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Abstract

Process-based agricultural systems models capable of simulating crop growth, management
decisions and varietal differences in productivity allow researchers to investigate the
interactions between varieties, production environments and management decisions. The
Agricultural Production Systems sIMulator (APSIM) currently includes variety parameters that
represent physiological traits for 14 sugarcane varieties. Unfortunately most of these 14
sugarcane varieties are no longer grown commercially. This makes it difficult for industry
decision makers to trust the outputs from the model and thereby incorporate model outputs
into the decision making process. To overcome this weakness in the APSIM crop model for
Australian sugarcane systems the following thesis objectives were developed:
1. investigate the capability of the APSIM-Sugar model to simulate yield differences
between sugarcane varieties under different climatic conditions;
2. investigate the sensitivity of model outputs such as biomass and sucrose yields to key
model input parameters; and
3. evaluate the use of two Bayesian approaches to calibrate variety parameters in the

APSIM-Sugar model.

The APSIM-Sugar model was used to simulate biomass and sucrose yields of four sugarcane
varieties grown under well irrigated and water stressed conditions in a breeding trial conducted
at Home Hill, Queensland, Australia. Comparisons were made between observed and simulated
varietal differences in yield and yield response to water stress. Bayesian Analysis of Computer
Code Output (BACCO) was then used to perform a global sensitivity analysis of model outputs
(biomass and sucrose yields) to key variety parameters under well irrigated and water stressed
conditions. Finally, Generalized Likelihood Uncertainty Estimation (GLUE) and Markov Chain
Monte Carlo (MCMC) techniques were used to calibrate APSIM-Sugar influential variety
parameters. GLUE and MCMC were evaluated based on a theoretical and real world calibration.
APSIM-Sugar was able to accurately reproduce the average biomass and sucrose yields of the
four sugarcane varieties grown in the Home Hill trial when effects of weeds, lodging and stalk
death were implemented in the simulation. However, APSIM-Sugar had limited skill in
simulating yield differences between varieties and varietal yield responses to water stress.
Global sensitivity analysis identified how key APSIM-Sugar input parameters affected model
outputs. Parameters representing radiation use efficiency (rue), transpiration efficiency

(transp_eff cf), number of green leaves (green_leaf no) and the leaf size profile (leaf size) were

Vi



found to strongly influence simulated biomass and sucrose yields. In a real world application,
the MCMC calibration of Australian variety Q117 was better able to reproduce observed yields
than the GLUE calibration and was able to estimate realistic parameter values for difficult to

measure traits such as transpiration efficiency, using readily available field data.

Results from this thesis clearly show that updated variety definitions are needed for APSIM-
Sugar. This thesis developed and tested a methodological framework which include performing
a global sensitivity analysis and a Bayesian approach to calibrate variety parameters in APSIM-
Sugar. The methodological framework provided a validated strategy for improving and updating

variety definitions.

Several avenues for future research into the simulation of variety, environment and
management interactions in sugarcane systems were identified in this thesis. The comparison
of simulated and observed differences between sugarcane varieties highlighted a clear and
pressing need for improved and updated variety definitions in current sugarcane models such
as APSIM-Sugar. Variety parameters in the APSIM-Sugar module can now be routinely updated
as new varieties are released using a limited amount of data which is collected in breeding
programs and the methodological framework implemented in this thesis. Updating the model
to include variety definitions for current commercial varieties will allow industry decision

makers to have greater confidence in the model outputs.
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chapter. Prior parameter distributions were used to generate three initial parameter sets.
These initial parameter sets were used to generate three chains from 10000 iterations.
Convergence of the three chains to a single posterior distribution was monitored and the final
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Figure 4.5. Linear regression between APSIM generated yields used in the calibration and
calibrated APSIM simulated values for (a, b) green biomass (g m?) and (c, d) sucrose yield (g m"
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Figure 4.6. Empirical posterior probability density functions (grey) for parameter
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Figure 4.7. Linear regression between observed and simulated (a) green biomass (g m), (b)
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Figure 4.8. Time series comparison of simulated and observed values () for Q117 in
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Thesis Overview

This thesis had three main objectives:
1. to investigate the capability of a sugarcane crop model to simulate yield differences
between sugarcane varieties under different climatic conditions;
2. toinvestigate the sensitivity of model outputs such as biomass and sucrose yields to key
model input parameters; and
3. to evaluate the use of two Bayesian approaches to calibrate variety parameters in a
sugarcane crop model.
The ‘Sugar’ module in the Agricultural Production Systems sIMulator (Keating et al., 1999) was
the crop model used and is referred to throughout the thesis as APSIM-Sugar. Figure 1 provides

a flow diagram of the thesis.

[ Thesis Overview ]

Chapter: 1

Title: A better understanding of variety parameters is needed to improve trait
modelling prospects for sugarcane crop models — A literature review

Focus: Motivate thesis objectives.

Chapter: 2

Title: Detailed trait characterisation is needed for
simulation of variety responses to water stress
Focus: Objective 1

<
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V
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Bayesian techniques for the calibration of variety
parameters in a sugarcane crop model

Focus: Objective 3

Chapter: 5
Conclusion

Figure 1. Flow diagram of thesis chapters




The objectives of this thesis required inter-disciplinary solutions that integrated sugarcane
physiology and agronomy, sugarcane crop models and statistical sensitivity analysis and model
calibration techniques. The literature review presented in Chapter 1 broadly introduced these
concepts and motivated the objectives of the thesis which were then explored in subsequent

chapters.

Chapters 2, 3 and 4 addressed objectives 1, 2 and 3 respectively. The capability of the APSIM-
Sugar model to simulate varietal differences was investigated and included as Chapter 2. Here
observed and simulated yields for four sugarcane varieties were compared, illustrating the need
for a better understanding of how varieties are represented in the model. The sensitivity of
simulated biomass and sucrose to key parameters in the APSIM-Sugar model was then
investigated (Chapter 3). The specification of prior parameter distributions and the
identification of influential and uninfluential variety parameters presented in Chapter 3 were
critical to the application of Bayesian statistical parameter estimation techniques presented in
Chapter 4. Identifying influential and uninfluential parameters reduced the number of
parameters that needed to be calibrated, improving the efficiency of the calibration techniques.
Finally, the Generalized Likelihood Uncertainty Estimation (GLUE) and Markov Chain Monte
Carlo (MCMC) calibration techniques were used to calibrate the variety parameters of APSIM-
Sugar in a theoretical and real world evaluation (Chapter 4). Chapter 5 was written as a

conclusion to the thesis, bringing together the key findings from Chapters 2, 3 and 4.

Chapters 1 to 4 were structured in the format of stand-alone papers. Chapter 2 was based on a
published, peer reviewed conference paper under the title “Detailed trait characterisation is
needed for simulation of cultivar responses to water stress” (Sexton et al., 2014) and results
were presented at the 36" Conference of the Australian Society of Sugar Cane Technologists
(28™ April — 1%t May 2014, Gold Coast, Queensland, Australia). Chapter 2 was revised after
examination to align better with the stated objectives of the Thesis. This did not change the
overall conclusions of the chapter. Chapter 3 was also published as a peer reviewed conference
paper under the title: “Global sensitivity analysis of key parameters in a process-based
sugarcane growth model - A Bayesian approach” (Sexton and Everingham, 2014) with results
presented at the 7th International Congress on Environmental Modelling and Software ( 15 —
19*" June 2014, San Diego, California, USA). Chapter 5 was submitted for publication to the
Journal of Environmental Modelling and Software on 27" February 2015 as “A dual method

evaluation of the use of two Bayesian techniques for the calibration of variety specific trait



|II

parameters in a sugarcane crop model” (Sexton et al., 2015). The greatest advantage of this
structure is that each chapter can be read independently without assuming the reader has read
the previous chapters. In later chapters, earlier chapters that explain certain analysis in more
detail are referenced. Each chapter concludes with a summary of the chapter for ease of

reference. Summaries for Chapter 2, 3 and 4 were based on the paper abstracts.

The comparison of simulated and observed differences between sugarcane varieties presented
in Chapter 2 highlighted the need for improved and updated variety definitions in current
sugarcane models such as APSIM-Sugar. Chapters 3 and 4 describe and validate a strategy to
use global sensitivity analysis and Bayesian calibration techniques to make these improvements
and updates. This type of approach to improving varietal simulations has not previously been
applied to the APSIM-Sugar model. Using the methodological framework described in this thesis
the sugarcane industry can calibrate the APSIM-Sugar model for new varieties as they are

developed in breeding programs.



Chapter 1

A better understanding of variety parameters is needed
to improve trait modelling prospects for sugarcane crop
models — A review of the literature

1.1. Introduction

Sugarcane production of the top 10 producing countries in the world ranged from 31.8 million
tonnes (Philippines) to 739 million tonnes (Brazil) in 2013 (FAO, 2013). In the same year
sugarcane contributed to a total ethanol production estimated at 32.5 billion litres in Brazil
(Azadi et al., 2012). Sugarcane production will become more important as society strives to feed
and fuel a global population that now exceeds 7 billion and is predicted to exceed 9 billion by
2040 (United Nations, 2013). To meet these demands sugarcane industries have worked

continuously to increase sugarcane productivity.

Sugarcane is thought to have two centres of origin, the New Guinea and India-Burma-China
regions (Sleper and Poehlman, 2006). The so called ‘Nobel canes’ (Saccharum Officinarum)
cultivated in the gardens of New Guinea represents some of the earliest results of selective
breeding in sugarcane. It is believed these canes were selected and grown from wild varieties
for their large size, bright colours and sweet, chewable flesh. Before breeding programs were
designed, yield improvements were achieved by importing new canes from the New Guinea and
India-China regions. Sugarcane breeding programs (Figure 1.1) were then initiated quickly
around the world (Java, British Guiana, Reunion (1889); Queensland (1890); Mauritius (1891);
Hawaii (1904); India (1912); Puerto Rico (1913); Florida (1918); South Africa (1929); Mexico
(1943)) (Stevenson, 1965).
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Figure 1.1. Global sugarcane species and first breeding stations. Data adapted from Stevenson (1965)




There are two vital types of breeding programs: nobelization and introgression. Nobelization
aims to improve sugar yield through crosses with the Nobel canes (S. Officinarum). Introgression
programs are the main source of genetic diversity within the breeding population. These
programs seek to improve crop resilience through crosses with ‘wild’ sugarcane species such as
S. Spontaneum or related genera of the sugarcane complex: Erianthus, Miscanthus, Narenga
and Sclerostachya (Amalraj and Balasundaram, 2006; Bakker, 1999; Sleper and Poehlman,
2006). Figure 1.2 outlines a standard breeding program in Australia (Hogarth and Allsopp, 2000).
A breeding program begins with a bi-parental cross. Computer software and well documented
records of crossings can be used to determine optimal crosses by accounting for the agronomic
performance and disease resistance of each parent. This process can take up to 12 years before

a new variety is released.

Discard . ) Introduce New
unproductive Breeding Population Varieties
Parents
Year
1 Parental Crosses
2
] ~35000 seedlings
3
Select Best Families

4
5 ~100 clones (Multi-Site trials)
6 Screen for:

Select Best Dlssease rgsw;c.atnce

Varieties ugar Luality
7
8
S Agronomic trials
Variety by irrigation
10+ Release New Variety by time of harvest
Variety Etc

Figure 1.2. Generalised breeding program (adapted from Hogarth and Allsopp (2000)) from an
initial bi-parental cross thousands of seedlings are grown in replicated “family” plots. Family
plots are harvested and the top producing families (approximately 40%) are retained in the

program. Selection continues until a relatively small number of varieties are retained
(approximately 150). At this point the reduced set is replanted at multiple sites to assess
performance under a range of climatic conditions.

There are many contributing factors to the improvement of sugarcane productivity. The
appropriate choices of variety and management strategies for a given environment have been
used to increase sugar yields (Singels et al., 2005a; Singels et al., 2005b). Breeding new varieties

has also contributed to increased sugar yield (Jackson, 2005) and improved disease resistance



(Wang et al., 2013). While crop models are not widely used to influence sugarcane breeding
programs for variety development, there are many examples of sugarcane models investigating
management decisions such as irrigation (Inman-Bamber et al., 2006; Everingham et al., 2008),
fertilization (Attard et al., 2008) and harvest and plant scheduling (Bezuidenhout et al., 2002;
Stray et al., 2012).

Here the term crop model is used to refer to process-based crop models. These models
incorporate the current understanding of crop physiological processes (Lisson et al., 2005).
Several sugarcane crop models have been developed. Examples include the ‘Sugar’ module
(Keating et al., 1999) in the Agricultural Production System slMulator (APSIM; (Holzworth et al.,
2014)), the Canegro model (Singels et al., 2008) in the Decision Support System for
Agrotechnology Transfer (DSSAT; (Jones et al., 2003)), Sugarcane in Agro-IBIS (Cuadra et al.,
2012), QCANE (Liu and Bull, 2001), AUSCANE (Jones et al., 1989) and WaterSense (Inman-
Bamber et al., 2007). Models such as APSIM-Sugar and DSSAT-Canegro are capable of
accounting for environmental conditions such as climate and soil properties, management
practices such as irrigation, fertilization, crop rotation and harvest scheduling and variations of
traits between varieties of sugarcane. A trait may be defined as any variation of an observable
(phenotypic) characteristic such as morphology (e.g. height, stalk diameter, root length etc.),
phenology (developmental stages) or process-based physiology (e.g. photosynthesis,

respiration, transpiration and water use efficiency).

Crop models that can effectively simulate differences between varieties, allow researchers to
investigate the effects of variety on productivity and genetic, environment and management
interactions. Specifically, they allow researchers to investigate how varieties have changed over
time, identify varieties that will perform well in a given environment, develop management
strategies for a given variety, and identify artificial ideotypes for a given or future environment
(Jeuffroy et al., 2006). Crop models are also increasingly being used to investigate variety
development opportunities in a range of commercial crops including sorghum (Chapman, 2008),
wheat (Laurila et al., 2012), soybeans (Boote et al., 2003), peanuts (Putto et al., 2013) and
peaches (Quilot et al., 2012). Inman-Bamber et al. (2012) used APSIM-Sugar to simulate the
effects of changes in rooting depth, intrinsic transpiration efficiency, and leaf and stalk

senescence to biomass yield under well irrigated and water-limited conditions.



To simulate varietal differences it is necessary to calibrate model parameter values that
represent crop traits. These values can be difficult to measure directly and are often estimated
by comparing simulated yields with observed data. Several statistical methods exist to calibrate
model parameters (Makowski et al., 2006a). These techniques often require an understanding
of how input parameters influence model outputs in order to reduce the number of parameters
that need to be estimated. Sensitivity analysis (Saltelli et al., 2008) allows researchers to
guantify uncertainty in model outputs due to model input parameters and has become a
standard part of model development and evaluation (Dzotsi et al., 2013; Monod et al., 2006;
Wang et al., 2005). This chapter considers how sugarcane models represent varietal differences
and the statistical tools such as sensitivity analysis and calibration techniques that can be used

to improve the calibration of sugarcane models.

1.2. Sugarcane Crop Models

1.2.1. Advantages of simulating trait differences between sugarcane varieties

Crop models can largely be defined as either empirical (statistical) or process-based models
(Singels, 2013). Empirical models simulate crop yields by developing statistical relationships
between yield and a relatively small number input parameters. Jiao et al. (2005) developed an
empirical model of Commercial Cane Sugar (CSS), a productivity measure used in Australia. Jiao
et al. (2005) were able to maximize CCS gains by suggesting improved harvest scheduling.
Statistical models have also been used to estimate sugar yields from water use (Kingston, 1994),
forecasting yields from time series data (Verma et al., 2013) and explore potential and actual
yields based on climate and crop management (Monteiro and Sentelhas, 2014). Process-based
models such as APSIM and DSSAT simulate the underlying physiological processes and their
interaction with climate variables. This requires a large number of parameters. The complexity
of process-based models can lead to a low adoption rate (Everingham et al., 2006; Inman-
Bamber et al., 2006; Jakku et al., 2007). However, the relative simplicity of statistical models
comes at the cost of potentially misleading assumptions (Lobell, 2013). In both cases it is
necessary to understand the effect of errors and assumptions on model accuracy (Watson et al.,

2014).

Process-based models can assist in better understanding interactions between varieties,

environments and management decisions making them a potential tool in breeding programs.



This potential has not been sufficiently explored for sugarcane. This can be seen in the
publication of Singels (2013). In a chapter overviewing sugarcane crop models, Singels (2013)
identifies environmental characterization (identifying target environments), trait dissection
(identifying genes or quantitative trait loci, QTL that correspond to traits) and trait effect
assessment and ideotype design (identifying desirable traits for specific environments) as areas

for crop modelling to support crop improvement.

A major concern for the improvement of sugarcane varieties is the apparent slow-down of
improvement in sugar yield. Although sugarcane variety improvement has led to yield increases
(Lingle et al., 2009; Zhou, 2013b; Zhou, 2013a) the rate of improvement has decreased (Jackson,
2005; Lingle et al., 2010). By reviewing previous studies Jackson (2005) concluded that there
had been relatively little increase in sucrose content (measured as CCS) among released
varieties in Australia over the previous four decades. Lingle et al. (2010) compared varieties from
7 generations of a Louisiana, U.S.A breeding program (1930 to 2006) and found that juice quality
and sucrose yield had plateaued over the last 3 generations (approx. 1980 to 2006). It may be
possible to investigate the causes behind the evident slow-down in sugar yield improvement by
identifying morphological or physiological traits that could be selected from clones (varieties
being developed) that have been overlooked because of a poor set of other traits and low yields.
For example, by calibrating the CROPGRO-Soybean model (Boote et al., 1998) for old and new
varieties of soybean, Boote et al., (2001) identified that higher photosynthesis and improved

partitioning had likely contributed to the historical increase in yields.

Crop models have been used to characterize target growing environments for breeding
programs, based on simulated levels of water stress for sorghum (Chapman et al., 2002), maize
(Chauhan et al., 2013) and wheat (Chenu et al., 2013). Chapman et al. (2002) used the APSIM-
Sorghum model (Hammer et al., 1996) to define target environments for breeding based on
patterns of water stress (mid-terminal, severe-terminal and mid-season). The identified
environment types were later used to simulate a breeding program by linking the APSIM-
Sorghum model and a quantitative genetics model (QU-GENE; (Podlich and Cooper, 1998))
(Chapman et al., 2003). Chapman et al. (2003) found that simulated early maturing varieties
were favoured in severe-terminal stress environments while late maturing varieties were
favoured in mild-terminal and mid-season stress environments. Patterns of stress are

particularly important for sugarcane. Although excessive stress can reduce biomass yields



irrigation is intentionally withheld late in the season to increase sucrose juice quality and

quantity.

The work of Inman-Bamber et al. (2012) is one of the few published examples of the use of a
sugarcane crop model to explore the effects of modifying sugarcane traits for a particular
environment. The impact of modifying model parameters related to rooting depth, transpiration
efficiency, leaf and stalk senescence and conductance was investigated for the simulation of a
water stressed environment. Leaf and stalk senescence did not improve productivity in stressed
environments while increased rooting depth improved dry biomass by up to 21% depending on

environment and soil conditions.

Part of the underlying physiology a process-based crop model must simulate is the crops
developmental phases. Commercial crops such as wheat, sorghum and legumes rely on
determinant flowering or reproductive phases. In comparison sugarcane is considered a
vegetative crop and reproductive phases are ignored in commercial production. The difficulty in
studying and simulating the impact of environmental conditions on vegetative growth
compared to fruit or seed development has contributed to the lack of progress in trait
simulation in sugarcane. Before progress can be made in simulating varietal differences in
sugarcane more detailed research is needed to identify how process-based sugarcane models

deal with or define varieties.

1.2.2. How process-based models define sugarcane varieties

Two widely used process-based sugarcane models are APSIM-Sugar and DSSAT-Canegro. Both
models have been well validated in the literature (Keating et al. (1999) for APSIM-Sugar and
Singels et al. (2008) for DSSAT-Canegro). Both models have been calibrated for a relatively small
number of sugarcane varieties (see Cheeroo-Nayamuth et al. (2000) for APSIM-Sugar and Marin
et al. (2011) for DSSAT-Canegro). As two of the most widely used models, both have been
extensively compared in the literature (Lisson et al., 2005; O’Leary, 2000; Singels, 2013). O’Leary
(2000) reported coefficients of determination (r?) for biomass and sucrose simulation as 0.73
and 0.78 respectively for APSIM-Sugar and 0.73 and 0.66 for DSSAT-Canegro. While there seems
to be little difference in the accuracy of the two models, the differences in modelling philosophy

are not trivial especially in the context of simulating varietal differences.
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APSIM-Sugar and DSSAT-Canegro have similar approaches to phenology, canopy expansion and
biomass partitioning (Lisson et al., 2005). In the APSIM-Sugar module, physiological processes
and their rate coefficients or parameters are divided into species parameters that are not
considered to vary much between varieties, parameters that are specific to plant or ratoon crops
and parameters that are specific to varieties within the crop class (plant or ratoon; Table 1.1).
DSSAT-Canegro, following DSSAT convention describes parameters as species, ecotype and

cultivar (variety) specific parameters (Table 1.2).

Variety parameters for APSIM-Sugar defined in Table 1.1 control canopy development
(leaf size, leaf size_no, green_leaf no, tillerf leaf size and tillerf _leaf size_no); biomass
partitioning to cane and sucrose (cane_fraction, sucrose_fraction stalk, stress factor stalk,
sucrose_delay, min_sstem_sucrose, min_sstem_sucrose_redn) and developmental stages
(tt_emerg_to_begcane, tt_begcane_to_flowering, tt_flowering_to_crop_end). Some
physiological traits are represented by single parameters such as thermal time required
between emergence and beginning of stalk growth (tt_emerg_to_begcane) or senescence
induced by ageing which is controlled by allowing only a fixed number of green leaves
(green_leaf no). Other physiological traits are represented by combinations of parameters such
as the leaf size profile which is defined by the leaf size parameter (area of fully expanded leaf)
and leaf _size_no (leaf position along the stalk). For simplicity some physiological traits are not
modelled explicitly but their effects are included through surrogates. In APISM-Sugar tillering is
not directly modelled. Instead, the increased leaf area due to tillering is included by modifying
the leaf size profile using tillerf_leaf size and tillerf leaf size_no parameters (Keating et al.,
1999). Currently varieties defined in APSIM-Sugar vary only in leaf size profile and in the

partition of biomass to sucrose (Keating et al. 1999).
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Table 1.1. APSIM-Sugar variety parameters: Parameters represent morphological traits such as
the leaf size profile and number of green leaves, developmental stages or physiological traits.
Some traits are described using combinations of variables such as the leaf size profile which is
described using parameters leaf _size and leaf size_no.

Parameter Description Units
. Size of each leaf (leaf number 1 to approx. 40) serving as
leaf size ) . ) ( . PP ) & mm?
inflection points for leaf size curve
leaf size_no Leaf number from top leaf (leaf number 1) leaf
cane_fraction Fraction of accumulated biomass partitioned to cane gg!
sucrose_fraction_stalk Fraction accumulated biomass partitioned to sucrose ggt
stress_factor_stalk Stress factor for sucrose accumulation nil
sucrose_delay Sucrose accumulation delay g m?
. Minimum stem biomass before partitioning to sucrose gm?
min_sstem_sucrose
- - commences
min_sstem_sucrose_redn Reduction to minimum stem sucrose under stress gm?
Thermal time required from emergence to start stalk o
tt_ emerg to begcane Cd
growth
. Thermal time required from start of stalk growth to start of
tt_begcane_to_flowering ) g 8 °Cd
flowering
tt flowering to_crop_end Thermal time from flowering to crop death °Cd
green_leaf no Green leaf number leaves
tillerf leaf size Expansion factor applied to leaf size due to tillering nil
tillerf_leaf size_no Leaf number from top leaf (leaf number 1) leaf

12



Table 1.2. DSSAT-Canegro cultivar parameters: Parameters represent morphological traits,
developmental stages or physiological traits. Some parameters perform similar functions to
APSIM-Sugar parameters such as leaf size and leaf number (MXLFAREA and MXLFARNO). Other
parameters such as radiation use efficiency (PARCEMAX in DSSAT-Canegro; RUE in APSIM-Sugar)
are variety specific in DSSAT-Canegro but are species specific in APSIM-Sugar.

Parameter Description Units

Maximum (no stress) radiation conversion efficiency expressed as .

PARCEMAX . N . mJ?
assimilate produced before respiration, per unit of PAR g

APEMX Maxmum fraction of dry mass increments that can be allocated £t
to aerial dry mass
Partitioning coefficient: extinction coefficient of fraction of dry

PCB . . N/A
mass increments allocated to above-ground biomass

STKPEMAX Fractlon of daily ae‘rlal dry mass increments partitioned to stalk at -
high temperatures in a mature crop

DELTTMAX Max. change in suc.rose content per unit change in stalk mass in -
the unripened section of the stalk

SUCA Maximum sucrose contents in the base of stalk tt?
Temperature at which partitioning of unstressed stalk mass .

TBFT . . . C
increments to sucrose is 50% of the maximum value

Tthalfo Thermal time to half canopy °Cd

Thase Base temperature for canopy development °C

L EMAX MaX|mLfm number of green leaves a healthy, adequately-watered leaves
plant will have after it is old enough to lose some leaves
Maximum leaf area assigned to all leaves above leaf number )

MXLFAREA MXLEARNO cm

MXLFARNO Leaf number above which leaf area is limited to MXLFAREA leaf

PI1 Phyllocron interval 1 for leaf numbers below Pswitch °Cd

PI2 Phyllocron interval 2 for leaf numbers above Pswitch °Cd

PSWITCH Leaf number at which the phyllocron changes. leaf

MAX_POP Maximum tiller population Stalks m™

POPTT16 Stalk population at/after 1600 degree days Stalks m™

TTPLNTEM Thermal time to emergence for a plant crop °Cd

TTRATNEM Thermal time to emergence for a ratoon crop °Cd

CHUPIBASE Thermal time from emergence to start of stalk growth °Cd

TT_POPGROWTHThermal time to peak tiller population °Cd

Lg AMBASE Aerial mass (fresh mass of stalks, leaves, and moisture) at which t ha'l

lodging starts

Two important differences between APSIM-Sugar and DSSAT-Canegro are the approach to
evapotranspiration (Singles, 2013) and the approach to biomass accumulation from
photosynthesis (Lisson et al., 2005; Singles, 2013). APSIM-Sugarcane models transpiration using
a transpiration efficiency approach whereby transpiration demand is a function of daily crop
growth rate and transpiration use efficiency (Keating et al., 1999). DSSAT-Canegro calculates
crop water requirements following the United Nations Food and Agriculture Organisations
(FAOs) ‘FAO 56’ guidelines (Singels et al. 2008; Singels, 2013). APSIM-Sugar uses a radiation use

conversion approach based on a linear relationship between radiation use efficiency and
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biomass produced while DSSAT-Canegro uses a more complex approach by simulating
photosynthesis and respiration (Singles, 2013). The resulting difference in variety parameters

exemplifies the need to carefully consider the influence of parameters on model outputs.

Above ground biomass accumulation in APSIM-Sugar is driven by a radiation use efficiency (RUE)
approach where radiation refers to the 300 nm to 3000 nm bandwidth while DSSAT-Canegro
simulates above and below ground biomass accumulation using a temperature dependent
photosynthetically active radiation (PAR, 400 nm to 700 nm) conversion efficiency. Accumulated
biomass in DSSAT-Canegro is then reduced by growth respiration (Singels, 2013). In DSSAT-
Canegro this results in a variety specific radiation use parameter (PARCEMAX). APSIM-Sugar
uses a calibrated RUE value of 1.8 g MJ for plant crops and 1.65 g MJ* for ratoon crops. These
values were derived from field experiments (Keating et al., 1999). Variability in RUE values
reported in literature was considered to be a result of differences in trash recovery but RUE for
sugarcane was assumed not to exceed 2 g MJ! (Robertson et al., 1996a; Sinclair and Muchow,
1999). In calibrating DSSAT-Canegro for two Brazilian sugarcane varieties Marin et al. (2011)
increased PARCEMAX from 9.9 g MJ? (default value for South African variety NCO376) to 14.86
g MJ? for varieties RB72-454 and SP83-2847. Marin et al. (2014) suggested that this variety
specific approach is more representative of observed variability in photosynthesis. The
PARCEMAX parameter in DSSAT-Canegro and RUE in APSIM-Sugar are not directly comparable
because of the differences in the biomass accumulation processes. However even a similar
relative 50% increase of RUE in APSIM-Sugar would exceed observed limits (2.7 g MJ™* compared
to 2 g MJ?) and could greatly affect simulated yields. Clearly it is necessary for crop modellers
to identify how changes in parameter values affect model outputs before calibrating models for
specific varieties. Sensitivity analyses allows modellers to do this and are regularly employed as

part of statistical model calibrations.

1.3. Sensitivity Analysis

Sensitivity analysis can be used to identify the model parameters that strongly affect simulated
outputs (Makowski et al., 2006b; Monod et al., 2006). A sensitivity analysis can help in model
calibration by identifying influential and uninfluential parameters. Parameters that are both
influential and do not have a well validated value are ideal candidates for calibration. Sensitivity
analysis techniques are largely defined as local or global (Saltelli et al., 2008). Local sensitivity

analysis consider a small change in a single parameter value at a time while global sensitivity
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analysis considers how parameters affect the model over the whole range of parameter values.
Global sensitivity analysis also considers parameter interactions (Saltelli et al., 1999). Saltelli and
Annoni (2010) highlight the advantage of using global sensitivity analysis techniques for model
assessment rather than the more traditionally used local and one-at-a-time (OAT; where a single
parameter is considered) techniques. Pathak et al. (2007) used both local and global analysis for
the CROPGRO-Cotton model, concluding that the global sensitivity analysis was an improvement

over the local sensitivity analysis used.

1.3.1. Methods of global sensitivity analysis applied to crop models

Sensitivity analysis of crop models have used OAT methods such as the Morris method (Morris,
1991), regression methods such as Latin hypercube sampling and quasi-random LpTau
(Confalonieri et al., 2010) and variance based methods such as the Sobol’ method (Sobol, 1993),
Fourier amplitude sensitivity test (FAST) (Cukier et al., 1973; Cukier et al., 1975; Schaibly and
Shuler, 1973) and Extended-FAST (Saltelli et al., 1999) methods. The Morris approach was used
to identify influential parameters for the STAMINA-Wheat model (Richter et al., 2010). The
Extended-FAST method has been applied to various wheat models (Makowski et al., 2006b;
Zhao et al., 2014; Jiang et al., 2011) as well as models for rice (Confalonieri, 2010; Confalonieri

et al,, 2010; Vanuytrecht et al., 2014) and maize (Dzotsi et al., 2013; Vanuytrecht et al., 2014).

Confalonieri et al. (2010) compared the application of Morris, regression and variance based
methods to the Water Accounting Rice Model (WARM; Confalonieri et al., 2009) and detailed
the different sensitivity measures used in each approach. The key advantage of the variance
based methods is the ability to calculate first order or main effect indices (Si) that measure the
influence of a single parameter similar to OAT approaches, as well as joint effect indices (S;) that
measure the influence of interactions between two or more parameters and the total effect
index (ST;) that measure the main effect as well as contributions from any interactions. An
advantage of this is the ability to identify the influence of interactions. For example, by
comparing S; and ST;, Zhao et al. (2014) concluded that variety parameter influence on wheat
yields in APSIM-Wheat (Wang et al., 2003) were non-linear. This could have implications for the
calibration of the APSIM-Wheat model. Wheat yields were largely influenced by three variety
parameters (grains.per.gram.stem, max.grain.size and potential.grain.filling.rate) however, as

these parameters were most influential through interactions, calibrating only these parameters
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would not be ideal. Further analysis of joint effects could identify what interactions are most

influential and help identify which other variety parameters would need to be calibrated.

1.3.2. Efficiencies of global sensitivity analysis

Despite the evident advantages of variance based sensitivity analysis over OAT methods many
modellers prefer OAT sensitivity analysis (Saltelli and Annoni, 2010). One advantage of OAT is
the lower number of model runs needed. This is particularly relevant to crop models which can
be computationally expensive. Confalonieri et al. (2010) concluded that the Morris method
achieved similar rankings of parameter influence as the more computationally expensive Sobol
and Extended-FAST method. The Extended-FAST and FAST methods are more efficient than the
Sobol method (Saltelli et al., 2008). To improve the efficiency of variance based measures such
as the Extended-FAST, several analyses have used the Morris method to screen for influential
parameters on which to use the more rigorous variance based methods (Vanuytrecht et al.,
2014; Zhan et al., 2013; Confalonieri, 2010). Reducing the number of parameters considered
reduces the number of model runs that need to be performed. Removing the parameters from
the more detailed analysis would preclude some potentially important interactions. An
alternative method available is to calculate sensitivity indices from a model emulator or meta-

model.

A model emulator or meta-model is a statistically simplified approximation of a more complex
model (O’Hagan, 2006). If the simplified model is a close approximation of the actual model,
sensitivity analysis can be performed on the computationally less expensive simplified model
(Uusitalo et al., 2015). Uncertainty in the sensitivity of the emulator and the response of the
actual model should be quantified as part of the emulation process (O’Hagan, 2006; Uusitalo et
al., 2015). Statistical emulators have been built for the APSIM-Plant model (Ramankutty et al.,
2013) and for sensitivity analysis of maize yield to weather conditions in the WOFOST model
(Ceglar and Kajfez-Bogataj, 2012). However sensitivity analysis using model emulation is much
more widely used in agent-based ecosystem models. For example a Bayesian approach to
sensitivity analysis using a Gaussian emulator (Kennedy et al., 2006; Kennedy and O'Hagan, 2001)
has been used for sensitivity analysis of land surface models (Petropoulos et al., 2014;
Petropoulos et al., 2013) and a bird population model (Parry et al.,, 2013). Several other

emulators have also been developed (Ratto et al., 2012).
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1.3.3. Sensitivity analysis of sugarcane models

As part of a statistical calibration of the DSSAT-Canegro model Marin et al. (2011) conducted a
sensitivity analysis to identify influential variety parameters. The sensitivity analysis was used to
reduce the number of parameters that needed to be calibrated. The details of this sensitivity
analysis were not published and no dedicated sensitivity analysis is available as part of
documentation for either APSIM-Sugar or DSSAT-Canegro. From literature on the use of
sensitivity analysis for crop and other complex models it is evident that greater insight into the
effects of model parameters would greatly benefit sugarcane modelling research. Identifying
influential parameters and parameter interactions could greatly streamline the calibration of

variety parameters.

1.4. Statistical Calibration of Sugarcane Variety Parameters

Crop model parameters which are genotypic (variety specific) in nature must be identified and
parameter values for each variety must be estimated to effectively simulate varietal differences
(Jeuffroy et al., 2012). Zhou et al. (2003) suggested that parameter values should be stable
across environments, vary significantly between varieties and be physiologically meaningful.
Unfortunately due to the difficulty of obtaining data for specific varieties under specific
conditions parameter values are often calibrated on data from a range of field experiments.
Field experiments can be designed to provide the trait data required by crop models for new
varieties so that multiple studies are not used in parameter estimation (Craufurd et al., 2013).
However, running a new trial for all current varieties would not be cost efficient or feasibly
practical. Statistical parameter estimation offers an alternative to conducting multiple field trials

by making use of field trial data that already exists.

1.4.1. Types of statistical parameter estimation

Several studies have investigated the range of parameter estimation techniques that can be
applied to crop models (Makowski et al., 2006a; Makowski and Wallach, 2002; Makowski et al.,
2002; Tremblay and Wallach, 2004; Wallach et al., 2011). Parameter estimation techniques seek
to optimise some type of ‘goodness-of-fit’ criterion between observed and simulated data
(Wallach et al., 2011). For example, two standard nonlinear regression methods that can be

used for parameter estimation are least squares regression and maximum likelihood regression
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(Makowski et al., 2006a). The method of least squares uses the sum of squared differences
between simulated and observed values as its goodness-of-fit measure and attempts to
minimize this measure. Maximum likelihood regression uses a likelihood function as its measure
of goodness-of-fit. The likelihood value is a measure of the probability that observed values
would occur given a set of parameter values. Maximum likelihood regression seeks the
estimated parameter set that maximises the likelihood value. Restricted maximum likelihood
estimation was recently used to estimate parameter values for a customised wheat model for
APSIM (Zheng et al., 2013). The complexity of crop models and a desire to better quantify the
uncertainty in parameter estimations has led to an increasing use of genetic algorithms
(Mitchell, 1999) as well as Bayesian (Gelman et al., 1997) parameter estimation techniques such
as Generalised Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992) and Markov
Chain Monte Carlo (MCMC) estimation (Geyer, 1992).

1.4.1.1. Genetic algorithms

Genetic algorithms are based on the ideas of evolution and natural selection. There are many
forms of genetic algorithms of varying complexity. All genetic algorithms follow a structure
similar to a generic breeding program in which hypothetical ‘parent’ varieties are simulated and
allowed to cross to produce new varieties. Crosses between parents are based on a goodness-
of-fit criterion so that parent varieties that better represent the given data are more likely to be
used in the next generation of parameter estimates. Genetic algorithms provide robust
solutions, have good global conversion and allow the researcher to investigate the parameter
space more fully than regression approaches (He et al., 2012). Although genetic algorithms
excel at general solutions, the process is computer intensive and may not converge to a precise
solution (Voit, 2013). Genetic algorithms have been used to parameterise generic crop models
(Bulatewicz et al., 2009; Klein et al., 2012) as well as models designed for specific crops (Dai et

al., 2009; He et al., 2012) but have not found application in sugarcane crop models.

1.4.1.2. Bayesian statistics
Bayes’ rule provides a method to update our belief in the probability of a model systematically
as more data becomes available. Specifically Bayes’ rule states that the posterior probability of

a model given some new observations (P(model | observation)) is proportional to the product of

the prior probability of the model (P(model)) and the probability of the new observations
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occurring under that model (P(observation | model); known as the likelihood): P(model |
observation) o« (P(model)) x P(observation | model). The advantage of using Bayesian statistics
is that parameter estimation takes into account prior knowledge of the nature of parameter
values to describe a posterior probability based on observations. This allows researchers to
estimate parameters from different data sources and perform uncertainty analysis (Makowski

et al., 2006a).

The reporting and handling of model uncertainty has become a major concern as the use of
climate change and process-based crop models has increased (Angulo et al., 2013; Challinor et
al., 2013; Hawkins et al., 2013; Lobell, 2013). Kennedy and O’Hagan (2001) identified six types
of uncertainty in model outputs: parameter uncertainty, model inadequacy, residual variability,
parametric variability, observation error and code uncertainty. Kennedy and O’Hagan (2001)
propose a novel Bayesian approach to model calibration that can better capture these sources
of output uncertainty. Unfortunately this method has not been applied to crop models in the
available literature. Two Bayesian approaches that have found application in crop models are
the Markov Chain Monte Carlo (MCMC) estimation and Generalised Likelihood Uncertainty

Estimation (GLUE).

The MCMC approach simulates a random walk that converges on the posterior probability
distribution (P(model | observation)). MCMC is an iterative process that requires an initial
parameter estimate and prior (proposal) distribution. Several starting parameter estimates can
be used in order to better cover the available parameter space. The MCMC process can be
outlined as:
1. Select a starting model as a set of parameter values from the prior distribution;
2. Generate a random (candidate) parameter set based on a sampling distribution;
3. Calculate an acceptance criteria based on the ratio of the posterior probabilities for the
initial and candidate parameter sets such as the Metropolis algorithm (Metropolis et al.,
1953) or Metropolis-Hastings algorithm (Hastings, 1970);
4. |If the acceptance criteria is greater than a number randomly selected from a uniform
distribution between 0 and 1, then the candidate parameter set is accepted as the new
model, otherwise repeat steps 2-3
5. Steps 2 to 4 are repeated to form a chain until all parameters reach approximate

convergence (Gelman et al. 1997).
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MCMC algorithms have been used to parameterise crop models for rice (lizumi et al., 2011;
lizumi et al., 2009), maize (Tao et al., 2009) and wheat (Tao and Zhang, 2013; Dumont et al.,
2014) as well as the generic Plant module in APSIM (Archontoulis et al., 2014) but have not been

applied to sugarcane crop models.

In contrast to MCMC simulations, GLUE does not generally require an iterative process. A
simplistic overview can be outlined in four steps

1. A prior probability distribution is developed for each parameter;

2. A Monte Carlo approach is used to generate a large number (N) of random samples of

parameter sets from the prior distribution;

3. Calculate likelihood for each parameter set using an appropriate likelihood function;

4. Construct a posterior probability distribution for each parameter.
While GLUE was developed with the assumption that the choice of likelihood function was
ambiguous (Beven and Binley, 1992) the choice can affect the accuracy of the estimated
posterior distribution (He et al.,, 2010). GLUE has been used effectively for parameterising
generic crop models (Wang et al., 2005) as well as crop models for maize (He et al., 2010), wheat
(Mo and Beven, 2004), cotton (Pathak et al., 2012) and variety parameters for sugarcane in
DSSAT-Canegro (Marin et al.,, 2011). DSSAT V4.5 comes pre-installed with a GLUE utility to

estimate variety parameter values for any crop within the DSSAT system (Jones et al., 2011).

1.4.2. Statistical calibration for sugarcane crop models

The use of MCMC and GLUE in crop modelling research suggests that these techniques should
be explored for application to sugarcane crop models. Marin et al. (2011) estimated variety
parameters for two Brazilian sugarcane varieties using GLUE. Model predictive capability in
Marin et al. (2011) was expressed as the normalized distance measure: ‘modelling efficiency’
(Eff) using leave-one-out cross validation (Wallach, 2006). The measure Eff ranges from -co to 1.
A model with an Eff of 1 exactly replicates observed data. A model with an Eff of 0 would have
the same agreement as using the average observed value for every observation and is generally
considered a poor model. A negative Eff value would suggest the model performed worse than
using the average observed value to predict every observation. Across all observations of both
varieties, cross-validated modelling efficiency (Effcy) was good for aerial dry biomass (Effcy = 0.85)
and stalk dry mass (Effcy = 0.765) but relatively poor for sucrose (Effcy = 0.170) and number of

green leaves (Effcy = -2.300). The two varieties were also assessed individually but no attempt
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was made to directly compare the calibration of the two varieties (i.e. whether differences in
estimated parameter values were realistic). To truly assess whether GLUE or any statistical
calibration is appropriate for use with sugarcane models more research is needed to assess if
calibrated parameter values are accurate rather than comparisons of observed and simulated

yields.

Makowski et al. (2002) compared MCMC and GLUE approaches applied to a linear-plus-plateau
model similar to a model of crop yield response to applied nitrogen. The 22 parameters of the
model and model output error were pre-defined to perform a theoretical comparison. In this
way Makowski et al. (2002) were able to assess MCMC and GLUE performance based on mean
squared error of prediction (MSEP) of model outputs (observed data vs model outputs) as well
as comparing estimated parameter values to pre-defined values. The authors concluded that
both MCMC and GLUE produced accurate results based on MSEP of output but recommend
MCMC. Although Makowski et al. (2002) did not directly compare estimates of parameter values
it was possible to identify that in that study MCMC was able to estimate 9 of 22 parameters to
within 10% of their true values while GLUE was able to estimate 7 of 22 parameters to within
10%. A theoretical comparison such as that performed by Makowski et al. (2002), should be
considered to help evaluate the appropriateness of statistical parameter estimation techniques

for sugarcane crop models.

1.5. Conclusion

Sugarcane is an important agronomic crop globally and sugarcane industries world-wide
continuously strive to improve crop productivity. This has been accomplished by improving farm
management practices as well as by breeding sugarcane varieties for improved yields, resistance
to pests and diseases as well as resistance to abiotic stresses such as water stress. While
sugarcane crop models have been used to help improve management practices such as
irrigation and fertilizer application or timing of harvest, little research has been conducted in
simulating differences in traits between varieties. Crop models have been used in a range of
other agronomic crop industries to investigate interactions between varieties, environments
and management. This has been achieved by modifying variety parameters that represent
different physiological traits. Before sugarcane modelling can truly advance in this field a better

understanding of the strengths and limitations of sugarcane crop models in simulating varietal
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differences is needed. Given the continuous development of sugarcane varieties crop modellers

should also consider how well current models reflect growth of current commercial varieties.

One approach to better understand the impact of variety parameters in sugarcane crop models
is to perform a statistical sensitivity analysis. A sensitivity analysis can identify how model
outputs such as vyield, are influenced by specific parameters in the model. Simulation
experiments can be designed to consider how this influence changes under different
environmental or management conditions. Given the complexity of sugarcane crop models,
variance based sensitivity measures should be used to identify main effects and any possible
parameter interactions. Due to the relatively large number of parameters defined in a crop
model and computational expense, it would be worthwhile for sugarcane crop modellers to
consider efficient sensitivity approaches such as the use of model emulators. A better
understanding of the influence of variety parameters would benefit sugarcane crop modelling

research by helping to streamline model calibration.

Internationally recognised crop models such as APSIM-Sugar and DSSAT-Canegro have played
an important role as decision support tools for sugarcane. However, these sugarcane models
have not yet reached the level of success in trait modelling developments that has been reached
by crop models for crops such as grains or legumes. Statistical calibration techniques applied to
models for grains and legumes may not have the same success applied to sugarcane models as
grain and legume crops focus on determinate processes such as flowering while sugarcane relies
on vegetative growth. While GLUE has been applied to the DSSAT-Canegro model (Marin et al.,
2011) no formal comparison of calibration techniques has been performed to assess the
accuracy of estimated parameter values. Future research should aim to assess the effectiveness

of a range of techniques such as genetic algorithms, GLUE and MCMC.

Trait modelling will enable researchers to better investigate desirable traits and variety,
environment and management interactions that affect current commercial varieties. In order
to achieve effective modelling of varietal differences sugarcane modellers must:
1. Identify the current ability of sugarcane crop models to simulate varietal differences
(Chapter 2);
2. Investigate the influence variety parameters have on key model outputs, using

statistical sensitivity analysis (Chapter 3) and
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3. Investigate whether statistical calibration techniques applied to other crop models are
appropriate and effective for sugarcane models (Chapter 4).
Achieving these goals will make sugarcane models a better decision support tool for sugarcane

industries.

1.6. Chapter 1 Summary

As one of the highest biomass producing crops in the world, sugarcane has the potential to
contribute a solution to the demands of a growing global population. The sugarcane industry
must continuously improve crop productivity to meet demands while remaining
environmentally and economically sustainable. Improvements to sugarcane productivity have
been made by breeding new varieties, improving farm technology and developing farm
management strategies for specific environments. Further improvements to crop productivity
are difficult to achieve due to the complex interactions between varieties, environments and
management strategies. Crop models simulate productivity under a range of environments and
management schemes allowing researchers to explore interactions without the expense of field
experiments. Although sugarcane models have been widely used as decision support tools the
effect of varietal differences has not been an area of focus in sugarcane research. In contrast,
simulation of varietal traits has been used to study historical crop improvement, identify
physiological traits that confer a yield advantage and investigate the trade-offs between yield
and disease resistance for other crops such as wheat, soybeans and peaches. Clearly the
sugarcane industry requires a better understanding of the capability of sugarcane models to
simulate varietal differences. Chapter 1 considered how sugarcane models represent varietal
differences and the statistical tools such as sensitivity analysis and calibration techniques that
can be used to improve the relevance of sugarcane models. In order to achieve effective
modelling of varietal differences sugarcane modellers must:
1. Identify the current ability of sugarcane crop models to simulate varietal differences
(Chapter 2);
2. Investigate the influence variety parameters have on key model outputs using statistical
sensitivity analysis (Chapter 3) and
3. evaluate the use of statistical calibration techniques applied to other crop models for
variety parameters in sugarcane models (Chapter 4).
Achieving these goals will help improve sugarcane models as a decision support tools for the

sugarcane industry.
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Chapter 2

Detailed trait characterisation is needed for simulation of
variety responses to water stress

Sexton, J., Basnayake, J., Everingham, Y., Inman-Bamber, G.,
Lakshmanan, P., Jackson, P., 2014. Detailed trait characterisation is
needed for simulation of cultivar responses to water stress,
Proceedings of the Australian Society of Sugar Cane Technologists:
Gold Coast, Queensland, Australia.

The research question was developed with input from Sexton,
Everingham and Inman-Bamber. Field trial data were supplied by
Basnayake on behalf of the More Crop Per Drop project funded by the
Sugar Research and Development Corporation as project BSS334.
Jackson supplied pot trial data used to generate transpiration
efficiency parameter range. Inman-Bamber provided template
simulation files used to model the field trial data and provided
assistance with interpreting simulation output. Sexton updated and
modified these files to run the project simulations. Sexton wrote the
original draft of the paper which was revised with input from
Basnayake, Everingham, Inman-Bamber, Lakshmanan and Jackson.
Sexton performed data analysis and produced all figures and tables.
Publication status  Published

Relevant
publication

Statement of
intellectual input
from co-authors

2.1. Introduction

The Agricultural Production Systems sIMulator (APSIM; (Keating et al., 1999)) has been used in
Australia as a decision support system. Applications for sugarcane have included irrigation
scheduling (Everingham et al., 2008; Inman-Bamber et al., 2006), fertiliser management (Attard
et al., 2008) and seasonal yield forecasts (Everingham et al., 2009). The adoption of decision
support systems such as APSIM is difficult to achieve as end users require a specific skill set to
interpret the model outputs. The difficulties of achieving adoption of such ‘knowledge intensive’
decision support systems have been investigated for a range of agricultural industries in
Australia (Hayman, 2004; Hochman et al., 1994; Hochman and Carberry, 2011; McCown et al.
2002) including within the Australian sugarcane industry (Everingham et al., 2006; Jakku et al.,
2007; Thorburn et al., 2011). Everingham et al. (2006) reported on the need for collaborative
workshops between growers, extension officers and researchers for end users to gain
confidence in modelling in the areas of fertiliser management, irrigation scheduling and climate
forecasts. The development and adoption of the irrigation model WaterSense (Inman-Bamber

et al., 2007) within the Australian sugar industry provides an example of the benefits of such
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participatory research as a common learning experience for both end users and model

developers.

Crop models have not yet been applied to assisting sugarcane breeding programs. However, it
is hypothesised that accurately simulating differences between varieties will allow researchers
to better identify and select varieties predicted to perform well in different environments
(Jeuffroy et al., 2006). APSIM has been used to simulate genotype by environment interactions
in sorghum under various environments (Chapman, 2008). Analysing variety traits through
simulations or ‘trait modelling’ is also a developing area of research in a range of other
commercial crop industries such as soybeans (Boote et al., 2001), peanuts (Putto et al., 2013)

and peaches (Quilot et al., 2012).

Desktop studies using the ‘Sugar’ module (Keating et al., 1999) in APSIM (APSIM-Sugar) to date
have placed minimal focus on variety effects. In fact in the application studies mentioned above
(Attard et al., 2008; Everingham et al., 2009; Inman-Bamber et al., 2006) the variety used in
simulations was not mentioned at all. The lack of detailed understanding of variety simulations
restricts sugarcane researchers from exploring the potential advantages of variety specific

simulation studies identified in other crop industries.

Research on developing sugarcane for water-limited environments has gained more momentum
recently. However, the effects of water stress on sugarcane are complex. Previous research has
identified some differences in varietal responses to water stress (Inman-Bamber and Smith,
2005; Lakshmanan and Robinson, 2013). More recently, Basnayake et al. (2012b) investigated
commercial varieties and introgression clones (developing varieties) under irrigated and water
stressed conditions. Basnayake et al. (2012b) identified a relatively low genotype by treatment
interaction on cane and sugar yields for both commercial varieties and introgression clones
under mild to moderate stress conditions but larger variety by treatment interactions under
severe stress. Identifying physiological parameters that contribute most to the observed variety

by water stress level interactions remains a major challenge.

Simulation studies are capable of investigating the impact of physiological traits on varietal
performance without field trials. Inman-Bamber et al. (2012) identified increased intrinsic (leaf
level) transpiration efficiency, increased rooting depth and reduced stomatal or root

conductance as beneficial traits under water stressed conditions. These traits are difficult to
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characterise for different varieties and have not been calibrated for each variety in sugarcane
crop models. For example the transpiration efficiency parameter (transp_eff_cf) in APSIM-Sugar
is a constant value for all sugarcane varieties even though there is evidence to suggest
transpiration efficiency varies across genotypes and environmental conditions (Basnayake et al.,

2012a; Jackson et al., 2014).

Transpiration efficiency (TE) is defined as the ratio of biomass gained to total water used by the
plant (transpiration) and is inversely proportional to vapour pressure deficit (VPD) (Inman-
Bamber et al., 2012). In APSIM the intrinsic TE parameter (transp_eff cf) is defined as the TE at
a VPD of 1 kPa. Transpiration rates are calculated on a daily time step based on daily calculated
VPD. Transpiration rates were not directly measured in the original build of APSIM-Sugar.
Instead transp_eff cf was obtained by calibration to datasets exhibiting water deficits and has
been applied as a constant value of 0.008 g of biomass per g of water at a VPD of 1 kPa (Keating
et al., 1999). As TE has been found to differ between varieties it is important for modellers to
assess how modifying transp_eff cf within APSIM-Sugar may affect important simulation

outputs.

Sugarcane modelling research has the potential to expand into variety modelling research
currently practiced by a range of other commercial crop industries. However, the current
capacity of APSIM-Sugar to simulate varietal differences must first be determined. The
objectives of this chapter were to investigate the current capability of APSIM-Sugar to simulate
differences between varieties under irrigated and stressed conditions (Objective 1 of the Thesis)
and to motivate the need for research into model sensitivity analysis (Objective 2 of the Thesis).
The TE parameter in APSIM-Sugar is used as an example of the potential influence modifying
parameter values can have on simulated yields. Transpiration efficiency was chosen as it has
recently been shown to vary between varieties but is not considered a variety parameter in
APSIM-Sugar. This chapter considers only physiological traits as APSIM-Sugar cannot

accommodate traits such as pest and disease resistance.
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2.2. Materials and Methods

2.2.1. Field trial data

Yield data for four commercially released sugarcane varieties were collected from a water stress
research trial performed at Home Hill in Queensland, Australia. Basnayake et al. (2012b) fully
documented the details of the Home Hill experiment. For ease of reference, planting and
harvest dates for the Home Hill trials are reproduced in Table 2.1. A total of 89 clones were
grown under fully irrigated and water stressed conditions for the plant and two ratoon crops at
Home Hill (a total of 6 environments). Although they are no longer grown for commercial
production, the present study focuses on varieties Q117, Q124, Q138 and R570 because these
were the only varieties in the Home Hill experiment that have been described to some extent in
APSIM-Sugar v7.5. The yield data consisted of biomass yields at harvest collected as above-
ground total dry matter (Figure 2.1). Total dry matter was estimated from fresh and dry weights
of a subsample of eight mature stalks. Samples were collected randomly from the two middle
rows of each plot with two replicates per variety (Basnayake et al., 2012b). Pests and diseases

were controlled by following commercial crop production practices.

Table 2.1. A summary of experimental conditions of the Home Hill field trial

Attributes Details
Location 147°23' E, 19°41’ S
Soil texture Light Clay; Plant Available Water Capacity (PAWC) = 220.1mm based on

simulation Daily Upper Limit and Lower Limit.
Planting date 17 June 2007
Harvest date 17 June 2008 (Plant)
15 June 2009 (1°* Ratoon)
14 June 2010 (2" Ratoon)
Experimental Split plot, water supply as whole plots and varieties as sub-plots, two
design replicates were recorded for each variety and treatment combination
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Figure 2.1. Mean observed total dry matter yields of two replicates for the (a) plant, (b) first
ratoon and (c) second ratoon crops for water stressed (grey) and fully irrigated (black)
treatments at Home Hill.

2.2.2. APSIM-Sugar model configuration

The latest version of APSIM-Sugar (v.7.5) was parameterised to represent field trial conditions
following the work of Basnayake et al. (2012b). Hilling up and pesticide application were
assumed to have no effect on yield in the simulations. Although herbicides were used to control
weeds in all treatments, weed competition was observed in the plant crop and the effects of
weed competition were included in the simulation by reducing the effective RUE prior to the
stalk elongation stage by half (0.65 g MJ ! from 1.8 g MJ). The modification to RUE helped
account for poor growth in the plant crop producing simulated above-ground biomass closer to
observed measures of total dry matter. The adjustment for weeds in the plant crop was applied
to all varieties. The TE parameter (transp_eff_cf) was modified from the default 0.008 g kPa g*
to 0.0087 g kPa g based on the work of (Inman-Bamber and McGlinchey, 2003) who reported
the only field-based measure of TE in sugarcane. The effect of stress applied to expansive growth
was also modified following Basnayake et al. (2012b). By default in APSIM-Sugar, the effect of
soil water deficit on leaf expansion increases linearly from 0 to 1 from a soil water demand ratio
of 0.1 to 0.6. This was modified so that the effect of soil water deficit on leaf expansion increased
from 0 to 1 for a soil water demand ratio of 0.3 to 1.5. This was justified in Basnayake et al.
(2012b) as “[The] default renders leaf expansion less responsive than photosynthesis to water

stress which is not correct.” (Basnayake et al. (2012b) supplementary data table S3).
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For the irrigated treatment, lodging was simulated to occur, based on cane biomass and recent
rainfall (Inman-Bamber et al., 2004). The effects of lodging were simulated by reducing effective
RUE by 20% (Basnayake et al. 2012b; supplementary table S3). Lodging was simulated to occur
in the plant crop (18™ April 2008) and both the first (3™ February 2009) and second (14" January
2010) ratoons. Simulated lodging dates were considered realistic as lodging was noticed in the
irrigated treatments after the eight-month period, although exact lodging dates were not
recorded. Lodging was not simulated in the water stress treatment, however loss of stalk
biomass due to water stress was. Stalk loss was simulated as a loss of 0.5 stalks/m?/day if leaf
area index (LAI) was reduced below 0.5 after having exceeded an LAl of 2 (Inman-Bamber et al.,
2012). Stalk loss due to stress was simulated to occur during the second ratoon (26" December

2009) under water stress conditions.

2.2.3. Variety independent validation of APSIM-Sugar

Simulated above-ground biomass yields at harvest for variety Q117 were compared to the mean
of all observed above-ground total dry matter for varieties Q117, Q124, Q138 and R570
combined. The standard error of the mean of the four varieties was also calculated. The
simulated growth over time was analysed although only final harvest yields were available.
Comparisons between simulated Q117 and the mean of the four varieties were made as
observed data for individual varieties was low (only two replicates available). This prohibited a
statistical analysis of the simulation so that only a descriptive analysis was performed.
Comparisons were made to identify if the observed differences in yields between environments

was captured in the simulations.

2.2.4. Simulation of varietal differences

Biomass yields (above-ground biomass) were then simulated using variety definitions in APSIM-
Sugar for Q117, Q124, Q138 and R570 respectively (Table 2.2). Sugarcane varieties within the
current version of APSIM-Sugar (v7.5) vary with respect to leaf size (leaf size, leaf size no,
tillerf_leaf size, tillerf _leaf size_no), biomass partioning (cane_fraction, sucrose_fraction_stalk,
sucrose_delay, min_sstem_sucrose, min_sstem_sucrose_redn) and the thermal time required
from emergence to cane development (tt_emerg_to_begcane) (Inman-Bamber and McGlinchey,
2003; Keating et al., 1999). Varieties Q117 and Q124 differ only in tiller leaf size while variety

Q138 also differs with respect to accumulation of sucrose. Variety R570 has a high leaf area
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compared to several other varieties (Inman-Bamber, 2013; Cheeroo-Nayamuth et al., 2000),
which is reflected in APSIM-Sugar. Comparisons between simulated biomass yields (above-
ground biomass) and observed vyields (above-ground total dry matter) were explored

descriptively for each variety in each environment.

Table 2.2. Variety parameters in APSIM-Sugar and their values for Q117, Q124, Q138 and R570.

Parameter Units Q117 Ql24 Q138 R570
leaf size (leaf _size_no) 1500(1) 1500(1) 1500(1) 3000(1)
55000(14) 55000(14) 55000(14) 7000(4)
- 55000(20) 55000(20) 55000(20)  10000(6)
45000(10)
60000(14)
60000(20)
cane_fraction leaf 0.70 0.70 0.70 0.68
sucrose_fraction_stalk 4 1.0(0.2) 1.0(0.2) 1.0(0.2) 1.0(0.2)
(stress_factor_stalk) g8 0.55(1.0) 0.55(1.0) 0.61(1.0) 0.58(1.0)
sucrose_delay ggt 0 0 600 0
min_sstem_sucrose g 800 800 1500 693
min_sstem_sucrose_redn g 10 10 10 10
tt_ emerg_to_begcane g 1900 1900 1900 1500
tt_begcane_to_flowering g 6000 6000 6000 6000
tt_flowering_to_crop_end °Cd 2000 2000 2000 2000
green_leaf no °Cd 13.0 13.0 13.0 13.0
tillerf leaf size 1(1) 1(1) 1(1) 6(1)
(tillerf_leaf_size_no) 1.5(6) 1(4) 1(4) 1(12)
mm? mm? 1.5(10) 1.5(10) 1.5(10)
1(12) 1(16) 1(16)
1(26) 1(26) 1(26)

2.2.5. Sensitivity of simulated biomass to TE

Each variety was then simulated using a range of plausible values for the TE parameter
(transp_eff_cf). Values from 0.005 g kPa g* to 0.014 g kPa g* at an increment of 0.0001 g kPa g’
! were used to simulate each variety for the 1% ratoon. By simulating biomass yield (above-
ground biomass) for a range of transp_eff cf values it was possible to explore the effect that
different levels of TE had on simulations of biomass yields for the irrigated and water stressed
simulations (i.e. the sensitivity of simulated biomass yields to changes in transp_eff cf. It was
also possible to identify what values of the transp_eff cf resulted in simulated biomass yields
(above-ground biomass) close to observed biomass yields (above-ground total dry matter)
assuming differences in transp_eff cf values between varieties could explain all observed

differences in biomass yields.
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Standard regression analysis statistics such as the coefficient of determination (r?) were

inappropriate for analysis of the current data set due to the low availability of independent

observed data. Comparisons between simulations and observed data and the effects of varying

transp_eff_cf were analysed descriptively.

2.3. Results and Discussion

2.3.1. Variety independent validation of APSIM-Sugar

Simulated final yields for variety Q117 closely followed the mean observed yield of the four

varieties (Q117, Q124, Q138 and R570) for each crop under both water stressed and irrigated

treatments (Figure 2.2). Simulated yields were within one standard error of the observed mean

of the four varieties for all six environments. The simulation of differences between

environments was considered accurate enough to investigate simulations of relative varietal

differences.
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Figure 2.2. Simulated biomass yield (above-ground biomass) for Q117 for water stress (
irrigated (—) treatments over time. Solid points represent the mean observed biomass yield
(as above-ground total dry matter) across all varieties (Q117, Q124, Q138 and R570) for water
stress and irrigated treatments at Home Hill, for the plant, first ratoon and second ratoon

crops. Vertical ‘whiskers’ identify +/- 1 standard error from the mean of all varieties.

Simulations assumed a constant transp_eff_cf of 0.0087 g kPa g for all varieties.
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2.3.2. Simulation of varietal differences

Figure 2.3 displays variations in observed biomass yields (above-ground total dry matter) and
simulated biomass yields (above-ground biomass) among varieties in the field trial. Observed
differences between varieties varied between crops and treatments. Under irrigated conditions
Q124 had a lower mean yield than any other variety in the plant and 1 ratoon crops while Q117
and Q138 had similar mean observed vyields. For the 2" ratoon crop Q138 had the lowest
observed mean yield. Variety R570 had slightly higher mean observed yields than other varieties

for the plant and 2" ratoon crops under irrigated conditions.

Under stressed conditions variety Q117 had the highest observed mean yields for each crop.
Between variety differences in observed yields varied for each crop under stressed conditions.
For the 1% ratoon differences between observed variety yields were similar for stressed and
irrigated treatments. However for the plant and 2" ratoon the differences between varieties

varied between irrigated and stressed treatments.
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Figure 2.3. Comparison of observed biomass yields (above-ground total dry matter) and
variety specific simulated biomass (above-ground biomass) for the (a) plant (b) first ratoon and
(c) second ratoon crops. Open triangles represent observed replicates for water stress (/) and

irrigated (A\) treatments and closed triangles represent the observed mean ( ,— A=),
Closed circles represent the simulated biomass yields under water stressed ( -#- ) and irrigated

( -® ) treatments. Simulations assumed a constant transp_eff_cf of 0.0087 g kPa g* for all
varieties.
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In comparison to observed yields, simulated yields for different varieties appeared very similar
under all environments (Figure 2.3). There was virtually no simulated difference between
varieties Q117, Q124 and Q138 across all environments while R570 consistently had the highest
simulated yield. Simulations for Q117, Q124 and Q138 were identical for the plant crop water
stress treatment while Q117 and Q124 were identical for the irrigated treatment. In the 2™
ratoon under stressed conditions there was less observed variability between varieties and the
simulations of Q124, Q138 and R570 closely align with the mean observed yields. However,
simulations did not capture the three most evident observed differences between varieties; the
lower yield of Q124 under irrigated conditions of the plant and 1% ratoon, the higher yield of
Q117 under stressed conditions and how differences between varieties changed under stressed

conditions most evident in the plant and 2™ ratoon.

The lack of any difference between simulations for Q117, Q124 and Q138 was caused by the
almost identical description of these varieties in APSIM-Sugar (Table 2.2). Parameters within
APSIM-Sugar for one or more of these varieties may be inaccurate. While all three varieties were
simulated identically, Bonnett (1998) calculated significantly different leaf appearance rates
between varieties Q117 and Q138. It is possible therefore that these varieties differ at least in
leaf characteristics. R570 is characterised quite differently within APSIM-Sugar. This may have
contributed to the more accurate simulation of the difference between R570 and Q varieties
under irrigated conditions for the plant and 2" ratoon crops. However, as with the Q varieties
response to water stress was not captured. The results of this study agree with the opinion of
O’Leary (2000) that crop model improvement is required to improve the simulation of sugarcane

responses to stress.

2.3.3. Sensitivity of simulated biomass to TE

Incrementing transp_eff cf in APSIM-Sugar had a large effect on simulated biomass yields
(above-ground biomass) (Figure 2.4). The response of simulated biomass yields to changes in
transp_eff cf values differed between the simulations of irrigated and stressed treatments.
Under stressed treatments final yield increased linearly with an increase in transp_eff cf for the
1%t ratoon. An increase in transp_eff cf also linearly increased simulated yields under irrigated
conditions before a plateau was reached. As transp_eff cf is increased in APSIM-Sugar, less
water is required for a crop of the same size, resulting in less simulated stress and therefore
higher yields can be achieved. This explains the increase in yield with an increase in

transp_eff cf. When water stress is not present biomass is limited by other stresses (such as
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nutrient stress) or by RUE and an increase in TE (transp_eff_cf) will not increase yields. This
explains the plateau in simulated biomass yields under irrigated conditions. High values of
transp_eff cfresultedin larger simulated biomass yields for the simulation of the water stressed
treatment than for the simulation of the irrigated treatment. This was likely a result of different
levels of RUE between the two treatments. Lodging was simulated to occur in the irrigated
treatment for the first ratoon but was not included in the simulation of the stressed treatment.
As the effects of lodging were simulated by reducing RUE, the maximum unstressed biomass
that could be simulated was lower for the simulation of the irrigated treatment than for the
simulation of the water stressed treatment. A similar effect was documented in a field
experiment, where lodging in a high irrigation treatment significantly reduced total biomass,

cane yields and sucrose yields compared to lower levels of irrigation (Inman-Bamber et al. 2004).
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Figure 2.4. Comparison of observed biomass yields (above-ground total dry matter) and
simulated biomass yields (above-ground biomass) using a range of transp_eff cf values for
variety (a) Q117, (b) Q124, (c) Q138 and (d) R570. Open triangles represent observed yield

replicates for water stress (/) and irrigated (/A\) treatments and closed triangles represent the
observed mean ( , —A-). Closed circles represent the simulated biomass yields under

water stressed ( -#- ) and irrigated ( -®- ) treatments.

Simulated biomass yields (above-ground biomass) for each variety were closest to mean
observed biomass yields (above-ground total dry matter) for different transp_eff_cf values in
the first ratoon crop, most notably for the stressed treatment (Figure 2.4). For the stressed
treatment the simulated biomass yield of Q117 was closest to the mean observed biomass yield

for a transp_eff_cf value of 0.0121 g kPa g* while for Q124 simulated yield was closest to mean

34



observed yield for a transp_eff_cf value of 0.0064 g kPa g. Simulated yields for Q138 and R570
were closest to mean observed yields for transp_eff_cf values of 0.0083 g kPa g* and 0.0078 g
kPa g? respectively under stressed conditions. These ‘calibrated’ values of transp_eff cf for
Q117 and Q124 differ considerably from the default value of APSIM-Sugar (0.0080 g kPa g') and
the measured value for Q127 (0.0087 g kPa g?) reported by Inman-Bamber and McGlinchey
(2003). There were also obvious differences between transp_eff cf values for stressed and

irrigated treatments for each variety. However, these results must be interpreted very carefully.

There was a relatively high variability in observed yield replicates for Q117 and Q138 under
stressed conditions (Figure 2.4) and further variability would arise if plant and ratoon crops were
included. Directly comparing simulated results for various transp_eff cf values with observed
results assumes that all variability between varieties could be explained by differences in TE.
Obviously any single parameter could be ‘tuned’ in this way to force simulated data to match
observations. Furthermore higher simulated biomass yields under stressed conditions than
under irrigated conditions at high values of transp_eff_cf highlight the role model setup can play
on the effect of changing parameter values. The results from the 1 ratoon in Figure 2.4 are
indicative of the effect transp_eff cf can have on simulated yields and show that using different
values of transp_eff cf under irrigated and stressed conditions could affect simulated biomass

yields. However, these results should not be considered definitive values for each variety.

A recent pot experiment using 20 sugarcane varieties identified statistically significant genetic
variability in TE as well as significant interactions between genotype and water stress
treatments (Jackson et al., 2014). On an above-ground biomass basis, Jackson et al. (2014) found
that genetic variation in TE was statistically significant under water stressed conditions (p<0.01)
but found only low statistical evidence (p=0.12) for variation under irrigated conditions. The
sensitivity of simulated yields to transp_eff cf values and the variability of transp_eff cf values
that best simulated variety yields suggest that including this genetic variation in TE in crop
models would be beneficial. The results for TE strongly support the inclusion of other variety
parameters in general. A better understanding of crop responses to water-limited conditions
will improve the ability of crop models to simulate variety differences in specific environments.
This will allow researchers to further investigate variety and environment interactions that are
particularly important to breeding programs and are currently being explored in other

commercial crop industries.
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2.3.4. Limitations and future research

This chapter has considered a descriptive assessment of the simulation of varietal differences
using APSIM-Sugar. The limited data set used was not appropriate for a more rigorous
guantitative assessment. Experiments for a larger number of sites would allow researchers to
more confidently interpret the results. This chapter also considered the effect of modifying TE
within APSIM-Sugar as an example of the potential benefits of including new variety parameters.
Other parameters that are important under water stressed conditions such as rooting depth and
stomatal conductance (Inman-Bamber et al., 2012) should also be considered in future research.
The results presented here suggest that variety parameter definitions within APSIM-Sugar are
currently insufficient to accurately simulate yield differences between varieties and how
different varieties respond to stress. While this chapter has focused on the sensitivity of
simulation output to TE it will be necessary for future research to consider re-parameterising all
variety parameters. A targeted sensitivity analysis would allow researchers to identify which
variety parameters are most influential to model outputs. This will help guide field experiments

by identifying what data needs to be collected to calibrate the model.

Where data are not available, statistical calibration of parameter values is a viable alternative.
Descriptive data analysis identified transp_eff cf parameter values that produced simulated
yields closer to observed yields under stressed conditions. However, data were limited for
individual varieties and several modifications were required to accurately simulate the observed
field trials. These limitations reduce the applicability of the results to new scenarios such as new
growing environments. Furthermore, the simulation of higher biomass under stressed
conditions than irrigated conditions at high values of transp_eff cf highlight that differences in

parameter values may be influenced by limitations in the model.

Using a larger data set and appropriate calibration techniques it would be possible to statistically
calibrate the transp_eff cf parameter and other variety parameters within APSIM for each
variety. Statistical calibration techniques have been used for sugarcane in the DSSAT-Canegro
model (Marin et al., 2011) and for crop models of other commercial crops such as wheat (He et
al., 2012) and rice (lizumi et al., 2011). No attempt has been made to employ such techniques

in APSIM-Sugar.
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2.4. Conclusion

APSIM-Sugar simulations of the standard variety Q117 were within one standard error of
observed mean yields for 4 commercially released varieties under irrigated and water stressed
conditions after adjusting RUE and accounting for lodging in the irrigated treatment. However,
a detailed comparison revealed that APSIM-Sugar was unable to simulate the observed
differences between varieties yields and how these differences change when crops are grown
under water stressed conditions. Modifying APSIM-Sugar’s TE parameter (transp_eff cf) had a
large effect on simulated yields. For each variety, simulated yields were closer to mean observed
yields for different values of transp_eff cf under stressed conditions in the 1% ratoon. This
suggests that APSIM-Sugar simulations could be improved by incorporating the Ilatest
physiological knowledge on genetic variation in TE and by extension, other ‘new’ variety
parameters. To efficiently overhaul trait characterisations, future research will need to consider
the sensitivity of simulation outputs to the full range of variety parameters in order to identify
the traits that are most suited to closer examination. Where measured data on variety specific
traits is unavailable statistical models can be used to calibrate model parameters. Models
capable of variety simulation can be used to explore variety and environment interactions and
help identify desirable variety traits. This will improve the crop model as a decision support

system.

2.5. Chapter 2 Summary

The potential of crop modelling to aid farm management decisions has been demonstrated in
the sugar industry. Models such as the Agricultural Production Systems sIMulator (APSIM) have
been used in scheduling irrigation and fertilisation and for forecasting yields. APSIM models
were developed based on variety parameters of a limited number of traits such as leaf area and
how biomass is partitioned. Many of these variety parameters use the same value for all
varieties because they have not been measured or defined for different genotypes. The varieties
included in the model are no longer widely used for commercial applications and may not
represent the genetic and phenological variability found in currently grown varieties. This could
reduce the accuracy of simulated results for new varieties. To improve APSIM as a decision
support system, deficiencies in APSIM’s ability to simulate varietal differences should be

identified.
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The biomass yields of four commercially released sugarcane varieties that are currently defined
within APSIM were simulated in this chapter. These varieties were also grown under water
stressed and fully irrigated conditions at Home Hill over three years. An exploratory data
analysis procedure compared simulated and observed differences between varieties. Simulated
yields closely resembled observed yields if variety differences were ignored. However, APSIM
did not contain many trait parameter differences between varieties and this limited the ability
of APSIM to reproduce observed variety responses to water stress. To simulate these

interactions effectively, varieties need to be accurately defined in the model.

A descriptive sensitivity analysis that varied the TE parameter (transp_eff cf) in APSIM
demonstrated how additional variety parameters can affect yield simulations. Incrementally
adjusting transp_eff cf had a large effect on simulated yields. Under stressed conditions,
transp_eff_cf values as low as 0.0061 g kPa g and as high as 0.0121 g kPa g* were required to
closely simulate mean observed yields for different varieties assuming the difference response
to water stress between varieties could be attributed solely to differences in TE. This varied from
the default APSIM value of 0.0080 g kPa g. This chapter illustrated the need for accurate
characterisation of variety specific traits to improve simulation of variety performance in
different environments. Future research must consider the effect of all variety specific
parameters to identify which parameters have the greatest effect on simulated yields. Variety
specific modelling can potentially be used to identify ideal varieties for specific environments

and to tailor management strategies to specific combinations of varieties and environments.
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Chapter 3

Global sensitivity analysis of key parameters in a
process-based sugarcane growth model — A Bayesian
approach

Sexton, J., Everingham, Y., 2014. Global sensitivity analysis of key
parameters in a process-based sugarcane growth model - A Bayesian
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3.1. Introduction

Sugarcane crop models have been used as support tools for various management decisions.
Lisson et al. (2005) reviewed the use of sugarcane crop models to optimize irrigation and harvest
scheduling and perform yield forecasts. More recently crop models have been used to project
climate change impacts on productivity and nutrient management (Biggs et al.,, 2013;
Everingham et al., 2015). Research has also expanded into modelling variety specific traits that
could improve yield under water stressed conditions (Inman-Bamber et al., 2012). This has the
potential to guide the development of new cane varieties as well as improve irrigation
management. Despite the potential advantages in variety simulations current sugarcane models
such as the ‘Sugar’ module in the Agricultural Production System slMulator (APSIM-Sugar;
(Keating et al., 1999)) can struggle to simulate observed differences in biomass yields between

varieties (Chapter 2).

The increasing use of crop models in climate change research and the potential impact that
modelling can have on environmental and economic management decisions, requires
researchers to quantify and analyse uncertainty in crop models. Sensitivity analysis in particular
has been a recent focus of crop modelling entities such as AGMIP (Rosenzweig et al., 2013).

Global sensitivity analysis investigates how uncertainty in a model input or group of inputs
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affects uncertainty in model outputs and can be used to identify input parameters that model

outputs are sensitive to (Kennedy and O'Hagan, 2001).

Global sensitivity analysis considers substantial changes in input parameters. The variance
induced in the output by changes in an input is averaged over the variance induced by all input
parameters (Saltelli et al., 1999). Comparatively, local sensitivity analysis is based on partial
derivatives of the function relating inputs to outputs at a central point, holding all other
parameters constant. This represents slight changes to the input parameter values and may not

reflect the true uncertainty in model parameters (Oakley and O'Hagan, 2004).

A range of methods exists for analysing crop model output sensitivity to model input
parameters. These methods generally use a Monte Carlo approach, selecting a large number of
random samples drawn from a prior distribution of the input parameter values. The Sobol
scheme (Sobol, 1993) is an example of a Monte Carlo approach to global sensitivity analysis. The
computational efficiency of such methods has been improved in such schemes as the extended-
FAST method (Saltelli et al., 1999) but can still require thousands of simulations. This is generally
impractical for computationally expensive models such as process—based crop models. A
Bayesian approach to global sensitivity analysis using a Gaussian Process based emulator can be
an efficient alternative (Oakley and O'Hagan, 2004; O’Hagan, 2006). Zhao et al. (2014)
performed global sensitivity analysis on 10 parameters in the APSIM Wheat model for several
study sites. Using the extended-FAST methodology this analysis required 10000 simulations per
study site/treatment combination. Parry et al. (2013) performed a global sensitivity analysis on
11 parameters in an agent-based model for skylark populations. Using the Gaussian Process
approach of Oakley and O'Hagan (2004) the analysis was conducted using only 200 simulation

runs.

In this chapter the Bayesian approach to sensitivity analysis described by Oakley and O'Hagan
(2004) as implemented in the freely available software GEM-SA (Kennedy, 2005) is used to asses
the sensitvity of simulated biomass and sugar yields to 14 parameters in the APSIM-Sugar
model. Knowledge of influential parameters will lead to a better understanding of the model

and may lead to improved simulation of sugarcane under a range of environments.
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3.2 The Gaussian Process Emulator

The Bayesian approach to global sensitivity analysis described by Oakley and O'Hagan (2004) is
part of a range of Bayesian tools for model analysis referred to as Bayesian Analysis of Computer
Code Output (O’Hagan, 2006). Here, the general approach to developing the emulator and
performing sensitivity analysis as implemented in the GEM-SA (Gaussian Emulation Machine-
Sensitivity Analysis) software package is outlined. Further details of the underlying mathematics
can be found in Kennedy and O'Hagan (2001) and documentation in the GEM-SA software
package (Kennedy, 2005). Crop model outputs (Y) can be considered a function of model inputs
(X) (3.1). In the Bayesian sense the crop model f(X) is assumed unknown and is thus considered

a random function. A Gaussian distribution of functions is then used to represent our prior

beliefs of f(X) (3.2).

Y =f(X) (3.1)
where:

X = [X1, X2, ..., Xp] and X; is the i™" parameter of interest

[F(X)IB, o2, rI~N(m(X), cov(f(X), f(X"))) (3.2)
where:

m(X) = fo +fuxa + ... 5% (3.3)
coV(f(X), f(X')) = 2e(X, X') = azexp(-_:f[lri(xi : xi')j. (3.4)

The prior distribution of any collection of outputs (f(X1) ... f(Xn)) is multivariate normal with mean
vector derived from (3.3) and covariance matrix derived from (3.4). The Gaussian distribution
is mathematically convenient (Kennedy and O'Hagan, 2001) and has been proven effective for
a range of emulation based analyses (Kennedy et al., 2006). Expressing the mean function as a
linear additive model can be convenient for analysis but should be modified to reflect any beliefs
about the structure of the simulator (Oakley and O'Hagan, 2004). The value ¢ represents the
overall variance about the mean function while r; are unknown roughness parameters. Within
the GEM-SA software package the unknown hyper-parameters 8 and ¢® are given a constant
joint prior probability p(B, ¢%) o o2. Each riis assumed to be independent with an exp(0.01) prior

distribution.
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Using a smooth correlation in the covariance is an advantage of this methodology. This implies
that if f(X) is known and f(X) is close to f(X') we have some information about f(X'). This
provides extra information compared to Monte Carlo methods and can significantly reduce the
number of simulations required. In comparison to the random draw from the prior parameter
sample space used in Monte Carlo methods, model outputs (Y) are observed at design points
selected to efficiently cover the parameter sample space. Design points are selected by
maximizing the minimum distance between points and/or minimizing the correlation between
points. The GEM-SA software package can build a Maximin Latin Hypercube or LP-TAU design
(Kennedy, 2005). It can then be shown that the emulator, conditional on r and Y, has a posterior

Student’s t-distribution (3.5) with given posterior mean function m*(X) and posterior

covariance o c*(X, X).

[FX) | 1, Y] = ta- sy(M*(X), 0° c*(X, X)) (3.5)

Variance based sensitivity indices can be calculated from the posterior distribution. Of particular
interest are the first order sensitivity index (S;) and the total sensitivity index (ST;) (Oakley and
O'Hagan, 2004; Kennedy, 2005). The first order sensitivity index for X;j represents the expected
reduction in output variance if X; were known, i.e. an index of the effect that modifying X;alone
as on model outputs - the ‘main effect’ of Xi. The total sensitivity index represents the
unexplained variance that would remain if all x.i (all X other than x;) were known and is a way of
assessing the main effect of X; and all higher order interactions to which x; may contribute.
Uncertainty in the parameter main effects on emulator outputs can also be calculated from the
posterior distribution either analytically or through random draws from the posterior

distribution.

3.3 The APSIM Sugarcane Growth Model and Key Parameters

APSIM-Sugar simulates important agronomic measures of crop productivity such as sugar yield,
cane yield and sugar content of stalks (CCS) on a daily time step. These measures are derived
from simulated crop biomass which is divided into leaf, cabbage, structural stem, roots and
sucrose (Keating et al., 1999). The accumulation of biomass is driven largely by radiation use
efficiency (RUE) where radiation refers to the 300 nm to 3000 nm bandwidth. RUE defines the
ratio of biomass produced to intercepted radiation and can be limited by various environmental

stresses such as temperature, water deficit or excess and nitrogen deficit.
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There are five main categories of parameters in the APSIM-Sugar model that control how the
crop grows given environmental and management conditions. These include constants, generic
plant crop and ratoon crop parameters and variety parameters for plant and ratoon crops
(http://www.apsim.info/Documentation/Model,CropandSoil/CropModuleDocumentation/Sug
ar.aspx). The growing environment is largely described by environmental parameters including
climate parameters and soil parameters. Generic plant and ratoon parameters control growth
and partitioning, water use and temperature and water stress factors. Eleven parameters are
used to directly define a variety (Table 3.1). These parameters control leaf development
(leaf size, tillerf leaf size, green_leaf no), partitioning of assimilates (cane_fraction,
sucrose_fraction_stalk, sucrose delay, min_sstem_sucrose, min_sstem_sucrose _redn) and
phenological development based on thermal time (tt_emerg_to_begcane,

tt_begcane_to_flowering, tt_flowering_to_crop_end) as described in Chapter 1.

Recent research has suggested that transpiration efficiency (TE) can vary between varieties and
levels of water stress (Jackson et al., 2014). Rooting vigour, TE and stomatal conductance have
been identified as possible traits that may lead to higher biomass yields under stressed
conditions (Inman-Bamber et al., 2012). The root water extraction coefficient (k;) has been used

as a surrogate for stomatal conductance in APSIM-Sugar (Inman-Bamber et al., 2012).

Table 3.1. Key APSIM-Sugar parameters for use in sensitivity analysis

Parameter Units Representative Values
leaf size mm? 55000 (maximum)
cane_fraction ggt 0.70
sucrose_fraction_stalk ggt 0.55
sucrose_delay gm? 0
min_sstem_sucrose gm? 400
min_sstem_sucrose_redn gm? 10
tt emerge_to_begcane °C day 1900
tt_begcane_to_flowering °C day 6000
tt_flowering to _crop_end °C day 2000
green_leaf no leaves 13
tillerf_leaf_size mm? mm? 1.5 (leaf 6 and 10)
transp_eff_cf gkPag? 0.0087
rue g MJ? 1.85 (plant) / 1.65 (ratoon)
k; nil Varies with depth of roots

43



3.4. Methodology

3.4.1. Model initialization and parameter prior distributions

APSIM-Sugar environment and management settings were calibrated to simulate a breeding
program at Home Hill in Queensland, Australia (Basnayake et al. (2012b); Chapter 2). Uniform
prior distributions for 14 parameters were generated for the sensitivity analysis (Table 3.2).
Ranges for variety parameters: cane fraction, sucrose fraction_stalk, sucrose _delay,
min_sstem_sucrose, tt emerg_to _begcane, tt begcane_to_flowering,
tt_flowering to crop _end and tillerf leaf size represent the range of parameter values
reported for sugarcane varieties in APSIM-Sugar. Maximum and minimum values for leaf size
were selected to represent maximum leaf area values for a range of commercial varieties
(Inman-Bamber, 2013). For simplicity leaf_size was modified relative to leaf_size for variety
Q117 based on maximum leaf area. The range for parameters green_leaf no, rue and k; were
adapted from data recorded as part of breeding field trials conducted under irrigated conditions
at Home Hill, Queensland, Australia (Basnayake et al., 2012b). The range of values for
parameter green_leaf no were based on observed counts of green leaves for 89 varieties grown
in the trial. Parameters rue and k. were adjusted to represent observed variation of conductance
under well irrigated conditions (rue) and the difference between well irrigated and stressed
conditions (k;). Adjustment factors for each of 89 varieties were calculated relative to variety
Q117. For example, plant rue in APSIM is by default 1.8 g MJ™. If variety X had a rue adjustment
factor of 0.90, rue for variety X was modified to 1.62 g MJ. Adjustment factors for k, were
applied to all soil layers. For example, consider the first three layers of a soil with a defined k; of
[0.010 0.050 0.100] for depths down to [15 cm 30 cm 45 cm] respectively. If variety X had a k;
adjustment factor of 0.9, the k; for the first three layers of variety X would be [0.009 0.045
0.090].

Observed rue adjustments did not exceed 1.1 (1.98 g MJ?). This remains consistent with
sugarcane literature which suggests a maximum rue of approximately 2 g MJ* (Muchow et al.,
1996b). Inman-Bamber et al. (2012) suggested a reduction in k; of up to 50% was not unrealistic.
However, as k; is often defined for individual soils (Inman-Bamber et al., 2000), the range of k;
adjustment factors may approach inappropriate values for some soil types and care should be
taken in interpreting resultant calibrations.The range for transp_eff cf was selected based on

transpiration rates recorded in a greenhouse study under irrigated and water stressed
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conditions (Jackson et al. 2014) and matched those used in Chapter 2. Values for transp_eff cf
were based on irrigated and stressed conditions in order to capture the possibility of higher
transp_eff cfvalues under brief periods of water stress that may occur even under well irrigated

conditions.

Table 3.2. Uniform parameter ranges used for sensitivity analysis.

Parameter Units Minimum Maximum
leaf _size (maximum) mm? 20000 70000
cane_fraction gg! 0.65 0.80
sucrose_fraction_stalk gg! 0.4 0.7
sucrose_delay gm 0 600
min_sstem_sucrose gm 400 1500
min_sstem_sucrose_redn gm 9 11
tt emerg _to_begcane °C day 1200 1900
tt_begcane_to_flowering °C day 5400 6600
tt_flowering to _crop_end °C day 1800 2200
green_leaf no leaves 9 15
tillerf_leaf_size mm? mm? 1 6
transp_eff cf g kPa g 6.0 14.0
rue' (adjustment factor) nil 0.74 1.08
k.? (adjustment factor) nil 0.57 1.81

'rue was adjusted relative to APSIM default values so that 1 relates to the APSIM default rue
of 1.8 g MJ! (plant) and 1.65 g MJ! (ratoon)

2k, was adjusted relative to APSIM default values based on APSIM Q117 and soil data. A value
of 1 represents the default value for all soil layers.

3.4.2. Sensitivity analysis

The GEM-SA software package (Kennedy, 2005) was used to perform global sensitivity analysis
on simulated biomass (g m?) and sucrose yield (g m?) at harvest for a first ratoon crop under
irrigated and water stress conditions (a total of 4 simulation outputs assessed). The Maximin
Latin Hypercube approach was used to create a design of 400 points that efficiently covered the
14 dimensional parameter space. The maximum value of 400 points was used to provide the
most rigorous analysis possible. A Gaussian Process emulator was developed for each of the 4

simulation outputs separately.

Twenty percent of the design was left out for validation to assess uncertainty in the emulator
results. To further quantify uncertainty a 95% credible interval on all main effects was produced
from 1000 random draws from the emulator posterior distribution. Plots of the emulator mean
of the main effects from 1000 random draws were used to visualise the response of outputs to

each of the 14 variables. Finally first order sensitivity indices and total sensitivity indices were
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recorded for each variable for all simulation outputs. A high S; indicated an influential

parameter.

3.5. Results

3.5.1. Sensitivity analysis

The mean main effects of 1000 draws from the posterior emulator are plotted for biomass in
Figure 3.1 and sucrose yield in Figure 3.2. First order sensitivity indices (Si) and total sensitivity
indices (STi) are recorded in Table 3.3. Most notably tt begcane to flowering,
tt flowering to_crop_end, min_sstem _sucrose _redn and tillerf leaf size had S; indices less
than 1 for all outputs. Similarly biomass yields were insensitive to parameters related to sucrose
(sucrose_fraction stalk, sucrose_delay, min_sstem_sucrose). The number of green leaves
parameter (green_leaf no) was the most influential of the standard APSIM-Sugar variety
parameters. Simulated biomass and sucrose yields were most sensitive to changes in rue under
irrigated conditions and transp_eff cfunder stressed conditions. Plots of main effects suggested
model output sensitivity can be non-linear and change dramatically under irrigated or water

stressed conditions.

Table 3.3. Variance based sensitivity measures for biomass and sucrose yields at harvest under
irrigated and water stressed conditions. The first order sensitivity indices (Si) represent the
percentage of total variance contributed by each parameter. The total sensitivity indices (STi)
reflect the influence of each parameter and its contribution to any interactions.

Biomass at Harvest Sucrose yield at Harvest
Parameter - "
Irrigated Stressed Irrigated Stressed
Si ST; Si ST; Si ST; Si ST;
leaf _size (maximum) 12.24 13.17 1.08 1.79 7.89 9.70 1.23 1.92
cane_fraction 4.90 565 5.32 583 1.61 220 451 5.24
sucrose_fraction_stalk 0.06 0.07 0.01 0.05 10.30 11.65 8.53 9.92
sucrose_delay 0.00 0.00 0.00 0.00 141 2.84 0.28 0.60
min_sstem_sucrose 0.10 0.12 0.00 0.00 10.02 12.32 12.80 13.95
min_sstem_sucrose_redn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12
tt_emerg _to_begcane 0.01 0.43 0.07 0.10 1.56 2.87 2.50 3.24

tt_begcane_to_flowering 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
tt_flowering_to_crop_end  0.00 0.02 0.00 0.13 0.02 0.05 0.00 0.19

green_leaf_no 19.87 21.23 8.42 1025 14.42 1541 1138 12.28
tillerf_leaf_size 017 104 004 073 005 029 001 0.5
transp_eff_cf 3.04 566 70.65 7351 033 1.94 3515 39.87
rue 54.05 56.28 7.56 9.22 44.93 49.00 16.26 19.58
k. 109 2.81 283 373 027 207 057 201
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Figure 3.1. Parameter main effect on biomass under irrigated (black) and stressed (grey)
conditions. Effects recorded for (a) leaf _size, (b) cane_fraction, (c) sucrose_fraction_stalk, (d)
sucrose_delay, (e) min_sstem_sucrose, (f) min_sstem_sucrose_redn, (g)
tt_emerge_to_begcane, (h) tt_begcane_to_flowering, (i) tt_flowering to_crop_end, (j)
green_leaf no, (k) tillerf_leaf size, (1) transp_eff cf, (m) rue and (n) k;. Input values are
standardized as 0 = minimum value and 1 = maximum value from Table 3.1.
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3.5.2. Emulator accuracy
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Figure 3.2. Parameter main effect on sucrose yield under irrigated (black) and stressed (grey)

conditions. Effects recorded for (a) leaf_size, (b) cane_fraction, (c) sucrose_fraction_stalk, (d)
sucrose_delay, (e) min_sstem_sucrose, (f) min_sstem_sucrose_redn, (g)
tt_emerge_to_begcane, (h) tt_begcane_to_flowering, (i) tt_flowering_to_crop_end, (j)
green_leaf _no, (k) tillerf_leaf_size, (1) transp_eff_cf, (m) rue and (n) k;. Input values are
standardized as 0 = minimum value and 1 = maximum value from Table 3.1.
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Standardized validation root mean square errors (RMSE), largest roughness parameters and

largest standardized errors were recorded (Table 3.4). Standardized validation RMSE reflects

the overall performance of the emulator in reproducing the APSIM-Sugar model outputs and

should be close to 1. Standardized validation RMSE values larger than 1 indicate emulator

outputs overestimated APSIM-Sugar outputs while lower values indicate that emulator outputs
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underestimated APSIM-Sugar outputs. Roughness parameters indicate how non-linear the
relationship between output and input parameters are. Input parameters with high roughness
parameter values generally require more learning data points to accurately emulate the
relationship, reducing the emulator efficiency (O’Hagan, 2006). Standardized errors are
calculated for each of the training points and should be close to zero. Training points with
standardized error values larger than 2 indicated poor emulation for that case and may be used
to help identify regions of the design space for which the emulator performs poorly. Validation
root mean squared standardized errors were all close to 1 with the greatest deviation occurring
for simulated biomass under water stressed conditions. Roughness parameters were also
relatively low. The largest roughness parameters were related to k; and rue under irrigated
conditions and transp_eff cf under stressed conditions. The largest standardized errors were
greater than 2 for all treatment/output combinations indicating that some cases were poorly
reproduced by the emulator and may suggest that more training data was needed. Credible
intervals (95%) on the parameter main effects on model outputs (based on 1000 random draws
from the emulator posterior distribution), suggested that any uncertainty in the emulator did
not result in a large uncertainty in emulator outputs and parameter main effects on those

outputs (data not shown).

Table 3.4. Emulator performance statistics for biomass and sucrose yield at harvest under
irrigated and water stressed conditions. Standardized RMSE should be close to 1 with larger
values indicating an overestimation and lower values representing an underestimation. Smaller
roughness parameters are desirable. Standardized errors of less than 2 are desirable.

Error Measure Biomass at Harvest Sucrose at Harvest
Irrigated Stressed Irrigated Stressed

Validated RMSE 1.13 1.57 0.99 1.22
(standardized)
Largest Roughness 3(rue, k) 3.33(transp_eff cf)  3(rue, ki) 4.15(transp_eff cf)
Parameter
Largest Standardized 3.00 5.56 2.74 3.33
Error

3.6. Discussion

Emulator uncertainties were relatively low however the higher roughness parameters suggest
close attention should be paid to transp_eff cf, rue and k, parameters. Emulator results for
transp_eff cf replicated the results found in Chapter 2 supporting the emulators’ ability to
accurately represent the model. Emulator accuracy would no doubt be further improved if non-
influential parameters were removed from the analysis. This would allow the 400 design points

to better cover the reduced parameter space.
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The insensitivity of model outputs to tt_begcane_to_flowering and tt_flowering_to_crop_end
is not surprising as these parameters are not currently implemented by APSIM-Sugar (Keating
et al., 1999). These parameters were only included in this analysis as they are still listed as
variety parameters in the APSIM-Sugar model yet no published work has looked at their role in
simulations since (Keating et al., 1999). It is an important result then that these parameters are
in fact not influencing simulation output. The insensitivity of simulated biomass to sucrose
parameters is also to be expected. The lack of influence of tillerf leaf size and
min_sstem_sucrose_redn are of greater import. Tillering is considered a desirable trait which
can improve biomass yields and the low sensitivity of simulated biomass to tillerf _leaf size is
counterintuitive. It is important that future research investigates how tillerf leaf size is used by
sugarcane modellers. For purposes of model calibration tillerf leaf size and
min_sstem_sucrose_redn may be ignored, reducing the risk of over parameterisation when

availability of observed data is low.

The influence of leaf_size on model outputs was distinctly non-linear under irrigated conditions
(Figure 3.1 (a) and Figure 3.2 (a)). The plateau at higher values suggests that beyond a certain
point increase in leaf _size will not increase yields. This is an important result in understanding
how the model can be used for different sugarcane industries. For example, modelling
differences in leaf area will have a greater impact for industries such as Australia that use
varieties with smaller leaf areas, compared to industries such as Brazil where sugarcane varieties
generally have larger leaf areas. For simulated biomass there was a marked difference in the
influence of rue between irrigated and stressed conditions (Figure 3.1 (m)). This may mean that
use of rue in variety parameterisations could affect simulations of variety by environment
interaction. While rue was more influential under irrigated conditions, k; was slightly more
influential under stressed conditions. Although these two parameters do not vary in APSIM-

Sugar by default, calibration of each may lead to a better simulation of environmental response.

Sugarcane industries are continually developing new varieties to improve productivity. In order
to remain a relevant decision support tool models such as APSIM-Sugar must continually be
updated to reflect current varieties and physiological knowledge. Unfortunately collecting the
data on variety traits can be expensive and time consuming. Knowledge of influential model
parameters can be used to evaluate the trade-off between the expense of measuring a

particular trait to inform a crop model and the potential contribution the knowledge will make
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towards improving the simulation. The results from this study should be considered along with
the expense of measuring relevant traits and the genetic heritability of traits when data is

collected to inform crop models.

The use of a Gaussian Process to emulate the APSIM-Sugar model provided an efficient and
effective global sensitivity analysis. For this analysis 800 simulations in APSIM-Sugar were
required (400 parameter sets * 2 treatments). By comparison the extended-FAST method as
implemented by Zhao et al. (2014), would have required as many as 28000 simulations in APSIM-
Sugar (1000 parameter sets * 14 parameters * 2 treatments). In future emulator accuracy could
be improved by removing parameters found to have negligible influence on key agronomic
parameters. Improvements could also be made if more realistic information of the prior
parameter distributions were identified and incorporated into the analysis. Currently the GEM-
SA software allows for only uniform or normal prior distributions. Incorporating different prior
distributions, when known, may affect the results. Furthermore when uniform distributions are
used, the range used will affect the results. For example, a change in leaf size was more
influential at lower values (Figure 3.1(a)). Reducing the prior distribution of leaf size to lower
values could potentially increase the relative influence of leaf_size. This methodology could be
extended to include other likely influential parameters at a wider range of environments and
crop classes to assess potential interactions. Future research should also consider interactions

between influential parameters.

3.7. Conclusion

The GEM-SA package was able to efficiently perform a global sensitivity analysis for the APSIM-
Sugar model. While there was room for improvement in the choice of parameters and possibly
the parameter prior distributions, the emulator was able to reproduce sensitivity results for TE
previously produced using only the APSIM-Sugar simulator and was able to give some insight
into likely influential and negligible variety parameters. In particular phenology parameters (e.g.
tt_begcane_to_flowering), tillerf leaf size and min_sstem_ sucrose redn had little to no
influence on either model output. Both model outputs were sensitive to parameters rue,
green_leaf_no and leaf size under irrigated conditions and transp_eff cf under water stressed
conditions. The most influential sucrose specific parameters were sucrose fraction and
min_sstem_sucrose. ldentifying influential parameter values is the first step to improving variety

specific simulations. The results of this analysis could be used to guide the calibration of the
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APSIM-Sugar model so that new varieties are properly represented in model simulations. Such
variety calibration could greatly impact APSIM-Sugar’s ability as a decision support tool in the

future.

3.8. Chapter 3 Summary

While several statistical methods are available to analyse model sensitivity, their application to
complex process-based models is often impractical due to the large number of simulation runs
required. A Bayesian approach to global sensitivity analysis can greatly reduce the number of
simulation runs required by building an emulator of the model which is less computationally
demanding. In this chapter a Gaussian Process emulator was used to efficiently assess the
sensitivity of key agronomic outputs from the APSIM-Sugar crop model to influential input
parameters. The sensitivity of simulated biomass and sucrose yield at harvest was assessed on
14 parameters representing varietal differences and growth response to water stress. Analysis
was performed under irrigated and water stressed conditions. Simulated biomass and sucrose
yield were found to be insensitive to 4 of the parameters tested (min_sstem_sucrose_redn,
tt_begcane to_flowering, tt_flowering to_crop_end and tillerf leaf size) under both irrigated
and stressed conditions. Both outputs were most sensitive to radiation use efficiency under
irrigated conditions and transpiration efficiency under stressed conditions. Output sensitivity
was often non-linear and for a given parameter, could vary between well irrigated and water
stressed conditions. Understanding how these parameters affect simulation outputs and which
parameters are most influential can help improve simulations of interactions between
sugarcane varieties and growing environments. This in turn can help better guide management
decisions in the future. The Bayesian approach to sensitivity analysis provided insight into

influential and negligible model parameters.
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Chapter 4

A dual method evaluation of the use of two Bayesian
techniques for the calibration of variety parameters in a
sugarcane crop model

Sexton, J., Everingham, Y., Inman-bamber, G., 2015. A dual method
Relevant evaluation of the use of two Bayesian techniques for the calibration of
publication variety specific trait parameters in a sugarcane crop model.
Environmental Modelling & Software, (submitted).
The research question was developed with input from Sexton,
Everingham and Inman-Bamber. Inman-Bamber  provided
methodology for developing prior parameter distributions. Sexton
wrote the draft of the paper which was revised with input from
Everingham and Inman-Bamber. Sexton performed data analysis and
produced all figures and tables.
Publication status  Submitted

Statement of
intellectual input
from co-authors

4.1. Introduction

Australian sugarcane varieties have changed over the last 15 years yet their representation in
crop growth models has not. The Australian sugar industry is constantly developing new
varieties to improve sucrose yield, pest and disease resistance and tolerance of abiotic stresses
such as drought and water logging. Diseases such as orange rust (Magarey et al., 2001) have
greatly affected prominent varieties like Q124, requiring new disease resistant varieties for
commercial applications. Most varieties commonly grown in 1999 have been superseded by
new varieties (Figure 4.1). Despite this crop models such as the Agricultural Production Systems
sIMulator (APSIM) (Holzworth et al., 2014) do not offer options for these new varieties (APSIM-
Sugar Version 7.5 r3124) (Keating et al., 1999). This has limited the ability of modellers to explore
sugarcane varietal differences through simulation. In contrast, the ability to simulate varietal
differences has been well explored in a range of other commercial crop industries. For example
varietal simulations have been used to identify ideal varieties for given environments in crops
such as peanuts (Putto et al., 2013), wheat (Laurila et al., 2012), and rice (Aggarwal et al., 1997);
to investigate likely sources of genetic gains in soybeans (Boote et al., 2001) and to link crop

models with genetic models (Chapman, 2008).
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Figure 4.1. Percentage of hectares grown by variety in Australia (QLD and NSW) for 1999 and
2013. Values downloaded from QCANESelect™ provided by Sugar Research Australia (accessed
11-09-2014). Data were collected as part of the SPIDNet database (Lethbridge and Cox, 2010).

Dynamic (process-based) crop models are advantageous as they simulate the underlying
physiological processes required to grow a crop (Lisson et al., 2005). Cropping-system simulators
model crop growth in response to environments, soils, stresses, varieties and management
decisions. Many such models are available for sugarcane including APSIM-Sugar, DSSAT-
Canegro (Singels et al., 2008), QCane (Liu and Bull, 2001), AUSCANE (Jones et al., 1989) and
STICS-Sugarcane (Brisson et al., 2003). These models are widely used as decision support tools
to help identify industry best practices as well as helping farmers develop site specific
management plans. DSSAT-Canegro and APSIM-Sugar are two of the most widely used models.
For example APSIM-Sugar has been used in Australia for irrigation scheduling (Everingham et
al., 2002), investigating nitrogen best management practices (Thorburn et al., 2010; Stewart et
al., 2006; Skocaj et al., 2013), and climate change impact studies (Biggs et al., 2013; Webster et
al., 2009). Canegro in the DSSAT environment has been used for similar studies largely in South
Africa (Bezuidenhout et al., 2002; van der Laan et al., 2011; McGlinchey and Inman-Bamber,
1996; Jones et al., 2014) but also for climate change impacts in Swaziland (Knox et al., 2010) and
Australia and Brazil (Singels et al., 2013). To date little research has considered varietal effects

on such decision support research in sugarcane.

Canegro (DSSAT V4.5) represents 13 sugarcane varieties using 22 variety parameters while
APSIM contains 14 sugarcane varieties described using 13 parameters. Some parameters

representing physiological traits such as leaf area and number of green leaves can be quite easily
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measured. However, accurately obtaining parameters for other traits (e.g. transpiration
efficiency) can be costly and time consuming. An alternative approach is to estimate parameters
that represent traits that are difficult to measure, from knowledge about traits that are routinely
or more easily measured such as biomass or sucrose accumulation. Makowski et al. (2006a)
provides an overview of the various methods used to estimate crop model parameters such as
sensitivity analysis, least squares regression and maximum likelihood. Recently more complex
statistical approaches such as genetic algorithms (Mitchell, 1999) and Bayesian statistical
approaches such as Generalized Likelihood Uncertainty Estimation (GLUE; (Beven and Binley,
1992)) and Markov Chain Monte Carlo (MCMC;(Gelman et al., 1997)) have found widespread

application.

Bayesian statistical parameter estimation techniques like GLUE and MCMC allow researchers to
use various sources of data and prior knowledge about likely parameter values. GLUE has
become widely used in a range of crop models because it is relatively computationally simple
(Makowski et al., 2002). GLUE has been used effectively for parameterizing generic crop models
(Wang et al., 2005), models for maize (He et al., 2010), wheat (Mo and Beven, 2004), cotton
(Pathak et al., 2012) and sugarcane (Marin et al., 2011). MCMC algorithms have been used to
estimate crop model variety parameters for rice (lizumi et al., 2011; lizumi et al., 2009), maize
(Taoetal., 2009), wheat (Tao and Zhang, 2013; Dumont et al., 2014) and soybeans (Archontoulis

et al., 2014) but have not been applied to sugarcane crop models.

This chapter evaluates the use of GLUE and MCMC as tools to estimate sugarcane variety
parameters in the APSIM-Sugar model. These Bayesian techniques allow researchers to make
use of a range of prior knowledge about parameter values providing an advantage over other
forms of parameter estimation. While GLUE has previously been applied to DSSAT-Canegro
(Marin et al., 2011), neither GLUE nor MCMC has been applied to APSIM-Sugar. If applicable,
Bayesian parameter estimation will provide a much needed systematic method for updating
variety parameters for new varieties as they are developed. Keeping APSIM-Sugar up to date
with commercially released varieties will allow crop modellers to investigate interactions
between variety, environment and farm management practices and will help improve the model

as a decision support tool.
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4.2. Theory

4.2.1. Agricultural Production System Simulator

The APSIM-Sugar module simulates biomass accumulation on a daily time step (Keating et al.,
1999). Biomass accumulation is driven largely by radiation through radiation use efficiency
(RUE) and is divided into five live pools (leaf, cabbage, structural stem, roots and sucrose).
Biomass accumulation is limited by low or high temperature, excess or deficit water stresses
and nitrogen deficit effects on RUE (Singels, 2013). This allows APSIM to simulate differences
between potential and attainable yields and hence benchmark production based on vyield
actually obtained (Inman-Bamber, 2013). From biomass, key productivity measures such as cane
yield, sugar yield and sugar content of stalks (CCS), are simulated. The underlying biophysical

processes and responses to imposed stress are defined by a range of model parameters.

Parameters that represent the biophysical processes of the sugarcane are divided into soil and
climate parameters, generic plant and ratoon parameters and variety parameters. Table 4.1 lists
a range of key parameters that define canopy development (parameters 1, 2, 12, 13 and 14),
biomass partitioning (parameters 3-8) and phenological stages (parameters 9-11). Some
physiological traits are represented by combinations of parameters such as the leaf size profile.
Parameters leaf size (area of fully expanded leaf) and leaf size_no (leaf position along stalk)
affect canopy development by describing inflection points of a Gompertz curve (Inman-Bamber,
2013). Parameters sucrose_fraction_stalk and stress_factor_stalk reflect how stress effects the
partitioning of assimilates into sucrose (Keating et al., 1999). Although parameters 1-14 listed
in Table 4.1 are classed as variety specific parameters in APSIM-Sugar, currently defined
varieties differ only in fully expanded area of leaves and partitioning of biomass to sucrose in
the stalk. Flowering in sugarcane is sporadic and variety parameters for phenology traits such
as flowering, although available are not implemented (Keating et al. (1999); Chapter 2).
Transpiration efficiency (TE) in sugarcane has recently been shown to vary between varieties
(Jackson et al., 2014) but the corresponding parameter in APSIM-Sugar (transp_eff_cf) remains
a constant for different varieties. In the DSSAT-Canegro model RUE has a corresponding variety
specific parameter (Marin et al., 2014; Marin et al., 2011) but is generally considered a constant
in APSIM-Sugar. Apart from the Marin et al. publications there is no published evidence for
genetic variation in this trait which is difficult to measure and has a profound effect on crop

productivity.
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Table 4.1. APSIM-Sugar parameters: Parameters 1 to 14 are considered variety specific in the
APSIM-Sugar model. Parameters represent morphological traits such as leaf size, and number
of green leaves, while others represent developmental stages (parameters 9, 10 and 11),
physiological traits such as RUE (parameter 16) or partitioning between sucrose and biomass
(parameters 3 and 4). Some traits are described using combinations of variables such as the leaf
size profile which is described using parameters leaf size (parameter 1) and leaf size _no
(parameter 2).

Values
P Descrioti .
arameter escription Units (Variety Q117)
1 leaf size Area of each leaf mm? 1500 55000 55000
2 leaf size_no Leaf number from top leaf leaf 1 14 20
3 cane_fraction Fraction of accumulated biomass 1 0.70
partitioned to cane £8
Fraction accumulated biomass 1 0.55
4 j Ik -1
sucrose_fraction_sta partitioned to sucrose £8
f f 2 1
5 stress_factor_stalk Stress actgr or sucrose nil 0 0
accumulation
6 sucrose_delay Sucrose accumulation delay g 0
Minimum stem biomass before 800
7 min_sstem_sucrose partitioning to sucrose g
commences
. Reduction to minimum stem 10
8 min_sstem_sucrose_redn g
sucrose under stress
Th | ti ired f 1900
9 tt_emerg_to_begcane ermal time required from °Cd
emergence to start stalk growth
Thermal time required from start 6000
10 tt_begcane_to_flowering of stalk growth to start of °Cd
flowering
. Thermal time from flowering to 2000
11 tt_fl t d °Cd
- flowering_to _crop_en crop death
12 green_leaf _no Green leaf number leaves 13.0
E ion fact lied to leaf 1 115 1 1
13 tillerf_leaf size 'xpan5|on a'c Or appliedtofea nil
size due to tillering
14 tillerf leaf size_no Leaf number from top leaf leaf 1 4 10 16 26
Intrinsic transpiration efficiency gkPa 0.0080
1
> transp_eff_cf coefficient gl
. - . 1.8 (plant)
1
16 rue Radiation use efficiency gMJ 1.65 (ratoon)
Root wat tracti
17 k, oot water extraction d? Varies with soil

coefficients
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4.2.2. Bayesian statistical parameter estimation

Bayes’ rule (4.1) relates prior belief about parameter values before observing any data (prior
probability; P(0)), to posterior beliefs (posterior probability; P(0]|Y)) after observations are
made through a sampling distribution known as the likelihood function (P(Y|0)) (Gelman et al.,

1997). That is, Bayes’ rule defined as:
P(0]Y) < P(0) P(Y]0) (4.2)

here:

0 = a vector of p unknown parameter values: 0 = [0, 0, ..., 6p];

Y = a vector of 0 observations: Y = [y1, Y2, -.., Yo;

P(0) = the joint prior distribution of unknown parameters;

P(Y|0) = the likelihood function and

P(0]Y) = the joint posterior distribution of unknown parameters,

provides a systematic method of updating our beliefs of the parameter probability as more

observations are made.

The likelihood function P(Y |0) describes the probability of the data Y given the parameters 0,
dependant on the probability distribution of model errors — the difference between observed
and simulated values (Makowski et al., 2006a). In the case of parameter estimation the
parameters are the unknown quantity of interest and the likelihood function is generally defined
as L(0]Y), that is the likelihood of parameter set 0 given observations Y = [yi, Y2, ..., Yo] with
model error variance (¢%). The choice of likelihood function should reflect the actual distribution

of model errors (He et al., 2010; Stedinger et al., 2008; Makowski and Wallach, 2002).

Most widely used likelihood functions for both GLUE and MCMC are based on the Gaussian

distribution such that:

_ 2
Vo %(f»]j )

0]
1
L(oY) = H W exp(— o7
o=1

where:

Yois the 0'" observation and

¥5(0) is the o' simulated value using parameter set 0,

assuming that model errors (residuals) are normally distributed (Jones et al., 2011; Marin et al.,

2011; He et al., 2010; lizumi et al., 2009; Makowski et al., 2006a; Pathak et al., 2012; Dumont et
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al., 2014; Makowski et al., 2002). Model error variance can be estimated by the variance in the
observations or from a well calibrated example (Pathak et al., 2012; Wang et al., 2005).
Furthermore error variance ¢*> may be specified for each observation (o,?) if variances for each

are known (lizumi et al., 2009).

In the examples of crop model calibrations mentioned here, model errors are generally assumed
to be normally distributed without reporting whether this assumption is valid (Jones et al. 2011;
Marin et al., 2011; lizumi et al., 2009; Pathak et al., 2012). In practice observations often used
to calibrate crop models such as biomass or leaf area index (LAI) may have variances that change
with the size of the observation (Wallach et al. 2011). A particular example is the use of
measurements of the same crop at different times during the growing season. The assumption
of normality in such cases may be addressed by performing the calibration using appropriately
transformed (e.g. log transformed) observations (Wallach et al., 2011; Kennedy and O’Hagan
2001). Dumont et al. (2014) addressed this issue by using a modified likelihood function in an
MCMC based calibration of the STICS crop model. In that study Dumont et al. (2014) replaced
the error variance with a coefficient of variation calculated as the ratio of the standard deviation
and the value of the observation. Not properly representing the error variance can lead to higher
uncertainty in the parameter posterior distributions and poor performance of calibrated models
for situations not used in the calibration. The likelihood based on a normal distribution is used

in this chapter as it has been used effectively in similar studies such as Marin et al. (2011).

The main advantage of the Bayesian approach to parameter estimation is that prior knowledge
of parameter values is taken into account to describe a posterior probability based on
observations. This allows researchers to estimate parameters from different data sources and
guantify the uncertainty in model outputs due to parameter uncertainty (Makowski et al.,
2006a). Uniform priors are generally used with ranges based on published data or wide enough
to be relatively sure of capturing the true parameter value (Beven and Binley, 1992). However,
prior distributions should be defined to capture any known distribution and covariance between

parameters.

4.2.2.1. Generalized Likelihood Uncertainty Estimation

GLUE (Beven and Binley, 1992; Beven and Freer, 2001; Stedinger et al., 2008) is a Monte Carlo

approach whereby a large sample of parameter sets [01, 02, ..., 0g] are chosen from a defined
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prior distribution. A goodness-of-fit likelihood is calculated for each parameter set and used to
produce weighted posterior probability densities for each parameter set which in turn are used
to approximate the posterior distribution for each parameter. A simplistic overview can be

outlined in four steps:

1. A prior probability distribution is developed for each parameter

2. A Monte Carlo approach is used to generate a large number (Q) of random
samples of parameter sets from the prior distribution

3. Calculate likelihood L(6i]Y) for each parameter set using an explicit likelihood
function

4. Calculate the posterior probability density p(0) of each parameter set (Jones et

al., 2011; He et al., 2010) as:

p(0) = oY)

2 LOY) (43)

Posterior probability densities can then be used to define the empirical posterior distribution

and the distribution mean:

Q
=2 p6)o (4.4)

and variance:

Q

82 = p0)-(0i - Ay (4.5)

i=1

for each parameter.

GLUE is often referred to as a pseudo-Bayesian approach as the likelihood function L(6i|Y) can
be defined subjectively by the modeller (Beven and Binley, 1992). This allows for a likelihood
function that does not necessarily reflect the parameter structure or model error variance
(Stedinger et al., 2008). The choice of likelihood function can affect the accuracy of the

estimated posterior distribution (He et al., 2010).
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4.2.2.2. Markov Chain Monte Carlo

The MCMC approach approximates the posterior distribution by simulating a random walk that
converges to the posterior probability distribution P(0]Y) that describes our updated beliefs of
probable parameter values. A Markov chain is formed as each sequential approximate
realisations from the distribution (from iterationt=1, ..., N) is based on the previous draw. The
MCMC process can be summarized as:
1. Define the Markov chain as @ =[Oy, ..., 0¢1, 0, ..., On] for a chain of length
N and select a starting parameter set 0o.
2. Generate a candidate parameter set 0. based on a symmetric transition
kernel P(0.] 0, ,) such that: P(6.| 0,,) = P(6,] 0.).
3. Calculate the acceptance criteria (r) based on the ratio of densities

(Metropolis et al., 1953) as:

_P(0JY)  P(8.)P(Yl0.)
"ZP(0.]Y) T P(O)P(Y]6,.)

(4.6)

where U[0,1] is a random draw from the uniform

r>U[1] 6, =o.
"r<upg e, -6,

distribution between 0 and 1.

The Metropolis algorithm requires a symmetric transition kernel but can be generalized to the
Metropolis-Hastings algorithm to allow for asymmetric transition kernels (Hastings, 1970;
Gelman et al., 1997). In the above process, 2 to 4 are repeated for N iterations. A period of M

iterations (referred to as the burn-in period) is required for the chain to converge to a stable

posterior distribution. Therefore the remaining n = N — M iterations represent draws from the
posterior distribution. The total number of iterations required (N), the length of the burn-in
period (M) and the transition kernel must be defined. The number of iterations must be long

enough for the chain to converge. Convergence can be monitored by running several (J)

consecutive chains from disparate starting parameter sets and computing the potential scale

reduction statistic (\/ﬁ) (Gelman et al., 1997) as:

(4.7)

for each parameter of interest. For a single parameter (6), B is the between chain variance

defined as:
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B=—1r Z(éj— 6.)? (4.7.1)

j=1

where

_ 1N

0;=1 2.0
i=1

N

0 =329,j

i1 (4.7.2)

Chains approach convergence as the variance between chains (4.7.1) approaches the variance

within chains (4.7.2) based on the final n iterations from each of J chains. Gelman et al. (1997)

recommend \/R values of less than 1.2 are acceptable for most applications. For multi-
dimensional problems convergence should be reached for all parameters. The posterior

parameter distributions for each parameter can then be described using the posterior mean:
1 J n
pk%t = Jxn jgl Z (9“- (4.8)
=lij=1

and variance:

1 J 2
A2 - = A2
o (@xn) -1 jzl Z(eij Tt (4.9)

=1

of the n-by-J draws.

4.3. Materials and Methods

A dual approach was taken to evaluate the use of GLUE and MCMC as calibration tools for
variety parameters in APSIM-Sugar. A theoretical and real world evaluation were performed. In

the theoretical evaluation variety parameters were pre-defined for two varieties (V001 and
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V002). GLUE and MCMC were then used to calibrate APSIM-Sugar using modified simulations of
green biomass and sucrose yield as observed yields. This evaluated the ability of GLUE and
MCMC calibrations to approach known parameter values. In the real world evaluation GLUE and
MCMC were used to calibrate APSIM-Sugar for Australian variety Q117 based on observed green
biomass and sucrose yields. The GLUE and MCMC estimated parameter values were validated
using independent field trial data. This evaluated the ability of GLUE and MCMC calibrated
parameter sets to produce simulated yields close to observed values. Uncertainty in model
outputs due to uncertainty in the estimated parameter values was also analysed. A flow diagram

of the methods used in this analysis is provided in Figure 4.2.

Section 4.3.1= = - Data collection
Devgloplpg ;.)ara.meter L = = . Section 4.3.2
prior distributions
. _ _ _ | Implementing GLUE and
Section 4.3.3 MCMC for APSIM
Section 4.3.4 I Section 4.3.5
! | ] :

l" . - . N ," . S
! Theoretical evaluation \ ! Real World evaluation N\
! GLUE and MCMC i ! GLUE and MCMC E
; P :
H P! I
! ! I

[ | | I I |
GLUE MCMC i GLUE MCMC i
¢ Two pre-defined ¢ Two pre-defined H e Variety Q117 using ¢ Variety Q117 using H
varieties varieties i field experiments field experiments i
* 30000 parameter sets * Three chains | * 30000 parameter sets ¢ Three chains !
® Run all sets on HPC ¢ 10000 iterations E e Run all sets on HPC ¢ 10000 iterations E
¢ Develop parameter * Develop parameter E * Develop parameter ¢ Develop parameter E
posterior distributions posterior distributions | ! posterior distributions posterior distributions | 1}
: I :
1 1
i Analysis ! Analysis
i * Parameter estimates vs known values i * Parameter estimates vs APSIM
! ! * Explore parameter posterior
] e Calibrated model output vs known 1 . .
i A ) i ¢ Validation of model outputs against
! (simulated) values of green biomass, ! . R
! . : ! independent observations
H sucrose yield and leaf area index H )
! ! ¢ Explore output uncertainty due to
i 1 i uncertainty in parameter estimates 1
\ !\ !
\\ /, \\ /,

Figure 4.2. Diagrammatic representation of the materials and methods described in this
chapter. Labels identify the relevant sections in the chapter. Section 4.3.1 to 4.3.3 describe
general data collection and implementation of GLUE and MCMC for APSIM. Sections 4.3.4 and
4.3.5 detail the two approaches used to compare GLUE and MCMC. Theoretical evaluation
allowed the comparison of estimated parameter values to explicitly known values while a real
world application using field trial data allowed for the comparison of calibrated model outputs
to real world data.
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4.3.1. Data

Calibrations were performed using data from three field trials for variety Q117 run in Australia
(Table 4.2). Each of the field experiments used for calibration were used in the development of
APSIM-Sugar (Keating et al., 1999) and had the soil, climate and management data (e.g.
irrigation and fertilizer applications) required to run APSIM simulations. Although other data
sets exist, only APSIM-Sugar data sets for Q117 were considered in this study as the calibration
for Q117 for APSIM was previously validated (Keating et al., 1999) providing a good comparison

for the results of the two statistical calibration techniques used in this study.

The three field experiments were conducted at Harwood, New South Wales and Ingham,
Queensland. The “Harwood(1993-94)” (Hughes et al., 1995) and “Ingham(1992-93)” (Robertson
et al., 1996b) experiments were single 12 month plant crops well irrigated and fertilized to avoid
stress. The “Ingham(1992-94)” experiment (Muchow et al., 1996a) had three nitrogen
treatments. Crops in each treatment were harvested in 1993 and then ratooned (allowed to
regrow) before being harvested again in 1994. The Harwood(1993-94) field experiment was
characterised by cooler temperatures and lower levels of rainfall compared to the warmer and
wetter Ingham field experiments (Table 4.2). Green biomass (g m), sucrose yield (g m?) were
sampled throughout the growing cycle for each treatment in the field experiments. From the
three field experiments (Harwood(1993-94), Ingham(1992-93) and Ingham(1992-94)); eight
yield samples were used as part of the calibration procedure (Harwood(1993-94), Ingham(1992-
93), Ingham(1992-94) [low nitrogen; plant crop], Ingham(1992-94) [low nitrogen; ratoon crop],
Ingham(1992-94) [med nitrogen; plant crop], Ingham(1992-94) [med nitrogen; ratoon crop],
Ingham(1992-94) [high nitrogen; plant crop], Ingham(1992-94) [high nitrogen; ratoon crop]).
The sample yields used for calibration were considered representative of harvest yields and the

dates of these samples are recorded as ‘Harvest Date’ in Table 4.2.

Two additional field experiments were used as independent validations of GLUE and MCMC
calibrations in the real world evaluation. These field experiments were conducted at Grafton,
New South Wales (“Grafton(1994-95)”) and Ayr, Queensland (“Ayr(1994-95)”). These two field
experiments were also used in the design of APSIM-Sugar (Keating et al., 1999). The
Grafton(1994-95) field experiment was characterised by cooler conditions and higher rainfall
than the Ayr(1992-94) experiment (Table 4.3). Both field experiments used for validation were
wellirrigated and fertilized to remove water and nutrient stresses. Green biomass, sucrose yield

and LAl measurements for the validation experiments were taken 7 times during the

63



Grafton(1994-95) experiment and 24 times over the plant and first ratoon for the Ayr(1992-94)

experiment. The date of the last sample is recorded as the ‘Harvest Date’ in Table 4.3.

Table 4.2. Details of field experiments used in both GLUE and MCMC calibrations of APSIM-
Sugar. Average climate data were calculated as the average daily value for the period from
planting to harvest.

Harwood(1993-94) Ingham(1992-93) Ingham(1992-94)
Reference (Hughes et al., 1995) (Robertson et al., 1996b) (Muchow et al., 1996a)
[Dataset 1, Keating et [Dataset 2, Keating et al. [Dataset 16, Keating et
al. (1999)] (1999)] al. (1999)]
Soil PAWC =180.0 mm PAWC =216.0 mm PAWC = 216.0 mm
Avg. Min Temp. 18.11°C 18.73 °C 18.80 °C
Avg. Max Temp.  24.67 °C 28.18 °C 28.39 °C
Avg. Daily Rainfall 1.86 mm 3.86 mm 4.44 mm
Plant Date 24-Sep-1993 23-Jul-1992 23-Jul-1992
Harvest Date 15-Dec-1994 14-Sep-1993 23-Aug-1994 (ratoon

16-Aug-1993)
Experiment Design Plant crop; Fumigated Plant crop; Fumigated Plant crop and First
ratoon; Fumigated
Treatments: low, med
and high Nitrogen

Table 4.3. Details of field experiments used for validation of both GLUE and MCMC calibrations
of APSIM-Sugar. Average climate data is calculated as the daily average for the period from
planting to harvest.

Grafton(1994-95) Ayr(1992-94)
Reference [Dataset 11, Keating et al. (1999)] [Dataset 6, Keating et al. (1999)]
Soil PAWC = 180.0 mm PAWC =197.0 mm
Avg. Min Temp. 17.80°C 21.05°C
Avg. Max Temp. 25.96 °C 29.13°C
Avg. Daily Rainfall 2.45 mm 1.01 mm
Plant Date 28-Sep-1994 31-Jul-1992
Harvest Date 25-Jul-1995 06-Sep-1994 (ratoon 29-Jul-1993)
Experiment Design Plant crop; Fumigated Plant crop and First ratoon; Non-

Fumigated

4.3.2. Parameter prior distributions

Ten parameters were chosen for calibration based on the results from the global sensitivity
analysis performed in Chapter 3. Of the 14 parameters the 10 parameters chosen for calibration
were selected based on total sensitivity index scores for biomass and sucrose yield in Chapter
3. Table 4.4 lists the 10 parameters and their assumed prior distributions. Distributions used
were the same as for Chapter 3 except for green_leaf _no and rue and k; adjustment factors. The

prior distribution of these parameters was based on observed data from a breeding trial study
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(Basnayake et al. 2012b). To better reflect the distribution of parameter values estimated from
the observed data, a normal distribution for green_leaf _no, rue and k, was used. Data from an
irrigated treatment grown at Home Hill, Queensland, Australia contained green leaf number
measurements for 89 varieties. The distribution across the clones was approximately normal
and the mean and standard deviation of the 89 varieties were used to describe a prior
distribution for green_leaf_no. Similarly rue and k; adjustment distributions (based on
conductance measures as defined in Chapter 3) were found to be approximately normally
distributed and the means and standard deviations of the 89 varieties were used to describe the

prior distributions.

Table 4.4. Prior distributions assumed for statistical calibration of variety parameters. Uniform
distributions were described as maximum and minimum allowed values. Normal distributions
were described using mean and standard deviation (SD).

Parameter Units Distribution Mean SD min max
leaf size (maximum) mm? Uniform - 20000 70000
cane_fraction gg? Uniform - 0.65 0.80
sucrose_fraction_stalk gg? Uniform - 0.4 0.7
sucrose_delay g m? Uniform - 0 600
min_sstem_sucrose g m? Uniform - 400 1500
tt_emerg_to_begcane °C day Uniform - 1200 2000
green_leaf _no leaves Normal 11.73  1.58 - -
transp_eff cf gkPag? Uniform 0.0060 0.0140
rue adjustment factor! nil Normal 0.901 0.084 - -

k. adjustment factor? nil Normal 1.248 0.425 - -

an rue adjustment factor of 1 relates to the APSIM default rue of 1.8 g MJ (plant) and 1.65 g MJ* (ratoon)
2a k; adjustment factor of 1 relates to the default k, based on APSIM Q117 and soil data.

4.3.3. Implementing GLUE and MCMC

Here, the computational process as well as the formulation of the transition kernel, likelihood
and acceptance criteria is described. GLUE and MCMC were implemented within the R statistical
program (R Core Team, 2013). Likelihoods and prior distributions were generated using the
basic statistical package in R. Multivariate normal distributions were generated using the MASS
package (Venables and Ripley, 2002). The APSIMBatch (Zheng, 2012) package ‘generateSim’
function was modified to generate the simulation files needed to run APSIM-Sugar. The
functions written in the R environment to run GLUE and MCMC were compiled into an R package

called Bayes4APSIM (available on request).

Both GLUE and MCMC calibrations were based on the field experiments described in Table 4.2.

Model errors were assumed normally distributed and a normal likelihood function (4.10) was
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used. The Likelihood value for each parameter set was calculated based on observed green
biomass and sucrose yields at harvest. Error variance was estimated for harvest green biomass
(02piomass) and sucrose yield (0%ucrose) but not for individual experiments. These variances were
then fixed (assumed known, with no uncertainty). To avoid problems with computer precision

within R likelihoods

— SHRS 1 [yos - 905 (ei)]2
L(el | Y) - sl_[—lg\/m eX[{— 2052 J (410)

were calculated as log-likelihoods

OxS 0 1 9.0
In[L®, V)] == .|n(2ﬂ)—55§_1|n(asz)-Esi_é[y“ Uyog( i (4.11)

S

Here S is the number of productivity measures considered (S = 2), specifically green biomass
and sucrose yield and O is the number of observations of each measure (O = 8), specifically
harvest yields from experiments Harwood(1993-94), Ingham(1992-93), Ingham(1992-94) (low,

med and high nitrogen; plant and first ratoon).

4.3.3.1. Implementing GLUE

Prior distributions were used to generate 30000 (Q) parameter sets. Parameter sets were then
run simultaneously on a high performance cluster. Harvest green biomass and sucrose yield
were simulated to match the scenarios of the calibration field experiments (Table 4.2). Log-
likelihoods were calculated for all parameter sets using (4.11). The equation for GLUE posterior
probabilities (4.3) was modified to use log-likelihoods and posterior probabilities were

calculated as

o0y = LOY)_ expdnk©, 1))

>LO V) %exp(lnuei )

(4.12)

The posterior distribution for each parameter was defined by the posterior mean (4.4) and

variance (4.5). A diagrammatic representation of the GLUE process is presented in Figure 4.3.

66



\
J

4
\
1

Prior parameter I:I___"J> Generate simulations II__‘J> Run simulations on
distributions (30000) parameter HPC

1

o

o

30000 parameter sets based : 1
|——|- 1

1

b

I

on prior distribution

i
Calculate likelihoods i Simulation outputs

1
Observations ::::> and generate <::::| e Green biomass

parameter posterior ® Sucrose

P

,
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\
~
4
/4
1
\,
/4
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

Analysis

Figure 4.3. Diagrammatic representation of the application of GLUE to APSIM used in this
study. Prior parameter distributions were used to generate 30000 parameter sets. These were
run on a HPC cluster for efficiency. Likelihood values were calculated for all 30000 sets and
final posterior parameter distributions were developed for each parameter.

4.3.3.2. Implementing MCMC

For implementation of MCMC it is simpler to consider a single chain. For each chain, a candidate
parameter set (0.) was generated from the multivariate normal distribution (0.0, ; ~ N(0, ; kx)
). Parameters were assumed independent such that the covariance matrix (X) was diagonal with
variances derived from the prior distributions. The covariance matrix was modified by k = 0.01
as this was found using a grid based optimization search to produce an acceptance rate between
30 and 40 percent (Gelman et al., 1997). As log-likelihoods were calculated, the acceptance

criterion (4.6) was calculated using log-likelihoods as

P(0.)L(6.]Y)
" 2P0, )LOY) exp((In[P(6.)] + In[L(6.Y)]) — (In[P(6,_,)] + In[L(6,Y)])) - (4.13)

Chains were set to a length of 10000 iterations (N). Three simultaneous chains (J = 3) were run
to monitor convergence of the posterior distribution. Following (4.8) and (4.9), posterior means
and variances were calculated as the final 5000 (M) iterations of each chain. Posterior
distributions were generated on samples of 15000 (n) parameter sets. A diagrammatic

representation of the MCMC process is presented in Figure 4.4.
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Figure 4.4. Diagrammatic representation of the application of MCMC to APSIM used in this
chapter. Prior parameter distributions were used to generate three initial parameter sets.
These initial parameter sets were used to generate three chains from 10000 iterations.
Convergence of the three chains to a single posterior distribution was monitored and the final
posterior parameter distribution was developed from the final 50% of all chains.

4.3.4. Theoretical evaluation of GLUE and MCMC

Two varieties referred to as V001 and V002 were pre-defined using 10 influential parameters
(Table 4.5). The leaf size parameter (leaf size) for VOO1 was made larger than typically seen in
Australian field experiments while parameters cane fraction, min_sstem sucrose and
sucrose_delay were set to lower values to increase sucrose and cane yields. Sucrose fraction
was raised higher to increase sucrose yields. Variety V002 represented a smaller plant with a
lower sucrose yield. Parameters representing the transpiration efficiency coefficient
(transp_eff cf), RUE (rue) and root conductance (k;) were higher in V002 than V001. An
increased transp_eff _cf and increased k;, can improve performance in water stressed conditions

(Inman-Bamber et al., 2012).
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Table 4.5. Parameter values for two pre-defined varieties V001 and V002. The parameter
leaf _size is expressed as leaf size for each leaf number modelled on variety Q117. Parameters
rue and k; were modified relative to the default simulation values used in Keating et al. (1999)
for variety Q117 and are represented here as a unitless fraction of the original value. All other
parameters appear as the values required by APSIM-Sugar.

Parameter Units voo1 V002

leaf _size mm? 1718.182 63000 63000 954.546 35000 35000
leaf _size_no leaf 1 14 20 1 14 20
cane_fraction ggt 0.66 0.74
sucrose_fraction_stalk gg* 0.65 0.46
sucrose_delay gm? 100 400
min_sstem_sucrose gm? 550 1000
tt emerg_to_begcane °Cd 1500 1860
green_leaf no leaves 14 11
transp_eff cf kPa 0.0087 0.0100
rue adjustment factor  nil 0.89! 1.021
k. adjustment factor nil 0.60? 1.20?

! adjustment factors resulted in an actual rue of 1.602 (plant) and 1.469 (ratoon) for VOO1 and 1.836 (plant) and 1.02
(ratoon) for V002

2 adjustment factors resulted in an actual k. of 0.096 and 0.192 for V001 and V002 respectively

APSIM was used to produce simulated yields (§i(6;)) for the pre-defined varieties VOO1 and V002
for calibration field experiments (Table 4.2). To represent realistic uncertainty in data collection,
a normal error was added to simulated yields to generate ‘observed’ yields (0j;) for varieties
V001 and V002. Error was added as a random number drawn from a normal distribution with
zero mean and standard deviation (SD) of 5% of simulated yield. This represented the increasing
uncertainty in field measurements as values increased and allowed variance to be smaller early
in the season or where limiting factors may have reduced yields and yield variances. Both GLUE
and MCMC error variances for green biomass and sucrose yield were set to the variance used

to generate the observed data (i.e. 5% of yield).

Both GLUE and MCMC were used to estimate the 10 variety parameters for V001 and V002.
Posterior distributions for each parameter were recorded. The absolute relative error (ARE)

| ?St - 90|
ARE = ’T x 100 (4.14)

was calculated between the posterior mean and known value for each parameter of the defined
varieties (Table 4.5). The fit between calibrated simulation outputs and observed data was
assessed using normalized root mean square error (NRMSE), Willmott’s agreement index (D)
(Willmott, 1982; Marin et al., 2011) and regression r2. The slope and intercept of the linear
regression between calibrated simulation outputs and observations were also recorded.

Statistical analysis was performed on green biomass (g m?) and sucrose yield (g m). Root mean
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square error was normalized and expressed as a percentage by dividing by the range of observed

values. This allowed comparison between model outputs.

4.3.5. Real world evaluation of GLUE and MCMC for variety Q117

Observed harvest yields for Q117 for the calibration experiments (Table 4.2) were used to
estimate the 10 variety parameters for Q117. Standard deviations for the likelihood function
were based on the error variance of a simulation using default parameter values for variety
Q117. As with the theoretical evaluation, posterior distributions were generated. Calibrated
parameter values were compared to the default values for Q117 contained in APSIM-Sugar,
using the absolute relative error (ARE). GLUE and MCMC parameter estimates were used to
simulate sugarcane vyields for two independent validation field trials (Table 4.3). As several
measurements were made throughout the validation trials, the observed growth curves were
simulated. Regression statistics (slope, intercept and r?), D and NRMSE were calculated for each
experiment using all available data and data at harvest only. Uncertainty in model outputs for
green biomass, sucrose yield and LAl were investigated by producing 95% credible intervals from

1000 random draws of the parameter posterior distributions.

4.4. Results and Discussion

4.4.1. Theoretical evaluation of GLUE and MCMC

This chapter evaluated the use of GLUE and MCMC to calibrate the APSIM-Sugar model for two
pre-defined sugarcane varieties. Both GLUE and MCMC were able to accurately estimate known
variety parameters (Table 4.6). Standard deviations for each parameter posterior distributions
were recorded to identify uncertainty in the parameter estimates. For both pre-defined varieties
60% of GLUE parameter estimates and 70% of MCMC parameter estimates were within 10% of
the defined values. Importantly estimated parameter values differed accurately between
variety VOO1 and V002. For example transp_eff cf, rue and k;, were particularly well estimated
for V001 and V002 using the MCMC calibration resulting in realistic differences in these
parameters between the two varieties. These parameters in particular may play an important
role in improving differences in response to water stress between sugarcane varieties (Inman-
Bamber et al., 2012) but are difficult to measure directly. Therefore it is a critical result that

these parameters can be accurately estimated using only harvest data.
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Table 4.6. GLUE and MCMC evaluation of estimated parameter values for two pre-defined
varieties (V001 and V002). Mean and standard deviation of the empirical posterior distributions
are recorded. The ARE measures the absolute difference between the posterior mean and the
defined value as a percentage. For MCMC all chains were assumed to converge for all

parameters as \/R was less than 1.2 for all parameters.

Variety Parameter Value GLUE Mcmc
Mean (SD) ARE Mean (SD) ARE

Vvoo1 leaf size 63000 56065.03(3181.31) 11.0 56630.50(7956.9) 10.1
cane_fraction 0.66 0.665(0.021) 0.8 0.671(0.0159) 1.7
sucrose_fraction_stalk  0.65 0.666(0.014) 2.5 0.621(0.0413) 4.5
sucrose_delay 100 373.96(94.91) 274.0 305.56(154.10) 205.6
min_sstem_sucrose 550 661.98(100.54) 20.4 700.13(161.25) 27.3

tt_ emerg to_begcane 1500 1461.19(95.37) 2.6 1445.03(136.57) 3.7
green_leaf no 14 12.37(0.441) 11.7 13.04(0.801) 6.8
transp_eff_cf 0.0078  0.0077(0.0003) 1.9 0.0078(0.0004) 0.4

rue adjustment factor  0.89 0.942(0.012) 5.8 0.934(0.035) 4.9

k. adjustment factor 0.60 0.548(0.039) 8.6 0.577(0.085) 3.9

Average ARE (%) 33.9 Average ARE (%) 26.9

V002 leaf_size 35000 27952.67(5592.94) 20.1 34289.87(4928.9) 2.0
cane_fraction 0.74 0.780(0.031) 5.4 0.710(0.029) 4.0
sucrose_fraction_stalk  0.46 0.473(0.015) 2.8 0.469(0.029) 2.1
sucrose_delay 400 416.02(63.78) 4.0  507.99(71.02) 27.0

min_sstem_sucrose 1000 995.04(94.85) 0.5 799.52(232.20) 20.1
tt_ emerg_to_begcane 1860 1876.21(73.87) 0.9 1834.42(101.85) 1.4

green_leaf no 11 10.38(0.765) 5.6 11.25(0.712) 2.2
transp_eff cf 0.011 0.0126(0.00083) 15.0 0.0124(0.00102) 12.6
rue adjustment factor 1.02 1.14(0.072) 12.3 1.014(0.046) 0.5
k; adjustment factor 1.20 1.32(0.244) 10.2 1.138(0.35) 5.2

Average ARE (%) 7.7 Average ARE (%) 7.7

The parameter sucrose_delay was particularly poorly estimated for V001 using both GLUE and
MCMC. This may have been a consequence of weak influence of the parameter on sucrose yield.
Chapter 3 showed that sucrose_delay was weakly influential for sucrose under both irrigated
and water stressed conditions. Particularly sucrose_delay had less influence on sucrose yields at
low values (Figure 3.2 (d)). This may explain why sucrose_delay estimates for V002 were much
closer than for VOO1. Similarly leaf size and transp_eff cf estimates were closer when known
values were low and high respectively, reflecting regions where these parameter values had a
greater influence on yields. Several recent studies have used techniques such as GLUE and

MCMC to calibrate crop models for varieties based on observed yields.

Figure 4.5 shows the linear regression between the APSIM generated and calibrated APSIM
simulated green biomass and sucrose yield values for V001 and V002. As would be expected

from the accurate estimation of parameter values, both GLUE and MCMC calibrations accurately
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reproduced the APSIM generated biomass and sucrose yields used in the model calibration. For
both pre-defined varieties, both GLUE and MCMC calibrated simulations of green biomass were
closer to the calibration data than sucrose yield based on NRMSE. This was likely a consequence
of the poorer estimation of sucrose parameters. The real world evaluation provided a better
indication of GLUE and MCMC to replicate observed yields using independent validation

datasets.
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Figure 4.5. Linear regression between APSIM generated yields used in the calibration and
calibrated APSIM simulated values for (a, b) green biomass (g m?) and (c, d) sucrose yield (g m"
2) for pre-defined varieties V001 (a, c) and V002 (b, d). Results from MCMC (black) and GLUE
(grey) are plotted. Data represent simulations of V001 and V002 for Harwood(1993-94) (O),
Ingham(1992-93) (A), Ingham(1992-94) low Nitrogen (X), Ingham(1992-94) med Nitrogen
(<) and Ingham(1992-94) high Nitrogen (+) trials.
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4.4.2. Real world evaluation of GLUE and MCMC for Variety Q117

Estimated parameter values using GLUE were closer to APSIM-Sugar default values for variety
Q117 (Table 4.7). Compared to APSIM-Sugar default values GLUE estimated a higher leaf size
and low min_sstem_sucrose while MCMC estimated a lower [eaf size and
tt_emerg_to_begcane and a higher green_leaf _no. Both GLUE and MCMC estimated values for
sucrose_delay differed greatly from default values. As with the theoretical evaluation this was
likely a consequence of the low influence of sucrose_delay on simulated yields. Similarly GLUE
and MCMC estimates of k; varied greatly with the expected default value. Although this was not
an issue in the theoretical evaluation, it may be that a weak influence on yields complicated the
estimation techniques. Both k; and sucrose_delay had total sensitivity index values of < 5%

under irrigated or stressed conditions (Chapter 3).

Table 4.7. GLUE and MCMC comparison of estimating correct parameter values for Q117. Mean
and standard deviation of the empirical posterior distributions are recorded. For MCMC all

chains converge for all parameters (\/ﬁ < 1.2) except sucrose_delay (\/ﬁ >1.2).

GLUE MCMC
Parameter Q117 Mean (SD) Mean (SD)
leaf size 55000 61971.11(6704.96) 39921.81(3665.07)
cane_fraction 0.70 0.730(0.010) 0.670(0.0216)
sucrose_fraction_stalk 0.55 0.581(0.025) 0.553(0.0596)
sucrose_delay 0 133.82(84.36) 253.20(101.94)
min_sstem_sucrose 800 589.56(283.28) 1253.56(165.95)
tt_emerg _to_begcane 1900 1853.37(199.81) 1396.49(131.89)
green_leaf no 13 13.97(0.343) 16.38(0.916)
transp_eff _cf 0.0080 0.0081(0.00051) 0.00890(0.00055)
rue adjustment factor 1 1.030(0.019) 1.033(0.0314)
k, adjustment factor 1 0.367 (0.026) 0.266(0.0349)

In contrast to k;, rue and transp_eff cf parameters agreed closely with expected (default)
values. Radiation use efficiency is a difficult trait to measure and the rue parameter in APSIM
greatly influences model outputs. The agreement between transp_eff_cf and default values is
especially encouraging given the wide prior distribution. The default value for transp_eff cf was
based on literature for other C4 crops such as sorghum which have a value of 0.009 g kPa g*
(Keating et al., 1999; Sinclair, 2012). Inman-Bamber and McGlinchey (2003) derived a
transp_eff_cf of 0.0087 g kPa g* for variety Q138. The MCMC and GLUE estimates while based
on only a small sample of sites, closely aligns with this recorded value and provides a measure
of uncertainty not available with the original calibration. The lower leaf size value of the MCMC

calibration may more closely represent field measured values than the higher GLUE estimate.

While maximum leaf area has been measured as high as 70000 mm? under high input glasshouse
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studies (Inman-Bamber, 2013), under field conditions values of 38000 mm? were more common
(Robertson et al., 1998). This would seem a more realistic calibrated value based on field

measures of yield.

To further explore uncertainty in parameter posterior uncertainty, posterior probability
distributions were analysed. Parameter uncertainty was lower for GLUE parameter posterior
distributions based on standard deviations for all parameters except ledf size,
min_sstem_sucrose and tt_emerg_to_begcane (Table 4.7). However, the empirical posterior
distribution did not always follow a normal distribution as assumed. Figure 4.6 shows, as an
example, the posterior distribution of tt_emerg to_begcane for GLUE and MCMC calibrations.
The GLUE empirical distribution of tt_emerg_to_begcane had a distinct major and minor mode
while the MCMC empirical distribution of tt_emerge _to _begcane was biased towards lower
values. While multimodal posterior distributions are not uncommon, these results suggests that
the mean of the posterior distribution may not be the most ideal parameter set to use as

calibrated parameter values.
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Figure 4.6. Empirical posterior probability density functions (grey) for parameter
tt_emerge_to_begcane (°C d) and approximate normal distribution (—) based on the mean
and standard deviations reported in Table 4.7 for (a) GLUE and (b) MCMC.

Based on all available samples from two validation experiments both GLUE and MCMC
calibrations produced lower NRMSE and higher r? values for green biomass and sucrose yield
model outputs compared to default APSIM values for Q117 (Table 4.8). Green biomass was the
most accurately simulated output in all cases while simulated LAl had the highest NRMSE and
lowest r? and D values of the three outputs analysed. This agrees with results from the original

model validation (Keating et al., 1999). Simulation of LAl may have been improved if LAl had
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been used in the model calibration but is rarely measured in field experiments. Based on NRMSE
and D index, green biomass, sucrose yield and LAl simulations were slightly better using the

MCMC calibration compared to the GLUE calibration.

Table 4.8. Comparison of simulated to observed green biomass, sucrose yield and LAl using
APSIM-Sugar default parameter values for Q117, GLUE and MCMC calibration posterior means.
NRMSE was calculated as the root mean square error divided by the output range expressed as
a percentage. The r?was calculated from the linear regression between observed and simulated
values. Willmott’s agreement index (D) is a non-parametric goodness-of-fit measure, similarly
to r? a value close to one is desired.
Output Experiment N APSIM Q117 Default MCMC GLUE
NRMSE r? D NRMSE r2 D NRMSE r2 D
Green Biomass Grafton(1994-95) 7 7.61 0.99 099 7.13 0.980.99 4.83 0.98 1.00
Ayr(1992-94) 24 16.11 0.80 0.95 9.24 0.930.98 12.37 0.88 0.97
Harvest 3 2258 0.85 094 8.37 0.990.99 15.65 0.950.97
All Data 31 1428 0.83 0.95 8.30 0.940.98 10.94 0.89 0.97

Sucrose yield Grafton(1994-95) 4 20.11 0.99 0.94 19.37 0.980.95 21.84 0.99 0.94
Ayr(1992-94) 17 16.64 0.77 0.93 13.97 0.840.98 16.87 0.870.94

Harvest 3 16.88 0.99 097 17.76 0.99 0.96 23.93 1.00 0.94
All Data 21 1514 0.81 0.95 12.76 0.880.96 15.38 0.89 0.95
LAI Grafton(1994-95) 7 11.03 0.94 0.98 16.95 0.860.95 15.13 0.92 0.97
Ayr(1992-94) 24 1742 0.70 0.90 15.75 0.850.91 16.47 0.700.91
Harvest 3 13.23 0.99 097 11.03 1.000.98 10.92 0.98 0.99
All Data 31 14.84 0.78 0.93 14.92 0.850.93 14.97 0.78 0.94

Despite both calibrations having high r? and D values, simulated outputs could differ noticeably
(Figure 4.7). The high simulated LAl using GLUE parameter estimates is likely a result of the high
value of leaf_size. Figure 4.8 shows the time course of observations and simulated values using
both GLUE and MCMC calibrations (solid lines) as well as a 95% credible interval based on 1000
random draws from the posterior distributions (dashed lines). The solid grey line of Figure 4.8
(c) shows that this high leaf size helped simulate peak values of LAl in the Grafton(1994-95)
experiment but likely also lead to overestimating lower values of LAI. Conversely, simulated LAl
using MCMC parameter estimates underestimated peak LAl in the Grafton(1994-95) experiment
but accurately estimated lower value (Figure 4.8 (c) solid black line). The different parameter
estimates of GLUE and MCMC lead to similar simulated green biomass and sucrose yield
accumulation curves. However, the difference in parameter uncertainty lead to very different
uncertainty in simulated sucrose yield (Figure 4.8 (b)). The wide 95% credible interval for
sucrose yield based on the GLUE posterior distribution is likely a result of the higher uncertainty
in min_sstem_sucrose and tt_emerge_to_begcane parameters which determines when sucrose

accumulation starts. The large difference in output uncertainty due to parameter uncertainty
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between the GLUE and MCMC calibrations highlights the importance of reporting the

uncertainty along with estimated parameter values when using statistical calibration

techniques.
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Figure 4.7. Linear regression between observed and simulated (a) green biomass (g m), (b)

sucrose yield (g m2) and (c) leaf area index for Q117. Results from GLUE (

) and MCMC (—)

are plotted across all samples taken from Grafton(1994-95) (A) and Ayr(1992-94) (O)
validation experiments.
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Figure 4.8. Time series comparison of simulated and observed values () for Q117 in
Grafton(1994-95). (a) green biomass (b) sucrose yield and (c) leaf area index (LAl). Solid lines
represent simulated values using parameter posterior means for GLUE (—) and MCMC (—).

Dashed lines represent a 95% confidence interal based on 1000 random draws from the
parameter posterior distributions
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4.5. Conclusions and Recommendations

This chapter evaluated the use of GLUE and MCMC as techniques for calibrating APSIM-Sugar
for different sugarcane varieties. Both GLUE and MCMC calibrations were able to accurately
simulate green biomass and sucrose yield in both a theoretical and real world evaluation. In fact
based on NRMSE, r? and D statistics, there was little difference in the accuracy of GLUE and
MCMC. The evaluation of GLUE and MCMC was extended by using two pre-defined varieties in
the theoretical evaluation. Both GLUE and MCMC were able to estimate the differences in
parameter values between the two pre-defined varieties. This kind of analysis has not been
performed before for a sugarcane model and strongly supports the use of statistical calibration

techniques in calibrating APSIM-Sugar for different varieties.

Although there was little difference in the skill of GLUE and MCMC in either the theoretical or
real world evaluation, | recommend modellers consider the use of MCMC in calibrating variety
parameters in sugarcane models. MCMC produced slightly lower ARE between estimated and
pre-defined parameter values than GLUE in the theoretical evaluation. MCMC also produced
improved validation NRMSE and r? for observed green biomass and sucrose yield in the real
world evaluation. The inclusion of multiple chains in MCMC provided an objective method for

assessing the convergence and stability of the posterior distribution of the variety parameters.

There are several opportunities to improve either estimation technique. The main limitation of
this research was the use of simplistic GLUE and MCMC algorithms. | recommend that modellers
in future apply more advanced adaptive MCMC algorithms. This could include extending
calibration data sets to include measurements made throughout the season and better
reflecting the structure of the error variance by use of an appropriate transformation of the
likelihood function, similar to the work of Dumont et al. (2014). Calibration efficiency could also
be improved by including covariance between variables. Where these are not known,

preliminary MCMC runs could be used to estimate the structure of parameter covariance.

A further limitation identified in both the theoretical and real world evaluation was the inclusion
of parameters with relatively weak influence on the outputs used in calibration. The
sucrose_delay parameter was particularly poorly estimated in the theoretical evaluation while
the estimated value of k, in the real world evaluation could not be easily explained
physiologically. Future research may need to avoid using these parameters in calibration. The

difficulties that arose in estimating the sucrose_delay and k, parameter values also highlights
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the need for future calibration methods to more formally consider the different sources of
model error as described by Kennedy and O’Hagan (2001). Unusual or unexpected parameter
values from calibrations may reflect some form of model limitation and may be used to identify
a source of error in the specific simulation or highlight an area in the model where further

research in the underlying physiology could be explored.

Finally, it is important to acknowledge that the GLUE and MCMC calibrations in this chapter
were performed on a subset of the data sets used in the original model validation. Therefore
the purpose of this chapter however, was not to supply an updated calibration of APSIM-Sugar
for variety Q117 but to evaluate the use of statistical calibration of variety parameters.
Parameters that are difficult to measure can be estimated using a limited amount of data such
as biomass and sucrose yields which are routinely collected in breeding programs. Statistical
calibration techniques such as MCMC should be used to update APSIM-Sugar as varieties are
developed. With appropriate variety definitions, APSIM-Sugar could be used for early risk

assessment of adopting new varieties in different growing environments.

4.6. Chapter 4 Summary

Process-based agricultural systems models allow researchers to investigate the interactions
between variety, environment and management. The ‘Sugar’ module in the Agricultural
Production Systems sIMulator (APSIM-Sugar) currently includes definitions for 14 sugarcane
varieties, most of which are no longer commercially grown. The use of two Bayesian approaches
to calibrate sugarcane varieties in APSIM-Sugar: Generalized Likelihood Uncertainty Estimation
(GLUE) and Markov Chain Monte Carlo (MCMC) was evaluated in this chapter. Both GLUE and
MCMC calibrations were able to accurately simulate green biomass and sucrose yield in both a
theoretical and real world evaluation. In a theoretical evaluation GLUE and MCMC parameter
estimates accurately reflected differences between two pre-defined sugarcane varieties. MCMC
was capable of more in-depth analysis of calibrated parameter uncertainty. Calibration
techniques such as MCMC can be used to calibrate varieties in APSIM-Sugar based on yield data.
With appropriate variety definitions, APSIM-Sugar could be used for early risk assessment of

adopting new varieties.
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Chapter 5

Thesis Conclusion

Process-based agricultural production systems simulators allow researchers to investigate the
interactions between crop varieties, growing environments and management practices without
having to conduct laborious, expensive field trials that can run for several years. These
interactions have been investigated by modifying variety parameters in crop models for many
different crops. However, similar simulation studies for sugarcane are rare in the current
literature (Chapter 1). Moreover, current leading sugarcane models do not reflect the range of
sugarcane varieties currently grown for commercial yields (Chapter 4). By better understanding
how sugarcane crop models represent different varieties through variety parameters and
developing the tools necessary to update these representations, the use of sugarcane crop

models as decision support tools can be improved.

A review of the literature (Chapter 1) highlighted that statistical tools such as sensitivity analysis
and statistical calibration that have been used for other crops to advance variety modelling have
not been widely explored for sugarcane. This thesis made a significant contribution towards
advancing the simulation of varietal difference using the ‘Sugar’ module in the Agricultural
Production Systems sIMulator (APSIM-Sugar) by:
1. Investigating the capability of the APSIM-Sugar model to simulate yield differences
between sugarcane varieties under different climatic conditions (Chapter 2);
2. Investigating the influence of variety parameters on key model outputs using
statistical sensitivity analysis (Chapter 3) and
3. evaluating the use of two Bayesian approaches to statistically calibrate variety

parameters in the APSIM-Sugar model (Chapter 4).

5.1. Investigating the Capability of the APSIM-Sugar Model to Simulate Yield Differences
Between Sugarcane Varieties Under Different Climatic Conditions (Chapter 2)

In Chapter 2 the capability of APSIM-Sugar to simulate the differences between biomass yields
of four sugarcane varieties was investigated. The four varieties were grown under well irrigated

and water stressed conditions as part of a breeding trial conducted at Home Hill, Queensland,
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Australia. Of the 89 varieties grown in the trial, the four varieties simulated were Q117, Q124,
Q138 and R570 which are no longer grown for commercial production in Australia. The lack of
a wider range of varieties in APSIM-Sugar highlighted the need for variety definitions in APSIM-
Sugar to be updated. Simulated yields under well irrigated and stressed conditions were
compared to observed yields. The effect of modifying the transpiration efficiency (TE)

parameter (transp_eff cf) was also investigated.

APSIM was unable to simulate the observed differences between variety yields and how these
differences change when crops are grown under water stressed conditions. The difficulty in
simulating yield differences highlighted the need for improved and updated variety definitions

in APSIM-Sugar.

The parameter transp_eff cf in APSIM-Sugar was a focus in this chapter because of the recent
research of Jackson et al. (2014) that identified differences in transpiration efficiency between
varieties and environments. Modifying transp_eff cf had a large effect on simulated yields
under stressed conditions. This suggests that APSIM-Sugar simulations could be improved by
incorporating the latest physiological knowledge on genetic variation in TE. Chapter 2 was a
significant contribution to the literature as no publications could be found beforehand that
directly compared simulated differences between sugarcane varieties under different climatic

conditions.

5.2. Investigating the Influence of Variety Parameters on Key Model Outputs Using Statistical
Sensitivity Analysis (Chapter 3)

The focus of Chapter 3 was a global sensitivity analysis of APSIM-Sugar model outputs to variety
parameters which extended on the investigation of TE reported in Chapter 2. A Gaussian
Process was used to emulate the APSIM-Sugar model as an efficient method for global sensitivity
analysis. The sensitivity of simulated biomass and sucrose yields to 14 parameters was analysed

under well irrigated and water stressed conditions.

The results for the transp_eff cf parameter accurately reproduced the results of Chapter 2
supporting the use of the GEM-SA software package used in the analysis. Parameters
min_sstem_sucrose_redn, tt_begcane_to_flowering, tt flowering to _crop _end and
tillerf_leaf size were considered not influential (S; < 1) while parameters rue and transp_eff cf

were the most influential parameters under well irrigated and water stressed conditions

81



respectively. While rue and transp_eff _cf are difficult and expensive to measure directly,
leaf size and green_leaf _no are relatively cost efficient to measure and were influential under
irrigated conditions. Collecting data on these two traits during breeding programs would help
inform crop models such as APSIM-Sugar. Chapter 3 significantly contributes to the literature
as no published sensitivity analysis for the APSIM-Sugar model or for sugarcane simulation

models in general was available prior to this thesis.

5.3. Evaluating the Use of Two Bayesian Approaches to Statistically Calibrate Variety
Parameters in the APSIM-Sugar Model (Chapter 4)

While parameters such as leaf size and green_leaf no were both influential and relatively
simple to measure, the most influential parameters rue and transp_eff cf are difficult and costly
to directly determine in field experiments (Chapter 3). Chapter 4 presented an evaluation of two
Bayesian calibration techniques that could be used to estimate values for such parameters. Ten

parameters identified as influential in Chapter 3 (S; > 1) were calibrated in Chapter 4.

Generalized Likelihood Uncertainty Estimation (GLUE) and Markov Chain Monte Carlo (MCMC)
were used to calibrate APSIM-Sugar in a theoretical and real world evaluation. In the theoretical
evaluation GLUE and MCMC calibrated APSIM-Sugar for two pre-defined varieties. This
evaluated the ability of the calibration methods to approach known parameter values for
different varieties. The real world evaluation was based on GLUE and MCMC calibration of
variety Q117 using observed yields allowing for a realistic evaluation of calibration uncertainty

and validation against observed data not used in calibration.

Both GLUE and MCMC were able to accurately estimate the known variety parameters in the
theoretical evaluation with parameter estimates differing accurately between the two pre-
defined varieties (V001 and V002). This included parameters that are difficult to measure
directly such as transp_eff cf, rue and k,. The theoretical analysis identified parameters that
were difficult to estimate accurately such as sucrose_delay. Using the analysis from Chapter 3 it
was possible to hypothesize why certain parameters were difficult to estimate. This highlights
the importance of understanding how parameters to be calibrated will actually influence model
outputs. The theoretical analysis provided valuable insights in the use of statistical calibration

techniques and support their use in calibrating variety parameters in the APSIM-Sugar model.
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When applied to the well documented variety Q117, parameter values estimated by GLUE and
MCMC differed. Differences were also found between estimated values and default values for
certain variety parameters. Despite this, simulated green biomass and sucrose yields using
either GLUE or MCMC calibrations were as or more accurate than an application of the default
parameter values. Although there was little difference in the performance of GLUE and MCMC
calibrations, MCMC produced slightly better results in the real world validation and had a range
of supporting statistics to assess the convergence and stability of the estimated posterior
distribution. Prior to this study there was no available published analysis that had used Bayesian
statistics to calibrate the APSIM-Sugar model for variety parameters. The analysis presented in
Chapter 4 makes advances on earlier research that has applied GLUE to a sugarcane crop model
by identifying strengths and weaknesses in different Bayesian statistical approaches before they

are used to calibrate new varieties.

5.4. Future Work and Final Remarks

Variety parameters in APSIM-Sugar can now be routinely updated as new varieties are released.
It is recommended that modellers use the methodological framework developed in this thesis
to do so regularly. Results presented in Chapter 4 suggest that Bayesian statistical parameter
estimation techniques can be used to estimate values for parameters that are difficult to
measure using a limited amount of data which are routinely collected in breeding programs.
Future research could consider more advanced adaptive MCMC algorithms to improve
calibration efficiency. Calibration performance could also be improved by removing parameters
with a relatively weak influence on model outputs such as sucrose delay and k; and using
observed values for parameters such as leaf size and green_leaf no which are relatively easy

to measure in the field compared to parameters such as transp_eff cf and rue.

Identifying parameters for future calibrations could be improved by extending the research
reported in Chapter 3. Future global sensitivity analysis can be performed for a wider range of
environments to which the crop will be exposed. As parameter values can differ between crop
classes (plant or ratoon) future work could also consider the effect of crop class on parameter
sensitivity. As APSIM-Sugar can now be calibrated for new varieties, it will be necessary to show
that simulated differences between varieties accurately represent observed differences for a
range of growing environments. This will build confidence in the use of new variety definitions

for investigating variety, environment and management interactions.
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The ability to investigate variety, environment and management interactions will help improve
APSIM-Sugar inits role as a decision support tool. On a regional level this could include improved
regional yield forecasts. At a farm level management programs could be designed for specific
varieties grown in specific paddocks. Furthermore, the tools developed for this thesis in the R
statistical program (available on request) provide researchers with a method for manipulating
APSIM-Sugar varietal parameters making trait simulation studies such as sensitivity analysis
more accessible. The Bayesian techniques applied in this thesis have not previously been
available for APSIM-Sugar but have proven to be useful tools and will play an important role in

further developing the simulation capabilities of the sugar industry.
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