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Abstract  

Shallow (<200 m) submarine landslides influence margin evolution and can produce 

devastating tsunamis, yet little is known about these processes on mixed siliciclastic-

carbonate margins. We have discovered seven landslides along the shelf edge and 

upper slope of the central Great Barrier Reef (GBR), Australia. The largest shelf edge 

landslide is investigated in detail and represents a collapse of a 7 km long section of the 

shelf edge at 90 m water depth with coarse debris deposited up to 5.5 km away on the 

upper slope down to 250 m. The precise timing and triggering mechanisms are 

uncertain but available chronologic and seismic stratigraphic evidence suggest this 

event occurred during the last deglacial sea-level rise between 20 and 14 ka. Regional 

bathymetric data confirms that these shelf edge and upper slope slides are restricted to 

the central GBR between latitude 18° and 19°S, suggesting a spatial relationship 

between the extensive Burdekin paleo-fluvial/delta system and shallow landslide 

activity. This study highlights an important local mechanism for the generation of 

tsunamis on this margin type, and numerical simulations under present conditions 

confirm a 2 to 3 m tsunami wave could be produced locally. However, we consider that 

the risk of such slides, and their resulting tsunamis, to the modern coastline is negligible 

due to their relatively small size and the capacity of the GBR to dissipate the wave 

energy.  

 

Keywords: Great Barrier Reef; continental shelf; submarine landslides; tsunami; 

numerical model; sea-level change. 
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1. Introduction 

 

Submarine landslides have the potential to shape margin structure and morphology and 

produce devastating tsunamis (e.g. Owen et al., 2007; Talling et al., 2014). Slides 

occurring in shallow water can be dangerous given their normally closer proximity to the 

coast and a shorter distance available for radial damping of the resulting tsunami wave 

(Harbitz et al., 2006; Masson et al., 2006). However, most of the studied shallow water 

slides come from siliciclastic-dominated margins (e.g. Palos Verdes and Goleta slides; 

Bohannon and Gardner, 2004; Fisher et al., 2005), isolated, pure carbonate platforms 

(e.g. Great Bahama Bank, Nicaraguan Rise; Hine et al., 1992; Jo et al., 2015), oceanic 

islands (e.g. Hawaiian, Lesser Antilles Islands; Lipman et al., 1988; Trofimovs et al., 

2010) or glaciated margins (e.g. North Atlantic; Haflidason et al., 2004; Twichell et al., 

2009) and they are either associated with active canyon, tectonic or volcanic processes. 

In contrast, little is known about shelf and upper slope failures (<200 m) on mixed 

siliciclastic-carbonate passive margins, despite the prevalence of these margins in the 

geologic record (Mount, 1984) and proximity to many modern, populated coastlines 

(e.g. Brazil, Australia). 

 

The northeast Australian margin represents the largest, extant mixed siliciclastic-

carbonate margin and possible tsunami deposits have been described at several 

localities (Bryant and Nott, 2001; Nott, 1997). Large tsunami waves up to 11 m are 

hypothesized to have entered the Great Barrier Reef (GBR) through deep channels and 
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impacted the coast. However, this interpretation remains controversial for several 

reasons. First, it is difficult to reconcile such large tsunami waves when most of the 

known Australian tsunamis are thought to have an earthquake-induced origin very far 

from the Australian coast, generated at or near major subduction zones in the Pacific 

(Dominey-Howes, 2007). Second, it is poorly understood whether the presence of the 

GBR attenuates (Baba et al., 2008; Xing et al., 2014) or amplifies (Nott, 1997) the 

resulting tsunami waves. Submarine landslides along continental or oceanic margins 

can occur much closer to the coast, and despite their lower energy release compared 

with subduction-related earthquakes, can cause significant local to regional destruction 

(e.g. Storegga tsunami, Sissano, Papua New Guinea tsunamis; Bondevik et al., 2005; 

Bondevik et al., 1997; Tappin et al., 2001). However, until recently we have lacked the 

required high-resolution bathymetric data coverage to accurately identify the submarine 

landslides along the margin of the GBR and to evaluate their tsunamigenic potential. 

 

Recent geomorphic investigations have identified several large (up to 20 km long) 

submarine landslide headscarps (Beaman and Webster, 2008; Puga-Bernabéu et al., 

2011, 2013b; Webster et al., 2012) and potential slope failures along the GBR margin 

(Puga-Bernabéu et al., 2013a). However, these slides are mostly limited to the middle 

and lower slope and/or so far lack the published geomorphic constraints (i.e. slide 

scarp, basal surface and deposits, slide volume, run-out etc.) needed for robust 

assessment of their timing and tsunamigenic potential. In the last decade, following the 

extensive acquisition of high-resolution multibeam data, our understanding of the 

geomorphology of the northeast Australian shelf edge, particularly the drowned reefs, 
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has greatly improved (Abbey et al., 2011; Hinestrosa et al., 2014). Our analysis of the 

most comprehensive bathymetric dataset assembled to date from the GBR margin has 

revealed seven shallow landslides (i.e. with headscarps at depths shallower than 200 

m) along the shelf edge and upper slope of the central GBR. The largest failure of the 

shelf edge lies adjacent to Viper Reef, referred to hereafter as the Viper Slide (Fig 1). 

Here we focus on the surface and subsurface geomorphology of the Viper Slide and 

discuss the likely timing, pre-conditioning factors and triggering mechanisms. We also 

evaluate the tsunamigenic potential of the slide by performing numerical simulations 

aimed at assessing the risk that such an event poses to the present northeast 

Australian coastline. 

 

2. Methods 

 

2.1. Multibeam, seismic and dredge data  

 

Swath bathymetry and backscatter data from the GBR shelf edge and upper slope were 

collected with a EM300 (30 kHz) multibeam echo sounder on the RV Southern Surveyor 

(Webster et al., 2008). To investigate the surface geomorphology of the Viper Slide 

(Figs. 1, 2), these data were processed in Caris HIPS/SIPS and QPS FMGeocoder 

Toolbox to produce 10 m bathymetry and 2 m backscatter grids, then analyzed to map 

and characterize the slide scar and deposit. The regional distribution of other shallow 

slides were assessed using the most comprehensive 100 m grid available for the GBR 

(Beaman, 2010), together with smaller 10 m grids (Fig. 1B) using the EM300 data. Eight 
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high-resolution sub-bottom profiles were acquired across the Viper Slide using a 

TOPAS PS-18 (18 kHz) to identify the subsurface characteristics and determine the 

depositional timing based on regional seismic stratigraphic relationships (Figs. 2, 3). 

Samples were dredged from the top of the slide debris and radiocarbon dated (Abbey et 

al., 2013).  

 

Combining all available multibeam, backscatter and seismic data, the post-slide 

bathymetry grid was subtracted from a pre-slide bathymetry grid in ArcGIS 3D Analyst 

to calculate: (1) the volume removed by the slide from the source areas (i.e. 

headscarp); and (2) the volume added by the slide in the depositional area down slope 

of the main scarp (after Volker, 2010) (Figs. 4, 5). The latter represents a simple 

reconstruction that projects a flat plane, relative to the adjacent undisturbed sea floor, 

underneath the slide deposit to form its base. This approach is justified by the uniform 

and continuous nature of the shelf edge terraces and upper slope on either side of the 

disturbed area defining the slide area. For our tsunami simulations we use a slide 

volume estimated from the source region (i.e. headscarp) but we also tested larger 

volumes to assess the sensitivity of the model. 

 

2.2. Landslide and tsunami modeling 

 

Numerical modelling of tsunamis generated from landslides has been carried out using 

a rigid block to simulate the slide (e.g. Harbitz, 1992; Løvholt et al., 2005). Three 

arcuate indentations are observed in the Viper Slide headscarp (Fig. 1) but available 
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surface and subsurface geomorphic data point to a single failure event (Section 3.1), 

consistent with our approach to model the slide as a single block. Here, we used the 

finite element numerical model Fluidity (Piggott, 2008), to simulate the Viper Slide and 

resulting tsunami (see Table 1 for input parameters). This model has been used 

successfully to study ancient tsunamis in the Mediterranean (Shaw et al., 2008), the 

Storegga slide (Hill et al., 2014) and the 2011 Tohoku event (Oishi et al., 2013). 

 

Fluidity solves the Navier-Stokes equation on a multiscale tetrahedral mesh using finite 

element methods. The top surface uses the novel implicit free surface algorithm of 

Funke et al. (2011) with drag boundary conditions, using a constant drag coefficient, on 

the sea bed and coastlines. The slide was parameterized using a smoothed exponential 

function with a total volume of 24,773,625 m3 (0.025 km3) (Section 3.1) and moved 

downslope a distance of 10 km with a prescribed acceleration, to a maximum speed (35 

m/s), followed by a deceleration phase in a north-easterly direction (Table 1), consistent 

with observed field observations. The run-out length is longer than that derived from 

field observation to ensure a smoother initial acceleration for numerical purposes. The 

difference between the observed run-out and the simulated one is accounted for in the 

deceleration phase, which inputs no energy to the wave. This approach is very similar to 

that previously used by Harbitz (1992), Løvholt et al. (2005) and Hill et al. (2014). A 

tetrahedral mesh covering latitude 18° to 20°S, longitude 150°E and the Australian 

coastline to the west, and including the distribution of all known modern reefs, with 

scales varying between 100 m and 10 km, was used to simulate the most likely and 

conservative volume of material removed by the Viper Slide from the source area (see 
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Sections 3.1, 3.2). To assess the sensitivity of the model and account for some 

uncertainties in our slide volume calculations we also tested larger (by a factor of two) 

slide volumes (Table 1). For more details on the model equations and discretizations, 

see Hill et al. (2014) and AMCG, Imperial College London (2014). 

 

2.3. Slide equations of motion 

 

The landslide is modeled as a rigid block that has a prescribed shape and moves using 

a prescribed velocity function. It is based on the equations described in Harbitz (1992) 

and Løvholt et al. (2005). The total water displacement is determined by the changes in 

aggregated thickness as it moves with a prescribed velocity. We impose this water 

displacement as a normal velocity Dirichlet boundary condition on the velocity terms in 

the Navier-Stokes equation, D).( nu , calculated as: 

 

   
t

tyytxxhttyyttxxh ssssssD






)(),(()(),((
).( nu  (1) 

 

where t is the timestep of the model and n  is the outward unit normal. The slide 

motion is described by: 

 

))(),((),,( tyytxxhtyxh sss   (2) 
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where ),,( tyxh  is the slide thickness in two-dimensional Cartesian space ),( yx  at time 

t , and sh  is the water displacement (with respect to the lower boundary) of the water by 

the slide. The parameters sx  and sy  describe the slide motion and sh  describes the 

slide geometry via simple geometric relationships: 

 

Tt
tsyy

tsxx

s

s









0 

sin)(

cos)(

0

0




 (3) 

Here,   is the angle from the x-axis that the landslide travels in,  00, yx  is the initial 

position of the centre of the landslide headscarp.The total time of the landslide travel, T, 

is defined as three phases: 

 

dca TTTT   (4) 

 

where aT  is the time of the acceleration phase of the slide, cT  is the time of the constant 

speed phase, and dT  is the time of the deceleration phase. Together with prescribed 

motion these govern the total run-out of the slide, R : 

 

dca RRRR   (5) 

 

which is a combination of the three phases of slide movement and is governed by the 

travel time, defined by max2URT aa   (acceleration phase), maxURT cc   (constant 

speed phase) and max2URT dd  (decceleration phase), define the relationship between 
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travel time, maximum speed, and run-out distance for the three phases. The term )(ts  in 

equation (3) governs the acceleration and deceleration phases, given a maximum slide 

velocity maxU  and are defined as 

Acceleration phase: 

a

a

a Ttt
R

U
Rts 























 0 ,cos1)( max  (6) 

 

Constant speed phase: 

 

caaaa TTtTtURts  T ),()( max  (7) 

 

Deceleration phase: 

 

  dcacaca

d

dca TTTtTTTt
R

U
RRRts 























 T ,sin)( max  (8) 

 

The slide shape is defined as: 

 

    
  
    





















0'for     22exp

')(for                     2exp

)(')2(for  22exp

4'4'
max

4'

max

4'4'
max

xSh

SxSLh

SLxSLh

h

B

y

S
SX

B

y

B

y

S
LSX

s  (9) 

where the landslide has dimensions of maximum height, maxh , length, L , and width, B . 

To avoid sharp edges, which would cause numerical oscillations, a smoothing length, S
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, is used at the front and back of the slide, and the slide is smoothed along the whole 

width. The landslide movement is then governed by 'x  and 'y , defined by: 

 sin)(cos)(' ss yyxxx   (10) 

 

and 

 cos)(sin)(' ss yyxxy   (11) 

 

This gives a total volume of the the slide, V : 

 

)9.0(9.0 max SLBhV   (12) 

The parameters used in this study are given in Table 1. 

 

3. Results 

 

3.1. Landslide geomorphology 

 

The Viper Slide (including source and depositional regions) covers a total area of 18.7 

km², with a maximum runout distance of 5.5 km and a mean headwall height of ~26 m 

from the top of the headscarp at the shelf edge (Figs. 1B, 2A-C), and forms a classic 

triangular shape (Masson et al., 2006). The source area is characterized by a 7 km 

headscarp that can be traced along the shelf edge with a sinuous shape and three well-

defined arcuate indentations (Vanneste et al., 2006) at the same depth of about 90 m. 
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The fossil reef terraces (Abbey et al., 2011; Hinestrosa et al., 2014) between 80 and 

100 m continue along the unaffected shelf but are interrupted by the headscarp that 

locally form stepped areas with steep gradients of 7° to 10°. A sequence of shallower 

drowned reefs in water depth of less than 80 m wrap continuously around the 

headscarp (Abbey et al., 2011). Downslope, the Viper Slide deposit is characterized by 

blocky debris, easily distinguished from the smooth upper slope sediments (Figs. 1B, 

2B, C). Bathymetry and backscatter data reveal a clear progression with increasing 

distance from the headscarp, from large blocky debris (up to 10,000 m2, 17 m high) to 

finer debris distally, consistent with other studies (Masson et al., 2006).   

 

Seismic profiles across the Viper Slide clearly image the headscarp, slide deposit and 

basal slide surface along most of its length (Figs. 2D, 3). The Viper Slide deposit is 

identifiable as a unit with transparent seismic facies (Fig. 3, yellow unit) with a maximum 

thickness of 0.25 ms TWTT, or ~21 to 31 m assuming an average velocity of 1700 to 

2500 m s-1 (Hinestrosa et al., 2014). This seismic facies is similar to that observed in 

other landslides composed of large, coherent blocks (Fanetti et al., 2008; Lastras et al., 

2004). The sub-bottom profile data across the Viper Slide deposit shows the basal 

surface of the slide (i.e. bounding the transparent seismic facies) is visible within the 

upper slope unit (Figs. 2D, 3). Towards the northwest, this surface is also clearly 

imaged crosscutting, via toplaps and truncations, a well-bedded unit characterized by 

high-amplitude, sub-parallel reflectors (Fig. 3, red unit). Seismic profiles 

(SS092008_019_001) crossing the shelf and upper slope adjacent to Flinders and 

Magnetic passages (Fig. 1A) confirm the regional distribution of this unit type, and that 

well developed, prograding clinoforms are a key feature of this seismic unit. Taken 
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together, this seismic unit clearly pre-dates the slide event and likely represents older 

fluvial/deltaic deposits associated with the paleo-Burdekin fluvial/deltaic system 

(Fielding et al., 2003; Harris et al., 1990; Symonds et al., 1983).  

 

3.2. Landslide volume estimate 

 

We estimate the volume of the Viper Slide to be 0.025 km3, based on the total loss of 

material from the source area (i.e. the headscarp). This is in contrast to our estimates of 

the total gain of the Viper Slide deposition area of 0.099 km3 (Fig. 5). Regardless, both 

of these volumes are very small when compared to giant submarine landslides, such as 

the Storegga slide, which involved >3000 km³ (Haflidason et al., 2004),  but similar for 

example to those documented by Chaytor et al., (2009) on the US continental shelf and 

upper slope. In the case of the Viper Slide, it is difficult to fully reconcile the difference 

between the estimated net loss in the source area and gain in the depositional area 

without additional seismic coverage and sample data. However, this may be partly 

explained by the erosive nature of the slide, with at least 10 m of sediments removed 

from beneath the basal surface of the slide in places (Figs. 2D, 3). Therefore the slide 

could have incorporated significant upper slope sediments within the slide depositional 

area. This excavation and accumulation of older upper slope sediments, combined with 

subsequent coralgal accretion (Abbey et al., 2013) on top of the largest slide blocks, 

and further upper slope sedimentation (Figs. 2B, C) after the collapse event, could 

explain this difference. A similar situation – albeit on a larger scale – has occurred off 

the Nicaraguan Rise (Hine et al., 1992), with light-dependent Halimeda bioherms 
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forming significant accumulations on top of displaced blocks derived from the adjacent 

low-relief shallow water carbonate platform. We acknowledge the uncertainty in 

constraining the true effective Viper Slide volume (after Iglesias et al., 2012), and 

therefore use the most accurate and conservative estimate of the volume derived from 

the material lost directly from the headscarp (0.025 km3) for our numerical tsunami 

simulations but have also tested the effect of larger slide volumes (0.05 km3 and 0.097 

km3) and a slower moving slide (25 m/s) (Table 1). 

 

 

3.3. Tsunami modeling 

 

To investigate the impact of the Viper Slide occurring at different times and paleo-sea-

level conditions, we modeled three different paleo-sea-level scenarios: 0 m (highstand), 

-50 m (deglacial/stadial/interstadial) and -70 m (deglacial/stadial/interstadial) (Fig. 6 and 

Supplementary Videos 1-4). The paleo-sea-level scenarios (-50 to -70 m) encompass 

most of thetime that the shelf edge was submerged during the Late Pleistocene (Abbey 

et al., 2011). Shelf edge collapse during paleo-sea levels lower than this (i.e. LGM when 

the shelf was exposed; Lambeck et al., 2014) was not considered in this simulation but 

we concede that this is possible, albeit unlikely given the available data (Sections 3,1, 

4.1). Previous investigations of partially subaerial landslides on the flanks of fjords 

(Vardy et al., 2012) and volcanoes (Lipman et al., 1988) tend to produce very large 

tsunamis and local run-ups. However, in the case of the Viper Slide the H/L ratio 

(maximum headscarp height versus toe length) is consistent with other submarine 
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landslides (Locat and Lee, 2002), and the fact that most of subaerial rock avalanches 

and rock slides have pancake to fan shapes (Strom, 2006), all point towards a fully 

marine slide.  

 

 

 

3.3.1. 0 m sea-level scenario (highstand) 

 

This scenario simulates the impact of the Viper Slide if it occurred during the Last 

Interglacial (~125 ka), or significantly, if a similar sized slide were to occur on the shelf 

edge today. The results show that maximum wave heights occur in the immediate 

vicinity of the slide and in the slide direction as expected, with some propagation along 

the reef front (Fig. 6A, B)to the south-east. Maximum heights are around 2 m 

immediately following slide initiation and rapidly decrease away from the slide region. 

The landward propagating wave is immediately damped by the network of shallow reefs 

on the shelf such that the maximum wave height reaching the present coast is only 

around 10 to 15 cm. Assumptions have been made on the acceleration and run-out of 

the slide, but sensitivity tests (see Table 1) varying the unknown parameters (not 

shown) give the same general conclusion. An increase in slide volume by a factor of two 

results in a slightly larger wave at the coastline, but still only 15 to 20 cm in height. The 

shallow water of the numerous reef tops dissipates energy from a wave generated in 

the immediate vicinity of the seaward reefs by a submarine slide of this type and scale. 
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Only a much larger slide and/or the complete absence of the blocking effect of the GBR 

would generate significant wave heights at the coastline. 

 

3.3.2. -50 m sea-level scenario (deglacial/stadial/interstadial) 

 

The effect of the slide event occurring when sea-level was -50 m is modeled in Figure 

6C, D. In this scenario increased wave heights are observed on the small coral islands 

immediately landwards of the slide. These wave heights are up to 2 m on some reef 

islands and averaging 0.5 m for around 50 km to the north-east and south-west of the 

slide location. 

 

 

3.3.3. -70 m sea-level scenario (deglacial/stadial/interstadial) 

 

A further 20 m sea-level drop to -70 m moves the paleo-coast to the immediate vicinity 

of the slide (Fig. 6E, F). As a result, wave heights peak at up to 3 m immediately behind 

the slide. Additionally, wave heights remain consistently above 1 m to the south-west of 

the slide for 100 km along the coast. Smaller wave heights, sub-metre in scale, occur to 

the north-east of the slide, due to the presence of a lagoon and consequently a wider 

expanse of shallow water in this region. 

 

4. Discussion 
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4.1. Landslide timing, pre-conditioning factors and triggering mechanisms 

 

Based on four lines of evidence, we constrain the timing of the Viper Slide failure to 

between about 14 ka and 20 ka or the Last Glacial Maximum (LGM). First, a minimum 

age is provided by 14C-AMS data (14.01+0.4 ka, n=2; Abbey et al., 2013) from fossil, 

deep-water (>60 m paleo-water depth) coralline algae crusts dredged in situ from the 

top (166+7 m) of the blocky debris field (Fig. 2A). Taking into account relative sea-level 

(Lambeck et al., 2014) at the time, this suggests that the Viper Slide must have 

occurred prior to 14 ka given the paleo-water depth/age relationships (i.e. the life habitat 

of the dated algae is too deep), and considering that no other mass movement has 

occurred in the area since. Second, the spatial distribution of shelf edge reef terraces at 

depths between 90 to 110 m have been interrupted or broken by the headscarp, while in 

depths <80 m the drowned reefs wrap around scarp (Figs. 1, 2). The shelf edge reef 

structures have not been cored in this area so their age is unknown. However, well-

dated drill transects through the same features off Cairns and Mackay recovered during 

IODP Expedition 325 support this timing, i.e. that the shallower, post-slide reefs have 

grown since ~14 ka (Felis et al., 2014; Hinestrosa et al., 2014). Third, the slide clearly 

postdates the fluvial/deltaic deposits preserved on the upper slope (Fig. 2D) that have 

been interpreted regionally (Harris et al., 1990; Symonds et al., 1983) as forming during 

lower sea-levels (~120 m) associated with the LGM. And fourth, the morphology of the 

slide (i.e. shape, height and length) (Locat and Lee, 2002; Strom, 2006), while not 

conclusive by itself, it is consistent with failure under submarine conditions  and not 

during periods when the shelf edge was fully exposed, such as the LGM. Taken 
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together, these data indicate the Viper Slide may have occurred between 14 to 20 ka, 

perhaps following the rapid sea-level rise during meltwater pulse 1A (~14.7 ka) 

(Deschamps et al., 2012) but we acknowledge the assumptions implicit in this timing 

estimate. 

 

Understanding submarine landslide pre-conditioning factors and triggering mechanisms 

is unquestionably challenging (Canals et al., 2004; Owen et al., 2007; Talling et al., 

2014). In the case of the Viper Slide and the other shallow slides, several clues can be 

derived from their distribution along the margin, their regional depositional context and 

our best estimate of the slide timing. Including the Viper Slide, we have mapped seven 

shallow slides in the central GBR between latitude 18o to 19oS (Fig. 1B), and the 

available regional, high-resolution bathymetry evidence (Abbey et al., 2011; Beaman, 

2010; Hinestrosa et al., 2014; Puga-Bernabéu et al., 2013a; Puga-Bernabéu et al., 

2013b) suggests they are not found elsewhere on the shelf and upper slope of the GBR. 

This indicates a spatial link between shallow landslide activity and the paleo-Burdekin 

fluvial/deltaic system – the largest along the northeast Australian margin (Fielding et al., 

2003). In addition to the fluvial-deltaic deposits directly beneath the Viper Slide, we 

imaged a paleo-channel below the sea bed on the shelf edge at 80 m (Profile 1) just 

landward of the main head scarp (Fig. 3). The combination of overpressure caused by 

rapid sedimentation and presence of weak layers (i.e. muds) acting as failure surfaces 

could be important pre-conditioning factors for the Viper Slide inception, a scenario 

commonly seen in siliciclastic-dominated, shelf edge fluvial-deltaic systems (Bohannon 

and Gardner, 2004; Fisher et al., 2005; Hampton et al., 1996). 
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Many submarine landslides are thought to be triggered by large earthquakes. However, 

based on a review of all recorded earthquakes in the region (Fig. 1A), an earthquake 

trigger alone, under static conditions, is difficult to reconcile as the largest event is <5 

Mw. This is consistent with the modeling work by Puga-Bernabéu et al. (2013a) off 

Cairns, suggesting that an earthquake of >6 Mw would be required before the upper 

slope, albeit deeper at 400 m, would potentially fail. Additional or compounding factors 

are therefore required to explain the triggering mechanism of the Viper Slide. Given our 

estimates of the timing of the slide (14 to 20 ka), it is tantalizing to suggest that abrupt 

sea-level rise (~12 to 22 m) during meltwater pulse 1A (~14.7 ka) could be a 

contributing factor. Numerous studies have argued that there is a causal relationship 

between the increased frequency of landslides and this period of rapid sea-level rise, 

through a variety of associated forcing mechanisms (e.g. increased sedimentation, 

increase pore pressure, gas hydrate dissociation, increased seismicity; Brothers et al., 

2013; Owen et al., 2007). However, a recent review by Urlaub et al. (2013) concluded 

that the link between rapid sea-level rise and submarine landslides is still unclear, and 

therefore our numerical simulations of the Viper Slide and resulting tsunami were 

carried out at different sea-levels (0 m, -50 m and -70 m). 

 

4.2. Implications for tsunami generation and coastal impact 

 

Our numerical simulations confirm that these shallow submarine landslides represent an 

important new local mechanism for the generation of tsunami waves (up to 6 m) on this 
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margin type (Fig. 6). However, while simulations under present or highstand conditions 

(~0 m sea-level) show that a 2 to 3 m wave is produced locally at the site of the slide, 

the model predicts only decimeter- height waves at the adjacent coastline. In contrast, 

the -70 m simulation shows large, meter-scale waves impacting the then proximal 

paleo-coast directly. Similarly in the -50 m simulation, waves of 2 to 3 m reach a number 

of small emergent islands and indented bays close to the slide, however, like the 0 m 

sea-level modeling scenario, the paleo-coast itself experiences only decimeter-scale 

waves.  

 

Previous work considered the impact of tsunamis on the GBR coastline in an attempt to 

reconcile the presence of large boulders (Nott, 1997) and other sedimentary deposits 

(Bryant and Nott, 2001). While it is often difficult to categorically rule out cyclones or 

storms as the primary cause (Kortekaas and Dawson, 2007), these previous studies 

speculated that submarine slides might be a source of tsunamis on this coast. However, 

at the time no evidence of suitable local mass wasting deposits had been found (Bryant 

and Nott, 2001). Our findings suggest that these types of shallow, and comparatively 

small slides, are not the origin of the interpreted tsunami deposits observed on the GBR 

coast. However, more data are needed to assess the tsunamigenic potential of the 

deeper and much larger submarine landslides (Beaman and Webster, 2008; Puga-

Bernabéu et al., 2013a) along the GBR margin and whether they are responsible for 

these deposits. 
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Furthermore, while not always the case at other reef-dominated margins (Chatenoux 

and Peduzzi, 2007), it appears that the dense matrix of coral reefs in the GBR might 

play a role in protecting the coastline from large tsunamis under present sea-level 

conditions (Baba et al., 2008; Kunkel et al., 2006; Xing et al., 2014). Our simulations 

show that the Viper Slide could have generated a wave of 2 to 3 m locally, but little of 

that energy arrived at the coastline, primarily due to its dissipation across the shelf and 

reef matrix. This implies that the state of the coral reef plays an important part in 

assessing tsunami risk, not only in terms of slide generation but also coastal protection.  

 

Our investigation confirms that the future tsunamigenic risk to the northeast Australian 

coastline and built infrastructure posed by these types of small, relatively shallow slides 

is negligible. Intriguingly, the numerical tsunami modeling at lower sea-level positions (-

50 m and -70 m) provides a tantalizing glimpse into what indigenous people living on 

the shelf at the time, on what was then a coastal plain, might have faced (i.e. sudden 

devastating metre-scale tsunamis at the shoreline). Aboriginal mythology is rich in 

dream-time stories of rapid and catastrophic floods (Nunn, 2014), that until now, have 

been ascribed primarily to the deglacial sea-level rise.  

 

5. Conclusions 

 

Shallow submarine landslides (<200 m) are restricted to the central GBR margin 

between latitude 18° to 19°S, suggesting a relationship between the location of the 

paleo-Burdekin fluvial/deltaic system and shallow landslide activity. We investigated the 
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largest shelf edge landslide (18 km2, 0.025 km3) and concluded this event occurred 

during the last deglacial (14 to 20 ka). Preconditioned in some way by their proximity to 

a large paleo-fluvial/deltaic system, these shallow slides represent an important local 

mechanism for the generation of tsunamis on this mixed siliciclastic-carbonate margin 

type. Numerical simulations confirm a 2 to 3 m wave is produced locally but the risk to 

the modern coastline is negligible due to the apparent capacity of the GBR to dissipate 

the wave energy. Future work must now focus on systematically understanding the 

preconditioning factors, triggering mechanisms and the tsunamigenic potential of the 

deeper and larger submarine landslides along the northeastern Australian margin, while 

better quantifying what role the reefs of the GBR play in attenuating tsunamis. 
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Figures 

 

Figure 1. (A) Map showing the distribution shelf edge and upper slope submarine 

landslides along the central Great Barrier Reef margin. The long black dashed lines 

represent the known extent of the paleo-Burdekin river system (after Fielding et al., 

2003) that crosses the modern GBR shelf. The short dashed lined to the south east of 

Flinders Passage represents another significant paleo-channel (after Harris et al., 

1990). The likely shelf expression of the corresponding lowstand paleo-Burdekin delta 

system is clearly marked by the slope-ward shift in the 100 and 200 m contours 

observed in the 100 m DEM. The red stars show the locations of shallow (<200 m) shelf 

edge and upper slope landslides associated with the paleo-Burdekin delta system, 

including the main Viper Slide study area (box inset B). Green dots represent 

earthquake epicenters of 1 < Mw ≤ 4 recorded in the regions since 1866-2000 

(http://www.quakes.uq.edu.au), with the largest event (4.7 Mw) indicated by the red dot. 

Solid black line shows seismic line SS092008_019_001 on the shelf near the Viper 

Slide that intersects five large (up to 2 km wide) paleo-channels (black crossing lines). 

(B) High-resolution 3D bathymetry (10 m grid) showing the geomorphology of the Viper 

Slide head scarp and deposit. Multiple, arcuate indentations characterize the 

headscarp(yellow dashed line)  and cut into the shelf edge leaving a blocky debris and 

wider depositional zone on the upper slope (black dashed line). Well-developed 

drowned shelf edge reefs (Abbey et al., 2011) are observed wrapping around the 

headscarp. At its widest point, the landslide scarpis about 7 km and 5.5 km long 

downslope to its toe.  
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Figure 2. (A) Landslide surface and subsurface geomorphology and interpretation. (A) 

Map showing the hillshaded landslide bathymetry gridded at 10 m. The locations of the 

nine crossing sub-bottom profiles are represented by the blue lines (see Fig. 3 for all 

uninterpreted and interpreted profiles). The red line depicts the key interpreted seismic 

section (Line 4) through the Viper Slide deposit in inset D. The yellow dot is the location 

of the deep-water, fossil coralline algae (Abbey et al., 2013) dredged from the top of the 

blocky debris zone. (B) Map showing the interpreted backscatter image gridded at 2 m 

of the shelf edge and landslide. (C) Geomorphic interpretation based on all the available 

bathymetry, backscatter and sub-bottom data. (D) Interpreted sub-bottom profile (Line 

4) across the Viper Slide deposit. The maximum thickness of the deposit (~ 0.25 ms 

TWTT) is 21 to 31 m, assuming an average velocity of 1700 to 2500 m s-1. The basal 

surface of the slide is visible within the upper slope units. Towards the northwest, this 

surface is clearly imaged crosscutting (i.e. toplaps/truncations) a well-bedded deposit 

characterized by high-amplitude, sub-parallel reflectors, and interpreted to be older 

fluvial/deltaic deposits associated with the paleo-Burdekin delta. The depth scale and 

vertical inset scale bar was estimated by assuming a p-wave velocity of 1500 m s-1 for 

sea water.  

 

Figure 3. (A) Uninterpreted and interpreted seismic profiles across the Viper Slide 

deposit on the Central GBR upper slope. The down slope distribution of the Viper Slide 

deposit (yellow) and key seismic reflectors are shown. The well-bedded deposits (red), 

characterized by high-amplitude, sub-parallel reflectors, are interpreted as fluvial/deltaic 
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in origin and are likely associated with the paleo-Burdekin fluvial-deltaic system – the 

largest along the northeast Australian margin. These bedded deposits show clear 

evidence of erosional truncations (black stars) caused by the slide. Note the interpreted 

paleo-channel (pink) seen in Profile 1 (see (B) for expanded image) along the shelf 

edge at about 80 m depth, which may have acted as the failure surface for the slide. 

Successive buried paleo-canyons (blue) are also observed in Profiles 6-8 and are likely 

associated with the canyons heads observed distally on the upper slope in Figure 4. 

The vertical scale on the profiles is in TWTT (ms) and the depth of the seafloor is also 

given. 

 

Figure 4. Regional view showing the modeled pre-slide bathymetry. (A) The modeled 

surface includes the distinct terraces at -100 m and -110 m which are observed as 

continuous features along the shelf in this region (Abbey et al., 2011). (B) The black 

rectangle indicates the location of the close up of the Viper Slide site (C) The 

corresponding 3D view of the model. This DEM was used to calculate the landslide 

volume loss and gain shown in Fig. 5, as well as provide realistic inputs for the slide and 

tsunami numerical simulations (Table 1). VE refers to the vertical exaggeration. 

 

Figure 5. Landslide volume change reconstruction. The volume of the Viper Slide was 

calculated by subtracting the present day bathymetry grid from a simulated prefailure 

bathymetric grid (Fig. 4) generated along the shelf edge and upper slope. Note the 

estimate of the Viper Slide area (18.7 km2) includes both the source (blue) and 

depositional (red) regions. 
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Figure 6. Landslide and tsunami simulations of the Viper Slide. The colors represent the 

maximum sea surface height (or tsunami wave height) attained by the model as it 

radiates out from the site of the landslide. The light grey shows the estimated land 

surface or coast at the time of the slide, while the dark grey shows the present day 

coastline. (A) Numerical simulation of the Viper Slide occurring at 0 m representing 

collapse if it occurred at the present day, or another high sea-level period such as the 

Last Interglacial. (B) Close up showing backward propagating wave being damped by 

the network of shallow reefs on the shelf allowing only 10 to 15 cm wave to strike the 

coast. (C) Numerical simulation of the Viper Slide occurring at -50 m representing 

collapse at lower sea-levels (e.g. deglacials, interstadials/stadials). (D) Close up 

showing the wave heights at up to 3 m striking the much closer paleo-coast. (E) 

Numerical simulation of the Viper Slide occurring at -70 m representing collapse at 

lower sea-levels (e.g. deglacials, interstadials/stadials). (F) Close up showing the wave 

heights at up to 3 m striking the much closer paleo-coast. See Supplementary Videos 1-

4 showing animations of these scenarios and including a test with a larger slide volume 

(ie. 0.097 km3). 

 

 

 

Tables 
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Table 1. Key landslide and numerical model input parameters used for the tsunami 

simulations. 

 

 
 

Table 1. Key landslide and numerical model input parameters used for the tsunami simulations. 

 

Parameter Value 

V – Slide volume 0.025 km
3
, 0.05 km

3
 or 0.097 km

3 

R – run out distance 10 km 

L – slide length 0.025 km
3
: 300 m, 0.05 km

3
: 485 m, 0.097 km

3
: 250 m 

B – slide width 0.025 km
3
: 2000 m, 0.05 km

3
: 4750 m, 0.097 km

3
: 4550 

m 

S – slide smoothing distance 0.025 km
3
: 275 m, 0.05 km

3
: 105 m, 0.097 km

3
: 250m 

Hmax – slide maximum height 26 or 50 m (0.025 km
3 
 volume only) 

Umax – slide maximum velocity 35 m/s (25m/s for ―slow‖ simulation) 

φ - angle of propagation from x-axis (easting) 45 

Acceleration distance 5 km 

Distance at maximum velocity 0 m 

Deceleration distance 5 km 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Highlights 

(1) Shallow (<200 m) submarine landslides discovered along the edge of the GBR. 
(2) Slides restricted to central GBR, near the region’s largest paleo-delta system. 
(3) Largest shelf edge landslide occurred during the last deglacial sealevel rise. 
(4) Numerical simulations show a 2-3 m tsunami wave proximal to the slide. 
(5) Current tsunami risk negligible because the GBR dissipates the wave energy. 


