the count of weekly aggregated maps 

against the number of times that 

chlorophyll exceeded 0.8µg/L. 

Frequency is calculated from the number of 

images mapped over each sampling year. Daily 

images are aggregated into weekly composites 

to reduce error on a single pixel. The total 

number of composite images for each year = 22 

(weekly from Nov to April inclusive).  
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The relationship between phytoplankton abundance and diversity is weak (Figure7-6) with no clear 

link between increasing abundance and increasing diversity. This indicates that the onset of high 

productivity may be more related to a rapid proliferation of species already within the water 

column. Thus diversity may be quite stable and it is the increasing proportion of the “right” taxa that 

drive food web shifts.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure7-6: Plot of the relationship between number of species and the abundance of cells over 
each sample collected within the 2010-11 period. 

7.3 Conclusion 

Analysing the species composition and size class of phytoplankton associated with various stages of 

plume development may help provide the missing link between increased nutrient loads, higher 

nutrient concentrations, changed water quality conditions and possible changes to food 

web/primary production in GBR waters including COTS outbreaks. Thus it is essential that we have a 

more enhanced knowledge on the drivers and consequences of changes in water quality and the 

associated phytoplankton response. A major long-term downstream indirect effect of flood plumes 

is postulated to be the triggering of outbreaks of the coral-eating COTS, which continue to kill more 

coral on the GBR than any other process. The last three outbreaks of COTS originated north of 

Cairns, the only part of the main reef track regularly intercepted by flood waters, each was first 

observed 3-5 years after the largest 3 flood events on record (Fabricius et al. 2010). It is now thought 

that the survival and growth of the larvae of COTS increases with increasing concentrations of large 

phytoplankton, e.g. after large flood events (Fabricius et al. 2010). A targeted investigation of the 

response of plankton communities in nutrient enriched flood plumes will give insight into the 

processes potentially releasing the COTS larvae from food limitation in this region, which is essential 

to develop future management strategies for a pre-emptive response to COTS outbreaks. Future 

work may also include evaluating phytoplankton communities as a routine monitoring tool,  in the 

context of water quality and eutrophication assessment frameworks established under the current 

MMP and the on-going Paddock to Reef reporting of the GBR marine regions.  

New monitoring work will focus on the linkages between these high production areas and the spatial 

and temporal variation within the phytoplankton community. Linkages and/or correlations between 
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nutrient speciation and the movement of the flood waters also needs to be investigated to identify 

the drivers behind shifts in phytoplankton community and how long these shifts need to last to feed 

or drive the larval enhancement stage of COTS. 

Further areas under investigation include: 

 How important is the biomass increase in comparison with the change in phytoplankton 

community? 

 What is the role of the phytoplankton community and associated chemical cues in 

promoting outbreaks?  

 What is the role of nutrient supply in promoting the secondary outbreak? 

 What is the role of nutrient speciation in supporting phytoplankton growth? Is particulate 

nitrogen an important component of the available nitrogen? 

 How important is the N:P ratios in driving community change?  

 How important is the N:Si ratio in driving community change and providing an indicator to 

assess the proportion of diatoms to dinoflagellates  
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8 Light measurements in the Herbert and Tully River plumes 

8.1 Introduction 

Effective strategies for managing nutrient enrichment in marine waters require an understanding of 

how different types of waters respond to nutrient inputs. Susceptibility to nutrient enrichment is 

controlled by a seemingly wide variety of processes (Painting et al, 2005). A review (Cloern, 2001) of 

the developing conceptual scientific model of marine eutrophication has shown a clear progression 

from simple dose – response models, typically used in freshwater science, to the more realistic 

model that identifies that the response can be direct and indirect and governed by ‘filters’. The main 

attributes that form the filter are the underwater light climate, the degree of horizontal exchange, 

the tidal mixing regime, the extent of pelagic and benthic grazing, and biogeochemical processes 

such as denitrification. Light limits growth of phytoplankton and is a first order determinant of the 

response of phytoplankton to nutrient input in the sea. The supply of light for phytoplankton growth 

in the sea is a product of the input of solar radiation at the surface and its reduction by optically 

active compounds (OACs) through absorption and scattering (Kirk, 1994). The rate at which light 

diminishes with depth is generally measured as the diffuse vertical light attenuation coefficient (Kd) 

in the Photosynthetically Active Radiation (PAR, 400 – 700 nm).  

Phytoplankton, as all plants, requires an adequate supply of light and inorganic plant nutrients to 

grow. Light is an important limiting factor for primary production and plant growth, and plays a 

critical role in determining the biological response to nutrient enrichment. High turbidity due to the 

load of suspended particulate materials may reduce light levels to such an extent that estuaries may 

maintain low phytoplankton biomass and low primary production even under nutrient-rich 

conditions. Light is one of the key variables incorporated into any prediction of production or growth 

of phytoplankton. The growth rate of phytoplankton can be regarded as limited by the rate of supply 

of light or nutrients.  

Knowledge of the underwater light climate can help predict the specific susceptibility of different 

environments to the adverse effects of nutrient enrichment, particularly during high flow events 

where the input of dissolved nutrients is highest and conditions approach eutrophic levels. 

Underwater light is attenuated by water itself and by certain dissolved and particulate substances, 

with the amount of light penetrating through the water column limited by the concentrations of 

dissolved and suspended materials in the water. 

The optically important water quality parameters which influence light attenuation are coloured 

dissolved organic matter (CDOM) or yellow substance (Kirk, 1994), total suspended solids (TSS) and 

phytoplankton, known as optical active components (OACs). Suspended particulate matter can be 

further characterized by its contributions from fixed (non-combustible) suspended solids composed 

of clay, silt and sand mineral particles, and volatile (i.e., combustible) suspended solids composed of 

phytoplankton chlorophyll a (CHL) and non-pigmented organic detritus. Each of the materials has 

characteristically shaped light absorption spectra. Because light or PAR is measured over wide range 

of wavelengths, spectral dependence of adsorption means that effect of one material, such as 

phytoplankton, on light attenuation will depend on the concentrations of other materials present at 

same time. The total amount of light available to a body of water will be dependent on the 

partitioning of these optical components, and knowledge of how they interact can help in prediction 

of light attenuation for different plume water types, and provide better estimates of risk during the 

wet season and high flow conditions.  
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8.2 Methods 

Light attenuation profiles plus supporting environmental (CDOM, CHL, TSS) data was collected at 

two regions over the 2011-12 wet season. Site data was collected from the Tully and Herbert marine 

region.  

A total of 16 sampling occasions are available for this study, taken over three transects, two within 

the Herbert marine area and one within the Tully marine area (Table 8-1). Corresponding flow 

measurements for both the Tully and Herbert River are presented in Figure 8-1, with the sampling 

occasions highlighted on the flow graph. 

 

Table 8-1: Number of light attenuation profiles (with supporting environmental data) collected 
over two wet seasons. Number of samples is identified to date and transect.  

 

  Number of samples 

  Northern Herbert Southern Herbert Tully to Sisters 

09/09/2011     3 

28/11/2011 6     

29/11/2011   5   

19/12/2011 6     

20/12/2011   7   

05/01/2012 1   12 

20/01/2012 6     

21/01/2012   6   

11/02/2012     10 

13/02/2012 6     

14/02/2012   8   

05/03/2012 7   1 

06/03/2012   7   

08/03/2012 1   11 

30/03/2012   7   

31/03/2012 2   7 

Total = 119 35 40 44 
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Figure 8-1: Daily flow measurements for Tully and Herbert over the 2011-12 wet season. Sampling 
dates are identified by red asterisk. 

 

Phytoplankton (measured as chl-a), TSS and CDOM contribute to light attenuation (Kirk, 1994). It is 

commonly assumed that the average Kd(PAR) can be decomposed as a set of partial attenuation 

coefficients following Equation 1:   

Kd(PAR) = Kd(W)  + Kd(CDOM) + Kd(CHL) + Kd(TSS)………………….Equation 1 

where K(w) is the attenuation due to pure water, and K(CDOM), Kd(CHL) + Kd(TSS) are the specific 
attenuation coefficients of CDOM, CHL and TSS, respectively. 
 

Further assumptions are that contributions to light attenuation due to chlorophyll and total 

suspended sediment are proportional to their concentrations, and Kd(PAR) is often modelled as a 

linear function of water quality concentrations (e.g. Jiangtao et al., 2005;  Devlin et al., 2009b): 

 

Kd(PAR)=a+b*[CDOM]+c*[TSS]+d*[CHL])……………...Equation 2 
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Where [CDOM], [TSS], [CHL] are the respective concentrations of CDOM, TSS and CHL and the 

coefficient “a” encompasses the attenuation effect due to pure water.  

 

The aim of this work is to develop a mechanistic model predicting light attenuation from the 

partitioning of OAC’s within the water column within flood plume water types. The use of a linear 

model of light attenuation to plot a range of water quality conditions that will result in depth specific 

attainment of minimum light requirements is then demonstrated. 

 

Calculation of Kd(PAR)  

The downwelling light attenuation coefficient, Kd(PAR) in meters-1, was calculated using the Lambert-

Beer Equation (Dennison et al., 1993):  

 

Iz = Io exp[-Kd(PAR)Ź]…………………….Equation 3 

 

Where Io (iEm-2s-1) is the PAR measured by the upper sensor, Iz (iEm-2s-1) is the PAR at depth, z and z 

is the depth of interest in metres. Eq. (1) can be rearranged to calculate Kd(PAR): 

 

Kd(PAR) = -1/ Ź ln(I Ź / Io)……………...Equation 4 

 

From our calculations, Ź is the distance between the upper and lower measurements of PAR 

measurement, IŹ is the lowest PAR measurement and Io is the upper PAR measurement. 

Attenuation coefficients were calculated for each profile at each site during one wet season.  

 

8.3 Results 

The downwelling light attenuation coefficient, Kd(PAR) in meters-1 was measured through water 

profile measurements of PAR in 119 samples. Samples were collected from Tully and Herbert marine 

regions, and over one sampling year (2011-12). Mean Kd(PAR)  values range from 0.24m-1 to 2.2m-1 

across the three transects and across the 6 month sampling period including September 2011 to 31st 

March 2012 (Figure 8-2) 

In first approximation, there is a correlation between the mean value of OAC, particularly TSS and 

mean value of Kd(PAR) (Figure 8-3). 
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Figure 8-2: Range of Kd(PAR)  values over 
the three Wet Tropics transects, including 
Northern Herbert, Southern Herbert and 
Tully to Sisters. Mean Kd(PAR) is 
calculated from all sites measured over 
that sampling date within the transect.  

 

 

Figure 8-3: Relationship between mean 
Kd(PAR) values and Mean TSS values for 
the three transects. 

 

 

 

 

 

 

 

The individual values for all sites are required to further analyse how well the respective OAC predict 

the Kd(PAR) variance. Measurements of Kd(PAR) vary over the sampling period (2011-2012) and 

relate strongly to variations in TSS, CDOM and Chl-a (Figure 8-4). The x axis refers to sample day 

(colored markers) and for each transect (i.e. day of data acquisition), samples are ordered according 

to their distance from the river mouth (from the closer to the furthest away). Full data (sample id, 

date, catchment and year) are presented in Appendix 2. The highest peaks of Kd(PAR) relate to high 

concentrations of TSS, though it does not explain all the Kd(PAR) variance. There are some occasions 

where the high peak of Kd(PAR) seem to relates more to the CDOM and Chl-a and most likely reflect 

the changing concentrations of the OAC’s across the different plume water types.  
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Figure 8-4:  Spatial and 
temporal variations in 
Kd(PAR) and the three 
main OACs (TSS, 
CDOM, Chl-a). For each 
transect (i.e. day of 
data acquisition), 
samples are ordered 
according to their 
distance from the river 
mouth (from the closer 
to the furthest away).  
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Figure 8-5: Relationships between in-situ Kd(PAR) and in-situ OAC’s including TSS, Chl-a and 
CDOM. Axes are in logarithmic scale.
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Individual OAC’s were measured against the in-situ Kd(PAR) (Figure 8-5) to investigate the correlation 

of the Kd(PAR) values (measured in-situ) to the concentrations of TSS, CDOM, and CHL (measured in-

situ). These relationships were then used to investigate the predictive relationship between Kd(PAR) 

and the optical attenuation components (Equation 2) for all samples over both years and all regions.  

Correlations exist between the Kd(PAR) values and the respective OACs (Figure 8-5), while the 

strongest predictive power against Kd(PAR) is observed for TSS over most dates and all three regions.  

However, in February 12 the relationship between parameters is significantly different and the 

Kd(PAR) values seem to be only correlated to the CDOM values (Figure 8-5, yellow crosses). The 

period at which the correlation is different is over 3 sampling dates (February 11, 13 and 14th, 2012), 

and If we look at other factors around February 12th, we can see that temperatures are high and 

salinity is low, and that this period is 5 days post peak flow in the Herbert. The different relationship 

observed in February may be due to the presence of a highly concentrated CDOM plume. This 

hypothesis is confirmed by the high CDOM values measured in all river transects between the 11 and 

the 14th of February (Figure 8-4). Furthermore, MODIS true colour image and the corresponding 

CDOM L2 maps measured the 13th of February 2012 both underlines presence of CDOM-

concentrated water close to the Herbert and Tully shore on this date (Figure 8-6). However, these 

are just preliminary results and further analysis is required to fully understand the complexities 

between the OACs. 

 

Figure 8-6: MODIS true colour composite (from NASA Ocean Colour online catalogue) illustrating 
river  flood plumes along the Wet Tropics and Burdekin NMR on February 13th, 2012. The presence 
of high CDOM concentrated waters along the Tully and Herbert coast is illustrated by the dark 
colour (left). The corresponding MODIS L2 CDOM maps (aCDOM+D, m-1) confirm the presence of 
CDOM rich waters (right).   

Using the whole of Tully and Herbert data (i.e. including the data collected in February 2012), we 

obtain this multiple linear regression:  

Kd(PAR)=-0.18+0.71*cdom+0.04*tss+0.14*chl…. Equation 5); (r2 = 0.71, and every coefficient with 

significant p-values). 
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Using the whole of Tully and Herbert data (without February 2012) we obtain this multiple 

regression: 

 Kd(PAR)=-0.14+0.98*cdom+0.04*tss+0.08*chl…...Equation 6); (r2 = 0.82 and every coefficient with 

significant p-values (Table 8-2).  

 

Table 8-2: Regression statistics for equation 6 (all data with February 12th omitted 

Kd=-0.14+0.98*cdom+0.04*tss+0.08*chl (equation 6 

 

Regression Statistics 

Multiple R 0.91 

R Square 0.82 

Adjusted R 
Square 0.81 

Standard Error 0.37 

Observations 95.00 

 

  df SS MS F 
Significance 

F 

Regression 3.00 55.52 18.51 138.09 0.00 

Residual 91.00 12.20 0.13 
  Total 94.00 67.72       

 

  Coefficients 
Standard 

Error t Stat P-value 
Lower 
95% 

Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept -0.14 0.07 -2.15 0.03 -0.27 -0.01 -0.27 -0.01 

cdom_440 0.98 0.16 5.98 0.000 0.66 1.31 0.66 1.31 

TSS_mg_l 0.04 0.00 12.57 0.000 0.04 0.05 0.04 0.05 

chl_ug_l 0.08 0.03 3.17 0.002 0.03 0.14 0.03 0.14 

 

Figure 8-7 shows the Kd(PAR) values measured in-situ and the Kd(PAR) values simulated from 

equation 5 or 6 (using the [TSS,CDOM, CHL] measured in-situ). In both cases, the data from February 

2012 is not well simulated whereas Kd(PAR) values from September 11 to January 12 and March 

2012 were well simulated. 

 

We also tested a multiple correlation using only the data of Feb 2012 but coefficients a, c and d are 

not significant. This confirms that the Kd(PAR) data are only correlated significantly to the CDOM 

data on February 2012. Thus light attenuation in extreme conditions may be driven by low salinity 

and higher CDOM conditions and this observation illustrate the complexity of water types 

encountered in the GBR plume waters. 
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Figure 8-7: Measures of Kd(PAR) in-situ compared with simulated (sim) Kd from two possible 
models including Kd=-0.18+0.71*cdom+0.04*tss+0.14*chl (Eq. 5) and Kd=-
0.14+0.98*cdom+0.04*tss+0.08*chl (Eq. 6). 

 

8.4 Conclusion 

This initial report on the attenuation of light in wet season conditions show that it would be possible 

to model/simulate light attenuation data from [TSS,CDOM, Chl-a] measured in-situ. Our first results 

show good correlations between the attenuation coefficients and the combined OACs. But the data 

collected in the Herbert and Tully on the February 12th underline the necessity to do further research 

to study particular cases when the Kd coefficient is not linearly related to the 3 OACs. Further 

investigations on different periods during wet season will provide more information on the 

predictive capabilities of those OAC’s and provide more understanding of light. Particularly, increase 

the number of data (spatially and temporally) will help investigate if preliminary models developed 

are catchment/NRM independent and consistent over multi-annual wet seasons. Testing of the in-

situ data against remote sensing light measurements are also being investigated under this project.  

The drivers of variability in the optically active compounds in coastal waters of the GBR are varied 

and complex and the mechanisms that control variability are, in many cases, not well described or 

understood. This work describes an initial approach to the understanding of these mechanisms for 

flood plumes and wet season conditions in the GBR. This will eventually lead to improved risk 

assessments being applied to the appropriate conceptual frameworks.  
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Appendix 2 – Site data associated with 
each sampling date  

sample_id site_grouping NRM transect Lat_DD Long_DD sample_date 

FPBK339 Bedarra Island Wet Tropics Tully to Sisters -18.00 146.14 9/09/2011 

FPBK343 Dunk Island North Wet Tropics Tully to Sisters -17.93 146.15 9/09/2011 

FPMW408 East Clump Point Wet Tropics Tully to Sisters -17.86 146.17 9/09/2011 

FP736 Channel North Wet Tropics Northern Herbert -18.25 146.07 28/11/2011 
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FP738 Goold Island Wet Tropics Northern Herbert -18.16 146.15 28/11/2011 

FP739 Cape Richards Wet Tropics Northern Herbert -18.19 146.21 28/11/2011 
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FP741 
Offshore North 
Hinchinbrook 

Wet Tropics Northern Herbert -18.17 146.35 28/11/2011 

FP748 Site 1 Wet Tropics Southern Herbert -18.50 146.32 29/11/2011 

FP749 Site 2 Wet Tropics Southern Herbert -18.49 146.32 29/11/2011 

FP750 Site 3 Wet Tropics Southern Herbert -18.47 146.35 29/11/2011 

FP751 Site 4 Wet Tropics Southern Herbert -18.45 146.38 29/11/2011 

FP752 Site 5 Wet Tropics Southern Herbert -18.42 146.43 29/11/2011 

FP771 Channel North Wet Tropics Northern Herbert -18.25 146.07 19/12/2011 

FP772 Halfway to Goold Wet Tropics Northern Herbert -18.21 146.10 19/12/2011 

FP776 Goold Island Wet Tropics Northern Herbert -18.16 146.15 19/12/2011 

FP773 Cape Richards Wet Tropics Northern Herbert -18.19 146.21 19/12/2011 

FP774 South Brooks Wet Tropics Northern Herbert -18.17 146.35 19/12/2011 

FP775 
Offshore North 
Hinchinbrook 

Wet Tropics Northern Herbert -18.16 146.30 19/12/2011 

FP786 Seymour River mouth Wet Tropics Southern Herbert -18.49 146.23 20/12/2011 

FP785 Herbert River mouth Wet Tropics Southern Herbert -18.50 146.32 20/12/2011 

FP784 Site 1 Wet Tropics Southern Herbert -18.50 146.32 20/12/2011 

FP783 Site 2 Wet Tropics Southern Herbert -18.49 146.32 20/12/2011 

FP782 Site 3 Wet Tropics Southern Herbert -18.47 146.35 20/12/2011 

FP781 Site 4 Wet Tropics Southern Herbert -18.45 146.38 20/12/2011 

FP780 Site 5 Wet Tropics Southern Herbert -18.42 146.43 20/12/2011 

FP719 Tully River Mouth Wet Tropics Tully to Sisters -18.03 146.06 5/01/2012 

FP718 Hull River Mouth Wet Tropics Tully to Sisters -18.00 146.08 5/01/2012 

FP717 Tam O Shanter Wet Tropics Tully to Sisters -17.98 146.10 5/01/2012 

FP717 Tam O Shanter Wet Tropics Tully to Sisters -17.98 146.10 5/01/2012 

FP722 Bedarra Island Wet Tropics Tully to Sisters -18.00 146.14 5/01/2012 

FP721 Triplets Wet Tropics Tully to Sisters -18.06 146.19 5/01/2012 

FP716 South Mission Beach Wet Tropics Tully to Sisters -17.93 146.10 5/01/2012 

FP720 Goold Island Wet Tropics Northern Herbert -18.09 146.11 5/01/2012 

FP723 Dunk Island South Wet Tropics Tully to Sisters -17.96 146.18 5/01/2012 

FP724 East Clump Point Wet Tropics Tully to Sisters -17.86 146.17 5/01/2012 

FP728 King Reef Wet Tropics Tully to Sisters -17.79 146.14 5/01/2012 
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FP725 King Reef East Wet Tropics Tully to Sisters -17.78 146.17 5/01/2012 

FP727 Sisters Island Wet Tropics Tully to Sisters -17.75 146.14 5/01/2012 

FP726 Stephens Island Wet Tropics Tully to Sisters -17.74 146.17 5/01/2012 

FP819 Channel North Wet Tropics Northern Herbert -18.25 146.07 20/01/2012 

FP818 Halfway to Goold Wet Tropics Northern Herbert -18.21 146.10 20/01/2012 

FP817 Goold Island Wet Tropics Northern Herbert -18.16 146.15 20/01/2012 

FP816 Cape Richards Wet Tropics Northern Herbert -18.19 146.22 20/01/2012 

FP790 South Brooks Wet Tropics Northern Herbert -18.16 146.30 20/01/2012 

FP789 
Offshore North 
Hinchinbrook 

Wet Tropics Northern Herbert -18.17 146.35 20/01/2012 

FP824 Seymour River Mouth Wet Tropics Southern Herbert -18.49 146.23 21/01/2012 

FP828 Herbert River mouth Wet Tropics Southern Herbert -18.50 146.28 21/01/2012 

FP826 Site 1 Wet Tropics Southern Herbert -18.50 146.32 21/01/2012 

FP830 Site 2 Wet Tropics Southern Herbert -18.49 146.32 21/01/2012 

FP822 Site 4 Wet Tropics Southern Herbert -18.46 146.38 21/01/2012 

FP829 Site 5 Wet Tropics Southern Herbert -18.42 146.42 21/01/2012 

FP857 Tully River Mouth Wet Tropics Tully to Sisters -18.03 146.06 11/02/2012 

FP851 South Mission Beach Wet Tropics Tully to Sisters -17.93 146.10 11/02/2012 

FP859 Bedarra Island Wet Tropics Tully to Sisters -18.01 146.14 11/02/2012 

FP861 Bedarra Island Wet Tropics Tully to Sisters -18.00 146.14 11/02/2012 

FP862 Dunk Island South Wet Tropics Tully to Sisters -17.96 146.18 11/02/2012 

FP853 Dunk Island West Wet Tropics Tully to Sisters -17.94 146.13 11/02/2012 

FP863 Dunk Island North Wet Tropics Tully to Sisters -17.93 146.15 11/02/2012 

FP865 East Clump Point Wet Tropics Tully to Sisters -17.86 146.17 11/02/2012 

FP881 Stephens Island Wet Tropics Tully to Sisters -17.74 146.17 11/02/2012 

FP883 Sisters Island Wet Tropics Tully to Sisters -17.75 146.14 11/02/2012 

FP838 Channel North Wet Tropics Northern Herbert -18.25 146.07 13/02/2012 

FP842 Halfway to Goold Wet Tropics Northern Herbert -18.21 146.11 13/02/2012 

FP839 Goold Island Wet Tropics Northern Herbert -18.16 146.15 13/02/2012 

FP837 Cape Richards Wet Tropics Northern Herbert -18.19 146.21 13/02/2012 

FP834 South Brooks Wet Tropics Northern Herbert -18.16 146.30 13/02/2012 

FP835 
Offshore North 
Hinchinbrook 

Wet Tropics Northern Herbert -18.17 146.35 13/02/2012 

FP844 Seymour River mouth Wet Tropics Southern Herbert -18.49 146.23 14/02/2012 

FP850 Herbert River mouth Wet Tropics Southern Herbert -18.50 146.28 14/02/2012 

FP840 Inside edge plume Wet Tropics Southern Herbert -18.46 146.38 14/02/2012 

FP843 Site 1 Wet Tropics Southern Herbert -18.50 146.32 14/02/2012 

FP836 Site 2 Wet Tropics Southern Herbert -18.49 146.32 14/02/2012 

FP841 Site 3 Wet Tropics Southern Herbert -18.47 146.35 14/02/2012 

FP847 Site 4 Wet Tropics Southern Herbert -18.45 146.38 14/02/2012 

FP846 Site 5 Wet Tropics Southern Herbert -18.42 146.42 14/02/2012 

FP877 Channel North Wet Tropics Northern Herbert -18.25 146.07 5/03/2012 

FP869 Channel North Wet Tropics Northern Herbert -18.26 146.07 5/03/2012 

FP873 Halfway to Goold Wet Tropics Northern Herbert -18.21 146.11 5/03/2012 

FP876 Goold Island Wet Tropics Northern Herbert -18.09 146.12 5/03/2012 

FP878 Cape Richards Wet Tropics Northern Herbert -18.19 146.22 5/03/2012 

FP879 South Brooks Wet Tropics Northern Herbert -18.16 146.30 5/03/2012 
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FP880 
Offshore North 
Hinchinbrook 

Wet Tropics Northern Herbert -18.18 146.35 5/03/2012 

FP874 Triplets Wet Tropics Tully to Sisters -18.06 146.19 5/03/2012 

FP892 Seymour River mouth Wet Tropics Southern Herbert -18.49 146.23 6/03/2012 

FP905 Site 2 Wet Tropics Southern Herbert -18.49 146.32 6/03/2012 

FP902 Site 3 Wet Tropics Southern Herbert -18.47 146.35 6/03/2012 

FP901 Site 4 Wet Tropics Southern Herbert -18.46 146.38 6/03/2012 

FP898 Site 5 Wet Tropics Southern Herbert -18.43 146.42 6/03/2012 

FP897 Offshore southern 1 Wet Tropics Southern Herbert -18.39 146.47 6/03/2012 

FP900 Offshore southern 2 Wet Tropics Southern Herbert -18.35 146.51 6/03/2012 

FP732 Tully River mouth Wet Tropics Tully to Sisters -17.03 146.06 8/03/2012 

FP731 Hull River Mouth Wet Tropics Tully to Sisters -18.00 146.08 8/03/2012 

FP730 Tam O Shanter Wet Tropics Tully to Sisters -17.98 146.10 8/03/2012 

FP735 Bedarra Island Wet Tropics Tully to Sisters -17.93 146.15 8/03/2012 

FP734 Triplets Wet Tropics Tully to Sisters -17.96 146.18 8/03/2012 

FP729 South Mission Beach Wet Tropics Tully to Sisters -17.93 146.10 8/03/2012 

FP733 Goold Island Wet Tropics Northern Herbert -17.00 146.14 8/03/2012 

FP893 Dunk Island South Wet Tropics Tully to Sisters -17.86 146.17 8/03/2012 

FP866 East Clump Point Wet Tropics Tully to Sisters -17.78 146.17 8/03/2012 

FP867 King Reef East Wet Tropics Tully to Sisters -17.74 146.17 8/03/2012 

FP868 Stephens Island Wet Tropics Tully to Sisters -17.75 146.14 8/03/2012 

FP870 Sisters Island Wet Tropics Tully to Sisters -17.79 146.14 8/03/2012 

FP928 Seymour River mouth Wet Tropics Southern Herbert -18.49 146.23 30/03/2012 

FP927 Herbert River mouth Wet Tropics Southern Herbert -18.50 146.28 30/03/2012 

FP939 Site 1 Wet Tropics Southern Herbert -18.50 146.32 30/03/2012 

FP930 Site 2 Wet Tropics Southern Herbert -18.49 146.32 30/03/2012 

FP932 Site 3 Wet Tropics Southern Herbert -18.47 146.35 30/03/2012 

FP941 Site 4 Wet Tropics Southern Herbert -18.46 146.38 30/03/2012 

FP933 Site 5 Wet Tropics Southern Herbert -18.43 146.43 30/03/2012 

FP923 Tully River Mouth Wet Tropics Tully to Sisters -18.03 146.06 31/03/2012 

FP753 Hull River Mouth Wet Tropics Tully to Sisters -18.00 146.08 31/03/2012 

FP929 South Mission Beach Wet Tropics Tully to Sisters -17.93 146.10 31/03/2012 

FP831 Halfway to Goold Wet Tropics Northern Herbert -18.09 146.12 31/03/2012 

FP832 Goold Island Wet Tropics Northern Herbert -18.16 146.15 31/03/2012 

FP921 Tam O Shanter Wet Tropics Tully to Sisters -17.98 146.10 31/03/2012 

FP931 Triplets Wet Tropics Tully to Sisters -18.06 146.19 31/03/2012 

FP925 Dunk Island South Wet Tropics Tully to Sisters -17.96 146.18 31/03/2012 

FP924 Dunk Island North Wet Tropics Tully to Sisters -17.93 146.15 31/03/2012 
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Appendix 3 – Water quality data 
associated with each light analysis  

date site_grouping transect River salinity Kd CDOM TSS chl 

18-Jan-11 Outer  Rock Offshore Fitzroy 31.50 0.53 0.92 22 4.81 

18-Jan-11 West Egg Rock Rosslyn Bay to North Keppels Fitzroy 27.27 0.33 1.31 22 9.08 

18-Jan-11 East Ship Rock Rosslyn Bay to North Keppels Fitzroy 24.95 0.27 0.71 23 1.6 

22-Feb-11 Murray Site 5 Tully to Sisters Tully 24.40 0.52 0.46 3.1 0.53 

22-Feb-11 East Clump Point Tully to Sisters Tully 28.99 0.18 0.22 1.9 1.87 

22-Feb-11 King Reef Tully to Sisters Tully 27.24 0.29 0.29 1.6 2.4 

15-Jan-13 Dunk Island South Tully to Sisters Tully 35.37 0.24 0.00 3.9 0.42 

16-Jan-13 Halfway to Goold Northern Herbert Herbert 35.64 0.52 0.00 11 1.08 

16-Jan-13 Cape Richards Northern Herbert Herbert 35.32 0.30 0.03 5.1 0.49 

16-Jan-13 
Offshore North 
Hinchinbrook Northern Herbert Herbert 35.13 0.12 0.03 4.4 0.29 

16-Jan-13 South Brooks Northern Herbert Herbert 35.28 0.17 0.03 5.9 0.42 

16-Jan-13 Goold Island Northern Herbert Herbert 35.02 0.45 0.00 5 0.39 

16-Jan-13 Channel North Northern Herbert Herbert 35.07 0.90 0.14 10 2.9 

17-Jan-13 Site 1 Southern Herbert Herbert 34.04 0.92 0.37 10 2.54 

17-Jan-13 Site 2 Southern Herbert Herbert 34.56 0.81 0.26 8.6 1.83 

17-Jan-13 Site 3 Southern Herbert Herbert 35.73 0.24 0.26 7.9 0.55 

17-Jan-13 Site 5 Southern Herbert Herbert 35.39 0.18 0.26 3.9 0.49 

17-Jan-13 Site 4 Southern Herbert Herbert 35.55 0.24 0.26 3.5 0.59 

17-Jan-13 Herbert River Mouth Southern Herbert Herbert 33.98 0.92 0.33 11 2.64 

17-Jan-13 Seymour River Mouth Southern Herbert Herbert 33.13 0.70 0.37 6 1.73 

26-Jan-13 Barge 5 Palm Island Barge Herbert 27.87 0.22     2.2 

26-Jan-13 Barge 4 Palm Island Barge Herbert 27.65 0.26     1.61 

26-Jan-13 Pier (Lucinda) Burdekin to Palm Island Burdekin 33.99 0.60     0.75 

26-Jan-13 Site 4 Southern Herbert Herbert 34.56 0.46     2.34 

27-Jan-13 Site 5 Southern Herbert Herbert 34.90 0.25     0.78 

27-Jan-13 Murray Site 5 Tully to Sisters Tully 31.74 0.42 2.42   1.17 

27-Jan-13 East Clump Point Tully to Sisters Tully 34.20 0.28     0.84 

27-Jan-13 Offshore site Tully to Sisters Tully 34.10 0.13     0.32 

27-Jan-13 King Reef East Tully to Sisters Tully 34.20 0.35     0.93 

28-Jan-13 Barron site 2 Barron Barron 34.62 0.11     0.2 

28-Jan-13 Low Islands Mossman Mossman 33.75 0.20     0.21 

28-Jan-13 Snapper Island   
Daintree-
Kennedy 34.56 0.17     0.3 

29-Jan-13 CTI-2/Bloomfield R Daintree 
Daintree-
Kennedy 34.68 0.12     0.26 

29-Jan-13 CTI-3/Annan R Daintree 
Daintree-
Kennedy 34.62 0.11     0.28 

29-Jan-13 CTI-4/Lookout Pt Far North no river 34.38 0.23     0.66 

30-Jan-13 Offshore PCB 
Offshore PCB + Normanby 
river  Normanby 35.16 0.02     1.47 

30-Jan-13 Wilson Reef PCB 
Offshore PCB + Normanby 
river  Normanby 35.17 0.17     2.36 

30-Jan-13 Site 8 
Offshore PCB + Normanby 
river  Normanby 32.06 0.25 3.25   1.78 

30-Jan-13 Site 9 
Offshore PCB + Normanby 
river  Normanby 26.38 0.34 3.71   3.32 

30-Jan-13 Site 10 
Offshore PCB + Normanby 
river  Normanby 32.21 0.58 3.71   5.18 
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30-Jan-13 Site …. 
Offshore PCB + Normanby 
river  Normanby 28.67 1.22 4.19   8.82 

31-Jan-13 SITE 11 - PCB 
PCB/Normanby -Kennedy 
Rivers Normanby 27.30 0.95 2.99   2.45 

31-Jan-13 SITE 12 - PCB 
PCB/Normanby -Kennedy 
Rivers Normanby 26.03 1.69 3.85   2.5 

31-Jan-13 SITE 15 - PCB 
PCB/Normanby -Kennedy 
Rivers Normanby 19.71 1.92 4.15   2.64 

31-Jan-13 SATELLITE PCB ('A') 
PCB/Normanby -Kennedy 
Rivers Normanby 27.83 0.65 5.14   1.31 

31-Jan-13 SITE 16 - PCB 
PCB/Normanby -Kennedy 
Rivers Normanby 24.14 1.02 4.77   3.37 

31-Jan-13 SITE 'B' (KENNEDY R) 
PCB/Normanby -Kennedy 
Rivers Normanby 30.03 0.45 5.57   0.28 

31-Jan-13 SITE 2 - PCB 
PCB/Normanby -Kennedy 
Rivers Normanby 31.93 1.26 6.03   0.82 

31-Jan-13 

SITE 'C' (GREEN 
WATER OFF 
KENNEDY) 

PCB/Normanby -Kennedy 
Rivers Normanby 32.62 0.29     0.87 

31-Jan-13 
SITE 'D' - BLUEWATER 
OFF KENNEDY 

PCB/Normanby -Kennedy 
Rivers Normanby 34.98 0.11     0.22 

01-Feb-13 Site 9 
Normamby river + channel + 
offshore Normanby 33.74 0.13     0.25 

01-Feb-13 Channel PCB 
Normamby river + channel + 
offshore Normanby 30.81 0.40     0.57 

01-Feb-13 
Southern Warden 
Reef 

Normamby river + channel + 
offshore Normanby 34.08 0.16     0.39 

01-Feb-13 Howick group Far North no river 35.01 0.15     0.85 

02-Feb-13 Turtle group/reef Far North no river 35.10 0.23     0.43 

02-Feb-13 Boulder reef Daintree 
Daintree-
Kennedy 34.89 0.12     0.32 

03-Feb-13 Barron River (site 5) Barron Barron 33.61 0.49     1.21 

03-Feb-13 
Russell-Mulgrave (site 
3) Franklins 

Russell-
Mulgrave 33.68 0.51     0.28 

16-Dec-10 Stephens Island Tully to Sisters Tully 31.04 0.16   0.9 0.53 

16-Dec-10 Dunk Island North Tully to Sisters Tully 30.94 0.19 0.02 6.1 0.27 

16-Apr-13 South Mission Beach Tully to Sisters Tully 27.03 0.35 0.44 6.8 1.01 

16-Apr-13 TamO'Shanter Tully to Sisters Tully 22.52 1.12 0.54 7.4 1.17 

16-Apr-13 Tully River Mouth Tully to Sisters Tully 27.00 0.32 0.55 7.5 0.39 

16-Apr-13 Murray Site 5 Tully to Sisters Tully 29.99 0.35 0.55 7.6 0.62 

16-Apr-13 Triplets Tully to Sisters Tully 29.77 0.23 0.37 5.9 0.72 

16-Apr-13 Bedarra Island Tully to Sisters Tully 28.51 0.41 0.47 7.3 1.04 

16-Apr-13 Dunk Island South Tully to Sisters Tully 28.37 0.33 0.42 7.4 0.82 

16-Apr-13 
Dunk Island South 
East Tully to Sisters Tully 32.02 0.40 0.28 10 0.69 

16-Apr-13 Dunk Island North Tully to Sisters Tully 32.05 0.30 0.35 7.6 0.78 

16-Apr-13 East Clump Point Tully to Sisters Tully 30.09 0.26 0.25 4.2 1.24 

16-Dec-10 East Clump Point Tully to Sisters Tully 30.20 0.08 0.01 1.2 0.27 

08-Feb-13 FR6 Fraser Is Mary 34.50 0.16 0.01 9.3 0.41 

08-Feb-13 FR5 Fraser Is Mary 34.34 0.18 0.04 8.5 0.78 

08-Feb-13 FR4 Fraser Is Mary 34.43 0.22 0.05 7.2 0.52 

08-Feb-13 FR3 Fraser Is Mary 32.62 0.45 0.23 11 1.76 

16-Dec-10 
Dunk Island South 
East Tully to Sisters Tully 30.94 0.16 0.07 1.3 0.27 

08-Feb-13 FR2 Fraser Is Mary 28.00 1.50 0.81 61 14.99 

08-Feb-13 FR1 Fraser Is Mary 25.12 3.28 1.22 105 17.93 

09-Feb-13 MB1 Mary to Burnett River Mary 33.23 0.46 0.18 11 1.47 

09-Feb-13 MB3 Mary to Burnett River Mary 30.98 0.32 0.45 9 2.41 

09-Feb-13 MB2 Mary to Burnett River Mary 32.65 0.41 0.49 8.8 1.6 
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09-Feb-13 MB4 Mary to Burnett River Mary 33.82 0.27 0.17 4.5 1.5 

09-Feb-13 MB5 Mary to Burnett River Mary 34.58 0.23 0.09 9.7 1.11 

09-Feb-13 Extra 1 Mary to Burnett River Mary 31.43 0.64 0.40 8.8 1.95 

13-Mar-13 
overpass stop on way 
to transect start Burdekin to Palm Island Burdekin 33.84 0.22 0.22 8.3 0.49 

13-Mar-13 top of transect Burdekin to Palm Island Burdekin 34.04 0.13 0.11 7.9 0.56 

13-Mar-13 Palm + Maggie Burdekin to Palm Island Burdekin 33.92 0.11 0.07 7.7 0.94 

13-Mar-13 
Blw Maggie + Palm 
back of Burdekin to Palm Island Burdekin 33.89 0.17 0.07 9.2 0.95 

13-Mar-13 
Blw Maggie + Palm 
back of Burdekin to Palm Island Burdekin 33.76 0.30 0.07 8.7 0.81 

13-Mar-13 
Blw Maggie + Palm 
back of Burdekin to Palm Island Burdekin 33.55 0.48 0.09 8.9 1.01 

14-Mar-13 corner of Maggie Burdekin to Palm Island Burdekin 33.41 0.45 0.08 8 0.65 

14-Mar-13 
Blw Maggie + 
clearland Pt Burdekin to Palm Island Burdekin 33.46 0.53 0.08 9.7 0.88 

14-Mar-13 Cape Cleveland Burdekin to Palm Island Burdekin 22.83 0.48 0.09 7.8 0.81 

14-Mar-13 Lynches Beach Burdekin to Palm Island Burdekin 33.81 0.22 0.14 6.7 0.42 

15-Mar-13 Uri Creek River Burdekin to Palm Island Burdekin 33.38 0.44 0.07 8.2 1.04 

15-Mar-13 Don River Mouth Burdekin to Palm Island Burdekin 33.30 0.33 0.07 8 0.2 

15-Mar-13 
East Side Edgecumbe 
Bay Burdekin to Palm Island Burdekin 33.45 0.51 0.06 6.4 0.36 

15-Mar-13 near Sinclairs Bay Burdekin to Palm Island Burdekin 32.91 0.73   10 1.43 

15-Mar-13 
Edgecumbe read 
Chyebarrsa Shoal Burdekin to Palm Island Burdekin 33.54 0.24   4.7 0.2 

16-Mar-13 Edgecumbe Harbour Burdekin to Palm Island Burdekin 32.80 0.43   5.1 0.42 

16-Mar-13 
10 Km ESE of Cape 
Upstar Burdekin to Palm Island Burdekin 33.67 0.19   8.2 0.39 

16-Mar-13 Nobbies Inlet Burdekin to Palm Island Burdekin 33.84 0.59   9.3 0.2 

17-Mar-13 
Upstart Bay East off 
Burdekin River Burdekin to Palm Island Burdekin 33.29 0.78   11 0.72 

17-Mar-13 
NE of Burdekin 
Mouth Burdekin to Palm Island Burdekin 33.66 0.29   5.5 0.39 

17-Mar-13 Burdekin River Plume Burdekin to Palm Island Burdekin 33.67 0.29   10 0.95 

17-Mar-13 
Burdekin River Plume 
north Station Burdekin to Palm Island Burdekin 33.33 0.56   12 0.72 

16-Dec-10 Bedarra Island Tully to Sisters Tully 27.09 0.43 0.09 4.5 0.53 

17-Mar-13 

well NE of JCU site of 
Burdeking River 
mouth Burdekin to Palm Island Burdekin 33.58 0.28   8.2 1.08 

17-Mar-13 
East of tip Cape 
Bowling Green Burdekin to Palm Island Burdekin 33.26 0.43   6.2 0.95 

18-Mar-13 
Off North tip of Cape 
Bowling Green Burdekin to Palm Island Burdekin 21.55 0.40   4 0.33 

18-Mar-13 
~5 km NNW of Cape 
Bowling Green Burdekin to Palm Island Burdekin 33.25 0.31   10 0.2 

18-Mar-13 

midway between 
Cape Bowling Green 
and Cape Cleveland Burdekin to Palm Island Burdekin 33.71 0.23   5.4 0.49 

18-Mar-13 
~5 km east of Cape 
Cleveland Burdekin to Palm Island Burdekin 33.51 0.03   3.1 0.2 

16-Dec-10 Triplets Tully to Sisters Tully 29.98 0.09 0.04 2 0.2 

16-Dec-10 Murray Site 5 Tully to Sisters Tully 28.76 0.21 0.11 4.3 0.2 

16-Dec-10 Murray Site 5 Tully to Sisters Tully   0.21       

16-Dec-10 Hull River Mouth Tully to Sisters Tully 29.93 0.46 0.07 1.9 0.27 

16-Dec-10 Tully River Mouth Tully to Sisters Tully 30.97 0.52 0.36 3.1 0.8 

16-Dec-10 Tam O Shanter Tully to Sisters Tully 29.80 0.26 0.09 2.8 0.27 

16-Dec-10 South Mission Beach Tully to Sisters Tully 30.56 0.24 0.03 1.6 0.53 

16-Dec-10 Sisters Island Tully to Sisters Tully 31.43 0.33   1.4 0.27 
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16-Dec-10 King Reef Tully to Sisters Tully 31.54 0.35   0.4 0.27 

16-Dec-10 Stephens Island Tully to Sisters Tully 31.97 0.40 0.03 0.5 0.53 

16-Dec-10 King Reef East Tully to Sisters Tully 31.22 0.13 0.02 1.1 0.27 

12-Feb-11 
Dunk Island South 
East Tully to Sisters Tully 26.82 0.39 0.45 1.4 1.07 

18-Jan-11 Burdekin Site 1 Burdekin to Palm Island Burdekin 19.56 0.58 2.51   1.34 

18-Jan-11 
Burdekin RM SE10 
Site 3 Burdekin to Palm Island Burdekin 31.24 1.47 0.78   1.41 

18-Jan-11 Burdekin Site 5 Burdekin to Palm Island Burdekin 26.84 0.21 0.76   1.34 

22-Feb-11 
Dunk Island North 
East Tully to Sisters Tully 27.75 0.19 0.27 1.3 0.53 

22-Feb-11 King Reef East Tully to Sisters Tully 28.44 0.23 0.23 1.3 0.53 

22-Feb-11 Stephens Island Tully to Sisters Tully 28.80 0.22 0.24 1.6 1.34 

22-Feb-11 Bedarra Island Tully to Sisters Tully 27.56 0.39 0.26 3.9 0.53 

22-Feb-11 Sisters Island Tully to Sisters Tully 28.47 0.23 0.24 1.1 0.53 

22-Feb-11 Triplets Tully to Sisters Tully 25.67 0.25 0.40 2.8 0.53 

22-Feb-11 Stephens Island Tully to Sisters Tully 29.46 0.27 0.24 2.7 0.53 

22-Feb-11 Bedarra Island Tully to Sisters Tully 27.93 0.37 0.27 1.9 0.53 

22-Feb-11 Dunk Island South Tully to Sisters Tully 28.34 0.26 0.22 1.3 0.53 

22-Feb-11 South Mission Beach Tully to Sisters Tully 27.38 0.34 0.25 1.7 0.27 

22-Feb-11 Tully River Mouth Tully to Sisters Tully 27.06 0.61 0.44 4.2 0.27 

22-Feb-11 Tam O Shanter Tully to Sisters Tully 26.92 0.58 0.36 2.1 0.53 

22-Feb-11 Hull River Mouth Tully to Sisters Tully 26.80 0.48 0.35 1.8 0.53 

18-Feb-11 South Mission Beach Tully to Sisters Tully 23.95 0.65 0.44 1.9 0.53 

18-Feb-11 Bedarra Island Tully to Sisters Tully 24.41 0.50 0.41 1.7 1.6 

18-Feb-11 Tully River Mouth Tully to Sisters Tully 16.89 1.72 0.51 12 0.53 

18-Feb-11 Dunk Island North Tully to Sisters Tully 27.00 0.33 0.32 1.6 0.53 

18-Feb-11 Stephens Island Tully to Sisters Tully 25.37 0.33 0.37 1.9 0.53 

18-Feb-11 King Reef East Tully to Sisters Tully 25.44 0.24 0.35 0.9 0.53 

18-Feb-11 
Dunk Island South 
East Tully to Sisters Tully 27.26 0.87 0.35 2.6 1.07 

18-Feb-11 Stephens Island Tully to Sisters Tully 25.92 0.21 0.32 2.8 1.07 

18-Feb-11 East Clump Point Tully to Sisters Tully 25.38 0.22 0.37 2.5 1.07 

18-Feb-11 Sisters Island Tully to Sisters Tully 25.95 0.33 0.32 1.8 1.07 

18-Feb-11 King Reef Tully to Sisters Tully 24.78 0.33 0.39 2.4 1.07 

18-Feb-11 Triplets Tully to Sisters Tully 23.62 0.40 0.55 3.1 0.53 

18-Feb-11 Tam O Shanter Tully to Sisters Tully 22.89 1.36 0.48 2.8 2.14 

18-Feb-11 Hull River Mouth Tully to Sisters Tully 22.25 2.89 0.83 32 2.67 

18-Feb-11 Murray Site 5 Tully to Sisters Tully 25.99 0.50 0.37 4.3 1.6 

05-Jan-12 South Mission Beach Tully to Sisters Tully 33.58 0.58 0.40 9.6 0.59 

05-Jan-12 Tam O Shanter Tully to Sisters Tully 33.30 0.54 0.24 5.3 0.67 

05-Jan-12 Hull River Mouth Tully to Sisters Tully 31.98 0.07 0.23 6.1 1.19 

05-Jan-12 Tully River Mouth Tully to Sisters Tully 32.92 1.47 0.24 9.6 1.07 

05-Jan-12 Murray Site 5 Tully to Sisters Tully 32.48 0.39 0.24 2.7 0.63 

05-Jan-12 Triplets Tully to Sisters Tully 35.05 0.25 0.12 2.7 0.59 

05-Jan-12 Bedarra Island Tully to Sisters Tully 32.00 0.43 0.19 1.8 0.3 

05-Jan-12 
Dunk Island South 
East Tully to Sisters Tully 34.54 0.44 0.16 2.8 0.59 

05-Jan-12 East Clump Point Tully to Sisters Tully 33.24 0.18 0.14 4.6 0.3 

05-Jan-12 King Reef East Tully to Sisters Tully 33.71 0.22 0.14 2.1 0.3 

05-Jan-12 Stephens Island Tully to Sisters Tully 33.73 0.41 0.10 4.3 0.3 

05-Jan-12 Sisters Island Tully to Sisters Tully 33.72 0.29 0.12 3 0.3 

05-Jan-12 King Reef Tully to Sisters Tully 33.38 0.34 0.13 3.8 0.3 

08-Mar-12 South Mission Beach Tully to Sisters Tully 27.28 0.30 0.38 2.1 0.53 

08-Mar-12 Tam O Shanter Tully to Sisters Tully 29.48 0.60 0.29 4.4 1.34 

08-Mar-12 Hull River Mouth Tully to Sisters Tully 27.63 0.66 0.27 2.9 1.34 
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08-Mar-12 Tully River mouth Tully to Sisters Tully 26.21 0.98 0.38 9.5 3.2 

08-Mar-12 Goold Island Northern Herbert Herbert 28.05 0.40 0.30 3.9 1.07 

08-Mar-12 Bedarra Island Tully to Sisters Tully 28.11 0.23 0.16 3.4 0.53 

28-Nov-11 Channel North Northern Herbert Herbert 31.27 0.60   22 1.6 

28-Nov-11 Halfway to Goold Northern Herbert Herbert 34.67 0.62 0.38 5 0.53 

28-Nov-11 Goold Island Northern Herbert Herbert 34.17 0.33 0.38 3.4 1.34 

28-Nov-11 Cape Richards Northern Herbert Herbert 34.99 0.25   4.5 0.27 

28-Nov-11 South Brooks Northern Herbert Herbert 34.80 0.13   3.4 4.27 

28-Nov-11 
Offshore North 
Hinchinbrook Northern Herbert Herbert 34.71 0.13   3.5 0.2 

29-Nov-11 Site 1 Southern Herbert Herbert 32.92 1.34 0.42 15 3.92 

29-Nov-11 Site 2 Southern Herbert Herbert 32.28 1.70 0.39 16 5.01 

29-Nov-11 Site 3 Southern Herbert Herbert 34.66 0.43 0.23 8.3 0.94 

29-Nov-11 Site 4 Southern Herbert Herbert 35.01 0.13 0.09 2.5 0.2 

29-Nov-11 Site 5 Southern Herbert Herbert 34.84 0.10 0.07 2.1 0.2 

31-Mar-12 Hull River Mouth Tully to Sisters Tully 27.23 1.51 0.90 8.6 0.53 

19-Dec-11 Channel North Northern Herbert Herbert 30.95 0.81 0.44 6.6 1.34 

19-Dec-11 Halfway to Goold Northern Herbert Herbert 30.98 0.42 0.42 5.1 1.87 

19-Dec-11 Cape Richards Northern Herbert Herbert 34.59 0.46 0.21 6.6 0.8 

19-Dec-11 South Brooks Northern Herbert Herbert 35.01 0.20 0.10 3.9 0.53 

19-Dec-11 
Offshore North 
Hinchinbrook Northern Herbert Herbert 34.76 0.37 0.13 6.4 1.07 

19-Dec-11 Goold Island Northern Herbert Herbert 32.56 0.41 0.24 4.9 1.07 

20-Dec-11 Barge 1 Palm Island Barge Herbert 32.79 1.35 0.30 16 3.05 

20-Dec-11 Barge 2 Palm Island Barge Herbert 33.29 1.27 0.25 11 2.29 

20-Dec-11 Barge 3 Palm Island Barge Herbert 34.80 0.55 0.19 6.4 1 

20-Dec-11 Site 5 Southern Herbert Herbert 35.07 0.16 0.10 7.1 0.59 

20-Dec-11 Site 4 Southern Herbert Herbert 34.95 0.61 0.12 8.5 0.59 

20-Dec-11 Site 3 Southern Herbert Herbert 32.91 1.31 0.29 20 3.56 

20-Dec-11 Site 2 Southern Herbert Herbert 31.73 0.99 0.34 10 2.97 

20-Dec-11 Site 1 Southern Herbert Herbert 31.78 0.98 0.36 12 2.97 

20-Dec-11 Herbert River mouth Southern Herbert Herbert 28.36 2.40 0.46 16 0.89 

20-Dec-11 Seymour River Mouth Southern Herbert Herbert 29.31 1.33 0.55 8.2 1.48 

21-Jan-12 Barge 1 Palm Island Barge Herbert 33.09 0.96 0.18 29 2 

20-Jan-12 
Offshore North 
Hinchinbrook Northern Herbert Herbert 34.53 0.15   10 0.53 

20-Jan-12 South Brooks Northern Herbert Herbert 34.09 0.14 0.17 17 0.2 

10-Nov-12 East Clump Point Tully to Sisters Tully 35.30 0.11 0.28 5.8 1.56 

10-Nov-12 Tricodesmium sample Tully to Sisters Tully 35.29 0.16 0.61 17   

10-Nov-12 Dunk Island North Tully to Sisters Tully 35.34 0.21 0.27 7.8 1.06 

10-Nov-12 Tam O Shanter Tully to Sisters Tully 28.66 0.46 0.33 12   

10-Nov-12 Hull River Mouth Tully to Sisters Tully 35.36 0.79 0.33 11 1.03 

10-Nov-12 Tully River Mouth Tully to Sisters Tully 35.23 1.26 0.69 21 1.78 

11-Nov-12 South Mission Beach Tully to Sisters Tully 35.34 0.35 0.32 5.4 1.93 

11-Nov-12 Bedarra Island Tully to Sisters Tully 35.34 0.29 0.26 4.7 0.82 

11-Nov-12 Dunk Island South Tully to Sisters Tully 35.33 0.24 0.26 6 4.14 

11-Nov-12 King Reef East Tully to Sisters Tully 35.24 0.18 0.25 5.1 2.33 

20-Jan-12 Cape Richards Northern Herbert Herbert 33.83 0.41 0.08 23 0.27 

20-Jan-12 Goold Island Northern Herbert Herbert 34.11 0.31 0.09 11 0.67 

20-Jan-12 Halfway to Goold Northern Herbert Herbert 32.80 0.76 0.19 13 0.76 

20-Jan-12 Channel North Northern Herbert Herbert 32.44 1.44 0.26 34 1.78 

21-Jan-12 Barge 3 Palm Island Barge Herbert 34.11 0.29 0.08 15 0.67 

21-Jan-12 Site 4 Southern Herbert Herbert 34.33 0.23 0.04 18 0.8 

21-Jan-12 Seymour River Mouth Southern Herbert Herbert 25.32 2.65 0.67 28 4.96 

21-Jan-12 Barge 2 Palm Island Barge Herbert 33.98 0.47 0.12 21 0.67 
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21-Jan-12 Site 1 Southern Herbert Herbert 25.91 2.61 0.67 25 7.48 

21-Jan-12 Herbert River mouth Southern Herbert Herbert 26.96 5.05 0.58 61 4.81 

21-Jan-12 Site 5 Southern Herbert Herbert 34.61 0.11 0.03 16 0.2 

21-Jan-12 Site 2 Southern Herbert Herbert 29.16 2.50 0.40 37 4.27 

31-Mar-12 Murray Site 5 Tully to Sisters Tully 26.75 0.60 0.46 3.4 1.12 

31-Mar-12 Goold Island Northern Herbert Herbert 29.09 0.41 0.29 3.5 0.8 

13-Feb-12 South Brooks Northern Herbert Herbert 31.23 0.16 0.41 18 0.27 

13-Feb-12 
Offshore North 
Hinchinbrook Northern Herbert Herbert 32.04 0.07 0.27 19 0.28 

14-Feb-12 Site 2 Southern Herbert Herbert 26.33 0.87 0.83 13 0.59 

13-Feb-12 Cape Richards Northern Herbert Herbert 31.98 0.20 0.44 9.9 0.3 

13-Feb-12 Channel North Northern Herbert Herbert 30.11 0.54 0.55 9 1.87 

13-Feb-12 Goold Island Northern Herbert Herbert 33.58 0.39 0.48 7.6 0.8 

14-Feb-12 Site 4 Southern Herbert Herbert 32.10 0.20 0.32 16 5.34 

14-Feb-12 Site 3 Southern Herbert Herbert 30.42 0.41 0.30 14 2.08 

13-Feb-12 Halfway to Goold Northern Herbert Herbert 27.97 0.33 0.46 20 1.07 

14-Feb-12 Site 1 Southern Herbert Herbert 24.20 0.68 0.58 11 1.34 

14-Feb-12 Seymour River Mouth Southern Herbert Herbert 19.03 0.74 0.74 7.5 1.87 

14-Feb-12 Barge 1 Palm Island Barge Herbert 31.22 0.51 0.74 13 1.97 

14-Feb-12 Site 5 Southern Herbert Herbert 33.68 0.11 0.33 9.5 0.53 

14-Feb-12 Site 4 Southern Herbert Herbert 33.06 0.17 1.38 13 0.27 

14-Feb-12 Barge 3 Palm Island Barge Herbert 32.04 0.19 0.43 8.7 0.53 

14-Feb-12 Barge 2 Palm Island Barge Herbert 32.23 0.46 0.39 11 1.34 

14-Feb-12 Herbert River mouth Southern Herbert Herbert 18.67 1.53 1.50 11 0.53 

11-Feb-12 South Mission Beach Tully to Sisters Tully 32.46 0.29 0.48 7.8 0.53 

11-Feb-12 Dunk Island West Tully to Sisters Tully 30.88 0.29 0.15 16 0.53 

11-Feb-12 Tully River Mouth Tully to Sisters Tully 30.71 0.56 0.97 9.5 0.53 

11-Feb-12 Bedarra Island Tully to Sisters Tully 28.44 0.29 0.58 15 0.53 

11-Feb-12 Bedarra Island Tully to Sisters Tully 30.20 0.33 0.21 11 1.07 

11-Feb-12 
Dunk Island South 
East Tully to Sisters Tully 31.99 0.10 0.16 7.9 0.53 

11-Feb-12 Dunk Island North Tully to Sisters Tully 33.36 0.16 0.10 17 0.53 

11-Feb-12 East Clump Point Tully to Sisters Tully 31.72 0.08   13 0.53 

08-Mar-12 East Clump Point Tully to Sisters Tully 27.86 0.18 0.20 2.7 0.27 

08-Mar-12 King Reef East Tully to Sisters Tully 28.76 0.23 0.16 3.5 0.8 

08-Mar-12 Stephens Island Tully to Sisters Tully 28.30 0.20 0.18 5.6 0.27 

05-Mar-12 Channel North Northern Herbert Herbert 25.60 0.81 0.67 12 4.96 

08-Mar-12 Sisters Island Tully to Sisters Tully 28.29 0.20 0.15 2.7 0.53 

05-Mar-12 Goold Island Northern Herbert Herbert 29.84 0.23   3.6 1.34 

05-Mar-12 Halfway to Goold Northern Herbert Herbert 28.41 0.86 0.29 9 1.97 

05-Mar-12 Triplets Tully to Sisters Tully 29.56 0.27 0.18 3.3 0.27 

05-Mar-12 Goold Island Northern Herbert Herbert 23.26 0.39 0.55 3 1.6 

05-Mar-12 Channel North Northern Herbert Herbert 30.42 2.09 0.83 27 10.15 

05-Mar-12 Cape Richards Northern Herbert Herbert 30.51 0.27   3.1 0.27 

05-Mar-12 South Brooks Northern Herbert Herbert 31.67 0.20 0.07 2.6 0.53 

05-Mar-12 
Offshore North 
Hinchinbrook Northern Herbert Herbert 32.15 0.15 0.06 3.3 0.56 

11-Feb-12 Stephens Island Tully to Sisters Tully 32.83 0.16   14 0.53 

11-Feb-12 Sisters Island Tully to Sisters Tully 32.45 0.20   13 1.07 

11-Feb-12 Sisters Island Tully to Sisters Tully   0.20 0.07 14 0.53 

06-Mar-12 Seymour River Mouth Southern Herbert Herbert 17.93 4.60 0.94 92 2.14 

08-Mar-12 Dunk Island South Tully to Sisters Tully 27.57 0.17 0.17 4.4 0.27 

06-Mar-12 
Channel water - 
outside plume Southern Herbert Herbert 21.68 1.37   5.3 3.2 

06-Mar-12 
Channel water - 
inside plume Southern Herbert Herbert 19.71 1.05       
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06-Mar-12 Barge 2 Palm Island Barge Herbert 28.63 1.97 0.53 21 4.27 

06-Mar-12 Barge 3 Palm Island Barge Herbert 31.14 0.36 0.22 3.3 0.89 

06-Mar-12 Offshore southern 1 Southern Herbert Herbert 32.37 0.14 0.16 2.7 1.48 

06-Mar-12 Site 5 Southern Herbert Herbert 30.32 0.15 0.22 2 0.89 

06-Mar-12 Barge 1 Palm Island Barge Herbert 24.74 2.49 0.51 17 5.87 

06-Mar-12 Offshore southern 2 Southern Herbert Herbert 32.40 0.12 0.25 2.1 0.84 

06-Mar-12 Site 4 Southern Herbert Herbert 30.98 0.19 0.48 5 0.8 

06-Mar-12 Site 3 Southern Herbert Herbert 31.93 0.38 0.50 3.6 0.56 

06-Mar-12 
Extra - Outside inner 
plume Southern Herbert Herbert 31.07 1.27   6.8 1.12 

06-Mar-12 Site 2 Southern Herbert Herbert 29.89 0.72 0.53 9.4 1.87 

31-Mar-12 Tam O Shanter Tully to Sisters Tully 27.83 0.68 0.34 5.5 1.07 

30-Mar-12 Barge 3 Palm Island Barge Herbert 30.04 0.52 0.45 4.3 0.56 

31-Mar-12 Tully River Mouth Tully to Sisters Tully 30.10 1.28 0.36 15 3.74 

31-Mar-12 Dunk Island North Tully to Sisters Tully 30.28 0.68 0.32 4.1 1.07 

31-Mar-12 Dunk Island South Tully to Sisters Tully 29.20 0.27 0.24 3.5 0.53 

30-Mar-12 Herbert River mouth Southern Herbert Herbert 12.55 1.70 1.31 7.5 0.2 

30-Mar-12 Seymour River Mouth Southern Herbert Herbert 6.74 1.69 0.90 11 0.53 

31-Mar-12 South Mission Beach Tully to Sisters Tully 29.37 0.52 0.63 4.3 0.8 

30-Mar-12 Site 2 Southern Herbert Herbert 23.37 1.35 0.81 3.9 0.2 

31-Mar-12 Triplets Tully to Sisters Tully 27.14 0.37 0.71 3.9 0.8 

30-Mar-12 Site 3 Southern Herbert Herbert 26.57 1.24 0.71 11 1.07 

30-Mar-12 Site 5 Southern Herbert Herbert 30.49 0.27 0.46 3.5 1.34 

30-Mar-12 Barge 1 Palm Island Barge Herbert 28.97 1.11 0.55 9.1 1.6 

30-Mar-12 Barge 2 Palm Island Barge Herbert 26.87 1.04 0.53 7.2 1.07 

30-Mar-12 Site 1 Southern Herbert Herbert 23.08 0.92 0.64 6.8 1.07 

30-Mar-12 Site 4 Southern Herbert Herbert 26.68 0.60 0.58 8.4 1.07 

11-Nov-12 Stephens Island Tully to Sisters Tully 33.13 0.12 0.28 9 1.71 

11-Nov-12 Sisters Island Tully to Sisters Tully 35.30 0.05 0.27 4.7 1.43 

11-Nov-12 King Reef Tully to Sisters Tully 35.28 0.04 0.18 5.4 9.74 

10-Dec-12 Russell mouth Franklins 
Russell-
Mulgrave 34.49 0.74 0.19 9.9 0.93 

10-Dec-12 Station 2 Franklins 
Russell-
Mulgrave 35.19 1.12 0.09 15 1.06 

10-Dec-12 Station 3 Franklins 
Russell-
Mulgrave 35.26 0.20 0.03 4.1 0.21 

10-Dec-12 Midway to Fitzroy Franklins 
Russell-
Mulgrave 35.24 0.20 0.03 3.9 0.34 

10-Dec-12 Station 5 Franklins 
Russell-
Mulgrave 35.27 0.26 0.04 6.4 0.31 

15-Jan-13 King Reef Tully to Sisters Tully 35.09 0.28 0.08 3.5 0.23 

15-Jan-13 East Clump Point Tully to Sisters Tully 33.04 0.22 0.03 4.1 0.36 

15-Jan-13 Dunk Island North Tully to Sisters Tully 35.26 0.24 0.03 11 0.39 

15-Jan-13 Hull River Mouth Tully to Sisters Tully 35.36 0.51 0.06 6 0.72 

15-Jan-13 Tully River Mouth Tully to Sisters Tully 34.71 0.80 0.15 9.2 1.66 

15-Jan-13 Bedarra Island Tully to Sisters Tully 35.30 0.40 0.00 7.6 0.68 

09-Sep-11 Hull River Mouth Tully to Sisters Tully 34.41 0.67   9.7 0.8 

09-Sep-11 Bedarra Island Tully to Sisters Tully 30.70 0.91 0.11 4.2 0.8 

09-Sep-11 Dunk Island North Tully to Sisters Tully 34.26 0.40   4.9 0.27 

10-Sep-11 Inner Bay 2 Tully to Sisters Tully 33.99 0.43   5.5 0.3 

10-Sep-11 Inner Bay 1 Tully to Sisters Tully 34.62 0.23   3.8 0.63 

10-Sep-11 East Clump Point Tully to Sisters Tully 23.87 0.31   9 0.94 

15-Feb-11 Tully River Mouth Tully to Sisters Tully 22.19 1.20 0.60 6.5 0.53 

15-Feb-11 South Mission Beach Tully to Sisters Tully 24.23 0.33 0.48 4.1 1.6 

12-Feb-11 King Reef Tully to Sisters Tully 27.54 0.82 0.39 3.3 0.8 

12-Feb-11 King Reef Tully to Sisters Tully 26.22 0.50 0.44 2.4 0.8 
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15-Feb-11 Hull River Mouth Tully to Sisters Tully 22.62 0.65 0.78 2.1 0.8 

15-Feb-11 Tam O Shanter Tully to Sisters Tully 18.64 0.85 0.78 2.9 1.07 

12-Feb-11 King Reef East Tully to Sisters Tully 25.73 0.35 0.44 2.3 1.34 

15-Feb-11 Bedarra Island Tully to Sisters Tully 20.40 0.58 0.81 2.3 1.07 

12-Feb-11 Stephens Island Tully to Sisters Tully 27.51 0.65 0.40 1.9 1.34 

30-Dec-10 
Burdekin Site 3 (mid-
plume boundary) Burdekin to Palm Island Burdekin 3.58 0.73 2.72   0.53 

30-Dec-10 
Burdekin Site 4 
(northern) Burdekin to Palm Island Burdekin 7.58 0.58 2.49   0.27 

30-Dec-10 
Burdekin Site 1 (inner 
plume) Burdekin to Palm Island Burdekin 0.11 0.40 3.48   0.94 

06-Jan-11 Iris Point Burdekin to Palm Island Burdekin 31.97 0.11 0.20 0.6 0.53 

30-Dec-10 
Burdekin Site 2 (inner 
plume 2) Burdekin to Palm Island Burdekin 2.04 0.74 2.97 63 0.2 

06-Jan-11 Acheron Island Burdekin to Palm Island Burdekin 26.00 0.25 0.51 3.5 0.27 

06-Jan-11 Orchard Rocks Burdekin to Palm Island Burdekin 25.73 0.29 0.48 1.1 0.27 

30-Dec-10 

Burdekin Site 5 (N 
end - Plantation Ck 
Mouth) Burdekin to Palm Island Burdekin 10.71 0.29 2.21   0.53 

06-Jan-11 Pandora Reef Burdekin to Palm Island Burdekin 27.93 0.23 0.41 2.1 0.53 

06-Jan-11 Havannah Island Burdekin to Palm Island Burdekin 26.65 0.22 0.44 2.4 0.53 

11-Jan-11 GL_HI_Site 1 Gladstone to Heron Burnett 28.38 0.46 0.83 4 2.67 

09-Sep-11 East Clump Point Tully to Sisters Tully 34.85 0.24 0.05 5.1 0.53 

11-Jan-11 GL_HI_Site 5 Gladstone to Heron Burnett 35.79 0.02   8.2 0.2 

11-Jan-11 GL_HI_Site 2 Gladstone to Heron Burnett 32.67 0.22 0.27 5.6 0.2 

11-Jan-11 GL_HI_Site 3 Gladstone to Heron Burnett 33.37 0.10 0.24 12 2.67 

11-Jan-11 GL_HI_Site 6 Gladstone to Heron Burnett 34.86 0.01   13 0.2 

11-Jan-11 GL_HI_Site 4 Gladstone to Heron Burnett 34.84 0.13   3.4 0.2 

15-Feb-11 King Reef Tully to Sisters Tully 25.16 0.35 0.37 2.3 0.53 

02-Jan-11 Tam O Shanter Tully to Sisters Tully 15.05 0.30 0.74 6.2 2.14 

02-Jan-11 South Mission Beach Tully to Sisters Tully 18.08 0.14 0.67 3.4 1.6 

15-Feb-11 Stephens Island Tully to Sisters Tully 24.62 0.31 0.41 1.6 0.8 

15-Feb-11 East Clump Point Tully to Sisters Tully 22.99 0.32 0.60 4.8 0.8 

15-Feb-11 Murray Site 5 Tully to Sisters Tully 18.11 0.57 1.34 3.4 0.8 

15-Feb-11 Stephens Island Tully to Sisters Tully 24.56 0.40 0.44 3.4 1.07 

15-Feb-11 Triplets Tully to Sisters Tully 18.30 0.44 1.13 4.1 0.8 

15-Feb-11 Sisters Island Tully to Sisters Tully 25.33 0.42 0.39 2.3 1.07 

15-Feb-11 Dunk Island North Tully to Sisters Tully 25.26 0.30 0.67 2.5 1.07 

15-Feb-11 King Reef East Tully to Sisters Tully 24.48 0.31 0.41 2.3 0.8 

15-Feb-11 
Dunk Island South 
East Tully to Sisters Tully 24.76 0.61 0.53 3.2 0.8 

19-Jan-11 King Reef East Tully to Sisters Tully 29.05 0.20 0.26 1.3 0.84 

19-Jan-11 East Clump Point Tully to Sisters Tully 31.34 0.21 0.22 1.4 0.59 

19-Jan-11 Murray Site 5 Tully to Sisters Tully 22.21 0.37 0.27 2.2 0.89 

19-Jan-11 
Dunk Island South 
East Tully to Sisters Tully 32.38 0.19 0.20 2.6 0.3 

19-Jan-11 Bedarra Island Tully to Sisters Tully 21.80 0.40 0.20 2.1 0.59 

19-Jan-11 South Mission Beach Tully to Sisters Tully 29.22 0.20 0.24 1.2 0.3 

19-Jan-11 Sisters Island Tully to Sisters Tully 23.17 0.22 0.27 3.4 1.19 

19-Jan-11 Triplets Tully to Sisters Tully 23.89 0.30 0.26 2.3 0.59 

12-Feb-11 Tully River Mouth Tully to Sisters Tully 0.23 4.28 1.73 38 0.2 

12-Feb-11 Triplets Tully to Sisters Tully 27.39 0.45 0.32 2.4 1.07 

19-Jan-11 Tully River Mouth Tully to Sisters Tully 22.91 0.90 0.44 8.1 0.71 

19-Jan-11 Hull River Mouth Tully to Sisters Tully 25.45 2.02 0.60 20 1.78 

19-Jan-11 Stephens Island Tully to Sisters Tully 27.83 0.17 0.24 3 0.59 

19-Jan-11 King Reef Tully to Sisters Tully 26.57 0.20 0.29 2.8 1.19 
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19-Jan-11 Dunk Island North Tully to Sisters Tully 31.53 0.26 0.19 2.4 0.3 

12-Feb-11 Bedarra Island Tully to Sisters Tully 20.32 0.49 0.69 13 2.14 

12-Feb-11 Stephens Island Tully to Sisters Tully 25.34 0.72 0.41 3.4 0.8 

12-Feb-11 Dunk Island North Tully to Sisters Tully 26.32 0.42 0.37 2.5 1.34 

12-Feb-11 Tam O Shanter Tully to Sisters Tully 8.95 1.17 1.43 6.9 4.01 

12-Feb-11 Hull River Mouth Tully to Sisters Tully 7.97 2.06 1.43 8 6.14 

12-Feb-11 South Mission Beach Tully to Sisters Tully 11.83 1.05 1.20 5.9 5.34 

19-Jan-11 Stephens Island Tully to Sisters Tully 29.54 0.24 0.21 3.6 1.07 

12-Feb-11 East Clump Point Tully to Sisters Tully 25.36 0.37 0.41 2.1 1.34 

12-Feb-11 Murray Site 5 Tully to Sisters Tully 25.80 0.45 0.44 2.9 0.53 

 
 


