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Frontispiece. A dugong feeding on low biomass seagrass in New Caledonia. Dugongs 

feed on both above- and below-ground seagrass such as leaves and rhizomes, often by 

causing sediments plumes as depicted on this picture. This feeding mode is referred as 

excavating (sensu Wirsing et al. 2007a) and target underground seagrass parts.  

(Photograph by Luc Faucompré).
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Abstract 

The dugong (Dugong dugon) is a coastal marine mammal of conservation concern with 

a sub-tropical and tropical range extending from East Africa to the Solomon Islands and 

Vanuatu. Australia is the dugong’s stronghold and the site of most modern research. 

Compared to the research on the dugong’s horizontal space use and movement 

patterns, little is known of the dugong’s diving behaviour. Application of behavioural 

information to large-scale monitoring studies of population abundance has been 

minimal. My research combined data collected from a variety of technologies and 

platforms (satellite/GPS wildlife tracking, remote and benthic sensing, aerial survey) to 

study dugong diving behaviour and improve aerial survey estimates of dugong 

abundance.  

The objective of this thesis was to maximise the usage of wildlife tracking data to 

improve fine-scale knowledge of the dugong diving ecology and to apply this 

information to improve the methodology to estimate dugong abundance. I achieved 

these objectives by: 1) developing an empirical procedure to maximise the correct 

identification of dives recorded by time-depth recorders (TDRs); 2) advancing 

understanding of fine-scale dugong diving behaviour by linking dive records with fine-

scale spatial movement data and habitat descriptions; and 3) improving aerial survey 

estimates of dugong population size by accounting for their heterogeneous diving and 

surfacing behaviours. Details of my results follow. 

Aim 1:  Develop an empirical procedure to identify dives in shallow-diving 

aquatic wildlife such as the dugong 

Dives from coastal aquatic animals can be difficult to interpret because the shallow 

nature of their dives relative to the resolution of TDRs often precludes the reliable 

identification of the different phases of a dive (e.g., descent, bottom, and ascent). I 

developed an empirical procedure to determine the thresholds for: 1) the zero-offset 

correction (ZOC) for surface calibration; and 2) the maximum dive depth (dive 

threshold (DT)). This empirical approach increased the reliability of dive identification 

and was essential to subsequent interpretations of dugong diving behaviour (Aim 2).    
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Aim 2:  Advance insights into fine-scale dugong diving ecology 

I used statistical models based on dive parameters identified using the methodology 

developed for Aim 1. Dugongs are benthic feeders that primarily consume seagrass. 

Thus dugongs reaching in the vicinity of the seafloor where seagrass is present are 

more likely to be feeding on seagrass than the seafloor where no seagrass is present. 

However, behavioural inference from dives per se was not attempted because several 

behaviours can occur over seagrass meadows. 

Using 8 dive metrics (descent rate, bottom time, vertical displacement, maximum 

depth, ascent time, ascent rate, asymmetry and ascent rate divided by descent rate), I 

performed a series of logistic regression models to predict dives that achieved the two 

criteria: a) mid-water dives that did not provide the dugong with access to the seafloor 

and dives that did; and b) dives that enabled the dugong to access the seafloor in areas 

with seagrass and without seagrass. These criteria were determined from a 

bathymetric model, tidal records, and a seagrass model from shallow banks of 

Moreton Bay, The logistic regression models showed that compared to dives that had 

a high likelihood of accessing the seafloor (seafloor dives), dives that had a high 

likelihood of not reaching the seafloor (mid-water dives) were characterised by shorter 

bottom times, a larger degree of vertical displacement (presumably the result of active 

tail movements) during the bottom phase, and slower ascent rates. The profiles of 

these mid-water dives included U-, V- and other shapes (Fig.1).  

The dugongs that had a high likelihood of accessing the seafloor in locations 

supporting seagrass transited quickly between the surface and the seafloor and 

maximised the time spent on the substratum, presumably maximising nutrient return. 

The profiles of such dives were mostly classified as square-shaped and less frequently 

U-shaped. Dugongs undertaking seafloor dives in locations without seagrass also spent 

a long time on the bottom but were sluggish in all phases of the dive, including the 

transits between the surface and the bottom. These dives generally had U-shaped 

profiles (with some square profiles). The dive shapes in the three groups overlapped 

supporting my assumption that inferences about dive function on a broad classification 

of dive shapes given the data I examined is not possible. 
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Figure 1 Examples of dive profiles. 

Aim 3:  Estimate dugong population size that is more robust by accounting for 

their heterogeneous diving and surfacing behaviours 

The current aerial survey methodology used to estimate dugong population sizes at 

extensive spatial scales accounts for availability bias (animals that are present in survey 

transects but not visible) due to water turbidity and sea state but assumes constant 

dugongs’ diving and surfacing patterns. To improve availability bias estimates 

(availability detection probabilities), particularly to account for heterogeneous 

availability bias, I first estimated availability detection probability by combining data 

from dugongs fitted with TDRs, GPS satellite tracking units, and fine-scale bathymetric 

models (Chapter 5). I found availability detection probabilities varied with water depth. 

All dugongs in clear shallow water (e.g., <1 m) are presumed to be available for 

detection and the availability bias in these shallow waters was not estimated 

experimentally. The probability of a dugong being available was next highest in water 

up to 5 m deep (0.60 to 0.87), followed by water >25 m deep (0.58 to 0.85), and lowest 

in water 5 to 25 m deep (0.34 to 0.69). These depth-specific availability corrections 

should be more accurate and increasing the likelihood of detecting actual change in a 

population size.    
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Using correction factors that incorporated the dugong depth-specific availability 

detection probabilities, I improved estimates of dugong population abundance over 

three survey regions (Chapter 6). In Moreton Bay, the abundance estimates based on 

depth-independent (constant) and depth-specific availability detection probabilities 

were similar because a high proportion of dugongs were sighted in clear shallow water 

where all animals were potentially available for detection. In Hervey Bay, the 

abundance estimate based on the depth-specific availability detection probabilities 

was lower than the estimate using the constant availability detection probabilities, 

because more than 50% of dugongs were sighted in clear deep water where the 

estimated depth-specific availability detection probabilities were higher than the 

depth-independent estimates. In Torres Strait, the difference in the estimated 

abundance between the two methodologies was large (>3500 dugongs; 28%). Many 

dugongs were sighted in waters 5-25 m deep in this region and the depth-specific 

availability estimates were smaller than the estimates independent of water depth, 

leading to the larger abundance estimate.  

Summary 

The results of my research have not only significantly improved understanding of the 

diving behaviour of dugongs and led to improved estimates of dugong abundance in 

heterogeneous environments but have also demonstrated methodological advances 

that should have wider application to shallow-diving aquatic wildlife whose studies are 

often hampered by coarse resolution of TDRs and affinity of the animals to shallow 

waters.  
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Chapter 1:  Linking wildlife tracking data  

with fine-scale environmental features to improve 

understanding of dugong diving ecology  

and population size estimates 
 

Understanding the behavioural ecology of free-ranging animals requires complementary 

information on both the animals and their environment. Such information is not only 

valuable for understanding animal ecology but can also inform conservation planning 

and management practices. In this chapter, I provide the rationale for using an approach 

in which animal data are linked with environmental information to improve fine-scale 

insights into dugong diving ecology and the methodology for estimating abundance. I 

conclude this chapter by outlining the aims of my thesis and its structure. 
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Chapter 1:  Linking animal tracking data with fine-scale 

environmental features to improve understanding of 

dugong diving ecology and population size estimates  

1.1 Introduction 

Studying the behaviour of aquatic vertebrates is logistically challenging. The animals 

typically spend most of their time submerged. In addition, some species perform long 

distance migrations, making extended visual observations difficult or impossible (Rutz 

and Hays 2009; Bograd et al. 2010). Technological advances and the development of a 

range of small-sized sensing units that can be attached to individual animals have 

enabled free-ranging animals to be studied in their natural environments over vast 

spatial and temporal scales (Wilson et al. 2002; Shillinger et al. 2012). This use of 

wildlife telemetry or biologging sensors has expanded our understanding of the 

physiology, behaviour, habitat use, and social interactions of marine taxa from 

coelenterates to cetaceans (e.g., jelly fish: Hays et al. 2012; fish: Domeier and Nasby-

Lucas 2008; birds: Culik et al. 1996; marine turtles: Rice and Balazs 2008; and 

mammals: Kooyman 1965; Sommerfeld et al. 2015). The invaluable insights obtained 

from wildlife tracking studies have been well summarised in comprehensive reviews 

(e.g. Wilson et al. 2002; Boyd et al. 2004; Cooke et al. 2004; Kooyman 2004; Naito 

2004; Block 2005; Ropert-Coudert and Wilson 2005; Burger and Shaffer 2008; Cooke 

2008; Hart and Hyrenbach 2009; Ropert-Coudert et al. 2009; Bograd et al. 2010; Costa 

et al. 2010; Evans et al. 2013; McIntyre 2014; Kraska et al. 2015),  

Additional insights into animal ecology and habitat use can be obtained when remotely 

sensed wildlife tracking data are linked with complementary information about the 

tracked animals and their immediate environment. For instance, several studies have 

identified prey species by combining location data collected from geolocators or 

Platform Transmitter Terminals (PTTs) and diet information obtained from stable 

isotope analysis (Furness et al. 2006;  Phillips et al. 2007). Banks et al. (2014) attached 

Satellite Relayed Data Loggers (SRDLs) to the southern elephant seals (Mirounga 
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leonina), and also collected fatty acid signature from the seals. They found that 

animals foraging in different regions in Southern Oceans consumed different prey 

types (predominantly squid compared with a mixed diet of fish and squid). The diets 

changed annually, presumably responding to prey availability.  

Similar approaches have also been used to provide information applicable to 

conservation and management. For example, Cooke et al. (2006) described the 

underlying reasons for migration failure in a commercially and recreationally important 

species, the sockeye salmons (Lncorhynchus nerka). Based on examination of 

physiological and somatic conditions and blood samples, and the use of radio 

transmitters attached to the salmons, these authors found the fish that failed to reach 

spawning sites had lower somatic energy and higher levels of stress hormones such as 

cortisol than the fish that reached their final destination. By combining data from GPS 

tracking and scats in declining populations of South American sea lions (Otaria 

flavescens) , Riet-Sapriza et al. (2013) showed variable levels of spatial and resource 

overlap between the sea lions and artisanal and commercial trawl fisheries. The results 

lead to recommendations concerning changed management arrangements for each of 

the two fisheries. 

When the study objective is to understand animal behaviour, ecology, or physiology at 

fine scales, the information on their environment should be collected at 

correspondingly fine scales. Animals modify their behaviour at fine spatio-temporal 

scales in response to biotic and abiotic processes that also vary at these scales 

resulting in fine-scale heterogeneity in resource distribution and density (Mori 1998; 

Bradshaw et al. 2003; Lea and Dubroca 2003; Bailleul et al. 2007). Improvements in the 

quality and quantity of data collected from contemporary tracking units allow animal 

data to be documented with high spatial accuracy (e.g., <10 m) and at short time 

intervals (e.g., 1 s) using Global Positioning System (GPS) and biologging units such as 

time-depth recorders (TDRs).  

Nonetheless, the fine-scale interpretation of remotely sensed animal data such as a 

single dive in the context of the environment is difficult as the environmental 

information is often sparse, absent or available at inappropriate spatial or temporal 
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scales.  Environmental data collected at broad spatio-temporal scales (e.g., kilometres) 

limits our capacity to interpret fine scale movement data collected at metre 

resolutions. Despite these limitations, invaluable insights into foraging behaviour and 

habitat requirements have been obtained by combining wildlife tracking and 

oceanographic data (e.g., Georges et al. 2000; Hyrenbach et al. 2002; Lea and Dubroca 

2003; Shaffer et al. 2006; Bailleul et al. 2007; Howell et al. 2010; Sommerfeld et al. 

2015). For instance, Raymond et al. (2014) identified overlapping critical habitats of 

penguins and otariid and phocid seals (Raymond et al. 2014) by using tracking data to 

conduct multi-species modelling of habitat utilisation and applying the results to 

marine protected area planning.  

Although many marine studies have examined fine-scale spatio-temporal data (e.g., 

Schofield et al. 2007; Hazel 2009; Preston et al. 2010), fewer studies have combined 

fine-scale spatio-temporal information on the target species with similarly fine-scale 

environmental features (but see e.g., Sheppard et al. 2010; Jessop et al. 2013). The 

advantages of this approach are illustrated by Sheppard et al. (2007, 2010) who 

combined GPS location data with a nutrient map of a 24 km2 seagrass bed to 

document a strong association between the dugong (Dugong dugon) and seagrass with 

relatively high starch and nitrogen concentrations at 200 m resolution. Both starch and 

nitrogen are important dietary requirements for dugongs (Lanyon 1991; Marsh et al. 

2011b). This study showed that dugongs also exploited intertidal areas during high 

tides and at night, possibly to seek seagrass rhizomes that are high in carbohydrate 

and at times when boating activities are little (Sheppard et al. 2010). 

As the above examples illustrate, wildlife tracking data are best exploited by 

amalgamating complementary fine-scale information on both animals their 

environment. Although the cost of electronic tags is dropping, wildlife tracking still 

incurs substantial financial and human resources. Researchers often work with 

threatened species, and the sample size is constrained by financial, logistical, and 

ethical considerations. The dugong, a species of conservation concern, provides an 

excellent model for such a framework of data maximisation. Its body size (~3 m length 

and ~> 400 kg weight of healthy adult dugongs, unpublished data) allows researchers 

to use a range of tag sizes and weights while addressing animal welfare concerns.    
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1.2 The dugong 

1.2.1  High conservation values 

The dugong is a species of high conservation value, which occurs over a huge range in 

the tropical and subtropical Indo-West Pacific Ocean from East Africa to the Solomon 

Islands and Vanuatu (Marsh et al. 2011b). The dugong has high evolutionary value as 

the only extant herbivorous mammal that is strictly marine, the only extant species in 

the family Dugongidae and one of only four extant species in the order Sirenia. The 

order Sirenia includes another extant family, the Trichechidae, with three species of 

manatees (Amazonian Trichechus inunguis; West Indian manatee T. manatus; West 

African manatees T. senegalensis), that variously occur in both freshwater and 

saltwater systems (Boyd et al. 1999; Marsh et al. 2011b). Two subspecies of the West 

Indian manatee are recognised: the Florida manatee (T. manatus latirostris) and the 

Antillean manatee (T. manatus manatus). In addition, the dugong’s closest relative, 

Steller’s sea cow (Hydrodamalis gigas: Dugongidae), was hunted to extinction in the 

18th century, some 27 years after being rediscovered by sealers (Stejneger 1887). This 

extinction has highlighted the vulnerability of sirenia to human-induced mortality.   

The dugong also has high intrinsic and cultural values throughout its range. Australia is 

the dugong’s stronghold and dugong hunting is an important expression of Indigenous 

identity (Smith and Marsh 1990; McNiven and Bendingfield 2008).    

Dugongs are ecologically important to the tropical and sub-tropical seagrass 

communities that provide nursery grounds for commercially important juvenile fishes 

and invertebrates (e.g. prawns and shrimps; Young and Kirkman 1975). Dugongs often 

feed by uprooting whole seagrass plants thereby aerating sediments (Anderson and 

Birtles 1978). This feeding mode called excavating (sensu Wirsing et al. 2007a, see 

Chapter 4 for details) is thought to promote nitrogen fixation (Perry and Dennison 

1999). Dugong foraging on seagrass has also been found to increase seagrass 

productivity and nitrogen content. McMahon (2005) reported that seagrass meadows 

intensively foraged by dugongs are twice as productive in summer and 1.5 times as 

productive in winter compared with areas undisturbed by dugongs. These findings 
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have been replicated experimentally by removing pioneer seagrass species in a 

manner that simulates dugong feeding, resulting in a 35% increase of nitrogen 

concentration in Halohila ovalis and 25% in Halodule uninervis (Aragones et al. 2006).  

Dugongs are of conservation concern as they face direct threats from entanglement in 

fishing gear, vessel strikes, Indigenous hunting, and indirect threats from sediment and 

nutrients loads from catchments, land reclamation, dredging, cyclones, floods, and 

climate change (Abal and Dennison 1996; Preen and Marsh 1995; Marsh et al. 2011b; 

Sobtzick et al. 2012). Dugongs are not wilderness animals and occur in major port 

areas such as Singapore, and Gladstone and Townsville in Queensland, Australia 

(Marsh et al. 2011b). Projected port expansions in many parts of the dugong’s range 

impose additional threats to coastal ecosystems including seagrass and dugongs.       

Several international and domestic conventions and regulations aim to conserve 

dugongs. The International Union for Conservation of Nature (IUCN) lists the species as 

“vulnerable” (IUCN 2015). At the national level in Australia, the Environmental 

Protection and Biodiversity Conservation Act 1999 (EPBC Act) provides the legal 

framework to protect “matters of national environmental significance” which includes 

“migratory species” such as dugongs. The listing of the dugong as a migratory species 

regulates actions that impose harm and such actions require approval from the federal 

environment minister. The Great Barrier Reef Marine Park Act 1975 also obliges the 

Great Barrier Reef Marine Park Authority (GBRMPA) to protect dugongs within the 

Great Barrier Reef Marine Park (GBRMP). In addition, one of the reasons for the World 

Heritage listing of the GBRMP is its large populations of dugongs (GBRMPA 1981). The 

species is also protected under Queensland state regulation Nature Conservation Act 

1992 which lists the species as “vulnerable”.  

In the next section I will explain the research gaps I identified from the literature and 

how I will address them using the dugong as my study animal.  
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1.3  Research gaps 

1.3.1 Dive profiling 

Due to technological advances, a large volume of data collected from time-depth 

recorders (TDRs) has led to the development of dive analysis software which 

constructs dives from a series of two-dimensional depth readings using user-defined 

parameters. Nonetheless, the method of determining the thresholds of these 

parameters has received relatively little attention. Researchers adjust the surface level 

either manually or using a zero-offset correction (ZOC) function embedded in the dive 

software (e.g. Gordos and Franklin 2002; Bodkin et al. 2004; Hays et al. 2007; Witt et 

al. 2010). How the ZOC values are chosen is often not described. Some studies do not 

mention the process of surface adjustments at all (e.g. Boveng et al. 1996; Arnould and 

Hindell 2001; Fossette et al. 2008). In addition, relatively few dive studies have 

discussed what factors might be considered in selecting a Dive Threshold (DT) – a 

minimum depth below which a vertical movement is considered to be a “dive” – (see 

Bengtson and Stewart 1997; Arnould and Hindell 2001; Gordos and Franklin 2002; 

Bodkin et al. 2004; Chilvers et al. 2004; Hays et al. 2007). The DT is often arbitrarily 

specified as twice the resolution of the TDR used (Hooker and Baird 2001). Shallow 

diving animals such as dugongs feed in shallow coastal communities sometimes <1 m 

deep (Hodgson 2004). Robust and objective methods need to be developed to 

optimise the choice of these parameters for shallow-diving species such as the dugong 

because the existing arbitrary methodology is likely to miss shallow dives – an 

important component of their feeding ecology. 

1.3.2 Dugong ecology 

Due to the challenges associated with studying wild dugongs, most information on 

their behavioural ecology has been collected from short visual observations from 

terrestrial vantage points, swimmers, and vessels (Anderson and Birtles 1978; Hartman 

1979; Reynolds 1981a,b; Anderson 1989; Whiting 2002; Wirsing et al. 2007a,b,c; 

D’souza and Patankar 2009). Large populations of dugongs and manatees (especially 

West African and Amazonian manatees) inhabit remote, turbid waters where field 
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observations are logistically difficult (Marsh et al. 2011b). Sirenians spend their entire 

life in the water unlike semi-aquatic animals such as seals, sea lions, and turtles. As 

sirenians surface for only a few seconds to breathe (Anderson and Birtles 1978; 

Hartman 1979) they are categorised as “surfacers” rather than “divers” (Kramer 1988). 

The window of opportunity for surface observations is very short and turbidity 

generally precludes observation of underwater behaviour (Anderson and Birtles 1978). 

Florida manatees are easier to observe than dugongs as some populations reside in 

clear freshwaters or industrial canals close to human habitation (Hartman 1979; 

Reynolds 1981a,b; Edwards et al. 2007). In addition, the apparent lack of unique 

markings on dugongsʼ bodies makes individual identification very difficult, in contrast 

to some species of whales, dolphins, and Florida manatees with persistent markings 

that can be used to recognise individuals in longitudinal studies (e.g., Reid et al. 1991; 

Baird and Whitehead 2000). 

The technological advances in wildlife tracking discussed earlier have enabled remote 

observations of sirenian behaviour in the wild. Marsh and Rathbun (1990) developed a 

dugong satellite tracking mechanism using a tether system and PTT, that was based on 

the system developed for manatees (Rathbun et al. 1990; Deutsch et al. 1998; see 

Chapter 2). This technique has consistently shown that dugongs exhibit individualistic 

movement patterns. For instance, Sheppard et al. (2006) tracked 70 dugongs fitted 

with GPS transmitters. Some of these animals performed long large-scale movements 

of >100 km during the tracking period, whereas other animals were relatively 

sedentary. Gredzens et al. (2014) fitted fast acquisition GPS satellite transmitters to 

dugongs and green turtles (Chelonia mydas) in two regions Shoalwater Bay and Torres 

Strait in Queensland. The home-ranges of the two species significantly overlapped in 

both locations, and the authors recommended that dugongs and turtles to be 

managed together. Nonetheless there were regional differences within species. 

Dugongs in Torres Strait had much larger home ranges (median: 1042.9 km2) than 

dugongs in Shoalwater Bay (median: 49.5 km2). Torres Strait dugongs also favoured 

slightly deeper waters (5-15 m) than Shoalwater Bay dugongs (< 5 m). Both species 

used existing protection areas in Shoalwater Bay, but only one dugong used the 

existing protection area in Torres Strait. Gredzens et al. (2014) concluded that the 
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protected area in Shoalwater Bay was sufficient, while that in Torres Strait needed to 

be extended to provide adequate protection. 

Acoustic transmitters have been deployed on dugongs (Zeh et al. 2015) to compare the 

efficacy of acoustic and GPS satellite transmitters for estimating home range. The 

study demonstrated that both technologies provided similar information on habitat 

and depth use within the acoustic array boundary but that the selection of the more 

appropriate tracking devices should depend on the research question and whether an 

acoustic array is already in place as array instalment is expensive. Acoustic transmitters 

have been also attached to Florida manatees (Aven et al. 2014). The authors attested 

to their usage as an alternative to GPS transmitters which frequently detach, leading to 

the loss of valuable information.    

Compared with the advances in our understanding of sirenian horizontal space use 

revealed by these studies, our understanding of their diving behaviour in relation to 

their environment is limited. Hodgson (2004, 2007) developed a blimp-cam (a video 

camera attached to a helium balloon) to remotely observe dugong behaviour under 

natural settings. She used this technique to obtain the data required to describe 

detailed behavioural repertoires and develop an ethogram for dugongs feeding in 

shallow clear waters in winter, when the water was calm. However, this technique has 

limited application for studying dugongs in turbid or rough waters, which consist of the 

majority of dugong habitats.   

TDRs have provided limited information on the diving behaviour of wild sirenians. 

Using TDRs and GPS satellite transmitters, Chilvers et al. (2004) estimated dive 

statistics, categorised dive shapes based upon visual inspection into four main dive 

types (Square, U-shaped, Erratic and Resting, and V-shaped dives), and examined 

environmental influences on the dive shapes from which behaviours were inferred. 

Because location fixes were rarely obtained from these transmitters, it was impossible 

to correlate dive shapes and environmental features and validate presumed 

behaviours. Sheppard et al. (2006) documented deep consecutive dives >21 m deep 

and maximum dive depth of 36.5 m, but the location of these deep dives was unknown 

due to a lack of location data. Castelblanco-Martínez et al. (2015) used GPS units and 
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salt water sensors (SWSs) attached to wild West Indian manatees to categorise 

sequences of dives called bouts into four behavioural types (travelling, surface, bottom 

feeding, bottom resting). This categorisation was based on three criteria: travel 

distance between two GPS fixes, number of dives in a bout, and total dive duration. 

Bottom behaviour occurred frequently over habitats with known subaquatic plants 

while the manatees tended to travel across open waters. The categorisation however 

did not utilise information on environment, and the dives were identified from the 

records of salt water sensors installed on satellite units. As the satellite unit is attached 

to manatees via a tether, similar to the one for dugongs, these dives may not 

represent actual dives, especially when animals are swimming and a satellite unit is 

dragged underwater.     

As described above, fine-scale insights into sirenian ecology can be obtained when fine 

scale remotely sensed animal data are combined with relevant environmental 

information collected at similar spatial and temporal scales. The distribution and 

abundance of the dugong’s primary food resource, sub-tropical and tropical seagrass, 

also vary in space and time at fine scales (Bell et al. 1999; Turner et al. 1999; Robbins 

and Bell 2000; Frederiksen et al. 2004; Sheppard et al. 2007). As discussed above, 

Sheppard et al. (2007, 2010) used this approach combining GPS location data with 

seagrass nutrient maps  generated using marine videography and near-infrared 

spectroscopy to explore the dugong’s food preferences .  

A weakness of Sheppard’s study was the lack of information on the dugong’s diving 

behaviour at his study site. Sheppard et al. (2007, 2010) could not confirm whether the 

dugongs they studied had dived to the seafloor where seagrass occurred and 

consumed the seagrass modelled at that location. Our understanding of dugong 

behavioural and foraging ecology would be enhanced by linking fine-scale seagrass 

distribution and bathymetry maps with behavioural data on both the vertical and 

horizontal spatial use of dugongs equipped with TDRs and fast acquisition GPS 

transmitters.  
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1.3.3 Dugong aerial surveys as a management tool 

Australia has international and domestic obligations to protect and conserve dugongs 

as explained above in Section 1.2.1. Since the 1980s, the distribution and abundance of 

Australia’s dugong populations have been monitored using a time-series of aerial 

surveys using a methodology developed by Marsh and Sinclair (1989a,b) and Pollock et 

al. (2006). These aerial surveys have provided a cost-effective method of monitoring 

dugongs along extensive coastlines in over 20 countries including the Arabian region 

(see review by Preen et al. 2012), New Caledonia (Garrigue et al. 2008), and 

Mozambique (line transect design: Cockcroft et al. 2008; Provancha and Stolen 2008).  

In Australia, the results of these surveys have provided the basis for dugong 

conservation and management. Dugong aerial survey data have been used to assess 

the risks to dugongs from commercial fishing, vessel traffic, and terrestrial runoff at 

regional scales (Grech and Marsh 2008; Grech et al. 2008), and traditional hunting 

(Heinsohn et al. 2004; Marsh et al. 2004; Grayson 2011). The surveys have catalysed 

management responses including the declaration of Dugong Protection Areas (Marsh 

2000) and other regulations to modify netting practices (Fernandes et al. 2005; Dobbs 

et al. 2008; GBRMPA 2014). 

Monitoring changes in population size requires robust population abundance 

estimates. Despite the  expense of the monitoring program, the statistical power to 

detect population trends from aerial survey population estimates is relatively low at 

the current survey interval (ca. every 5 years) (Marsh et al. 2004). A contributing factor 

is that not all animals are available for detection during population census. Abundance 

estimated from aerial or boat-based surveys are generally underestimates (Buckland 

and Turnock 1992; Laake et al. 1997). Hence the proportion of animals that is 

unavailable for detection needs to be estimated for obtaining robust abundance 

estimates (Buckland et al. 2004; Pollock et al. 2004) and for conservation and 

management applications. 

Availability detection probabilities can be reduced by the capacity of the observers, 

environmental conditions (e.g., turbidity, sea state, glare, cloud cover) and various 
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physical and the behavioural traits of the target animals (e.g., body colour and size, 

group size, vertical and horizontal spatial distribution) (Bayliss 1986; Marsh and Sinclair 

1989b; Anderson 2001; Buckland et al. 2004; Pollock et al. 2006; Edwards et al. 2007). 

Marsh and Sinclair (1989b) classified these biases into two categories: availability bias 

(animals that are unavailable for detection due to the factors described above); and 

perception bias (animals that are available but not sighted by observers). Dugong 

aerial survey methodology attempts to correct for both types of bias (see Chapters 5 

and 6). Although environmental variability (water turbidity and sea state) in sighting 

conditions is accounted for dugong estimation methodology (Pollock et al. 2006), the 

vertical displacement patterns of dugongs are assumed to be homogeneous across 

environmental conditions. Changes in availability bias resulting from both 

environmental and animal traits need to be quantified to estimate dugong population 

abundance that is more robust.   

Studies employing aerial and boat-based surveys on other aquatic species have 

generally assumed that environmental features and animal behaviour are 

homogeneous (e.g., Barlow et al. 1988; Schweder et al. 1991a,b; Laake et al. 1997; 

Skaug et al. 2004; Slooten et al. 2004), and have focused on improving the precision of 

abundance estimates by rigidly standardising survey protocols and increasing survey 

frequency in order to improve the power to detect trends (Gerrodette 1987). 

Nonetheless, changes in relative abundance, which inherently assume homogeneous 

sighting conditions, do not always reflect changes in absolute abundance (Link and 

Nichols 1994b; Conroy 1996; Gibbs et al. 1998; Larsen et al. 2001; Wilson et al. 2011). 

Heterogeneity in environmental conditions and animal behaviour reduces the 

statistical power to detect changes in population size (Forney 2000). Accounting for 

heterogeneity in the availability of a target species such as a dugong should improve 

the accuracy of abundance estimates. Along with improved precision, improved 

accuracy will increase the likelihood of detecting a trend in dugong abundance 

(Gerrodette 1987; Taylor and Gerrodette 1993).  
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1.4 Thesis objective 

In response to the research gaps identified above, the objectives of my thesis were to 

maximise the outcomes wildlife tracking by linking fine-scale dive records with spatial 

data from remotely-sensed animals and fine-scale habitat models to improve:  (a) fine-

scale knowledge of the diving ecology of coastal wildlife, and (b) methodologies to 

estimate their population abundance.  

To achieve these objectives, I identified the following aims: 

1.  To develop empirical methods to identify dives in shallow diving aquatic wildlife 

such as the dugong; and 

by linking fine-scale dive records with spatial data from remotely-sensed dugongs and 

fine-scale habitat models, 

2. To advance insights into the fine-scale diving ecology of dugongs; and 

3. To estimate dugong population abundance that is more robust by accounting for 

their heterogeneous diving and surfacing behaviours. 

Aim 1:  Develop an empirical procedure to identify dives in shallow diving 

aquatic wildlife such as the dugong  

Quantitative methodology is required to assist in determining zero-offset correction 

(ZOC) and dive threshold (DT) and maximise the correct identification of shallow dives. 

I address this need in Chapter 3 using depth measurements collected from shallow 

diving dugongs.   

Aim 2:  Advance insights into fine-scale diving ecology of dugongs 

In Chapter 4, I advance understanding of dugong diving ecology by linking fine-scale 

behavioural data (depth records and GPS location fixes) with a bathymetry model (± 

100 m spatial resolution) and a seagrass map (± 10 m spatial resolution) generated 

from high resolution satellite imageries and ground truthing. I use logistic regression 

models based on the dives identified in Chapter 3 to estimate probabilities of dives 
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achieving 3 criteria: a) dives that did not provide the dugong with access to the 

seafloor; b) dives that enabled the dugong to access the seafloor in areas where 

seagrass is present; and c) dives that enabled the dugong to access the seafloor in 

areas where seagrass is absent.  I will then examine the dives that had high likelihoods 

of achieving these criteria in order to draw insights into the dugong diving behaviour. 

Aim 3:  Estimate dugong population abundance that is more robust by 

accounting for their heterogeneous diving and surfacing behaviours 

I estimate dugong population abundance by accounting for their heterogeneous diving 

and surfacing patterns. In Chapters 5 and 6, I estimate the availability detection 

probabilities for different water depths using depth measurements collected from 

satellite-tracked dugong. In Chapter 6, I then re-estimate population abundance using 

improved availability detection probabilities. The detection probabilities are estimated 

by: 1) repeating the Pollock et al.’s (2006) experiment using dugong replicas (Dugong 

Secchi Disks) to improve the estimates of detection zones (sensu Pollock et al. 2006) 

with higher resolution TDRs; and 2) incorporating measurements of heterogeneous 

diving behaviour with respect to water depth into estimates of the detection 

probability based on the improved detection zones. The aerial survey data were 

collected in 2011 in Moreton Bay, Hervey Bay, and Torres Strait.   
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1.5 Thesis outline 

This thesis comprises seven chapters:  an introductory chapter, a methodology chapter, 

four data chapters and a final discussion chapter (Fig. 1.1). Chapters 3 and 4 focus on 

the diving ecology of dugongs.  Chapters 5 and 6 provide studies that contribute to the 

aerial survey methodology, a management tool for monitoring their distribution and 

abundance over time. Chapter 7 provides a general discussion of my key findings 

together with suggestions for future research.  

 

 

 

Figure 1.1 Structure of this thesis. 
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Chapter 2:  Dugong tracking techniques, data 

description, study sites and data manipulation 
 

 

 

Wildlife tracking (i.e., biologging) enable researchers to remotely observe animals and 

their environment using electronic devices and provide valuable information for 

understanding physiology, ecology, and habitat use and for management application. 

Dugong satellite tracking has been conducted for almost 30 years and the use of GPS 

units and time-depth recorders (TDRs) has provided detailed information on their 

spatial use and diving behaviours. Here, I describe the dugong tracking methodologies, 

data collected from the tracking, and descriptions of the study sites, plus some generic 

information on the data manipulation techniques used in this thesis. 
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Chapter 2:  Dugong tracking techniques, data descriptions, 

study sites and data manipulation 

2.1 Dugong tracking 

2.1.1 Tracking apparatus 

The dugong tracking apparatus used largely reflects the design developed by Marsh 

and Rathbun (1990), Sheppard et al. (2006), Holley (2006), and Lanyon et al. (2006). 

The apparatus consisted of a GPS (Global Positioning System) satellite unit Telonics 

Inc., Mesa, Arizona, USA), a time-depth recorder (TDR) (Wildlife Computers 

Woodinville, WA, USA), a 3-m tether, and a peduncle belt (Fig. 2.1). GPS units were 

painted with anti-foulant to reduce biosettlement (Fig. 2.1B). A TDR was attached to 

each tether near the dugong’s tail (Fig. 2.1A,C). 

To maximize successful uplink opportunities (communication between ground devices 

and orbiting satellites), the GPS unit was housed in a slightly buoyant cylinder which 

was connected to a tailstock harness via a tether. When a telemetered dugong is 

within 3 m of the water surface and stationary or swimming slowly, the unit breaks the 

water surface (Sheppard et al. 2006). The salt water sensor installed on the GPS unit 

detects air, turning the unit on. The unit receives radio signals from nearby GPS 

satellites and calculates the location based on the signals and archives the data (Cooke 

2008). When the surfacing time is sufficient, the archived location data are transmitted 

to Argos satellites for data retrieval.  

This dugong tracking apparatus has several features to prevent or minimize harm to 

the tagged dugongs. To prevent abrasion of the dugong’s skin, the tailstock belt is 

covered with a latex tube. To minimise the impact on the animal from the apparatus 

and hence the dugong being entangled in corals, mangroves or attacked by sharks, the 

attachment includes a weak link mechanism, which was designed to break off when a 

force of ca. >270 lb (122.5 kg) is applied (Ocean Industries, WA, Australia). This 

strength on trace wire was determined from experimental trials (Sheppard 2008). The 

weak link also needs to be strong enough to endure dugong’s normal tail movements. 
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The author found all tags with 150 lb trace wires were released from animals within 

hours. Hence the use of a stronger breaking strain in the weak link was required. The 

weak link is also corrodible, which ensures the release of the apparatus after a planned 

period of deployment (usually several months).  

 

 

Figure 2.1 Diagram of dugong tracking apparatus: A) an overall schematic drawing 

of the dugong tracking mechanism; B) a GPS satellite unit painted with blue anti-

foulant and a 3-m tether covered with a latex tube; and C) a time-depth recorder 

(TDR) attached close to the dugong’s tailstock. 

 

2.1.2 Capture technique 

Dugongs were captured using the rodeo technique described in Appendix 2.1. 

2.1.3 Recovery of the tracking apparatus 

Whenever possible, the entire tracking apparatus was retrieved after the planned 

deployment periods, following the procedure described in Sheppard et al. (2006). The 
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tagged dugong was first relocated based on its most recent GPS fixes. A recovery team 

then searched for the dugong from the water using VHF radio tracking and antennae 

(Telonics Inc., Arizona, USA). Once the relocated animal was within 150 m of the 

vessel, tag release was initiated by a hand-held trigger (Telonics Inc., Arizona, USA) 

which sends signals to a tether. Upon receipt of signals, the weak link installed in the 

tether initiates corrosion, released the apparatus from the dugong after ca. 10 min. If 

this technique was unsuccessful, the animal was captured using the rodeo technique 

(Lanyon et al. 2006), and the belt removed manually.  

Some tags were released prematurely, often at the weak-link. Premature release was 

indicated by successive hourly uplinks over extended period (e.g., > 1 day), uplinks 

from the same locations, or continuous straight-line movements (Gredzens et al. 

2014). The released apparatus was recovered by research staff, local rangers, boaters, 

fishers, or local residents induced by a reward.  

2.2 Data description 

I examined tracking data from 21 free ranging dugongs (Table 2.1). The data from four 

dugongs tracked in 2011 (MB 1-4) were obtained for my PhD thesis. The remainder of 

the data originated from studies by Sheppard (2008) in which five dugongs were 

tracked in Hervey Bay 2003/2004 and Gredzens et al. (2014) in which three dugongs 

were tracked in Shoalwater Bay 2012. I also used tracking data collected by Zeh (Zeh et 

al. 2015) who tagged nine dugongs in Moreton Bay 2012.  

Satellite data 

The sampling intervals of the GPS transmitters (Telonics Inc., Mesa, Arizona, USA) were 

20 min, 30 min, or 1 h (Table 2.1). The location data from the GPS units were accessed 

via the Argos website (http://www.argos-system.org), and decoded using software 

Telonics Data Converter provided by manufacturer (Telonics Inc., Mesa, Arizona, USA). 

GPS fixes obtained in 2003/2004 over Hervey Bay had an accuracy 2–10 m (Telonics 

2009) but required a surfacing time of >30 s. GEN4 GPS models used in dugong 

tracking in 2011 and 2012 provided, in addition to the GPS fixes, Quick Fix 

Pseudoranging (QFP) positions which required only <5 s of surfacing time for fix 
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generation (Telonics 2011). This quick uplink capability was a significant advance for 

aquatic species such as the dugong that surfaces for only a few seconds (Anderson and 

Birtles 1978).  

Including the GPS and QFP fixes, five types of location fixes were available for 

inspection and were labelled with the following quality indicators: 1) GPS (accuracy 

<10 m); 2) Resolved QFP (accuracy of <75 m); 3) Resolved QFP Uncertain (accuracy of 

>75 m); 4) Unresolved QFP (accuracy unknown); and 5) Failed QFP. These classes were 

determined by the number of GPS signals received, geometry of the satellites, and 

residual errors in the positioning mathematics (pers. comm., Telonics 2011). I used GPS 

and Resolved QFP fixes based on their positioning accuracy. The use of resolved QFP 

fixes in addition to GPS fixes resulted in 1.5–4.9 times more fixes for each dugong 

compared to GPS fixes alone (Hagihara et al. 2014). Although GPS and Resolved QFP 

fixes have different spatial accuracy, the manufacture states 98.4% of resolved QFP 

fixes have < 30 m of the actual location (Gredzens et al. 2014). The incorporation of 

such differences in quality (e.g., as weight) in statistical analyses will improve the 

analyses described in my thesis. However such attempt requires quantitative 

assessment on accuracy of GPS and QFP fixes. Thus I have treated GPS and Resolved 

QFP fixes equally here. 
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Table 2.1 Details of the 21 dugongs tracked with GPS satellite units and TDRs and specification of each type of tracking unit. 

 Year ID Sex Pregnancy 
status 

Body  
length (m) 

Satellite 
transmission 

interval 

TDR recording 
interval (sec) 

TDR 
Resolution 

(m) 

No. of days 
with dive data 

Data  
source 

Hervey Bay 2004 HB 1 M NA 3.0 1h 2 0.5 43 

Sheppard 
(2008) 

 2003 HB 2 F * 2.9 1h 2 0.5 56 

 2003 HB 3 F * 2.8 1h 2 0.25 42 

 2003 HB 4 M NA 2.7 1h 2 0.25 50 

 2004 HB 5 M NA 2.2 1h 2 0.5 44 

Moreton Bay 2011 MB 1 F Not pregnant 2.8 1h 1 0.5 78 

Hagihara et al. 
(2014) 

 2011 MB 2 F Pregnant 2.9 1h 1 0.5 77 

 2011 MB 3 F Pregnant 2.9 1h 1 0.5 76 

 2011 MB 4 F Not pregnant 2.7 1h 1 0.5 16 

Moreton Bay 2012 MB 5 M NA 2.5 1 2 0.5 19 

Zeh et al. 
(2015) 

 2012 MB 6 M NA 3.0 1 2 0.5 22 

 2012 MB 7 F * 3.1 30min 2 0.5 27 

 2012 MB 8 F * 2.2 30min 2 0.5 24 

 2012 MB 9 F * 2.4 1h 2 0.5 28 

 2012 MB 10 F * 2.1 1h 2 0.5 48 

 2012 MB 11 M NA 2.0 1h 2 0.5 70 

 2012 MB 12 M NA 2.9 30min 2 0.5 29 

 2012 MB 13 M NA 2.5 1h 2 0.5 6 

Shoalwater 
Bay 2012 SWB 1 F * 2.9 1h 2 0.5 50 

Gredzens et 
al. (2014)  2012 SWB 2 F * 1.8 1h 2 0.5 31 

 2012 SWB 3 F * 2.3 1h 2 0.5 50 

*Pregnancy status unknown 
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Depth records  

All dugongs fitted with GPS units were also fitted with archival TDRs Mark 7 or Mark 9 

TDRs (Wildlife Computers, WA, USA). The depth accuracy of the TDRs was either 0.25 

m for Mark 7 or 0.5 m for Mark 9 (Table 2.1). TDRs attached to dugongs in Moreton 

Bay 2011 recorded depth every 1 s and 2 s for dugongs tracked in Hervey Bay 

2003/2004, and Moreton Bay 2012, and Shoalwater Bay 2012 (Fig. 2.2). Temperature 

and light levels were recorded every 10 min. Depth data were retrieved using software 

HexDecode provided by the manufacturer.  

Environmental data 

Environmental data were obtained from other researchers or institutions. I used 

bathymetry models generated by Beaman (2010) (spatial resolution 100 m) for eastern 

Queensland and Lewis (2001) (spatial resolution 250 m) for Torres Strait. Tidal records 

were obtained from Maritime Safety Queensland (Department of Transport and Main 

Roads 2011, 2012) and National Tidal Centre (Bureau of Meteorology 2011). Tidal 

predictions replaced actual tidal heights when such data were unavailable (Twin Island, 

Torres Strait). Tidal heights were recorded in 10-min increments, and 6-min increments 

for tidal predictions. Bathymetry models in conjunction with tidal records were used to 

estimate water depth at the time of each location fixed by GPS units.  

I used a GIS-based seagrass model to interpret dugong behaviour over seagrass 

meadows (Chapter 4). The model produced by Roelfsema et al. (2014) was generated 

using field sampling (video, snorkelling observations, and transect surveys) and high 

resolution satellite imagery taken in June 2011 (Roelfsema et al. 2009). This timing 

matched the period of four dugongs tracked in Moreton Bay (between May and 

August 2011; Table 2.1). The spatial accuracy of the seagrass model was ± 10 m. The 

spatial extent of the model (<3 m deep at low tides) was determined by the depth 

limits of Landsat 5 Thematic Mapper satellite imagery.  
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2.3 Dugong tagging sites 

Moreton Bay, Hervey Bay, and Shoalwater Bay were selected as tagging sites because 

they consistently support relatively large, healthy dugong populations. Dugongs occur 

in clear shallow water over the Eastern Banks of Moreton Bay (Lanyon 2003; Sobtzick 

et al. 2014) and Burrum Heads of Hervey Bay (Sheppard 2008), and over shallow banks 

along the coastal areas of Shoalwater Bay. Shallow banks provide ideal environments 

to locate and capture dugongs for fitting tracking apparatus. 

2.3.1 Moreton Bay 

Moreton Bay (27.39°S; 153.32°E) is a large sub-tropical embayment located in 

southeast Queensland, Australia (Fig. 2.2A). The bay is designated as a Marine Park to 

protect its marine and coastal environments (Queensland Department of Environment 

and Resource Management 2012). Four elongated islands (Moreton, North and South 

Stradbroke, and Bribie) shelter the bay forming a wedge-shaped embayment. The bay 

is approximately 32 km wide and 74 km long and covers a total area of approximately 

1,500 km2. Most of Moreton Bay is <10 m deep with an average depth of 6.8 m 

(Lawrence 2010). The maximum tidal range is ca. 2.5 m (The State of Queensland, 

Department of Transport and Main Roads 2012). 

2.3.2 Hervey Bay 

Hervey Bay (-25.20°S; 152.45°E) is situated close to the southern border of the Great 

Barrier Reef World Heritage Area (GBRWHA) and forms part of the Great Sandy Marine 

Park (Fig. 2.2B). The funnel-shaped embayment is sheltered by Fraser Island to the 

east. About a quarter of the bay is <10 m deep, 50% in 10–20 m deep, and only 1% in 

>30 m deep (Beach Protection Authority 1989).  The maximum depth of adjacent Great 

Sandy Strait is 4 m (Cagnazzi et al. 2011). The tidal range is 4.1 m (Bengtson Nash et al. 

2005). 

2.3.3 Shoalwater Bay 

Shoalwater Bay (-22.20°S; 150.20°E) is within the Great Barrier Reef Marine Park 

(GBRMP) and GBRWHA. The bay has restricted access and reserved as the military 
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training area since 1965, and is relatively undisturbed (Lee Long et al. 1997). Most of 

the bay is <10 m deep, and its maximum water depth is reported to be 11 m (Lee Long 

et al. 1997). The extensive inter-tidal and sub-tidal seagrass communities are subjected 

to a large tidal range of 7 m (Arthur et al. 2006). 

 

Figure 2.2 Three important dugong habitats in Queensland, Australia where 

dugongs were tracked: A) Moreton Bay; B) Hervey Bay; and C) Shoalwater Bay. 

Moreton and Hervey Bays are marine parks. Shoalwater Bay, a military training 

area mostly closed to the public, is situated within the Great Barrier Reef Marine 

Park (GBRMP) and World Heritage Area (GBRWHA).    



Chapter 2 – Materials and Methods 

27 

2.4 Data manipulation 

2.4.1 Initial data processing 

The dive records were pre-processed using custom software SpikeScrubber developed 

by R. Jones (PhD supervisor), which executed the following three functions: 1) split the 

dive records sequence into manageable one-day recordings; 2) adjusted the water 

surface (zero-offset) by taking the minimum depth readings recorded during each 15-

min interval; and 3) removed spikes, i.e., biologically implausible rapid changes in 

depth (Fig. 2.3A; Hagihara et al. 2011). The duration for surface adjustment needed to 

be long enough to include at least one, and preferably several, surfacing events, but 

long enough so that little or no drift was contained in the adjusted depth records. 

Estimates of maximum dive duration for dugongs vary considerably between studies; 

the longest dive reported is 12.4 min (Chilvers et al. 2004). In my data set, there were 

normally at least 3 surfacing events during each 15-min interval. 

Tracking data collected within 3 days of tag deployment were discarded to avoid any 

potential post-release behavioural responses. However, no apparent changes in diving 

patterns were observed in the three days after deployment. Capture and handling did 

not appear to trigger a flight response in most tagged dugongs and most dugongs 

stayed in the vicinity of the capture area (Sheppard et al. 2006; Hagihara et al. 2014). 

The number of days with both GPS fixes and dive records varied from 6 to 77 days for 

individual dugongs (mean = 42.2 days, SE = 21.0 days).  

2.4.2 Subsequent data processing 

I used the dive data in two different formats: dives profiled by the dive analysis 

package diveMove (ver 0.9.7) (Luque 2007) used in R Environment (Fig. 2.3B); and raw 

depth records (Fig. 2.3C). I chose diveMove on the basis of its open source status, 

flexibility, relative ease of use, and capacity to produce dive profiles and statistics. 

diveMove delineates the diving and surfacing phases of continuous behaviour based on 

user-defined thresholds, zero offset and dive threshold. Chapter 3 describes how I 

quantitatively determined the thresholds of these two parameters while minimizing 

the errors in dive reconstruction. Using the methodology described in Chapter 3, 
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Chapter 4 examines dive parameters obtained from diveMove (e.g., descent/ascent 

rate, bottom time, and maximum dive depth) to draw insights into dugong diving 

behaviour. I used raw depth records in Chapters 5 and 6 to estimate how long the 

dugongs spent at the surface for estimating availability bias and population 

abundance.  

Linking location and depth records or dives 

Data in both formats (dives and raw depth records) were sub-sampled around a GPS or 

QFP fix for a 10-min block (Fig. 2.3D). This technique ensured reasonably accurate 

association of external information (water depth, tide, and seagrass 

presence/absence) to dives or depth records to reflect environmental conditions 

experienced by tagged dugongs at the time of each satellite uplink. The beginning and 

ending of a dive often did not coincide with the onset and cessation of a 10-min block. 

Thus all dives that started after the start of the block were sub-sampled, which means 

a dive could end after a 10 min block (Fig. 2.3B). The raw depth records comprised 

individual depth records. Their subset was simply extracted from a 10-min block (Fig. 

2.3C). This sub-sampling technique also reduced auto-correlation. For instance, a dive 

that was made at 10:00 probably has different nature to a dive made at 11:00. The 

sub-sampled data were associated with environmental features (water depth and 

seagrass attributes) using ArcGIS and custom software DepthMatcher (by R. Jones). 
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Figure 2.3 Schematic diagram of the data manipulation I undertook: A) depth data 

cleaned by correcting for zero-offset and removing spikes using custom software; B) 

dives profiled using diveMove; C) raw depth records; and D) sub-sampled data 

represented in red that are found within the 10 min block before and after each fix.  
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2.5 Chapter summary 

• This thesis is based on data collected from GPS satellite transmitters  and time-

depth recorders (TDRs) fitted to dugongs caught using the rodeo technique in 

Moreton Bay, Hervey Bay, and Shoalwater Bay in eastern Queensland. 

• These three embayments are important dugong habitats supporting extensive 

seagrass meadows and carry health dugong populations. 

• Data external to the dugong tracking (bathymetry models, tidal records, and a 

seagrass model for Moreton Bay) were obtained from other researchers or 

institutions. 

• The data manipulations common to all the data chapters in my thesis include:  

1. Splitting the dive recordings into manageable one-day recordings; 

2. Adjusting the water surface (zero-offset); 

3. Removing spikes; and 

4. Sub-sampling the data found within the 10 min block surrounding GPS fixes; 

5. Associating the sub-sampled dives or depth records with environmental features.  
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Chapter 3:  Minimising errors in the analysis of dive 

recordings from shallow-diving marine mammals1 
 

 

Knowledge of the diving behaviour of aquatic animals expanded considerably with the 

invention of time-depth recorders (TDRs) in the 1960s. The large volume of data acquired 

from TDRs can be analysed using dive analysis software, but the application of such 

software has received relatively little attention. This chapter presents an empirical 

procedure to select optimum values for the two parameters that are critical to obtaining 

reliable dive identification: the zero-offset correction (ZOC) and the dive threshold (DT).  

I use dive data from shallow-diving coastal dugongs and visual observations from an 

independent study to develop and test the procedure. 
                                                        

1 Chapter 3 has been published as Hagihara, R., R.E. Jones, J.K. Sheppard, A.J. Hodgson & H. Marsh. 
2011. Minimizing errors in the analysis of dive recordings from shallow-diving animals. Journal of 
Experimental Marine Biology and Ecology 399:173-181.   
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Chapter 3:  Minimizing errors in the analysis of dive 

recordings from shallow-diving marine mammals 

3.1 Introduction 

Since their invention in the 1960s, time-depth recorders (TDRs) have helped elucidate 

the diving behaviour of numerous aquatic animals in the wild. Technological advances 

have enabled the size and weight of the TDR to be reduced and the information the 

TDR can store to expand. As a result, TDRs have been deployed on a wide variety of 

animals including sharks (e.g., Graham et al. 2006), fish (e.g., Hobson et al. 2007), 

marine reptiles (e.g., Rice and Balazs 2008), birds (e.g., Culik et al. 1996), and marine 

mammals (e.g., Kooyman 1965, Biuw et al. 2009).  

Researchers use commercially available or custom-made dive analysis programs to 

analyse the massive amount of dive data collected from either depth loggers that 

require their retrieval for data acquisition (e.g. Hays et al. 2007; Sheppard et al. 2006) 

or sophisticated on-board satellite relay data loggers (SRDLs) which compress and 

summarize data for signal transmission to ARGOS satellites (e.g. Burns and Castellini 

1998; Hochscheid et al. 2005; Myers et al. 2006). The analysis program constructs a 

dive by taking a series of depth readings at pre-programmed intervals with user-

defined parameters that are suitable for the study animal (Luque 2007). The use of 

these programs has greatly increased the efficiency of the analysis. Nonetheless, the 

application of the software has received surprisingly little attention. 

The arbitrary choice of user-defined parameters can result in erroneous conclusions 

about dive parameters (e.g., descent and ascent times and rates), dive statistics (e.g. 

average number of dives per day, dive duration and maximum dive depth), and their 

interpretation (e.g., feeding frequency, energetics). Validation of such results is 

however extremely difficult or impossible without access to parallel information from 

other methods such as visual observations; this information is rarely available due to 

logistical constraints and/or the elusive nature of target species. Hence dive data 

requires caution in processing. 
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As explained in Chapter 2, before any analysis, dive recordings require initial 

processing to define the surface level. This surface adjustment is often known as the 

zero-offset correction (ZOC) and is necessary as the surface value recorded by TDRs 

may shift due to:  

1. Drift in the surface reading as a result of changes in barometric pressure and 

temperature; 

2. Wave action causing the TDR to be underwater even though the animal is at the 

surface; and/or  

3. Animal behaviour (e.g., the TDR may be fixed on a body part that remains 

underwater when the animal surfaces).  

If the ZOC is set too small, the dive package may mistakenly identify noise produced by 

external factors as dives. In contrast, if the ZOC is set too large, the package will fail to 

identify actual shallow dives; too few dives will be identified. Dive depths will also be 

underestimated because the “start” of the dive will be too deep.  

Many diving studies using TDRs correct water surface either manually choosing 

different values for different parts of the records or using the ZOC function (e.g. 

Gordos and Franklin 2002; Bodkin et al. 2004; Hays et al. 2007; Hazel 2009; Witt et al. 

2010), without any indication of how and what ZOC values were chosen, or whether 

the resulting dive depths were consistent with bathymetry – that is, whether 

estimated dive depths remain within the water depth at the animal’s location. 

Bathymetric validation is often impossible, either because the animal’s location is 

unknown or because fine-scale bathymetry data are not available. Some studies do not 

mention the ZOC, although the surface level seems to be corrected (e.g., Boveng et al. 

1996; Arnould and Hindell 2001; Baechler et al. 2002; Fossette et al. 2008). Most dive 

software allows the user to manually set the ZOC at different values, however, when 

depth data have been collected every few seconds for a period of months, the 

resulting datasets make manual correction daunting. 

Another key user-defined parameter is the dive threshold, which is generally applied 

after the ZOC (water surface) value has been set. The dive threshold defines the 

minimum depth below which a sequence of dugong depth estimates is considered a 
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“dive”. That is, a dive consists of a series of depth readings, starting at 0 m (surface), 

which is set using the ZOC, and progressing beyond a depth which is determined by the 

dive threshold, to a maximum depth, then returning back to 0 m (surface).  

The choice of dive threshold also requires consideration. If the dive threshold is set too 

small (shallow), there will be numerous very shallow and short dives that are probably 

artefacts produced by the resolution of the TDRs, drift in the zero readings, wave 

action, etc. (Fig. 3.1A). In contrast, an excessive dive threshold (deep) will fail to 

identify actual shallow dives.  

Hooker and Baird (2001) criticise the use of a dive threshold that is arbitrarily defined 

by many authors as twice the resolution of the TDRs. This practice seems to have 

originated from a company which makes dive analysis software (Hooker and Baird 

2001). To my knowledge, relatively few dive studies have discussed what factors 

should be considered in selecting a dive threshold. Examples which do explain the 

choice of depth threshold include Bengtson and Stewart (1997), Arnould and Hindell 

(2001), Gordos and Franklin (2002),  Bodkin et al. (2004), Chilvers et al. (2004), and 

Hays et al. (2007).  

The arbitrary choice of the dive threshold value by many researchers probably stems 

from their study animals feeding in deep water and exhibiting dives many times 

deeper than the chosen dive threshold values (e.g., northern Mirounga angustirostris 

(LeBouef et al. 1986) and southern (Hindell et al. 1991) elephant seals, and fin whales 

Balaenoptera physalus (Panigada et al. 1999)). Identification of shallow dives was not 

critical to these analyses, because the main interest was generally related to feeding 

behaviour, and the feeding dives of these species often occurred in deep waters. The 

arbitrary choice of these two parameter values for these animals is unlikely to have a 

substantial influence on the identification, characterisation, and interpretation of dives.  

In studies of coastal/estuarine/riverine shallow-diving animals, such as sirenians, 

dolphins and turtles (see Elliott and Gaston 2009), the solid protocol for selecting user-

defined parameters is more critical. Shallow dives (e.g. < 5 m) may comprise the 

majority of the diving behaviour of shallow-diving species and they often feed in 

shallow waters. For example, the dugong feeds in shallow intertidal seagrass beds, the 
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depth of which is sometimes <1 m (Hodgson 2004). Such protocol may also be useful 

for some deep-diving animals which make shallow dives in different life stages 

(juvenile, adults), location, or season (Nolet and Kruuk 1993; Hays et al. 2001).  

Here, I present an empirical procedure for selecting ZOC and dive threshold values by 

minimising errors in dive identification and characterisation. I believe this procedure is 

particularly applicable to the analysis of large volume of TDR data and to shallow-

diving aquatic wildlife.  

3.2 Materials and methods 

3.2.1 Study animals, sites, and tracking units 

The dugong is a relatively shallow-diving species that feeds amongst coastal seagrass 

communities (Heinsohn and Birch 1972; Marsh et al. 1982; Preen 1995b). Dugongs 

have been observed feeding on seagrass in waters <1 m deep (Hodgson 2004), and the 

deepest reported dugong dive is 36.5 m (Sheppard et al. 2006). 

For this chapter, I used dive data collected from five dugongs tracked with TDRs in 

Hervey Bay, Australia between July 2003 and August 2004. The TDRs were 

programmed to record water pressure (depth) every 2 s. The resolution of the TDRs 

was either 0.1 or 0.25 m. In total, between 42 and 56 days of dive depth records were 

available for each dugong. Details of the tagging units/animals are given in Table 2.1.  

Preliminary data processing is as described in Chapter 2 (Section 2.2 and 2.4). A total of 

20 one-day (24 h) sub-samples (4 from each of the five animals) were then randomly 

chosen for further analysis. Dives were profiled from depth records as described in 

Section 2.4 using diveMove (ver. 0.9.7, Luque 2007) in R (ver. 2.15.3, R Development 

Core Team).  

3.2.2 Terminology 

I identified the following 4 types of dives made by dugongs (Fig. 3.1); 

1. Unrecognised dive (ZOC) – a dive that the software failed to identify at the chosen 

ZOC, but was identified as a Plausible dive at a higher or lower ZOC value (Fig. 3.1A). 
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2. Unrecognised dive (DT) – a dive that the software failed to identify at the chosen 

dive threshold, but was identified as a Plausible dive at a higher or lower dive 

threshold (Fig. 3.1A). 

3. Plausible dive – a dive recognised by the software that had a duration greater than 

the minimum dive duration “time threshold” determined from direct observation 

by Hodgson (2004) (see Section 3.2.4 and Fig. 3.1B). 

4. Implausible dive – a dive recognised by the software of duration shorter than the 

time threshold above (Fig. 3.1B). 

I used the following procedure for selecting appropriate parameter values for the ZOC 

and dive threshold to minimize the frequency of Implausible and Unrecognised dives 

and maximize that of Plausible dives. 

3.2.3 Factors influencing depth readings 

Five common sources of error in depth readings are (e.g., Chilvers et al. 2004):  

1. Drift in zero readings, caused by the sensitivity of the TDR pressure transducer. The 

transducer takes some time to adjust to rapid pressure or temperature changes 

after an animal equipped with a TDR makes a deep or fast dive; 

2. Wave action, which varies in time and space with weather and sea conditions; 

3. The depth resolution of the TDR;   

4. Location of the TDR on the study animal’s body. A TDR is attached to the dugong’s 

tailstock (see (Sheppard 2008) for details), which can cause an error in dive 

identification because of the distance between the animal’s head and its tail. Based 

on an allometric study of dugong carcasses (Spain and Heinsohn 1975), the 

maximum possible difference in depth between the dugong’s head and the TDR was 

estimated to be approximately 2 m (2.4 m (mean body length of the 5 dugongs) – 

0.33 m); and 

5. The behaviour of study animals relative to the recording interval. The proportion of 

surfacing events recorded by a TDR will depend on the recording interval relative to 

the time the animal spends on the surface. 
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Figure 3.1 Definition of tentative dive classification using two parameters: zero-offset correction (ZOC) and dive threshold (DT) and hypothetical scenarios: 

A) At ZOC 1, 2 dives (numbers 3 and 4) are recognised as one dive while at ZOC 3, the dive number 4 becomes an Unrecognised dive (ZOC) because the 

surface level is set too deep. In this scenario, ZOC 2 is a more appropriate value. Using the ZOC 2 and DT 2, the dive number 4 becomes an Unrecognised 

dive (DT) because the dive threshold is set too deep. Thus DT 1 is the more appropriate; B) A Plausible dive has dive duration longer than the time threshold. 

Given time threshold of 16 s, the dive number 3 was 28 s long and dive number 4 was 36 s long, therefore both dives are Plausible dives. The dive numbers 1, 

2, 5 and 6 are Implausible dives because they last only 4-8 s long. 
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I corrected the drift in zero readings (1 above) using custom software (see Section 2.4).  

All other sources of error except the depth resolution of TDRs (2 above) were the 

target of the second error minimisation described below. 

3.2.4 Time threshold 

A minimum time threshold was established as the basis for distinguishing Plausible 

from Implausible dives and was based on the dive duration obtained from 126 focal 

follows (mean duration = 12 min 32 s) of 56 individual dugongs in clear water <5 m 

deep using a blimp-cam – a video camera mounted in a blimp  (Hodgson 2007).  A total 

of 287 dives were used to estimate minimum dive duration. I used a bootstrap 

approach with 1,000 replications to estimate the values (95% confidence limits) above 

which 99% of observations were expected to fall in S-plus statistical package (TIBCO 

Software Inc., Seattle, USA). 

3.2.5 Optimum zero-offset correction (ZOC) 

The optimum ZOC is the value that consistently gives the largest proportion of 

Plausible dives (lasted longer than my time threshold) across dugongs and days. The 

proportion of Plausible dives was obtained using ZOC values of 0, 0.5, 1, 1.5, 2 and 2.5 

m in diveMove. The count of Unrecognised dives (ZOC) was made visually for ZOC = 0 

m and by sequential pair-wise comparisons thereafter. The dive threshold was kept 

constant as 1 m. A factorial ANOVA with unplanned comparisons (α = 0.05) was used 

to compare the mean proportions at each ZOC value. The arcsin transformation was 

applied to normalise the response variable of proportion. Individual dugong was 

treated as a second explanatory variable to examine its contribution to the variable in 

the mean proportions. 

The proportion of Plausible dives was calculated as: 

 
( )

x

x x

ZOC

ZOC ZOC

PD
Proportion of Plausible dives

PD UD ZOC
   =

+
 

Where, 
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xZOCPD  = the number of Plausible dives using a ZOC of x m 

( )
xZOCUD ZOC = the number of Unrecognised dives (ZOC) using a ZOC of x m 

3.2.6 Optimum dive threshold 

I used dive thresholds of 0.4, 0.9, 1.4 and 1.9 m to compensate for the different depth    

resolutions of the TDRs. These numbers were used because diveMove identifies a dive 

when the observed depths move beyond a specified dive threshold. For example, the 

0.4-m dive threshold enabled me to identify dives >0.5 m for all resolutions. The range 

of the selected dive threshold values (0.4 to 1.9 m) covered 1.5 m which was the dive 

threshold used in Chilvers et al. (2004). 

The proportion of Implausible dives was calculated as: 

X

X X

DT

DT DT

ID
Proportion of implausible dives

PD ID
   =

+
 

Where, 

xDTID =    the number of Implausible dives using a dive threshold of x m 

xDTPD =   the number of Plausible dives using a dive threshold of x m 

The proportion of Unrecognised dives (DT) was calculated as: 

 min

min

( ) XDT DT

DT

PD PD
Proportion of Unrecognized dives DT

PD
−

    =  

Where, 

minDTPD =  the number of Plausible dives using a minimum dive threshold 

XDTPD =  the number of Plausible dives using a dive threshold of x m 

I determined the optimum dive threshold value that minimised the proportion of 

Implausible dives and Unrecognised dives (DT) and maximised that of Plausible dives; 
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that is where the two variables intersect (Reeb and Leavengood 1988). As the dive 

threshold increased, the number of Implausible dives decreased, but the number of 

Unrecognised dives increased  

3.2.7 Supplemental cross-check 

To cross-check the ZOC and dive threshold values determined above, I examined the 

frequency distributions of dive durations obtained from diveMove at the ZOC 

threshold selected above and three dive thresholds (0.4, 0.9, and 1.4 m) and compared 

them with the frequency distribution of the visual observation from the independent 

visual observational study of dugongs (Hodgson 2007).  

3.3 Results 

3.3.1 Time threshold 

The bootstrap technique indicated a threshold submergence time of 16 s (95% CI = 12 

to 20 s).  Therefore a dive that had submergence time >16 s was classified as a 

Plausible dive, otherwise Implausible dive.  

3.3.2 Optimum zero-offset correction (ZOC) 

The total number of Plausible dives varied with ZOC values, dugong, and day, ranging 

from 44–647 dives (mean = 335.8 ± 149.7) per dugong per day. The total number of 

dives increased initially with increasing ZOCs, usually peaking around 1 m ZOC. The 

frequency of Unrecognised dives (ZOC) was minimised at the value of 1 m (mean = 

47.2 ± 8.2 dives). The factorial ANOVA showed a significant difference among ZOCs in 

the mean proportions of Unrecognised dives (ZOC) (F5,90 = 92.47, p < 0.0001). Post-hoc 

Tukey tests showed that all possible differences were significant, except between ZOC 

0.5 and 1 m. 

The proportion of Plausible dives was the highest at ZOC 0.5 m for “HB 1” and at 1 m 

for the rest of the animals with the mean dive number of 464.9 ± 23.0 dives at 1 m dive 

threshold (Fig. 3.2). The proportion of Plausible dives was the mirror of the proportion 

of Unrecognised dives (ZOC). The factorial ANOVA showed again a significant 
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difference across ZOCs in the mean proportions (F5,90 = 92.47, p < 0.0001). Post-hoc 

Tukey tests indicated a significant difference in all combinations of the mean 

proportion, except between ZOC 0.5 and 1 m. 

 

 

Figure 3.2 A box plot of the proportion of Plausible dives across 

different ZOC values (0, 0.5, 1, 1.5, 2 and 2.5 m) with all five 

dugongs combined (A) and individually (B) plotted. The graphs 

indicate that 1-m ZOC maximises the proportion of Plausible. 

The dots represent the median. 
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The effect of individual dugong was also significant (F4, 90 = 6.28, p < 0.0002), although 

there was no interaction between ZOC and individual dugong (F20, 90 = 1.46, p = 0.11). 

This means that although different dugongs had different numbers of dives each day, 

the effect of the ZOC value did not differ among dugongs. The ZOC of 1 m was 

therefore used for all animals in the subsequent sections. 

3.3.3 Optimum dive threshold 

The total number of Plausible dives varied from 111–913 dives per dugong per day 

(mean = 504.8 ± 194.3) and decreased as the dive threshold increased. The 

proportions of Implausible dives dropped sharply close to 0 at dive thresholds above 

0.5 m for most dugongs, while the proportion of Unrecognised dives (DT) increased 

slowly (Fig. 3.3). The two lines of Implausible dives and Unrecognised dives (DT) 

intersected near a dive threshold of 0.75 m, which was the optimum value from 

Unrecognised dives + Implausible dives.  

The dive threshold of 0.75 m was the optimum value; however 0.9 m was used to 

compensate for different resolutions of TDRs (0.25 and 0.5 m). If all TDRs had a similar 

resolution, for example 0.25 m, 0.75 m was used instead as the dive threshold, which 

would in practice have meant that submergence depths of 1 m or more were identified 

as dives.  

3.3.4 Supplemental cross-check  

The frequency distribution of dive durations using a dive threshold of 0.4 m (which 

identified dives >0.5 m) had very different patterns from those of the visual 

observations of dugong diving behavior (Fig. 3.4 A,B). With a 0.4 m-dive threshold, 

Implausible dives (e.g. <8 s) were over-represented (N = 15,064), indicating that using 

a dive threshold of 0.4 m, many of these dives identified are probably artifacts from 

noise. In contrast, the frequency distributions using a dive threshold of 0.9 and 1.4 m 

were similar (both of which identified dives with 1 and 1.5 m or more, respectively) to 

the one from visual observations. Using a dive threshold of 0.9 m, however, there were 

2,500 dives more (N = 10,701, >30%) than when using a dive threshold of 1.4 m (N = 

8,188).  
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Figure 3.3 A box plot of the proportion of Implausible dives 

using various dive thresholds (0.4, 0.9, 1.4, and 1.9 m), 

combined (A) and individually (B) plotted. The two variables of 

Implausible dives and Unrecognised dives (DT) intersect at 

around 0.75 m, indicating the optimum minimum dive depth.  
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Figure 3.4 Frequency distribution of dive durations from: A) a blimp-cam observation of wild 

dugongs in ≤5 m (A. Hodgson unpublished data) (N = 247) and TDR data from five dugongs 

with ZOC 1 m; B) dive threshold 0.4 m (N = 15,064); C) 0.9 m (N = 10,701); and D) 1.4 m (N = 

8,188). The figures represent only Plausible dives ≤5 m deep to correspond with the blimp-cam 

observations. 
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3.4 Discussion 

3.4.1 Empirical approach 

This chapter presented an empirical procedure for determining the optimum values for 

two fundamental user-defined parameters common to the analysis of animal depth 

data: the surface correction known as the zero-offset correction (ZOC) and the dive 

threshold (DT). I determined each optimum value by identifying Unrecognised dives 

(ZOC or DT), Plausible, and Implausible, and in the dive analysis output and choosing 

the values that maximised Plausible dives and minimized the sum of Implausible and 

Unrecognised dives.  

The approach initially removed errors introduced by drift in the zero-reading using the 

custom software. The drift which is presumably caused by changes in barometric 

pressure and temperature was corrected for every 15-min of the deployment periods. 

The interval was long enough to capture >3 surfacing events. The second error 

minimisation involved the use of the open-source software diveMove and aimed to 

minimise errors that were introduced by wave action, location of TDRs on the study 

animal’s body, and behaviour of the animal relative to the sampling interval. The 

procedure is summarized in Fig. 3.5.   

Zero-offset correction (ZOC) 

Using the methodology described here, the optimum ZOC value was 1 m, the value 

that resulted in the largest numbers of Plausible dives and smallest numbers of 

Unrecognised dives (ZOC) in most animals on most days. Individual animals differed in 

their average proportion of Unrecognised dives (ZOC). The interaction term between 

ZOC and individual dugong was however insignificant, indicating the common ZOC 

value was suitable for all animals. Consequently, I used the ZOC of 1 m for all five 

dugongs. If the data had indicated that different ZOC values were required for 

different animals, this could have been incorporated in the procedure. 
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1 Preliminary clean-up of TDR data 

 • Divide depth readings into one-day sampling units 

• Remove spikes 

• Calibrate surface depth to 0 m at 15-min interval 

2 Identify potential factors 

 • Recognise factors (e.g., position of TDRs on animal’s body) and the range of error 
in depth readings 

3 Establish time threshold 

 • Determine the minimum dive duration from visual observations of diving behaviour 
using bootstrap technique  

4 Define dive types 

 • Classify dives into: 
o Plausible and Implausible dives based on the time threshold 
o Unrecognised dives (ZOC or DT)  

5 Determine the zero-offset correction (ZOC) 

 • Count Plausible and Unrecognised dives (ZOC) and plot their proportions against 
ZOC values  

• Identify the ZOC giving a maximum proportion of Plausible dives 

6 Determine the dive threshold (DT) 

 • Count Plausible, Implausible and Unrecognised dives (DT) and plot their 
proportions against dive thresholds 

• Identify the intersection of the proportions of Implausible and Unrecognised dives 
(DT)  

7 Validate the ZOC and dive threshold with histogram 

 • Plot the histogram of dive durations obtained from the visual observations and 
depth readings from TDRs 

• Identify which dive threshold value from TDRs gives a similar distribution pattern 
to the one from the visual observation 

Figure 3.5 Sequence of analysing depth readings from shallow-diving dugongs. 

Visual observations used to determine the “time threshold” can be modified with 

depth data being examined by manually inspecting dive profiles. Additional 

parameters (e.g., thresholds for speed or wet/dry period) appropriate to studies 

of other diving animals can also be included. 
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Dive threshold 

The 0.9-m dive threshold was smaller than the value used in Chilvers et al. (2004) (1.5 

m dive threshold, 0.25 and 0.4 m resolution of TDRs, 1 and 5 s sampling interval). 

Chilvers et al. (2004) manually examined dive profiles to determine the value while 

considering sources of errors in depth data. The discrepancies in the dive threshold 

chosen here and their study indicate that the smaller dive threshold value can be 

obtained with an empirical procedure. Some real shallow dives may have been missed 

in the previous studies.  

The dive threshold identified here falls within the range of values used in other studies 

of shallow-diving animals, although a formal comparison cannot be made and is 

probably not meaningful: 0.2 m (American minks Mustela vison; Hays et al. 2007), 0.45 

(freshwater turtles Rheodytes leukops and Emydura macquarii; Gordos and Franklin 

2002), 1.5 m (green turtles; Seminoff et al. 2006), 2 m (common guillemots Uria aalge; 

Tremblay et al. 2003), 3 m (leatherback turtles Dermochelys coriacea; Fossette et al. 

2008). 

Cross-check 

Using the 1-m ZOC and 0.9-m dive threshold, the frequency distribution of dive 

durations from Hodgson’s visual observations and the TDR data from five tracked 

dugongs presented similar distribution patterns (Fig. 3.4), supporting the choice of 

these two parameters. I could not draw parallel comparisons between the frequency 

distributions of the minimum dive depth between the visual observations and the TDR 

data because the depth records from the visual observations were unavailable.  

3.4.2 Error in depth records    

The small dive threshold implies that the sources of error (wave action, location of 

TDRs on animals’ body and animal behaviour relative to sampling interval) had 

minimum influence on dive records from the five dugongs tagged in Hervey Bay. These 

dugongs mostly occurred in shallow areas or sheltered embayments. The range of 
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error was initially expected to be at least 2 m since I consider the maximum length 

between the head and the trail stock was estimated as 2 m.  

Although the sampling interval influences results obtained from data loggers (Boyd 

1994; Myers et al. 2006; Hays et al. 2007), the frequent sampling interval (2 s) of the 

TDRs deployed to these dugongs appeared to adequately capture the dugong’s 

surfacing events despite these existing sources of errors. In future, it is possible to test 

systematically whether these parameter values vary with environmental conditions. 

For example, smaller parameter values might be used when interpreting dives from an 

animal that occurs in sheltered bays and larger values used with an animal moving 

through exposed open seas.   

3.4.3 Future studies 

The category “Implausible dive” could be expanded to include dives identified by the 

software that extend well beyond the known diving capacity of the study animal. The 

diveMove software identified several dives >700 s. Upon visual inspection of the dive 

profiles, however, many of these longer dives showed two or more obvious surfacing 

movements. As a result, my analysis would be improved by further independent 

estimates of maximum dive duration to set an upper as well as lower “time threshold”.  

When submergence time from visual observations is not available, as is often the case 

for free-ranging animals, the minimum as well as maximum time threshold could be 

estimated from a visual inspection of the dive records to identify the shortest and 

longest “well-formed” dive profiles. Such an approach however requires careful 

examination of numerous dives, preferably with a quantitative basis, as surprisingly 

long dives can be real (e.g. Hochscheid et al. 2005). Implementation of the 

methodology presented in this chapter relied on the availability of an estimate of 

minimum dive duration for a “time threshold”, because dive depths alone did not 

provide a robust basis for discriminating a dive from artefacts. The time threshold was 

obtained from an independent visual behavioural study of dugong diving by Hodgson 

(2004).  
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3.4.4 Challenges 

The inherent issues associated with the correct identification of a dive from depth data 

are common to all diving animals. Deep-diving animals make shallow dives in particular 

locations (e.g., breeding area), in different life stages or between deep dives (Nolet et 

al. 1993; Hays et al. 2001; Elliiott and Gaston 2009). The correct identification is 

however more critical to studies of shallow-diving animals as these animals spend 

most or all the time in shallow areas (Croll et al. 1992; Hays et al. 2007;   Hodgson 

2004). The approach presented here has potential application to a wide range of 

studies of aquatic species, and should be particularly useful for studies of shallow-

diving animals, such as sirenians, dolphins and turtles. 
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3.5 Chapter summary 

• The large volume of data acquired from TDRs can be analysed using dive analysis 

software, but the application of such software has received relatively little attention.  

• The empirical procedure presented in this chapter selected optimum values for the 

two parameters that are critical for obtaining reliable results: the zero-offset 

correction (ZOC) and the dive threshold. 

• Dive data from shallow-diving coastal dugongs and visual observations from an 

independent focal sampling study were used to develop and test a procedure that 

minimises errors in dive identification. 

• Depth records were initially cleaned of drift in zero-reading and spikes using custom 

software. 

• Dives  were classified into Unrecognised dives (ZOC or DT) by using different values 

of ZOC and DT. The Unrecognised dives were further classified into Plausible and 

Implausible dives based on the time threshold, established from the independent 

visual observational study. 

• Comparison of these dive types indicated that a ZOC of 1 m and dive threshold of 

0.9 m gave the largest number of Plausible dives and smaller numbers of other dive 

types, and were the optimum values for the dugong data examined. 

• Selection of these two parameter values was supported by frequency distribution 

patterns of dive durations from TDRs and the visual observations. 

• The present procedure has application to other shallow-diving animals such as 

coastal dolphins and turtles. 
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Chapter 4:  The challenge of inferring behaviour from  

dive records of shallow-diving marine mammals2   
 

 
 
Classifying the dives of shallow-diving marine mammals such as the dugong is challenging. Classification 

depends on reliable dive phases (e.g., descent, bottom, ascent phases) and resultant parameters (e.g., 

descent/ascent time, bottom time, maximum dive depth), however, it is often difficult to identify different 

dive phases in shallow dives, and standard classification approaches did not yield interpretable results. In 

this chapter, I describe an alternative approach. I use logistic regression models based on dive records 

linked to fine-scale location data and fine-scale environmental attributes to estimate probabilities of:  (1) a 

dive having or not having access to the seafloor; and (2) a dive having access to the seafloor in a location 

where seagrass is present or absent. I describe dives meeting these criteria to draw insights into dugong 

diving behaviour. 

                                                        

2 I plan to submit a version of this chapter to Marine Ecology Progress Series as Hagihara, R., H. Marsh, C. 
Roefsema, R. E. Jones. The challenge of inferring behaviour from dive records of shallow-diving marine 
mammals.   
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Chapter 4:  The challenge of inferring behaviour from dive 

records of shallow-diving marine mammals 

4.1 Introduction 

The behaviour of animals is best described and understood in the context of their local 

environment (Jessopp et al. 2013). Several studies have deduced patterns of habitat 

use and foraging behaviour by linking behavioural data (horizontal and vertical 

movements) and oceanographic features (e.g., Lea and Dubroca 2003; Bailleul et al. 

2007; Howell et al. 2010). These studies provide valuable insights into the feeding 

ecology and habitat use of marine mammals, especially in remote, data-scarce areas 

(e.g., Polar Regions).  

Environmental conditions, habitat types, and location of food patches are typically 

heterogeneous in space and time. Combining behavioural data with habitat 

descriptions where both are recorded at fine spatio-temporal scales would enable 

informed inferences about fine-scale diving behaviour, such as a single dive. As high 

resolution habitat information is often unavailable or difficult to obtain, few studies 

(e.g., Sheppard et al. 2009; Jessopp et al. 2013) have attempted such an approach. 

In the absence of environmental data, earlier studies of marine mammal diving 

behaviour classified two-dimensional data (time and depth) into dive types (e.g., 

Square, U, V, and skewed), and the behaviour of the study animal was inferred from 

the classified dive types. This practice considerably expanded insights into underwater 

animal behaviour. Dives were classified using manual approaches based on visual 

inspection (e.g., Le Boeuf et al. 1988; Wilson and Block 2009) and statistical methods 

(e.g., a combination of principal component analysis and a variant of cluster analysis, 

factor analysis, and discriminant functions: Boyd et al. 1994; Schreer and Testa 1995; 

Wilson et al. 2014). These approaches have been used singly or in combination (Hindell 

et al. 1991; Schreer and Testa 1996; Malcolm and Duffus 2000; Baechler et al. 2002; 

Beck et al. 2003; Thums et al. 2008).  
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A statistical approach provides objective and efficient classification of voluminous data 

and is often preferred over a manual technique. Nonetheless, Malcolm and Duffus 

(2000) claim manual classification allows more subtle variations in the geometry of a 

dive profile to be identified; such variations may be indicative of behavioural 

differences. The choice of classification methodology typically depends on the volume 

of data to be classified, as well as on prior knowledge of behaviour or ecology of the 

study animal. Regardless of the classification techniques, validation of the putative 

behaviours associated with dive types is generally challenging.  

Recent studies have collected a range of information on free-ranging animals and their 

environment using multiple sensing units. The complementary information has been 

combined with dive records to yield greater insights into diving behaviour (e.g., 

Hochscheid et al. 1999; Lesage et al. 1999; Davis et al. 2003; Seminoff et al. 2006; 

Goldbogen et al. 2008; Thomson et al. 2011; Viviant et al. 2014), improved dive 

classification, and sometimes provided a measure of validation. Several studies have 

pointed out that more than one behaviour has been assigned to a single dive type 

(Lesage et al. 1999; Davis et al. 2003; Thomson et al. 2011). Nonetheless, these studies 

illustrate the advantages of using data additional to dive records for enhancing the 

capacity of interpretation. 

For studies of dugongs, Chilvers et al. (2004) classified dives from satellite-tracked 

dugongs equipped with TDRs. Square- and U-shaped dives (67%) were interpreted as 

feeding dives, V-shaped dives (8%) as exploratory dives, and shallow dives as either 

travelling (22%) or resting (3%). Chilvers et al. (2004) did not have accurate 

information on the animal location, and the putative functions that Chilvers et al. 

(2004) ascribed to the dives have not been validated.  

The classification of dive records from shallow-diving animals such as dugongs is 

particularly challenging as it is often extremely difficult to identify distinct phases in a 

shallow a dive (e.g., descent, bottom, and ascent phases). Thus dive parameters 

calculated from these dive phases are difficult to interpret. I used conventional 

classification techniques (principal component analysis/k-means cluster analysis, factor 

analysis, classification tree) on dugong dive data. Although the resultant clusters were 
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numerically distinct, they did not visually differentiate dive types or as dives whose 

location made feeding possible (over seagrass meadows) versus impossible (in areas 

where seagrass is absent). 

In this chapter, I present an alternative approach. Instead of classifying dives into 

discrete dive types, I use logistic regression models based on dive metrics (e.g., 

descent rate, bottom time, vertical displacement, maximum depth, ascent time, ascent 

rate, asymmetry and ascent rate divided by descent rate) obtained from simple two-

dimensional data (time and depth). The logistic regression models estimate the 

probability that a dive will meet each of the following criteria: a) mid-water dives that 

did not provide the dugong with access to the seafloor and dives that did; and b) dives 

that enabled the dugong to access the seafloor in areas where seagrass is present and 

absent (Fig. 4.1).  The dives that had various likelihoods of achieving these criteria 

were examined further in order to draw insights into the dugong diving behaviour.  

  

 

 

Figure 4.1 Schematic 

diagram illustrating 

dives that achieve 3 

criteria. Numbers of 

dives examined are 

represented in 

brackets.  
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4.2 Materials and methods 

4.2.1 Study animals, sites, and tracking units 

Dugongs are strict bottom-feeders, as opposed to manatees which feed on 

submerged, floating, and emergent plants, and other food items found in any position 

of the water column (Hartman 1979; Powell 1996; Lefebvre et al. 2000; Colares and 

Colares 2002; Courbis and Worthy 2003; Guterres-Pazin et al. 2012). Although dugongs 

sometimes consume benthic fauna associated with seagrass communities such as 

ascidians (Preen 1995a), seagrass is their primary food and they are regarded as 

seagrass community specialists (Heinsohn et al. 1977; Marsh et al. 1982; Preen 1992; 

Masini et al. 2001; André et al. 2005; De Iongh et al. 2007; Marsh et al. 2011b).  

In this chapter, I examined four dugongs fitted with GPS satellite tracking units and 

TDRs in Moreton Bay 2011 with the aim of developing the technique that can be 

subsequently used on a larger data set. Seagrass occurs extensively over shallow banks 

in inshore waters of Moreton Bay. I used the seagrass model generated for these 

shallow banks (refer to assumptions of the seagrass model in Section 4.2.7). In 

contrast, no or little seagrass is found offshore, the east side of Moreton Bay (Fig. 2.2) 

(Stevens and Connolly 2005; Phinn et al. 2008).  

The number of days for which both satellite locations and dive records were available 

ranged from 16 to 78 days per animal as explained in Chapter 2. Specification of the 

tracking units and description of the study site are detailed in Table 2.1.   

4.2.2 Definitions 

Dives were divided into two groups according to the following criteria (Fig. 4.1): 

1. Dives that did not enable the tracked animal to have access to the seafloor (mid-

water dives); and 

2. Dives that enabled the tracked animals to access to the seafloor (seafloor dives). 

The second group was further divided into two subgroups, depending on whether or 

not the seafloor supported seagrass, determined by using the seagrass model. 
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A dugong was assumed to have access to the seafloor when the maximum dive depth 

reached within 1.5 m of the seafloor. This assumption was necessary due to errors in 

the depth records resulting from: 1) the depth resolution of the TDR (± 0.5 m); 2) the 

dugong’s body angle and movements; 3) location data (spatial resolution of <75 m); 4) 

bathymetry model (spatial resolution of 100 m; Beaman 2010); and 5) water depths 

estimated using the bathymetry model and tidal records (Maritime Safety Queensland, 

Department of Transport and Main Roads 2011) (see details in Chapter 3).  

4.2.3 Data set 

Dives were profiled in diveMove (ver. 0.9.7, Luque 2007) in R (ver. 2.15.3, R 

Development Core Team), with 0.5 m zero-offset correction and 1 m dive threshold. 

These thresholds were quantitatively determined using the methodology described in 

Chapter 3 which optimised dive recognition from shallow-diving dugongs. 

The initial data manipulation of location data and dive records is described in Section 

2.4. The dives generated in diveMove were then associated with environmental 

variables (water depth and seagrass presence/absence). Dives that occurred within 5 

min of satellite location fixes (10 min in total) were sub-sampled (Fig. 2.3B), assuming 

the associated environmental variables remained constant for the 10-min period. 

Although a dive was defined as departure >1 m from the surface, dives that had a 

maximum dive depth exceeding the estimated water depth were removed.  Such 

errors probably originated from errors in bathymetry models, tidal adjustments and 

depth measurements from TDRs. Furthermore, dives with a maximum dive depth of <3 

m were excluded to avoid the problems associated with dive phase recognition in very 

shallow dives.  

4.2.4 Dive parameters   

The 16 dive parameters initially examined were either produced in diveMove or 

calculated from the output parameters, following Schreer and Testa (1995, 1996) and 

Lesage et al. (1999) (Table 4.1). As multicollinearity increases, regression parameters 

become unreliable and lead to incorrect coefficients (errors in magnitude and sign), or 
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with huge standard errors (Slinker and Glantz 1985; Zuur et al. 2013). Several 

alternative thresholds of Variance Inflation Factor (VIF) have been suggested; Zuur et 

al. (2007) recommends <3 whereas Montgomery et al. (1992) recommend <5 to 10. 

Thus if two dive parameters had a correlation coefficient of >0.7 or had a VIF of >5, 

which is a relatively relaxed threshold, only one of the two parameters was retained in 

the model. Bottom distance was divided by bottom time to provide a measure of the 

vertical displacement relative to the time spent on the bottom phase of the dive (ID 5; 

Table 4.1).  

Table 4.1 The dive parameters used in the logistic regression models and their descriptions. 

ID Dive parameters Descriptions 

1 Descent time (s)* Time spent during a descent phase  

2 Descent distance (m) Vertical distance travelled during a descent phase  

3 Descent rate (m/s)* Rate of descent 

4 Bottom time (s)* Time spent during a bottom phase  

5 Vertical displacement (m)* Vertical distance travelled during a bottom phase divided 
by the time spent during the bottom phase  

6 Max. dive depth (m)* Maximum dive depth reached during a dive 

7 Ascent time (s)* Time spent during an ascent phase  

8 Ascent distance (m) Vertical distance travelled during an ascent phase  

9 Ascent rate (m/s)* Rate of ascent 

10 Dive time (s) Time spent during all phases  

11 Asymmetry* Ascent distance divided by descent distance  

12 Post dive duration (s) Time spent at the surface 

13 Bottom time/ descent rate Bottom time divided by descent rate 

14 Ascent rate / descent rate* Ascent rate divided by descent rate 

15 Descent time proportion Descent time divided by dive time  

16 Ascent time proportion Ascent time divided by dive time  

*Parameters retained for further analyses 
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4.2.5 Relevant dive parameters   

I performed two Generalized Linear Models (GLMs) with binomial distribution (logistic 

regression) to identify the dive parameters that were highly associated with each of 

the two binary response variables: 1) mid-water versus seafloor dives; and 2) seafloor 

dives over areas where seagrass is present and absent. The remaining number of 

explanatory variables (n = 9) as indicated by asterisk in Table 4.1 was still large and 

some of these variables might have been irrelevant to describing the binary response 

variables described above. Thus relevant variables were determined on the basis of 

their relative importance using automated model selection approach. The relative 

importance of a variable is obtained from the sum of Akaike weights across all models 

included in the confidence set. Akaike weights indicate a relative likelihood of a model 

being the best model, given the models examined. Variables with a relative importance 

of >0.5 were retained for further examination. When the two packages produced 

different results, only parameters that were identified by both as having a relative 

importance of >0.5 were retained. A High Power Computer (HPC) was employed for 

the iterations. 

The models were compared based on the Akaike Information Criterion, corrected 

(AICc). For this automated model selection and relative importance estimation, I used 

two R packages MuMIn (ver. 1.10.0, Bartoń 2014) and glmulti (ver. 1.0.7, Calcagno 

2013) in R 3.0.3 (R Development Core Team, 2014), as each employed a slightly 

different algorithm; glmulti is faster, uses less memory, and can handle larger data sets 

(Calcagno and de Mazancourt 2010).  The number of models required to estimate the 

relative importance of the parameters was determined based on the 95% confidence 

set. The codes are provided in Appendix 4.1.     

These nine numerical dive parameters were used as explanatory variables for each 

logistic regression on two datasets (1 and 2 above). All variables were treated as main 

effects. Dataset 1 included all dives in water >3 m deep.  Dataset 2 included only dives 

in water 3–<5 m deep. The georeferenced seagrass map was limited to depths less 

than 10 m, and even within this range, seagrass at the study site was restricted mainly 

to shallower waters (refer details in Section 4.2.7). Since many of the dive attributes 
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were affected by the maximum dive depth, the logistic regression for bottom dives 

dugongs made in areas where seagrass is present and absent needed to be controlled 

for the biased depth distribution of seagrass.  

I attempted to include the individual animal as a random factor, but the resulting 

model failed to converge. This means that data are pseudoreplicated and larger data 

are needed to confirm the random effect from individual animals.  

This process resulted in eight of the nine dive parameters marked with asterisks in 

Table 4.2 achieved high relative importance using both MuMIn and glmulti (see 

Appendix 4.1 for details), and were used in each of the two logistic regressions. I used 

R package lm.beta (Behrendt 2014 ) to obtain standardized coefficients. 

Table 4.2 Relative importance of nine dive parameters identified in predicting a likelihood of 

attaining: A) mid-water versus seafloor dives, and B) seafloor dives over areas where seagrass 

was present versus absent. The numbers in brackets represent the number of models in the 

confidence set (95%) used to obtain relative importance. 

  A) B) 

ID Dive parameters 
MuMIn 

(3) 

glmulti 

(2) 

MuMIn 

(8) 

glmulti 

(3) 

1 Descent time 0.4 0.4 1.0 1.0 

2 Descent rate* 1.0 1.0 1.0 1.0 

3 Bottom time* 1.0 1.0 1.0 1.0 

4 Vertical displacement* 1.0 1.0 0.3 0.3 

5 Maximum depth* 1.0 1.0 1.0 1.0 

6 Ascent time* 1.0 1.0 1.0 1.0 

7 Ascent rate* 1.0 1.0 0.8 1.0 

8 Asymmetry* 1.0 1.0 1.0 1.0 

9 Ascent rate divided by descent rate* 0.3 1.0 0.5 0.7 

*Parameters retained 
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4.2.6 Dive characterisation   

The eight relevant dive parameters identified above were transformed into categorical 

variables for ease of interpretation and to test for overdispersion. Use of categorical 

variables also allowed a visual comparison of observed and predicted responses. Each 

explanatory variable was divided into three groups (at percentiles of 33 and 66) or four 

groups (at percentiles of 25, 50, and 75) depending on their distributions. The 

response variables were the two binary variables described in Section 4.2.5. Over-

dispersion was examined using dispersion statistics based on Pearson’s residuals (Zuur 

et al. 2013). Standardised coefficients were obtained in lm.beta (ver. 1.5-1; Behrendt 

2014).   

The results of these analyses allow, for any given dive, an estimate of the probability 

that the dive reached the seafloor, and if it did, the probability that it was over 

seagrass. I then compared numerical dive characteristics of the three dive groups: mid-

water dives, seafloor dives in areas where seagrass was present and absent. The 

thresholds of high and low likelihoods of achieving the above categories were 

determined based on predicted values generated by the logistic regressions and the 

frequency distributions of each dive groups. All dive statistics are reported with means 

(x̄  ) and standard errors (±).     

4.2.7 Assumptions   

Assumptions made in fitting these models, together with possible problems, are: 

1. The seagrass model provides an accurate reflection of seagrass distribution at 
the time of dugong satellite tracking.  

• Seagrass abundance and distribution vary seasonally, and the seagrass map 
used is for 27 July 2011. As seagrass abundance and distribution decreases 
towards the Austral winter (July-August) (Preen 1995), earlier dugong 
tracking months (May to June) would have larger seagrass biomass and 
spatial extent. Thus some dugong locations from GPS transmitters 
identified as outside of the seagrass map might actually carry seagrass.  

• Accurate generation of the seagrass map generation has a depth limit as it 
relies largely on water clarity and the depth to which light penetrates 
through the water column. Although the satellite images were taken during 
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low tides (to provide maximum exposure of the substratum), the vertical 
spatial coverage of the model is <10 m. Deeper seagrass is not captured in 
the model.  

• The seagrass model was generated from field sampling of seagrass whose 
colour bands are identified on satellite imageries and then extrapolating the 
seagrass values to the entire seagrass model over shallow banks of 
Moreton and Amity banks (Roeflsema et al. 2009, 2014): the extrapolation 
is subject to error. In addition, low biomass seagrass may not be captured 
by satellite images. 

Despite the potential for underestimation,  70 to 82% of satellite points from 
the four dugongs within Moreton Bay were over the seagrass model. The 
magnitude of uncertainty in the generation technique of the seagrass model is 
unknown.  

2. The water depth represents the actual water depths experienced by tracked 
dugongs.  

• The water depth I used to determine whether a particular dive had access 
to the seafloor was estimated from a bathymetry model (spatial accuracy 
of ± 100 m) and tidal height information from available locations (Amity 
Point and South Passage), and therefore is subject to error. Shallow areas 
are subject to additional errors due to constant movements of sand 
(pers.comm Beaman). The tidal adjustments were done by associating each 
satellite fixes to the closest tidal reference locations available, and are also 
subject to errors.  

Although I used the best information available, depth estimates are therefore 
necessarily approximate. 

3. Depth records collected from TDRs reflect the actual depths that dugongs were 
located in the water column at the time of recording. 

• The depth records are subject to errors from depth resolution of TDRs, 
wave action, shift in barometric pressure over time, and dugong’s body 
angle (refer Chapter 3 for detail). For this reason, I defined the access to 
the seafloor as achieved when the maximum dive depth reached within 1.5 
m of the seafloor.   

Within the range determined by TDR resolution, this assumption is reasonable, 
given the methodology described in Chapter 3. The methodology is designed to 
minimise potential errors.   

4. Dugongs mostly feed over seagrass meadows.  
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• As described under Section 4.1, previous studies have found that seagrass 
dominated dugong stomach contents (e.g., Marsh et al. 1982), however 
dugongs also consume thin-shelled burrowing mussels (Anderson 1989), 
polychaete, and colonial ascidians (Preen 1995a). Especially in winter when 
the biomass of seagrass is reduced. In winter dugongs become nitrogen-
limited, and they may make significant use of these alternate food sources 
(Preen 1992). 

While it is likely that most dugong feeding occurs over seagrass, tracking 
encompassed the winter season so some feeding dives may have occurred 
elsewhere. Dugongs also perform other behaviours such as resting and 
socialising over seagrass meadows (Hodgson 2004). Thus identification of 
particular dives as “feeding dives” because they reached the bottom over 
seagrass is unlikely always to be correct. For these reasons, it is not feasible to 
assign particular dive types to particular behaviours  

4.3 Results 

4.3.1 General  

In total 150,714 dives (x̄  = 620.2 ± 17.6 dives per day per animal) were recorded from 

all four dugongs. After sub-sampling around GPS/QFP fixes and >3 m of maximum dive 

depth, the dataset was reduced to 3,317 dives. The mean maximum dive depth from 

this subset of data was 4.58 ± 0.04 m (median 3.5 m), and mean dive duration was 2.5 

± 0.03 min (median 2.2 min). The maximum dive depth was recorded from a dugong 

MB 3 and was 31.5 m. All dugongs dived to depths exceeding20 m. 

4.3.2 Predictive models    

The fit of the two categorical logistic regressions was adequate with dispersion 

statistics of 1.0 for the model predicting mid-water and seafloor dives and 1.1 for the 

model predicting seafloor dives in areas where seagrass is present and absent. 

Predicted and observed proportions of dives achieving different criteria had linear 

relationships regardless of the number of dives, also indicating the model adequacy 

(Fig. 4.2).  
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Figure 4.2 Given a set of predictor variables, predicted against observed 

likelihoods of attaining: A) seafloor and mid-water dives and B) seafloor dives in 

areas with seagrass presence and absence, coded with the number of dives. 

Graphs C) and D) show frequency distribution of each dive whose likelihood was 

predicted by logistic models. Vertical lines represent thresholds of high (dotted) 

and low (straight) likelihoods of accessing the seafloor (C) and accessing the 

seafloor in areas supporting seagrass (D). 

 

Mid-water and seafloor dives were highly associated with all eight variables, 

particularly ascent rate, bottom time, and vertical displacement in decreasing order of 

explanatory power (Table 4.3A). For instance, compared to a dive with an ascent rate 

of less than 0.06 m/s, the odds of a dive with an ascent rate of 0.06 to 0.16 m/s 

allowing the dugong to access the seafloor were 1.9 times higher than for a dive that 

had an ascent rate of <0.06 m/s, and 5 times higher for a dive with 0.16 to <0.27 m/s, 

and 15 times higher for a dive with >0.27 m/s.   
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All variables except ascent rate divided by descent rate, maximum dive depth, and 

bottom time were significant in differentiating between the seafloor dives over areas 

with and without seagrass. Dives over an area with or without seagrass varied with 

respect to ascent rate, descent time, ascent time, and ascent rate divided by descent 

rate (in decreasing order of explanatory power; Table 4.3B). For instance, the odds that 

a dive with an ascent rate of 0.3 to 0.4 m/s was over seagrass were 2.9 times higher 

than for a dive that had ascent rate <0.2 m/s The corresponding odds ratios for a dive 

with an ascent rate of 0.2 to 0.3 m/s was 1.6 times; 1.8 times for >0.4 m/s. The analysis 

of deviance table is given in Appendix 4.2.  

 

Table 4.3 Coefficients (original and standardised) of the logistic regressions for:  A) mid-water 

and seafloor dives and B) seafloor dives over the areas where seagrass is present and absent. 

The parameters were categorised into two or three groups depending on the distribution of 

the data. 

A) Mid-water and seafloor dives Coefficients Std. 
coefficients 

Std. 
Error t value 

(Intercept) -1.544 0.000 0.274 -5.645 

Descent rate:  0.08 to <0.14 m/s -0.146 -0.148 0.099 -1.470 

 0.14 to <0.23 m/s -0.108 0.111 0.121 -0.895 

 >0.23 m/s 0.369 0.381 0.149 2.476 

Bottom time:  25 to <55 s 0.176 0.180 0.090 1.968 

 55 to <107 s 0.360 0.366 0.091 3.974 

 >107 s 0.563 0.577 0.098 5.736 

Vertical displacement:  0.28 to <0.35 -0.236 -0.266 0.071 -3.318 

 >0.35 -0.491 -0.549 0.081 -6.073 

Max. dive depth:  3.5 m -0.231 -0.213 0.092 -2.515 

 3.5 to <5 m -0.412 -0.427 0.089 -4.625 

 >5 m -0.342 -0.364 0.131 -2.622 

Ascent time:  15 to <25 s -0.250 -0.254 0.107 -2.324 

 25 to <44 s -0.437 -0.452 0.142 -3.077 

 >44 s -0.047 -0.047 0.194 -0.240 
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Ascent rate:  0.06 to <0.16 m/s 0.643 0.733 0.145 4.425 

 0.16 to <0.27 m/s 1.606 1.667 0.196 8.184 

 >0.27 m/s 2.735 2.777 0.228 11.980 

Asymmetry:  1 -0.152 -0.173 0.102 -1.487 

 >1 -0.204 -0.164 0.142 -1.437 

Ascent rate/descent rate:  0.62 to <1 -0.012 -0.012 0.103 -0.113 

 1 to <2 -0.051 -0.050 0.129 -0.394 

  >2 0.106 0.110 0.17 0.606 

B) Seafloor dives over areas where 
seagrass is present and absent Coefficients Std. 

coefficients 
Std. 
Error t value 

(Intercept) -0.767 0.000 1.027 -0.747 

Descent time:  10 to <16 s -0.386 -0.385 0.391 -0.988 

 16 to <28 s -0.468 -0.454 0.567 -0.825 

 >28 s -0.806 -0.796 0.741 -1.087 

Descent rate:  0.1 to <0.2 m/s 0.207 0.207 0.442 0.469 

 0.2 to <0.3 m/s 0.004 0.004 0.628 0.006 

 >0.3 m/s 0.508 0.505 0.782 0.649 

Bottom time:  30 to <70 s -0.153 -0.154 0.266 -0.577 

 70 to <95 s 0.316 0.298 0.310 1.018 

 >95 s 0.010 0.010 0.291 0.035 

Max. depth:  3.5 m 0.158 0.151 0.280 0.563 

 4 to 4.5 m -0.281 -0.230 0.313 -0.897 

 5 m -0.005 -0.003 0.495 -0.010 

Ascent time:  8 to <11 s 0.870 0.806 0.413 2.108 

 11 to <18 s 0.736 0.708 0.535 1.375 

 >18 s 0.739 0.733 0.745 0.993 

Ascent rate:  0.2 to <0.3 m/s 0.471 0.448 0.440 1.071 

 0.3 to <0.4 m/s 1.075 0.977 0.587 1.831 

 >0.4 m/s 0.564 0.583 0.679 0.831 

Asymmetry:  1 0.495 0.470 0.410 1.205 

 >1 0.581 0.465 0.507 1.148 

Ascent rate/descent rate:  0.9 to <1.4 -0.056 -0.055 0.317 -0.178 

 1.4 to <2.6 0.423 0.419 0.367 1.154 

 >2.6 0.703 0.677 0.538 1.306 
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4.3.3 Dive characteristics   

Dives that had a low likelihood of accessing the seafloor (mid-water dives), which are 

found in the left of solid line in Figure 4.2C, had shorter average bottom times (59.75 ± 

1.26 s) and larger vertical displacements (0.35 ± 0.002) than dives that had a likelihood 

of accessing the seafloor both over seagrass (bottom time = 69.91 ± 2.51 s; vertical 

displacement = 0.30 ± 0.005; Fig. 4.3) or in areas without seagrass (bottom time = 

64.86 ± 4.16 s; vertical displacement = 0.33 ± 0.01). These mid-water dives also had 

slower ascent rates (0.10 ± 0.001 m/s) than the other two dive types (seagrass: x̄  = 

0.36 ± 0.01 m/s; no seagrass:  x̄ = 0.25 ± 0.10 m/s).  

The seafloor dives that had high likelihoods of accessing the seafloor in locations 

where seagrass occurs (the right of dotted lines in Figure 4.2D) were characterised by 

short descent (23.14 ± 1.44 s) and ascent times (11.07 ± 0.48 s) as well as relatively fast 

descent (0.24 ± 0.01 m/s) and ascent rates (0.36 ± 0.01 m/s). These dives had an 

asymmetry of 1 (1.00 ± 0.01). In contrast, seafloor dives that had low likelihood of 

having seagrass on the seafloor (the left of solid lines in Figure 4.2D) had longer 

descent and ascent times (descent time = 29.13 ± 1.63 s; ascent time = 27.58 ± 1.94 s) 

and slower decent and ascent rates (descent rate = 0.15 ± 0.01 m/s; ascent rate = 0.25 

± 0.03 m/s; asymmetry = 0.94 ± 0.02). Dive profiles of each dive group are illustrated in 

Figure 4.3; their summary statistics are in Appendix 4.3. 
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Figure 4.3 Examples of A) mid-water and seafloor dives in locations where 

seagrass is B) present and C) absent. The descent and ascent phases are 

represented by closed dots, and the bottom phase by open dots.  
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4.4 Discussion 

4.4.1 Dive classification 

Studying behaviour of shallow-diving animals such as dugongs has the potential to 

reveal important insights into their feeding ecology. However, the classification of their 

dive parameters is extremely challenging because they feed on aquatic plants 

predominantly found in shallow waters (Marsh et al. 2011b) and the majority of their 

dives are shallow. Thus reliable delineation of dive phases are extremely difficult, 

especially using software developed for deeper diving animals.  

I used logistic regression models to associate dive attributes with (a) the probability of 

a dive accessing or not accessing the seafloor and (b) the probability that a dive 

accessing the seafloor in locations where seagrass is present or absent. Although my 

analysis used relatively simple two-dimensional data as opposed to more detailed 

movement information (e.g., information that might be provided by 3D sensors or 

accelerometers), dive attributes that led to high likelihoods of attaining these criteria 

allowed some inferences about dugong diving behaviour. This inference was made 

possible by linking animal tracking data with fine-scale environmental information.  

I did not attempt to assign behavioural type to each of the three dive groups. As 

Section 4.2.7 states, it is possible for multiple behaviours to occur over seagrass 

meadows. Although dugongs primarily forage seagrass, they also consume animal 

matters in areas outside of seagrass meadows. The overlap of dive shapes in different 

locations also confirmed the difficulty of extrapolating behaviour from the data I 

examined.     

Another key attribute of my modelling approach was the use of dives that were 

identified using three quantitatively determined thresholds of time, ZOC (zero-offset 

correction), and maximum dive depth (refer details in Chapter 3). This process 

maximised the correct identification of dives while minimising errors associated with 

depth records resulting from resolution of the TDR, wave action, and orientation of the 

animal’s body.  
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Sub-sampling of dives ensured reliable association with spatially and temporally 

heterogeneous environmental attributes (e.g., Phinn et al. 2008; Knudby and Nordlund 

2011). This process also reduced the potential for autocorrelation effects. However, 

the subset of dives (instead of the whole dataset) that were made close to the time of 

GPS/QFP uplinks represented only 4% of all dives recorded for these dugongs.  

The logistic regression models predicted the likelihood of accessing the seafloor 

ranging between 0.05 and 0.89 for different categorical combinations of dive 

parameters (Fig 4.2). Differentiation between a seafloor dive in environments where 

seagrass is present and absent was less successful with likelihoods ranging from 0.32 

to 0.93. Nonetheless, dive characteristics such as descent and ascent rates clearly 

differed between these dive groups. 

These dives used to produce the logistic regression models could be considered as a 

training set (e.g., Schreer and Testa 1996). Independent data sets would be required to 

determine whether these models have sufficient predictive power for different 

environments or times of year. Increase in sample size in terms of duration and 

animals would also improve the model performance.  

4.4.2 Dive characteristics 

The bottom times of seafloor dives in areas where seagrass is present (x̄  = 69.91 ± 2.51 

s) and absent (  x̄ = 64.86 ± 4.16 s) seagrass were both significantly longer than that of 

the mid-water dives (x̄  = 59.75 ± 1.26 s). The long bottom duration was probably 

because the seafloor provides the dugong with the environment for two important 

functions, feeding and resting. Dugongs are benthic feeders, primarily feeding on 

seagrass (Heinsohn et al. 1977; Marsh et al. 1982; Preen 1992; Masini et al. 2001; 

André et al. 2005; De Iongh et al. 2007) but also algae (Anderson 1989) and benthic 

invertebrates such as ascidians (Preen 1995a), thin-shelled burrowing mussels, and 

possibly sea pens (Anderson 1989). Their highly deflected rostrum and mandibular 

symphysis (~70°) make dugongs obligatory bottom-feeders (Domning 1978a), whereas 

the lesser rostral deflection of the Amazonian manatees (25–41°) and West Indian 
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manatees (15–40°) allows manatees to feed throughout the water column (Domning 

1978b).  

Dugongs and manatees also use the substratum for resting. Using a blimp-cam, 

Hodgson (2004) observed dugongs resting on the seafloor as well as at the surface and 

in mid water, although seafloor resting was least frequent (approx. 25% of all resting 

times). This percentage may be biased due to how the resting behaviour was defined 

and Hodgson’s (2004) observations that were mainly over shallow seagrass beds in 

daylight when animals are mostly feeding. Anderson (1982) also observed dugongs 

resting just below the water surface but was unable to observe underwater behaviours 

due to high turbidity at his study site. In contrast, the West Indian manatees may be 

predominantly bottom-resters. Hartman (1979) observed Florida manatees resting 

over limestone shelves, oyster bars, and seagrass and considered surface resting to be 

largely a transitory behaviour between surfacing and diving. Antillean manatees rest in 

depressions on the substratum called “manatee resting holes”, favouring quiet 

sheltered locations (Bacchus et al. 2009). 

The longer bottom time found in seafloor dives in areas where seagrass is present may 

be because dugongs are maximising their feeding time. These dives had significantly 

shorter and faster descent and ascent times and rates than the seafloor dives in 

environments where seagrass was absent. Bottom time as a percentage of dive 

duration was highest in seafloor dives over seagrass (0.67), followed by seafloor dives 

in environments without seagrass (0.53), and mid-water dives (0.40). This behavioural 

tactic aligns with the optimum diving theory of Kramer (1988), which states that diving 

is a cost to air breathing vertebrates thus diving animals maximise the time spent at 

depths where the resource return (e.g., food, predator avoidance, or mating 

opportunity) is the greatest.   

To my surprise, mid-water dives (x̄  = 149.01 ± 1.76 s) had longer average durations 

than seafloor dives (  x̄ : seagrass = 104.11 ± 2.91 s; no seagrass = 121.57 ± 4.94 s). 

Nonetheless, the bottom phase of mid-water dives was significantly shorter than for 

seafloor dives and the descent and ascent rates were slower; ascent rates were much 

slower. Taken together, these results suggest that dugongs may spend less energy (or 
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oxygen) per second for these dives to extend submergence time. The energy 

conservation tactics require additional information on travel speed or change in body 

angle. 

The smaller vertical displacement observed during the bottom phase of seafloor dives 

irrespective of the presence of seagrass compared to the mid-water dives is consistent 

with independent behavioural and physical observations. Dugongs frequently feed on 

seagrass with their bodies horizontal to the substratum by slowly moving forward 

supported by their forelimbs. Marsh et al. (1978) observed calluses on the anterior 

ventral part of the forelimbs in all dugong carcasses examined (number not specified) 

and hypothesised that the calluses were related to feeding. Dugongs typically employ 

two feeding modes: excavating and cropping (sensu Wirsing et al. 2007a): excavating 

refers to dugongs furrowing the sediment to consume both above- and below-ground 

seagrass; cropping refers to animals eating above-ground plant parts only. The two 

feeding modes probably produce similar horizontal body movements and dive profiles 

with minimum tail movements. Feeding dugongs initiate an ascent to the surface by 

pushing off the seafloor with their flippers rather than an active thrust with their tails 

(Marsh et al. 2011b). Hartman (1979) also observed Florida manatees using flippers to 

walk on the substratum barely touching their bodies on the substratum and pushing 

their bodies off the seafloor with their forelimbs after resting without using their tail.  

Vertical displacement during the bottom phase of mid-water dives (x̄  = 0.35 ± 0.002) 

was larger than in seafloor dives in the absence of seagrass (  x̄ = 0.33 ± 0.01)) and in 

seafloor dives in seagrass communities (x̄  = 0.30 ± 0.005). This result was probably due 

to dugongs using their tails in active propulsion during mid-water dives (TDRs attached 

near the tailstock), and also because their location adjacent to the bottom during 

seafloor dives constrains vertical movement.  

4.4.3 Dive shapes 

Mid-water dives had several geometries (U- and V-shaped), probably reflecting a range 

of behaviours. In other aquatic species, V-shaped dives are often interpreted as 

exploratory or travelling dives (e.g., Williams and Kooyman 1985; Schreer and Testa 
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1996; Crocker et al. 1997). These dives often occur just before U-shaped dives 

(feeding) (Schreer and Testa 1996). The function of skewed dives (a variant of V-

shaped dives) has been attributed to resting, gliding, or food digestion (e.g., Hindell et 

al. 1991; Crocker et al. 1994).  

The profiles of seafloor dives in locations where seagrass is present were mainly 

Square shaped with some U-shaped dives, whereas seafloor dives in environments 

where seagrass is absent were mainly U-shaped but had some Square profiles. U-

shaped mid-water dives were less common but were also observed (Fig. 4.3). Chilvers 

et al. (2004) had speculated that both Square- and U-shaped dives from satellite 

tracked dugongs could represent both feeding and resting, and also described an 

“Erratic” dive type, which was not observed in my study. Square or U-shaped dives of 

several marine mammals have been interpreted as foraging dives (e.g., Le Boeuf et al. 

1988; Hindell et al. 1991; Bengtson and Stewart 1992). This interpretation is supported 

by diel differences in diving patterns, which are believed to reflect vertical movement 

of their prey. Wiggles (vertical displacement) in the bottom phase of these dives have 

been interpreted as animals locating and ingesting preys within aggregated food 

patches (e.g., Scheer and Testa 1996; Lesage et al. 1999; Baechler et al. 2002). The 

functions of Square and U-shaped dives are however not limited to foraging and 

resting. Even though Square dives (Type 1) in green and the loggerhead turtles are 

highly associated with benthic resting and foraging (Hochscheid et al. 1999), video 

cameras attached to the turtles revealed that turtles also performed travelling during 

square dives (Seminoff et al. 2006; Thomson et al. 2011).  

4.4.4 Dive statistics 

Most dugong dives were relatively shallow with a mean maximum dive depth of 4.6 ± 

0.04 m, even in the >3 m subset of data. The result was similar to that (4.8 ± 0.4 m) 

reported by Chilvers et al. (2004) who restricted their analysis to dives with maximum 

dive depth of >1.5 m. The maximum dive depth observed in this study was 31.5 m, 

slightly shallower than the value (36.5 m) presented in Sheppard et al. (2006) but 

deeper than the maximum (20.5 m) reported by Chilvers et al. (2004). All four dugongs 

I studied made dives exceeding 20 m deep, which is more than twice the reported 



Chapter 4 – Inferring diving ecology 
 

76 

maximum dive depth of manatees (9 m; Reynolds 1981). Edwards et al. (2007) found 

that Florida manatees fitted with TDRs spent 19% of time in water <1 m deep in the 

winter aggregation site near power plant discharges, where a cow and a calf pair spent 

81.8% of time.  Similarly the West Indian manatees (Trichechus manatus manatus) 

tracked with GPS transmitters in Mexico were in water <6 m deep and spent a large 

proportion of time (51.6%) in water <2 m deep (Castelblanco-Martínez et al. 2014).   

The mean dive duration from my study was 2.5 ± 0.03 min, which was again similar to 

that reported by Chilvers et al. (2004) (x̄  = 2.7 ± 0.17 min). Other studies based on 

visual observations of dugongs in shallow waters (<6 m) have reported variable mean 

dive durations, ranging from 0.9 min (Anderson 1982), 1.2 min (Anderson and Birtles 

1978), 1.3 min (Hodgson 2004) to 6 min (Whiting 2002). Apart from Chilvers’ and 

Hodgson’s estimates, which included various behaviours, all other submergence times 

are from foraging dugongs. Whiting’s (2002) submergence time is an outlier, 

considerably longer than other studies. The discrepancy may be due to Whiting’s 

dugongs feeding on algae over a rocky reef, whereas other studies observed dugongs 

feeding on seagrass over sandy substratum. As algae are not the major food for 

dugongs (Marsh et al. 1982; Preen 1992; De Iongh et al. 2007), these dugongs might 

have also been engaged more in other activity such as resting.  

I did not estimate maximum dive duration, as visual inspection of the longest dives 

(few exceeded 10 min) revealed some of these dives consisted of >1 dives. The result 

highlights the need to establish a maximum time threshold, as well as the minimum 

threshold (16 s), that was used for dive identification in Chapter 3.  

The longest recorded submergence times for dugongs are 8.4 min from a captive 

dugong (Kenny 1967) and 11 min (658 s) for wild dugongs observed from a bridge 

(Whiting 2002) and 12.4 min based on dive records collected from TDRs (Chilvers et al. 

2014). All of these times are much shorter than the maximum dive duration of 24 min 

recorded for wild Florida manatees (Reynolds 1981a). Gallivan et al. (1986) estimated 

that the aerobic dive limit of Amazonian manatees was 19 min (small animal) to 22 

(large animal) min based on 1) oxygen concentration in the lungs of the two 

Amazonian manatees, 2) their lung volume, and 3) the volume of gas exchanged 
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through expiration and inspiration from another Amazonian manatee (Gallivan and 

Best 1980), 4) blood volume of Florida manatees (Scholander and Irving 1941), and 5) 

oxygen affinity of Florida manatee blood (White et al. 1976). Gallivan et al. (1986) 

considered that this approach probably underestimate the aerobic dive limit, as they 

did not account for oxygen stored in the tissue. Similar physiological studies do not 

exist for dugongs. Nonetheless, Gallivan et al. (1986)’s calculations suggest that the 

longest submergence times listed here for both wild dugongs and manatees should be 

within their aerobic dive limits.  

4.4.5 Deep benthic dives 

The maximum depth of seafloor dives over seagrass was 7 m in this study. This figure is 

probably truncated by the restriction of seagrass to relatively shallow waters of 

Moreton Bay and the depth limit of the seagrass model (<10 m; Roeflsema et al. 2009). 

In offshore waters of Moreton Bay, 40% of seafloor dives (44 dives) exceeded 10 m 

with a maximum of 25 m. These deep bottom dives in offshore waters are unlikely to 

be feeding dives, as there is little or no seagrass is found in that area (Stevens and 

Connolly 2005; Phinn et al. 2008). 

Deep benthic dives may assist dugongs to orient and navigate. Dugong MB 2 dived 

consecutively to the seafloor at depth of 10 m up to 25 m on 15 separate days, mostly 

along the 20 m isobath. This dugong rarely ventured into waters exceeding 30 m deep. 

Thus 20 m may have been the depth limit of her activity space (home range), and she 

might have used deep dives to orient herself. Dugong MB 1 and 3 dived to the seafloor 

of ca. 16 m at the mouth of South Passage, which connects the inshore and offshore 

waters of Moreton Bay. Again, these six dives may have been used for navigation. 

Although they were all recorded on different days or time of day, the associated 

satellite fixes were within 3 to 200 m. The two dugongs were travelling from offshore 

waters into inshore waters on four occasions; in the other two occasions the dugongs 

were heading to inshore but when they reached the mouth of South Passage, a narrow 

passage between Moreton Island and North Stradbroke Islands, they turned offshore 

again. 
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Sheppard et al. (2006) speculated that the 5-min deep consecutive dives (to >21 m) 

that they recorded from a satellite tracked dugong assisted the dugong to navigate 

during a long distance travel (290 km) from Burrum Heads to Keppel Island, 

Queensland (Australia). It is unknown whether this dugong was diving to the seafloor, 

but the flat bottom profiles suggest that it was. The authors speculated that dugongs 

use a combination of visual and tactile modalities for navigation. Sirenians have 

sensitive hairs distributed all over their body and their hairs function as a highly 

developed sensory organ (Kamiya and Yamasaki 1981; Reep et al. 1998; Marshall et al. 

2003).   

Sheppard et al. (2006) also suggested that deep seafloor diving in dugongs may 

function as an anti-predator tactic (Sheppard et al. 2006). In Shark Bay, Western 

Australia, Wirsing et al. (2007a) described dugongs switching feeding modes between 

excavating and cropping in response to the density of tiger sharks. In warm months 

(February to May) when shark abundance was highest, dugongs limited the time spent 

foraging using excavation. This feeding mode generates sediment plumes which may 

reduce the dugong’s capacity for surveillance. Whether the dugongs spent more time 

using cropping during these months was not mentioned. Wirsing et al. (2007a,b) 

stated, even though seagrass density was higher at the core of seagrass patches, 

dugongs in Shark Bay selected peripherals of seagrass meadows during the time of 

high shark density. Although the use of this microhabitat increased the likelihood of 

dugongs encountering predatory sharks, it facilitated dugongs escaping into deep 

waters if a shark attacked.   

Although a similar study of dugong and shark microhabitat use has not been 

conducted in eastern Australia, dugong predation risk from large sharks in Moreton 

Bay is likely to be much lower than in Shark Bay, as a result of the long term Shark 

Control Program for bather protection along the eastern Queensland coast (Dudley 

1997; Gribble et al. 1998). Nonetheless, dugong remains have been found in the 

stomach of tiger sharks in Shark Bay in Western Australia as well as waters off 

Townsville, eastern Australia (Simpfendorfer 1992; Heithaus 2001; Simpfendorfer et al. 

2001). It is unknown how much of these remains resulted from scavenging rather than 

active predation.  
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4.4.6 Future studies 

Software improvements 

More reliable recognition of dives from shallow-diving dugongs may require algorithms 

that differ from the functions descent.crit.q and ascent.crit.q available in diveMove. For 

instance, the software-identified descent phase of some dugong dives actually 

extended into the bottom phase (Fig. 4.5). Modification of software thresholds above 

did not change how the phases of these shallow dives were identified. The diveMove 

package may be more suited to animals such as seals and sea lions that make much 

deeper foraging dives (e.g., elephant seals, fur seals, gray whales).  

Analysis of bouts 

The dives that had a high probability of achieving particular criteria could be used as a 

starting point to identify bouts of different types to better understand animal 

behaviour, feeding frequency, activity patterns, and energetics. Bouts are a series of 

dives that have similar function (Boyd et al. 1994; Beck et al. 2003; Austin et al. 2006; 

Wilson et al. 2014). As food patches sought by carnivorous marine mammals occur in 

3-dimentional planes in varying distributions and densities (Mori 1998), these animals 

often perform bouts of dives (Le Boeuf et al. 2000). Bouts often vary with shape, 

duration, and maximum depth, and different bout types may represent different 

foraging tactics and behaviour (Boyd et al. 1994; Beck et al. 2003; Austin et al. 2006; 

Wilson et al. 2014).  

Bottom-feeders like gray whales and walrus (Nelson et al. 1987; Bornhold et al. 2005) 

also make consecutive feeding dives, leaving visible feeding trails on the seafloor. Both 

dugongs (Hodgson 2004) and Florida manatees (Hartman 1979) perform bouts when 

travelling or resting; manatees were observed to rest continuously for up to 2 to 6 h 

(Hartman 1979). Excavating dugongs leave feeding trails ca. 2 to 8 m long and 10 to 40 

cm wide (Anderson and Birtles 1978; Preen 1992). Each feeding trail has been 

interpreted as a record of feeding performed during a single dive.  

Use of additional sensors 
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Complementary data from additional sensing units rather than using stand-alone two-

dimensional dive data (Thomson et al. 2011) have the potential to expand 

understanding of dugong diving behaviour and may enable classification of dives using 

conventional multivariate classification approach. Such study is valuable for 

understanding dugongs in turbid water which precludes visual studies. Potentially 

useful devices for dugongs include accelerometers, 3-D motion sensors (Hochscheid et 

al. 1999), hydrophones (Tsutsumi et al. 2006; Hodgson 2007; Kukuchi et al. 2014), and 

(video) cameras. The first three devices are more suited to the turbid coastal habitats 

frequented by dugongs. This point is discussed in more detail in Section 7.3.1. 

4.4.7 Concluding remarks 

Animal behaviour tends to be highly heterogeneous because animals are responding to 

environmental conditions, habitat types, and food patches that also vary spatially and 

temporally. Thus linking fine-scale behavioural data with fine-scale habitat descriptions 

provided insights into dugong diving behaviours at single dive basis. The predictive 

models allowed me to draw insights into dugong diving behaviour. This approach may 

be applicable to other shallow diving aquatic vertebrates (e.g., manatees, dolphins, 

turtles, sharks), especially to benthic feeders such as walrus and gray whales, which 

also leave visible feeding furrows on substratum (Nelson et al. 1987; Bornhold et al. 

2005).    
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4.5 Chapter summary 

• Fine-scale wildlife tracking data (depth records and GPS data) were linked with fine-

scale habitat features to obtain insights into dugong diving behaviour in the context 

of their environment. 

• Data from four dugongs tagged in Moreton Bay 2011 using TDRs, GPS satellite 

transmitters, and relevant environmental attributes were used to develop logistic 

regression models to predict probability of performing 1) mid-water dives versus 

seafloor dives, and 2) seafloor dives in locations where seagrass is present or 

absent. 

• The mean maximum dive depth was 4.6 ± 0.04 m, and mean dive duration was 2.5 ± 

0.03 min. All four dugongs dived to >20 m; the deepest dive recorded was 31.5 m. 

These records were similar to earlier studies. 

• Mid-water dives were generally deeper than the two types of seafloor dives and 

had slower ascent rates and larger vertical displacement on the bottom phase 

indicating more activity. Dive profiles ranged from U- and V-shaped. 

• Seafloor dives in seagrass communities had shorter and faster descent and ascent 

times and rates, longer bottom time, and small vertical displacement during the 

bottom phase, and a flat bottom profile (Square shaped) than seafloor dives in 

environments without seagrass.  

• Seafloor dives in areas without seagrass had also similarly long bottom time and 

small vertical displacement during the bottom phase, but descent and ascent rates 

were slower than for dives in seagrass communities. The dives were predominantly 

U-shaped. 

• Dugongs may make deep benthic dives for orientation and navigation. 
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Chapter 5:  Improving population estimates by  

quantifying dugong diving and surfacing patterns3 
 

 

Diving animals are available for detection from above-water observers when environmental conditions are 

favourable and the animals are near the surface. The number of animals that are unavailable for detection 

needs to be estimated to obtain unbiased population estimates. The current availability detection 

probabilities used in dugong population estimation methodology allow for variation in environmental 

conditions but use the average time dugongs spend near the surface (constant availability correction). To 

improve availability detection probabilities, I examine GPS location and dive data from nine dugongs 

tracked in eastern Australia. In this chapter, I examine the effects of water depth, tidal conditions, and 

habitat types on dugong surfacing time and estimate availability detection probabilities. 

                                                        

3 A version of Chapter 5 has been published as Hagihara, R., R.E. Jones, A. Grech, J.M. Lanyon, J.K. Sheppard & 
H. Marsh. 2014. Improving population estimates by quantifying diving and surfacing patterns: A dugong 
example. Marine Mammal Science 30:348-366. 
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Chapter 5:  Improving population estimates by quantifying 

dugong diving and surfacing patterns 

5.1 Introduction 

Reliable population estimates are pivotal to the design of successful management and 

conservation actions for threatened marine wildlife (e.g., Anderson 2001). Abundance 

can be estimated using a variety of sampling techniques and from a range of platforms 

(e.g., aerial or boat-based), but some individuals of the target species are generally 

missed (Buckland et al. 2004), even when the population is closed and the survey 

methodology rigidly standardized. Population estimates are therefore often negatively 

biased (Buckland and Turnock 1992; Laake et al. 1997). 

Aquatic wildlife may be undetected when environmental conditions are unfavourable 

(e.g., turbid water, glare, glitter on the surface) and target species exhibit 

characteristics that diminish their probability of detection (e.g., inconspicuous colour, 

small body and pod size, diving behaviour; Anderson 2001, Edwards et al. 2007, 

Langtimm et al. 2011). Marsh and Sinclair (1989b) classified the causes of missed 

animals as availability bias and perception bias (not always mutually exclusive). 

Availability bias occurs when animals are unavailable for detection due to, for instance, 

high turbidity and rough sea states. Perception bias arises when observers are unable 

to detect all the individuals that are available, due to observer’s eye sight, search 

pattern, experience, and fatigue, etc. Both types of bias can vary over small temporal 

and spatial scales within a survey (Buckland et al. 2004) and need to be quantified to 

obtain unbiased population estimates.  

Diving and surfacing patterns have been used to account for animals that are not in 

the detection zone (water column near the surface in which animals are available for 

detection by above-water observers; Fig. 5.1) and to estimate an important 

component of availability bias. Diving data have been collected by VHF receivers (e.g., 

Schweder et al. 1991a, b), visual observations (e.g., Barlow et al. 1988;  Laake et al. 

1997; Slooten et al. 2004), or TDRs (e.g., Pollock et al. 2006; Edwards et al. 2007; 
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Fonnesbeck et al. 2009). These availability bias estimates are however generally based 

on average surfacing durations (e.g., Barlow et al. 1988; Laake et al. 1997; Skaug et al. 

2004).  

 

 

Figure 5.1 Diagram of detection zone in which dugongs are available  

for detection from above-water observers during population surveys. 

 
The assumption that these averages are representative across all survey conditions is 

likely to be violated as surfacing times or availability for detection of aquatic wildlife 

are found to vary with habitat type (Florida manatees: Langtimm et al. 2011), season 

(minke whales Balaenoptera acutorostrata: Stockin et al. 2001), season and dive depth 

(green turtles, and loggerhead turtles Caretta caretta: Thomson et al. 2012), and 

location (leatherback turtles: James et al. 2006; basking sharks Cetorhinus maximus: 

Southall et al. 2005).  
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The standard aerial survey methodology for the dugong employs a variant of distance 

sampling technique and quantifies availability and perception bias separately (Marsh 

and Sinclair 1989b; Pollock et al. 2006). Perception bias is estimated using two pairs of 

observers and mark-recapture models. My focus in this chapter and Chapter 6 is on 

availability bias, which Pollock et al. (2006) estimate using two sets of information:  

1. Survey-specific information on turbidity and sea state to account for the depth of 

the detection zone, which varies within and among survey areas; and  

2. Estimates of the average time dugongs spend in those variable depths of detection 

zones.  

Pollock et al. (2006) quantified detection zones by using dugong replicas deployed in a 

fashion similar to secchi disks (Preisendorfer 1986). The replicas were fitted with TDRs, 

submerged in various levels of turbidity and sea state, and raised from the ocean floor 

until visible to aerial observers. Pollock et al. (2006) determined the depth of detection 

zones (Fig. 5.1) under various combinations of environmental conditions. The average 

times dugongs spend in these detection zones were estimated using data collected 

from TDRs fitted to wild dugongs. The probabilities of dugongs being in the detection 

zones were then estimated, allowing availability of a dugong under specific 

environmental conditions to be estimated.  

The methodology developed by Pollock et al. (2006) assumes that the proportion of 

time a dugong spends within a specified detection zone is unaffected by 

environmental variables. This simplistic assumption was unavoidable due to 

insufficient number of GPS location data obtained from earlier generations of GPS 

transmitters, and therefore insufficient to characterise the variability in surfacing 

patterns at fine spatial scale.  

I used data collected from TDRs and GPS transmitters fitted to nine dugongs and 

examined the effects of water depth, tidal conditions, and habitat types on the 

availability for detection, specifically, on the proportion of time that dugongs spent in 

detection zones using generalized linear mixed models (GLMMs).   
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I then estimated and compared the corrected number of dugongs using: 1) the depth-

specific availability detection probabilities and 2) constant availability detection 

probabilities across water depth from Pollock et al. (2006). This approach enabled me 

to examine the effects of environmental conditions on dugongs’ surfacing patterns at a 

fine scale and determine whether heterogeneous availability estimates improve 

dugong population estimates.  As this chapter provides exploratory assessment, I have 

examined the proportions of time dugongs spent at the surface and estimated 

availability bias for only two detection zones (0–1.5 m for turbid water and Beaufort 

sea state 3 and 0–2.5 m for clear water and sea state <2). In Chapter 6, I estimate 

availability detection probabilities for all classes of environmental conditions. 

5.2 Materials and methods 

5.2.1 Study animals, sites, and tagging units  

In this chapter, I used data collected from five dugongs tracked in Hervey Bay 

2003/2004 and four dugongs tracked in Moreton Bay 2011. General descriptions of 

these two sites are detailed in Section 2.3. The five dugongs in Hervey Bay were each 

fitted with a GPS/Argos systems unit (Telonics Inc., Mesa, Arizona, USA) from July to 

August in 2003/2004. The four dugongs in Moreton Bay, were each fitted with GEN4 

GPS/Argos systems unit (Telonics Inc., Mesa, Arizona, USA) from May to August in 

2011. Further details on animals and specification of GPS units and TDRs are given in 

Table 2.1. 

5.2.2 Data preparation 

As described in Section 2.4, the tracking data were pre-processed using custom 

software, which identified the level of the water surface (zero-offset) and removed 

dugong spikes – biologically implausible rapid changes in depth (Fig. 2.3, Hagihara et 

al. 2011). Depth records subsampled around GPS/QFP fixes were used in the following 

section to ensure reasonably accurate association of environmental condition 

experienced by tagged dugongs at the time of each location fix (Fig. 2.3C).  
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Bathymetric models and tidal records (Maritime Safety Queensland, Department of 

Transport and Main Roads) were used to estimate the water depth at the time and 

geographic location for each fix. The bathymetric models of 100 m spatial resolution 

were generated by Sheppard (2008) in Hervey Bay and by Beaman (2010) in Moreton 

Bay. The depth at the location of each fix was identified by importing the bathymetric 

models and location fixes into ArcGIS 9.3.1. Tidal heights (LAT) were added to the 

depth on the bathymetric charts (MSL) to calculate the water depth experienced by 

the dugong at the time of each fix. I assumed that estimated water depths remained 

constant for the 10 min around each fix (Fig. 2.3).  

Previous experiments using dugong replicas found that the availability of dugongs 

varies with levels of turbidity and sea state (Pollock et al. 2006). Following Pollock et al. 

(2006), I examine the proportion of time dugongs spent in two detection zones: 0–1.5 

m of the surface for turbid water and Beaufort sea state 3 (rougher conditions with 

very few whitecaps); and 0–2.5 m of the surface for clear water and sea state <2 (calm 

conditions with no whitecaps).  

I assigned “1” when a depth measurement was recorded within each of the detection 

zones and “0” when a depth measurement was recorded outside of the detection zone 

(Fig. 5.1). The proportion of time dugongs spent in each detection zone was calculated 

by the sum of these numbers divided by the number of depth records. Dive records 

were excluded when dive depths exceeded the depth of water as occasionally 

happened in shallow waters (e.g., <2 m), probably because of discrepancies between 

the bathymetric models and the GPS/QFP location fixes.  

5.2.3 Representativeness of subsets 

The subsampled data I examined might be biased if some habitats (e.g., shallow) or 

behaviours (e.g., resting) had higher fix rates than others (e.g., deep water or travelling 

fast). Short surfacing times (>30 s for a GPS fix and ~5 s for a QFP fix) fail to generate a 

location fix, because the GPS radio frequency is attenuated by salt water and the GPS 

units turn off to save battery life whenever the saltwater sensor on the unit is 
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submerged, such as when the dugong is diving (>3 m) or swimming rapidly, causing the 

unit to be dragged underwater (Marsh and Rathbun 1990).  

I compared the distributions of the dive depths from the subsets associated with 

location fixes and those not associated with fixes using contingency tests to determine 

how representative the fix-associated subsets of dive data were of the entire dive data 

set. The subsets of dive measurements were collected around the time GPS/QFP fixes. 

A location was fixed every 30 min or 1 h at most. In contrast, the TDRs continued to 

collect dive measurements every 1 or 2 s over the deployment periods.  

I used all available dive data associated with fixes. For the non-fix associated depth 

data, four sets of one-day dive data were randomly selected from each of the nine 

dugongs (four × one-day dive data × nine animals). Statistical tests were performed 

separately for Moreton and Hervey Bays. Depth records were categorized into five 

bins: 0 to <5 m, 5 to <10 m, 10 to <15 m, 15 to <20 m, and >20 m. For the Hervey Bay 

data, the last two categories were combined due to small sample sizes. This was 

because in Hervey Bay, previous GPS transmitters deployed to dugongs provided GPS 

fixes only (no QFP fixes), therefore fewer location fixes were obtained from these units 

in deeper waters where surfacing opportunities of GPS units are less compared to 

shallow waters, or at day time when the tagged dugongs were presumed to be active, 

causing the transmitter to be dragged underwater (refer to Section 2.2). 

5.2.4 Estimating availability bias  

I examined the effects of the following three categorical variables on the proportions 

of time the tracked dugongs spent in the two detection zones 0–1.5 m and 0–2.5 m:  

1. Water depth – 2 to <5 m, 5 to <10 m, 10 to <15 m, 15 to <20 m, 20 to <25 m, and 

>25 m; 

2. Tidal conditions – flow and ebb tides; and 

3. Habitat types – inshore and offshore waters. 

For analysis of the detection zone 0–1.5 m, I excluded data from water depth <1.5 m 

because a dugong in this depth range is fully available for detection by definition even 
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if it was on the seafloor (Pollock et al. 2006). The next shallowest water depth I 

examined was 2 m because the TDR resolution was 0.5 m. The shallowest category for 

the detection zone 0–2.5 m was 3 to <5 m for the same reason.  

In water >5 m deep, water depths were binned with intervals of 5 m up to 25 m. The 5 

m interval ensured that all animals were sufficiently represented in each bin. For the 

offshore waters, 35 m was my data limit with all animals represented, however the 

limit from the inshore dataset was 30 m. The statistical model required all water depth 

categories to be represented in each combination of tide and habitat categories. I 

therefore used >25 m as the final water depth category. Water depth was treated as a 

categorical variable rather than a continuous variable for three reasons: 1) even 

though the bathymetry model I used provided the best spatial accuracy (± 100 m) 

available, this spatial resolution was not fine enough to using it as a continuous 

variable; 2) water depth was estimated from the bathymetric model and tidal 

information and subject to error; and at lesser significance than (1 and 2), 3) water 

depth and the proportion of time dugongs spent at the surface showed a non-linear 

relationship, which is unsuited to linear models. Due to problems (1) and (2), I have 

used wider depth category (e.g., 5 to <25 m and >25 m) in Chapter 6. Alternative 

approach was to use General Additive Model (GAM). However, GAM applies 

smoothers to data and does not provide equations, thus unsuitable for estimating 

availability detection probabilities used in dugong aerial survey estimation 

methodology. 

Flow tides indicated tidal condition before high tides and ebb tides after high tides. 

The Moreton Bay dugongs made frequent excursions between two very different 

habitats: inshore waters where seagrass meadows extend and deeper offshore waters, 

east of Moreton and North Stradbroke Islands (Fig. 2.2; Phinn et al. 2008; Lyons et al. 

2012). I expected diving patterns in these habitats to be different, because dugongs 

over seagrass meadows would primarily be feeding, and feeding individuals may spend 

more time submerged to excavate or crop seagrasses than when offshore where no or 

little seagrass is found, therefore not feeding (Marsh et al. 2011b). I therefore 

compared the dugong’s availability for detection in each of these habitat types for the 

Moreton Bay dugongs only. This approach was subsequently justified by my research 
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on dugong diving behaviour described in Chapter 4. Location (bays) was not used as an 

additional predictor variable. Although the number of dugongs was similar in both bays 

(5 dugongs in Hervey Bay and 4 dugongs in Moreton Bay), the Hervey Bay tracking 

study provided a smaller amount of data than the Moreton Bay tracking study. This is 

because the Hervey Bay tracking study used previous model of GPS transmitters and 

did not provide QFP fixes. In contrast, the Moreton Bay study, which used later 

technology, provided both GPS and QFP fixes. The increase in location fixes also 

increased the amount of depth records that could be used in this chapter. The later 

transmitters used in Moreton Bay and Shoalwater Bay dugong tracking also enabled 

me to use individual dugong as random factor in Chapter 6.       

Logistic regression via generalized linear mixed models (GLMMs) was employed, as the 

response variable was binary and this statistical method can accommodate random 

components from individual dugongs (Breslow and Clayton 1993). I used Gaussian 

Hermit Quadrature estimation with lme4 (ver. lme_4 0.999999-2, Bates et al. 2012). 

Model specification is found in Appendix 5.1. Akaike Information Criterion (AIC) and 

Chi-square tests were used to compare models. Diagnostic plots were used to check 

the performance of individual models.  

Dive data comprised a time-series of depth records separated by 1 or 2 s and were 

strongly autocorrelated. Visual inspection of dive profiles indicated that successive 

dives tended to be similar. To ensure independent samples, I treated 10 min as a 

sampling unit (the subsampled period around a GPS/QFP fix; Fig. 2.3). The 10 min 

interval ensured that at least one complete dive was included in a sample. Longer 

intervals were not appropriate because the location of the dugong could change and 

the estimated water depth needed to remain constant during a sampling unit.  

A saturated model was first examined using individual dugong as a random factor and 

water depth, tidal condition, and habitat types as categorical fixed factors. The model 

was reduced by removing the tidal variable because some water depth and tide 

combinations had few observations, and because no tidal effects were identified 

during exploratory data analysis.  
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I estimated the probabilities of dugongs being in the detection zones using GLMM 

linear predictor estimates. The 95% confidence intervals for the predicted values were 

also calculated based on fixed factors. Data manipulations and statistical analyses were 

executed using S Plus version 8.0 (TIBCO Software 2007) and R 2.15.1 (R Development 

Core Team).  

5.2.5 Case study: Estimating corrected number of dugongs 

Based on previous aerial survey data collected in Hervey Bay conducted in 2001, 2005, 

and 2011 (Lawler 2002; Marsh and Lawler 2006b; Sobtzick et al. 2012), I estimated 

corrected numbers of dugongs using: 1) depth-specific availability detection 

probabilities estimated in this chapter; and 2) constant availability detection 

probabilities across water depth from Pollock et al. (2006). The constant probabilities 

were 0.47 for the detection zone 0–1.5 m and 0.65 for the zone 0–2.5 m. The dugong 

sightings were classified according to water depth categories, <2 m (or <3 m), 2 to <5 

m (or 3 to <5 m), 5 to <10 m, 10 to <15 m, 15 to <20 m, 20 to <25 m, and >25 m. The 

number of dugongs was estimated as the number counted during a survey divided by 

the probability of dugongs being in one of the detection zones (e.g., 53 dugongs / 0.65 

≈ 82 animals). All surveys were conducted in November.  

5.2.6 Aerial survey methodology 

Aerial survey methodology for dugongs followed a variant of distance sampling 

technique. Two pairs of observers on either side of an aircraft surveyed a transect 200 

m wide on the water surface. The 200 m transect was delineated by fiberglass rods 

attached to artificial wing struts on the aircraft. Distance categories (50, 100, and 

150 m) within the strip were marked by colour bands on the artificial wing struts. 

When a group of dugongs was detected, an observer recorded a number of animals 

sighted, position (distance) of the animals indicated by the colour bands and other 

information such as environmental condition. Because dugongs surface cryptically only 

for 1-2 s (Anderson and Birtles 1978), a large amount of measurement error was found 

in the assignment of dugong sightings to distance classes within the transect strip 

(Pollock et al. 2006). However, Pollock et al. (2006) found there was no decline in 
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detection with distance across the 200 m survey strip. Detailed survey methodology is 

provided in Marsh and Sinclair (1989b) and Pollock et al. (2006). 

5.3 Results 

5.3.1 Representativeness of subsets 

For each of the four Hervey Bay dugongs which used the previous model of GPS 

transmitters, the range of maximum dive depths associated with location fixes was 

biased towards shallow areas (max. dive depth 2–7 m). Randomly selected data 

showed a wider range (max. dive depth 9–17 m). There was a significant difference 

between the distributions of the fix-associated and random subsets of dive depths (χ2 

= 11.20, df = 3, P = 0.01). In contrast, the distributions of fix-associated (8–19 m) and 

the random (10–15 m) maximum dive depths from Moreton Bay dugongs were not 

significantly different (χ2 = 0.27, df = 4, P = 0.99). I therefore performed the following 

statistical analyses on data from Moreton Bay dugongs only. Appendix 5.2 shows the 

raw proportions of time dugongs spent in the two detection zones for both the 

Moreton and Hervey Bay dugongs. 

5.3.2 Model selection 

Detection zone 0–1.5 m: the best model included the fixed factor of water depth only 

(Model 3, Table 5.1A). Although Models 1 and 2 did not differ significantly from Model 

3 (Model 1 and 3: χ2 = 11.19, df = 6, P = 0.08; Model 2 and 3: χ2 = 1.29, df = 1, P = 0.26), 

I chose the most parsimonious model (Model 3), which also had the smallest AIC value. 

Model 4, with the single factor of habitat had a significantly poorer fit (χ2 = 50, df = 4, P 

<0.0001). Once the fixed factors were determined, I examined the number of 

quadrature points for the Gaussian Hermit Quadrature approximation based on AIC 

values and Chi-square tests. I chose 100 quadrature points as the fit was significantly 

better than models with a smaller number of quadrature points (Table 5.1B). 

Detection zone 0–2.5 m: the fixed factors of water depth and habitat and the 

interaction of the two produced the best model (Model 1, Table 5.2A), which provided 

a significantly better fit than all other alternative models (Model 1 and 2: χ2 = 11.4, df = 
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5, P <0.05; Model 1 and 3: χ2 = 12.87, df = 6, P <0.05; Model 1 and 4: χ2 = 46.6, df = 10, 

P <0.0001). Again, 100 quadrature points gave the best fit (Table 5.2B). Model outputs 

from the two analyses are provided in Table 5.3. 

5.3.3 Estimating availability bias  

Detection zone 0–1.5 m: the availability detection probability was high (0.61) for water 

depths of 2 m to <5 m (Fig. 5.2A). The probability declined as water depth increased, 

reaching its minimum (0.29) in water 10 to <15 m deep and remained relatively low in 

water up to 25 m deep. In water depths >25 m, the dugongs spent almost as much 

time in the detection zone (0.57) as they did in water depths 2 to <5 m. Between water 

depths of 5 and 25 m, these probabilities were lower than the average probability of 

availability (0.47; dotted line in Fig. 5.2A) across water of all depths. 

Detection zone 0–2.5 m: when the detection zone was deeper, the availability 

detection probability was higher in most depth categories (Fig. 5.2B). Although habitat 

affected detection probabilities, the difference between inshore and offshore habitats 

was only substantial in the two shallowest depth categories (that is, water depths up 

to 10 m). In deeper water, the confidence intervals for the inshore habitat included the 

mean of the offshore habitat. The depth-specific probabilities were lower than the 

constant probability (0.67; dotted line in Fig. 5.2B) in water depths 3 to <5 m for 

offshore waters and between 5 and 15 m for both habitats. 
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Table 5.1 Comparison of models A) using various fixed factors and their associated indicator values for assessing the model fit and B) using different number 

of quadrature points used in the approximation and their associated indicator values. The response variable was the proportion of time dugongs spent in 

the detection zone 0–1.5 m. 

A) Model Fixed factors 
Random 

factor 
Variance (SE) of 
random effects 

AIC BIC LogLik deviance 

 
1 water depth, habitat, water depth × habitat  animal 0.48 (0.69) 115.0 153.1 -44.5 89.0 

 
2 water depth, habitat  animal 0.45 (0.67) 114.9 138.3 -49.5 98.9 

 
3^ water depth  animal 0.41 (0.64) 114.2 134.7 -50.1 100.2 

 
4* habitat  animal 0.26 (0.51) 157.3 166.1 -75.6 151.3 

B) Model Fixed factors 
Random 

factor 
nAGQ AIC BIC LogLik deviance 

 
1* water depth   animal 21 114.2 134.7 -50.11 100.2 

 
2* water depth animal 5 114.2 134.7 -50.11 100.2 

 
3* water depth animal 10 114.2 134.7 -50.11 100.2 

 
4^ water depth animal 100 110.0 130.5 -48.0 96.0 

^models selected, *models significantly different from the model selected, 1integer >1 leads to Gaussian Hermit Quadrature approximation 
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Table 5.2 Comparison of models A) using various fixed factors and their associated indicator values for assessing the model fit and B) using different number 

of quadrature points used in the approximation and their associated indicator values. The response variable was the proportion of time dugongs spent in 

the detection zone 0–2.5 m. 

A) Model Fixed factors 
Random 

factor 
Variance (SE) of 
random effects 

AIC BIC LogLik deviance 

 

1^ water depth, habitat, water depth × habitat animal 0.18 (0.43) 90.8 128.5 -32.4 64.8 

2* water depth, habitat animal 0.14 (0.40) 92.2 115.4 -38.1 76.2 

3* water depth animal 0.12 (0.35) 91.7 111.9 -38.8 77.6 

4* Habitat animal 0.11 (0.34) 117.4 126.1 -55.71 111.4 

B) Model Fixed factors 
Random 

factor 
nAGQ AIC BIC LogLik deviance 

 
1* water depth, habitat, water depth × habitat animal 21 90.8 128.5 -32.4 64.8 

 
2* water depth, habitat, water depth × habitat animal 5 90.8 128.5 -32.4 64.8 

 
3* water depth, habitat, water depth × habitat animal 10 90.8 128.5 -32.4 64.8 

 
4^ water depth, habitat, water depth × habitat animal 100 86.6 124.3 -30.3 60.6 

^models selected, *models significantly different from the model selected, 1integer >1 leads to Gaussian Hermit Quadrature approximation 
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Table 5.3 Outputs of generalized linear mixed models (GLMMs) using Gaussian Hermite Quadrature estimation. Linear predictors (Estimate) are used to 

estimate probabilities of dugong being in the detection zones 0–1.5 m or 0–2.5 m. 

 Term Estimate Std Error z value Pr(>|z|) 

Detection zone 0–1.5 m Intercept 0.4447 0.3370 1.319  

water depth 5 to <10 m -1.2608 0.1959 -6.437 *** 

water depth 10 to <15 m -1.3312 0.1783 -7.465 *** 
water depth 15 to <20 m -1.0965 0.2028 -5.407 *** 

water depth 20 to <25 m -1.0907 0.2343 -4.656 *** 
water depth >25 m -0.1709 0.3258 -0.525  

Detection zone 0–2.5 m Intercept -0.7159 0.8780 -0.815  

water depth 5 to <10 m 1.3114 0.8733 1.502  

water depth 10 to <15 m 0.9858 0.8600 1.146  

water depth 15 to <20 m 1.3955 0.8680 1.608  
water depth 20 to <25 m 2.0610 0.9125 2.259 * 
water depth >25 m 2.7761 0.9636 2.881 ** 

habitat (inshore) 2.0142 0.8737 2.305 * 
water depth 5 to <10 m: habitat (inshore) -2.7738 0.9369 -2.961 ** 

water depth 10 to <15 m: habitat (inshore) -1.9153 1.1665 -1.642  

water depth 15 to <20 m: habitat (inshore) -1.9717 1.1319 -1.742 . 

water depth 20 to <25 m: habitat (inshore) -2.7353 1.0180 -2.687 ** 
water depth >25 m: habitat (inshore) 12.9231 3844.3640 0.003  

significance codes: <0.001 =***; 0.001-<0.01 =**; 0.01-<0.05 =*
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Figure 5.2 Estimated probabilities of dugongs being in the detection zones A) 0–

1.5 m and B) 0–2.5 m. The error bars represent 95% confidence intervals. The 

dotted lines show the constant probabilities from Pollock et al. (2006) for each of 

the combination of water turbidity and sea state (i.e., detection zone).   

 

5.3.4 Case study: Estimating corrected number of dugongs 

Most dugongs were sighted in water depths of 2 to <15 m in the 2001 (80%), 2005 

(90%), and 2011 (70%) aerial surveys of Hervey Bay (details in Sobtzick et al. 2012). For 

the detection zone 0–2.5 m, similarly large numbers of dugongs were sighted from 

water 3 to <15 m: 58% in 2001, 70% in 2005, and 57% in 2011.  

In most water depth ranges except 2 to <5 m (or 3 to <5 m) and >25 m, depth-specific 

availability corrections resulted in higher dugong numbers being estimated than the 

constant corrections (Fig. 5.3). The differences in the estimated numbers based on the 

depth-specific and constant corrections were larger when the detection zone was 0–

1.5 m than 0–2.5 m. The total numbers of dugongs estimated across the water depth 

range were also higher when finer corrections at each water depth bin were applied 

than those using constant corrections. 
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Figure 5.3 Number of dugongs estimated using constant detection probabilities 

for A) turbid water and sea state 3 (0–1.5 m) and B) clear water and sea state <2 

(0–2.5 m) from Pollock et al. (2006) and depth-specific probabilities obtained in 

this study. The estimated numbers were extrapolated from uncorrected dugong 

counts collected during aerial surveys conducted in 2001, 2005, and 2011 in 

Hervey Bay (Lawler 2002; Marsh and Lawler 2006; Sobtzick et al. 2012). 
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5.4 Discussion 

5.4.1 Availability bias 

The availability of dugongs for detection by aerial observers varied with water depth. 

Where the detection zone was narrow (0–1.5 m), the availability detection probability 

reached 50% only in very shallow water (2 to <5 m) and very deep water (>25 m). 

When the detection zone was wider (0–2.5 m), the availability detection probability 

was larger but showed some evidence of variation between habitats. The habitat 

effect was largely confined to shallow water depths. The dugongs were expected to be 

less available for detection over inshore waters than in offshore waters because they 

would be spending more time on the seafloor feeding on seagrass in inshore waters 

(see Chapter 4). This pattern was observed in water 5–10 m deep, but for water depths 

below 5 m the pattern was reversed, with very low estimated availability in the 

offshore habitat and high availability over inshore waters. However, there were 

relatively few data points from this shallowest water depth category in offshore 

waters; more data are needed to confirm or refute this puzzling result. Where water 

was >10 m deep, the availability of dugongs was similar regardless of habitat type.  

The number of dugongs estimated using depth-specific availability detection 

probabilities was lower in waters 2 to <5 m and 3 to <5 m than those estimated using 

constant corrections because in shallow waters, depth-specific availability estimates 

were positively biased compared to the constant estimates. In contrast, in waters 5–25 

m deep, the estimated number of dugongs was higher using depth-specific rather than 

constant availability estimates, because the former availability estimates were smaller 

than the latter ones. In water <2 m and <3 m deep, there was no difference in the 

estimated numbers of dugongs as all dugongs in these water depths were assumed to 

be available for detection, and no correction was applied to these sightings.  

All these estimates are underestimates; not all combination of turbidity levels and sea 

states are incorporated in correcting each dugong count, and I did not account for 

perception bias and sampling fraction in the calculation. Abundance is re-estimated in 

Chapter 6. Nonetheless, the fact that a large proportion of dugongs were sighted in 
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water >5 m (46–58%), where the depth-specific availability bias were smaller than the 

constant availability in most depth categories, suggests that overall, the use of 

heterogeneous detection probabilities would have produced larger population 

estimates for the three surveys examined here. 

The scale of these effects on the final population estimates will depend on turbidity 

and sea state at each dugong sighting and survey location. Differences in the number 

of dugongs estimated using the depth-specific and constant probabilities were larger 

when the detection zone was 0–1.5 m. Thus if water in the survey area is turbid and 

Beaufort sea state 3 (occasional whitecaps), lower availability bias estimates will be 

used, leading to larger population estimates. If the water is less turbid and Beaufort 

sea state <2 (no whitecaps), population estimates will be less than under marginal 

survey conditions.  

The distribution of dugongs across the bathymetric range will also affect the final 

population estimates (refer Chapter 6). If a large proportion of dugongs is sighted in 

waters 5–25 m deep where depth-specific availability is low, the lower availability 

estimates will produce larger abundance estimates. The opposite situation will apply if 

many dugongs were sighted in shallow areas.  

The fluctuations in dugong population estimates observed in repeat surveys of the 

same area have been largely attributed to temporary migration into or out of the 

survey area (e.g., Marsh et al. 1997). However, the work presented here suggests that 

a more parsimonious reason for some of these differences in the population 

abundance estimates is inter-survey differences in the depth distribution of dugongs 

within a survey area. For example, the between-survey differences in the number of 

dugongs sighted in Hervey Bay (Lawler 2002; Marsh and Lawler 2006; Sobtzick et al. 

2012; see Fig. 5.3) can be plausibly explained by inter-survey differences in the dugong 

distribution within the survey region.  
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5.4.2 Comparison with previous studies 

Differences between my data and those collected in other studies make meaningful 

comparisons difficult, as I examined dugong diving patterns in relation to their fine-

scale geographic locations (and hence water depths). Interpretation of such data has 

not been described before in literature on dugongs. Nonetheless, across the depth 

range, the proportions of time dugongs spent in the detection zones found in my study 

were generally slightly lower than those presented in Chilvers et al. (2004). Based on 

dive data collected from dugongs in western, northern and northeastern Australia, 

these authors found that the dugongs spent 53% (SE = 3%) of their daily activities 

within 1.5 m of the surface. In my study, Moreton Bay dugongs spent 44% (SE = 4%) in 

this depth zone over inshore; 38% (SE = 2%) offshore.  

Several studies have report that tidal patterns regulate the horizontal movements of 

dugongs between inshore and offshore waters. For example, based on visual 

observations using aircraft and boats, Anderson and Birtles (1978) described dugongs 

moving to inshore feeding grounds during flooding tides and leaving these areas as the 

tide receded. No dugongs were found feeding in offshore shoal areas in high tide. 

Similarly, GPS satellite tracking show dugongs moved closer to the shore during high 

tides than during low tides (Sheppard et al. 2009).  All of these studies indicate that 

dugongs move horizontally with diel tidal fluctuations to exploit shallow intertidal 

seagrass pastures. 

However, I did not identify tidal effects on the surfacing times of dugongs. It is possible 

that such an effect may exist in very shallow areas or areas with pronounced tidal 

ranges. I did not examine shallow dives in water <1.5 m, because the availability of 

dugongs to aerial observers was assumed to be 1 by definition (Pollock et al. 2006). 

The tidal range in Moreton Bay is relatively small (<2 m) and water depth and tidal 

factors were confounded because I used tidal records to estimate the actual water 

depth at the time of satellite location fixes. My data suggest that tidal fluctuations 

have less effect on the vertical positions of dugongs in the water column than on their 

horizontal movements.  
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5.4.3 Future directions  

Results from this chapter are preliminary in terms of estimating availability bias for 

dugong population estimates from aerial surveys. I sampled only nine dugongs, and 

the time spent in the detection zones differed slightly among individuals. Chapter 6 

examines additional data collected in Moreton Bay (N = 9 dugongs) and Shoalwater 

Bay (N = 3 dugongs). Nonetheless, the consistency of the depth effects observed 

across habitat types indicates that in general, availability correction factors should vary 

with water depth. Algorithms need to be developed to include information on the 

dugong’s depth-specific surfacing patterns as well as the information on water 

turbidity and sea state that is presently collected.  

The generic application of the results described here to dugong population estimation 

required the development of a technique to incorporate the standard errors 

associated with the probability of a dugong being in the detection zone under various 

survey conditions into the standard error of the population estimates. This technique 

followed Pollock et al. (2006) and is described in Chapter 6. The spatial population 

models based on the aerial survey data that have been developed for systematic 

conservation planning (Grech and Marsh 2007; Grech et al. 2008; Grech et al. 2011) 

will also be improved by incorporating the depth-specific availabilities into the dugong 

density models. 

Additional data from a range of inshore and offshore habitats are also required for 

better estimates of dugong availability correction factors, even though the range of 

water depths examined here covered a large proportion of area surveyed during aerial 

surveys of the north-eastern Australian coast. For example, most of the areas surveyed 

in Moreton Bay (70%) and Hervey Bay (90%) are within the range of water depths I 

examined (Lawler 2002; Marsh and Lawler 2006; Sobtzick et al. 2012). In other areas 

such as the Great Barrier Reef World Heritage Area, the proportion is lower (~59%) 

(Sobtzick et al. 2014).  

I examined data collected in winter, however aerial surveys are generally conducted in 

summer. At the higher latitude limits of their range in summer, dugongs are most 
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frequently sighted over shallow seagrass meadows, but in winter they are also sighted 

in deeper waters where sea temperatures are warmer (Preen 1992; Lanyon 2003; 

Sheppard et al. 2006; Holley et al. 2006; Marsh et al. 2011a). If an aerial survey is 

conducted in winter, the depth distribution of dugongs may be different, an 

explanation suggested by Lanyon (2003) for the seasonal differences in dugong 

population abundance estimates she observed in Moreton Bay. Water temperature 

may affect a dugong’s diving patterns through behavioural or physiological responses 

and hence its availability to aerial observers. Thus availability estimates from this study 

can be applied to winter surveys in the Moreton Bay region, and wider application will 

require more data from other locations and seasons. Additional factors that may affect 

availability bias such as glare, glitter on the water surface, and social associations (e.g., 

solitary, herding or a cow with a calf) also warrant examination. 

5.4.4 Applicability to other diving species 

Techniques such as those developed in this study could be used to incorporate 

heterogeneous availabilities into survey methodologies from aerial and vessel-based 

surveys of other aquatic wildlife to improve the accuracy of population estimates. 

Heterogeneous availability has been found in other taxa including marine mammals. 

Stockin et al. (2001) reported that the surfacing intervals of minke whales were shorter 

in June and July, and longer in May and August. Florida manatees are less available for 

detection when the surface temperatures drop in winter because they stayed 

submerged longer (Langtimm et al. 2011). Thomson et al. (2012) find that green turtles 

also remain submerged longer in winter; their oxygen consumption slows down in 

lower water temperatures (Hochscheid et al. 2005). Location is another source of 

variation in diving and surfacing times. Thomson et al. (2012) describe the diving 

patterns of green turtles differing with dive depth; the deeper the dive depth, the 

shorter the surface interval. Leatherback turtles spend more time at the surface when 

migrating through pelagic waters than in feeding grounds (James et al. 2006). Southall 

et al. (2005) show that sharks frequently feed and cruise at the surface during summer, 

and the surfacing patterns vary with location.  
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5.5 Chapter summary 

• Diving animals are available for detection from above the water when 

environmental conditions are favourable and the animals are near the surface. The 

number of animals that are unavailable for detection needs to be estimated to 

obtain unbiased population estimates. 

• The current availability correction factors used in aerial surveys for the dugong 

allow for variation in environmental conditions but use the average time dugongs 

spend near the surface (i.e., constant availability detection probability). 

• To improve estimates of availability detection probabilities, I examined effects of 

water depth, tidal conditions, and habitat types on dugong surfacing time using 

generalized linear mixed models (GLMMs). 

• Availability for detection differed with water depth, and estimates of depth-specific 

availability detection probabilities were often lower than the constant estimates 

from Pollock et al. (2006). The habitat effect was less influential, and I did not 

detect a significant tidal effect. 

• The numbers of dugongs estimated using depth-specific availability detection 

probabilities were higher than those obtained using constant detection probabilities 

across water depth. 

• Dugong population estimates are affected by survey conditions but also distribution 

of animals across water depths within survey areas. 

• The methodology may be applicable to other aquatic wildlife using aerial and 

vessel-based surveys. 
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Chapter 6:  Improving dugong population estimates  

by accounting for heterogeneous availability bias4  
 

 

 
In this chapter I improve the accuracy of dugong population estimates by incorporating me asurements 

of heterogeneous diving behaviour into estimates of the availability detection probability (availability 

bias). Estimates of detection zones are revised based on further experiments using dugong replicas 

(Dugong Secchi Disks) and more accurate TDRs. I then estimate depth-specific availability detection 

probability using data from 16 dugongs each fitted with a GPS unit and a TDR in Moreton and 

Shoalwater Bays on the eastern Queensland coast. Aerial survey data previously collected in Moreton 

Bay, Hervey Bay, and Torres Strait are used to re-estimate dugong population sizes based on the 

heterogeneous depth-specific availability detection probabilities. 

                                                        

4 I plan to submit a modified version of this chapter to Marine Mammal Science as Hagihara, R., S. Sobtzick, R.E. 
Jones, L. M. Marsh & H. Marsh. Improving population estimates by accounting for dugong’s heterogeneous 
availability bias.  
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Chapter 6:  Improving dugong population estimates by 

accounting for heterogeneous availability bias 

6.1 Introduction 

Robust estimates of population size are central to determining the status of species 

(IUCN 2015) and designing scientifically based management responses. There are two 

important attributes of robust estimates of population size: accuracy (closeness of the 

estimate to its actual value) and precision (repeatability of the estimate) (e.g., 

Caughley 1974). Both attributes need to be considered when designing aerial surveys 

of both terrestrial and aquatic wildlife. 

Uncertainties in the estimates of mammal abundance arise from inappropriate 

sampling design, observer error, and heterogeneity in the environmental conditions 

(e.g., Caughley 1974; Forney 2000; Seavy et al. 2007), and the appearance or 

behaviour of the target species (e.g., Anderson 2001; Edwards et al. 2007; Langtimm et 

al. 2011). Precision can be minimized through appropriate sampling design; observer 

error can be reduced by training. However, it is more challenging to compensate for 

heterogeneity in the environment and animal traits.  

Improving the precision of a population estimate increases the likelihood of detecting 

a trend when it is actually occurring (Gerrodette 1987). Many studies have focussed on 

increasing precision (reducing the coefficient of variation), assuming that 

environmental variability and animal traits are constant through time and space. 

Relative measures of abundance are then used as indices to detect trends, a process 

that may be assisted by power analysis (e.g., Gerrodette 1987;   Taylor and Gerrodette 

1993;   Zielinski and Stauffer 1996). Yet a major challenge associated with relative 

abundance is that the index does not always reliably reflect changes in abundance 

(Link and Nichols 1994a; Conroy 1996; Gibbs et al. 1998; Larsen et al. 2001; Wilson et 

al. 2011). 

Both environmental conditions and animal traits are typically heterogeneous in space 

and time (Pollock et al. 2004). This heterogeneity may reduce the statistical power to 
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detect trends and introduces uncertainty as to whether apparent trends represent 

true changes in population size (Forney 2000). Thus the problems associated with 

fluctuating biases also need to be addressed to improve estimates of population 

abundance. 

Three kinds of biases have been considered in population abundance studies: absence 

bias (sensu Lefebvre 1995), availability bias and perception bias (sensu Marsh and 

Sinclair 1989b). Absence bias is caused by the absence of animals from a fixed survey 

area due to spatial or temporal shifts in their distribution (Myer and Bowen 1989; 

Lefebvre et al. 1995; Forney 2000; Rowat et al. 2009). For instance, the distribution of 

small cetaceans in the North Pacific Ocean changes over time, and a fixed survey area 

targets different proportions of the populations from one survey year to another 

(Forney 2000). Availability bias refers to animals that are missed due to unfavourable 

environmental conditions (e.g., water turbidity, sea state, cloud cover, glitter at the 

surface) and animal traits (e.g., group size, body colour, body size, diving patterns; 

Marsh and Saalfeld 1990; Marsh and Sinclair 1989b; Mullin and Fulling 2004; Edwards 

et al. 2007; Kessel et al. 2013; Robbins et al. 2014). Perception bias arises from 

observers missing animals that are available for detection. 

Marsh and Sinclair (1989b), Pollock et al. (2006), and Edwards et al. (2007) have 

developed techniques to estimate the different components of the detection 

probabilities for aerial surveys of sirenians (dugongs and manatees). Many surveys 

have covered very large areas (tens of thousands of square kilometres in the case of 

dugongs in Australia) to counter absence bias. For dugongs, availability bias is 

accounted for by estimating the proportion of animals that are missed due to water 

turbidity, sea state, and average dugong diving and surfacing behaviours (Pollock et al. 

2006). Two pairs of observers and Mark-Recapture models are used to estimate 

perception bias (Pollock et al. 2006). 

In Chapter 5, I demonstrated that the heterogeneity of the dugong’s diving and 

surfacing patterns across the depth gradient, an environmental variable not 

considered by Pollock et al. (2006) causes changes in the probability of detecting 

dugongs during aerial surveys. Based on the proportion of time dugongs spent in the 
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detection zones that were estimated by Pollock et al. (2006), I found that the dugong’s 

availability detection probability varied with water depth and was higher in shallow 

waters (< 5 m) and lower in deeper waters 5 to 25 m deep.  

In this chapter, I extend the work described in Chapter 5. I estimate depth-specific 

availability detection probabilities by: 1) repeating the Pollock et al.’s (2006) 

experiment using dugong replicas (Dugong Secchi Disks) to improve the estimates of 

detection zones (sensu Pollock et al. 2006) with higher resolution TDRs; and 2) 

incorporating measurements of heterogeneous diving behaviour with respect to water 

depth into the estimates of availability detection probability based on the improved 

detection zones. The improved availability detection probability was used to re-

estimate dugong abundance size from aerial survey data collected in Moreton Bay, 

Hervey Bay, and Torres Strait (Marsh et al. 2011a; Sobtzick et al. 2012). For (2), I used 

depth measurements collected from 16 dugongs tracked in Moreton Bay and 

Shoalwater Bay, two important dugong habitats on the eastern coast of Queensland 

(Marsh et al. 2011a).  

6.2 Methods 

6.2.1 Study animals, sites, and tagging units 

Table 2.1 summarises the specification of the GPS tracking units and TDRs and the 

biological details of 16 dugongs tracked in Moreton Bay and Shoalwater Bay (Moreton 

Bay: four dugongs from 2011 and nine dugongs from 2012; Shoalwater Bay: three 

dugongs from 2012; Fig. 2.3).   

6.2.2 Re-evaluation of detection zones using Dugong Secchi Disks  

Estimating availability bias requires independent measurements external to an aerial 

survey of: 1) the depth of the detection zones (Fig. 5.1); and 2) the proportion of time 

the target species spend in the detection zones.  

Following Pollock et al. (2006), Dugong Secchi Disks – two-dimensional dugong replicas 

that mimicked the silhouette of a dugong as seen from an aerial survey aircraft – were 

used in experiments at six combinations of three turbidity classes  2, 3, 4 and two  
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Beaufort sea state levels (<2 and 3; Table 6.1). Turbidity class 1 occurs when the water 

is shallow and the seafloor clearly visible. By definition when turbidity class equals 1, a 

dugong is available for detection and the availability bias must be 1 (full detection), 

which does not need to be experimentally determined.  

 

Table 6.1 The four turbidity classes and description of each class encountered 

during dugong aerial surveys (sensu Pollock et al. 2006).  

Turbidity class Turbidity Depth range Visibility of seafloor 

1* Clear Shallow Clearly visible 

2 Variable Variable Visible but unclear 

3 Clear Deep Not visible 

4 Turbid Variable Not visible 

*Experiment for turbidity 1 was not conducted as availability detection probability is 1 by 

definition. 

 

Dugong Secchi Disk  

Two Dugong Secchi Disks were fabricated from marine plywood and fibreglass: one 

measured 2 m long representing a juvenile dugong; the second a 2.4 m long adult. The 

dorsal surface of each Dugong Secchi Disk was painted a brown colour to resemble 

wild dugongs as seen by aerial observers. A TDR with a finer depth resolution (0.08 m, 

DST milli-F manufactured by Star-Oddi, Gardabaer, Iceland) was set to record depth at 

every second and mounted on each Dugong Secchi Disks. All TDRs were synchronised 

to the time of the GPS units carried by aerial observers. The buoyancy of the Dugong 

Secchi Disks was experimentally adjusted by attaching scuba weights, enabling them to 

be raised slowly from the sea floor. Each disk was attached to a separate pulley 

system. 
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Experimental design 

Before each experimental trial, both Dugong Secchi Disks were lowered to depths 

where they could not be seen by the two highly experienced aerial observers situated 

in a R44 helicopter hovering ca. 500 feet (normal dugong aerial survey height) above 

sea level. On receipt of radioed instructions from the lead observer, a vessel-based 

operator began raising the two disks in staggered random order. Each observer 

independently recorded the GPS time and disk type (juvenile or adult) when the 

Dugong Secchi Disk was sighted. The two observers were acoustically isolated during 

the experiment and did not communicate. The trial was repeated at least four times 

for each of the six combinations of water turbidity and Beaufort sea state.   

Estimating detection zones 

The experiment was carried out between April 2013 and April 2014 on an 

opportunistic basis.  Environmental conditions (water turbidity, sea state, cloud cover, 

cloud shadow, glitter at the water surface, and angle of sun) were confounded and 

were impossible to be isolated experimentally under natural conditions. Thus we used 

a composite index, Environmental Conditions Class (ECC), which refers all 

environmental conditions that affect availability bias. The results from the small and 

large Dugong Secchi Disks were combined because during an aerial survey an observer 

is unable to reliably differentiate a dugong 2 m long from a dugong 2.4 m long.  

6.2.3 Estimating availability detection probability 

Availability detection probabilities were estimated based on the revised detection 

zones using dive data from 16 dugongs for Environmental Conditions Classes 2, 3 and 

4. Depth records (Fig. 2.3C) from dugongs tracked in Moreton and Shoalwater Bays 

were not separated by location because of the small sample numbers from Shoalwater 

Bay (three dugongs) compared with Moreton Bay (13 dugongs). Data preparation and 

statistical analyses are as outlined in Chapters 2 and 5.  

Generalized linear mixed models (GLMMs) based on binomial distributions were used 

to predict the proportion of time the dugongs spent in each detection zone. The 
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response variable was binary: presence and absence of dugongs in a specific detection 

zone. Water depth was the single explanatory categorical variable with three levels 

(1.5 to <5 m, 5 to <25 m, and >25 m) because the uncertainty associated with the 

bathymetric model, water depth estimation using tidal heights precluded the use of 

continuous depth data (refer to Section 5.2.4 for detailed reasoning). Water depth was 

tidally adjusted using bathymetry models (Moreton and Shoalwater Bays: Beaman 

2010) and tidal records (Maritime Safety Queensland, Department of Transport and 

Main Roads 2011; National Tidal Centre, Australian Bureau of Meteorology 2011). Data 

collected from inshore waters between 0800 and 1600 h were used to estimate 

availability bias, as aerial surveys are conducted in coastal waters during daylight 

hours. Animals were treated as a random variable in these analyses. 

Although exploratory analysis indicated that the proportion of time dugongs spent in 

the detection zones varied with habitat with seagrass presence and absence, the effect 

of habitat was not examined here. Dugongs mostly occur in habitats where the 

seagrass biomass is low and ephemeral (Marsh et al. 2011b). Fine-scale seagrass 

information was only available from Moreton Bay, as reliable seagrass model was not 

available for the other areas where the water is turbid. Thus the presence/absence of 

seagrass cannot be verified by observers during a dugong survey. Thus even if I had 

estimated availability detection probabilities for dugongs had been developed for each 

habitat type in Moreton Bay (as done in Langtimm et al. 2011), the information would 

be inapplicable to most other aerial survey regions.     

In contrast with Chapter 5, the effect of tidal state per se was not examined in this 

chapter, as there was a limit to the variables that could be accommodated in the 

simulation model for estimating the standard errors of population abundance (Pollock 

et al. 2006). The simulations tended not to converge if a large number of variables 

were used. Combining tidal conditions also increased the sample size used to estimate 

availability bias for each water depth category.  

Standard errors of the availability bias were estimated on the raw scale using the delta 

method to determine a multiplier for the standard error on the link scale. GLMMs 

were performed using lme4 package (lme_4 0.999999-2, Bates et al. 2012) in R 2.15.1 
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(R Development Core Team 2011). All other data manipulation and statistical analyses 

were executed in S Plus version 8 (TIBCO Software 2007). 

6.2.4 Estimating population abundance 

Dugong population abundance was estimated by correcting for survey fraction and 

availability and perception biases following Marsh and Sinclair (1989b) as extended by 

Pollock et al. (2006). Aerial survey data collected in 2011 for Moreton and Hervey Bays 

(both in November; Sobtzick et al. 2012) and Torres Strait (March; Marsh et al. 2011a) 

were used to re-estimate dugong population abundance . Abundance was estimated 

separately for each survey block in each survey region with >5 dugong sightings as for 

previous studies (e.g., Marsh et al. 2011b; Sobtzick et al. 2011, 2014; Fig. 6.1). Dugong 

sightings were tidally adjusted using bathymetry models from Beaman (2010) for 

Moreton Bay and Hervey Bay and  Lewis (2001) for Torres Strait. 

Standard errors of the estimated population abundance were generated in Python 

using a Monte Carlo simulation method with 10,000 iterations and the method of 

estimating variance and standard error are described in Pollock et al. (2006). The 

simulated standard error for availability bias incorporated uncertainty (standard 

errors) from the availability detection probabilities which were estimated from: 1) 

estimates of detection zone; and 2) the proportion of time dugongs spent at each 

detection zone.  In all three areas, it was assumed that all animals were sighted if they 

were in herds of more >10 animals because the animals in these herds were counted 

in circling rather than in passing mode in an attempt to obtain a complete count. Thus 

the bias corrections did not apply to these sightings.  
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Figure 6.1 Survey blocks and transect lines of the dugong aerial surveys conducted 

in 2011 over A) Moreton Bay, B) Hervey Bay, and C) Torres Strait.    
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6.3 Results 

6.3.1 Estimating the detection zone 

The mean depths at which Dugong Secchi Disks were spotted for each Environmental 

Conditions Class (ECC) are given in Table 6.2. Detection zones for ECC 2 were 0–2.0 m, 

0–3.5 m for ECC 3, and 0–1.5 m for ECC 4. These values are somewhat different from 

those assumed in Chapter 5 based on the earlier work of Pollock et al. (2006), 

presumably largely because of the increased resolution of the TDRs used, compared 

with those used in the earlier study. 

 

Table 6.2 Mean depths at which Dugong Secchi Disks were spotted 

for Environmental Conditions Classes (ECCs) 2, 3, and 4 and their 

detection zones.   

Environmental 
Conditions Class 

Mean depth (m) 
(stdev) 

Detection zones (m) 

1 n/a* all 

2 2.07 (0.50) 0-2.0 

3 3.45 (0.59) 0-3.5 

4 1.59 (0.70) 0-1.5 

*Experiment for ECC 1 was not conducted as availability detection probability is 1 by 

definition. 

 

6.3.2 Estimating availability detection probability 

Estimated availability detection probabilities were the lowest for ECC 4 (detection zone 

0–1.5 m), ranging between 0.338 and 0.598 depending on water depth, followed by 

ECC 2 (detection zone 0–2.0 m) with 0.442 to 0.780 and ECC 3 (detection zone 0–3.5 

m) with 0.693 to 0.872 (Fig. 6.2).   
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For ECC 2 and 4, estimates of depth-specific availability detection probabilities in the 

shallowest (2 to <5 m or 1.5 to <5 m) and deepest (>25 m) depth categories were 

higher than or the same as the constant probabilities (Fig. 6.2A,C). The heterogeneous 

detection probabilities were lower in water 5 to <25 m deep than the constant ones 

for both water visibilities 2 and 4. For ECC 3, depth-specific detection probabilities in 

all depth categories were higher than constant probabilities (Fig. 6.2B). Table 6.3 

summarises availability detection probabilities for all 13 sightability classes, including 

ECC 1 (no correction). Again these values are somewhat different from those assumed 

in Chapter 5 based on the earlier work of Pollock et al. (2006). 

 

Figure 6.2 Estimated availability detection probabilities for A) Environmental 

Conditions Class (ECC) 2 (detection zone 0–2 m), B) 3 (detection zone 0–3.5 m), 

and C) 4 (detection zone 0–1.5 m). Vertical lines represent standard errors. 

Horizontal lines represent constant availability detection probabilities for sea 

state <2 (straight) and 3 (dotted). For ECC 4, a dotted line is not visible as the lines 

generated from both sea states overlap. Red numbers indicate sightability class. 
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Table 6.3 Estimated availability detection probabilities (Availability pr) for for Environmental 
Conditions Classes (ECCs) (including ECC 1), which resulted in 13 sightability classes. Note the 
differences between these values and those assumed in Chapter 5 based on the earlier work of 
Pollock et al. (2006).  

 

6.3.3 Corrected dugong numbers 

Moreton Bay 

The total number of dugongs in Moreton Bay was estimated to be 687 ± 104 dugongs 

using heterogeneous availability corrections. The number was very close to the 700 ± 

109 dugongs estimated using constant corrections (Fig. 6.3A). A large proportion (69%) 

of the dugongs in Moreton Bay was sighted in large herds in shallow clear water for 

which no correction was applied (Fig. 6.4A). In five sightability classes out of 13 

encountered during the survey, the estimated dugong numbers were 2 to 19 dugongs 

less depending on ECCs using depth-specific corrections (Fig. 6.4B). The other two 

classes had slightly higher estimates using depth-specific corrections (6 dugongs more 

Environmental 
Conditions Class 

Detection  
zone (m) 

Depth  
of water 

Estimated 
availability  

pr (se) 

Sightability  
Class 

1 all all 1.000 1 

2 0–2.0 

<2 1.000 2 

2 to <5 0.780 (0.175) 3 

5 to <25 0.442 (0.175) 4 

>25 0.652 (0.188) 5 

3 0–3.5 

<3.5 1.000 6 

3.5 to <5 0.872 (0.186) 7 

5 to <25 0.693 (0.185) 8 

>25 0.848 (0.197) 9 

4 0–1.5 

<1.5 1.000 10 

1.5 to <5 0.598 (0.165) 11 

5 to <25 0.338 (0.166) 12 

>25 0.580 (0.183) 13 
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for ECC 2 and depth 5 to <25 m; and 27 dugongs more for ECC 4 and depth 5 to <25 

m). 

Hervey Bay 

In contrast to the results reported in Chapter 5 in Hervey Bay, the estimated number 

was 1409 ± 442 dugongs using the depth-specific availability detection probabilities, 

and was 620 dugongs less (31% decrease) than the estimates using constant 

availability detection probabilities (2029 ± 573 dugongs; Fig. 6.3B). The largest 

difference was found in Block 2, where 887 ± 407 dugongs were estimated using 

heterogeneous corrections and 1363 ± 533 dugongs using constant corrections. Deep 

clear water (ECC 3 and depth 5 to <25 m) was the most prevalent environmental 

condition encountered (57% of dugong sighting) during the transect flights (Fig. 6.4C), 

where 813 dugongs (60% decrease) of dugongs were estimated using depth-specific 

corrections (1357 dugongs from constant corrections).  The difference between these 

results and those reported in Chapter 5 is due to the improved availability correction 

factors for deep clear water obtained from the additional Dugong Secchi Disk 

experiments. 

Torres Strait 

In Torres Strait, using depth-specific availability detection probabilities resulted in a 

28% increase in the population estimate (16,157 ± 2370 dugongs compared with 

12,604 ± 2170 dugongs using the method assuming that availability bias was 

independent of depth; Fig. 6.3C). The depth-specific availability estimates resulted in 

increased estimates of the number of dugongs in all blocks. The largest difference was 

found in Block 2A (33% increase) and Block 3 (36% increase). Most of the survey were 

flown over deep turbid waters (5 to <25 m and ECC 4) and 72% of dugong sightings 

were sighted in such conditions (Fig. 6.4E). Depth-specific availability detection 

probabilities for this combination of ECC 4 and water depth were lower than constant 

detection probabilities (Fig. 6.2). These heterogeneous availability detection 

probabilities only resulted in examples of 38% more dugongs (13,467 dugongs) than 

examples using constant detection probabilities (9,777 dugongs).  Population  
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estimates for each survey block in Moreton Bay, Hervey Bay, and Torres Strait are 

tabulated in Appendix 6.1. 

 

Figure 6.3 Estimates of dugong population size in A) Moreton Bay, B) Hervey Bay, 

and C) Torres Strait using constant (closed squares, Pollock et al. 2006) and depth-

specific availability (open squares) detection probabilities. Error bars represent 

standard errors. 
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Figure 6.4 ECC 1, 2, 3, and 4 observed at the time of each dugong sighting during 

aerial surveys in A) Moreton Bay, C) Hervey Bay, and E) Torres Strait. Each dot 

represents a sighting of a dugong group. The number of dugongs estimated using 

constant availability detection probabilities (light gray; Pollock et al. 2006) and 

depth-specific availability detection probabilities (dark gray) for B) Moreton Bay, D) 

Hervey Bay, and F) Torres Strait.  
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6.4 Discussion 

6.4.1 Improving abundance estimates 

Environmental conditions and animal behaviour are inevitably heterogeneous across 

wildlife surveys and accounting for these factors should improve survey methodologies 

and thus population estimates. Few studies account for heterogeneity in animal traits, 

especially diving behaviour (e.g., Schweder et al. 1991a,b; Innes et al. 1996; Laake et 

al. 1997; Okamura et al. 2006; Pollock et al. 2006; Barlow and Forney 2007; Edwards et 

al. 2007), and fewer studies have examined the effect of both heterogeneous 

environmental and diving behaviour on availability bias (Thomson et al. 2012; Hagihara 

et al. 2014). To my knowledge, this is the first study to incorporate the effect of 

environmental conditions and water depth on diving behaviour into estimates of 

availability bias for estimating abundance of marine wildlife even though several 

studies have followed Pollock et al. (2006) and used Secchi Disk techniques to estimate 

the detection zone (e.g., sharks: Kessel et al. 2013; Robbins et al. 2014; marine turtles: 

Fuentes et al. 2015). 

Population abundance estimated from depth-specific availability detection 

probabilities had standard error estimates similar to (or sometimes smaller than) the 

standard errors of abundance estimates from constant detection probabilities (Fig. 

6.3). These results indicate precision has not been reduced by increasing the number 

of sightability classes from 9 to 13 (Table 6.3). Accuracy is improved by correcting for 

each dugong sightings at specific sighting condition and water depth. Nonetheless the 

population sizes estimated in this study are still likely to be an underestimate because 

the number of dugongs present in the areas in which they were not sighted during 

survey was not estimated (Martin et al. 2014).  

I examined the proportion of time dugongs spent at the surface in two habitat types 

(areas with and without seagrass). However fine-scale seagrass information is 

unavailable in most dugong habitats, due to extensive areas surveys need to cover 

(>25,000-40,000 km2) and most of these areas are deep and satellite imageries cannot 

depict conditions on substratum. Thus detection probabilities estimated for each 
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habitat type will not be applicable for abundance estimation. Langtimm et al. (2011) 

estimated availability detection probabilities for each habitat type (e.g., offshore, near-

shore bays), but their spatial extent is much smaller (~<1%) than the area for dugongs 

aerial surveys.  

Using spatially heterogeneous corrections for availability bias should assist in 

correcting for shifts in the spatial distribution of a target species within survey areas 

between surveys (Marsh 1995). For coastal species such as dugongs, the depth of 

water can vary by a large percentage even within a single transect, particularly if the 

transect is across a depth gradient as is usual for many coastal surveys to increase the 

precision of the population estimate. Previous aerial surveys have demonstrated 

changes in dugong distribution between surveys (e.g., Marsh et al. 2011b; Sobtzick et 

al. 2012). If a large proportion of a population is distributed over deeper waters due to 

reasons such as inshore seagrass dieback, fewer animals will be spotted. Under such 

circumstances constant corrections for availability bias will result in lower abundance 

estimates even if the population size is unchanged.   

6.4.2 Survey protocol 

Distinguishing animals that are not detected due to environmental conditions such as 

water turbidity and animals that are absent in the survey area due to environmental 

changes (e.g., resource depletion) is extremely difficult. However, some of these biases 

can be addressed by two different approaches: 1) improving availability detection 

probability using information on water visibility and diving patterns in relation to water 

depth (availability bias), as done in this study; and 2) survey designs that encompass 

areas large enough to capture moving animals (absence bias). The first approach 

attempts to capture animals that are in the survey area but not detected as animals 

shifted their distribution or environmental conditions due to seagrass dieback and 

water temperature (Marsh et al. 2011b).  For (2), survey designs for sirenians need to 

be carried out at spatial scales that reduce the risk of absence bias. As described 

above, dugongs and manatees make individualistic long distance movements causing 

absence bias. 
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Regardless of the survey designs that attempt to minimise some of major biases, 

survey methodology requires attention to survey logistics. Adequate observer training 

is necessary, but even experienced observers can miss animals. Thus estimating 

perception bias (sensu Marsh and Sinclair 1989b) which includes both missing an 

animal and misidentification of species (e.g., Conn et al. 2013) will improve reliability 

of population size estimates. Calm survey conditions (e.g., < 2) is recommended 

wherever possible, as whitecaps on the water surface and movements of water and 

other suspended materials in the water column deter observer’s attention and 

capacity to detect animals. Such error is perhaps reduced greatly using unmanned 

aerial surveys (UAVs) (Koski et al. 2009; Sardà-Palomera et al. 2012; Hodgson et al. 

2013). 

Considerable evidence indicates that dugongs access inter-tidal seagrass at high tide. 

Thus they are more likely to be in shallow clear water (ECC 1) and available for 

detection at high tide (see e.g., Tracey et al. (2014) which was based on a dugong 

satellite tracking study, anecdotal evidences, and my exploratory analysis using the 

same dataset with four tidal conditions of flow high, ebb high, ebb low, and flow low). 

The dugong’s differential vertical and horizontal spatial distributions across tidal cycles 

can potentially be addressed by surveying shallow dugong habitats at high tide 

although this can be logistically challenging during large-scale serial surveys in remote 

regions. 

6.4.3 Optimum number of sightability classes 

Complicated bias corrections can make it difficult to calculate the uncertainty around a 

population estimate. Pollock et al. (2006) used Monte Carlo simulations to overcome 

this problem. A limitation of this approach is that numerous sightability classes can 

result in the simulation failing to converge. In this chapter, tidal conditions were not 

examined because the number of sightability classes accounting for ECC and water 

depth was already relatively large (n = 13).  
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6.4.4 Representativeness of availability estimates 

I used the tracking data collected from 16 dugongs, tagged at two locations on the 

eastern Australian coast during the Austral winter. The unbalanced number of dugongs 

tagged in each bay (13 dugongs in Moreton Bay and three dugongs in Shoalwater Bay), 

limited my capacity to test for regional or seasonal differences in diving behaviour. As 

described in Chapter 5, the dugong’s diving and surfacing behaviour varies slightly 

among individuals and may vary with season.  

Direct application of the availability bias estimates reported here to regions that are 

bathymetrically and environmentally different (e.g., coral reef dominated waters in 

New Caledonia) from Moreton Bay should be avoided until empirical data on dugong 

diving behaviour becomes available from an increased number of dugong habitats. 

Thus the dugong population abundance estimates presented here for Torres Strait 

should be interpreted cautiously.  

Torres Strait is located in eastern Australia, however the difference in the underwater 

community structure and distribution of seagrass may result in different dugong diving 

behaviour. The depth distribution of seagrass in Torres Strait extends to 40 m (Long 

and Poiner 1997), and ~55,000 km2 of seagrass (38% in Western and 49% in Central 

Torres Strait) occur in water >10 m deep (Taylor and Rasheed 2011). Dugongs have 

been frequently sighted in waters 10 to <25 m deep during aerial surveys since 1987 

(Marsh and Saalfeld 1990; Marsh and Lawler 1992; Sobtzick et al. 2014). Satellite 

tracking of six dugongs in Torres Strait also documented their occurrence in waters up 

to ~15 m deep in Central and Western Torres Strait (Gredzens et al. 2014). In contrast, 

seagrass in Moreton Bay mostly occurs in water <10 m deep over shallow banks (Phinn 

et al. 2008; Lyons et al. 2012). The seagrass consumed by dugongs also differs in the 

two locations as summarised by Marsh et al. (2011b). In Torres Strait dugongs mostly 

feed by cropping Thallasia leaves (André et al. 2005). In contrast, in Moreton Bay 

dugongs mostly feed on the above- and below-ground plants of pioneer species such 

as Halophila ovalis (Preen 1992; McMahon 2005). The differences in seagrass 

distribution and species may result in different dugong feeding behaviour, which may 

lead to different diving and surfacing patterns.  
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6.4.5 Effects of tracking units 

The effects of the tracking devices on dugong diving behaviour are unknown. Some 

dugongs fitted with GPS and TDRs travelled hundreds of kilometres in a few days 

(Sheppard et al. 2006) indicating that the devices did not preclude such travel for those 

individuals. Berga et al. (2014) examined the effects of satellite tags and a secondary 

tag which records diving depth using two groups of harbor porpoises: one group with a 

satellite tag only (control group); and another group with both units (experimental 

group). For the 3-10 days of deployment period, the dives of the experimental group 

were significantly shallower than those of the control group, while no effect was found 

on their dive duration or surface time. The authors admitted that the effect of the 

secondary tag may have been minor compared with the effect of the primary tag 

which could not be measured. Measuring the effects of tracking devices on dugongs 

will be logistically difficult. Thus it is important to reduce tag size (drag) as much 

possible and to limit the number of animals tagged to that required to provide a robust 

answer to the scientific question being asked. This topic is further discussed in Chapter 

7. 

6.4.6 Future directions 

The heterogeneity in availability bias may be location-specific (e.g., Mulling and Fullin 

2004). Dive records from other regions are required to establish or refute this 

hypothesis for dugongs. Dugong tag retrieval in remote areas such as Torres Strait has 

been a logistical challenge due to the high cost of field operations, including recovery 

of transmitters and TDRs. Comparisons of availability bias from different regions may 

become possible as pop-up tag technology becomes more accessible (currently each 

tag costs US $4000) and data retrieval rates improve. The JCU Dugong Group deployed 

pop-up satellite tags on two Moreton Bay dugongs in early 2014 as a pilot study. Data 

recovery from the two units was variable (75% and 15%). The Group is planning the 

location specific studies of dugong diving and surfacing behaviour in Torres Strait. 

Meanwhile, the approach presented here should be an improvement on the technique 

of Pollock et al. (2006).   
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6.5 Chapter summary 

• Precision and accuracy are two important attributes of robust population 

abundance estimates for assessing population trends and planning management 

responses. 

• Environmental conditions and animal behaviour are heterogeneous, and the 

proportion of animals available for detection varies spatially and temporally. This 

variability reduces the accuracy of population abundance estimates and lowers 

statistical power to detect trends.  

• Using improved estimates of detection zones that account for ECCs, the composite 

term including water visibility and sea state, and diving records from 16 dugongs, I 

re-estimated heterogeneous availability detection probabilities in relation to water 

depth.   

• The change in population estimates using the new methodology was variable in 

each region: 

o The estimated population abundance in Moreton Bay was 687 ± 104 dugongs 

based on heterogeneous availability detection probabilities, very similar to the 

estimate of 700 ± 109 dugongs based on constant availability detection 

probabilities. 

o The estimate of Hervey Bay dugong population was 620 animals (31%) smaller 

using heterogeneous availability detection probability (1409 ± 442 dugongs) than 

using the constant ones (2029 ± 573 dugongs). 

o The dugong population of central and western Torres Strait was 16157 ± 2370 

dugongs using the new methodology, compared with 12,604 ± 2170 dugongs 

based on the assumption of availability being constant across water depths, a 

28% increase using the heterogeneous availability detection probabilities.  

• Heterogeneous availability bias may be location-specific. 

• Direct application of availability estimates presented here to other locations with 

very different environmental and bathymetric features from shallow clear waters of 

Moreton Bay should be avoided. 

 



 

129 

Chapter 7:  General discussion and synthesis 

 

 

 

In this final chapter I consider the key findings of my thesis in the context of its aims and the 

contribution of my findings to: (a) shallow-diving dugong diving ecology and (b) the 

methodologies for studying shallow diving animals and estimating wildlife abundance. I 

conclude with recommendations for future research on dugong ecology using animal tracking 

technology, and aerial or boat-based surveys for estimating population size more robust  in 

order to inform management of the dugong and other marine wildlife of conservation concern. 
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records of shallow-diving marine mammals 
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accounting for heterogeneous availability bias 
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Chapter 7:  General discussion and synthesis 

7.1 Thesis overview 

Because the diving behaviour of the dugong, a coastal marine mammal of global 

conservation concern (IUCN 2015), varies in space and time with environmental 

conditions, wildlife tracking data linked to fine scale environmental features has the 

potential to expand understanding of fine scale dugong ecology and to improve the 

accuracy of the abundance estimates required for population monitoring.  

The overall objectives of my thesis were to maximise the outcomes of wildlife tracking 

by linking fine-scale dive records with spatial data from remotely-sensed animals and 

fine-scale habitat models to improve:  (a) fine-scale knowledge of the diving ecology of 

coastal wildlife, and (b) methodologies to estimate their abundance.  

To achieve these objectives, I identified the following aims: 

1. To develop an empirical procedure to identify dives in shallow diving aquatic 

wildlife such as the dugong; and 

by linking fine-scale dive records with spatial data from remotely-sensed dugongs and 

fine-scale habitat models, 

2. To advance insights into the fine-scale diving ecology of dugongs; and 

3. To estimate dugong population size that is more robust by accounting for their 

heterogeneous diving and surfacing behaviours. 
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7.1.1 Key findings 

Aim 1:  Develop an empirical procedure to identify dives in shallow diving 

aquatic wildlife such as the dugong  

Shallow dives are generally difficult to interpret (e.g., Lesage et al. 1999; Hays et al. 

2001; Hagihara et al. 2011) because they occur at the limits of the resolution of TDRs 

and the reliability of dive parameters generated from these dives is generally low or 

unknown. Many studies have used arbitrary dive thresholds to construct dives from 

two-dimensional depth records (Nolet and Kruuk 1993; Hays et al. 2001; Elliott and 

Gaston 2009), further exacerbating the challenge of interpreting shallow dives. In 

Chapter 3, I developed an empirical procedure to determine three optimum thresholds 

for reliable profiling of dives from the shallow-diving dugong: 1) time threshold; 2) 

zero-offset correction (ZOC); and 3) dive threshold (DT). This quantitative procedure 

was essential for interpreting the dugong’s diving behaviour in Chapter 4. 

Aim 2: Advance insights into fine-scale diving ecology of dugongs 

In Chapter 4, using dive metrics obtained from the procedure described in Chapter 3, I 

built logistic regression models to predict dives that achieved two criteria: a) mid-

water dives that did not provide the dugong with access to the seafloor and seafloor 

dives that did provide the dugongs with access to the seafloor; and b) dives that 

enabled the dugong to access the seafloor in areas were seagrass is present and 

absent. I obtained insights into dugong diving patterns at single dive basis. This 

inference was possible by linking fine-scale behavioural data (depth records: depth 

resolution ± 0.5 m; and GPS location fixes: spatial resolution ± 2 to <75 m) with a 

bathymetry model (± 100 m spatial resolution) and a seagrass map (± 10 m spatial 

resolution).  

Dives that had a high likelihood of achieving the above criteria (a and b) had distinct 

behavioural patterns.  Dugongs that had high likelihood of undertaking seafloor dives 

over seagrass transited quickly between the surface and seafloor and maximised the 

time spent on the substratum, potentially feeding (Fig. 4.4 and 4.5). Dugongs that had 

a high likelihood of undertaking seafloor dives in areas without seagrass spent a 
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similarly long time on the bottom but moved more slowly in transit. Mid-water dives 

tended to be longer, had a shorter bottom phase and even slower transit phases. 

Aim 3: Estimate dugong population size that is more robust by accounting for 

their heterogeneous diving and surfacing behaviours 

The current dugong aerial survey methodology accounts for animals that are missed by 

observers during aerial surveys due to water turbidity, sea state, dugong diving and 

surfacing patterns (availability bias), and observers missing animals that are available 

for detection (perception bias; sensu Marsh and Sinclair 1989b; Pollock et al. 2006). In 

developing correction factors to account for availability bias, dugong diving and 

surfacing patterns have been assumed to be constant (Pollock et al. 2006). To improve 

estimates of dugong abundance from aerial surveys, I first improved the 

heterogeneous availability detection probabilities with respect to water depth using 

tracking data collected from 16 dugongs in Chapters 5 and 6. The depth-specific 

availability probabilities were estimated by: 1) repeating Pollock et al.’s (2006) 

experiment using Dugong Secchi Disks using TDRs with finer depth resolutions (Fig. 5.1 

and Fig. 6.2) and improving the estimates of detection zones; and 2) estimating the 

proportion of time dugongs spent in the improved detection zones for each 

Environmental Conditions Class (ECC).  

Using the revised availability detection probabilities, I estimated dugong population 

abundance in three important dugong habitats in Queensland, Moreton Bay, Hervey 

Bay, and Torres Strait. The resultant abundance estimates differed to varying degrees 

from the previous estimates derived using the methodology of Pollock et al. (2006). 

My estimates should be more accurate as they correct for dugong heterogeneous 

diving and surfacing patterns across water depths. The precision of the estimates did 

not change substantially.    
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7.2 Implications of my research  

7.2.1 Dive analysis for shallow-diving animals 

The methodology I developed in Chapter 3 quantitatively determines zero-offset 

correction (ZOC) and dive threshold (DT). Both thresholds are commonly used by 

researchers studying aquatic wildlife to reconstruct dives from two-dimensional depth 

records. Manually inspecting each dive (e.g., Gordos and Franklin 2002; Bodkin et al. 

2004; Hays et al. 2007; Hazel et al. 2009; Witt et al. 2010) to adjust the surface level 

(ZOC) is time consuming, and arbitrarily choosing the dive threshold (DT) (e.g., LeBouef 

et al. 1986; Hindell et al. 1991; Panigada et al. 1999) excludes a large portion of 

valuable data, limiting potential new insights, especially for shallow-diving species. My 

methodology enabled shallow dives to be identified while minimising errors that may 

interfere with subsequent analysis and interpretation. This empirical approach is an 

efficient, effective, and accurate method of processing large volumes of dive records 

and should be applicable to other shallow diving animals such as manatees, dolphins, 

and turtles.   

7.2.2 Dugong ecology 

Jessopp et al. (2013) stated that animal behaviour is best interpreted within the 

context of their immediate environment. Although I am certain that all ecologists 

(including me) agree with this statement, it is often difficult to achieve. Free-ranging 

dugongs can travel large distances over periods of days and months (Marsh and 

Rathbun 1990; Sheppard et al. 2006a; Gredzens et al. 2014). Their seagrass 

environments vary substantially within a few hundred meters (sometimes even a few 

meters) (Phinn et al. 2008; Knudby and Nordlund 2011) and can change dramatically 

seasonally and over time, especially as a result of extreme weather events (Marsh and 

Preen 1995; Roelfsema et al. 2009). Measuring the state of the environment at an 

appropriate spatial and temporal scales can be difficult and expensive and is often 

most cost-effectively done using remote sensing. In order to obtain new insights into 

the fine-scale behavioural ecology of the dugong, I used existing high resolution 

bathymetric and seagrass models and linked them with wildlife tracking data collected 
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from fast acquisition GPS transmitters and improved TDRs in Chapter 4. This approach 

allowed me to understand dugong diving behaviour under different environmental 

conditions at the scale of each dive.  

Although I could not confirm behavioural type for each dive, my approach suggested 

that dugongs seems to predominantly rest on the bottom in areas without seagrass, 

behaviour that has not been detected visually in previous studies due to the dugong’s 

turbid environment. This result highlights the importance of non-seagrass areas for 

dugongs. Visual inspection of deep seafloor dives in relation to movement data 

collected from GPS transmitters indicated dugongs utilise the seafloor for orientation 

and navigation.  

My approach could also be applied to studying the diving behaviour of other shallow 

diving animals such as manatees, dolphins and turtles for which behavioural inference 

is often difficult because their dives are predominantly shallow. 

7.2.3 Aerial survey population estimates  

Estimating the absolute abundance of dugongs and manatees is challenging. Marsh et 

al. (2011b) point out that sirenians mostly occur in turbid waters, surface cryptically 

only for short periods, and therefore are unavailable to aerial observers for much of 

the time. The probability of detecting these animals varies greatly with environmental 

conditions and the behaviour of animals, and such variability is heterogeneous among 

and within years and sites. In Chapters 5 and 6 I improved the estimation methodology 

developed by Marsh and Sinclair (1989b) and late revised by Pollock et al. (2006) by 

accounting for the heterogeneity in dugong diving behavior across water depths. Such 

estimation methodology is particularly applicable to many boat- and aerial-based 

surveys of aquatic wildlife. 

Accounting for heterogeneous environmental conditions and animal behaviour should 

increase the statistical power of surveys to detect trends and provided reliable basis 

for management initiatives for threatened wildlife (Link and Nichols 1994; Conroy 

1996; Gibbs et al. 1998; Larsen et al. 2001; Wilson et al. 2011; Pollock et al. 2004). 

Improving precision of population estimates increases the likelihood of detecting a 
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trend (Gerrodette 1987; Taylor and Gerrodette 1993; Zielinski and Stauffer 1996). 

However the heterogeneity in environmental conditions and animal behaviour also 

needs to be addressed, as both accuracy and precision are important attributes of 

survey population estimates. To my knowledge I am the first researcher to have 

explicitly corrected for the effect of water depth on diving behaviour and hence 

availability bias in abundance studies of aquatic wildlife.  

Experiments with animal Secchi Disks have been conducted to estimate the detection 

zone of various aquatic species (dugongs; Pollock et al. 2006; sharks: Kessel et al. 2013; 

Robbins et al. 2014; marine turtles: Fuentes et al. 2015), however my study provides 

an estimation methodology that accounts for both Environmental Conditions Class (a 

combined term for water visibility and sea state) and diving behaviour in estimating 

detection zones using animal Secchi Disks. This technique is potentially transferable to 

other medium-sized aquatic species residing in turbid waters (manatees, dolphins, 

turtles, and sharks).   

7.3 Future research 

7.3.1 Diving ecology  

Custom software 

The development of custom-made software that is specifically designed to reliably 

identify the phases of shallow dives from shallow-diving dugongs would be extremely 

valuable. I used a combination of custom software (R. Jones) and open-source dive 

analysis packages diveMove (ver. 0.9.7, Luque) in accordance with my methodology to 

determine three key thresholds for dive identification in Chapter 3. This process 

efficiently and reliably identified dugong dives that were used to draw insights into 

dugong diving behaviour as described in Chapter 4. Nonetheless diveMove is more 

suited to the analysis of the dives of deep-diving animals (e.g., elephant seals, fur seals, 

gray whales). For instance, the descent phase of some dugong dives was falsely 

extended to the bottom phase (Fig. 4.5). Two parameters (descent.crit.q and 

ascent.crit.q) in the function calibrateDepth() available in diveMove regulate the 

cessation of the descent phase and the onset of the ascent phase, but changing these 
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thresholds had little effect on the demarcation of descent and ascent phases from the 

bottom phase in these shallow dugong dives.  

Researchers studying animals making shallow dives thus face an inherent challenge in 

reliably identifying the phases of each dive. In addition, deep diving animals make 

shallow dives during certain life stages or between deep dives (Nolet et al. 1993; Hays 

et al. 2001). Researchers often exclude shallow dives from their statistical analysis 

thereby ignoring an important component of behaviour such as feeding ecology (e.g., 

Lesage et al. 1999). A program explicitly designed for shallow dives would have wide 

application to both shallow- (manatees, dolphins, turtles) and deep-diving animals 

(seals).  

Use of additional sensors 

Complementary data from additional sensing units rather than using stand-alone two-

dimensional dive data (Thomson et al. 2011) has the potential to expand 

understanding of dugong diving behaviour and may enable classification of dives using 

conventional multivariate classification approach. Such study is valuable for 

understanding dugongs in turbid water which precludes visual studies. Potentially 

useful devices for dugongs include accelerometers, 3-D motion sensors, hydrophones, 

and (video) cameras. The first three devices are more suited to the turbid coastal 

habitats frequented by dugongs. 

Three-D motion sensors that detect changes in orientation (activity) of animals have 

been used to differentiate dives with activity and inactivity (e.g., resting) within U-

shaped dives from green turtles (Hochscheid et al. 1999). This type of sensor would 

reveal activity patterns and energetics. Hydrophones attached to captive Amazonian 

manatees recorded mastication sounds at high detection rates (65–79%) while the 

manatees were chewing on food plants (Kikuchi et al. 2014) . Dugongs also make 

mastication sounds (Tsutsumi et al. 2006; Hodgson 2007), and using hydrophones in 

association with TDRs and GPS tracking should improve understanding of their feeding 

ecology. Accelerometers, coupled with habitat descriptions, may also indicate feeding 

events as dugongs frequently feed by excavating (Anderson and Birtles 1978; Preen 
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1992; Wirsing et al. 2007a), leaving feeding trails. This feeding mode involves forward 

movement in contrast to resting.  

Images from video cameras attached to dugongs have provided little insights due to 

small image size, turbid waters which obscure shot images, and the dugong’s limited 

behavioural repertoire (M.Heithaus pers comm). Short or intermittent images 

captured using the current technology may limit the number of successful association 

with dive records. Cameras may only be useful in clear water (e.g., Moreton Bay, Shark 

Bay). Nonetheless, with careful positioning and orientation, a camera has the potential 

to provide rich information (e.g., which species of seagrass or animal items dugongs 

consume). Images combined with depth records would provide means of: (1) 

validating presumed behavioural functions and (2) estimating the time budgets of 

various behaviours.  

Although the size of these tags (and cameras) is increasingly reduced, animal welfare 

issues (e.g., effects of tags on animal behaviour, foraging success, or reproductive 

capacity) need to be considered and carefully monitored. When instruments were 

attached, tagged animals or animals with artificial weights were observed to increase 

oxygen consumption (Costa and Gentry 1986), decrease or alter swimming effort 

(Cornick et al. 2006; Aoki et al. 2011; van der Hoop et al. 2014), and alter swimming 

speed and angle of dive descent and ascents (Boyd et al. 1997). 

Animal ethics 

The effects of wildlife tracking and biologging units on wild animals (e.g. on behaviour, 

foraging success, and reproduction) need to be minimised and carefully monitored. In 

ornithological studies, guidelines exist and recommend the tag weight should not 

exceed 3-5% of bird body mass (E. 2001; Vandenabeele et al. 2011) and no more than 

1% of cross-sectional area (Ballard et al. 2001) to allow adequate lift and thrust for 

take-off and flight. This guideline is appropriate for animals that are influenced by 

gravity such as birds. For marine animals, drags rather than buoyancy created by tags 

and associated objects such as antennae and attachment platforms has an adverse 

effect on deployed animals (Wilson et al. 2004). Jones et al. (2013) conducted 
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experiments using marine turtle models in a wind tunnel to determine the drag 

created by tags with various surface area and shape widely used in aquatic wildlife 

studies. The authors generated a universal counter plots which  can be superimposed 

on the various frontal areas of tags used in other species  to identify the percentage of 

increase in drag. This counter plots can be used to customise tag design specific to 

individual species.  Nonetheless tags need to be streamlined to reduce drag, and be as 

small and light as possible so that equipped animals are not required to expend 

considerable energy for locomotion (Vandenabeele et al. 2011). 

Studies that examine the effects of tagging and tags on wildlife are relatively rare, 

probably because such studies are ethically challenging, difficult to design (difficult to 

measure and determine adverse effects), and expensive to implement. It is also 

extremely difficult (mostly impossible) to compare the effects of tagged and non-

tagged animals in natural environment. Some studies have not observed significant 

changes in the behaviour of tagged versus untagged animals (e.g., Sherrill-Mix and 

James 2008), whereas others have observed animals fitted with tags increasing their 

oxygen consumption (Costa and Gentry 1986), decreasing or altering their swimming 

effort (Cornick et al. 2006; Aoki et al. 2011; van der Hoop et al. 2014), or altering their 

swimming speed and angle of dive descent and ascent (Boyd et al. 1997). However, 

due to the often short nature of these studies, linking the observed adverse effects to 

overall survival and fitness of an individual is difficult.   

However Longitudinal studies do exist and document the costs to tagged animals. 

Flipper bands on penguins inflict damages to flippers, and their swimming costs 

increase by 24%, and survival decreased by 28% (Jackson and Wilson 2002). A long 

term study (10 years) found banded penguins produced 39% fewer chicks and 16% 

lower survival rate than non-banded birds (Saraux et al. 2011). Saraux et al. (2011) also 

found the survival of banded penguins increased after 4.5 years. The tag effect works 

as selection force, and weak penguins were weeded out during the first half of the 10 

year study. These studies show the deleterious changes in fact affect the population 

growth therefore the deployment period also needs to be considered when planning 

tagging studies    
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Because the risk of an animal being disadvantaged by being caught, fitted with a tag, 

and carrying a tag is not zero, researchers are ethically obliged to maximise the 

information gained from each animal.  This could be done by attaching several sensing 

units (which may increase the risk of harm) and/or by using all relevant environmental 

information to maximise the insights gained. Researchers need to be cognisant of the 

benefits to the researcher and  additional burden imposed to an animal carrying 

several sensors, and acknowledge the data are collected from, varying degree of, 

impaired animals (Wilson 2011).  

Consideration on the potential of optimising the number of tagged animals is also 

necessary. Further work needs to be done to determine the optimum numbers of 

animals to track given the associated animal welfare concerns discussed above. 

Optima may be determined when a large number of animals tracked exhibit similar 

behaviours (e.g., Schofield et al. 2013) or by more formal power analysis (e.g., Cohen 

1988). The appropriate sample size is likely to be species specific. 

A tracking methodology designed to minimise the adverse effects on tagged animals 

needs to reflect ever-improving technologies and human innovation, and respect 

societal norms regarding animal welfare, especially when researchers are studying rare 

and threatened species. The Three R’s (Replacement, Reduction and Refinement) are 

fundamental tenets of ethical animal care and use for experimentation in all non-

human vertebrates and cephalopods (see for example Australian Code of Practice, 

National Health and Medical Research Council 2013). The goal of reduction, the second 

of the 3R's, is to reduce the numbers of animals used to obtain information of a given 

amount and precision. The Code of Practice provides guidance for scientific conduct 

and needs to be consulted when planning future studies. Future dugong tracking 

studies should use the data obtained to date to conduct cost-benefit analyses 

concerning the trade-offs between information and animal welfare.    

Representativeness of the tagged animals 

Given these animal welfare issues, obtaining a representative sample of sufficient size 

to make robust inferences is generally a challenge, especially when results are to be 
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used to inform management decisions (e.g., Shillinger et al. 2012). Satellite tracking is 

expensive in both monetary and human resources. The number of tracked animals is 

typically restricted by the budget for tag purchase and field work. Logistics (e.g., 

weather, animal behaviour, experience of capture and handling) also constrain the 

number of animals tagged. Animals found in particular areas (e.g., shallow waters, 

seagrass meadows), sex, or size may have higher catchability. Researchers often work 

with threatened species, and catching and tagging a large number of animals may not 

be possible (e.g., colonial birds of a small population size) or banned for ethical 

reasons. There is always uncertainty about the quality and quantity of data that will be 

collected from tagged individuals (e.g., sampling interval, data accuracy, tag loss and 

malfunction, battery longevity and failure). 

Despite the challenge of obtaining a large enough representative sample, documenting 

variation within a population is valuable because such information may better enable 

researchers to anticipate how populations are likely to adapt to future environmental 

changes and to plan measures to ameliorate negative impacts. Phenotypic variations in 

appearance and behaviour (Flint 1996) occur in all taxa (Williams 1992). Wildlife 

telemetry now has the potential to provide a large volume of information from single 

animals and typically reveals considerable behavioural variations among individuals, 

sexes, or age groups (e.g., Le Boeuf et al. 1993, 2000; Austin et al. 2006; Zeno et al. 

2008). The challenge is, however, to interpret this variability in terms of environmental 

drivers while making the assumptions explicit.  

7.3.2 Population abundance  

Application 

Spatially explicit models of dugong density based on aerial survey data (Grech and 

Marsh 2007; Grech et al. 2008; Grech et al. 2011) have been very important for 

systematic conservation planning. My work on depth-specific availability bias 

described in Chapters 5 and 6 suggests that these models underestimate the 

importance of dugong habitats in the 5-25 m depth range relative to those in shallower 
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and deeper waters. The models have been improved by incorporating the depth-

specific availabilities (Sobtzick et al. 2015). 

New technology 

The TDRs I used archived depth measurements and required tag retrieval for data 

access, limiting data return at the expense of the costs incurred for the purchase of the 

tracking units and field operations. I conducted a dugong tracking study in Shark Bay, 

Western Australia in 2012 with the Western Australian Department of Environment 

and Conservation and volunteers. We fitted GPS transmitters and TDRs to five dugongs 

but failed to retrieve data from any of the five TDRs. The entire tracking apparatus was 

prematurely released from one dugong due to weak link failure in a tether (See Section 

2.1 for details of attachment). Although two GPS transmitters were recovered, the two 

TDRs attached to the same dugongs were lost as their tethers were mutilated at mid 

length for unknown reasons (possibly boat propellers or shark bites). The remaining 

two GPS units ceased transmitting and their TDRs could not be located.  

Satellite-relayed TDRs which do not need to be retrieved for data access have the 

potential to provide very useful dive data for dugongs, especially in remote areas or 

other  environments where tag retrieval is extremely difficult (e.g., Torres Strait or 

Shark Bay). On a pre-determined release date, these tags transmit archived data to 

satellites. The data are then retrieved via the Argos network (e.g.,  Merrick et al. 1994; 

Myers et al. 2006). These tags can be attached to dugongs in a similar fashion to 

archival TDRs. Commercially available pop-up tags are currently highly priced (e.g., 

~US$4,000 for a MiniPAT, Wildlife Computers). MiniPATs were experimentally 

deployed by the JCU Dugong team on two dugongs in Moreton Bay between in April 

2014 and these tags stayed on the animals for two months as programmed. The rates 

of successful data recovery from the two units varied from 18% to 75% (unpublished 

data). The reason for these differences in recovery rates is unknown. With 

technological improvements and subsequent drops in price, this type of unit will 

become more useful and accessible and will enable more data to be collected on 

dugong diving behaviour in diverse environments such as Torres Strait, arguably the 

most important dugong habitat in the world (Marsh 2011b).   
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Drones, or unmanned aerial vehicles (UAV) may be the future of dugong aerial surveys. 

Drones are now widely used in marketing (e.g., real estate), hazard detection (e.g., 

wild fire), crime prevention and detection (e.g., trespassing, illegal logging), agricultural 

planning (Zhang and Kovacs 2012), and conservation (e.g., Koh and Wich 2012). Drones 

provide geo-referenced images and are being used in wildlife surveys including dugong 

surveys (Jones et al. 2006;  Koski et al. 2009; Sardà-Palomera et al. 2012; Hodgson et al. 

2013). Compared to manned aerial surveys, unmanned surveys using drones have 

considerable advantages: eliminating observer risk and lowering survey costs and 

ecological footprints (Martin et al. 2012; Hodgson et al. 2013). Hodgson et al. (2013) 

successfully tested the capacity of drones to assess dugong habitat use and population 

status. The images taken by Hodgson et al. (2013) captured dugongs, as well as whales, 

dolphins, and turtles. The use of UAV will solve the challenge of perception bias and 

improve the data on animal sighting location as images are geo-referenced. If 

abundance is estimated in a similar way to Marsh and Sinclair (1989b) and Pollock et al. 

(2004), sightings will still have to be corrected for availability bias. My research on the 

environmental factors influencing the availability of dugongs to aerial observations can 

be extended and modified for drone application. 

7.4 Concluding remarks 

My research made major methodological contributions to study the diving ecology of 

shallow diving wildlife and techniques to estimate their abundance. My research on 

dugong abundance and habitat use has immediate application to dugong conservation 

and has the potential to be applied to shallow diving aquatic biota more generically.   
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Appendix 2.1 Protocol for capturing and handling dugongs 

The following protocol was developed and refined by Marsh and Rathbun (1990), 

Lanyon et al. (2006), Sheppard et al. (2006), and others such as Dr. Nick Gales, Dr. Ivan 

Lawler, and Mr. Dave Holley (unpublished account). Protocol of health assessment 

during pursuit, capture, handling, and release follows Flint (2013). A veterinarian or a 

senior biologist needs to be attendant throughout the capturing and handling 

processes to minimize the risks on and ameliorate or resuscitate affected animals (Flint 

2013).  

Equipment and personnel 

Two vessels are employed: one as a catcher boat (primary), and another as a support 

boat (secondary). The primary boat needs to be light in weight to facilitate rapid 

manoeuvrability but needs to have enough motor power to enable the vessel to travel 

at speeds of up to 20 knots. The minimum number of personnel for the primary and 

the secondary boats for the rodeo technique is seven people: 

Primary boat: 

1. A driver 

2. A primary catcher  

3. Two dugong handlers 

4. A monitor 

Secondary boat: 

1. A driver 

2. A data recorder/equipment handler 

3. An extra dugong handler 

The catcher and two handlers need to be padded with a helmet and vest for protection. 

Pursuit, capture, handling, and release 

Phase 1:  Pursuit 

A candidate dugong is assessed based on the following criteria: 

• Proximity to shallows – shallow water which provides a secure platform for dugong 

catchers to anchor down 
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• Composition – a lone animal or an individual on the edge of a herd without an 

attendant calf 

• Life stage – adult in an apparent good condition. Quick external health assessment 

include: 

o No apparent skin conditions (e.g., lesions, sloughing, hyperkeratosis)  

o No loss of soft tissue mass (adipose tissue) around the peduncle and neck, 

without prominent vertebral column 

o No abnormal behaviour (e.g., accelerated respiration rate) 

Once a target dugong is selected, the animal is approached at low speed. When a 

primary boat is within 50–100 m range, a chase is initiated with rapid acceleration. A 

monitor records the onset of chase time and starts counting frequency of breathing. 

The support team remains at a distance (e.g., 100 m) on the deep water side of the 

primary boat.  

The driver of the catch boat keeps the dugong just in front of it but slightly off to the 

side. This positioning allows catchers to dive forward and land on the dugong’s tail, 

and also prevents collision with the target dugong when it comes up for a breath. The 

dugong’s swim speed slows down when it surfaces to breath. Pursuit is terminated 

after 10 min. If the animal shows quick succession of surfacing, the chase is also 

abandoned. 

Phase 2: Capture 

A capture is initiated after a breath is taken by the dugong. The primary catcher first 

jumps over the dugong’s tail, followed by the other two handlers. The primary catcher 

holds the tail downwards by pressing it against the chest of the catcher. In this way, 

the dugong’s tail is prevented from making propulsive down strokes, which assists in 

flight and is dangerous to the catcher. The two catchers assist in straining the dugong, 

and ensure that the animal is kept in proximity of the surface for easy uptakes of air. A 

monitor keeps track of breathing. The support boat approaches the dugong and drifts 

in the area. A person from the support boat may enter the water for further assistance 

of handling.   
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Phase 3: Handling 

When the dugong is securely detained, the catcher boat approaches the dugong and 

passes a long float (a swimming pool “noodle”, ~ 1.5 m long) to a handler, who wraps 

the float underneath the dugong’s axillae. The float is securely held by a person from 

the catcher boat. The float facilitates the dugong’s breathing and stops the animal 

from spinning during capture.    

One of the handlers collects information on the dugong: body length, girth, sex, and 

presence or absence of an erupted tusk, which were recorded by a monitor. Another 

handler securely attaches a tracking apparatus onto the peduncle.  

Throughout the handling stage, state of a restrained dugong is continuously monitored. 

The monitoring criteria are shown as below: 

• Respiration rates – allowable rates are between 1–15 breaths every two minutes 

• Abnormal behaviour – muscle tremor, squealing, frequent rolling, curling up, or a 

sign of lethargy 

The dugong is held for no more than 6 min. 

Phase 4: Release 

Upon the release, the noodle float is released first and the tail after, enabling the 

animal to break free under its own speed. A deployed dugong should be monitored 

whether the animal was swimming normally. If there are signs of compromise, the 

animal should be followed at a safe distance and recaptured for veterinary care on 

water or land if further intervention is required. The assessment criteria include: 

• Loss of consciousness 

• Loss of ability to swim away 

• Signs of trauma caused by capture and handling 
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Appendix 4.1 Specifications of the algorithms used to 

quantify the relative importance of terms using MuMIn 

and glmulti  

MuMIn 

dive.glm <- glm(propBottom ~ dt + dr + dp + bt + bd.dt + md + at +  ar + assym, 

family=binomial(link="logit"), data = dives) 

Where, 

dtCat = descent time, dr = descent rate, dp = descent time proportion,  

bd.dt = bottom distance divided by bottom time, md = maximum depth,  

at = ascent time, ar = ascent rate, assym =  ascent distance divided by descent distance  

 

# compare all possible combination of single terms 

dredgeA <- dredge(diveA) 

 

# get the best models within 95% confidence set 

confA <- get.models(dredge, cumsum(weight) <= 0.95) 

 

# average the best models  

avgA <- model.avg(confA) 

 

# relative variable importance given in the summary outputs  

summary(avgA) 
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glmulti 

# compare all possible combination of single terms  

dive.glmulti <- glmulti(dive.glm, level = 1, method = “h”,  crit = "aicc") 

 

Where, 

level = 1 used only main effects, method = “h” for an exhaustive method, exploring all 

possible combinations of terms,  crit specified a type of information criterion.  

“aicc” represents Akaike Information Criterion, corrected (AICc),  

 

# glmulti function plots the best 100 models (default) and identify models that are 

similarly good  

 

# repeat the above glmulti function, but this time specify the confidence set identified 

above 

 

dive.glmulti2 <- glmulti(dive.glm, level = 1, method = “h”,  crit = "aicc", confsetsize = 2) 

Where, 

confsetsize determines the number of models to be looked for (i.e. the size of the 

returned confidence set). 

 

# plot relative importance  

plot(dive.glmulti2, type = "s") 
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Appendix 4.2 Analysis of deviance table for: A) mid-

water and seafloor dives, and B) seafloor dives in areas 

where seagrass is present and absent.   

A) Df Deviance Residual 
Df 

Residual 
Dev. 

Significance 

Null   3289 5587.68 
 

Ascent rate/descent rate 3 334.76 3286 5252.92 * 

Asymmetry 2 37.00 3284 5215.92 * 

Ascent rate 3 1311.63 3281 3904.29 * 

Ascent time 3 24.02 3278 3880.27 * 

Max. dive depth 3 18.59 3275 3861.68 * 

Vertical displacement 2 90.85 3273 3770.82 * 

Bottom time 3 38.47 3270 3732.35 * 

Descent rate 3 33.43 3267 3698.92 * 

B) Df Deviance Residual 
Df 

Residual 
Dev. 

Significance 

Null   381 503.19  

Descent rate 3 9.99 378 493.21 * 

Ascent rate/descent rate 2 5.73 375 487.48  

Asymmetry 3 6.40 373 481.08 * 

Max. dive depth 3 2.31 370 478.77  

Ascent rate 3 9.28 367 469.48 * 

Ascent time 3 4.78 364 464.71 * 

Bottom time 3 2.37 361 462.34  

Descent time 3 1.46 358 460.88 * 

*Significant with at least P<0.01 
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The deviances of some dive parameter that were not significant (e.g., ascent 

rate/descent rate) are larger than the ones from dive parameters that are significant 

(e.g., descent time). As each dive parameter was added sequentially to the model, 

parameters added later can have smaller deviance and be insignificant. Thus the order 

of these parameters was changed several times to ensure significant levels of each 

parameter, and the significance does not necessarily correspond to the deviance 

shown in the table. 
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Appendix 4.3 Mean, median, and standard error of:  A) seafloor dives with and without seagrass, 

and B) mid-water dives. 

 
Mid-water dives 

Seafloor dives 

 Seagrass No seagrass 

 mean median se mean median se mean median se 

Descent time (s) 41.35 28.50 0.86 23.14 13.50 1.44 29.13 23.50 1.63 

Descent rate (m/s) 0.13 0.12 0.002 0.24 0.24 0.01 0.15 0.14 0.01 

Bottom time (s) 59.75 42.00 1.26 69.91 70.00 2.51 64.86 52.00 4.16 

Bottom distance divided by bottom time 0.35 0.33 0.002 0.30 0.28 0.005 0.33 0.31 0.01 

Maximum depth (m) 4.24 3.50 0.04 3.57 3.50 0.03 3.71 3.50 0.06 

Ascent time (s) 47.91 37.50 0.77 11.07 9.50 0.48 27.58 22.50 1.94 

Ascent rate (m/s) 0.10 0.09 0.001 0.36 0.33 0.01 0.25 0.15 0.03 

Asymmetry 1.00 1.00 0.002 1.00 1.00 0.01 0.94 1.00 0.02 

Ascent rate divided by descent rate 1.11 0.77 0.03 2.36 1.48 0.12 2.28 1.00 0.28 
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Appendix 5.1 Specifications of generalized linear mixed 

models (GLMMs) using Gaussian Hermit Quadrature 

estimation 

>surface proportion1.5 <- lmer(surface1.5 ~ water depth +  (1|animal) , 

family=binomial, data=surfaceA, weights=N/600, nAGQ = 100) 

and 

>surface proportion2.5 <- lmer(surface2.5 ~ water depth * habitat + (1|animal), 

family=binomial, data=surfaceB, weights=N/600, nAGQ = 100) 

 

The response variables are indicated as surface1.5 or surface2.5. The explanatory 

variables are water depth and habitat. The asterisk (*) represents the explanatory 

variables of a single effect from water depth and habitat and the interaction between 

the two. (1|animal) represents the animal treated as a random factor. Binomial link is 

specified using family, and weight is applied using N, which represents the number of 

sampling units. I treated 10 min as a sampling unit by dividing the number of depth 

records (N) by 600 (10 min as depth was recorded every 1 s). The nAGQ refers to the 

number of quadrature points and 100 represent Gaussian Hermit Quadrature 

approximation.  
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Appendix 5.2 Proportions of time dugongs spent in the 

detection zones over inshore waters (A: 0–1.5 m; B: 0–2.5 

m) and in offshore waters (C: 0–1.5 m; D: 0–2.5 m). Each 

symbol represents individual animal. 
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Appendix 6.1 Estimates of dugong population abundance 

in A) Moreton Bay, B) Hervey Bay and C) Torres Strait 

using constant (Pollock et al. 2006) and depth-specific 

availability corrections.   

 Estimated dugong abundance (se) 

Block Constant  
corrections  

Depth-specific  
corrections 

A) Moreton Bay, November 2011 

Block 1 tfe tfe 

Block 2 tfe tfe 

Block 3 tfe tfe 

Block 4* 569 (87) 547 (81) 

Block 5 tfe tfe 

Block 6 131 (65) 140 (65) 

Total 700 (109) 687 (104) 

B) Hervey Bay, November 2011 

Block 1 397 (152) 354 (139) 

Block 2** 1363(533) 887 (407) 

Block 3 148 (92) 98 (68) 

Block 4 121 (114) 70 (74) 

Total 2029 (573) 1409 (442) 

*Three herds were censused (44, 117 and 170 dugongs, respectively)  

**a herd of 25 dugongs was censused 

***a herd of 20 dugongs was censused 

'tfe' indicates too few sightings to estimate abundance; dugong sightings were <5. 
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 Estimated dugong abundance (se) 

Block Constant  
corrections  

Depth-specific  
corrections 

C) Torres Strait, March 2011 

Block 0 578 (404) 702 (461) 

Block 1A 467 (206) 566 (272) 

Block 1B 1573 (775) 1789 (843) 

Block 2A*** 5234 (1514) 6950 (1711) 

Block 2B 1117 (359) 1429 (419) 

Block 3 2083 (862) 2831 (1043) 

Block 4-5 297 (222) 371 (258) 

Block 6 tfe tfe 

Block 7 tfe tfe 

Block 8 778 (386) 857 (375) 

Block 9 497 (396) 662 (470) 

Total 12604 (2170) 16157 (2370) 

*Three herds were censused (44, 117 and 170 dugongs, respectively)  

**a herd of 25 dugongs was censused 

***a herd of 20 dugongs was censused 

'tfe' indicates too few sightings to estimate abundance; dugong sightings were <5. 
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