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Abstract: Remote sensing plays a critical role in mapping and monitoring mangroves. Aerial 

photographs and visual image interpretation techniques have historically been known to be 

the most common approach for mapping mangroves and species discrimination. However, 

with the availability of increased spectral resolution satellite imagery, and advances in digital 

image classification algorithms, there is now a potential to digitally classify mangroves to the 

species level. This study compares the accuracy of mangrove species maps derived from two 

different layer combinations of WorldView-2 images with those generated using high 

resolution aerial photographs captured by an UltraCamD camera over Rapid Creek coastal 

mangrove forest, Darwin, Australia. Mangrove and non-mangrove areas were discriminated 

using object-based image classification. Mangrove areas were then further classified into 

species using a support vector machine algorithm with best-fit parameters. Overall 

classification accuracy for the WorldView-2 data within the visible range was 89%. Kappa 

statistics provided a strong correlation between the classification and validation data. In 

contrast to this accuracy, the error matrix for the automated classification of aerial 

photographs indicated less promising results. In summary, it can be concluded that mangrove 

species mapping using a support vector machine algorithm is more successful with 

WorldView-2 data than with aerial photographs.  
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1. Introduction 

Mangroves are salt-tolerant evergreen forests that create land-ocean interface ecosystems. They are 

found in the intertidal zones of marine, coastal or estuarine ecosystems of 124 tropical and sub-tropical 

countries and areas [1]. Mangroves are a significant habitat for sustaining biodiversity and also provide 

direct and indirect benefits to human activities. 

Despite the increased recognition of their socio-economic benefits to coastal communities, 

mangroves are identified as among the most threatened habitats in the world [2]. Degradation and 

clearing of mangrove habitats is occurring on a global scale due to urbanization, population growth, 

water diversion, aquaculture, and salt-pond construction [3].  

In recent years, numerous studies have been undertaken to further understand the economic and 

ecological values of mangrove ecosystems and to provide a means for effective management of these 

resources [1,2,4–6]. Mangrove forests are often very difficult to access for the purposes of extensive 

field sampling, therefore remotely sensed data have been widely used in mapping, assessing, and 

monitoring mangroves [4,7–10].  

According to Adam et al. [11], when using remote sensing techniques for mapping wetland 

vegetation, there are two major challenges to be overcome. Firstly, the accurate demarcation of 

vegetation community boundaries is difficult, due to the high spectral and spatial variability of the 

communities. Secondly, spectral reflectance values of wetland vegetation are often mixed with that of 

underlying wet soil and water. That is, underlying wet soil and water will attenuate the signal of the 

near-infrared to mid-infrared bands. As a result, the confusion among mangroves, other vegetation, 

urban areas and mudflats will decrease map classification accuracy [8,12–14]. Consequently, remote 

sensing data and methods that have been successfully used for classifying terrestrial vegetation 

communities cannot be applied to mangrove studies with the same success.  

Using remote sensing to map mangroves to a species level within a study area presents further 

challenges. For instance, Green et al. [8] reviewed different traditional approaches for satellite remote 

sensing of mangrove forests. After testing them on different data sources, the study confirmed that the 

type of data can influence the final outcome. Heumann [10] further demonstrated the limitations of 

mapping mangrove species compositions using high resolution remotely sensed data. The potential  

for using hyperspectral remote sensing data for wetland vegetation has been discussed in  

numerous studies, however the results are still inconclusive when considering mangrove species  

discrimination [10,11,13,15]. Therefore, the selection of data sources for mangrove mapping should 

include consideration of ideal spectral and spatial resolution for the species.  

Some laboratory studies using field spectrometers have suggested the ideal spectral range for mangrove 

species discrimination [8,16–18]. In one such study, Vaiphasa et al. [16] investigated 16 mangrove species 

and concluded that they are mostly separable at only a few spectral locations within the 350–2500 nm 

region. The study didn’t specifically explore the use of airborne or spaceborne hyperspectral sensors for 
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mangrove species mapping (such as the best spectral range, number of bands within that range, and optimal 

spatial resolution). It has, however, encouraged further full-scale investigations on mangrove species 

discrimination, which could involve extensive field and laboratory investigations, necessitating high 

financial and time investments. A viable alternative may be to use satellite data with narrow spectral bands 

lying within the ideal spectral range for species composition identification.  

The WorldView-2 (WV2) satellite imaging sensor provides such data, and therefore may have 

increased potential for accurately mapping the distribution of mangrove species. Its combination of 

narrow spectral bands and high spatial resolution provides benefits over the other freely or commercially 

available satellite remote sensing systems albeit at a cost. Therefore, the combination of WV2 data with 

advanced image processing techniques will be an added value to wetland remote sensing. 

After determining ideal or optimal image data requirements, the selection of an appropriate method of 

processing those data for mapping with maximum achievable accuracy is critical. Kuenzer et al. [19] 

provided a detailed review of mangrove ecosystem remote sensing over the last 20 years, and 

emphasized the need for exploitation of new sensor systems and advanced image processing 

approaches for mangrove mapping. The most promising results for mangrove mapping can be found in 

the study by Heumann [20], who demonstrated high accuracy when discriminating mangroves from 

other vegetation using a combination of WV2, and QuickBird satellite images. However, the accuracy 

was poor for mangrove mapping to the species level. Though the advanced technological nature of 

remotely sensed images demands solutions for different image-based applications, it can be concluded 

that little has been adapted to mangrove environments compared to other terrestrial ecosystems.  

An approach that may prove fruitful for mapping mangrove environments is the Support Vector 

Machine (SVM) algorithm, a useful tool that minimizes structural risk or classification errors [20]. 

SVM is a supervised, non-linear, machine learning algorithm that produces good classification 

outcomes for complex and noisy data with fewer training samples. SVM can be used with high 

dimensional data as well [21]. Though this is a relatively new technique for mangrove mapping, it has 

widely been applied in other remote sensing application domains with different sensors [22]. 

For example, Huang et al. [23] compared SVM with three different traditional image classifiers, and 

obtained significantly increased land cover classification accuracy with an SVM classifier.  

This study aims to investigate the potential of using high spatial resolution remote sensing data for 

discriminating mangroves at a species level. In order to achieve this aim, three objectives were 

identified: (a) to identify and extract mangrove coverage from other vegetation; (b) to apply the SVM 

algorithm to distinguish individual mangrove species; and (c) to compare the accuracies of these 

techniques when using WV2 and aerial photographs in order to identify the most accurate combination 

of data input and image processing technique.  

2. Data and Methods 

2.1. Study Area  

This study focused on a mangrove forest within a small coastal creek system: Rapid Creek in urban 

Darwin, Australia (Figure 1). It is situated on the north western coast line of the Northern Territory 

centered at latitude 12°22′S, and longitude 130°51′E. This area represents relatively diverse, spatially 
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complex, and common mangrove communities of the Northern Territory, Australia, and is one of the 

more accessible areas in the region for field survey. The aerial extent of the study area shown in the 

Figure 1 is approximately 400 hectares.  

Figure 1. The study area located in coastal mangrove forest of Rapid Creek in Darwin, 

Northern Territory, Australia; WV2 data © Digital Globe. (Coordinate system: Universal 

Transverse Mercator Zone 52 L, WGS84).  

 

According to the mangrove classification of Brocklehurst and Edmeades [24], Avicennia marina (Gray 

mangroves) and Ceriops tagal (Yellow mangroves) are the most dominant species for this area, though that 

study was completed nearly 20 years ago. Based on the more recent study of Ferwerda et al. [25], there are 

some other species such as Bruguiera exaristata (Orange mangroves), Lumnitzera racemosa (Black 

mangroves), Rhizophora stylosa (Stilt mangroves), and Aegialitis annulata (Club mangroves) in the 

Rapid Creek mangrove forest. However, clear boundaries of individual mangrove species in this area 

have not been demarcated by any previous study. 

2.2. Field Survey 

Field data were collected during January to April 2013, in the Rapid Creek mangrove forest. 

Unfortunately, this did not coincide with the overpass of either sensor utilized (June 2010). However, 

the field data can still be considered valid for calibration and validation purposes, as it is unlikely that 

any large shifts in species composition of the site would have been experienced since that time [25]. 

Further, there was no record of any natural or human disturbances that could have had a devastating 
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effect on the mangroves during this period. In any case, field sample sites were located away from 

edges and transition zones to avoid any errors in classification due to growth, regeneration, or 

vegetation decline. After observing the mangrove zonation patterns visible in the WV2 image, a 

random sampling pattern within zones was adopted to identify species.  

A sample was defined as a homogenous area of at least 4 m
2
, which is at least 16 pixels in the WV2 

image. Coordinates of these sample polygons and available species were recorded using a 

non-differentially corrected Global Positioning System (GPS). Special attention was given to orient the 

sample plots in north-south and east-west directions in order to easier locate them in the images. To 

overcome GPS inaccuracies, the plots were located with respect to natural features on the ground as far 

as possible. For instance: the distance to water features, roads or edges of mudflats were recorded. 

Further, 10 readings were averaged for the final location. Mangrove species in the field were identified 

using the Mangrove Plant Identification Tool Kit (published by Greening Australia Northern Territory) 

and The Authoritative Guide to Australia’s Mangroves (published by University of Queensland) [26,27].  

2.3. Remote Sensing Data and Pre-Processing 

A WV2 satellite image was selected as the main image data source for this study. As the sensor 

produces images with high spectral and spatial resolution, WV2 is an ideal solution for vegetation and 

plant studies [28]. The image was acquired on 5 June 2010, with 8 multispectral bands at 2.0 m spatial 

resolution and a panchromatic band with 0.5 m spatial resolution. To compare this work with higher 

spatial resolution remote sensing data (Table 1), true color aerial photographs were used, which were 

acquired on 7 June 2010 using an UltraCamD large format digital camera [29].  

Table 1. Spectral band information of WV2 image and aerial photographs obtained from 

UltraCamD camera [29,30]. 

Band Spectral Range (nm) Spatial Resolution (m) 

WorldView-2 

Panchromatic 447–808 0.5 

Coastal 396–458 2.0 

Blue 442–515 2.0 

Green 506–586 2.0 

Yellow 584–632 2.0 

Red 624–694 2.0 

Red-Edge 699–749 2.0 

NIR1 765–901 2.0 

NIR2 856–1043 2.0 

Aerial photographs  

Blue 380–600 0.14 

Green 480–700 0.14 

Red 580–720 0.14 

WV2 images were radiometrically corrected according to the sensor specifications published  

by DigitalGlobe
®
 [31]. Digital numbers were converted to at-sensor radiance values, and then to  

top-of-atmosphere reflectance values. The additive path radiance was removed using the dark pixel 
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subtraction technique in ENVI 5.0 software. Images were geo-referenced using rational polynomial 

coefficients provided with the images, and ground control points extracted from digital topographic 

maps of Darwin, Australia.  

In order to utilize both the high spatial and spectral resolution options provided with WV2 

panchromatic and multispectral layers, pan-sharpening options were investigated. Pan-sharpening is 

defined as a pixel fusion method that increases the spatial resolution of multi-spectral images [32]. 

Although there are several methods available for pan-sharpening, the high pass filter method was 

selected because it is known to be one of the best which produces a fused image without distorting the 

spectral balance of the original image [33,34]. Once applied, the statistical values of the spectral 

information of the input and output multispectral products are similar. Palubinskas’ study [35] also 

proposed the high pass filter method as a fast, simple and good pan-sharpening method for WV2 

images, by analyzing performances of several image fusion methods. In addition, this method is known 

to be one of the best choices when the pixel resolution ratio of higher to lower is greater than 6:1 [36]. 

However, special attention must be given when selecting the filter kernel size as it should reflect the 

radiometric normalization between the two images. Chavez et al. [33] stated that twice the pixel 

resolution ratio is an ideal solution for the kernel size. This means that a kernel size: 15 × 15 is an 

optimal solution for WV2 data. All image radiometric, atmospheric and geometric corrections must be 

done prior to pan-sharpening in order to minimize geometric and radiometric errors.  

Accordingly, the WV2 multispectral image was then pan-sharpened to 0.5 m spatial resolution to 

incorporate the edge information from the high spatial resolution panchromatic band into the lower 

spatial resolution multispectral bands using the high pass filter pan-sharpening method. The Coastal 

band and the NIR2 band were not used for further processing because of the limited spectral range of 

the panchromatic band (Table 1).  

The aerial photographs were oriented to ground coordinates following digital photogrammetric 

image orientation steps in the Leica Photogrammetric Suite (LPS) software using image orientation 

parameters extracted from the camera calibration report. The coordinates of ground control points were 

extracted from Australian geographic reference stations near Darwin, Australia and digital topographic 

maps of Darwin [37]. The ortho-photograph of the area was then generated to achieve a geometrically 

and topographically corrected image with a resultant resolution of 14 cm for further studies. Radiometric 

calibration information was not available.  

In order to directly compare with WV2 imagery, another ortho-photo was created with a pixel size 

of 0.5m. In order to remove the artifacts that can be created from resampling, a low pass filter was 

applied to the raw aerial photographs first. Ortho-rectification was then completed using the cubic 

convolution interpolation.  

2.4. Image Classification 

Image classification of WV2 and aerial data was undertaken in two steps. Firstly, mangroves and  

non-mangroves were separated using eCognition Developer 8.7 software. Then the classification was 

refined to discriminate mangroves at a species level using ENVI 5.0 software. The process was applied 

to two sets of WV2 images: the first WV2 image with a spatial resolution of 2m (without  

pan-sharpening) and the other one with a spatial resolution of 0.5 m (with pan-sharpening), and two sets 
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of ortho-photographs: the first with a spatial resolution of 0.14 m (AP0.14M) and the other one with a 

spatial resolution of 0.5 m (AP0.5M). This was done in order to investigate the influence of spatial 

resolution and the pan-sharpening effect on classification accuracy. Figure 2 shows the overall 

workflow diagram for this study, which is described in greater detail below. 

Figure 2. Mangrove species mapping using remotely sensed data. Image segmentation 

and initial classification was completed in eCognition Developer 8.7 software. The 

support vector machine algorithm was implemented in the ENVI-IDL environment for 

species classification.  

 

2.4.1. Separating Mangroves and Non-Mangroves 

To separate mangroves from other features, object-based image analysis (OBIA) was used. OBIA is 

based on segmentation, which partitions the image into meaningful, spatially continuous and spectrally 

homogeneous objects or pixel groups [15,20]. The major challenge is in determining appropriate 

similarity measures which discriminate objects from each other. Therefore, the spectral profiles of 

identifiable features in the satellite image were analyzed.  
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Class-specific rules were developed incorporating contextual information from the WV2 image and 

relationships between image objects at different hierarchical levels, to separate mangroves and  

non-mangroves. The segmentation at level 1 identified objects that can be grouped to coarse 

classification structures. All spectral bands ranging from Blue to NIR1 were used, and weights were 

assigned as 1 for the segmentation at each level. The segmentation parameters were selected based on 

the pixel size and the expected compactness of resulting objects. Buildings, soil, roads and mudflats 

were classified as ―Buildings-Roads-Mudflats‖, and as the spectral reflectance ratio of Yellow to NIR1 

of this class was less than the mean ratio of Yellow to NIR1 of objects, the ratio was introduced as a 

threshold value for the classification to extract ―Buildings-Roads-Mudflats‖. The brightness calculated 

from reflectance values from Blue to NIR1 bands were analyzed, and the low values (less than the 

mean brightness of objects) were used to extract water features. The remaining objects at this level 

were classified as ―Candidate-Mangrove-1‖ claiming this class as the parent objects for the next level.  

At level 2, specific details (home gardens and other vegetation) within parent objects were 

identified (Figure 3). Home gardens and other vegetation were removed considering the objects 

enclosed by ―Buildings-Roads-Mudflats‖ class. Further, remaining home gardens and other vegetation 

were identified using a red edge normalized difference index (reNDVI) obtained from NIR1 and  

Red-Edge bands: 

𝑟𝑒𝑁𝐷𝑉𝐼 =  
 𝑅𝑁𝐼𝑅1 − 𝑅𝑅𝑒𝑑−𝐸𝑑𝑔𝑒  

 𝑅𝑁𝐼𝑅1 − 𝑅𝑅𝑒𝑑−𝐸𝑑𝑔𝑒  
 (1) 

with 𝑅𝑁𝐼𝑅1 and 𝑅𝑅𝑒𝑑−𝐸𝑑𝑔𝑒  being the reflectance in the NIR1 and Red-Edge bands respectively [38,39]. 

The index was used assuming that it would provide a good measure of biophysical properties of plants: 

chlorophyll content and water-filled cellular structures to separate these classes from others due to the 

rapid change in reflectance of vegetation in the Red-Edge region [39]. 

Figure 3. The schematic explanation of image objects at different hierarchical levels. The 

first level was at pixel level. At the second level: vegetation and non-vegetation areas were 

identified. Mangrove areas were extracted at the final level.  
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As the reNDVI of home gardens and other vegetation classes were higher than the mean reNDVI of 

objects, the value was introduced as a threshold value for the classification. The remaining objects 

from this level were classified as ―Candidate-Mangrove-2‖. 

At the final level, the normalized difference vegetation index (NDVI) obtained from NIR1 and  

Red bands: 

𝑁𝐷𝑉𝐼 =  
 𝑅𝑁𝐼𝑅1 − 𝑅𝑅𝑒𝑑  

 𝑅𝑁𝐼𝑅1 − 𝑅𝑅𝑒𝑑  
 (2) 

where 𝑅𝑁𝐼𝑅1  and 𝑅𝑅𝑒𝑑  are the reflectance in the NIR1 and Red bands respectively, was used to 

separate ―Final-Mangroves‖. This vegetation index was also introduced to the classification as a 

threshold value since ―Final-Mangroves‖ class have higher NDVI values than the mean NDVI values 

of the objects. The classified objects were closely analyzed for final refinements. Refinements were 

done to classify objects by incorporating object geometry and neighborhood information to the 

process. For example: the relation to the neighboring borders was analyzed. The transferability of the 

rule set was maintained using variables instead of specific values for class separation. Finally, the 

outline of the mangrove area was extracted for further analysis. This method was tested on both sets of 

WV2 images (see Figure S1 for overall workflow diagram). 

The same process was then applied to the two sets of aerial photographs (AP0.14M and AP0.5M). 

However, when segmenting AP0.14M, different segmentation parameters were used at each level due 

to its higher spatial resolution. When applying OBIA to aerial photographs, the possibility of 

developing a successful rule set for the segmentation is limited due to the broad band width and limited 

number of spectral bands of the aerial camera (see Figure S2 for overall workflow diagram). Further, 

limitations associated with radiometric resolution of aerial photographs could affect the accuracies. As 

a result, the final mangrove area was manually edited to remove objects of known home gardens, other 

vegetation, and grasslands.  

2.4.2. Mangrove Species Classification  

With the increase in mangrove studies and mapping using remote sensing comes a growing 

implementation of advanced processing techniques. Although traditional remote sensing can provide 

important information for monitoring the ecosystem, changes, and extent of mangroves, more 

contextual and probabilistic methods can be utilized to improve the accuracy of classification, and for 

discriminating individual species.  

Traditional land cover hard classification is based on the assumption that each pixel corresponds to 

a single class [40]. This is not always true. When the instantaneous field of view of the sensor covers 

more than one class of land cover or objects, the pixel may have reflectance values from more than one 

class, and is defined as a mixed pixel [41]. Mangroves are closed forests which can become very dense 

due to their limited habitat range. Mixed pixels therefore have to be expected in the image. Hence, 

traditional pixel based image analysis techniques do not fully exploit the contextual variations in 

species distribution [10,11,20]. A better alternative is soft classification, which predicts the proportion 

of each land cover class within each pixel, resulting in more informative representation of land  

cover [40,42,43].  
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One of the soft classification algorithms is the SVM, which locates a best non-linear boundary in 

higher dimensional feature space. It works with pixels that are in the vicinity of classes, while 

minimizing over-fitting errors of training data [21]. Hence, a small training set is sufficient to achieve 

accurate classifications. The mathematical formation and detailed description of the SVM architecture 

can be found in Tso and Mather [21] and Mountrakis et al. [22].  

When designing the SVM architecture, careful selection of a kernel function is important to 

increase the accuracy of the classification. The position of the decision boundary always varies with 

the kernel function and its parameters [21,22,44]. Descriptive information about the kernel function 

and its parameter selection can be found in Tso and Mather [21]. 

The extracted mangrove areas were classified using the SVM algorithm. Field data was collected to 

represent the five main mangrove species occurring in the study area: Avicennia marina, Ceriops 

tagal, Bruguiera exaristata, Lumnitzera racemosa, and Rhizophora stylosa. Sonneratia alba, 

Excoecaria ovalis, and Aegialitis annulata have not been used for the classification mainly due to low 

coverage. In addition, Sonneratia alba does not exhibit distinctive spectral variation compared to other 

species (Section 3.2). Field data were then divided into two groups, for training (69 samples) and for 

validation (47 samples) of the classifiers. The multiclass SVM classifier developed by Canty [45] was 

modified and implemented in ENVI extensions in the IDL environment in order to define the case 

specific parameters with an iterative process. This helped to determine the best fitting parameters for 

this study. The Radial Basis Function (RBF) was found to be the best kernel function with a gamma 

value of 0.09, and penalty parameter of 10.  

The SVM algorithm was applied to two sets of band combinations of the WV2 image. One set uses 

the visible spectral range, i.e., blue, green, yellow, red and red-edge bands (WV2-VIS) in order to 

directly compare it with aerial photographs. The other set consisted of the red, red-edge and NIR1 

bands (WV2-R/NIR1). These bands were selected based on the research by Wang and Sousa [18]. The 

study indicated that the majority of mangrove species which occur in the Rapid Creek area can be 

discriminated using the influential wavelengths: 630, 780, 790, 800, 1480, 1530 and 1550 nm spectral 

bands (which correspond to the red and NIR bands of WV2). The pan-sharpened sets of images were 

named as PS-WV2-VIS and PS-WV2-R/NIR1 for easy reference. The same process was applied to 

AP0.14M and AP0.5M. The same training data were used for all four datasets to maintain consistency 

between methods.  

2.5. Accuracy Assessment 

The accuracy of the mangrove species classification was assessed at the pixel level using 

descriptive and analytical statistical techniques. The 560 random validation points were generated 

inside the field samples (2 m × 2 m plots). Therefore, there were a large number of validation points 

for accuracy assessment for each species (Section 3.2). The generated maps were visually inspected 

against field observations, satellite images and aerial photographs according to Congalton [46]. 

A confusion matrix was generated, and users’ and producers’ accuracies, together with kappa statistics, 

were investigated for each identified mangrove species.  

  



Remote Sens. 2014, 6 6074 

 

 

3. Results  

3.1. Field Survey 

There are five mangrove species which are most abundant and can easily be identified along Rapid 

Creek: Avicennia marina, Ceriops tagal, Bruguiera exaristata, Lumnitzera racemosa, and Rhizophora 

stylosa (Stilt mangroves). Avicennia marina and Ceriops tagal are the most widely spread species in 

this area, while Lumnitzera racemosa covers the majority of the hinterland area. Sonneratia alba 

(Apple mangroves) are found at two locations within the site, covering approximately 20 square 

meters. Excoecaria ovalis (Milky mangroves) and Aegialitis annulata (Club mangroves) were also 

recognized during the field investigation, though they do not represent significant coverage within  

the forest.  

3.2. Separating Mangroves and Non-Mangroves  

The analysis of spectral profiles within the Rapid Creek coastal area was the key to introducing 

class specific rules for OBIA (Figure 4).  

Figure 4. Spectral profiles of: (a) all features except mangroves extracted from WV2 

image; (b) mangrove species only extracted from WV2 image; (c) mangrove species 

extracted from aerial photographs of spatial resolution 0.14 m; and (d) mangrove species 

extracted from aerial photographs of spatial resolution 0.5 m. (AM-Avicennia marina,  

CT-Ceriops tagal, BE-Bruguiera exaristata, LR-Lumnitzera racemosa, RS-Rhizophora 

stylosa, SA-Sonneratia alba).  
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Buildings, soil, mudflats and water showed highly distinctive spectral profiles compared to other 

features. The mangrove species are most notably separable within the range of wavelengths of  

478.3 nm and 832.9 nm, with the exception of Sonneratia alba, while the spectral profile of Avicennia 

marina generally is more distinctive from other species across a broader range of the spectrum. 

The locations of field samples are shown in Figure 5. The mangrove outline was successfully 

extracted from the WV2 image using OBIA. The ―Final-Mangroves‖ class extracted from the WV2 

image (without pan-sharpening) and aerial images did, however, still include both mangroves and the 

adjacent home gardens and other vegetation to be edited manually. The WV2 image was more useful 

than the aerial image for extracting the overall mangrove coverage, as less manual editing was required.  

Figure 5. The locations of field samples available for calibration and validation purposes, 

and mangrove coverage extracted from the WV2 image. 

 

Table 2 shows the number of sample points that were used for validation for each species together 

with the number of samples used for training the classification. Sample points were generated from  

47 validation samples shown in Figure 5.  
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Table 2. Number of samples (4 m
2
 each) used for training and number of sample points 

generated for validation for each mangrove species. 

Species 

No. of Samples for 

Training  

(4 m
2
 or 16 Pixels Each) 

No. of Points for Validating 

the Classification 

Avicennia marina (AM) 22 216 

Bruguiera exaristata (BE) 14 106 

Ceriops tagal (CT) 10 80 

Lumnitzera racemosa (LR) 12 78 

Rhizophora stylosa (RS) 11 96 

3.3. Mangrove Species Classification  

Figure 6 shows the derived mangrove species maps. Figure 6a was produced from the PS-WV2-VIS 

image, and the visual appearance is more closely related to the dominating species of the area than the 

other five maps (Figure 6b–f). Avicennia marina (AM) and Ceriops tagal (CT) dominate 69% of total 

mangrove area while Bruguiera exaristata (BE) accounts for only 5%. The majority of the hinterland 

margin is occupied by Lumnitzera racemosa (LR) or mixed Lumnitzera racemosa, Bruguiera 

exaristata and Ceriops tagal. Rhizophora stylosa (RS) dominates only along the creek and its branches 

(Figure 6a). However, the visual assessment confirmed that some of the Ceriops tagal has been 

misclassified as Bruguiera exaristata (especially on the west of the study area Figure 6a). 

When testing the same method with the PS-WV2-R/NIR1 image, there was no significant 

difference in visual appearance of the classification except for the classes Rhizophora stylosa and 

Bruguiera exaristata (Figure 6a and b). The hinterland margin and areas along the water features were 

successfully classified with their dominated species. Furthermore, the visual appearance of 

classification of Rhizophora stylosa and Ceriops tagal are better than that of PS-WV2-VIS classification.  

Figure 7 shows an example of positive detection of Lumnitzera racemosa (orange color) at 

hinterland from pan-sharpened WV2 image classifications. However, when considering the 

classification results of WV2 image with 2 m spatial resolution, the detection of Lumnitzera racemosa 

and Bruguiera exaristata was relatively poor (Figure 7h,i). 

Figure 6c and d show classifications of the WV2 image without pan-sharpening. In both instances, 

most of the Avicennia marina was classified correctly, especially in the classification of WV2-R/NIR1. 

In addition, there was no significant detection of Bruguiera exaristata and Ceriops tagal classes in 

either classification. The classification results of WV2-R/NIR1 shows misclassification of Ceriops 

tagal and Lumnitzera racemosa as Rhizophora stylosa. Further, both results were not able to capture 

the mangrove zonation pattern observed in the field.  

The accuracy assessment of the PS-WV2-R/NIR1 classification revealed approximately same 

overall accuracy as the PS-WV2-VIS classification. Although the total extent of Rhizophora stylosa 

and Ceriops tagal was approximately equivalent to the PS-WV2-VIS image classification, the area 

covered by Ceriops tagal was smaller than that class in the PS-WV2-VIS image classification  

(Figure 8a,b). Some of the Ceriops tagal areas may be misclassified as Rhizophora stylosa and 

Bruguiera exaristata, because the percentage of the extents of the other species didn’t change 

significantly (Figure 8). The extents of Lumnitzera racemosa was almost the same in both instances 
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while the extent of Avicennia marina was reduced by approximately 2.5 hectares compared to the  

PS-WV2-VIS classification. 

Figure 6. (a) Classification of pan-sharpened WV2 image using blue to red-edge bands; 

(b) Classification of pan-sharpened WV2 images using red to NIR1 bands;  

(c) Classification of WV2 image using blue to red-edge bands; (d) Classification of WV2 

images using red to NIR1 bands; (e) Classification of aerial photographs with 0.14 m 

spatial resolution; and (f) Classification of aerial photographs with 0.5 m spatial resolution.  

 

The WV2 image with a spatial resolution of 2 m demonstrated rather different results than the  

pan-sharpened image classifications. In both instances, the classified extents of Bruguiera exaristata 

were less than 1% of the total mangrove area. However, the extent of Rhizophora stylosa obtained 

from the WV2-R/NIR1 classification was similar to the pan-sharpened image classification though the 

visual appearance indicates some misclassifications around the mudflats and at the edges of the mangrove 

coverage (Figure 6d). The classification of WV2-VIS did not show the Ceriops tagal class, whereas the 
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classification of WV2-R/NIR1 represented 2% of the total area (Figure 8e,f). The extent of Avicennia 

marina class was not considerably different to other pan-sharpened WV2 and aerial image classifications.  

Figure 7. The comparison of the WorldView2 image and different classification 

approaches: (a) Pan-sharpened WV2 image; (b) Classification results of PS-WV2-VIS;  

(c) Classification results of PS-WV2-R/NIR1; (d) Aerial photograph; (e) Classification 

results of AP0.14M; (f) Classification results of AP0.5M; (g) WV2 image;  

(h) Classification results of WV2-VIS; (i) Classification results of WV2-R/NIR1.  

 

The classification results of using the AP0.14M input had several differences compared to the WV2 

classifications (Figure 6). The classes derived from the aerial photographs were patchier, and the 

classification did not capture the mangrove zonation pattern described in previous studies of this area 

well. Figure 7 shows one example of capturing mangrove zonation patterns by different classification 

approaches. Lumnitzera racemosa class obtained from the classification of AP0.5M was patchier than 

others. The percentage of the extent of Avicennia marina is almost the same at all classifications. 

Further, the extent of Rhizophora stylosa from the classification of aerial images is the same as that of 

the classification of PS-WV2-VIS image. The extents of Lumnitzera racemosa was significantly larger 
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using the technique on aerial photographs, while the extent of Ceriops tagal was half that of the  

pan-sharpened WV2 classification (Figure 8c,d).  

When classifying the AP0.5M aerial photograph, there were no significantly large differences in the 

extents of all classes compared to the AP0.14M classifications (Figure 8c,d). A slight increase in 

Rhizophora stylosa and Avicennia marina extents and a decrease in Bruguiera exaristata extent were 

noted in the AP0.5M classification compared to the AP0.14M classification. These classes exhibited 

fewer contiguous patterns and highly deviated from reality, thus producing some misclassification.  

Figure 8. Extents (%) of mangrove species obtained using six different input datasets:  

(a) pan-sharpened WV2 image with bands blue to red-edge; (b) pan-sharpened WV2 image 

with bands red to NIR; (c) aerial photographs with 0.14 m spatial resolution; (d) aerial 

photographs with 0.5 m spatial resolution; (e) WV2 image with bands blue to red-edge; 

and (f) WV2 image with bands red to NIR. 

 

3.4. Accuracy Assessment 

The map produced from PS-WV2-VIS best visually represents the zonation pattern of the different 

species. This classification also has the highest values for both overall accuracy (89%) and Kappa 

statistics (0.86, Table 3). Despite the overall accuracy of the PS-WV2-VIS classification being 2% 

higher than the PS-WV2-R/NIR1 classification, the results of the Kappa analysis shows these two 

classifications were not significantly different whereas the visual appearance of this classification is 

better than some of the classes obtained from PS-WV2-VIS.  

Table 3 shows the lowest accuracy assessment figures for the maps generated from non pan-sharpened 

WV2 images. The Kappa statistics were not strong enough to represent the good contingency with 

validation samples. This is also supported by the visual appearance of these maps (Figure 6).  

  



Remote Sens. 2014, 6 6080 

 

 

Table 3. Overall accuracy and Kappa statistics obtained for each classification. 

 PS-WV2-VIS PS-WV2-R/NIR1 WV2-VIS WV2-R/NIR1 AP0.14M AP0.5M 

Overall accuracy 89% 87% 58% 42% 68% 68% 

Kappa 0.86 0.84 0.46 0.25 0.60 0.58 

Visual inspection of the maps produced from the aerial photographs (AP0.14M and AP0.5M) 

indicated low quality classification results, especially the classification results of AP0.5M. They were 

not able to capture most of the variations visible in the photographs. Further, it can be seen that 

Ceriops tagal and Avicennia marina species have mostly been misclassified as Rhizophora stylosa and 

Bruguiera exaristata (Figure 8c). The descriptive analysis of the classification of AP0.14M has shown 

the relatively low accuracy of 68%, with Kappa statistics limited to 0.60 (Table 3). The accuracy of the 

map produced from the AP0.5M was slightly lower (Kappa equals to 0.58), with an overall accuracy of 

68% (Table 3).  

For individual species classifications, Table 4 shows low user’s accuracy for Bruguiera exaristata 

for the PS-WV2-VIS image classification, compared to other species. In contrast, Ceriops tagal has a 

user’s accuracy of 84% with 55% producer’s accuracy. Lumnitzera racemosa, for example, has a 

producer’s accuracy of 100% while the user’s accuracy is 87%. This means that there were no omissions 

from this class, but were more inaccurate inclusions providing an over-estimation of this coverage. In the 

PS-WV2-R/NIR1 classification the extent of Rhizophora stylosa was also over-estimated.  

Table 4. Comparison of producer’s accuracy and user’s accuracy for each species, obtained 

from different remote sensing data sources. (AM—Avicennia marina, CT—Ceriops tagal, 

BE—Bruguiera exaristata, LR—Lumnitzera racemosa, RS—Rhizophora stylosa).  

Image Accuracy (%) AM BE CT LR RS 

PS-WV2-VIS 
Producer’s acc.  98 73 55 100 95 

User’s acc.  98 72 84 87 89 

PS-WV2-R/NIR1 
Producer’s acc.  95 54 70 100 100 

User’s acc.  100 83 68 72 81 

WV2-VIS 
Producer’s acc.  98 ** ** 82 28 

User’s acc.  99 ** ** 13 19 

WV2-R/NIR1 
Producer’s acc. 94 ** 2 44 70 

User’s acc.  98 ** 2 12 13 

AP0.14M 
Producer’s acc.  83 27 45 73 77 

User’s acc.  94 46 35 60 59 

AP0.5M 
Producer’s acc.  91 20 65 79 44 

User’s acc.  77 25 70 72 65 

** Did not calculate individual accuracies  

The individual classification accuracies of Bruguiera exaristata did not calculate for WV2 images 

as there was no sufficient coverage identified by classification to do so. However, both producer’s and 

user’s accuracies of Ceriops tagal was 2% from WV2-R/NIR1 (Table 4). Lumnitzera racemosa was 

highly over-estimated in the WV2-VIS classification whereas Rhizophora stylosa did in the  
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WV2-R/NIR1 classification. These inaccurate inclusions that provide over-estimations were highly 

evidence in their visual maps (Figure 6). The only successfully classified class was Avicennia marina.  

4. Discussion  

4.1. Separating Mangroves and Non-Mangroves 

One of the advantages of using WV2 data is the comparatively large number of spectral bands 

available within a limited spectral range. This enables more flexibility in applying a wide range of 

rules in OBIA. For example, although the visual appearance of home gardens and other vegetation are 

the same as mangroves, there is a detectable spectral difference in mangroves within NIR1 and  

red-edge regions (Figure 4a,b). In a recent study of mangrove mapping using SPOT-5 satellite images, 

mudflats within mangrove habitat required manual removal [47]. In this study, the yellow spectral 

band was very useful for extracting buildings, soil and mudflats automatically. The normalized 

differences calculated from NIR1 and Red-Edge bands successfully isolated home gardens and other 

vegetation from mangroves. However, the possibility of repeating this with aerial photographs was 

restricted due to spectral band limitations.  

Most of the healthy green grassy areas near the mangrove boundary had similar spectral profiles to 

the mangrove species at hinterland (Figure 4). Therefore, the main challenge was to separate 

mangroves from the healthy green grass. To achieve this, at different hierarchical levels, contextual 

information, geometry and neighborhood characteristics of objects were used. For example: the 

analysis of relation to border to Candidate-Mangrove-1 and Candidate-Mangrove-2 classes, and the 

normalized difference indices extracted from spectral information of objects related to their parent 

objects were used successfully. Having increased the accuracy of the areal extent of mangroves, the 

extraction procedure was fully automated for pan-sharpened WV2 images.  

Overall, this approach has effectively discriminated different land cover classes surrounding a 

mangrove ecosystem using WV2 images. When using pan-sharpened images, the whole process was 

automated, and can be repeated in a robust manner. There was no manual editing involved. However, 

when applying OBIA to the WV2 images with a spatial resolution of 2 m, there was some manual 

editing involved. The next stage will be to test the transferability of the derived rule set to a different 

location. However, since the rule sets consist of image variables rather than set numerical values for 

class discrimination, they can be tested on other areas easily.  

Aerial photographs were visually appealing, and it was easy to visually identify mangroves, as well 

as gaps between mangroves. When applying OBIA to the aerial photographs, the high spatial 

resolution helped to create small, compact objects in the OBIA environment and then to discriminate 

vegetation and non-vegetation features successfully. However, isolating mangroves from home 

gardens and other vegetation types was difficult. The OBIA rule set was amended considering the 

limitations of spectral and radiometric resolutions of the data. Even though the aerial image dataset 

required manual editing, the problem of having a heterogeneous mixture of vegetation, mangroves, soil 

and water can be overcome by isolating the mangrove coverage before further classification.  

When comparing the above results, regardless of spatial resolution, a relatively large number of 

spectral bands within the limited spectral range of visible and NIR would be an ideal solution for 
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mangrove coverage identification. This is supported by the exploratory spectral separability analysis of 

WV2 images by Heumann [20]. His study demonstrated increasing accuracy when discriminating 

mangroves from other vegetation using WV2 data and a decision tree classification algorithm. 

However, the quantitative analysis of radiometric resolution differences of these datasets must be 

considered, as it may play a significant role on the classification accuracies.  

4.2. Comparison of Mangrove Species Classifications  

As described in Section 3.2, the differences in classification of species composition reflects the 

reliability of using various data sources and advanced algorithms for classification. The overall 

accuracy of the PS-WV2-VIS image classification is very good. The mangrove zonation pattern 

described by Brocklehurst and Edmeades [24] for this area has successfully been identified 

(Figure 6a). Further, these results are supported by the field surveys of Ferwerda et al. [25], who 

identified the presence of Rhizophora stylosa closer towards creek banks or tidal flats, and Lumnitzera 

racemosa and Ceriops tagal located on the high tidal range. The classifications in this study detected 

similar patterns (Figure 6).  

The Brocklehurst and Edmeades [24] study is the only published mangrove mapping study  

in Darwin, Australia, undertaken almost 20 years ago. It does not demarcate individual species boundaries. 

Field investigation of the study area identified many changes that have occurred over this time period. For 

instance, Rhizophora stylosa, and Lumnitzera racemosa were not yet documented. However, since their 

study was done using manual field survey methods and visual interpretation of remote sensing images, 

updating the changes by repeating their data capturing methods would require significant time and financial 

investments. However, the method introduced by this study is repeatable and could be performed at 

reasonable time intervals in order to constantly update mangrove coverage maps.  

When using SVM classification algorithm, attention must be given to the parameter selection of 

SVM architecture. For example: since the performance of SVM is based on the kernel function used 

and its parameters, the penalty parameter that works with an optimal boundary selection of the training 

data has to be considered carefully [21]. In this study, ten was selected as the ideal penalty parameter 

to locate training samples on the correct side of the decision boundary. A larger penalty parameter of 

the SVM exhibits over-fitting of training data, thus reducing classification accuracies.  

Another consideration is the benefit of image fusion. Even in this study, when classifying 

mangroves without pan-sharpening, individual species accuracies were low. Over the years, with the 

development of advanced image/signal processing techniques, image fusion has become a tool that 

improves the spatial resolution of images while preserving spectral information. Many recent studies 

have indicated that these algorithms are more sophisticated for improved information extraction rather 

solely for visualization. For example: Zhang [48] revised recent studies that extracted information 

from pan-sharpened data, and concluded that well pan-sharpened image could improve the information 

extraction. Although an appropriately pan-sharpened image could provide more information for feature 

extraction, there is room for further development of pan-sharpening techniques [35,48].  

When comparing these results with global mangrove studies, special attention must be given to 

the geographic region. Mangrove ecosystems characteristics are different from region to region due to 

soil salinity, ocean current, tidal inundation, and various geomorphic, edaphic, climatic and biotic 
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factors etc. [6,10,49]. Given these considerations, it will be interesting to see if this technique would be 

a viable alternative for the tropical arid or sub-arid mangrove environment as it exhibits greater 

structural complexity than this study area. Kamal and Phinn [15] compared pixel-based and  

object-based image analysis techniques using hyperspectral data for mangrove identification. They 

were not able to achieve reasonably high accuracies for many species using WV2 images. Since their 

study area lies in Queensland, Australia, and the mangrove ecosystems around this area are known to 

be similar to Northern Territory, Australia [4,24] the results can directly be compared to this study.  

Although the most dominating factors for spectral reflectance variation are biochemical and 

biophysical parameters of the plants, the reflectance spectra of mangroves are mostly combined with 

those of underlying soil, water and atmospheric vapour. Therefore, a degradation of classification can 

be expected, especially in the regions where water absorption is stronger [11]. For example, although 

the band selection of PS-WV2-R/NIR1 lies within the ideal spectral range for classified species 

identified by Wang and Sousa [18], the results of some classes were lower than that of PS-WV2-VIS 

classification due to the broad NIR band, which includes a region highly sensitive to the water 

absorption. The classification of WV2-R/NIR1 indicated the lowest accuracy, demonstrating the 

importance of high spectral resolution in achieving high accuracies.  

Most of the traditional approaches for mangrove remote sensing are based on interpretation of aerial 

photographs. Heumann [10] summarized 11 mangrove studies using aerial photographs. Among them, 

Dahdouh-Guebas et al. [50] successfully mapped individual species using image attributes extracted 

from aerial photographs. In that sense, they used visual interpretation techniques rather than 

computational classification. However, in this application, aerial photographs with broad spectral 

bands could not delineate the features available in the mixed pixels due to spectral resolution limitations 

resulting high omission errors. This is also evident from the spectral profile analysis of this study 

(Figure 4). Most of the species were not able to be discriminated from each other. Therefore, although 

the same classifier has been used, the classification from higher spatial resolution aerial photography is 

of lower accuracy.  

When comparing the outcome of these six data sets, apart from the spatial and spectral resolutions, 

radiometric resolution must be taken into account. A sensor with high radiometric resolution is more 

sensitive to capture small differences in reflectance values. Further, electromagnetic characteristics and 

signal-to-noise ratio of sensors can influence the classification accuracies. In this study, it was not 

possible to take these radiometric effects into account when resampling aerial photographs to simulate 

the WV2 image.  

4.3. Accuracy Assessment 

The visual appearance and the statistical values of the PS-WV2-VIS classification showed the 

strongest agreement between generated maps and reference data, according to Congalton [46]. 

By contrast, the classifications of WV2-VIS and WV2-R/NIR1 have the lowest level of agreement 

between species maps and validation data. The maps generated from AP0.14M and AP0.50M have a 

moderate level of agreement to the reference data, having Kappa statistics between 0.60 and 0.64 [46]. 

The results of the error matrix analysis of species classification were lower than the pan-sharpened 

WV2 image classifications (Table 4). Despite the visual clarity and higher spatial resolution of the 
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aerial photographs, the resultant classifications did not generate better accuracy results than the  

pan-sharpened WV2 images undergoing the same treatment and process. It can be clearly seen that the 

WV2 image with a spatial resolution of 2 m was not a successful alternative in this context.  

The error matrix was examined to make more analytical observations about individual species. This 

is a very effective way to describe both errors of inclusion and exclusion of each species represented in 

the classification [46,51]. As explained by Congalton [51], the user’s accuracy is an indication of 

whether the pixels classified on the map actually represent the same species on the ground. The 

probability of the reference pixel being correctly classified is the producer’s accuracy.  

Scrutiny of the error matrix reveals that there is confusion in discriminating Ceriops tagal from 

Bruguiera exaristata and Rhizophora stylosa (Table 4). This is because of their spectral separability 

measures within that specific range and is also due to the patchy distribution pattern. For example: 

mostly Ceriops tagal is mixed with Bruguiera exaristata and Avicennia marina in this study  

area [24,25]. The WV2 images with low spatial resolution were not able to spectrally discriminate 

species and to identify the complex structural situation.  

The error matrix also demonstrated the successful detection of Avicennia marina from the WV2 

images with a low spatial resolution. This is because of the visually distinctive, smooth and similar 

spatial pattern of Avicennia marina on the images (or its distinctive spectral profile). Although most of 

the reference pixels of Lumnitzera racemosa and Rhizophora stylosa were correctly classified as their 

respective classes, their actual representations on maps were poor. This is evident from the lower 

user’s accuracy (Lumnitzera racemosa got 82% and Rhizophora stylosa got 70%) than the producer’s 

accuracy (Lumnitzera racemosa and Rhizophora stylosa equals to 13%).  

Overall, when investigating classifications of both pan-sharpened WV2 images, Lumnitzera 

racemosa and Avicennia marina have the highest values for the producer’s accuracy, indicating that 

the probability of this species being classified as another is low. The smooth and similar spatial pattern 

helps the classification techniques to detect them accurately.  

This is evidence that the combination of high spatial resolution remote sensing data using a 

relatively large number of spectral bands within the visible and NIR region and the SVM non-linear 

machine learning classification technique, is a powerful tool for mixed environments such as 

mangroves. However, spatial autocorrelation will reduce the accuracy up to a certain level. For 

instance, the noise from non-leaf surfaces such as tree branches and background can degrade the 

results of spectral separability of mangroves and thus can reduce classification accuracy at species level.  

In both instances, the aerial photographs showed lower classification accuracies than the  

pan-sharpened WV2 images. For example: at both instances, it was not possible to successfully 

differentiate Bruguiera exaristata and Lumnitzera racemosa from other species, both having lower 

producers’ and users’ accuracies. The user’s accuracy of Bruguiera exaristata, Ceriops tagal and 

Rhizophora stylosa indicates high errors of commission, because other species were highly 

misclassified as them.  

5. Conclusions and Recommendations  

This study compared high spatial resolution aerial photographs with satellite remote sensing data 

for the purpose of mangrove species discrimination in two steps. First, mangroves and non-mangroves 
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were separated using object-based image analysis method. Then, the mangrove coverage only was 

classified into species level. The study demonstrated that a large number of spectral bands with higher 

spatial resolution (pan-sharpened WV2 image) were more accurate than broad spectral bands within 

the blue, green, and red regions, when discriminating mangroves from other features in an image. In 

addition, our findings show that, using a calibrated, high radiometric resolution sensor such as WV2 

allows greater classification automation with reduced manual editing.  

When further classifying down to species level, the highest accuracy (overall accuracy of 89%) was 

obtained from the pan-sharpened WV2 image using five spectral bands within the visible range. The 

pan-sharpened visible image covered the same spectral range with the same spatial resolution as the 

aerial photographs. Therefore, the higher accuracy of the former compared to the overall accuracy of 

68% from resampled aerial photographs is attributed to the increased number of narrow bands 

available for analysis, rather than the total wavelength range. Compared to these results,  

however, there is no considerable difference between the mangrove species map obtained from the 

pan-sharpened Red, Red-Edge and NIR1 bands of WV2 image. Further, this study demonstrated the 

significant increase in classification accuracy when using pan-sharpened imagery, on the condition that 

spectral and radiometric integrity is maintained using an appropriate algorithm such as high pass filter 

pan-sharpening method.  

This study also demonstrated a unique application of the support vector machine algorithm for 

mangrove species mapping. While this advanced image processing technique has previously been used 

in other environments, it is particularly beneficial for mangroves because it efficiently deals with the 

dense, heterogeneous nature of mangrove forests.  

Although the method used in this study is tested on a mangrove forest with a small number of 

species, the obtained results were very impressive. These results provide a valuable contribution to the 

mangrove species mapping methodologies. We would recommend repeating this process on larger 

study areas with greater species diversity in order to determine the efficiency and accuracy of the 

proposed data and SVM methods. The method could also be tested with blue to NIR1 wavelength 

bands of pan-sharpened WV2 on a computationally powerful system. The transferability of the rule set 

developed for OBIA can also be tested on a different data set. Further, to obtain a higher degree of 

species classification accuracies, a quantitative analysis of the effects of differences between 

radiometric resolutions should be investigated. 
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