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Abstract  

Many taxa are undergoing distribution shifts in response to anthropogenic climate change. 

However, detecting a climate signal in mobile species is difficult due to their wide-ranging, 

patchy distributions, often driven by natural climate variability. For example, difficulties 

associated with assessing pelagic fish distributions has rendered fisheries management ill-

equipped to adapt to the challenges posed by climate change, leaving pelagic species and 

ecosystems vulnerable. Here we demonstrate the value of citizen science data for modelling 

the dynamic habitat suitability of a mobile pelagic predator (black marlin, Istiopmax indica) 

within the south-west Pacific Ocean. The extensive spatial and temporal coverage of our 

occurrence data set (n=18717), collected at high resolution (~1.85km2), enabled identification 

of suitable habitat at monthly time-steps over a 16-year period (1998-2013). We identified 

considerable monthly, seasonal and inter-annual variability in the extent and distribution of 

suitable habitat, predominately driven by chlorophyll-a and sea surface height. Inter-annual 

variability correlated with El Nino Southern Oscillation (ENSO) events, with suitable habitat 

extending up to ~300 km further south during La Nina events. Despite the strong influence of 

ENSO, our model revealed a rapid poleward shift in the geometric mean of black marlin 

habitat, occurring at 88.2 km decade-1. By incorporating multiple environmental factors at 

monthly time-steps, we were able to demonstrate a rapid distribution shift in a mobile pelagic 

species. Our findings suggest that the rapid velocity of climate change in the south-west 
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Pacific Ocean is likely affecting mobile pelagic species, indicating that they may be more 

vulnerable to climate change than previously thought.  

 

Introduction 

Rapid and extensive distribution shifts in response to global climate change have been 

detected in numerous marine and terrestrial taxa (Parmesan & Yohe, 2003; Chen et al., 2011; 

Pinsky et al., 2013). These shifts are predicted to continue in coming decades, resulting in a 

reassembly of current ecological communities (Loarie et al., 2009; Hazen et al., 2012; 

Burrows et al., 2014).  Although numerous shifts have been predicted, empirical evidence via 

retrospective detection has proven elusive for the majority of species due to inadequate spatial 

and/or temporal coverage of baseline occurence data (Booth et al., 2011; Hobday & Evans, 

2013). This has inhibited the development and implememntation of appropriate management 

strategies to assess species vulnerability to climate change (Conroy et al., 2011). 

Where species occurrence data is patchy, modelling changes in habitat suitability has proven 

useful for identifying distribution shifts (Elith et al., 2006, 2010).  However, habitat suitability 

metrics are often focused on temperature (Loarie et al., 2009; Burrows et al., 2014) which can 

result in underestimation of the rate and magnitude of distribution shifts expected to occur 

(VanDerWal et al., 2012). Species distributions are driven by multiple, interacting factors and 

therefore, their response to climate change is likely to be more complex and region specific 

than simple models based solely on temperature suggest (Ackerly et al., 2010; Bell et al., 

2013a). Data paucity is particularly prevalent in pelagic ecosystems, which are difficult to 

survey at fine spatial and temporal scales (Hobday & Evans, 2013). Increasing atmospheric 

CO2 concentrations have caused fundamental changes to the world’s oceans, including 

increased sea surface temperatures and shifts in oceanic circulation and primary productivity 
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patterns (Boyce et al., 2010; IPCC, 2014). However, our understanding of the impacts these 

physical changes will have on pelagic species, and the resulting consequences, is poorly 

understood. 

Apex predators exert important top-down control of food webs, and are critical for 

maintaining ecosystem function (Myers et al., 2007; Estes et al., 2011).  Many large-bodied 

pelagic predators are highly-mobile, and regularly undertake migrations of hundreds to 

thousands of kilometres at annual and inter-annual timescales (Block et al., 2011). Despite 

their widespread distributions, mobile pelagic predators have declined in abundance due to 

overfishing (Baum & Worm, 2009), causing changes to open ocean food webs (Myers et al., 

2007; Worm & Tittensor, 2011). Climate-induced distribution shifts are likely to alter the 

functioning of pelagic ecosystems already under pressure from anthropogenic stressors 

(Beaugrand et al., 2008; Hazen et al., 2012; Robinson et al., 2014). Furthermore, mobile 

pelagic predators represent 20% of total economic value in global marine capture fisheries 

(FAO, 2012). Distribution shifts in commercially important species will have serious 

implications for food security and human welfare globally (Brander, 2010; Cheung et al., 

2010; Madin et al., 2012). Early detection and characterisation of species responses to climate 

change is therefore vital for bolstering the resilience and adaptive capacity of fisheries, 

allowing appropriate management contingencies to be implemented (Hobday & Evans, 2013; 

Holbrook & Johnson, 2014; Maxwell et al., 2015). 

Detecting distribution shifts in mobile marine species has proven difficult due to naturally low 

densities, high mobility and the remoteness of preferred habitats. Acoustic and archival 

tagging technologies have improved understanding of species movements across space and 

time (Schaefer et al., 2014; Maxwell et al., 2015), but are costly and can be logistically 

difficult to undertake. In the absence of sophisticated tagging data, species distribution 
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modelling has proven useful for illustrating the dynamic habitat suitability of mobile species, 

and presents itself as a potential tool for dynamic ocean management (Elith et al., 2006; 

Lehodey et al., 2006; Maxwell et al., 2015). Habitat suitability of mobile species is 

determined by a range of environmental (eg: temperature; Boyce et al., 2008) and ecological 

parameters (eg: prey abundance; Griffiths et al., 2010) which vary across both space (metres – 

1000’s km) and time (minutes – multi-decadal). Therefore, modelling distribution shifts using 

environmental data averaged over broad climatic scales (eg: Perry et al., 2005; Montero-Serra 

et al., 2015), may inaccurately represent habitat suitability for mobile species (Reside et al., 

2010). Low spatial resolution data and use of inappropriate modelling techniques has 

hindered the detection of underlying long-term shifts in some mobile species (Hobday & 

Evans, 2013).  

Utilizing citizen science to assist with the spatial and temporal coverage of data sampling can 

help overcome problems associated with data paucity. For example, citizen science has 

proven critical in establishing the projected impacts of climate change on the distribution and 

volume of remaining viable habitat for mobile bird species (VanDerWal et al., 2012; 

Abolafya et al., 2013). In Australia, a large-scale tagging program utilising recreational 

fishermen to collect data on targeted pelagic species has been operating since 1974 in 

collaboration with fisheries management (NSW DPI, 2014). Participants apply a conventional 

streamer tag to captured fish before release and record the capture date, release location and 

approximate length and weight of each fish. Under the program, recreational anglers have 

tagged over 419 000 individual fish across 25 different species, providing a spatially and 

temporally extensive dataset of the distribution of pelagic fishes (NSW DPI, 2014).  

Black marlin (Istiopmax indica) are a common target of recreational anglers in many 

locations throughout the south-west Pacific Ocean, and are regularly recorded in the NSW 
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DPI Gamefish Tagging Program (NSW DPI, 2014). The distribution of black marlin extends 

throughout tropical and sub-tropical regions of the Pacific and Indian Oceans predominately 

found in epipelagic waters (Pepperell, 1990; Domeier & Speare, 2012). Although 

geographically widespread and capable of crossing ocean basins (Pepperell, 1990), black 

marlin show a seasonal affinity for continental margins and sea-mounts (Campbell et al., 

2003; Gunn et al., 2003), increasing their accessibility to recreational anglers. Recently 

Williams et al. (2015) identified three distinct genetic populations in the south-west Pacific, 

eastern Indian Ocean and the south China Sea. In the south-west Pacific population examined 

in this study, spawning occurs from September-November adjacent to the continental shelf of 

north-east Australia (Leis et al., 1987; Domeier & Speare, 2012). From September-April, 

juveniles 1–4 years old undertake a southerly migration along Australia’s eastern continental 

margin (17-34oS) (Pepperell, 1990). Although the south-west Pacific population is targeted by 

a substantial recreational fishery, little is known about population status (Collette et al., 2011) 

or where else the species might occur.  

Here, we demonstrate the value of citizen science collected data for investigating distribution 

shifts in the south-west Pacific population of black marlin. We model the dynamic habitat 

suitability of black marlin using high resolution spatial and temporal data to investigate 1) 

environmental factors that characterise suitable habitat of black marlin; 2) the variation in 

location of suitable habitat across seasonal and inter-annual timescales in relation to natural 

climate oscillations; and 3) whether a long-term distribution shift has occurred and is 

consistent with the effects of climate change observed in the south-west Pacific Ocean. 
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Materials and methods 

Study region  

The study was conducted in the south-west Pacific Ocean (3-39oS/142-180oE; Fig. 1a). The 

study area encompasses the ‘core’ range of the south-west Pacific black marlin population 

identified using genetic analysis, archival tagging and historical commercial catch data 

(Williams et al., 1994; Domeier & Speare, 2012; Williams et al., 2015). The dominant 

oceanographic feature of this region is the East Australian Current (EAC), a poleward-

flowing western boundary current that transports warm, oligotrophic waters along Australia’s 

east coast (Ridgway, 2007). The EAC originates from the westward-flowing South Equatorial 

Current (SEC), which bifurcates at the Australian continental margin at 17-19oS (Brinkman et 

al., 2001). A seasonal strengthening in the EAC occurs from September-April (Luick et al., 

2007). The EAC departs from the east coast at 32-34oS, flowing east towards New Caledonia 

and New Zealand, forming the Tasman Front (Baird et al., 2008; Suthers et al., 2011). The 

Tasman Front is a transition zone, representing the collision of cold (Tasman Sea) and warm 

water (Coral Sea) bodies, often exhibiting strong thermal gradients of >2oC (Baird et al., 

2008). Over winter (April-August), subantarctic cold waters push north, forcing the EAC and 

Tasman Front to retreat towards the equator. 

These major oceanographic features vary across numerous temporal scales, attributed to the 

influence of climate oscillations. El Nino Southern Oscillation is the dominant force, which 

drives strong inter-annual variability in the oceanography of the south-west Pacific Ocean 

(Holbrook et al., 2009). El Nino events are characterised by anomalously high sea surface 

temperatures adjacent to Australia’s south-east coast and anomalously cool temperatures in 

the north as the West Pacific Warm Pool disperses east. In contrast, during La Nina events 

trade winds strengthen, forcing West Pacific Warm Pool water to remain in the south-west 
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Pacific (Holbrook & Bindoff, 1997; Holbrook et al., 2009). Decadal variability is also 

present, characterised by extended warm, El Nino like conditions or conversely cold, La Nina 

like conditions. Combination of these various climatic influences create highly variable 

oceanographic conditions within the south-west Pacific Ocean. Globally, western boundary 

currents such as the EAC are warming 2-3 times faster than the global mean (Wu et al., 2012; 

Hobday & Pecl, 2013; Hu et al., 2015). Despite this substantial natural variability in 

oceanographic features, a long term incessant poleward shift in these features has been 

recorded (Cai et al., 2006; Ridgway, 2007) and is predicted to continue (Cai et al., 2005; 

Ridgway & Hill, 2012), with subsequent shifts in numerous marine taxa documented  

(Frusher et al., 2014; Verges et al., 2014).  

Occurrence data 

Occurrence records were obtained from black marlin tagged by recreational anglers in the 

New South Wales Department of Primary Industries Tagging Program (NSWDPI, 2014). The 

database covers the period from 1974-present. However, in this study we only used a subset 

from the period 1998-2013. This period was chosen due to the availability of high-resolution 

environmental data, and also to account for the increased fishing effort present in the database 

in the 1970s and 1980s. Occurrence data was binned into monthly time-steps, leaving a total 

of 24344 occurrence records available at a spatial resolution of one minute of 

latitude/longitude (~1.85km2) (Fig. 1b). Although the distribution of tag records is 

predominately restricted to within close proximity of coastlines, the use of this data enabled 

analysis at a much finer spatial scale than would be possible using commercial catch per-unit 

effort data, which is often collected at a resolution of 5x5o (~556.63km2) (eg: Su et al., 2011). 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Environmental data 

Environmental factors (Table S1) were chosen as potential explanatory variables based on 

their availability and demonstrated influence on pelagic species distributions (Su et al., 2011). 

Spatial layers for environmental factors were acquired using the Marine Geospatial Ecology 

Tool (MGET) (Roberts et al., 2010) in ArcGIS. Daily measurements for each factor were 

averaged at monthly time-steps (n=192) from 1998-2013 to reduce the influence local 

minima/maxima and no-data cells (e.g. due to cloud cover). No-data cells were interpolated 

using the del2a method within MGET which uses laplacian interpolation (D’errico, 2005). All 

environmental layers were resampled to a common spatial resolution (4 km2) to satisfy 

requirements of MaxEnt. Mixed layer depth and bathymetry were also investigated, but were 

not included in the final model as they led to over-fitting of the data.  

Species distribution model 

We used the species distribution modelling algorithm MaxEnt, which estimates the 

probability distribution of a species occurrence based on constraints from biologically 

relevant environmental factors (Phillips et al., 2006). MaxEnt is a robust technique that 

performs well against similar methods when modelling non-systematically collected 

occurrence data even if sample sizes are small (Elith et al., 2006). This technique accurately 

models species distributions, despite data limitations and biases (Elith et al., 2006; Pearson et 

al., 2007). MaxEnt generates a continuous layer of habitat suitability (ranging from 0-1) 

across a specified domain by distinguishing the distribution of a species occurrence from the 

available surrounding environment (Phillips et al., 2006; Elith et al., 2011).  

We generated a background data set to representatively sample the environment surrounding 

each occurrence record. MaxEnt assumes the occurrence data was randomly sampled, with all 
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locations within the study area equally likely to be sampled. To account for our occurrence 

data being biased towards areas more accessible to recreational anglers, we selected 

background data with equivalent spatial and temporal bias to ensure the model reflected the 

distribution of black marlin rather than sampling effort (Phillips et al., 2009). Background 

points were randomly placed within a specified buffer distance surrounding each occurrence 

record and assigned to the same monthly time-step. Four different buffer sizes were 

investigated (50, 100, 200, 300n. mi.) to assess model performance (VanDerWal et al., 2009). 

The final models used the 200n. mi. buffer, which most effectively balanced habitat 

sensitivity and specificity, offering the most biologically informative and logical results 

(VanDerWal et al., 2009).  

Occurrence and background points within close proximity to the coastline that did not contain 

data coverage from all environmental factors were omitted. A total of 18717 occurrences and 

23242 background points were used in the final models.  The value for each environmental 

factor was recorded at each point and derived from the relevant monthly time-step. For the 

final model, environmental factors investigated included sea surface temperature, chlorophyll-

a concentration, sea surface height anomaly, current direction and current magnitude. All 

models were run using MaxEnt in R 3.0.2. Model performance was evaluated with a ten-fold 

cross-validation (500 iterations each) using Species Distribution Modelling (SDM) Tools 

(VanDerWal et al., 2015). To test model performance, occurrence data was randomly 

partitioned into subsets, with 70% of occurrence records used to train the model and the 

remaining 30% for testing. Each ‘fold’ of cross-validation was compared using area under the 

receiver-operating characteristic curve (AUC) to provide estimates of model performance. 

Values approaching 1 suggest the model accurately predicts species occurrence, whereas a 

value of 0.5 suggests the model is no better than a random selection. The importance of each 

environmental factor in the training model was determined using a jack-knife test. The final 
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model was run using all occurrence data and projected onto a series of monthly spatial 

surfaces from 1998-2013 to hindcast the distribution of suitable black marlin habitat within 

the study area (Reside et al., 2010). 

MaxEnt provides a series of threshold values which can be used to generate discrete binomial 

suitable/non-suitable outputs. These threshold values represent natural breaks in the scale of 

habitat suitability (0-1) defined by MaxEnt. After visual inspection of binomial outputs 

produced using all thresholds, the MaxEnt-derived ‘equate entropy of thresholded and 

original distributions logistic threshold’ value of 0.282 was used to define non-suitable habitat 

from suitable habitat. This value was chosen as alternative thresholds provided by MaxEnt 

were considered too high and therefore too restrictive for a highly-mobile generalist species, 

omitting suitable habitat (Anderson et al., 2012).  

The geometric mean of suitable habitat was calculated for each month (n=192) by taking the 

average of all cells within the study area based on their suitability value and location 

(latitude/longitude).  This provided a single point that estimated the core or centre of suitable 

habitat for each time-step. Comparison of the latitudinal/longitudinal location of geometric 

means was used to investigate annual and inter-annual variability in the geographic location 

of suitable habitat. Points were assigned to three different El Nino Southern Oscillation 

(ENSO) states (El Nino, La Nina and Neutral) and compared using boxplots. To investigate 

long-term trends in the geometric mean of suitable habitat from 1998-2013, we used a linear 

model that included season (Jan-Apr, May-Aug, Sep-Dec) and ENSO state (El Nino, La Nina, 

neutral) as fixed effects to remove variability they impart on the observed latitudinal trend 

throughout the study period. Residual plots were used to confirm that the model satisfied 

assumptions of normality and heterogeneity of variance. 
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Results  

The distribution of modelled suitable habitat represented the spread of occurrence records 

well, giving confidence that this model is ecologically informative (Fig. S1). Cross-validated 

AUC value (0.634) indicated that the model was acceptable for a highly-mobile generalist 

species with a broad environmental niche (Reside et al., 2011). Environmental factors that 

contributed most to the model were chlorophyll-a (chl-a) (47%) and sea surface height 

anomaly (ssha) (30%), while current magnitude (14%), SST (4%) and current direction (5%) 

were less important (Fig. S2).   

Seasonal variability  

The model supported a seasonal latitudinal shift in the distribution of suitable black marlin 

habitat in the south-west Pacific Ocean (Fig. 2). In the late austral winter (August-September), 

suitable habitat occurs within a 10o latitudinal band extending across the south-west Pacific 

Ocean adjacent to north-eastern Australia centred on ~17oS (Fig. 2a). From September-April, 

suitable habitat shifts south and is more proximal to Australia’s east coast, in conjunction with 

the strengthening EAC (Fig. 2b). Suitable habitat extends to the central (~25oS) and south-east 

(~33oS) coast of Australia throughout the austral summer, reaching its most southern extent at 

the conclusion of summer (Fig. 2c). At its most southerly extent (~32-34°S), suitable habitat 

is bounded by unsuitable waters of the Tasman front, forcing suitable habitat eastwards 

towards New Caledonia before shifting northwards again over the austral winter (June-

August) (Fig. 2d). The distribution of geometric means within each year supported the 

occurrence of a seasonal latitudinal shift in the distribution of suitable habitat (Fig. S3).  

 

 

Inter-annual variability  
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Considerable variability was observed in the latitudinal range of suitable habitat across the 

study area (142-180oE) among years (Fig. S4). Latitudinal variability in suitable habitat 

among years was lowest during May-August, when marlin occurred at lower latitudes. In 

contrast, the latitudinal position of suitable habitat was far more variable among years in 

January-April, when suitable habitat shifted to higher latitudes. Variability in the southerly 

extent of suitable habitat among years was correlated with ENSO, with suitable habitat 

extending up to 300km further southwards during La Nina state in comparison to Neutral or 

El Nino state (Fig. 3).  

Poleward shift in suitable habitat 

Despite substantial variation in the latitudinal extent of suitable habitat due to natural climate 

oscillations, our model indicated an overall poleward shift in suitable habitat for all seasons 

over the period 1998-2013. After accounting for season and ENSO as factors, the model 

indicated that the geometric mean of suitable black marlin habitat has shifted polewards at a 

velocity of 88.2 km decade-1 (Fig. 4). When each season was considered individually, 

significant trends were observed in both May-August (R2=0.59, p<0.001) and September-

December (R2= 0.52, p<0.01). In both seasons, the velocity of poleward distribution shifts 

was 77 km decade-1. The velocity of poleward shifts was greater during January-April (111 

km decade-1). However, this trend was only marginally significant (p=0.06) due to greater 

inter-annual variability during the summer months (R2=0.16).  

 

 

Discussion  
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Our model indicated a rapid poleward shift in the latitudinal distribution of suitable black 

marlin habitat. Suitable habitat is shifting south at a mean rate of 88.2 km decade-1, 

independent of considerable variation observed due to season and ENSO. The velocity of the 

poleward distribution shift reported here for the period 1998-2013, based on empirical 

observations and multiple environmental factors, is considerably faster than predictions made 

for similar mobile pelagic predators using modelled climate scenarios ranging from 2030-

2100 (Hobday, 2010; Robinson et al., 2014). Our results indicate that climate change may be 

rapidly changing the geographic location of suitable habitat for black marlin. Given that many 

mobile pelagic predators respond to a similar suite of environmental factors and 

oceanographic features, climate change may already be exerting a strong influence on pelagic 

ecosystems and fisheries (Pereira et al., 2010; Barnosky et al., 2012; Burrows et al., 2014). 

Detecting distribution shifts on the decadal timescales for which data are commonly available 

has proven difficult for most mobile pelagic predators (Hobday & Evans, 2013). Furthermore, 

many predictions of distribution shifts consider too few explanatory factors (e.g. temperature) 

(Hobday, 2010; Montero-Serra et al., 2015), despite evidence that species distributions are 

determined by numerous, interacting factors (Brill & Lutcavage, 2001; Ackerly et al., 2010; 

Grenouillet & Comte, 2014). Our results suggest that multiple factors interact to determine 

suitable habitat for black marlin, and support the hypothesis that models based on a single 

factor may underestimate the fingerprint of climate change (VanDerWal et al., 2012). Given 

that species distributions are likely influenced by multiple interacting factors (Ackerly et al., 

2010; Grenouillet & Comte, 2014), fine-scale examination of species distributions is 

important in accurately assessing species vulnerability and likely responses to shifting habitat 

suitability driven by climate change. 

The velocity of poleward shift in suitable habitat reported here (88.2 km decade-1) is rapid 

considering our study used geometric means. Studies of range expansion tend to focus on the 
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margins of species distributions (Lenoir & Svenning, 2015), which are likely to be more 

dynamic than geometric means. Although rapid leading-edge range expansions have been 

reported for marine fishes (277 km decade-1), shifts in the location of geometric means are 

generally slower (30 km decade-1) (Poloczanska et al., 2013). Given the highly-mobile nature 

of black marlin, geometric means compared amongst equivalent seasons provide greater 

insight into climate-induced distribution shifts than overall range-edge dynamics (Pinsky et 

al., 2013; Bates et al., 2015). After accounting for annual migration by considering seasons 

separately, our model indicates that the ‘leading edge’ (in this case, the geometric mean of 

suitable habitat during January-April, when black marlin occur at their more southerly limit) 

is shifting poleward at a faster rate (111 km decade-1) than the ‘trailing edge’ (77 km decade-

1). The greater velocity of the leading edge for black marlin is likely driven by changes in the 

strength and southward penetration of the EAC (Ridgway, 2007; Ridgway & Hill, 2012), and 

provides further evidence of the influence of strengthening boundary currents on marine 

ecosystems (Wu et al., 2012; Hobday & Pecl, 2013). Higher latitudes are warming more 

rapidly overall than lower latitudes, although they also experience greater annual variability. 

Our findings of more rapid poleward extension at the leading edge supports empirical 

observations that leading edges are shifting more rapidly than trailing edges (Poloczanska et 

al., 2013), despite theoretical evidence that leading and trailing edges are equally responsive 

to warming for marine ectotherms (Sunday et al., 2012). 

Traditionally, mobile species such as black marlin have been considered less vulnerable to 

climate change due to their ability to track suitable habitat (Pearson & Dawson, 2003; 

Robinson et al., 2009). However, this hypothesis fails to consider that many mobile pelagic 

species are site attached to features for critical life history processes such as spawning (Block 

et al., 2011; Anderson et al., 2013). Climate change may render these key features less 

suitable (Hobday & Pecl, 2013), decreasing the resilience of some species (Robinson et al., 
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2009; Anderson et al., 2013). For example, climate change will likely decrease the suitability 

of many spawning locations, driving declines in recruitment and overall abundance (Satoh, 

2010; Bromhead et al., 2014). Tropicalisation of temperate environments may progressively 

disconnect foraging and spawning grounds, increasing the distance required of species to 

travel (Robinson et al., 2009; Anderson et al., 2013). Furthermore, the distribution of 

productive upwelling zones are likely to shift, decreasing the abundance and availability of 

prey in some regions (Hazen et al., 2012; Boyce et al., 2014). Our results suggest that shifts in 

the timing and suitability of key oceanographic features may limit the adaptability of mobile 

pelagic predators, making them more vulnerable to climate change than initially thought. 

Our results indicate substantial seasonal and inter-annual variability in the distribution of 

suitable habitat. Seasonal shifts suggest that black marlin move in conjunction with a warm-

water pulse in the East Australian Current (EAC) from September-April. Our modelled results 

are concordant with tag-recaptures of juvenile black marlin (Pepperell, 1990) and other 

similar species known to undertake seasonal migrations in association with western boundary 

currents, such as Atlantic bluefin tuna (Thunnus thynnus) within the Gulf Stream (Block et 

al., 2005) and striped marlin (Kajikia audax) within the Kuroshio Current (Lien et al., 2013). 

Our model also identified the Tasman Front as a region of suitable habitat which has not been 

previously reported for black marlin. Transition zones have been identified as important 

migratory corridors and foraging habitat for numerous mobile marine species (Polovina et al., 

2001; Block et al., 2005; Block et al., 2011), supporting model results regarding the potential 

importance of the Tasman Front. Our model also indicated inter-annual variability in the 

distribution of suitable habitat, at least partially driven by ENSO. Although the southward 

migration of juveniles has been inferred from tag-recaptures (Pepperell 1990), the effects of 

ENSO on the southerly penetration of black marlin was previously undocumented. There is 

not a strong ENSO signature in the behaviour of the EAC (Holbrook et al., 2009). Despite 
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this, the southerly shift in distribution of suitable habitat during La Nina events is likely due 

to an overall increase in the presence of tropical mode water across the south-west Pacific 

Ocean.  

Pacific Decadal Oscillation (PDO) influences environmental parameters throughout the south-

west Pacific Ocean (Linsley et al., 2000; Ridgway, 2007) and is known to influence species 

distributions and abundance (Polovina, 1996; Lehodey, 2006). Recent shifts in regional 

climate indicators suggest that PDO has shifted to a cool, La Nina like phase in recent years 

(Cai & Rensch, 2012). Due to the relatively short time period examined here (16 years), we 

cannot exclude the possibility that climatic factors operating on decadal scales (e.g. PDO) 

may help explain the poleward shifts observed here. However, long-term records show that 

poleward shifts are occurring in the climate (Cai et al., 2006) and oceanography (Ridgway, 

2007) of the south-west Pacific irrespective of PDO phase (Ridgway & Hill, 2012; Hu et al., 

2015) which is warming at 2-3 times the global average rate (Wu et al., 2012; Hobday & Pecl, 

2013). Subsequently, poleward distribution shifts have been reported for numerous marine 

species (Poloczanska et al., 2013; Frusher et al., 2014). Furthermore, this poleward trend in 

climatic and oceanographic features is predicted to continue (Cai et al., 2005; Ridgway & 

Hill, 2012; Hu et al., 2015), suggesting the shift in suitable habitat reported here is likely to 

continue. 

Mobile pelagic predators play a key functional role in pelagic ecosystems, and their decline 

has resulted in trophic cascades in some regions (Myers et al., 2007; Baum & Worm, 2009). 

Poleward distribution shifts in mobile pelagic predators could therefore have severe 

consequences for food webs in pelagic ecosystems, particularly in the tropics (Block et al., 

2011; Bell et al., 2013a).  Tropical nations are predicted to experience significant changes in 

fisheries production during the 21st century, with severe consequences for regional economic 
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development and food security (Allison et al., 2009; Cheung et al., 2010; Bell et al., 2013b). 

Our results indicate that rapid changes are already occurring in pelagic ecosystems. With 

emphasis of management shifting to a dynamic framework (Lewison et al., 2015; Maxwell et 

al., 2015), application of this model in conjunction with more sophisticated tagging 

technology presents itself as a potential method to manage key, mobile pelagic resources in 

real-time as access to and quality of high-resolution remote sensing data improves.  

Investigating the population status and distribution of mobile pelagic predators is difficult due 

to the remote nature of their habitat and naturally low population densities. These factors lead 

to a lack of data at suitable spatial or temporal resolution to identify trends in populations, 

inhibiting studies of distribution shifts or population trajectories (Hobday & Evans, 2013). 

While some tagging technologies (satellite archival and passive acoustic tagging) can yield 

valuable information for fisheries managers and climate modelling (Block et al., 2011; Hazen 

et al., 2012), they are prohibitively expensive for many applications. Here, we show that 

citizen science can provide a valuable and cost-effective method of obtaining long-term, 

spatially-explicit occurrence records for a mobile pelagic predator (Booth et al., 2011). This 

model could be applied to facilitate broad-scale implementation of a dynamic ocean 

management framework for a number of pelagic species where use of more sophisticated 

tagging technology is not viable. Combining occurrence records with remotely-sensed 

environmental data, we have shown a rapid, poleward shift in suitable habitat for black 

marlin. Given the success of our technique over such a short timescale (16 years), we 

advocate wider application of this method for studying mobile marine species. Increased 

utilization of such citizen science data may provide a valuable source of historical species 

occurrence records across a wide range of marine and terrestrial taxa, facilitating improved 

understanding of the impacts climate change will have on species distributions. 
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Supporting Information captions 

Figure S1: Animation of model outputs, showing the distribution of suitable black marlin 

habitat at monthly time steps (n=192) from 1998-2013. 

Figure S2: Variable contributions to final MaxEnt model output and model strength in the 

absence of each environmental factor determined using a jack-knife test. 

Figure S3: Distribution of geometric mean points from 1998-2013 grouped into months 

showing seasonal latitudinal variability in the distribution of suitable black marlin habitat.  

Figure S4: Inter-annual variability in the distribution of suitable black marlin habitat within 

the south-west Pacific Ocean. These four outputs represent suitable habitat during February 

from 2009-2012. Unsuitable habitat <0.282. a) 2009: There is a clear distribution of suitable 

habitat along Australia’s east coast which has extended eastwards. b) 2010: Suitable habitat is 

much more refined to Australia’s east coast and is fragmented with unsuitable habitat. c) 

2011: A clear band of suitable habitat stretches east towards New Caledonia as cold water 

currents shift north. d) 2012: Unsuitable habitat is present at both the northern and southern 

extent of the south-west Pacific Ocean with suitable habitat extending as a narrow band along 

Australia’s south-east coast and eastwards towards New Caledonia.  

 

 

Figure captions 

Figure 1: The study area of the south-west Pacific Ocean (3-39oS/142-180oE), its major 

oceanographic features and the distribution of occurrence data within. a) A depiction of 

regional oceanographic features, including: 1. The South Equatorial Current 2. The East 
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Australian Current 3. The Tasman Front. b) All tag release locations recorded from the 

tagging program within the study area.  

Figure 2: Seasonal variability in the distribution of suitable black marlin habitat within the 

south-west Pacific Ocean and its association with major oceanographic features. Unsuitable 

habitat <0.282. a) August-October: A broad 10o latitudinal band of suitable habitat extends 

across the south-west Pacific Ocean adjacent to north-east Australia as the South Equatorial 

Current strengthens and collides with the continental shelf. b) November-February: The East 

Australian Current extends south supplying suitable habitat to the mid and south-east coast of 

Australia. c) March-April: Suitable habitat has reached its most southern extent and is now 

extending east in conjunction with the Tasman Front. d) May-July: Cold water currents shift 

towards the equator, forcing suitable habitat north. 

Figure 3: El Nino Southern Oscillation signature in the distribution of suitable black marlin 

habitat within the south-west Pacific Ocean with a clear southerly extension occurring during 

La Nina events. 

Figure 4: A poleward shift in the distribution of suitable black marlin habitat across all 

seasons from 1998-2013 independent of ENSO. May-August (R2=0.59, p<0.001) and 

September-December (R2= 0.52, p<0.01) are both significantly shifting poleward at 77km 

decade-1. January-April is shifting faster at 111 km decade-1 but was only marginally 

significant (R2=0.16, P=0.06) due to greater inter-annual variability. 

 

Candidate cover image 

Suggested caption: “Can pelagic apex predators keep up with the pace of climate change?” 

Photo credit: Nicholas J. Hill 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

−
20

−
19

−
18

−
17

−
16

La Nina Neutral El Nino

La
tit

ud
e

Southern Oscillation Index Phase

(˚S
)

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

2000 2010

−
21

−
20

−
19

−
18

−
17

−
16

−
15

Year

La
tit

ud
e 

1998 2002 2004 2006 2008 2012

September - December

January - April

May - August

(˚S
)

 




