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ABSTRACT 

Proton exchange membrane fuel cell (PEMFC) has been considered as one of the most 

promising energy sources due to its many desirable properties, including high power density, 

low operating temperature and fast start-up. However, significant technical challenges exist 

before PEMFC can be commercialized. Among them, the modelling and control of PEMFC 

have been recognized as the most critical technical issues. This is because PEMFC‘s inherent 

nonlinearities, time-varying characteristics and tight operating constraints inevitably give rise 

to great challenges for system modelling and control. The objective of this thesis is then 

accurate modelling and efficient control of PEMFC. To accomplish these goals, new 

modelling and control methods are developed and validated. 

First, a new empirical model of PEMFC is developed by mapping performance outputs as 

a function of various operating conditions through regression analysis of support vector 

machine (SVM). Further, the empirical modelling approach is integrated with the 

mechanistic modelling method to develop a combined model of PEMFC, which consists of 

an empirical submodel for the reference voltage and a mechanistic submodel for the 

correction voltage. Simulation results demonstrate that these models have desirable 

properties, including good accuracy, fast response and low computational burden. These 

characteristics lay the solid foundation for the development of control strategies. 

Then, various control strategies are developed, including model predictive control (MPC) 

for regulating PEMFC outputs to the desired value, extreume seeking control (ESC) for 

tracking the maximum efficiency point and linearized-model-based control for PEMFC 



 

vi 
 

thermal management. Simulation results demonstrate that each of the control strategies 

achieves the control objective that it is supposed to accomplish. 

Finally, a full picture of future hydrogen economy in China is given, including drivers for 

transition to the hydrogen economy, energy resources and their potential role in future 

hydrogen production, government‘s policy and support for the research of hydrogen and fuel 

cell technology.  
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Chapter 1 Introduction 

1.1 Overview of fuel cells 

Fuel cells are electrochemical devices that convert the chemical energy of a reaction 

directly into electrical energy. In a typical fuel cell, fuel (hydrogen, methanol, natural gas, 

etc) is fed continuously to the anode (negative electrode) and an oxidant (often oxygen from 

air) is fed continuously to the cathode (positive electrode). The electrochemical reactions 

take place at the electrodes to produce an electric current through the electrolyte, while 

driving a complementary electric current that performs work on the load. As opposed to a 

battery wherein the chemical reactants are exhausted, the fuel cell is an energy conversion 

device which can theoretically produce energy so long as the fuel/oxidant supply to the 

electrodes is maintained. In addition, fuel cells produce electrical energy directly from 

chemical energy. As a result, fuel cells are not limited by the thermodynamic limitation of 

conventional heat engines, such as the Carnot cycle efficiency. Since NASA first adopted 

fuel cell systems as the electric power generating units for their spacecrafts in the 

1950s~1960s, fuel cells have sparked much interest and activity as alternative power 

generators [1]. 

Fuel cells are classified into six types based on the type of electrolyte: proton exchange 

membrane fuel cell (PEMFC), direct methanol fuel cell (DMFC), alkaline fuel cell (AFC), 

phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), and solid oxide fuel 

cell (SOFC). The type of electrolyte determines the electrode reactions and the type of ions 

that carry the current across the electrolyte. In addition, the choice of electrolyte dictates the 

operating temperature range of the fuel cell. Aqueous electrolytes are limited to 
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temperatures of about 200 °C or lower because of their high vapor pressure and rapid 

degradation at higher temperatures. The operating temperature also plays an important role 

in dictating the degree of fuel processing required. In low-temperature fuel cells, all the fuel 

must be converted to hydrogen prior to entering the fuel cell. In addition, the anode catalyst 

in low temperature fuel cells (mainly platinum) is strongly poisoned by CO. In 

high-temperature fuel cells, CO and even CH4 can be internally converted to hydrogen or 

even directly oxidized electrochemically. Table 1.1 provides an overview of the key 

characteristics of the main fuel cell types, while major advantages and disadvantages of each 

fuel cell type are summarized in Table 1.2 [2] [3]. 

Table 1.1 Key characteristics of the main fuel cell types 

 DMFC PEMFC PAFC MCFC SOFC AFC 

Electrolyte Polymer Polymer H3PO4 KLiCO3 ZrO2 
withY2O3 

KOH 

Electrodes Carbon Carbon Carbon Ni and 
Ni2O3 

CatiO3 Ni 

Temperature (K) 300-360 <360 <470 870-920 1120-1320 300-350 

Charge carrier H+ H+ H+ CO3
2− O2− OH− 

Sensitivity of  

CO/S 

Yes/ 

Yes 

Yes/ 

Yes 

Yes/ 

Yes 

No/<10ppm 
H2S (anode) 
<1ppm SO2 
(cathode) 

 
No/<1ppm  

 

Yes/ 

Yes 

Fuel H2 H2 H2 H2 and CO H2 and CO H2 

External 
reforming 

 
Yes 

 
Yes 

 
Yes 

No, for 
some fuels 

No, for 
some fuels 

 
Yes 

Size range (KW) 0.001-0.01 1-250 100-1000 100-2000 5-2000 1-100 

Utilization type 
of energy 

 
Electricity 

Electricity 
 Heat 

Electricity 
 Heat 

Electricity 
  Heat 
  &steam 

Electricity 
  Heat 
  &steam 

 
Electricity 

Efficiency (%) 20-25 -40 -45 45-50 45-50 50-60 

Projected system 
cost ($/kW) 

_ 1000-2000 5000 
(current) 

2000-3000 2000-3000 1900 
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Table 1.2 Advantages and disadvantages of the main fuel cell types 

Type Advantages Disadvantages 

PEMFC 
- Quick system start-up and shut down 
- Proper portable applications 
- Electrolyte has outstanding resistance to gas 
  crossover 
- Highest power density of all the fuel cells 
 

- Expansive catalyst (platinum) 
- Difficulties in thermal/water management 
- Poor CO, S, and NH3 tolerance 
- Complex system configuration       
(external fuel processing system) 

DMFC 
- Simple structure 
- Good for low power/long operating hours 
 

- Poor cell efficiency 
- Poor for high power/short term operation 

PAFC 
- Mature technology 
- Cogeneration is available 
- Excellent reliability and long-term running 
- Relatively inexpensive electrolyte 
 

- Slow reduction in the cathode side   
(requires platinum catalyst) 
- Electrolyte is a corrosive liquid 
- Complex system configuration  

MCFC 
- Fuel flexibility 
- Non-precious metal catalyst 
- High quality waste heat for cogeneration 
- Higher system efficiency than  
PEMFC/PAFC 
 

- Corrosive and mobile electrolyte 
- High temperature promotes material 
problems (degradation/lifetime issues) 
- High contact resistance and cathode 
resistance limit power density  

SOFC 
- Fuel flexibility 
- Non-precious metal catalyst 
- Solid electrolytes allow various shapes of 
cell 
 - High quality waste heat for cogeneration 

- High temperature causes material 
problems such as thermal expansion 
- Sealing issues 
- Limited range of material selection 
- Relatively expansive components and 
Fabrication 
 

AFC 
- Highest efficiency of all the fuel cells 
- Low manufacturing and operation costs 
- Mature technology 

- Poor CO2 tolerance 
- Electrolyte is a corrosive liquid 
- Complex system configuration        

 

1.2 Overview of proton exchange membrane fuel cell 

Since the first application of PEMFC systems was initially reported in the New 

Generation of Vehicles program (PNGV) in the US in 1993 [4], PEMFC research has been 

attracting increasing attention worldwide. PEMFC has shown great potential for 

transportation application due to its many advantages, such as long stack life, high power 

density, low operating temperature, fast start-up, suitability for discontinuous operation [5-8]. 

In addition, a hydrogen-powered PEMFC does only emit water with no carbon dioxide or 

other pollutants.  
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Figure 1.1 shows the schematic of components and working principle of a single cell in 

the PEMFC stack. As can be seen, cathode (positive electrode) and anode (negative 

electrode) are separated by electrolyte (e.g., a polymer membrane). Each electrode is made 

up of a thin catalyst layer (CL) which contains the electro-catalyst, and a porous gas 

diffusion layer (GDL). The GDL, in addition to serving as a mechanical support for the thin 

catalyst layer, allows for the diffusion of the reactant gases to, and removal of products from 

the catalyst sites. The membrane and the electrodes together are commonly referred to as the 

membrane electrode assembly (MEA).  

Now, consider the working principle of PEMFC. On the cathode side, oxygen diffuses 

through the GDL towards the electrolyte and is reduced, while hydrogen is oxidized on the 

anode side. The migration ion H+ forms at the anode and carries the charge through the 

proton exchange membrane towards the cathode side. On the other hand, the electrons pass 

through the current collectors into an external circuit towards the cathode, and water is 

produced on the cathode side. An electrical circuit is created by the ion transfer through the 

electrolyte and the electron transfer through the external circuit.  

 

Figure 1.1 Schematic of components and working principle of a cell in PEMFC stack  
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The bipolar plate (interconnector) is used for separating the cells in a stack, connecting 

them electrically in series, and providing flow channels (see Figure 1.2). In addition, some 

of the flow channels on the plate may act as cooling channel for the purpose of thermally 

management in the stack. The stack is connected to an external circuit via a current collector 

(see Figure 1.3). The reactants are supplied to the electrodes using the manifolds. 

 

Figure 1.2 Exploded view of a basic unit of a PEMFC stack 

 

Figure 1.3 External view of a PEMFC stack 



 

6 
 

1.3 Scope of the thesis 

This thesis addresses four major themes regarding the development of PEMFC: (1) 

modelling, (2) control, (3) maximum efficiency point tracking (MEPT), (4) thermal 

modelling and management. In addition, key issues of building hydrogen economy in China, 

including drivers, resources and technologies, are reviewed. The significance of these 

problems is briefly explained in the following section. 

One of the most important aspects in developing PEMFC is the mathematical modeling. 

The mathematical model serves as an indispensible tool for studying static and dynamic 

behaviour of PEMFC, designing the cells, evaluating control strategies and designing 

experiments; it helps reduce the number of experimental tests required to study the cells 

systematically [9]. Simulation studies can determine the effects of various operating 

conditions on the performance of PEMFC. Therefore, modelling is considered as the first 

priority and discussed in Chapter 2.  

Another fundamental aspect in developing PEMFC is the control strategy. The basic 

control goals of PEMFC are: (a) maintaining the output voltage when variations in operating 

conditions occur, (b) supplying the required power in the presence of rapid variations in the 

external loads. Another control problem particularly for PEMFC is the phenomenon of 

oxygen starvation, which may occur when there is a sudden large increase in the load power. 

In this case, the partial pressure of oxygen drops significantly, accompanied by a rapid 

decrease in cell voltage, which in turn shortens the life of PEMFC [9]. Therefore, a proper 

controller is required to effectively prevent oxygen starvation. To achieve these objectives, a 

series of control strategies are designed and tested in Chapter 3. 
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The core factor that affects its commercialization potential is the cost of electricity 

provided by PEMFC system. The cost of electricity is determined by the capital cost of the 

PEMFC system, the cost of fuel and the efficiency of the whole system. The PEMFC system 

that always operates at the maximum efficiency produces the least expensive electricity. As 

a result, the ability to increase the operational efficiency is a crucial issue for the design of a 

cost-effective fuel cell system with high market competitiveness [10]. Therefore, the 

maximum efficiency point tracking of PEMFC system is discussed in chapter 4.  

Thermal management is crucial for the safe operation of PEMFC as current PEMFC 

operates in a narrow temperature range of 60–80°C and tolerates only a small temperature 

variation [11]. This range is dictated by the material properties of the proton exchange 

membrane, most commonly Nafion. Abnormal operating temperature may devastate the 

performance or even cause permanent damage to the cell. Therefore, thermal study is 

conducted in Chapter 5. 

As an emerging giant of the world economy and international energy markets, China is 

transforming the global energy system by dint of its sheer size and its growing weight in 

international energy trade. How rapidly China‘s energy needs develop and how they are met 

will have far-reaching consequences for the rest of the world. The major concern for 

improving energy security and reducing greenhouse gas emissions, together with the rapid 

development of fuel cell technologies in recent years, is focusing China‘s opinion on options 

for future hydrogen economy. As such, Chapter 6 reviews drivers, resources, and 

technologies for building the hydrogen economy in China. The results will help us 

understand China‘s energy system and its impact on global environment and energy trade.  
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1.4 Challenges and objectives 

1.4.1 Modelling 

The PEMFC system is a complex system with highly coupled electrochemical, 

thermodynamics and fluid dynamics. Especially, PEMFC system‘s inherent nonlinearities, 

time-varying properties and tight operating constraints give rise to great challenges for 

system modelling [12]. These characteristics make traditional linearization-based models and 

control methods only valid in the neighborhood of the optimal operating point. In real world 

applications, however, PEMFC does not usually operate at the optimal steady-state designed 

by the fuel cell manufacturer [13]. The operating point of PEMFC may change frequently 

over a wide operating range due to the fluctuating power demands or varying operating 

conditions. Therefore, novel nonlinear modelling and control method must be employed. 

Models of PEMFC in the literature can be classified into two categories:  mechanistic 

models and empirical models. Mechanistic models refer to those using basic physical or 

electrochemical equations for investigating the details of operation in PEMFC. These 

models usually have very complicated expression with some key physical parameters that 

are even immeasurable. In addition, these models require iterative methods to solve the 

underlying differential and partial differential equations, thereby making them 

computationally intensive. In essence, mechanistic models are suited for the design and 

optimization of the cell components, rather than for control purpose.  

On the other hand, empirical models behave like a black box, focusing only on 

input-output relationship. These models allow quick prediction of the PEMFC‘s 

performance given operating conditions, which lays down a solid foundation for the 
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real-time calculation of the control algorithm. From this perspective, empirical models are 

more suitable for control study. 

Based on the discussion above, it can be concluded that empirical model is the better 

choice for this research due to the requirement of control study. Accordingly, the specific 

objectives for developing the empirical model of PEMFC are to: 

 Acquire PEMFC operation data including manipulated inputs, disturbance inputs and 

performance outputs.  

 Develop the empirical model of PEMFC with the operation data. Pre-processing of 

the raw data may be required. 

 Validate the performance of the proposed empirical model. A performance 

comparison between the novel empirical model and the conventional model is 

preferred. 

1.4.2 Control 

As with modelling, the major barriers for the control strategy are PEMFC‘s nonlinearities 

and time-varying properties. One approach to circumvent these problems is investigating the 

system in real time. Thus, time-dependent parameters can be more readily tracked and a 

model structure can be more accurately estimated. Model predictive control (MPC), 

characterized by its receding horizon strategy, is the one employing such method. The basic 

idea of receding horizon strategy involves real-time estimation of system states and solution 

of the control problem for the given state; the first part of the resulting input signal is 

implemented and the whole process is repeated. 
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In addition, the tight operating constraint of PEMFC also poses challenges for the 

controller design.  In PEMFC system, several constraints must be respected. First of all, the 

supply of sufficient hydrogen and air must be ensured at all times. Moreover, the hydrogen 

and air supply must be coordinated in a way that the pressure difference across the fuel cell 

membrane is small to avoid membrane damage. In other words, the partial pressure 

difference between oxygen and hydrogen should be maintained in a safe range. On the other 

hand, a major advantage of MPC over other control schemes is its ability of handling 

constraints in a systematic and straightforward manner [14]. This is because that the MPC 

formulates the control problem as the optimization of an objective function. By employing a 

proper optimization algorithm, the resulting constrained optimization problem can be 

effectively solved.  

To summarize, MPC has great potential to handle PEMFC‘s inherent nonlinearities, 

time-varying characteristics and tight operating constraints. Accordingly, the specific 

objectives for developing MPC strategy are to: 

 Design the MPC strategy based on the PEMFC empirical model developed 

previously. 

 Select an efficient optimization algorithm to solve the optimization problem 

formulated by MPC. Modification of the optimization algorithm may be required to 

handle the constraints. 

 Test the performance of the proposed MPC strategy. Both static scenario and 

dynamic scenario must be considered. 
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1.4.3 Maximum efficiency point tracking 

The efficiency of the fuel cell system nonlinearly depends on various operating 

conditions. Among them, the air flow supplied to the fuel cell system is one of the most 

significant factors in determining the efficiency. The conventional method of controlling the 

air flow is to stabilize the oxygen supply at a predetermined constant rate for the optimal 

efficiency. However, in practice, the optimal point can deviate from the pre-set value due to 

the varying operating conditions, such as the uncontrollable load [15]. Therefore, the major 

barrier of achieving maximum operating efficiency lies in the real-time estimation of the 

optimal air supply level. Moreover, sufficient air supply must be ensured at all time to 

prevent oxygen starvation. As a result, a maximum efficient point tracking (MEPT) 

controller is required for estimating and tracking the time-varying maximum efficient point. 

Accordingly, the specific objectives are to: 

 Analyse the efficiency of PEMFC under various operation conditions and obtaining 

the efficiency curves with peaks indentified. 

 Design the MEPT controller that can handle the time-varying maximum efficient 

point. 

 Validate the performance of the proposed MEPT controller. The result must be 

compared with that of steady-state efficiency analysis. 

1.4.4 Thermal modelling and management 

Despite a large number of publications on thermal modelling of PEMFC, models suitable 

for thermal management are still lacking. Most existing models are mechanistic models, 
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ranging from one dimensional non-isothermal models [16] to three dimensional 

non-isothermal models [17], [18]. These models are developed for investigating the 

temperature distribution within the cell, rather than for temperature control. As a result, the 

first barrier is the lack of a control-oriented thermal model of PEMFC. On top of that, a 

temperature controller that can handle the nonlinearities and disturbances is required. 

Accordingly, the specific objectives are to: 

 Develop a control-oriented thermal model of PEMFC  

 Design a thermal controller that can handle the nonlinearities and disturbances 

 Validate the performance of the proposed thermal model and controller 

1.4.5 Building the hydrogen economy in China 

China is unique in terms of its vast area, huge population and rapid economic growth. 

These situations provide both opportunities and challenges for the transition towards the 

hydrogen economy. In order to clarify a clear vision of future hydrogen economy in China, 

three factors that should be paid special attention to are: drivers, resources and technologies. 

Accordingly, the specific objectives are to: 

 Identify China‘s main drivers for the transition towards the hydrogen economy 

 Review China‘s energy supply matrix and analysing the potential role of different 

energy resources in future hydrogen economy 
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 Review China‘s policy and government support programs for the R&D of hydrogen 

and fuel cell technologies. Research achievements are also required to be 

summarized. 

1.5 Organization of the thesis  

In Chapter 2, the modelling of PEMFC is discussed. First, the major concerns in the 

development of PEMFC models are summarized and some of the most representative 

examples of PEMFC models in the literature are reviewed. Then, the theory of support vector 

machine (SVM) is briefly introduced and the empirical model of PEMFC is developed using 

SVM. Finally, the combined empirical and mechanistic model is proposed. 

In Chapter 3, the control of PEMFC is addressed. First, a literature review on PEMFC 

control strategy is conducted.  Then, the principle of MPC is briefly reviewed and the 

model predictive controller for PEMFC is designed. Next, the theory of particle swarm 

optimization (PSO) is introduced and the novel MPC strategy is designed based on the 

particle swarm optimizer. Finally, the constrained MPC strategy is designed based on the 

combined model developed previously. The standard PSO algorithm is modified to solve the 

constrained optimization problem formulated by MPC.  

In Chapter 4, the maximum efficiency point tacking problem is formulated and a MEPT 

controller is designed. First, the steady-state efficiency analysis is conducted and efficiency 

curves under different operating conditions are obtained. Then, the theory of extremum 

seeking control (ESC) is introduced and the MEPT controller is designed based on 

extremum seeking control algorithm. Finally, the whole system is simulated and results are 

discussed. 
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In Chapter 5, the thermal management of PEMFC is discussed. First, general issues of 

thermal management in PEMFC are analyzed and the existing thermal models and control 

methods are reviewed. Then, the control-oriented thermal model of PEMFC is developed 

and the model-based thermal controller is designed. Finally, the whole system is simulated 

and results are discussed. 

In Chapter 6, key issues concerning China‘s transition towards hydrogen economy are 

reviewed. First, a brief presentation of China‘s geographic and economic data, together with 

its energy consumption profile, is given. Then, China‘s main drivers for the hydrogen 

economy are discussed. A section on China‘s energy supply matrix and potential sources for 

hydrogen production follows. Finally, the interests in hydrogen and fuel cell technologies 

within China are reviewed. 

Chapter 7 summarizes the major contributions of this thesis and presents the conclusions. 

Future work is also suggested.  
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Chapter 2 Modelling 

Mathematical modeling is an indispensable tool for studying static and dynamic behavior 

of fuel cells, optimizing the design of the cell and evaluating control strategies. With the 

help of mathematical models, the number of experimental tests required can be reduced to a 

large extent. Through simulation studies, one can easily understand the effects of various 

operating conditions, cell temperature distribution or thermal stresses, etc. As such, 

modelling of PEMFC has received much attention over the last decade. 

The major contributions of Chapter 2 includes: (1) The novel empirical models of PEMFC 

are developed using support vector machine (SVM). SVM is a nonlinear generalization 

algorithm, which learns from experimental data to establish input-output relationship 

through regression analysis. The SVM models of PEMFC map the performance outputs as a 

function of various operation conditions and predict future output without the knowledge of 

internal details. (2) The hybrid modelling approach is proposed based on the combination of 

prior knowledge, under the form of mechanistic submodel, with empirical submodel devoted 

to the extraction of knowledge from operating data. The empirical submodel is a SVM model, 

which predicts cell voltage at different stack currents and temperatures under the reference 

hydrogen and oxygen partial pressure. The mechanistic submodel calculates the correction 

voltage by taking account of hydrogen and oxygen partial pressure changes. 

The chapter is organized as follows:  In section 2.1, the major concerns in the 

development of PEMFC models are summarized. In section 2.2, some of the most 

representative examples of PMEFC models in the literature are reviewed. In section 2.3, 

support vector machine is introduced for the modelling of PEMFC. In section 2.4, empirical 
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models of PEMFC are developed using SVM. In section 2.5, the combined empirical and 

mechanistic model of PEMFC is proposed.  

2.1 General features of PEMFC models 

Over the past decades, a great number of PEMFC models have been developed with 

different features and focuses. As the optimal model choice differs for each application and 

user, it is necessary to clarify what the key features of the desired model are before 

developing models. Although vital for the result, these initial criteria often tend to be 

overlooked [1]. Table 2.1 summarizes the key features of PEMFC models.  

 
          Table 2.1 Key features of PEMFC system model 

Approach (mechanistic, empirical) 

State (steady-state, transient) 

Boundary (cell, stack, system) 

Dimension (0D,1D,2D,3D) 

Phenomena to Take into Account 

 

 Approach 

The first criterion in the table is modelling approach. A PEMFC model may fall into one 

of two categories: mechanistic or empirical. A mechanistic (or called ―theoretical‖) model is 

based on in-depth knowledge of the electrochemistry, heat transfer and mass transfer 

involved in the fuel cell, using basic, phenomenological equations such as the 

Butler-Volmer equation for cell voltage, the Stefan-Maxwell equation for gas-phase 
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transport, and the Nernst-Planck equation for species transport. Depending on its focus, the 

model explain the fundamental processes occurring in the fuel cell, such as cell flow pattern, 

current density distribution, voltage and pressure drops. However, these models usually 

require iterative methods to solve the underlying differential and partial differential equations, 

which makes them computationally intensive. Besides, given the highly reactive environment 

within the fuel cell, it is often impossible to measure critical parameters, such as temperature, 

pressure and potential gradients, or species concentration within the cell. Thus, the 

validation of these models is extremely difficult to achieve. In essence, the mechanistic 

models are suited for design and optimization of cell components, rather than for control 

purpose. 

On the other hand, empirical models are based on experimental data specific to each 

application and operating condition. Empirical relationships are employed when the physical 

phenomena are difficult to model or the theory governing the phenomena is not well 

understood. As empirical models typically do not provide as many details as mechanistic 

models do and already, at least to some extent, are validated, they may provide a fast start 

into fuel cell modeling and a good basis for engineering applications. These models allow 

engineers to make quick prediction of the PEMFC‘s performance given operating conditions. 

This is of significant benefits for the control study. However, empirical models are limited to 

a specific application or a narrow corridor of operating conditions. They cannot be used to 

predict the performance of innovative designs, or the response of the fuel cell to parameter 

changes outside of the conditions under which the empirical relationships were developed. 

Empirical relationships also do not provide an adequate physical understanding of the 

phenomena inside the cell. They only correlate outputs with inputs.  
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However, it is worth pointing out that there is no sharp distinction between mechanistic 

and empirical models; for instance, a PEMFC system model may use a more mechanistic 

approach to model the fuel cell and empirical maps of compressors and other devices in the 

system.  

 State 

With respect to temporal changes, the system can be studied at steady-state or transient 

conditions. Steady-state models describe the behavior of PEMFC based on one operating 

point in each step. The main purposes of steady-state models are to design the fuel cell 

components and to choose the fuel cell operating points. However, unsteady-state behaviour 

is also an important issue, especially for the transportation application of PEMFC, where the 

operating conditions constantly change. Transient models are used to predict the 

performance of PEMFC as a function of time under varying operating conditions. 

 Boundary 

The system boundary defines the area of interest of the model. It could be on the 

fundamental cell level including the electrodes and the membrane, the high level with 

individual fuel cells assembled in a fuel cell stack or the higher level with fuel cell system 

consisting of a fuel cell stack and its auxiliary system of compressor, pumps, and so forth.  

 Dimension 

With respect to spatial changes, the problem can be zero-dimensional (lumped model), 

one-dimensional (D), two-D, or three-D, depending on the number of spatial independent 

variables of the resulting model (differential equations). 
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 Phenomena to Take into Account 

PEMFC is a multidisciplinary area. Electrochemical, fluid/thermal dynamics and 

transport phenomena are all involved within a cell. Mass, momentum, species, charge, and 

energy conservation principles provide the fundamental governing equations. Depending on 

its focus, the PEMFC model usually accounts for specific phenomena. 

2.2 Literature review of PEMFC models  

 This section presents a review of the most representative examples of PEMFC models, 

ranging from 0D to 3D models.  A summary of the PEMFC models reviewed is given in 

Table 2.2. 

 0D models (lumped models) 

The simplest approach to dynamic modeling fuel cells is to ignore spatial changes and to 

consider changes with time only. A great number of studies considering lumped-parameter 

models for PEMFC can be found in the literature. Some influential lumped models are 

reviewed as follows. 

Amphlett et al. [2] developed a steady-state model to study the transient behavior of 

PEMFC. This model accounted for activation and ohmic overvoltage. The power output of 

the PEMFC stack was calculated from the current, stack temperature, hydrogen and oxygen 

gas flow rates, and partial pressures. The model was used to predict transient response of the 

cell during start-up, load changes and shut-down. 

Pukrushpan [3] developed a transient model of PEMFC for the control study. The 

transient phenomena captured in the model include the flow characteristics and inertia 
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dynamics of the compressor, the manifold filling dynamics, and consequently, the reactant 

partial pressures. Unlike other system models existing in the literature where a single 

polarization curve or a set of polarization curves for different cathode pressure was used, the 

fuel cell polarization curve used in this model was a function of oxygen and hydrogen partial 

pressures and membrane water content.  

Yerramalla et al. [4] proposed a linear as well as a nonlinear dynamic model of PEMFC. 

The model accounted for energy and mass transfer, as well as electrochemical reactions and 

the inverter load. The voltage response predicted by the model was in the form of a ripple 

for varying loads, which implied that an effective controller was required when there were 

rapid fluctuations in the load.  

Xue et al. [5] developed a system level lumped-parameter model of PEMFC for 

investigating the the mixed effects of temperature, gas flow, and capacitance, with particular 

emphasis focused on system transient behavior. The PEMFC system was divided into three 

control volumes and thus a lumped-parameter model for each control volume was derived. 

Simulation results revealed that complicated dynamic interactions existed among various 

components and mechanisms within the PEMFC system. 

Pathapati et al. [6] developed a PEMFC dynamic model that incorporated the effects of 

charge double layer capacitance, the dynamics of flow and pressure in the anode and 

cathode channels, as well as mass/heat transfer transient features in the fuel cell body. The 

model was used to study the transient response of cell voltage, cell temperature, hydrogen 

/oxygen outlet flow rates, and anode and cathode channel temperatures and pressures to a 
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step change in the load. Simulation results were in good agreement with data from 

laboratory experiments.  

Benziger et al. [7] introduced a new PEMFC design, which was based on coupled stirred 

tank reactors (STRs) and a membrane. This fuel cell can be regarded as a set of reactors 

connected through a set of flow regulators. The gas phase in each reactor compartment was 

assumed to be well mixed. The STR PEMFC was one-dimensional; spatial gradients were 

transverse to the membrane only. A lumped parameter model was then developed to 

examine start-up, and dynamic responses to changes in load, temperature, and reactant flow 

rates. Experimental data were used to estimate several parameters of the model and validate 

the model. 

 1D models  

Bernardi and Verbrugge [8] developed a model for an ion-exchange membrane attached 

to a gas-fed porous electrode. The model accounted for cell polarization characteristics, 

water transport, and catalyst utilization. In addition, the effect of electroosmotic convection 

was included in the model for the first time. It was assumed that the membrane was in a 

fully hydrated state at all times. Nernst-Planck equation was used to describe the flux of 

species in the membrane-free volume and Schlogl‘s velocity equation was used for the 

polyelectrolyte membrane. The simulation results matched well with experimental data. It 

was also found that the polarization resistance resulting from the oxygen reduction reaction 

was important at all current densities, and that water transport by pressure difference and 

electric potential forces was a strong function of the cell operating conditions.  
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Springer et al. [9] presented an isothermal, one-dimensional, steady-state model of 

PEMFC for investigating the water transport mechanisms and their effect on the cell 

performance. The model incorporated water diffusion coefficients, electro-osmotic drag 

coefficients, water sorption isotherms, and membrane conductivities. They applied 

equilibrium conditions between membrane water and electrode water vapor at the 

membrane/electrode interfaces and considered the electro-osmotic and diffusion driving 

forces for water in the membrane and diffusion for water vapor and reactant gases in the 

electrodes to obtain material balances throughout the cell. The data was obtained 

experimentally for 117 Nafion membrane. The results showed that the membrane resistance 

increased as the current density increased. 

Baschuk and Li [10] presented a model for a single cell of PEMFC. This model 

incorporated all the essential fundamental physical and electrochemical processes occurring 

in the membrane electrolyte, cathode catalyst layer, electrode backing and flow channel. 

Specifically, the model considered the effect of the degree of water flooding in the cathode 

catalyst layer and/or cathode electrode backing region on the cell performance. The results 

showed that increasing the cell pressure increased significantly the extent of water flooding 

in the electrode and resulted in maximum flooding at low current densities. 

Djilali and Lu [11] presented a model for PEMFC with a focus on the nonisothermal and 

nonisobaric effects. The model considered (a) diffusion through the porous electrodes of the 

humidified and oxidant gases, (b) the convective and electro-osmotic transport of liquid 

water in the electrodes and the membrane, (c) heat generation and transfer in the fuel cell, (d) 

non-uniform distribution of gas pressure in the porous gas diffusing electrodes, and (e) 

micro-hydrodynamics in very small pores (Knudsen diffusion). The model was solved 
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numerically to analyse fuel cell performance and water transport over a range of operating 

current densities. Non-uniform temperature and pressure distributions were found to have a 

strong influence on the predicted liquid water and vapor fluxes in the anode and cathode 

diffusion layers. 

Weber et al. [12] developed a PEMFC model for investigating the effects of flooding. 

Specifically, the effects of the structural properties of the diffusion media, such as the bulk 

porosity, wettability, thickness, and pore-size distribution on the maximum power were 

studied. 

Ziegler et al. [13] developed a dynamic isothermal PEMFC model with a membrane 

model that accounted for Schroeder‘s paradox. The model took into account: (a) mass 

transport in the gas phase and in the liquid phase as well as the phase transition between the 

two phases; (b) charges and the electrochemical transport. The dynamic effect of liquid 

water formation and transport on the current-voltage characteristics of the fuel cell was 

studied. A hysteresis effect was found in the measured time-dependent current-voltage 

relation. 

 2D models  

Fuller and Newman [14] developed a mathematical model of PEMFC for investigating 

the transport phenomena. A two-dimensional membrane electrode assembly was considered. 

Water management, thermal management, and utilization of fuel were examined in detail. 

The Stefan-Maxwell equation was used to describe the multi-component diffusion of gases. 

Condensation of water was not considered in this study, and the system was modeled as a 

single phase. The effect of operation conditions on transport in the fuel cell system was 
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investigated. It was found that the equilibrium sorption of water between the gas phase and 

the polymer-electrolyte depended strongly on temperature. The rate of heat removal was 

shown to be a critical parameter in the operation of the PEMFC.  

Nguyen and White [15] presented a water and heat management model of PEMFC for 

evaluating the effectiveness of various humidification designs. The model accounted for 

water transport across the membrane by electro-osmosis and diffusion, heat transfer from the 

solid phase to the gas phase, and the latent heat associated with water evaporation and 

condensation in the flow channels. It was found that ohmic loss in the membrane had the 

greatest impact on the voltage loss and back diffusion of water from the cathode side of the 

membrane was insufficient to keep the membrane hydrated (i.e., conductive). It was 

concluded that the anode stream must be humidified to minimize the ohmic loss, and when 

air was used instead of pure oxygen the cathode stream must also be humidified.  

Yi and Nguyen [16] developed an along-the-channel model for evaluating the effects of 

various designs and operating parameters on the performance of PEMFC. The model 

included the convective water transport across the membrane by a pressure gradient, 

temperature distribution in the solid phase along the flow channel, and heat removal by 

natural convection and concurrent and counter-current heat exchangers. Their results 

showed that the performance of PEMFC could be improved by anode humidification and 

positive differential pressure between the cathode and anode. It was also found that efficient 

heat removal was necessary to overcome excessive temperature rise, which led to local 

membrane dehydration. 
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Singh et al. [17] developed a 2-D isothermal model of PEMFC with a focus on transport 

phenomena within the cell. The model accounted for diffusion of the humidified fuel and 

oxidant gases through the porous electrodes, convective and electro-osmotic transport of 

liquid water in the electrodes and the membrane. A finite volume method was applied to 

solve the system of differential equations. The results indicated that the cathode potential 

loss, associated with the slow oxygen reaction rate, had the greatest impact on the current 

densities. It was also found that the anode and cathode water varied considerably along the 

oxidant and fuel flow channels.  

Lee et al. [18] developed a model of PEMFC for investigating the processes, losses, and 

electrical characteristics in a membrane electrode assembly. The model employed a family 

of empirical equations that describe the electrochemical characteristics of the membrane 

electrode assembly in combination with methods for satisfying the electrical requirements of 

fuel cell stacks. Temperature, pressure, and oxygen partial pressure distributions were 

obtained in this study. The results indicated a strong relation between the distributions of 

oxygen partial pressure and the cell current. It was found that the distribution curves were 

very similar in shape, with the region of highest current production corresponding to the 

region of highest oxygen concentration.  

Gurau et al. [19] developed a 2-D mathematical model of PEMFC. The self-consistent 

model for porous media was used for the equations describing transport phenomena in the 

membrane, catalyst layers, and gas diffusers, while standard equations of Navier-Stoka, 

energy transport, continuity, and species concentrations were solved in the gas channels. 

Polarization curves under various operating conditions were obtained by solving transport 

and charge conservation equations, as well as the equations for electrochemical reactions 
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and current density with the membrane phase potential. Effects of various parameters on the 

cell performance were also studied.  

Um et al. [20] developed a transient, 2-D model of PEMFC. The model accounted for 

electrochemical kinetics, current distribution, hydrodynamics, and multi-component 

transport. The governing equations were solved using the finite volume method. The model 

was then used to analyze the effects of hydrogen dilution in the anode feed. The 

electrochemical and flow/transport simulations revealed that, in the presence of hydrogen 

dilution in the fuel stream, hydrogen was depleted at the reaction surface, resulting in 

substantial anode mass transport polarization and, hence, lower current density that was 

limited by hydrogen transport from the fuel stream to the reaction site. 

Ge and Yi [21] developed a steady-state, 2-D model of PEMFC. The model included the 

flow mode (coflow and counterflow), operating conditions and membrane thickness on the 

water transport, ohmic resistance and water distribution in the membrane, current density 

distribution along the channel and performance of PEMFC. The results showed that 

counter-flow mode improved the current density distribution with dry or low humidity gases 

compared to the co-current flow (co-flow) mode. It was concluded that the cell performance 

can be improved by increasing the temperature. 

Pasaogullari and Wang [22] introduced a new theory for liquid water transport in 

hydrophobic gas diffusion layers to simulate flooding in PEMFC. The model accounted for 

two-phase flow, transport of species, and electrochemical kinetics. The effects of operating 

conditions, such as inlet humidity and flow rates, on the two-phase transport and the 

performance of PEMFC were studied. The results showed that flooding of the porous 
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cathode reduced the rate of oxygen transport to the cathode catalyst layer and caused a 

substantial increase in the cathode polarization. It was also found that the humidity level and 

flow rates of reactant streams had significant influence on the cell performance.  

Cao and Djilali [23] developed a 2-D, nonisothermal, nonisobaric model for PEMFC. In 

their research, conservation laws for water and current, together with an empirical 

relationship between electroosmotic drag and water content, were applied to obtain a 

transport equation for water molar concentration and to derive a new equation for the 

electric potential that strictly accounted for variable water content. The model was coupled 

with a computational fluid dynamics model that included the porous gas diffusion electrodes 

and the reactant flow channels. The resulting coupled model accounted for multi-species 

diffusion (Stefan-Maxwell equation), first-order reaction kinetics (Butler-Volmer equation), 

proton transport (Nernst-Planck equation), and water transport in the membrane (Schlogl 

equation). The results showed that water content distributions can be improved in the 

membrane when the cell was operated at a higher pressure on the cathode side than on the 

anode side. 

Meng [24] developed a two-phase non-isothermal PEMFC model for evaluating 

condensation and evaporation rate coefficients. Effects of the inlet humidity and temperature 

variation on liquid water distribution with or without a condensation/evaporation interface 

were studied. In his later work [25], a transient PEMFC model was developed based on the 

previous one. Effects of liquid water transport and heat transfer phenomena on the transient 

responses of PEMFC to a step change in the cell voltage were studied. The results showed 

that under isothermal two-phase conditions, the presence of liquid water in the porous 

materials increased the current density over-shoot and under-shoot, while under the 
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non-isothermal two-phase conditions, the heat transfer process significantly increased the 

transient response time. 

 3D models  

Dutta et al. [26] developed a 3-D model of PEMFC to study current density distributions 

in the membrane. The control volume approach was used. It was found that the membrane 

thickness and cell voltage had a significant effect on the axial distribution of current density 

and net rate of water transport. The prediction of water transport between the cathode and 

anode sides showed the delicate balance of diffusion and electro-osmosis and their effect on 

the current distribution along channel. In their later study [27], the authors extended 

previous work by modeling a complete fuel cell including two flow channels (anode and 

cathode) separated by the membrane electrode assembly. The results indicated that flow 

distribution in both anode and cathode channels were significantly affected by the mass 

consumption patterns on the membrane electrode assembly. It was also found that the water 

transport was governed by both electro-osmosis and diffusion processes. 

Berning and Djilali [28] developed a 3-D model for evaluating the impact of operating 

and geometric parameters on the performance of PEMFC. The model included heat, mass 

and electron transport, while phase change of water was neglected. Distributions of 

temperature, water fluxes, reactant concentrations and current densities were obtained. The 

results showed the existence of significant temperature gradients within the cell, the major 

impact of the 3-D nature on the current distribution, and the distinct three dimensional 

nature of the transport. 
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Mazumder and Cole [29] developed a 3-D model to study the formation and transport of 

liquid water in PEMFC.  In this model, the phase change process was modelled as an 

equilibrium process, while the transport of liquid water was governed by pressure, surface 

tension, gravity and electro-osmotic drag. It was found that under the assumption of no 

liquid water formation, the model consistently overestimated the measured polarization 

behavior. Results also showed that the inclusion of liquid water transport greatly enhanced 

the predictive capability of the model and was necessary to match experimental data at high 

current density. 

Meng and Wang [30] developed a 3-D, single-phase, isothermal model of PEMFC for 

studying the effects of electron transport through the gas diffusion layer. The electron 

transport equation was solved in the catalyst and gas diffusion layers, and in the current 

collector for investigating of the lateral electronic resistance in the gas diffusion layer for the 

first time. It was found that (a) the lateral electronic resistance of the gas diffusion layer was 

affected by the electronic conductivity, thickness of the diffusion layer and gas channel 

width (b) the lateral electronic resistance dominated the current distribution at high cell 

voltages, while the oxygen concentration played a more decisive role at low cell voltages. 

Shimpalee et al. [31] developed a 3-D model of a large-scale PEMFC for studying the 

effects of operating conditions and geometry parameters on the distributions of current, 

temperature, and species mole. It was found that the humidified cathode condition gave 

higher overall performance than dry conditions. 

Wang and Wang [32] derived a 3-D, transient model to study the dynamics of PEMFC. 

The model accounted for transient processes of membrane hydration and gas transport. Step 
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changes in the cell voltage and cathode inlet relative humidity were investigated. The results 

showed the time for PEMFC to reach steady state was in the order of 10s due to the effect of 

water accumulation in the membrane, consistent with theoretical estimation. In addition, 

overshoot and undershoot in the current densities were observed during the step changes in 

certain operating conditions. 

Wang et al. [33] developed a 3-D model, two-phase PEMFC model to study the effects of 

structure on the performance of carbon paper and carbon cloth as gas diffusion media in the 

gas diffusion layers. Their study indicated that the carbon cloth was the better choice as a 

gas diffusion layer material at high-humidity operations due to the low tortuosity of its pore 

structure and its rough textural surface. However, under dry conditions, the carbon paper 

showed better performance because of its more tortuous structure, which prevented the loss 

of product water to dry gas streams, thus increasing the membrane hydration level and 

reducing the ohmic loss.  

Gurau et al. [34] developed a 3-D multi-phase, multi-fluid, transient model for 

investigating the water transport in PEMFC. The model accounted for momentum and 

species transport in the cathode channel, gas diffusion layer, and catalyst layer for each 

phase. The liquid water produced by electrochemical reaction, phase change, and water 

transfer between the ionomer distributed in the catalyst layer and the catalyst layer pores, 

were taken into account. The model predicted liquid water accumulation at the channel-gas 

diffusion layer interface. It was found that liquid saturation increased in the catalyst layer as 

water approached a steady-state level.  
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Ye and Nguyen [35] developed a 3-D, two-phase transport model to predict liquid water 

saturation in the porous transport layer and the catalyst layer of PEMFC. It was found that (a) 

in the cathode catalyst layer, the liquid water saturation was higher under the channel than 

that under the ribs at high current densities (b) in the cathode porous transport layer, 

however, the liquid water saturation level was observed to be lower under the channel than 

that under the ribs.  

Wang [36] developed a 3-D, two-phase model of PEMFC for investigating multiphase 

flows, species transport, and electrochemical processes. The model accounted for 

conservations of mass, momentum, and charge, as well as two-phase transports, in both the 

anode and cathode diffusion media. The results showed that (a) multiphase flows existed in 

both anode and cathode diffusion media at low-humidity conditions, (b) two-phase flow 

emerged near the outlet for a co-flow configuration, and (c) two-phase flow was presented in 

the middle of the fuel cell for a counter-flow configuration. 
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Table 2.2 Summary of PEMFC system models in the literature 

nD State Account for Ref 
0D transient mass balance, heat transfer, and electrochemical kinetics 2 
0D transient mass balance and electrochemical processes 3 
0D transient mass balance, electrochemical processes, and voltage losses 4 
0D transient mass and energy transfer and electrochemical processes 5 
0D transient mass balance, heat transfer, electrochemical processes, and voltage losses 6 
0D transient mass transfer, electrochemical processes, and fuel cell overpotential 7 
1D steady-state mass transfer, charge conservation, electro-osmotic convection, and 

electrochemical processes 
8 

1D steady-state mass transfer, electro-osmotic convection, and electrochemical processes 9 
1D steady-state oxygen transport, electrochemical processes, and water flooding 10 
1D steady-state multicomponent mass, heat, and momentum transfer and charge conservation 11 
1D steady-state two-phase transport, mass and momentum transfer, structural properties and 

water flooding 
12 

1D steady-state/ 
transient 

two-phase flow, water phase change, charge conservation, and mass transfer 13 

2D steady-state multicomponent mass transfer and water and thermal management 14 
2D steady-state heat transfer, mass balance, water management, and electrochemical processes 15 
2D steady-state heat and mass transfer and electrochemical processes 16 
2D steady-state multicomponent mass transfer and electrochemical processes 17 
2D steady-state mass balance, temperature distribution, and electrochemical processes 18 
2D steady-state momentum, heat and mass transfer, and electrochemical processes 19 
2D transient momentum, heat and mass transfer, and charge conservation 20 
2D steady-state mass transfer and electrochemical processes 21 
2D steady-state mass and momentum transfer, two-phase flow, water flooding, charge 

conservation and electrochemical processes 
22 

2D steady-state mass, heat, and momentum transfer and charge conservation 23 
2D steady-state/ 

transient 
mass, momentum, and energy transfer and charge conservation 24, 

25 
3D steady-state momentum and mass transfer and electrochemical processes 26, 

27 
3D steady-state momentum, heat, and mass transfer, charge conservation, and 

electrochemical processes 
28 

3D steady-state mass transfer and phase change 29 
3D steady-state mass and momentum transfer and electron transport 30 
3D steady-state mass, momentum and heat transfer, and water phase change 31 
3D transient momentum and mass transfer and charge conservation 32 
3D steady-state structural performance of gas diffusion layer, mass and momentum transfer, 

and charge conservation 
33 

3D transient mass and momentum transfer, water phase change, and charge conservation 34 
3D steady-state mass and momentum transfer, charge conservation, and two-phase change 35 
3D steady-state mass and momentum transfer, phase change, and charge conservation 36 

 

 

 

 

 



 

35 
 

2.3 Modelling by MATLAB/SIMULINK  

MATLAB (matrix laboratory) is a numerical computing and programming language 

developed by MathWorks. MATLAB provides an interactive environment with hundreds of 

reliable and accurate built-in mathematical functions. These functions provide solutions to a 

broad range of mathematical problems including matrix algebra, complex arithmetic, linear 

systems, differential equations, signal processing, optimization, nonlinear systems, and 

many other types of scientific computations. The most important feature of MATLAB is its 

programming capability, which allows user-developed functions. It also allows access to 

Fortran algorithms and C codes by means of external interfaces. There are several optional 

toolboxes written for special applications such as signal processing, control systems design, 

system modelling, statistics, neural networks, fuzzy logic, symbolic computations, and 

others. Fox example, Libsvm 3.0, support vector machine toolbox developed by Chih-Jen 

Lin et al., will be used in the following section for system modelling. 

MATLAB has been further enhanced by the very powerful SIMULINK program. 

SIMULINK is a graphical mouse-driven program, which provides a graphical editor, 

customizable block libraries, and solvers for modeling and simulating dynamic systems. It is 

integrated with MATLAB, enabling users to incorporate MATLAB functions into models 

and export simulation results to MATLAB for further analysis. 

 The procedures of system modelling using MATLAB/ SIMULINK comprise: 

(1) Selecting blocks. The SIMULINK Library Browser contains a library of blocks 

commonly used to model a system, as shown in Figure 2.1. Generally, system model 

comprises at least a set of input block, output block and operator block. 
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Figure 2.1 SIMULINK Library Browser 

(2) Building the model. One can drag the desired blocks into an empty block diagram 

from the library and then connect these blocks with signal lines to establish 

mathematical relationships between system components (see Figure 2.2). 

 

Figure 2.2 Connection of blocks 

(3) Managing signals and parameters. SIMULINK models contain both signals and 

parameters. Signals are time-varying data represented by the lines connecting blocks. 

Parameters are coefficients that define system dynamics. (see Figure 2.3). 
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Figure 2.3 Configuration signal attribute dialogue box 

(4) Simulating the model. One can simulate the dynamic behavior of the system model 

and view the results as the simulation runs. To ensure simulation speed and accuracy, 

one should carefully determine the solver parameters (see Figure 2.4). 

 

Figure 2.4 Configuration solver parameters dialogue box 
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2.4 Theory of support vector machine  

The support vector machine (SVM) is a nonlinear generalization algorithm proposed by 

Vapnik and Lerner in the sixties [37]. It is firmly grounded in the framework of statistical 

learning theory, or VC theory, which has been developed over the last three decades by 

Chervonenkis and Vapnik [38]-[41]. This theory characterizes properties of learning 

machines which enable them to generalize well to unseen data.  

The SVM has been largely developed at AT&T Bell Laboratories by Vapnik and 

co-workers since its creation. Due to this industrial context, a considerable number of 

researchers have already reported state-of-the-art performance in a variety of applications. 

Initial work focused on optical character recognition (OCR). Osuna et al. [42] applied SVM 

to digital image classification for human face detection. Within a short period of time, SVM 

classifiers became competitive with the best available systems for both OCR and pattern 

recognition tasks. A comprehensive tutorial on SVM classifiers has been published by 

Burges [43]. Later, excellent performances were also obtained in time series prediction and 

regression applications. For example, Muller et al. [44] used SVM for nonlinear time series 

predictions. Smola and Scholkopf [45] published an in-depth tutorial on support vector 

machine regression. 

Due to its excellent performance in regression, SVM shows great potential for nonlinear 

system identification and system control. The major advantages of SVM are presented as 

follows [46]: 

 1) The traditional nonlinear identification methods, including artificial neural networks, 

fuzzy modelling, etc., are based on the empirical risk minimization principle (ERM), which 
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often causes the problem of over fitting, i.e. less training error may result in poorer 

generalization performance. In contrast, SVM employs structural risk minimization (SRM) 

principle, which enables it to pay attention to both expectation risk and generalization 

performance. 

2) By introducing the kernel, SVM avoid difficulties of using linear functions in the high 

dimensional feature space and optimization problem is transformed into dual convex 

quadratic programs. 

3) SVM delivers a unique solution, since the optimality problem is convex. This is an 

advantage compared to artificial neural networks, which have multiple solutions associated 

with local minima and for this reason may not be robust over different samples. 

4) SVM provides a good out-of-sample generalization. By choosing appropriate 

parameters, SVM can be robust, even when the training sample has some bias. 

For clarity and completeness, the following section present a brief introduction to the 

SVM theory, but the readers interested in the complete details of SVM regression should 

refer to the excellent tutorial by Smola and Scholkopf [45]. 

2.4.1 Linear regression  

For a given training data set {(yk xk)|k=1,…,n}с RnXR, xkЄRn are the input data and ykЄR 

are the output data, n is the number of samples. In ε-SV regression [40], the goal of SVM is 

to find a function f(x) that has at most ε deviation from the actually obtained targets yk for all 

the training data, and at the same time is as flat as possible. In other words, any errors will 
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be accepted as long as they are less than ε, any deviation that is larger than this will be 

rejected.  

The case of linear function f has been described in the form as: 

( ) ,                                                                                                                                             (2.1)f x x b   

where < ,> denotes the dot product. Flatness in the case of (2.1) means that one seeks a 

small ω. One way to ensure this is to minimize the Euclidean norm, i.e. ||ω||2 = <ω,ω> 

Formally this can be written as a convex optimization problem: 

21minimize    
2

,
subject to                                                                                                                         (2.2)
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x b y


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   

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The tacit assumption in (2.2) was that such a function f actually exists that approximates 

all pairs (xi, yi) with ε precision, or in other words, that the convex optimization problem is 

feasible. Sometimes, however, this may not be the case, or some errors are allowed. 

Analogously to the ―soft margin‖ loss function [47] which was adapted to SVM by Cortes 

and Vapnik [48], one can introduce slack variables ξi, 𝜉𝑖∗ to cope with otherwise infeasible 

constraints of the optimization problem (2.2). Hence, the formulation becomes [40]: 
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where ξi , 𝜉𝑖∗ > 0, C > 0. The preset constant C is weight factor. The larger C indicates the 

greater impact of the second term in the objective function, which represents the deviations 

that can be tolerated. Therefore, only small deviations can be tolerated in this case. In other 
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word, C determines the trade-off between the flatness of f and the amount up to which 

deviations larger than ε are tolerated. This corresponds to dealing with a so called ε 

–insensitive loss function |ξ|ε described by 

0       if 
                                                                                                                                (2.4)

 otherwise

 


 

 
 


 

 
Figure 2.5 depicts the situation graphically. Only the points outside the shaded region 

contribute to the cost, as the deviations are penalized in a linear fashion. They are named 

support vectors (SVs). 

 

Figure 2.5 Linear SVM regression 

It turns out that in most cases the optimization problem (2.3) can be solved more easily in 

its dual formulation. Moreover, as will be shown next, the dual formulation provides the key 

for extending SVM to nonlinear functions. The standard dualization method utilizing 

Lagrange multipliers is described as follows [49]: 
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where L is the Lagrangian and 𝜂i , 𝜂𝑖∗ 𝛼i , 𝛼𝑖
∗ are Lagrange multipliers. Hence the dual 

variables in (2.5) have to satisfy positivity constraints, i.e. 

(*) (*), 0                                                                                                                                                    (2.6)i i    

where 𝛼𝑖
(∗)refers to 𝛼i  and 𝛼𝑖

∗, 𝜂𝑖
(∗) refers to 𝜂i  and 𝜂𝑖∗. 

It follows from the saddle point condition that the partial derivatives of L with respect to 

the primal variables (ω, b, ξi , 𝜉𝑖∗) have to vanish for optimality. 
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Substituting (2.7), (2.8), and (2.9) into (2.5) yields the dual optimization problem: 
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Dual variables 𝜂i and 𝜂𝑖∗ through condition (2.8) have been eliminated for deriving 

(2.10). (2.8) can be rewritten as follows: 



 

43 
 

* *
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This is the so-called support vector expansion, i.e. ω can be completely described as a 

linear combination of the training patterns xi. In a sense, the complexity of a function‘s 

representation by support vectors is independent of the dimensionality of the input space, 

and depends only on the number of support vectors. Moreover, note that the complete 

algorithm can be described in terms of dot products between the data. Even when evaluating 

f(x) it is not needed to compute ω explicitly (although this may be computationally more 

efficient in the linear setting). These observations will come in handy for the formulation of 

a nonlinear extension. 

Computation of b is done by exploiting Karush-Kuhn-Tucker (KKT) conditions which 

states that at the optimal solution the product between dual variables and constraints has to 

vanish [50], [51]. In the SVM case, this means 
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Following conclusions can be made: (i) only samples (xi, yi) with corresponding 𝛼𝑖
∗ = C 

lie outside the ε - insensitive tube around f, (ii) 𝛼𝑖
∗𝛼𝑖= 0, i.e. there can never be a set of dual 

variables αi, 𝛼𝑖
∗ which are both simultaneously nonzero as this would require nonzero 

slacks in both directions. Finally for 𝛼𝑖
∗ ∈ (0,C),  𝜉𝑖∗ = 0 and moreover the second factor 

in (2.12) has to vanish. Hence b can be computed as follows: 
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*

,   for (0, )  

,   for (0, )                                                                                                              (2.14)
i i i

i i i

b y x C

b y x C

  

  

   

   
 

From (2.12), it follows that only for |f (xi) – yi| ≥ε the Lagrange multipliers may be 

nonzero, or in other words, for all samples inside the ε -tube, the αi, 𝛼𝑖
∗ vanish: for |f (xi) – yi| 

<ε the second factor in (2.12) is nonzero, hence αi, 𝛼𝑖
∗ has to be zero such that the KKT 

conditions are satisfied. Therefore, a sparse expansion of ω exists in terms of xi (i.e., all xi 

are not needed to describe ω). The examples that come with non-vanishing coefficients are 

called support vectors (SVs).  

2.4.2 Nonlinear regression  

The basic idea of SVM nonlinear regression is to set into a high dimensional feature 

space F via a nonlinear function Φ mapping and to do linear regression in this space. Figure 

2.6 shows the basic idea of SVM for nonlinear case. 

 

Figure 2.6 Nonlinear SVM regression 

The expansion in (2.10) becomes: 
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* *

1 1
( ) ( ) and therefore,  ( ) ( ) ( ), ( )                                                   (2.15)

l l

i i i i i i
i i

x f x x x b       
 

       

The difference with the linear case is that ω is no longer explicitly given. In the nonlinear 

setting, the optimization problem corresponds to finding the flattest function in feature space, 

not in input space. 

In (2.15) the kernel function is introduced to address the problem of dimensionality. It is 

defined as a function that corresponds to the dot product of two vectors in feature space: 

( , ) ( ), ( )                                                                                                                                (2.16)i iK x x x x   

The standard SVM to solve the approximation problem is as follows: 

*

1
 ( ) ( ) ( , )                                                                                                                    (2.17)

l

i i i
i

f x K x x b 


    

The coefficients αi and 𝛼𝑖
∗ of (2.17) have been obtained by minimizing the following 

regularized risk functional 

 
2

reg
1

1 + ( )                                                                                                                       (2.18)
2

l

i
R f C L y



   

The term ||ω||2 has been characterized as model complexity, C as a constant determining 

the trade-off and the ε - insensitive loss function Lε (y) has been given by 

0                if ( )
                                                                                                                (2.19)

( )     otherwise
f x y

L
f x y





  
 

   
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2.5 Modelling PEMFC by support vector machine 

2.5.1 Problem formulation 

Assume PEMFC can be described by nonlinear auto regressive moving average 

(NARMA) model: 

( 1) [ ( ), ( 1),..., ( ), ( ), ( 1),..., ( )]                                                               (2.20)y xy k f y k y k y k n x k x k x k n        

where x and y are the input vectors and output vectors of the system. nx and ny denote the 

lags of input and output, respectively. f is an unknown nonlinear mapping. 

Set the input vector as: 

( ) ( ( ), ( 1),..., ( ), ( ), ( 1),..., ( ))                                                                      (2.21)y xu i y i y i y i n x i x i x i n      

Substitute the input vector (2.21) into (2.20): 

( 1) [ ( )]                                                                                                                                     (2.22)y i f u i   

Therefore the training data is {y(i+1), u(i)}. The output can be obtained by using SVM to 

map the data set to high dimensional space: 

*

1
( 1) ( ) ( ( ), ( ))                                                                                                    (2.23)

l

i i
i

y k K u i u k b 


     

Thus, the PEMFC modeling problem can be stated as: developing an SVM model in the 

form of (2.23) based on a training set {y(i+1), u(i)} to approximate the nonlinear mapping f. 

2.5.2 Data preparation 

Constructing a data set containing sufficient representative data points is a critical step in 

developing an SVM model that approximates PEMFC dynamics over a wide operating 
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range. The basic guidelines of constructing data set are provided as follows: (1) the samples 

should cover the entire expected operational range of the SVM model. (2) to prevent some 

elements that have larger original absolute values from dominating the final kernel value, it 

is necessary to carry out some pre-processing of the raw data before feeding them into the 

SVM model. In this research, all the data are scaled linearly to the range of [0,1]. Scaling 

can increase the training speed and assist in selecting optimal SVM hyper parameters. 

In this study, for the sake of comparison with traditional modelling approach, data used 

for SVM modelling are obtained from the PEMFC model developed, presented and 

validated by Pukrushpan et al. [3]. This model is widely accepted nowadays as a good 

representation of the behaviour of an actual PEMFC for control purposes. Most parameters 

used in this model are based on the 75 kW stacks used in the FORD P2000 fuel cell 

prototype vehicle [52]. Figure 2.7 shows schematic of the PEMFC system and Table 2.3 

gives its specifications. However, it is worth pointing out that one can also obtain the data 

from practical experiments. In this way, the SVM model achieves better performance and 

enhances its practical value. 

 

Figure 2.7 PEMFC system showing inputs and outputs [3] 
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       Table 2.3 PEMFC system model specifications 

 
 
Fuel Cell Stack 

Mode 3 × Ballard Mark 700 
Membrane Type Proton Electrolyte 
Maximum Power 75kW 
No. of Cells (n) 381 
Cell Active Area 280cm2 

 
Air Compressor 

Manufacturer Allied Signals 
Type Centrifugal 
Maximum Power 12.5kw 

 

The classical SVM modelling algorithm is only a multi-input but single-output modelling 

method. However, the PEMFC modelling is a multi-input/multi-output (MIMO) modelling 

problem. As shown in Figure 2.7, the PEMFC has two inputs the stack current Ist and the 

compressor motor voltage Vcm and two outputs, the stack voltage Vst and the oxygen excess 

ratio λO2. In the original study by Pukrushpan, the stack current is considered as the 

disturbance input, which corresponds to uncontrollable load demand. The compressor motor 

voltage is modelled as control input to adjust the air flowrate supplied. The oxygen excess 

ratio is a performance output that indicates the oxygen level status in the cathode. The stack 

voltage is also a performance output that directly associates with the load. For the sake of 

comparison, the same inputs and outputs are considered for developing the SVM model in 

this thesis. Therefore, a set of two SVM models have to be generated and each model 

represents one performance output of PEMFC. Figure 2.8 shows the framework of MIMO 

SVM modelling. 

To facilitate the model validation, the input-output data required for developing SVM 

model are obtained by exciting Pukrushpan‘s model with the designed signals 

100+20sin(0.3t)sin(0.4t) and 150+50sintsin(0.5t) for the stack current and the compressor 

motor voltage, respectively. Figure 2.9 shows the input signals and the corresponding 
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outputs. A set of 1000 data is collected from the simulation. The first 500 data are used for 

the identification of SVM models, while the remaining 500 data are used for validation 

purposes.  

 

Figure 2.8 MIMO SVM modelling framework (reproduced from[55]) 

 

Figure 2.9 Input excitation and output response signals: (a) Stack current  
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Figure 2.9 Input excitation and output response signals: (b) Compressor motor voltage  

 

Figure 2.9 Input excitation and output response signals: (c) Stack voltage 
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Figure 2.9 Input excitation and output response signals: (d) Oxygen excess ratio  

2.5.3 Hyperparameter selection  

Another key step in developing SVM model is the selection of a proper set of parameters 

C, ε and kernel parameters, which significantly affect the performance of SVM model. 

However, these parameters cannot be determined mathematically. Fortunately, some basic 

guidelines are provided in the literature [53]. 

The constant ε is used to find the target function that not only lies as close as possible to 

the border of the ε-tube but also is as flat as possible. The larger ε is, the flatter the function 

will be, and thus the fewer support vectors (SVs) exist. However, increasing ε causes larger 

estimation errors. Therefore, the value of ε ought to be determined in a way that it is 

proportional to the input noise level ζ . 
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C is the parameter that represents a trade-off between the model complexity and the 

tolerance to an error larger than ε. Since both C and ε can affect the complexity of the 

function, they should be tuned simultaneously. The principle for deciding the value of C is 

that it is equal to the output range.  

It is also important to choose an appropriate kernel function and assign proper values to 

its parameters. There are many types of kernels: Radial Base Gaussian Function (RBGF) 

kernel, polynomial kernel, hyperbolic tangent kernel, two-layer neural networks kernel, 

B-splines kernel, etc. Among all the kernels, RBGF kernel function is the most popular one 

that ought to be tried first [54], and thusly is used in this study. 

RBGF kernels are given by: 

2

2( , ) exp( )                                                                                                                           (2.24)
2

i
i

x x
K x x




 

 

Polynomial kernels are given by: 

( , ) ( , ) ,      ,  0                                                                                                      (2.25)P
i iK x x x x c p N c     

Hyperbolic tangent kernels are given by: 

( , ) tanh( , )                                                                                                                            (2.26)i iK x x x x   

Generally, proper selection of SVM parameters is a tuning process. Thus, the SVM 

model is first identified with different parameter settings, giving the results shown in Table 

2.4 and Table 2.5. The quality of the approximation is assessed using the root-mean-square 

error (RMSE) between the samples and the SVM model: 

2
p a

1

1RSME ( )                                                                                                                            (2.27)
n

k
y y

n 

   
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where n is the number of samples, yp is the predicted value obtained by SVM model and ya is 

the actual value from PEMFC. In this research, the actual value is generated by 

Pukrushpan‘s model. 

Table 2.4 SVM model of stack voltage with different parameters 

ζ ε C Training 
(RMSE) 

Testing 
(RMSE) 

Number of 
support vector 

20 0.01 10000 0.00412 0.00459 500 
40 0.01 10000 0.00412 0.00434 499 
60 0.01 10000 0.00417 0.00424 500 
40 0.02 10000 0.00948 0.00856 499 
40 0.01  1000 0.00412 0.00432 499 

 

Table 2.5 SVM model of oxygen excess ratio with different parameters 

ζ ε C Training 
(RMSE) 

Testing 
(RMSE) 

Number of 
support vector 

20 0.01 10000 0.00455 0.00406 499 
40 0.01 10000 0.00422 0.00413 498 
60 0.01 10000 0.00440 0.00417 499 
40 0.02 10000 0.00722 0.00748 498 
40 0.01  1000 0.00422 0.00413 498 

 

As can be seen from both tables, ζ has significant impacts on the number of support 

vectors, while ε greatly affects the accuracy. The influence of C is not obvious in this case. 

In order to make a trade-off between the accuracy and the complexity of the SVM, the 

parameters are tuned thusly, ζ  = 40, ε = 0.01, and C = 10000. 

2.5.4 Model Validation  

The SVM models developed are validated by comparing with the traditional SIMULINK 

model in the literature, which was developed, presented and validated by Pukrushpan et al. 

[3]. In the stage of data preparation, the input-output data used for SVM modelling are 



 

54 
 

generated by exciting Pukrushpan‘s model with designed signals. A set of 1000 I/O data is 

collected from the simulation. The first 500 data are used for the identification of SVM 

model, while the remaining 500 data are used for validation purposes. In the stage of model 

validation, the results of SVM model are compared with those of Pukrushpan‘s model. The 

corresponding training and test results are plotted in Figure 2.10 and Figure 2.11. The 

outputs of Pukrushpan‘s model are recorded as the actual outputs in the figure, while the 

outputs of SVM models are depicted as the predicted outputs. The error is defined as the 

difference between the actual value and the predicted value. As can be seen from the both 

figures, the predicted results of SVM model are in good agreement with the actual values. 

In order to quantify the validation of SVM models, the performance index of accuracy is 

calculated using the following equation: 

2
p a a

1

1ACC 1 [( ) / ] 100%                                                                                                  (2.28)
n

k
y y y

n 

 
    
 
 

  

The results are presented in Table 2.6, including both indexes of RMSE and accuracy. The 

quantified results demonstrate that the SVM models are able to compete with traditional 

SIMULINK models in terms of accuracy. The accuracy is maintained above 99% in both 

training and testing experiment, which lays solid foundation for the development of control 

strategy. 

Table 2.6 Quantified performance of SVM models  

Model 
Training Testing 

RMSE ACC RMSE ACC 
Vst 0.0041 99.99% 0.0043 99.99% 
λO2 0.0042 99.87% 0.0041 99.87% 
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Figure 2.10 Performance of the SVM model for stack voltage: (a) Training output 

 

Figure 2.10 Performance of the SVM model for stack voltage: (b) Training error 
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Figure 2.10 Performance of the SVM model for stack voltage: (c) Testing output 

 

Figure 2.10 Performance of the SVM model for stack voltage: (d) Testing error 
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Figure 2.11 Performance of the SVM model for oxygen excess ratio: (a) Training output 

 

Figure 2.11 Performance of the SVM model for oxygen excess ratio: (b) Training error 
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Figure 2.11 Performance of the SVM model for oxygen excess ratio: (c) Testing output 

 

Figure 2.11 Performance of the SVM model for oxygen excess ratio: (d) Testing error 
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2.6 Combined empirical and mechanistic model of PEMFC 

As discussed in the previous section, there are two types of PEMFC models: mechanistic 

or empirical. Each type has its own merits as well as limitations. One the one hand, the 

mechanistic model is based on phenomenological equations and provides adequate physical 

understanding of the phenomena inside the cell. Nevertheless, some sorts of numerical 

methods are required to solve the governing equations, thus making mechanistic models 

computational extensive. One the other hand, empirical models only focus on input and 

output relationship. Therefore, they usually have simple expression and thus provide low 

computational burden. This feature greatly facilitates the development of control strategy. 

However, empirical models are limited to a specific application or a narrow corridor of 

operating conditions. Moreover, the development of empirical models often requires a large 

number of experimental data to cover the entire expected operational range. Particularly, the 

amount of the data needed increases dramatically as the dimensions of inputs increase, and 

some data may not even be available. Therefore, few empirical models can address all 

important variables of PEMFC, such as stack current, temperature, hydrogen and oxygen 

partial pressure. 

It is more desirable to develop a PEMFC model that combines the advantages of both two 

types of models. Motivated by this need, the hybrid modelling approach is employed to 

build the combine empirical and mechanistic model. The proposed model consists of two 

parts: empirical submodel and mechanistic submodel. The empirical submodel is a SVM 

model that concerns about stack current and temperature. The mechanistic submodel takes 

hydrogen and oxygen partial pressure changes into account. In this way, the input 

dimensions of the empirical submodel are reduced to two from four. Therefore, only limited 



 

60 
 

number of experimental data is needed to develop the empirical submodel. Besides, the 

combined model provides low computational burden, which lays a solid foundation for the 

development of the control strategy. Moreover, as the influence of the pressure is studied in 

a mechanistic way, the combined model has generalization ability and can predict PEMFC 

behaviour under any operational pressure. 

2.6.1 Background of the combined model 

In this section, an influential mechanistic PEMFC model is briefly reviewed. It is then 

modified for the combined model in the next section. The parameters used in this model are 

listed in Table 2.7.  

Table 2.7 Summary of model parameters 

Parameters Description Unit Value 
F  Faraday‘s constant C kmol-1 96484600 
R  Universal gas constant J kmol-1 K 8314.47 
N

 
Number of cells - 35 

rk  Constant=N/4F kmols-1 A 9.07x10-8 

2Hk  Hydrogen valve constant kmols-1 atm 4.22x10-5 

2Ok  Oxygen valve constant kmols-1 atm 2.11x10-5 

2H  Hydrogen time constant s 3.37 

2O  Oxygen time constant s 6.47 

1  Constant - -0.9514 

2  Constant - 3.12x10-3 

3  Constant - 7.4x10-5 

4  Constant - -1.87x10-4 

5  Constant - 1.605x10-2 

6  Constant - 3.5x10-5 

7  Constant - 8x10-5 

The proportional relationship between the flow of gas through a valve and the partial 

pressure can be stated as [56]: 
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2

2
2 2

(2.29)                                                                                                             H an
H

H H

q k k
p M

 

 

2

2
2 2

(2.30)                                                                                                              O ca
O

O O

q k k
p M

 

 

where
2Hq is molar flow of hydrogen (kmol s-1), 

2Oq is molar flow of oxygen (kmol s-1), 
2Hp

hydrogen partial pressure (atm), 
2Op oxygen partial pressure (atm), 

2Hk hydrogen valve 

molar constant (kmol(atm s)-1), 
2Ok oxygen valve molar constant (kmol(atm s)-1),

 ank  anode 

valve constant ( 1K mol kg(atm s) ), cak cathode valve constant ( 1K mol kg(atm s) ), 
2HM

molar mass of hydrogen (kg kmol-1), 
2OM molar mass of oxygen (kg kmol-1). 

For hydrogen, the derivative of the partial pressure can be calculated using the perfect gas 

equation as follows [56]: 

2 2 2 2
(2.31)( - - )                                                                                        in out r

H H H H
an

p q q qd RT
Vdt   

where R is the universal gas constant (J kmol-1K-1), T absolute temperature (K), Van volume 

of the anode (l), 
2

in
Hq  hydrogen input flow (kmol s-1), 

2

out
Hq  hydrogen output flow (kmol 

s-1), 
2

r
Hq hydrogen flow that reacts (kmol s-1). 

The relationship between the hydrogen flow and the stack current can be written as [56]: 

2
2 (2.32)

2
                                                                                                                  r

H r
NIq k I
F
  

where N is the number of the series-wound fuel cells in the stack, I the stack current (A), F 

Faraday‘s constant (C kmol) −1, kr modeling constant (kmol(sA)−1). 
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In (2.31), replacing the output flow by (2.29) and the reacted flow by (2.32), taking the 

Laplace transform of both sides of (2.31) and isolating the hydrogen partial pressure, yields 

the following expression [56]: 

2

2 2

2

1
( - 2 ) (2.33)

1
                                                                                                      H in

H H r
H

k
q k I

s
p


  

where s is the Laplace variable, 
2H is the value of system pole associated with hydrogen 

flow, 

2

2

(2.34)                                                                                                                       an
H

H

V
k RT

   

   In the same way, the equations for the partial pressures of oxygen 
2Op can also be 

derived as [56]: 

2

2 2

2

1
( - ) (2.35)

1
                                                                                                         O in

O O r
O

k
q k I

s
p


  

where  

2

2

(2.36)                                                                                                                        ca
O

O

V
k RT

   

In [57], the authors introduce an influential model that describes the polarization curves of 

PEMFC where the fuel cell voltage is the sum of three terms: the open circuit voltage Enernst, 

the activation loss ηact and the ohmic loss ηohmic. The concentration loss cause rapid voltage 

drop only at extremely high current density [58]. Therefore, it is ignored under normal 

operating conditions. In mathematical form, polarization curves can be expressed as: 

(2.37)                                                                                                       cell nernst act ohmicEV      
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The open circuit voltage (reversible thermodynamic potential) Enernst is described by the 

Nernst equation. Using thermodynamic values of the standard state entropy change, the 

expression is: 

2 2

4 51.299- (8.5 10 ) ( - 298.15) (4.308 10 ) (ln 0.5ln ) (2.38)                                 nernst H OE T T p p          

where T is the cell temperature (K). 

The activation loss ηact is a result of the need to cause electron transfer and to break and 

form chemical bonds in the anode and cathode. It can be expressed as: 

21 2 3 4ln ln (2.39)                                                                                         act OT T C T I         

where 
2OC  is the concentration of dissolved oxygen at the gas/liquid interface, I is the stack 

current (A), and those four ξi (i = 1–4) are coefficients. 

The oxygen concentration 
2OC can be expressed as: 

2

2 6 (2.40)
(5.08 10 ) exp( 498 )

                                                                                             O
O

p
C

T


  
 

The ohmic loss ηohmic is due to the resistance of the polymer membrane to the transfer of 

protons and the resistance of the electrode and the collector plate to the transfer of electrons. 

It can be expressed as: 

i nternal
5 6 7( ) (2.41)                                                                                       ohmic IR I T I          

where ξi (i = 5–7) are coefficients. It can be concluded from (2.41) that the ηohmic is 

independent of the oxygen and hydrogen partial pressure. 

The output voltage of the fuel cell stack can be calculated by the expression: 
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                                                                                                                                                    (2.42)st cellV NV  

2.6.2 Combined empirical and mechanistic model  

Mechanistic models are computationally intensive while empirical models needs 

excessive amount of data in the case of multiple inputs. To overcome these problems, the 

combined empirical and mechanistic model of PEMFC is proposed. The empirical 

submodel V0 is a SVM model, which predicts cell voltage at different stack currents and 

temperatures under the reference hydrogen and oxygen partial pressure. The mechanistic 

submodel ΔV calculates the correction voltage by taking account of hydrogen and oxygen 

partial pressure changes. The structure of the model is illustrated in Figure 2.12. 

 

Figure 2.12 Schematic of the combined empirical and mechanistic model [59] 

2.6.2.1 Mechanistic submodel  

It is known that the continuous-time system can be discretized using zero-order holder. 

For instance, given a first-order inertial element in the form of Laplace transfer function: 
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( )                                                                                                                                                 (2.43)kG s
s a




 

its discrete-time state equations can be obtained as, 

( 1) ( ) (1 ) ( )
                                                                                                       (2.44)

( 1) ( 1)

s saT aTkx k e x k e u k
a

y k x k

 
   


     

where u(k) is the input, x(k) is the state, y(k) is the output, Ts is the sample time. 

 (2.33) and (2.35) can be regarded as first-order inertial elements with a = 1/
2H , k = 1/

2 2H Hk   and a = 1/
2O , k = 1/

2 2O Ok  , respectively. As such, in the case of sample time Ts =1s, 

(2.33) and (2.35) can be converted to discrete-time state equations, 

2 2 2
                                                                          (2.45)( 1) 0.7432 ( ) 6085[ ( ) 2 ( )]rH H HP k P k q k K I k   

 

2 2 2
                                                                              (2.46)( 1) 0.8568 ( ) 6787[ ( ) ( )]rO O OP k P k q k K I k     

As shown in (2.38) and (2.39), the hydrogen and oxygen partial pressures influence the 

cell voltage through the terms Enernst and ηact. Let 
2

0
Op  and 

2

0
Hp  stand for the reference 

partial pressures of oxygen and hydrogen, respectively. The changes of oxygen and 

hydrogen partial pressure are defined as the proportional form: 

2 2 2 2 2 2

0 0,                 (2.47)                                                                                        H H H O O Op n p p n p   

where 
2On and 

2Hn are ratios that represent the pressure changes to 
2

0
Op  and 

2

0
Hp  

Substituting (2.47) into (2.38), the thermodynamic potential can be rewritten as: 
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2 2 2 2

2 2

4 5 0 0

0 5

1.299 - (8.5 10 ) ( - 298.15) (4.308 10 ) (ln 0.5ln )

          (4.308 10 ) (ln 0.5ln )                                                                         

w

nernst H H O O

nernst H O

E T T n p n p

E T n n

 



       

     

2 2

0 4 5 0 0

ith 
1.299 - (8.5 10 ) ( - 298.15) (4.308 10 ) (ln 0.5ln )                                       (2.48) nernst H OE T T p p        

 

where 0
nernstE  is the thermodynamic potential under the reference pressures

2

0
Op and

2

0
Hp . 

Substituting (2.40) and (2.47) into (2.39), the total overvoltage can be rewritten as: 

2 2

2 2

2

2

0
1 2 3 4

1 2 3 4 3

0
3

0 0
1 2 3 4

ln ln

     ln ln ln

     ln

with
ln ln                                                                               

 
act O O

O O

act O

act O

T T n C T I

T T C T I T n

T n

T T C T I

    

    

 

    

   

    

 

                                 (2.49)

 

where 0
act  is the activation loss under the reference pressure

2

0
Op .  

Substituting (2.48) and (2.49) into (2.37), the fuel cell voltage can be rewritten as: 

2 2 2

2 2 2

0

0 0 0 0 0 0

5
3

with
( , , ) ( , , ) ( , )

(4.308 10 ) (ln 0.5ln ) ln                                                                               (2.50)

cell

nernst H O act O ohmic

H O O

V V V

V E T p p I T p I T

V T n n T n

 



  

  

      

 

where V0 is the reference voltage obtained under the reference hydrogen and oxygen partial 

pressure, ΔV is the correction voltage calculated by hydrogen and oxygen partial pressure 

changes. As reference hydrogen and oxygen partial pressure are predetermined constants, V0 

can be mapped as a function of the stack currents I and temperatures T by SVM model, 

which will be discussed in the next section. Therefore, (2.50) is the proposed combined 

model, which consists of empirical module V0 and mechanistic module ΔV. 
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2.6.2.2 Empirical submodel 

The empirical module V0 is indentified using SVM modelling method. First, V0 described 

previously is implemented under reference partial pressures 
2

0
Hp = 2.5atm and 

2

0
Op = 1.4atm. 

Figure 2.13 shows the block diagram of V0 developed in the MATLAB/SIMULINK 

environment. Using this simulation model, the input-output data needed for SVM training 

and testing are generated. The input-output data used for SVM modelling are generated by 

exciting the SIMULINK model with the designed signals 10+10sin(0.3t)sin(0.4t) and 

343+15sintsin(0.5t) for the stack current and the temperature, respectively. Figure 2.14 

shows the input signals and the corresponding outputs. A set of 1000 data is collected from 

the simulation. The first 500 data are used for the identification of SVM model, while the 

remaining 500 data are used for validation purposes. Once again, the same steps used in 

previous section are employed for SVM modelling. 

 

Figure 2.13 Block diagram of V0 implemented in SIMULINK [59] 
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Figure 2.14 Input excitation and output response signals of V0: (a) Current  

 

Figure 2.14 Input excitation and output response signals of V0: (b) Temperature  
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Figure 2.14 Input excitation and output response signals of V0: (c) Voltage 

2.6.3 Model validation 

To validate the mechanistic submodel, the predicted values calculated by the mechanistic 

submodel are compared with the experimental data reported by Amphlett et al. [56], which 

are listed in Table 2.8. The experimental data were obtained with temperature of 343K and 

current of 6.66A. The first group is used as the reference value. Therefore, the reference 

voltage V0 = 0.824V, the reference hydrogen partial pressure
2

0
Hp = 2.5atm and the reference 

oxygen partial pressure
2

0
Op =1.4atm. Using (2.50), the correction voltages ΔV and the 

predicted voltage can be calculated for the other four groups. The results demonstrate the 

good performance of the mechanistic submodel, with the maximum error less than 1.5%. 
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Table 2.8 Mechanistic submodel validation 

No 
2Hq

 
(kmol/s) 

2Hp
(atm) 

2Hn  
2Oq

 
(kmol/s) 

2Op
 

(atm) 
2On  Actual  

voltage  
(V) 

Predicted 
voltage 
(V) 

Error 
(%) 

1 44.121 10  2.5   - 42.069 10  1.4   -   0.824     -   - 
2 45.107 10  3.1 1.240 41.244 10  0.6 0.429   0.792   0.799 0.838 
3 45.107 10  3.1 1.240 44.573 10  3.1 2.214   0.851   0.854 0.353 
4 43.315 10  2.0 0.800 41.244 10  0.6 0.429   0.781   0.792 1.408 
5 43.315 10  2.0 0.800 44.573 10  3.1 2.214   0.847   0.847   0 

 

The validation of empirical submodel employs similar method used in the previous 

section. The results of empirical submodel model are compared with those of the 

SIMULINK model. The corresponding training and testing results are plotted in Figure 2.15. 

The outputs of SIMULINK model are recorded as the actual outputs in the figure, while the 

outputs of empirical submodel are depicted as the predicted outputs. The error is defined as 

the difference between the actual value and the predicted value. As expected, the predicted 

results of the empirical submodel are in good agreement with the actual values, as shown in 

Figure 2.15. The quantified performance of the empirical submodel is presented in Table 2.9. 

It can be concluded that the empirical submodel achieves good performance, with accuracy 

above 99.9% in both training and testing phrase. 

Table 2.9 Quantified performance of empirical submodel 

   Training    Testing 
RMSE 0.000275 0.000271 
ACC 99.967% 99.969% 
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Figure 2.15 Training and testing results of the SVM model for V0: (a) Training output 

 

Figure 2.15 Training and testing results of the SVM model for V0: (b) Training error 
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Figure 2.15 Training and testing results of the SVM model for V0: (c) Testing output 

 

Figure 2.15 Training and testing results of the SVM model for V0: (d) Testing error 
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To increase its credibility, the empirical submodel is further tested with the experimental 

data reported by Laurencelle et al. [60], as shown in Figure 2.16. They performed the 

practical experiments on Ballard MK5-E PEMFC stack with rated power of 5kW. The stack 

composed of 36 cells; each cell has a 232 cm2 active area, graphite electrodes, and a Dow 

membrane. In their experiment, the hydrogen partial pressure and oxygen partial pressure 

are both regulated to 3 atm. The data set of cell voltage and current density were obtained at 

temperature levels of 24°C, 31°C, 39°C, 56°C and 72°C, respectively. 

 

Figure 2.16 Characterization of Ballard MK5-E PEMFC stack [60] 

The performance of the empirical submodel developed with the experimental data is 

shown in Figure 2.17. As can be seen, the empirical submodel fits very well with the 

experimental data. The performance is further quantified, giving the results shown in Table 

2.10. As expected, the accuracy of the empirical submodel remains above 99.9%.  
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Figure 2.17 Experimental data and empirical submodel  

 

Table 2.10 Quantified performance of empirical submodel 

Model RMSE ACC 
24°C 0.00042 99.936% 
31°C 0.00039 99.945% 
39°C 0.00034 99.952% 
56°C 0.00035 99.953% 
72°C 0.00039 99.947% 

2.7 Conclusion 

The objective of this chapter is to investigate new methods for PEMFC modelling. First, 

a new empirical model of PEMFC is developed by mapping stack voltage and oxygen 

excess ratio as a function of stack current and compressor motor voltage through regression 
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analysis of SVM. Simulation results demonstrate that the model achieves good 

performance with accuracy above 99% in both training and testing experiment. Further, the 

empirical modelling approach is integrated with the mechanistic modelling method to 

develop a combined model of PEMFC, which consists of an empirical submodel for the 

reference voltage and a mechanistic submodel for the correction voltage. The combined 

model overcomes the disadvantages of both the empirical model and the mechanistic model. 

Compared with the pure empirical model, the combined model can be built with less 

operational data due to the reduction of input dimensions from four to two. In addition, 

unlike the pure empirical model, the combined model has generalization ability as the 

influence of the pressure is studied in a mechanistic way. On the other hand, unlike the pure 

mechanistic model, the combine model has simple expressions and provides low 

computational burden due to the introduction of empirical submodel.  

In the next chapter, various control strategies are developed based on the models built in 

this chapter. Specifically, a model predictive control strategy is developed based on the 

SVM model built in section 2.4 and a constrained predictive control strategy is developed 

based on the combined model built in section 2.5. The control strategies serve to regulate 

PEMFC performance outputs to desired values. Without these control strategies, PEMFC 

would not be able to work safely and efficiently. 
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Chapter 3 Control 

The efficient and stable operation of PEMFC depends on the efficient control of the 

generated voltage/power in the presence of varying operating conditions and disturbances. 

However, PEMFC system‘s inherent nonlinearities, time-varying properties and tight 

operating constraints give rise to great challenges for system modelling and control [1]. The 

traditional modelling and control method is usually based on approximate linearization theory, 

which imposes serious restrictions on the structure of nonlinear systems [2]. Therefore, it is 

difficult to identify an accurate mathematical model of nonlinear systems, such as PEMFC. 

But when investigated in real time, time-dependent parameter can be more readily tracked and 

a model structure can be more accurately estimated [3]. Therefore, using this strategy, the 

controller can serve to achieve the control objectives. Model predictive control (MPC), 

characterized by its receding strategy, is such a methodology. 

The major contributions of chapter 3 include: (1) The model predictive control (MPC) 

strategy is developed using MPC Toolbox of the MATLAB program. The core MPC Toolbox 

algorithm is based on a model of the system to be controlled, a performance index driving the 

selection of the decision variables. Based on the SVM models developed previously, the MPC 

controller performs quite well with respect to maintaining the performance outputs at the 

nominal value during the transient following abrupt changes in the disturbance input. (2) The 

novel MPC strategy is designed using the particle swarm optimization (PSO) algorithm. 

PSO is a population based stochastic optimization algorithm that has significant advantages, 

including, simple, fast and robust. Following the principle of MPC, the PSO is implemented 

in the MPC context for receding horizon optimization. The proposed MPC strategy shows 

satisfactory performance in both static and dynamic test. (3) The constrained MPC strategy 
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is designed and the standard PSO algorithm is modified to hand constraints. A key 

advantage of MPC over other control schemes is its ability of handling constraints in a 

systematic and straightforward manner. To prevent PEMFC from reactant starvation and 

excessive pressure difference across the membrane, dynamic constraints are designed and 

integrated with the MPC strategy. To handle the dynamic constrained optimization problem 

formulated by MPC, the standard PSO algorithm is modified by introducing the constraint 

checking procedure and improving the initialization process of each evolution. The 

constrained MPC stategy can successfully deal with the constraints and achieve good 

performance in tracking reference trajectory. 

The chapter is organized as follows:  In section 3.1, a literature review on PEMFC 

control strategy is conducted. In section 3.2, theory of MPC is introduced. In section 3.3, 

MPC strategy for PEMFC control is designed using the Model Predictive Control Toolbox 

of the MATLAB program. In section 3.4, theory of particle swarm optimization (PSO) is 

introduced and the new MPC strategy is designed based on the PSO optimizer. It section 3.5, 

the constrained MPC strategy is designed based on the combine model developed in the 

previous chapter, and the standard PSO algorithm is modified to hand the constraints .  

3.1 Literature review of PEMFC control methods 

Generally, the control strategies of PEMFC concern: (a) the power output in the presence 

of sudden variations in the uncontrollable load; (b) maximum power and efficiency of the 

system; (c) heat and water management; (d) fuel and air supply. There have been many studies 

focused on the controller design for PEMFC. This section presents a review of some 

representative examples, including proportional-integral-derivative (PID), model predictive 
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control (MPC), fuzzy control and etc. A summary of the controllers reviewed is given in 

Table 3.1. 

 PID  

Serra et al. [4] developed a nonlinear model and linearized it at several operating points to 

use the resulting linear models for control studies. The purposes of the control strategy were 

to regulate the output voltage and to maintain the pressure difference between the anode and 

cathode close to zero to prevent membrane damage. Four different control structures were 

considered, and PI controllers were implemented.  

Zenith and Skogestad [5] presented a method to control the output voltage of a buck-boost 

converter connected to PEMFC. Their strategy was to have the fuel cell connected to the 

external circuit only part of the time, by setting a switch to ON and OFF in the converter. The 

results showed fast response of the system, with transients settling after about 5 milliseconds. 

El-Sharkh et al. [6] studied active and reactive power control of a stand-alone PEMFC. A 

PI controller was implemented to control the stack current by manipulating the inlet flow rates 

of methane and hydrogen. A feedforward controller was used to regulate the inlet oxygen 

flow rate to maintain hydrogen-oxygen flow ratio at a desired level. The output voltage of an 

inverter (overall system power output) was controlled using a PI controller that adjusted the 

inverter modulation index. The results showed the fast response of the fuel cell power plant to 

load changes and the effectiveness of the proposed method for active and reactive power 

output control. 
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Methekar et al. [7] proposed a multi-input multi-output (MIMO) control strategy for 

PEMFC. The objective was to control the power density and average solid temperature. 

Transfer function models obtained from step tests on the distributed parameter PEMFC model 

were used to design controllers. Manipulated variables were selected and paired with the 

controlled variables using the relative gain array (RGA) analysis; the inlet molar flow rate of 

hydrogen was paired with the power density, and the inlet molar coolant flow rate with the 

average solid temperature. The power density was controlled using a PI controller that 

manipulated the hydrogen inlet flow rate. A linear ratio control strategy was proposed, where 

the inlet molar flow rate of oxygen was used as a dependent manipulated variable and 

changed in a constant ratio with respect to the hydrogen inlet molar flow rate. The average 

solid temperature was controlled using a cascade control system. The integral (slave) 

controller regulated the average coolant temperature by manipulating the inlet coolant flow 

rate. The PI (master) controller regulated the average solid temperature by manipulating the 

average coolant temperature set-point. The results showed that the inclusion of the ratio 

controller could improve the performance. 

Woo and Benziger [8] proposed a PID controller to regulate output power of PEMFC by 

limiting the hydrogen feed rate, which was achieved by varying the internal resistance of the 

membrane electrode assembly in a self-draining fuel cell with the effluents connected to water 

reservoirs. The hydrogen feed rate affected the water level in the fuel cell, which in turn 

changed the internal resistance and the current of the fuel cell. The results showed that the 

current responded rapidly to load changes.  It was recommended that this type of regulation 

could be applied to small fuel cell systems where recycling unreacted hydrogen may be 

impractical. 
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Lauzze and Chmielewski [9] developed a feedback control structure for the power control 

of PEMFC. A cascade control structure with two loops was proposed. In the inner loop, a PI 

(slave) controller was used to control the current density by manipulating the cell outlet 

voltage. In the outer loop, a PI (master) controller regulated the cell power density by 

manipulating the current density setpoint. The results showed oscillatory behaviour, as well as 

slow response speed of the output power. It was concluded that the use of a multivariable 

nonlinear control system was necessary to obtain better closed-loop responses. 

  Zenith and Skogestad [10] developed three dynamic lumped-parameter equations 

describing hydrogen pressure in the anode, oxygen fraction in the cathode, and stack 

temperature of a high-temperature PEMFC. For each model, a controller was developed. 

Hydrogen pressure in the anode was controlled by a PI feedback controller with a 

feedforward component. The controller used hydrogen pressure and cell current as 

measurements and manipulated the hydrogen inlet flow rate. Oxygen fraction in the cathode 

was controlled by a feedforward controller. The controller measured cell current and 

manipulated the air inlet flow rate. Temperature was controlled by a proportional (P) feedback 

controller with a feedforward component. The P controller used the cell current and outlet 

voltage as measurements and manipulated the air inlet flow rate. The actual inlet air flow rate 

was selected to be the maximum of the two flow rates calculated by the oxygen and 

temperature controllers. 

Purkrushpan et al. [11] explored the use of model-based control strategies for the air supply 

control problem in PEMFC. In their research, the stack current was considered as disturbance 

input, which corresponded to uncontrollable load. The manipulated input was the compressor 

motor voltage. The performance (controlled) variables were the net power output and the 
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excess oxygen ratio, which was indicative of oxygen starvation. Three different control 

configurations were designed and evaluated. The first configuration was a static feedforward 

controller that calculated the compressor voltage corresponding to the air flow rate needed to 

replenish the oxygen depleted during a current command. The second configuration was a 

dynamic feedforward controller combined with a dynamic feedback (PI) controller to 

improve the robustness of the control system. The third configuration was a high-order 

(observer-based integral-augmented) feedback controller combined with a static feedforward 

controller. The results showed that the oxygen level in the cathode can be successfully 

maintained. However, the net power provided by the fuel cell system is compromised during 

the transients following abrupt changes in the stack current, suggesting a need for power 

management via the use of a secondary power source such as a battery. 

 MPC  

Golbert and Lewin [12] proposed a nonlinear model predictive controller based on a 

reduced-order model of PEMFC. Two control methods, adaptive control and nonlinear model 

predictive control, were proposed by the authors. The adaptive control was realized using a 

standard PI controller with an adaptive gain inversely proportional to the variable process 

steady-state gain. The results showed the performance obtained with the adaptive controller 

was better than that obtained with a conventional PI controller (which had a fixed gain). It was 

further found that the ability of nonlinear model predictive control to track power demands 

was better than that of the adaptive controller.  In their later study [13], model predictive 

control was implemented to track the power demand fluctuations, while at the same time, 

minimizing fuel consumption to achieve the maximum efficiency. The manipulated variables 

were dry hydrogen flow rate, the coolant temperature, and the average current density. The 



 

89 
 

results showed the controller satisfied power demands while providing optimal fuel 

efficiency. 

Arce et al. [14] proposed a predictive controller for power management in a hybrid 

PEMFC vehicle. The objective of the controller was to track power demand and to keep 

batteries close to a desired battery state of charge which was appropriately chosen to 

minimize hydrogen consumption. The controller variables included fuel cell on and off 

modes, battery charge and discharging states, fuel cell power demand and battery power 

demand. The simulation results demonstrated the effectiveness of the proposed controller. 

Vahidi et al. [15] proposed a hybrid configuration, in which ultracapacitors supplemented 

the slow dynamics of PEMFC during fast current transients. A model predictive controller 

was designed for optimal distribution of current demand between the two power sources. The 

controller regulated oxygen level (oxygen excess ratio) and the ultracapacitor‘s state of 

charge by manipulating the compressor motor voltage and the current split proportion. The 

total current demand was considered as a measured disturbance. Simulation results 

demonstrated the good performance of the controller in splitting the demand between the fuel 

cell and the ultracapacitor; the controller achieved smooth transitions from the ultacapacitor 

to the fuel cell and vice versa, in the presence of unmeasured external loads. 

Bordons et al. [16] presented three generalized predictive control (GPC) strategies to 

achieve three different operational objectives for PEMFC: starvation prevention, maximum 

efficiency, and voltage control. The structures of the three control strategies were the same, 

while the difference existed for the measurements and control outputs used by each controller. 

For both starvation prevention and maximum efficiency, their proposed GPC strategies used 
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the oxygen excess ratio and the current as measurements to regulate the controlled output 

(oxygen excess ratio). The only difference between the two strategies lied in the set point of 

the controlled output. To prevent the starvation, the oxygen excess ratio set point was a 

constant value of 2. To maximize the efficiency, however, it was not constant and was set by a 

reference generator, which at every sampling instant calculated the excess ratio set point on 

the basis of the current demand. Their GPC control strategy proposed for tracking the desired 

output voltage, used measurements of the cell output voltage and the current to regulate the 

output voltage. Closed-loop responses of the three GPC strategies were studied. Power 

delivered by the cell under the three control strategies was almost identical with the best 

performance, as it was expected, obtained by the strategy for maximum efficiency. The 

oxygen excess ratio responses showed that the first and second control strategies provided 

safe conditions for starvation prevention, while under the third control strategy (output 

voltage control) dangerous conditions occurred. In summary, each of the predictive control 

strategies achieved the control objective that it was supposed to accomplish. 

 Fuzzy control  

Fuzzy control of PEMFC has received much attention in the past years. Wu and Pai [17] 

developed a fuzzy PID controller to regulate the stack temperature by manipulating water 

flow rate. Results demonstrated that the proposed controller can effectively reduce the 

temperature variation of a reforming integrated fuel cell unit. Zhijun et al. [18] used a fuzzy 

control method to regulate the output voltage by manipulating the anode gas pressure. Results 

showed that the controller could achieve good performance at different levels of the external 

load. 
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 Others  

Kolavennu et al. [19] developed a model reference adaptive controller using the Lyapunov 

method for tracking a time varying power profile in an automobile powered by PEMFC. The 

power required by automobile was calculated based roads with varying slopes. The calculated 

power was used as the controller set-point. The results showed that the adaptive controller had 

superior performance than that of a conventional PID controller. 

Danzer et al. [20] proposed a model-based control structure that comprised a multivariable 

control of the cathode pressure and the oxygen excess ratio for PEMFC. Since the partial 

pressure of oxygen in the cathode flow field was a state variable that is hardly accessible by 

measurement, a tracking observer was employed to estimate this pressure using the measured 

air pressure at the outlet throttle. The controller used the throttle and the oxygen mass flow 

resistance as manipulated variables to regulate the oxygen excess ratio and cathode pressure. 

The effectiveness of the proposed control strategy was demonstrated by a comparison with a 

commonly used combination of feedforward control of the mass flow and PI control of the 

outlet pressure. The results showed that the proposed strategy had superior performance. 
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Table 3.1 Summary of PEMFC controllers in the literature 
Controller Control objectives Manipulate inputs Performance output Disturbance Model Ref 
PI to regulate output stack voltage and to 

maintain the pressure difference 
between the anode and the cathode to 0 

air compressor motor voltage and inlet flow 
rate of hydrogen/oxygen molar fraction and 
the inlet flow rate of hydrogen 

output stack voltage-pressure 
difference 
 

current 
 

0D 4 

PI to control the converter output voltage converter switch output voltage current 0D 5 
PI active and reactive power methane flow rate/modulation index current/output voltage of inverter load 0D 6 
PI to satisfy high power density demand 

and control average solid temperature 
hydrogen and coolant inlet flow rate power density and temperature load 1D 7 

PID to regulate current hydrogen feed rate current load 
resistance 

0D 8 

cascade-PI power control/temperature control/ 
humidity control/oxygen starvation 
prevention 

cell outlet voltage, coolant flow rate, 
cathode temperature set point, cathode air 
flow rate 

current density; temperature; 
relative humidity of the air inside 
the cell; oxygen mole fraction 

load 0D 9 

PI feedback 
/FF/P-FF 

hydrogen pressure control/ 
air-composition control/ stack 
temperature 

hydrogen inlet flow rate, air inflow, air inlet 
flow rate 

hydrogen pressure; oxygen 
concentration; temperature 

load 0D 10 

FF-PI feedback to prevent oxygen starvation compressor motor voltage oxygen excess ratio current 0D 11 

MPC/PI 
adaptive 

to ensure acceptable response time for 
the power demand, while achieving 
high efficiencies over the operating 
range 

current density and coolant inlet 
temperature 

power density load 0D 12 

MPC to regulate the power output of the fuel 
cell and to maximize efficiency 

current density, fuel flow rate and coolant 
channels temperature 

power density load 0D 13 

MPC to improve battery performance and to 
avoid fuel cell and battery degradation 

DC-DC converter gain, oxygen and 
hydrogen flow rates 

motor power demand 

 

road slope 

 

0D 14 

MPC to prevent oxygen starvation air compressor voltage and current split 
proportion 

oxygen excess ratio and the ultra 
capacitor state of charge 

load 0D 15 

GPC to prevent oxygen starvation air compressor voltage oxygen excess ratio current 0D 16 

fuzzy PID to control the stack temperature water flow rate stack temperature current  17 

fuzzy to regulate the output voltage anode gas pressure voltage load  18 

MRAC to track a time-varying power profile current output power  road slope 0D 19 

model-based 
multivariable 

to prevent oxygen starvation mass flow of oxygen and throttle resistance oxygen excess ratio and cathode 
pressure 

current 0D 20 
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3.2 Theory of model predictive control 

In many control problems it is desired to design a stabilizing feedback such that a 

performance criterion is minimized while satisfying constraints on the controls and the states. 

Ideally one would look for a closed solution for the feedback satisfying the constraints while 

minimizing the performance. However, often the closed solution cannot be found analytically, 

even in the unconstrained case since it involves the solution of the corresponding Hamilton 

Jacobi- Bellmann equations. One approach to circumvent this problem is the repeated solution 

of an open-loop optimal control problem for a given state. The first part of the resulting 

open-loop input signal is implemented and the whole process is repeated. Control approaches 

using this strategy are referred to as model predictive control (MPC), moving horizon control 

or receding horizon control [21].  

The thought of ideas for MPC can be traced back to the 1960s. Propoi had suggested the 

core of all MPC algorithms, the moving horizon approach in 1963 [22]. The current 

industrial and academic interest in MPC was started to surge after the first successfully 

implementation of MPC reported by Richalet et al. in 1978 [23]. Over the past decades, a 

wide variety of MPC algorithms have been developed, such as the Dynamic Matrix Control 

(DMC) by Cutler and Ramaker [24], the Generalized Predictive Control (GPC) by Clarke et 

al. [25] and Internal Model Control (IMC) reported by Garcia and Morari [26]. The main 

differences for all these MPC algorithms lie in types of models employed and the cost 

functions to be minimized. After 30 years since the first implementation of MPC in industry 

had been reported, the MPC has now become a standard advanced control technique in 

many process industries. The application area for MPC now covers not only the 
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petrochemicals and refining fields but also in food processing, automotive, metallurgy, pulp 

and paper, aerospace and defense industries [27]. 

MPC is now considered to be a mature technique for linear and rather slow systems.  In 

these cases, MPC employs linear models to predict the system dynamics and considers 

linear constraints on the states and inputs. There are two major reasons for the use of linear 

models: (1) the identification of a linear model is easy; (2) linear models provide good 

results when the system is operating in the neighborhood of the operation point. Besides, the 

use of a linear model together with a quadratic objective function gives rise to a convex 

problem whose solution is well studied with many commercial products available. 

On the other hand, nonlinear systems were considered beyond the realm of MPC. 

However, in many situations the operation of the system requires frequent changes from one 

operation point to another within large operation regimes and, therefore, a nonlinear model 

must be employed. In addition, from a theoretical point of view, the use of a nonlinear 

model changes the control problem from a convex QP to a non-convex Non-Linear Program, 

the solution of which is much more difficult. There is no guarantee, for example, that the 

global optimum can be found. To summarize, the barriers for nonlinear MPC are: (1) the 

difficulty of developing an accurate nonlinear model; (2) the computational problem 

associated with the Non-Linear Program. 

During the last few years some impressive results have been produced in these fields. 

Applications of nonlinear MPC have also appeared in the literature. The majority of 

applications are in the area of refining, one of the original application fields of MPC, where 

it has a solid background. Other important applications can be found in petrochemicals and 
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chemicals. Although the number of applications is still limited, nonlinear MPC has shown 

great potential for high performance control.  

For clarity and completeness, a brief introduction to MPC is provided in the following 

section. But readers interested in the complete details should refer to an excellent review by 

Allgöwer et al. [21]. 

3.2.1 Principle 

Model predictive control is formulated as the repeated solution of a (finite) horizon 

open-loop optimal control problem subject to system dynamics and input and state constraints. 

The principle of model predictive control is illustrated in Figure 3.1. Based on measurements 

obtained at time t, the controller predicts the dynamic behaviour of the system over a 

prediction horizon Tp in the future and determines (over a control horizon Tc ≤ Tp) the input 

such that a predetermined open-loop performance objective is minimized. If there were no 

disturbances and no model-plant mismatch, and if the optimization problem could be solved 

over an infinite horizon, then the input signal found at t = 0 could be applied open loop to the 

system for all t ≥ 0. However, due to disturbances and model-plant mismatch the actual 

system behaviour is different from the predicted one. To incorporate feedback, the optimal 

open-loop input is implemented only until the next sampling instant. The sampling time 

between the new optimization can vary in principle. Typically, it is, however, fixed, i.e., the 

optimal control problem is re-evaluated after the sampling time, δ. Using the new system state 

at time t + δ, the whole procedure－prediction and optimization－is repeated, moving the 

control and prediction horizon forward. 

Summarizing, a standard MPC scheme works as follows: 
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(1) Obtain estimates of the states of the system. 

(2) Calculate an optimal input minimizing the desired cost function over the prediction 

horizon using the system model for prediction. 

(3) Implement the first part of the optimal input until the next sampling instant. 

(4) Continue with (2). 

 

Figure 3.1 Principle of model predictive control [21] 

3.2.2 Mathematical formulation  

Consider a system described by the following nonlinear differential equation 

0 ( ) ( ( ), ( )),     (0) ,                                                                                                                    (3.1)x t f x t u t x x   

subjects to input and state constraints of the form: 
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 ( ) ,   0,                                                                                                                                           (3.2)u t U t     

( ) ,   0,                                                                                                                                           (3.3)x t X t    

Here x(t) Є Rn and u(t) Є Rm denote the vector of states and inputs, respectively. 

Furthermore, the input constraint set U is assumed to be compact and X is connected. For 

example U and X are often given by box constraints of the form: 

min max : { | },                                                                                                                       (3.4)mU u R u u u     

min max : { | },                                                                                                                       (3.5)nX x R x x x     

with the constant vectors umin, umax and xmin, xmax. 

In MPC the input applied to the system is determined by the solution of the following 

finite horizon open-loop optimal control problem, which is solved at every sampling instant: 

( )
 Find                  ( ( ), ( ))min

u
J x t u 



 

 subject to:         ( ) ( ( ), ( )),   ( ) ( ),                                                                                       (3.6)x f x u x t x t     

                          ( ) ,   [ , ],                                                                                                    (3.7)cu U t t T      

                          ( ) ( ),   [ , ],                                                                                  (3.8)c c pu u t T t T t T        

                          ( ) ,   [ , ],                                                                                                   (3.9)px X t t T      

 with cost function:        ( ( ) ( )) : ( ( ), ( ))       pt T

t
J x t u F x u d  



    

Here Tp and Tc are the prediction and the control horizon with Tc≤Tp. The bar denotes 

internal controller variables and  x (⋅) is the solution of (3.6) driven by the input signal  u

(⋅) : [t, t + Tp] → U under the initial condition x(t). The distinction between the real system 

variables and the variables in the controller is necessary, since even in the nominal case the 

predicted values will not be the same as the actual closed-loop values. The difference in the 
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predicted and the real values is due to determination of the applied input via a 

re-optimization (over a moving finite horizon Tc) at every sampling instant. 

The cost functional J is defined in terms of the stage cost F, which specifies the 

performance. Often, a quadratic form for F is used: 

 ( , ) ( ) Q( ) ( ) R( )                                                                                       (3.10)T T
s s s sF x u x x x x u u u u       

Here xs and us denote a desired reference trajectory, that can be constant or time-varying. 

The deviation from the desired values is weighted by the positive definite matrices Q and R. 

In the case of a stabilization problem (no tracking), i.e., xs = us = constant. 

The state measurement enters the system via the initial condition in (3.6) at the sampling 

instants, i.e., the system model used to predict the future system behavior is initialized by the 

actual system state. Since all state information is required for the prediction, the full state 

must be either measured or estimated. (3.8) fixes the input beyond the control horizon to u(t 

+Tc). 

3.3 Model predictive controller design 

The objective of the proposed MPC strategy is to ensure that the performance outputs of 

PEMFC maintain the set point when sudden change in the load demand occurs. For the sake 

of comparison, the PEMFC system used in this section is the same one studied by Pukrsphan, 

which is reviewed in Chapter 2. The performance outputs of the PEMFC are the stack 

voltage and the oxygen excess ratio. The manipulated input is the compressor motor voltage. 

The disturbance input is the stack current, which corresponds to the uncontrollable load 

demand. Figure 3.2 shows the schematic of the whole control system. 
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Figure 3.2 Schematic of the PEMFC system and the controller [28] 

Based on the SVM models developed in Chapter 2, the model predictive controller is 

designed using the Model Predictive Control Toolbox of the MATLAB program [29]. The 

Model Predictive Control Toolbox is a powerful tool for the design, analysis, and 

implementation of the model predictive control algorithm. It provides a convenient graphical 

user interface (GUI) for the model predictive controller design. The core MPC Toolbox 

algorithm is based on a model of the system to be controlled, a performance index driving 

the selection of the decision variables. 

The schematic of the proposed model predictive controller and the SVM models 

implemented in the MATLAB/SIMULINK environment is shown in Figure 3.3. When there 

is an MPC block, the natural choice is to associate the manipulated input, i.e. the compressor 

motor voltage, with the MPC block output port (―mv‖ port) and PEMFC outputs, i.e. the 

stack voltage and the oxygen excess ratio, with the MPC block‘s input port (―mo‖ port).  

The stack current is considered as disturbance input, which is connected to the MPC block‘s 
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―measured disturbance (md)‖ port. The desired outputs are two constants, which are set as 

references and associated with the MPC block‘s ―ref‖ port. 

 

Figure 3.3 PEMFC control system implemented in SIMULINK (reproduced from [30]) 

The model predictive controller comprises an internal model for the prediction of system 

behaviour and computation of the control movements. The MPC toolbox requires the model 

used in controller design to be affine, i.e., a linear, time-invariant (LTI) system describing 

deviations from a nominal condition. One can define such a model by creating a state space 

model or linearizing a SIMULINK model. In this study, a state space model is created by 

using linearized system matrices, as provided in [31].      

 Once the internal plant model has been defined, the remaining design decisions 

comprise [30]:      

(1) Specifying signal properties and assigning their nominal values. In this study, the 

manipulated variable is the compressor voltage Vcm, the measured disturbance is the stack 
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current Ist, the outputs are the stack voltage Vst and the oxygen excess ratio λO2.  The 

nominal value for Vst and λO2 are 250 and 2.33. 

(2) Specifying controller properties. The selection of prediction horizon P and control 

horizon M is a tuning process. The designers usually choose P and M such that controller 

performance is insensitive to small adjustments in these horizons [29]. Here, the prediction 

horizon and the control horizon are both set to 3 samples.  The control interval is set as 0.1 

time unit. 

(3) Specifying constraints. The oxygen excess ratio and the compressor motor voltage 

have lower bound, 1 and 0, respectively.  

(4) Weight tuning. The weights specify the trade-off between robustness and response 

speed. The weight for output is set to 1.0, and the weight for manipulated variable is set to 

0.1. 

For the purpose of comparison, the objective of the proposed model predictive controller 

is the same one adopted in [31], that is to maintain the oxygen excess ratio λO2 = 2.33 and the 

stack voltage Vst = 250 during the transient following abrupt changes in Ist. Besides, the time 

evolution of the stack current that acts as an input disturbance to the system is shown in 

Figure 3.4(a). Once again, the time evolution of the stack current is set as the same one 

adopted in [31]. The corresponding variation in the compressor motor voltage, the 

manipulated input, is shown in Figure 3.4(b). The time evolution of the performance outputs, 

the oxygen excess ratio and the stack voltage are shown in Figure 3.4(c) and Figure 3.4(d), 

respectively.          
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The results displayed in Figure 3.4(c) and Figure 3.4(d) show that the proposed controller 

performs quite well with respect to maintaining the performance outputs at the nominal 

value consistent with a given input level of the stack current. Besides, no overshoot is 

observed in Figure 3.4(c) and Figure 3.4(d). This is favorable as no redundant power is used 

to produce the unnecessary overshoot. However, the proposed controller suffers from some 

deficiencies. Its response speed is relatively slow, which leads to long settling times as 

shown in Figure 3.4(c) and Figure 3.4(d). 

 

Figure 3.4 Performance of the MPC: (a) Stack current 
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Figure 3.4 Performance of the MPC: (b) Compressor motor voltage 

 

Figure 3.4 Performance of the MPC: (c) Stack voltage 
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Figure 3.4 Performance of the MPC: (d) Oxygen excess ratio 

3.4 MPC strategy integrated with particle swarm optimization 

3.4.1 Theory of particle swarm optimization 

Particle swarm optimization (PSO) is a population based stochastic optimization method 

first introduced by Kennedy and Eberhart in 1995 [32]. Since then, PSO has become one of 

the most promising global optimizing techniques. Its mechanism is inspired by the social 

behaviour displayed by various species like bird flocking or fish schooling. The PSO system 

consists of a population (swarm) of potential solutions called particles. These particles move 

through the search domain with a specified velocity in search of optimal solution. Each 

particle updates its velocity according to its previous best position. The best positions are 

distinguished as personal best and global best.  
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It has been demonstrated that PSO achieves better results in comparison to other 

evolutionary algorithms, such as genetic algorithm (GA). The difference between PSO and 

GA lies in how to change the population/swarm from one iteration to the next. In GA, 

genetic operators like selection, mutation and crossover are used whereas in PSO, the 

particles are modified according to two formulas after each iteration. Conceptually, in PSO, 

the particles stay alive and inhibit the search space during the whole run, whereas in GA, the 

individuals are replaced in each generation. PSO is a more robust and fast algorithm 

compared to GA and it can solve nonlinear, non-differentiable, and multi-modal problems, 

generating a high-quality solution within shorter calculation time and more stable 

convergence characteristic. 

For clarity and completeness, a brief introduction to PSO is provided in the following 

section. But readers interested in the complete details should refer to reference [33]. 

A fixed number of solutions (called particles in a PSO context) are randomly initialized 

in a d-dimensional solution space. A particle i at time step t has a position vector: 

1 2( , ,..., )t t t t
i i i idX x x x  

and a velocity vector: 

1 2( , ,..., )t t t t
i i i idV v v v  

The maximum velocity is represented as: 

max max1 max2 max                               ( , ,..., )t t t t
i i i i dV v v v  

The velocity Vi
t of each particle is clamped to a maximum velocity Vimax

t which is specified 

by the user. Vimax
t determines the resolution with which regions between the present position 
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and the target position are searched. Large values of Vimax
t facilitate global exploration, while 

smaller values encourage local exploitation. If Vimax
t is too small, the swarm may not explore 

sufficiently beyond locally good regions. On the other hand, too large values of Vimax
t risk 

the possibility of missing a good region [34]. 

The best previous position (the position giving the best fitness value) of the ith particle is 

recorded and represented as: 

1 2                               ( , ,..., )i i i idp p p p  

The best particle among all the particles in the population is represented as: 

1 2                               ( , ,..., )g g g gdp p p p  

The PSO algorithm iterates updating the velocities and positions of the particles until a 

stopping criterion is met (usually a number of times or until a minimum error is achieved). 

The update rules are: 

1
1 1 2 2( ) ( )                                                                                                 (3.11)t t t t t t

id id id id gd idv wv c r p x c r p x       

1 1                                                                                                                                              (3.12)t t t
id id idx x v    

where w is inertia weight. r1 and r2 are two random numbers between (0,1). c1 and c2 are two 

constants called cognitive and social acceleration coefficients respectively.  

The velocity update of a PSO particle given in (3.11) consists of three parts, as shown in 

Figure 3.5. The first part represents particle‘s previous velocity, which serves as a memory 

of the previous flight direction. This memory term can be visualized as a momentum, which 

prevents the particle from drastically changing its direction and biases it towards the current 

direction. The second part is called the cognition part and it indicates the personal 
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experience of the particle. This cognition part resembles individual memory of the position 

that was best for the particle. The effect of this term is that particles are drawn back to their 

own best positions, resembling the tendency of individuals to return to situations or places 

that were most satisfying in the past. The third part represents the cooperation among 

particles and is therefore named as the social component [35]. This term resembles a group 

norm or standard which individuals seek to attain. The effect of this term is that each particle 

is also drawn towards the best position found by its neighbor. The balance among these 

three parts determines the balance of the global and local search ability and therefore the 

performance of a PSO [36]. 

 

Figure 3.5 Schematic of velocity updating in PSO 

The inertia weight w is employed to control the impact of the previous history of 

velocities on the current velocity, thereby influencing the trade-off between global and local 

exploration abilities of the particles. It can be a positive constant or even a positive linear or 

nonlinear function of time. A larger inertia weight encourages global exploration while a 

smaller inertia weight tends to facilitate local exploration to fine-tune the current search area. 

Suitable selection of the inertia weight provides a balance between global and local 
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exploration abilities and thus requires less iteration on an average to find the optimum [37]. 

Generally, for initial stages of the search process, large inertia weight to enhance the global 

exploration (searching new area) is recommended while, for last stages, the inertia weight is 

reduced for local exploration (fine tuning the current search area). Time-varying inertia 

weight was introduced in [38].   

c1 and c2 represent the weighting of the stochastic acceleration terms that pull each 

particle towards personal best and global best positions. Therefore, adjustment of these 

constants changes the amount of tension in the system. Small values of these constants allow 

particles to roam far from the target regions before tugged back, while high values result in 

abrupt movement toward, or past, target regions [39]. The constants r1, r2 are the uniformly 

generated random numbers in the range of [0, 1]. 

Implementing PSO algorithm by mathematical programming is a highly skilful job. 

Fortunately, some software packages have already been developed. This study employs a 

MATLAB PSO toolbox developed by Birge [40]. 

3.4.2 Particle swarm optimization in the MPC context 

The objective of the new MPC strategy is to regulate the output voltage of PEMFC to the 

reference trajectory by manipulating the stack current and the compressor motor voltage.  

The MPC strategy employs the SVM models developed in Chapter 2 as the predictive model. 

PSO is applied to solve the optimization problem formulated by MPC. The schematic of 

proposed MPC algorithm is shown in Figure 3.6. 
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Figure 3.6 Schematic of the proposed MPC integrated with PSO [41] 

The predictive output voltage for p steps ahead is obtained by the SVM model: 

*
p

1

( ) ( ) ( ( ), ( ))          1                                                                               (3.13)
l

i i
i

y k j K i k j b j p 


       U U  

Due to model-plant mismatch and external disturbance, there exist difference between the 

predictive output and the actual output, which is called predictive error. Assuming the actual 

output voltage at k instance is y(k), the predictive error at k instance is: 

pe( )= ( )- ( )                                                                                                                                                      (3.14)k y k y k  

The predictive output voltage of feedback system for p steps can be defined as: 

p( ) ( ) e( )                                                                                                                                     (3.15)y k j y k j k     

Reference trajectory of output voltage is introduced to avoid excessive movement of 

control input, which is defined as: 

d sp( ) c ( ) (1 c ) ,          1 , 0 c 1                                                                                    (3.16)j jy k j y k y j p         

where ysp is the set point of output voltage. c is an adjustable parameter, called softness 

coefficient. 
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The optimization problem for the model predictive controller is the minimization of the 

sum of squared errors between the referenced trajectory and the predictive output, with an 

additional penalty imposed on excessive changes in the manipulated variables: 

 
2

d
1

2

1
( ) ( ) ( )   1 , 1 , 0,  0       ( ) ( 1)          (3.17)

p

j j i
j

l

i
i

J k q y k j y k j j p i l q rr u k i u k i
 

                   

where ŷp(k+j) is the predicted output voltage of PEMFC, p is predictive horizon, u(k+i) is 

the manipulated variable at time k+i, l is control horizon, and qj and ri are weight factor. 

Then PSO algorithm is employed to solve the optimization problem. Define the position 

vector of a particle as follows: 

                                           =[ ( ), ( 1),..., ( 1)]                                                                          (3.18)t
iX u k u k u k P    

The PSO algorithm can be summarized by Figure 3.7: 

 

Figure 3.7 Flowchart of the PSO algorithm [41] 
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The proposed MPC algorithm is simulated in the MATLAB/SIMULINK environment. 

To demonstrate the effectiveness of proposed MPC strategy, both static scenario and 

dynamic scenario are considered. For static scenario, PEMFC is considered to work at rated 

power and the set point of the output voltage is a constant. For dynamic scenario, the 

reference trajectory contains two step changes. The sample time is set as 1 second for both 

scenarios. 

Figure 3.8 shows the tracking curves of PEMFC voltage in static test. In addition, various 

values of softness coefficient are also tested to investigate its impact to system performance. 

The results demonstrate that the proposed MPC strategy is able to control PEMFC to reach 

the steady state. The results also indicate that, as c decreases, the system reaches the rated 

voltage with fewer steps and thus less time.  However, decreasing c will also weaken the 

robustness of the system. In other word, there exists a trade-off between convergence speed 

and robustness of the control system.  

The result of dynamic test is depicted in Figure 3.9. One can observe that the controller 

forces PEMFC voltage to track the reference trajectory to reach new steady state. The result 

reveals that the proposed MPC strategy has strong robustness. 
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Figure 3.8 Performance of the proposed MPC: (a) static scenario  

 

Figure 3.8 Performance of the proposed MPC: (b) dynamic scenario 
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3.5 Constrained MPC with modified particle swarm optimization 

Based on the combined empirical and mechanistic model developed in Chapter 2, the 

constrained MPC strategy is designed in this section.  A key advantage of MPC over other 

control schemes is its ability of handling constraints in a systematic and straightforward 

manner [42].  In this section, dynamic constraints are designed and the standard particle 

PSO algorithm is modified for constraint handling. In addition, the modified PSO is 

accelerated by improving the initialization process based on the optimal control sequence 

obtained at the previous sampling period. 

The schematic of the constrained MPC is depicted in Fig. 3.9. The objective of the 

controller is to track the reference trajectory of the output voltage Vr. Meanwhile, the 

controller prevents PEMFC from reactant starvation and excessive pressure difference 

across the membrane. To achieve this, dynamic constraints are designed and standard PSO 

algorithm is modified to solve the resulting constrained MPC problem. 

 

Figure 3.9 Framework of the constrained MPC [43] 
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3.5.1 Formulation of constrained MPC for PEMFC 

MPC is formulated as the repeated solution of a finite horizon open-loop optimal control 

problem subject to system dynamics and input and state constraints. The optimal current and 

future control input are calculated by minimizing the objective function. Typically, the 

objective function is defined as the difference between set points and predicted outputs. 

Only the optimal current input is applied to the plant, and this procedure is repeated at the 

next sampling instance (called receding horizon principle). In this study, the objective 

function of the MPC for PEMFC is defined by: 

1
( ( ) ( )) ( ( ) ( )) ( ) ( )                                          (3.19)

N
T T

p r p r
i

J V k i V k i Q V k i V k i u k i R u k i


              

where N is the predictive horizon; Vp(k + i) is the predicted output of the system at instant k 

+ i through models based on information available at instant k; Vr(k + i) is the desired output 

at instant k + i; Δu(k + i) = u(k + i) - u(k + i −1) is the predicted change in the control input; 

Q >0, R=R
T ≥0. The control horizon is set to be equal to the predictive horizon. 

Reference trajectory of output voltage is introduced to avoid excessive movement of the 

control input, which are defined as: 

( ) ( ) (1 )                                                                                                                       (3.20)i i
r spV k i c V k c V     

where Vr(k + i) is the reference trajectory of the output voltage at time k + i, V(k) is the 

actual output voltage at time k, Vsp is the set point of the output voltage and c is an adjustable 

parameter (0 <c< 1). 
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One of the most important advantages of the MPC over other control schemes is its 

ability to deal with constraints in a systematic and straightforward manner. In the PEMFC 

system, several constraints must be respected. 

In Chapter 2, (2.45) describes the relationship between stack current and hydrogen partial 

pressure, and (2.46) describes the relationship between stack current and oxygen partial 

pressure. As shown in both equations, one of the most important challenges for the PEMFC 

controller is to ensure sufficient amount of reactants – hydrogen and oxygen –  provided 

when fuel cell stack current abruptly changes due to the uncontrollable load. When a large 

load is applied to the fuel cell, the sudden increase in the stack current can cause the 

reactants starvation if the reactants cannot be replenished immediately and sufficiently. This 

catastrophic event permanently damages cells and limits the power response of the system. 

Therefore, excessive amounts of hydrogen and oxygen should be ensured at all times: 

2
                                                                                                                                                 ( ) 2 ( ) 0 (3.21)H rq k K I k   

2
                                                                                                                                                     ( ) ( ) 0 (3.22)O rq k K I k   

In addition, the hydrogen and air supply must be coordinated in a way that the pressure 

difference across the fuel cell membrane is small to avoid membrane damage [44]. 

Therefore, the partial pressure difference between oxygen and hydrogen should be 

maintained in a safe range. It is mentioned in some documents that the biggest pressure 

difference should be 0.02 MPa to 0.05 MPa [45]. Besides, membrane dehydration in anode 

affects pressure more than that in cathode. Thus, for the sake of membrane humidity, 

hydrogen partial pressure must be maintained lower than oxygen partial pressure [45]. In 

this study, the pressure difference between oxygen and hydrogen is maintained in the 

following range: 
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2 2
                                                                                                                                           0 ( ) ( ) (3.23)O HP k P k p  

 

where δp is the maximum allowable pressure difference, which is assumed to be 0.3atm 

(approximately 0.03MPa). 
2
( )HP k  and 

2
( )OP k  can be determined by (2.45) and (2.46). 

3.5.2 Modified particle swarm optimization for constraint handling 

The proposed constrained MPC method formulates a dynamic nonlinear optimization 

problem, to which the conventional optimization techniques cannot be easily applied. 

Therefore, in this research, the real-time optimization problem is solved using PSO. 

In the literature, several studies, which proposed to extend PSO to constrained 

optimization problems, are reported, and different constraint handling techniques were used. 

Parsopoulus and Vrahatis converted the constrained optimization problem into a 

non-constrained optimization problem by adopting a non-stationary multi-stage assignment 

penalty function and then applying PSO to the converted problems [46]. Ray and Liew 

employed a Pareto ranking scheme to handle constraints, which is a concept of 

multi-objective optimization [47].  

In this section, a simple but efficient method is introduced to solve constrained 

optimization problems by modifying the standard PSO algorithm. Figure 3.10 shows the 

flowcharts of the modified PSO algorithm. As shown in the dashed area of Figure 3.10, a 

constraint checking procedure is introduced to check constraint violation after updating. If 

not satisfied, the position of this particle Xi is set to the current global best (pg). Here, pg 

serves as a backup for all particles. As the fitness function is a convex function, pg must be 
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the currently found nearest one to the optimum. Therefore, it is reasonable to use pg as the 

backup. 

 

Figure 3.10 Flow chart of the modified PSO for the constrained MPC [43] 

The initialization of pg is critical to the proposed method as it is the backup of all 

particles. Searching for a feasible solution at the initialization of each time step is time 

consuming and difficult to implement. Fortunately, the constrained optimization problem is 

solved in the context of MPC. As required by the receding horizon principle, the MPC 

calculates an evolution at each time step. Therefore, the past evolutions contain useful 

information that can help improve the initialization of the current evolution. 
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The optimal input sequence at k is assumed to be 
* * * *( ) [ ( ), ( 1),..., ( )]U k u k u k u k N   . As 

required by receding horizon principle, the first control move u*(k) is implemented and the 

rest control moves are discared. These discarded moves are the predicted optimal inputs in 

the succeeding k+N-1 steps, assuming that the system parameters remain constant across the 

period. Using the last k+N-1moves, a new input sequence Ũ(k+1) is created to initialize pg 

of the next sampling step. This vector is not only anticipated to be feasible, but also a very 

good guess for the solution of the next optimization problem. 

* * * * *

* * *

( )  [ ( ),      ( 1),  ..., ( 1), ( )]

( 1) [ ( 1), ( 2),  ..., ( ),          0       ]

U k u k u k u k N u k N

U k u k u k u k N

    

    

 

Compared to other techniques, this approach has the following advantages: 

(1) It is quite simple. There is no pre-processing of the constraints and there is neither 

complicated manipulation. Fitness function and constraints are handled separately, thus 

there are no limitations concerning the constraints. 

(2) It is faster. The only part of the algorithm dealing with constraints is to check if a 

solution satisfies all the constraints. This will reduce the computation time when handling 

multiple or complicated constraints. 

To verify its performance, the proposed constrained MPC strategy is emplemented in the 

MATLAB/SIMULINK environment. A load disturbance is assumed, which causes step 

changes of the stack current I at t = 5 s and t = 15 s, respectively. Figure 3.11(a) shows the 

step changes of the stack current. In real world application, the temperature of PEMFC is 

usually regulated to the optimal value. Therefore, the temperature T is considered as a 
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constant of 343K. The hydrogen and oxygen reference partial pressures are 
2

0
Hp  = 2.5atm 

and 
2

0
Op  = 1.4atm. The sampling rate of the MPC was chosen as Ts = 1 s. Other parameters 

are: N=10, Q=10, R=diag(0.1 0.1), c=0.5. 

The results displayed in Figure 3.11(b) show that the proposed MPC strategy performs 

quite well with respect to regulating the voltage to the set point. The corresponding control 

moves, oxygen and hydrogen flowrates, are also shown in Figure 3.11(c) and Figure 3.11(d). 

Figure 3.11(g) provides information concerning the constraints on pressure difference. As 

expected, the pressure difference between oxygen and hydrogen is maintained below 0.3atm 

at all times. Besides, as can be seen from Figure 3.11(h) and Figure 3.11(i), excessive 

amounts of oxygen and hydrogen are guaranteed at all times and reactants starvation is 

effectively avoided. 

 

Figure 3.11 Performance of the constrained MPC: (a) Current 
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Figure 3.11 Performance of the constrained MPC: (b) Voltage 

 

Figure 3.11 Performance of the constrained MPC: (c) Oxygen flowrate 
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Figure 3.11 Performance of the constrained MPC: (d) Hydrogen flowrate 

 

Figure 3.11 Performance of the constrained MPC: (e) Oxygen partial pressure 
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Figure 3.11 Performance of the constrained MPC: (f) Hydrogen partial pressure 

 

Figure 3.11 Performance of the constrained MPC: (g) Pressure difference  
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Figure 3.11 Performance of the constrained MPC: (h) Excessive oxygen  

 

Figure 3.11 Performance of the constrained MPC: (i) Excessive hydrogen  
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3.6 Conclusion 

The objective of this chapter is to investigate various control strategies of PEMFC. First, 

a basic MPC strategy is developed based on the SVM model using MPC Toolbox of the 

MATLAB program. The controller serves to regulate stack voltage and oxygen excess ratio 

to the desired values. Then, a novel MPC strategy is proposed by integrating SVM model 

with PSO algorithm. The controller serves to track constant and changing target value of 

stack voltage. Finally, a constrained MPC strategy is formulated and solved by modifying 

the standard PSO algorithm. The controller serves to track the reference trajectory of stack 

voltage. Meanwhile, the controller prevents PEMFC from reactant starvation and excessive 

pressure difference across the membrane. Simulation results demonstrate that each of the 

control strategies achieves the control objective that it is supposed to accomplish. 

In the next chapter, an optimal control strategy is proposed for the tracking of 

time-varying maximum efficiency point of PEMFC. The maximum efficiency point 

tracking controller is developed based on extremum seeking control theory. With the 

proposed controller, PEMFC is able to operates at the maximum efficiency even when 

operating conditions are changing. Therefore, it is crucial for the design of a cost-effective 

fuel cell system. 
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Chapter 4 Maximum Efficiency Point Tracking  

The core factor that affects commercialization potential of PEMFC is the cost of 

electricity provided by PEMFC system. The cost of electricity is determined by the capital 

cost of the fuel cell system, the cost of fuel and the efficiency of the whole system. The fuel 

cell system that always operates at the maximum efficiency produces the least expensive 

electricity. Therefore, the ability to increase the operational efficiency is a crucial issue for 

the design of a cost-effective fuel cell system with high market competitiveness [1]. The 

efficiency of the fuel cell system nonlinearly depends on various operating conditions. 

Among them, the air flow supplied to the fuel cell system is one of the most significant 

factors in determining the efficiency. The conventional method of controlling the air flow is 

to stabilize the oxygen supply at a predetermined constant rate for the optimal efficiency. In 

practice, however, the optimal point can deviate from the pre-set value due to the varying 

operating conditions, such as the uncontrollable load. Therefore, the maximum efficiency 

point tracking (MEPT) controller is necessary to maintain the optimal efficiency over a 

broad range of operating conditions.  

The major contributions of chapter 4 include: (1) The efficiency curves of PEMFC under 

different operating conditions are obtained and analyzed. The efficiency curves are unimodal 

with the peak determined by the combination of the stack current and the oxygen excess 

ratio. (2) The MEPT controller is designed based on the extremum seeking control (ESC) 

theory. The ESC controller feeds a probe signal into the control input to search for the 

optimal performance output in real time. As indicated by the efficiency curves, the MEPT 

controller is designed for searching the optimal oxygen excess ratio in real time to maximize 

the efficiency of PEMFC.  
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The chapter is organized as follows: In section 4.1, the maximum efficiency point tacking 

problem is formulated and analyzed. In section 4.2, the theory of extremum seeking control 

is briefly introduced. In section 4.3, the MPET controller is designed based on extremum 

seeking control algorithm. It section 4.4, the system is simulated and results are discussed. 

4.1 Problem statement 

The economics of PEMFC depends heavily on the efficiency of the system. One of the 

major advantages of PEMFC is that it can attain high efficiency since it is not limited by the 

Carnot cycle. On average, the combustion efficiency of the PEMFC is about 20–30% higher 

than that of fossil fuels such as oil, natural gas and coal [2]. The efficiency of PEMFC 

system is a product of efficiencies of its components, such as fuel cell stack and other 

auxiliary systems [3]. 

Auxiliary systems (also known as the balance of plant) are necessary for the correct 

operation of fuel cell systems. The most important auxiliary systems are the air supply 

system, namely the air compressor, to pressurize the air to the correct operating pressure; the 

humidifier to guarantee that the fuel cell is properly humidified for optimal performance; 

and the cooling system to maintain the temperature. However, these auxiliary devices will 

draw power produced by the fuel cell, thereby reducing the net power output and the overall 

efficiency.  Among them, the air compressor consumes the most part of the total parasitic 

power, thereby producing the greatest impact on the system efficiency [4]. 

At the same time, one of the most important challenges for the PEMFC system is to 

ensure sufficient amount of oxygen is provided in the cathode when the fuel cell stack 

current abruptly changes. When a large load is applied to the fuel cell, the sudden increase in 
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the fuel cell stack current can cause the oxygen starvation if the depleted oxygen cannot be 

replenished immediately and sufficiently [5]. This catastrophic event permanently damages 

cells and limits the power response of the system. This problem arises from the fact that 

oxygen reacts instantaneously as current is drawn from the stack, while the air supply rate is 

limited by the manifold dynamics and compressor operational constraints [6]. 

The control and management of air supply has been the focus of many studies. The main 

objectives of the air supply control are to improve system performance and to prevent 

oxygen starvation. In terms of system performance improvement, Blunier et al. optimized 

the inlet air pressure and stoichiometry with the constraint of relative air humidity to 

maximize the output voltage [7]. Feroldi et al. proposed a predictive control strategy using 

dynamic matrix control (DMC) to manipulate compressor motor voltage and cathode air 

flow valve area for better system efficiency [8]. For oxygen starvation prevention, Danzer et 

al. proposed a multivariable model-based control scheme to control the oxygen excess ratio 

and the cathode pressure [9].  

These control strategies stabilize a predetermined air stoichiometry which may or may 

not be the optimal operating condition for the maximum efficiency. Another disadvantage of 

these methods is that they require knowledge of system parameters, which must be either 

measured offline or estimated. However, in practice, parameters vary over time as the fuel 

cell system frequently moves from one operational point to another. Therefore, it is more 

desirable to develop an air supply control strategy with respect to time-varying parameters 

and model uncertainty.  



 

133 
 

4.1.1 Review of PEMFC system model  

 The dynamic model of the PEMFC system that we used to investigate the impact of air 

supply on system efficiency in this work was developed and validated by Pukrushpan et al. 

[10]-[13]. Figure 4.1 shows the schematic of the PEMFC system analysed. However, it is 

worth pointing out that our MEPT control approach is a non-model based method and 

accepts various kinds of fuel cell models, such as support vector machine model [14]. 

 

Figure 4.1 Components and volumes in PEMFC reactant supply system [14] 

The model under consideration comprises the fuel cell stack and the auxiliary systems 

and contains nine state variables. The fuel cell stack model is composed of four interacting 

sub-models, namely stack voltage, cathode flow, anode flow, and membrane hydration 

models. The stack voltage is calculated as a function of stack current, cell temperature, air 

pressure, oxygen and hydrogen partial pressures, and membrane humidity. Models of 

auxiliary components, namely a compressor, manifolds, an air cooler, and a humidifier, are 

developed based on physical-chemical knowledge of the process involved. Most parameters 

used in this model are based on the 75 kW stacks used in the FORD P2000 fuel cell 

prototype vehicle [15]. 
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For clarity and completeness, a brief review of the model equations is conducted, but 

readers interested in the complete details should refer to the literature [10]-[13]. 

4.1.1.1 State equations 

This section describes the state equations corresponding to the reactant supply subsystem. 

The governing equations for the mass of air in the supply manifold, for the mass of oxygen, 

nitrogen and water in the cathode and for the mass of hydrogen and water in the anode are 

respectively defined using the principle of mass conservation as [13]: 

, (4.1)                                                                                                        SM
Cp SM out

dm W Wdt    

2
2 2 2, , , (4.2)                                                                                        O

O in O out O react

dm
W W Wdt     

2
2 2, , (4.3)                                                                                                       N

N in N out

dm
W Wdt    

,
,, , , , , , (4.4)+ +                                                                        w Ca

v mv Ca in v Ca out v Ca gen
dm

W W W Wdt    

2
2 2 2, , , (4.5)                                                                                       H

H in H out H react

dm
W W Wdt     

,
,, , , , (4.6)                                                                                       w An

v mv An in v An out
dm

W W Wdt     

where m, W denote mass and mass flow rate.  The subscripts SM, Cp, Ca, An denote the 

location of the variable, e.g., msm is the mass of air in the supply manifold and WCp is the 

mass flow rate of air in the compressor. The subscripts m, v and w denote membrane related 

quantity, water vapour related quantity and liquid water related quantity, respectively. 
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The governing equation for the rotational speed of the compressor is defined by the 

power conservation principle as [13]: 

(4.7)( )                                                                                                       Cp
Cp CM Cp

d
J dt


    

where JCp, ωCp, ηCM , ηCp , denote the compressor inertia, the compressor motor rotation 

speed, the compressor motor torque, and the compressor torque, respectively. 

The governing equations for the supply manifold pressure and for the return manifold 

pressure are respectively defined using the energy conservation principle and standard 

thermodynamic relationships as [13]: 

, (4.8)( )                                                                                    SM a
Cp Cp SM out SM

SM

dp R W T W Tdt V


   

,, (4.9)( )                                                                                      aRM RM
RM outCa out

RM

dp R T W Wdt V   

where p, V and T denote pressure, volume and temperature, respectively. The subscripts RM 

denotes the return manifold. γ is the air-specific heat ratio and Rα is the universal gas 

constant. 

Finally, the model states are accumulated in the state vector: 

2 2 2 , , (4.10)[         ]                                                       T
N H RMO Cp w An w Ca SM SMx m m m m m m p p  

4.1.1.2 Oxygen Excess Ratio 

The air supply system has significant influence on the fuel cell system performance. On 

the one hand, insufficient air supply may cause oxygen starvation in the cathode, which 
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causes voltage reduction and permanent damage to cells. On the other hand, the compressor 

operation implies a power consumption that diminishes the system efficiency.  

Oxygen excess ratio is indicative of oxygen starvation and can be considered as a good 

performance index. It describes the excess oxygen supplied to the cathode as follows: 

2

2

2

,

,
(4.11)                                                                                                                    O

O
O

in

react

W
W   

where 
2 ,O inW  and 

2 ,O reactW  are the mass flow rates of oxygen entering the cathode and 

consumed by the chemical reaction, respectively. A value of λO2 = 1 indicates the amount of 

oxygen supplied to the cathode is equal to the amount required by the stoichiometric 

chemical reaction 2H2 + O2 → 2H2O.  

2 ,O reactW  is directly proportional to the current drawn from the fuel cell stack Ist according 

to [13]: 

2 2, (4.12)                                                                                                           4O O
st

react
nIW M F  

where
2OM , n, and F are the oxygen molar mass, the number of cells in the stack and the 

Faraday number, respectively. 

2 ,O inW  depends on the oxygen mass fraction 
2Ox , the atmospheric humidity ratio ωatm and 

the flow out of supply manifold into the cathode WSM,out [16]: 

2 2 atm ,, /1 (4.13)( )                                                                                                 O O SM outinW x W  
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(4.11) and (4.12) explicitly denote the dependency of λO2 on the stack current Ist, which 

directly affects 
2 ,O reactW . If a constant amount of oxygen is supplied to the cathode, λO2 

decreases as Ist increases, which potentially causes oxygen starvation.  

One the other hand, the compressor motor voltage Vcm affects λO2 indirectly through 

2 ,O inW  [9]. Specifically, Vcm controls the compressor motor torque ηcm through the static 

motor equation [14]:  

(4.14)( )                                                                                                t
CM CM CM v Cp

CM

k
k VR     

where ηcm is the compressor motor mechanical efficiency. kt , kv  and Rcm are the motor 

constants.  

ηcm then determines the compressor motor rotational speed ωCp through the first-order 

nonlinear dynamics shown in (4.7).  The compressor flow rate WCp is then modelled by 

applying the Jensen and Kristensen nonlinear fitting method as functions of the rotational 

speed ωCp [10]. Finally, WCp through (4.8) affects the supply manifold pressure, pSM, which 

together with the cathode pressure, pCa, determines the outlet flow of supply manifold [16]:  

, , (4.15)( )                                                                                                    SM out SM out SM CaW p pk   

where kSM,out is the supply manifold outlet flow constant. 

For controller design, Ist is considered as disturbance input corresponding to the 

uncontrollable load and Vcm is the controlled input to manipulate λO2. 
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4.1.2 Steady-state analysis of PEMFC system’s efficiency 

 The efficiency of the fuel cell system can be defined as the ratio of the net power output 

Pnet to the power that is supplied to the system Pfuel: 

net

fuel
(4.16)=                                                                                P

P  

The chemical power contained in fuel flow is related to the fuel cell stack current [17]:  

cells
stfuel (4.17)= 2                                                                                       

Hn
P IF  

where H is the low heating value of hydrogen, F refers to the Faraday constant, Ist is the fuel 

cell stack current and ncells denotes the number of cells in the fuel cell stack. 

The net power output is defined as the power produced by the fuel cell stack from which 

the parasitic power consumed by the air compressor is deducted: 

net st (4.18)= -                                                                                                               CMP P P  

The stack power is the product of the stack current and voltage: 

st st st (4.19)=                                                                                                                                  P I V  

The stack voltage Vst is calculated by subtracting the voltage losses from the fuel cell 

open circuit voltage E. Generally, these losses are nonlinear functions of the states x and the 

stack current Ist [10]: 

const act ohm (4.20)= - - -                                                                                                             V E V V V  

where Vact , Vohm and Vcon are activation loss, ohmic loss and concentration loss, respectively. 

PCM is given by [16]: 
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vCM Cp

CM
(4.21)

( - )
=                                                                          CM

CM

V V K
P R


 

Take all these equations into account, the system efficiency η can be described as a 

function of the fuel cell stack current Ist and the compressor motor voltage Vcm: 

CM CM v Cp
CM

cells CM

2 ( )
= (4.22)( , )                                                         st st CMCM

st

st
st

fuel

F I V R V V K
V

Hn R I
P PI

P



   

  

As Vcm is considered as the controlled input to manipulate λO2, η is plotted as a function 

of λO2 at different Ist level in Figure 4.2. The result indicates that for a certain stack current 

level high oxygen excess ratio enhances the system efficiency. This is because high oxygen 

excess ratio corresponds to more oxygen supplied to the cathode, which improves Pst and 

Pnet and thereby increases the system efficiency. However, further increase of λO2 will cause 

Pnet decrease due to the excessive increase of parasitic power Pcm consumed by the air 

compressor and thus deteriorative effects on system efficiency.  However, the stack current 

also has significant impact on the system efficiency through Pfuel and λO2 as shown by (4.12) 

and (4.17). When all these effects are taken into account, the efficiency curves are unimodal 

with the peak determined by the combination of Ist and λO2. 

When PEMFC works in the normal operating range, the optimal value of λO2 which 

maximizes the system efficiency for certain stack current is always above 1. The reason is 

due to that low oxygen excess ratio means insufficient oxygen supply, which deteriorates 

Pnet and thus prevents the system reaching the maximum efficiency. This implies that 

improved performance may be achieved by identifying the maximum efficiency point and 

regulating the system about this point. As the maximum efficiency point always corresponds 

to a safe oxygen excess ratio value, the oxygen starvation can be avoided simultaneously.  
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Figure 4.2 Efficiency curves of PEMFC under different operating conditions 

4.2 Theory of extremum seeking control 

The mainstream methods of adaptive control for linear and nonlinear systems are 

applicable only for regulation to known set points or reference trajectories. In some 

applications, the reference-to-output map has an extremum and the control objective is the 

optimization of an objective function which may depend on unknown model parameters, or 

the selection of the desired inputs to keep a performance function at its extremum value.  

Maximum efficiency point tracking for the PEMFC system is such a case because its 

parameters, such as the stack current, are changing continuously in its operation and 

real-time estimation of maximum efficiency point is a difficult task. The uncertainty in the 

reference-to-output map makes it necessary to use some sort of adaptation to track the 

varying set point which extremizes the performance function, for fuel cell system efficiency 
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in this case. This problem is called extremum seeking control (ESC) or self-optimizing 

control. 

The early application of extremum seeking control can date back to 1920s [18]. However, 

a solid theoretical foundation has not yet been established for the extremum seeking control 

until very recently [19]. In 2000, Krstic and Wang presented the first stability analysis for an 

extremum seeking system applied to a general nonlinear dynamic system [20]. Applications 

of these approaches have been reported for combustion instability [21], electromechanical 

valve actuator [22], automotive application [23], source seeking [24], chemical engineering 

[25], etc. 

The theory of extreme seeking control is briefly reviewed as follows. Consider a dynamic 

system with state xєRn and input uєRm that has to be operated so as to maximize a convex 

function J(x,u). The problem is shown below: 

(4.23)max ( , )                                                                                                                       
u

J x u  

(4.24)Subject to ( , )                                                                                                       x F x u  

where F(x,u) is the function describing the dynamics of the system.  

The necessary conditions of optimality are given by [26]: 

1

(4.25)=0                                                                                              dJ J J F F
du u x x u


 
 
 

   
 
   

 

The extremum seeking control law is an integral controller that forces the gradient to 

zero: 
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(4.26)                                                                                                                        dJu k du
 
 
 

  

where k is the controller gain.   

The key problem is the estimation of the gradient. In this research, a perturbation based 

extremum seeking feedback scheme is employed [20]. As will be shown next, it is a gradient 

search method which perturbs the input parameters with sinusoidal signal, and to make a 

real-time estimation of the gradient of the output relative to these inputs. Therefore, it allows 

us to track time-varying extremum.  

4.3 Maximum efficiency point tracking controller design 

This section proposes an air supply control strategy based on the extremum seeking 

control algorithm for searching the optimal oxygen excess ratio in real time to maximize the 

efficiency of fuel cell systems. This closed-loop, real-time and non-model based control 

method is able to guarantee the maximum efficiency point is achieved under changing 

operating conditions. 

The extremum seeking control problem for the PEMFC efficiency optimization can be 

defined as: 

Maximize:          ( , , )                                            objective functionJ x u w   

Subject to:           ( , , )                                            state equationsx F x u w  

2 2 2, ,[ , , , , , , , , ]            statesT
sm sm rmN HO w Ca w An Cpx m m m m p p m m 

 

                                                                                 controlled inputcmu V  

                                                                                  disturbance inputstw I  
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The optimization is subject to the fuel cell system dynamics f(x,u,w) briefly reviewed in 

Section 4.1.1. The air compressor motor voltage Vcm is the controlled input, the fuel cell 

stack current Ist is modelled as the disturbance input, while the performance output variables 

are the efficiency η and the oxygen excess ratio λO2. The goal of the extremum seeking 

control is to design a controller to manipulate the compressor motor voltage to an unknown 

set point for the optimal oxygen excess ratio, therefore maximizing the system efficiency. 

The explicit form of J(x,u,w) is unknown and hence not available for the design. 

Figure 4.3 shows the scheme of the fuel cell MEPT control system. Before engaging in 

extensive efforts to prove the scheme mathematically, an intuitive explanation of its basic 

idea is given as follows. The MEPT controller feeds a small sinusoidal perturbation signal 

into the compressor motor voltage ĉmV , which is the estimate of unknown optimal voltage

*
cmV . This process is also known as modulation. The perturbation frequency must be chosen 

large enough to avoid the PEMFC dynamics to influence the performances of the MEPT 

controller. This perturbation causes a response of the system efficiency. The efficiency 

signal is then high-pass filtered and demodulated to eliminate the static component and to 

estimate the derivative. Finally, the maximum efficiency ŋ* is determined through gradient 

method. a and ω are the amplitude and frequency of the sinusoidal perturbation signal. k is 

the adaptive gain of the integrator. ωh is the cut-off frequency of the high-pass filter. A more 

detailed mathematical explanation is given below: 

The efficiency function ŋ can be approximated in the neighborhood of MEP by Taylor 

series: 

"
* * 2 (4.27)= + ( - )                                                                                                       2 cm cmV V

   
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ĉmV  denotes the estimation of the unknown optimal compressor motor voltage *
cmV . Let 

cmV  denotes the estimation error: 

* (4.28)ˆ= -                                                                                                                    cm cm cmV V V  

According to Figure 4.3, we can get: 

(4.29)ˆ= + sin                                                                                                            cm cmV V a t  

With (4.28) and (4.29), (4.27) can be rewritten as: 

" 2 " " 2 "
* 2 * 2 " (4.30)= + ( sin - ) = + + - sin - cos2                      2 4 2 4cm cm cm

a aa t V V a V t t   
        

Estimation error cmV  is a small value, thus its quadratic term 2
cmV  can be neglected: 

2 " 2 "
* " (4.31)= + - sin - cos2                                                                         4 4cm

a aa V t t 
      

The high-pass filter applied to the efficiency signal ŋ, serves to remove the DC 

component, namely: 

2 "
" (4.32)[ ] - sin - cos2                                                                           + 4cm

h

as a V t ts


    


 

This signal is then demodulated by multiplication with sinωt, giving: 

2 "
" 2

" " 2 "
(4.33)                            

- sin - cos2 sin4

   = - + cos2 - (sin3 -sin )                              2 2 8

cm

cm cm

aa V t t t

a a aV V t t t


     

  
  

 

The estimated compressor motor voltage is: 

" " 2 "
(4.34)ˆ [- + cos2 - (sin3 -sin )]                                              2 2 8cm cm cm

a a akV V V t t ts
  

     
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The last two high frequency terms can be attenuated by the integrator, thus: 

"
(4.35)ˆ [- ]                                                                                                             2cm cm

akV Vs


  

Noting *
cmV  is constant, from (4.28) we can get: 

(4.36)ˆ= -                                                                                                                           cm cmV V  

Finally we get: 

"
(4.37)=                                                                                                                    2cm cm

kaV V  

Since ŋ has a maximum, its second order derivative ŋ” should be negative, and kaŋ”<0. 

Therefore, the estimation error cmV  converges to 0, which means that the compressor motor 

voltage converges to *
cmV  and the fuel cell system reaches the maximum efficiency point ŋ*. 

 

Figure 4.3 Schematic of the MEPT control system [27] 
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The synthesis process for extremum seeking controller requires proper selection of the 

perturbation amplitude a and frequency ω, adaptive gain k, and high-pass filter cut-off 

frequencies ωh. The extremum seeking control theory does not provide mathematical 

methods to determine these values. Generally, proper selection of these parameters is a 

tuning process [28]. However, some valuable guidelines are provided for effective 

calibration. 

According to (4.37), the value of k and a have a significant effect on the system 

convergence speed. Large values for a and k allow faster convergence rates. However, larger 

a and k also respectively increase the oscillation amplitude and sensitivity to disturbances.  

In other words, the selection of these parameters involves a trade-off between convergence 

speed and stability [29]. One usually increases the adaptive gain k to obtain maximum 

convergence rate for a desirable amount of sensitivity.  Meanwhile, a small value of a is 

able to be kept so as to avoid the control parameters fluctuating dramatically. High 

perturbation frequency ω is selected to ensure significant time scale separation between the 

extremum seeking feedback loop and fuel cell dynamics. However, an over high value of ω 

will decrease the convergence speed. The cut-off frequency of high-pass filter must be 

designed in coordination with the perturbation frequency. Specifically, the high-pass filter 

must not attenuate the perturbation frequency. 

4.4 Simulation results and discussion 

The capability of the proposed control method is analyzed by means of simulation 

experiment in the MATLAB/SIMULINK environment. In order to understand the 

performance of the MEPT controller under varying operating conditions, a series of step 
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changes in the stack current Ist is applied in the simulation, which is shown in Figure 4.4(a). 

For the sake of comparison with results found by the steady-state analysis in section 2, the 

step changes in the stack current are set as the same values used in steady-state analysis. The 

controller has been tuned thusly: the amplitude a=2, the adaptive gain k=10, the perturbation 

frequency ω=2π, the high-pass filter frequency ωh=π. 

In Figure 4.4(b), one can observe that, as expected, the MEPT controller is able to trace 

the MEPs from 37% to 45%, and finally to 41%, which correspond to the optimal values 

found by the steady-state analysis in section 4.1.2. The seeking process of the controlled 

input, i.e. the compressor motor voltage, is given in Figure 4.4(c). Figure 4.4(d) shows 

corresponding changes in the oxygen excess ratio. Notice that the oxygen excess ratio is in a 

safe position, so the oxygen starvation phenomenon is effectively prevented.  

To evaluate the performance of the proposed controller, it is necessary to understand the 

tracking behavior of efficiency as a function of oxygen excess ratio. Figure 4.4(e) shows the 

maximum efficiency point tracking process in the phase plane. One can observe a fast 

tracking that drive the system‘s operational point close to the maximum efficiency point 

when changes in the stack current occur. Then the system oscillates around the maximum 

efficiency point rather than converging to it exactly. 

In order to have a comprehensive understanding of the proposed MEPT controller, two 

controlled simulation experiments are conducted. The scenario of PEMFC system with the 

MPET controller is considered as the base case. In the other two controlled experiment, the 

air supply system is not controlled by the MEPT controller. Therefore, one can clearly 

observe the benefits of the MEPT controller. 
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In the first scenario, the PEMFC system is tested without the MPET controller under the 

changing stack current condition. The compressor motor voltage Vcm is set as a constant of 

150V in this scenario. The other parameters remain the same as those of the previous 

experiment. The results are given in Figure 4.5. 

Compared with the results displayed in Figure 4.4, Figure 4.5(a) clearly indicates that the 

fuel cell system without the MEPT controller shows lower efficiency. This is because the 

constant compressor motor voltage cannot ensure that the optimal oxygen excess ratio is 

achieved under the changing stack current. As a result, excessive parasitic power is 

consumed by the compressor to maintain the unnecessary high level of oxygen excess ratio 

and thus deteriorates the system efficiency. The above explanation is proved by Figure 

4.5(b), which clearly shows that the oxygen excess ratio is higher than that of the previous 

experiment. 

In the second scenario, the PEMFC system is tested with the air supply controller 

proposed by Grujicic et al. [30]. The aim of their controller is to maintain a preset optimal 

oxygen excess ratio value of 2.33 by regulating the compressor motor voltage Vcm under 

changing stack current. In this scenario, all parameters remain the same, except that a 

control law of the compressor motor voltage provided by Grujicic et al. in [30] is applied. 

The results are show in Figure 4.6. 

Figure 4.6(c) shows the oxygen excess ratio is effectively regulated to the pre-set value of 

2.33 after the abrupt changes in the stack current.  However, as can be seen from Figure 

4.6(a), the efficiency of the system is still lower than that of the base case. This reveals that 

the pre-set optimal oxygen excess value may not be the true optimal one under changing 
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operational conditions. Therefore, an extremum seeking control strategy is essential for 

tracking the varying optimal value. 

In summary, the simulation results indicate that the fuel cell MEPT controller converges 

to the maximum efficiency point and can account for time-varying parameters, such as the 

stack current, by searching for the optimal compressor motor voltage online. Compared with 

traditional methods, extremum seeking control approach has the following advantages [31]. 

First, the optimization problem is solved by feedback control law. Hence, extremum seeking 

control has a main advantage of strong robustness over other open-loop control methods. 

Second, it is a real-time control method. Therefore, it can be used for real-time optimization 

of time-varying systems. Third, it does not require prior knowledge of system model. In 

other words, it is a non-model based control method. Despite these desirable properties, it 

also comes with drawback. The periodic perturbation will bring oscillations into the system.  

Thus when the system reaches the MEPs, the system oscillates about this value rather than 

converging to it exactly. A perturbation signal with dynamic amplitude that converges to 

zero as the MEPT controller converges to optimal value may solve this problem. One simple 

way to do this is to make the periodic perturbation signal exponentially decaying in 

amplitude [32]. 
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Figure 4.4 Performance of the MEPT controller: (a) Stack current 

 

Figure 4.4 Performance of the MEPT controller: (b) Efficiency 
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Figure 4.4 Performance of the MEPT controller: (c) Compressor motor voltage 

 

Figure 4.4 Performance of the MEPT controller: (d) Oxygen excess ratio 
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Figure 4.4 Performance of the MEPT controller: (e) Efficiency vs. oxygen excess ratio 

 

Figure 4.5 Response of PEMFC without controller: (a) Efficiency 
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Figure 4.5 Response of PEMFC without controller: (b) Oxygen excess ratio 

 

Figure 4.6 Response of PEMFC with Pukrusphan‘s controller: (a) Efficiency 
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Figure 4.6 Response of PEMFC with Pukrusphan‘s controller: (b) Compressor motor 

voltage 

 

Figure 4.6 Response of PEMFC with Pukrusphan‘s controller: (c) Oxygen excess ratio 

0 50 100 150
100

110

120

130

140

150

160

170

180

190

200

Time (s)

C
o
m

p
re

s
s
o
r 

m
o
to

r 
v
o
lt
a
g
e
 (

V
)

(b)

0 50 100 150
1

1.5

2

2.5

3

3.5

4

Time (s)

O
x
y
g
e
n
 e

x
c
e
s
s
 r

a
ti
o

(c)



 

155 
 

4.5 Conclusion 

The objective of this chapter is to develop an optimal controller for the tracking of 

time-varying maximum efficiency point of PEMFC. First, the steady-state efficiency 

analysis is conducted. The result shows that the efficiency curves of PEMFC are unimodal 

with the peak determined by the combination of stack current and oxygen excess ratio. 

Then, the MPET controller is developed based on extremum seeking control theory. By 

searching for the optimal oxygen excess ratio in real-time, the proposed MPET controller is 

able to track the maximum efficiency point under changing stack current conditions. 

Simulations results show the operational efficiency achieved by the MEPT controller 

corresponds to the optimal values found by the steady-state analysis.  

In the next chapter, a control-oriented thermal model is built and a 

linearized-model-based controller is developed for the thermal management of PEMFC. 

Current PEMFC operates in the temperature range of 60–80°C as required by the material 

of membrane electrolyte, most commonly Nafion®. Therefore, an efficient thermal 

management system is highly important for the safe operation of PEMFC. 
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Chapter 5 Thermal Modelling and Management  

The efficient thermal management has been considered as one of the most critical 

technical issues before PEMFC can be commercialized [1]. A PEMFC produces a similar 

amount of waste heat to its electric power output and tolerates only a small deviation in 

temperature from its design point. The balance between the heat production and its removal 

determines the operating temperature of a PEMFC. Since the heat generation changes 

continuously as the load current varies, it is extremely important to have thermal 

management system to control the heat removal and thus regulate the temperature to a safe 

range. 

The major contributions of chapter 5 include: (1) The control-oriented thermal model of 

PEMFC is developed based on energy conservation principle. The model consists of two 

submodels: stack and coolant. (2) The model-based controller is designed based on the 

linearized thermal model. Since the thermal model is formulated in nonlinear affine form 

with disturbance, the input/output linearization method is employed by introuducing a 

dynamic feedforward/static state feedback law. The linearized model based controller is then 

designed for the temperature control. 

The chapter is organized as follows: In section 5.1, the general issues of thermal 

management in PEMFC are discussed. Next in section 5.2, the existing thermal models and 

control methods are reviewed. In section 5.3, a control-oriented thermal model of PEMFC is 

developed. In section 5.4, a model-based controller is designed for the thermal management 

of PEMFC.  
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5.1 General issues of thermal management in PEMFC 

5.1.1 Influence of temperature on PEMFC performance 

Temperature is one of the key factors in determining the performance of PEMFC. A simple 

way to improve the performance is to operate PEMFC at its maximum allowed temperature. 

At higher temperature, electrochemical activities increase and reaction takes place at a higher 

rate, which in turn increases the efficiency [2].  

Temperature in the cell also influences cell humidity, which significantly influences 

membrane ionic conductivity. In particular, PEMFC employs perfluorosulfonic acid 

polymers, most commonly Nafion®, as the membrane electrolyte. The requirement of good 

hydration of Nafion® (in order to have high proton conductivity) limits the maximum 

operating temperature to about 80°C [3]. 

The durability of the membrane electrolyte is another barrier for higher-temperature 

operation due to performance degradation during long-term operation. In particular, Nafion® 

membrane has the glass transition temperature ranging from 80 to 120°C, which leads to a 

serious break down of the MEA [4]. Furthermore, Endoh et al. [5] reported that the 

perfluorosulfonic acid polymer suffers from degradation under low-humidity operations even 

at 80°C. Therefore, the durability of the Nafion® membrane is another factor that limits the 

maximum operating temperature as 80°C.  

On the other hand, low operating temperature deteriorates the performance of PEMFC. 

Cell temperature below 60°C may lead to water condensation and flooding of electrodes, with 

a resultant voltage loss caused by added resistance to reactant mass transport. A low operating 
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temperature is also undesirable as determined from consideration of proton conductivity and 

electrochemical reaction kinetics.  

Summarizing, current PEMFC operates in the temperature range of 60 - 80°C and tolerates 

only a small temperature variation. This implies that an efficient thermal management system 

is required to regulate the temperature of PEMFC within this range when variations in 

operating conditions occur. 

5.1.2 Overview of cooling methods 

The cooling methods can be classified into two categories: passive cooling and active 

cooling. Passive cooling refers to design features used for cooling without power 

consumption. Typical passive cooling methods include heat spreaders, heat pipe and natural 

cooling with cathode air flow. In contrast, active cooling refers to the use of blowers or pumps 

to transport heat by circulating coolant. Generally, active cooling method can offer thermal 

capabilities that are superior to passive cooling. However, this is achieved at the cost of 

parasitic power and thus deteriorative effect on system efficiency. Typical active cooling 

methods include cooling with separate air flow, liquid cooling and phase change cooling. 

Several important factors should be considered when decide the proper cooling method, 

including the rated power of PEMFC, the working space and environment. Table 5.1 

summarized the most commonly used cooling methods for PEMFC. 
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Table 5.1 Summary of cooling strategies for PEMFC [6] 

Cooling strategy      Techniques         Advantages   Disadvantages/Challenges 
Heat spreaders Highly thermal 

conductive material      
 

- Simple system 
- No internal coolant 
- Small parasitic power  

- Limited heat transfer length 
- Highly thermal conductive         
material is expansive and poor in 
mechanical properties      

Heat pipe Heat pipes into cell - Simple system 
- Small parasitic power 
- High thermal conductivity 

- Integration of heat pipes with 
bipolar plates 
- Development of heat pipes with 
small thickness and low weight 

Cooling with 
cathode air flow 

Cathode air for 
cooling 

- Simple system 
- Small parasitic power 

- Drying out membrane 
 

Cooling with 
separate air flow 

Separate air 
channels for cooling 

- Simple system 
- Small parasitic power 

- Trade-off between cooling 
performance and parasitic power 

Liquid cooling Antifreeze coolant - Strong cooling capacity 
- Flexible control  

- Radiator size 
- Coolant degradation 
- Large parasitic power 

Phase change 
cooling 

Evaporative cooling 

 

- Simultaneous cooling and 
   internal humidification 
- Simplified system 

- Dynamic control of water 
evaporation rate 
- Thermal mass of liquid water 
on cold start-up 

 Cooling through 
boiling 

- Elimination of coolant pump 
- Simplified system 

- Development of suitable 
working media 
- Two-phase flow instability 

 

5.2 Literature review of thermal models and control methods 

5.2.1 Review of thermal models  

Yu and Jung [7] developed a PEMFC system model with detailed cooling module to 

investigate of operating strategy of pump and fan. The models integrated model of fan, water 

pump, coolant passage, and electric motors. Their models were dynamic lump-parameters 

models. In another work proposed by the same group [8], a two-dimensional numerical 

thermal model of PEMFC is developed to simulate the temperature-sensitive electrochemical 

reaction and capture the thermal management effect on the performance. The model consists 

of three sub-models; a water transport model, an agglomerate structure electrochemistry 

model and a two-dimensional heat transfer model. Their heat transfer submodel was focused 

on heat rejection from the fuel cell into the cooling water and included the conduction heat 
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transfer inside the MEA and convective heat rejection from MEA to cooling water flow and 

gases. The thermal management system model included radiator, cooling pump and fan for 

investigating the trade-off between the temperature distribution effect and parasitic losses. 

Bao et al. [9] modeled the key components in the water and thermal management system, 

namely the fuel cell stack, radiator, condenser and membrane humidifier. They are combined 

with a steady-state, one-dimensional, isothermal fuel cell model to analyze the effect of air 

stoichiometric ratio and the cathode outlet pressure on thermal loads of different components 

of PEMFC system.  

Pharoah and Burheim [10] presented a two-dimensional thermal model to predict 

temperature distributions in PEMFC. It was found that the most significant factor in 

determining the temperature distribution was the gas channel geometry (width and channel 

type), followed by the thermal conductivity of the porous transport layer and state of the water 

in the cell. 

Shimpalee and Dutta [11] proposed a numerical three-dimensional model that includes the 

energy equation to predict the temperature distribution inside a straight channel PEMFC and 

the effect of heat produced by the electrochemical reactions on fuel cell performance. This 

model gave details of current density, temperature contours, and velocity profiles in both 

cross-flow plane and axial-flow plane that cannot be obtained by simplistic one-dimensional 

and two-dimensional simulations. 

Ju et al. [12] presented a three-dimensional thermal model coupled with electrochemical 

and mass transport models in order to study thermal and water management in PEMFC. It was 
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found by their numerical simulation that the thermal effect on PEMFC became more critical at 

higher current density and/or lower gas diffusion layer thermal conductivity. 

5.2.2 Review of control methods  

Lee et al. [13] designed a proportional integral derivative (PID) controller to regulate the 

coolant flow rate under various current density (0.2A·cm-2, 0.4A·cm-2 and 0.6A·cm-2). 

However, the control accuracy was fairly low. The minimum error of steady state was zero, 

the maximum error was 13oC, and the average error was 40 oC (the set point is 65 oC) ． 

 Lauzze and Chmielewski [14] proposed a proportional integral (PI) feedback structure for 

the power/temperature controller of PEMFC. The controller used jacket flow rate as the 

manipulated input to bring the temperature back to the temperature set-point when the output 

power of PEMFC increased.  It was also found that the low power limit of PEMFC should be 

carefully considered. If the power limit was too low, the coolant flow may be saturated at a 

value of zero, which means the cell cannot maintain the desired operating temperature. 

Ahn and Choe [15] proposed a state feedback control strategy with a feed-forward of the 

disturbance and a compensator for minimization of the temperature effect on the air flow rate. 

The output states were the coolant flow rate and the stack inlet coolant temperature. Classic PI 

controller was also tested for the sake of comparison. The state feedback controller showed 

better performance in terms of response speed and overshoot. Moreover, the state feedback 

controller consumed less parasitic power than that of PI controller. 

Methekar et al. [16] proposed a linear ratio control strategy to control the average power 

density and average solid temperature. Their control strategy was based on the transfer 
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function model, which was obtained from step tests on the distributed parameter PEMFC 

model. The manipulated variables were selected using steady-state relative gain array (RGA) 

analysis to be the inlet molar flow rates of hydrogen and coolant. However, the performance 

of the linear controllers was slow due to the presence of nonlinearities in the dynamic 

response of the PEMFC. 

Hua et al. [17] proposed an incremental fuzzy controller with integrator to regulate the 

coolant flow rate and bypass valve factor for the temperature control of PEMFC. The 

controller was able to overcome sudden disturbance, and the integrator eliminated 

temperature steady state error. The simulation results demonstrated that the fuzzy controllers 

were more robust than their conventional counterparts under the model parameters variation 

test. 

5.3 Development of control-oriented thermal model of PEMFC 

In this section, the dynamic thermal model of PEMFC is developed based on the energy 

conservation principle. The thermal model consists of two submodels: the stack and the 

coolant. Thus, the model has two state variables: the stack temperature and the coolant 

temperature. The stack current is considered as the disturbance input, which corresponds to 

uncontrollable load demand. The coolant flux is modeled as the manipulated input to regulate 

the temperature when variations in the stack current occur. For simplification, some necessary 

assumptions are given as follows: (1) All gases are ideal gases and fully saturated with water 

vapour. (2) The produced water is in the liquid phase. (3) The input gases are proportionally 

changing according to the consumed gases. The parameters used in the model are shown in 

Table 5.2. 
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Table 5.2 Summary of thermal model parameters 

Parameters Description   Unit Value 

2HC  The heat capacity of hydrogen J/mol/K 28.944 

2

g
H OC  The heat capacity of vapour  J/mol/K 33.590 

2

l
H OC

 
The heat capacity of water J/mol/K 75.370 

2OC  The heat capacity of oxygen J/mol/K 29.696 

2NC  The heat capacity of nitrogen J/mol/K 29.148 

stC  The heat capacity of stack J/ K/ kg 4000 

rvC  The heat capacity of reservoir J/ K/ kg 450 
F  Faraday constant C/mol 96485 
H  Heating value of hydrogen J/mol 285500 

stM  Stack mass kg 17.5 

rvM  Reservoir mass kg 20 
n  Cell number  112 

tR  Thermal resistance K/W 0.145 

ambT  Ambient temperature K 298 

 

5.3.1 Thermal model of PEMFC stack 

The energy balance of the PEMFC stack is determined by the total heat produced by the 

electrochemical reaction Qtot, the heat brought in by the input gas flow Qin, the power 

consumed by the electrical load Pst, the heat brought out by the exhaust gas flow Qout, and 

the heat loss at the stack surface Qamb, the heat removed by convection between the stack and 

the coolant Qconv. Considering the transient heat variation, the dynamic thermal model of the 

PEMFC stack can be described as follows: 

C  = +                                                                                        (5.1) Q Q - P - Q - Q - Q  st
st st tot in st out amb conv

dT
M

dt
    

 

where Mst is the PEMFC stack mass, and Cst is the PEMFC heat capacity. 

 Qtot  



 

168 
 

The total energy produced by electrochemical reaction is calculated as the product of the 

heating value of hydrogen H and the reacted hydrogen molar flow rate
2,

reacted
an HN : 

2,                                                                                                                                            (5.2)Qtot
reacted
an HH N 

 

 Qin  

The reacted hydrogen molar flow rate 
2,

reacted
an HN , the reacted oxygen molar flow rate

2,
reacted
ca ON , and the generated water molar flow rate 

2, O
gen
ca HN  can be expressed as the functions 

of the cells number n, the PEMFC stack current Ist and the Faraday constant F. 

2, / (2 )                                                                                                                                    (5.3)st
reacted
an H nI FN   

2, / (4 )                                                                                                                                    (5.4)st
reacted
ca O nI FN   

2, / (2 )                                                                                                                                     (5.5)stO
gen
ca H nI FN   

According to assumption (3), the anode input hydrogen molar flow rate
2,

in
an HN  is set as 

2H times of the reacted hydrogen molar flow rate 
2,

reacted
an HN . Similarly, the cathode input air 

molar flow rate ,
in
ca airN  is set as the 

2O times of the reacted air molar flow rate

2

/ 21%,
reactedNca O . 

2 2 2, ,                                                                                                                                      (5.6)in reacted
an H H an HN N

 

2
2, / 21%    ,                                                                                                                        (5.7)in

ca air O
reactedNca ON 

 

Simultaneously, according to assumption (1), the anode input vapor molar flow rate 

2,
in
an H ON  and the cathode input vapor molar flow rate 

2,
in
ca H ON  are calculated as below: 
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22 ,,                                                                                                                              (5.8)sat

an sat

in in
an Han H O

P
P P

N N
  

2 ,,                                                                                                                                (5.9)sat

ca sat

in in
ca airca H O

P
P P

N N


 

Therefore, the heat brought into the stack by the input gas flow is calculated as follows:  

2 2 22 2 2,, , ,( )( ) ( )( )                             (5.10)Q g in g in
in H H O an st air H O ca st

in in in in
ca airan H an H O ca H OC C T T C C T TN N N N       

 Pst 

The electrical energy produced by PEMFC stack is calculated as the product of the PEMFC 

stack current stI and voltage stV : 

                                                                                                                                                    (5.11)st st stP V I  

 Qout 

According to the molar conservation principles, the gases output molar flow rate are 

presented below:  

2 2 2, , ,                                                                                                                           (5.12)out in reacted
an H an H an HN N N   

2
2 2, ,  ,                                                                                                                          (5.13)out in

ca o ca o
reactedNca oN N 

 

2 ,, 0.79                                                                                                                                      (5.14)in in
ca airca NN N  

The anode/cathode vapor outputs are shown as follows:  

22 2 ,, ,                                                                                                           (5.15)sat

an sat

out in reacted
an Han H O an H O

P
P P

N N N 


 

2 2 2, , ,                                                                                                            (5.16)sat
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According to assumption (2), the heat brought out by the exhaust gas and water is 

calculated as below:  

2 2 2 2 2 22 22 2 2 2, , ,, , ,( )( )                 (5.17)Q g g l
out H H O O N H O H O st ambO

genout out out out out
an H ca N ca Han H O ca O ca H OC C C C C C T TN N N N N N        

 Qamb 

The heat loss at the PEMFC stack surface is calculated as below: 

( ) /                                                                                                                                  (5.18)Qamb st amb tT T R   

where Tamb is the ambient temperature, Rt is the PEMFC thermal resistance. 

 Qconv 

According to the thermal convection principle [18], the convection between the stack and 

the coolant is calculated as: 

( )                                                                                                                         (5.19)
2

Q cl amb
conv p st

T T
A h T


   

5.3.2 Thermal model of coolant 

Similarly, the coolant temperature in the reservoir is expressed as below: 

C                                                                                                                              (5.20)Q Qcl
rv rv conv cl

dT
M

dt
  

 

where Mrv is the reservoir mass, and Crv is the reservoir heat capacity. 

The heat removed by the coolant is: 

2
( )                                                                                                                            (5.21)Q l

cl H O cl cl ambC M T T 
 

where Mcl is the coolant flux. 
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Finally, we arrive at the following expression for the thermal model of PEMFC 

( ) ( ) ( )
                                                                                                                  (5.22)

( )
cl stT f T g T M w T I

y h T
   





 

where 1 2 3 4 5
0

1 2 3 4 5

0
,   ( ) ,  ( ) ,  ( ) ,  ( )

0
st st cl st

st
cl st cl cl

T a T a T a a T a
T f T g T w T h T T T

T bT b T b b T b
         

            
         

 

As can be seen from the above expression, the state variables are the stack temperature Tst 

and the coolant temperature Tcl, the coolant flux Mcl is the manipulated input, and the stack 

current Ist is the disturbance input. a1~ a5, b1~ b5 are constant coefficients, T0 is the 

predetermined set point. 

This thermal model is nonlinear with disturbances and uncertainty. The main reasons are 

as follows: (1) the stack current Ist is considered as disturbance, which corresponds to 

uncontrollable load; (2) many physical parameters may vary to a large extent under different 

operating conditions.  

5.3.3 Model validation 

The thermal model is validated by comparing with the experimental data reported by 

Lebbal and Lecoeuche [19], as shown in Figure 5.1. The figure shows an example of how 

PEMFC reaches its operating temperature. As can be seen, the proposed thermal model fits 

very well with the experimental data and accurately presents the temperature dynamics of 

PEMFC. Indeed the error between the proposed model and experimental data is very small. 

The maximum relative error is less than 0.08%. 
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Figure 5.1 Thermal model validation: (a) Experimental data and thermal model 

 

 Figure 5.1 Thermal model validation: (b) Relative error 
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5.4 Thermal controller design 

Since the thermal model described by (5.22) is formulated in nonlinear affine form with 

disturbance, the input/output linearization method is employed by introuducing a dynamic 

feedforward/static state feedback law. A model-based controller is then designed after 

linearization. 

Given a nonlinear system with measured disturbance:  

11

( ) ( ) ( )
:                                                                                                             (5.23)

( )

p

k k
k

x f x g x u w x d
S

y h x



  


 


 

where x Rn denotes the vector of state variables, u R1 denotes a manipulated input, dk 

denotes a measurable disturbance input, and y R1 denotes an output (to be controlled). f(x), 

g(x), wk(x) denote analytic vector fields, and h(x) denotes analytic scalar fields.  

In the following discussion, standard Lie derivative notation will be using: 

1

( )( ) ( )                                                                                                                               (5.24)
n

f l
l l

h xL h x f x
x





  

where fl(x) denotes the l-th row element of f(x).  

One can define higher order Lie derivatives as well as mixed Lie derivative in an obvious 

way: 

0 ( ) ( )                                                                                                                                               (5.25)fL h x h x  

1( ) ( ( ))                                                                                                                                  (5.26)k k
f f fL h x L L h x  

1 1( ) ( ( ))                                                                                                                             (5.27)k k
g f g fL L h x L L h x   
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Then, the relative order of the output y with respect to the manipulated input vector u, r is 

defined as the smallest integer for which [20]: 

1 ( ) 0                                                                                                                                            (5.28)r
g fL L h x   

Similarly, the relative order of the output y with respect to the disturbance input dk, k is 

defined as the smallest integer for which [20]: 

1 ( ) 0                                                                                                                                           (5.29)k

kw fL L h x 
  

Theorem: Consider a nonlinear system in the form of (5.23). Let r, k denote the relative 

orders of output y with respect to manipulated input u and disturbance input dk, respectively. 

Then the dynamic feedforward/static state feedback law [21]: 

1 1

0 0 1
1

( ) ( ) ( ( ) )
                                      (5.30)

( )

k

k k
k k k

r lr r
j r j l

j f r w f k j w f kl
j d d l j

r
r g f

dv L h x L L h x d L L h x d
dt

u
L L h x





  




  

   



  



   
 

induces to a disturbance-free linear input/output behaviour: 

2 :   =v                                                                                                                                       (5.31)
j

j j
j

d yS
dt

  

where aj are adjustable parameters, v is the input after linearization. 

Form (5.22), it can be easily verified that: 0 1 0( ) 0;   ( ) 0;   ( ) 0.g f g f w fL L h T L L h T L L h T  

Consequently, the relative order of the output with respect to the manipulated input Mcl is r=2, 

the relative order of the output with respect to the disturbance input Ist is =1. In order to 

stabilize the system after linearization, the poles of the corresponding linear system can be 

chosen as s1=-1, s2=-2. Since a0+a1s+a2s2=(s+1)(s+2), then a0=2, a1=3, a2=1. Therefore, one 

obtains the dynamic feedforward/static state feedback law:  



 

175 
 

2 2
1

2
0 1

2

( ) ( ) ( ( ) )
                                                               (5.32)

( )

j r
j f r w f st w st

j r
cl

g f

dv L h T L L h T I L h T I
dt

M
L L h T

  





 

  



 
 

induce the linear input/output behaviour:
2

2 +3 +2 =                                                                                                                                          (5.33)d y dy y v
dtdt

      

(5.33) can be rewritten as the state-space form: 

                                                                                                                                               (5.34)
x Ax Bv

y Cx
 






where  
0 1 0

,    ,   1 0 ,   
2 3 1

A B C   
     

    
 

Following the standard procedure of LQR controller design with Q=1, R=1, one constructs 

the controller: 

1 2 0= 0.236 ( ) 0.0777 ( ) 0.2448                                                                                                     (5.35)v x t x t T    

where x1(t)=Tst, x2(t)= Tst/dt. T0 is the set point. Figure 5.2 show the schematic of PEMFC 

thermal system implemented in the MATLAB/SIMULINK environment.  

 

Figure 5.2 Schematic of PEMFC thermal system implemented in SIMULINK [22] 
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5.5 Simulation results and discussion 

To demonstrate the effectiveness of the proposed controller, a load disturbance is assumed, 

which causes step changes of the stack current I at t = 1000 s and t = 2000 s, respectively. 

The corresponding operation parameters of PEMFC are demonstrated below. Hydrogen input 

flow rate factor 
2H = 1.5, air input flow rate factor 

2O = 2, anode/cathode input temperature 

in
anT = in

caT = 323 K, anode pressure Pan = 2.9 atm, cathode pressure Pca = 3 atm. The target value 

of stack temperature T0 here is taken as a constant and set to 353 K (80°C).  

 Simulation results are shown in Figure 5.3. Figure 5.3(a) shows the step changes of stack 

current that acts as the disturbance input, which arises from uncontrollable load demand. The 

corresponding movements of manipulated input, coolant flux, are shown in Figure 5.3(b). 

Figure 5.3(c) and Figure 5.3(d) show the variations in stack temperature and coolant 

temperature, respectively. 

As shown in Figure 5.3(a), the stack current steps from 60 A to 100 A at the 1000 s, which 

leads to a sudden increase in the total energy produced by PEMFC. In order to maintain the 

operational temperature of PEMFC, the coolant flux increases accordingly, serving to remove 

the excessive heat generated, as shown in Figure 5.3(b). On the other hand, when the stack 

current steps from 100 A to 40 A at the 2000 s, coolant flux decreases as the energy produced 

by PEMFC decreases. The result displayed in Figure 5.3(c) shows that the proposed control 

algorithm can track the temperature set point well, with error less than 1K (measured at 353K), 

which is acceptable for engineering applications. Compared with PID control strategy in 

literature [13], the proposed method achieves better performance in terms of control accuracy. 
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Figure 5.3 Performance of the proposed thermal controller: (a) Stack current 

 

Figure 5.3 Performance of the proposed thermal controller: (b) Coolant flux 
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Figure 5.3 Performance of the proposed thermal controller: (c) Stack temperature 

 

Figure 5.3 Performance of the proposed thermal controller: (d) Coolant temperature 
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5.6 Conclusion 

The objective of this chapter is to propose a model-based controller for the thermal 

management of PEMFC. First, the control-oriented thermal model that considers both 

PEMFC stack and coolant is developed based on the energy conservation principle. Since 

the model is formulated in nonlinear affine form with disturbance, the input/output 

linearization method is employed by introuducing a dynamic feedforward/static state 

feedback law. The temperature controller is then designed based on the linearized model. 

The simulation results demonstrate that the proposed controller has superior performance 

than PID controller in terms of accuracy. 

In the next chapter, several key issues concerning China‘s transition towards hydrogen 

economy are reviewed. As an emerging giant of the world economy and international 

energy markets, China is transforming the global energy system by dint of its sheer size and 

its growing weight in international energy trade. How rapidly China‘s energy needs 

develop and how they are met will have far-reaching consequences for the rest of the world. 

This chapter, for the first time, provides a full picture of future hydrogen economy in China, 

including drivers, resources and technologies. 
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Chapter 6 Building the Hydrogen Economy in China 

China is unique in terms of its vast area, huge population and rapid economic growth. 

These factors pose a great challenge to ensure a continuous and sufficient energy supply. 

This is especially true considering the fact that China has been the world‘s second largest net 

importer of oil since 2009. In addition, the structure of China‘s economy also has a major 

impact on its greenhouse-gas emissions profile and its consequent approach to addressing 

climate change. Currently, China relies heavily upon coal-fired power for electricity 

generation and is the leading emitter of greenhouse gases. Hydrogen shows the great 

potential in solving China‘s concerns for improving energy security and reducing 

greenhouse gas emissions. Besides its large coal reserve, China has abundant and widely 

distributed renewable energy resources. The use of hydrogen can facilitate the exploitation 

the renewable energy resources, thus diversifying the energy supply. Moreover, hydrogen is 

the cleanest fuel especially when coupled with fuel cell. Motivated by the enormous 

advantages, China is taking the first steps towards future hydrogen economy. 

The major contributions of chapter 6 include: (1) China‘s main drivers for the transition 

towards the hydrogen economy are indentified, including energy security, climate change, 

urban air pollution and competiveness. (2) China‘s energy supply matrix is reviewed, 

including both fossil fuels (coal, oil and natural gas) and renewable resources (hydro, wind, 

solar, biomass). The potential role of different energy resources in future hydrogen economy 

is also analysed. At the current stage, coal appears to be the suitable source for hydrogen 

production due to its abundant reserves and mature infrastructure, while renewable resources 

are likely to play a more important role in the long term. (3) China‘s policy and government 
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support programs for the R&D of hydrogen and fuel cell technologies are reviewed. 

Research achievements are also summarized. 

The Chapter is organized as follows: In section 6.1, the motivation of this study is 

explained. In section 6.2, a brief introduction to China‘s geographic and economic data, 

together with its energy consumption profile, is presented. In section 6.3, China‘s drivers for 

hydrogen economy are identified. In section 6.4, China‘s energy system and potential 

sources for hydrogen production are discussed. In section 6.5, the interests in hydrogen and 

fuel cell technologies within China are reviewed. Section 6.6 presents some comments on 

China‘s current status and future direction for hydrogen economy. 

6.1 Why is China’s transition towards hydrogen economy important  

China is the emerging giant of the world economy. Growth in China‘s real gross 

domestic product (GDP) averaged a phenomenal 10% per year since 1980. Such a high rate 

of growth is not unprecedented – double-digit rates have been recorded in some countries 

over other periods – but no large country has sustained such a rate for such a long period. 

High growth rates in the 1980s made little difference to the world economy, because China‘s 

economies were relatively small. Today, the size means that continuing high growth makes a 

much bigger difference to the world economy. For example, 10% growth in China is 

equivalent to almost 2% of US growth at market exchange rates. 

Phenomenal rates of economic growth in the last three decades in China have been 

accompanied by a growing thirst for energy. A rising share of the energy needs has to be 

met by imports, as demand is outstripping indigenous supply. One example will suffice to 

illustrate this point. China was forced to end its oil self-sufficiency energy policy and import 
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oil from overseas in 1993. In 2009, China became the world‘s second largest consumer of 

oil behind the United States and the world‘s second largest net importer of oil. As such, 

China is increasingly exposed to changes in world energy markets. In turn, China is also 

transforming the global energy system by dint of its sheer size and its growing weight in 

international energy trade. How rapidly China‘s energy needs develop and how they are met 

will have far-reaching consequences for the rest of the world. 

The major concern for improving energy security and reducing greenhouse gas emissions, 

together with the rapid development of hydrogen and fuel cell technologies in recent years, 

is focusing China‘s opinion on options for future hydrogen economy. Hydrogen can be 

produced from a variety of sources, both fossil fuel (coal, oil, natural gas) and renewable 

resources (hydro, wind, solar, biomass). This characteristic provides an opportunity for 

China to diversify its energy supply and alleviate its high dependence on oil imports from a 

hydrogen economy. Hydrogen can then be utilised in high-efficiency power generation 

systems, including fuel cells, for both vehicular transportation and distributed electricity 

generation. Overall, emissions in a hydrogen energy cycle are expected to be lower than for 

today‘s carbon energy cycle, but the centralized production of hydrogen offers the extra 

advantage of enabling large scale capture and sequestration of CO2 emissions. Sequestration, 

along with the efficiency improvement due to fuel cell technology, could make a major 

difference in emissions from a hydrogen economy. Furthermore, China‘s participation in 

international trade amplifies the importance of its contribution to collective efforts to 

enhance global energy security to reduce global green gas emissions. The more effective are 

China‘s transition towards hydrogen economy, the more other countries stand to benefit. 
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China has already shown the ambition for future hydrogen economy. A workshop for 

China‘s Roadmap toward hydrogen economy was held in 2005 with participants from 

academia, industry and government. The workshop clarified a clear vision of future 

hydrogen economy in China: by 2020 – technology development phase; by 2050 – market 

penetration phase; and beyond 2050 – fully developed market and infrastructure phase. This 

roadmap has proven highly valuable in coordinating public and private sector research and 

development investments in hydrogen and fuel cell technologies. It is believed that China 

will have a secure and clean energy system at the end of the roadmap and the whole world 

will benefit from it.   

6.2 Geography, economy and energy consumption 

China is the world‘s second-largest country by land area, covering 9.6 million square 

kilometers; it also has the highest population in the world, with more than 1.3 billion citizens 

[1]. However, the population distribution of China conceals major regional variation. Most 

of the population is concentrated in the eastern part of China, especially the coastal region. 

These areas also tend to be more industrialized. In contrast, the west and northern part of the 

country are very sparsely populated and less developed. Figure 6.1 illustrates the distribution 

of population and major cities in China [2]. 

Since the initiation of its economic reforms in 1978, China has become one of the 

world‘s fastest-growing economies, with annual growth rates averaging 10% over the past 

30 years. China became the world's second largest economy after the United States in 2010 

[3]. It was reported by National Bureau of Statistics that China‘s GDP reached $7.26 trillion 

in 2011 [4]. Meanwhile, China is also the largest exporter and second largest importer of 
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goods in the world. According to the data released by General Administration of Customs, 

the total foreign trade volume of China totalled $3.64 trillion in 2011 [5].  

 

Figure 6.1 Distribution of population and major cities in China [2] 

The energy consumption of China is soaring as its economy is expanding rapidly. China 

overtook the United States and became the world‘s largest energy user in 2010 [6]. 

Currently, China accounts for 21.3% of the world‘s energy demand but its rate of 

consumption is growing more than four times the world‘s rate [7]. Figure 6.2 shows China‘s 

energy consumption by fuel in 2000 and 2010 [7]. As can been seen from the figure, coal is 

the backbone of China‘s energy system. It meets over half of the country‘s primary energy 

needs, providing most of the fuel used by power stations and much of the final energy used 

by industry, commercial businesses and households. In fact, coal‘s importance in the overall 
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fuel mix has been growing in recent years, due to the booming demand for electricity, which 

is almost 80% coal-based. Oil demand has been growing quickly, with total oil consumption 

increasing from 230.1 million tons oil equivalent (toe) in 2000 to 437.7 million toe in 2010. 

However, its share of primary demand decreased from 28.6% to 18.2%, reflecting the huge 

increase in the total energy consumption during this period. While China has made an effort 

to diversify its energy supplies, hydroelectric sources, natural gas, nuclear power, and other 

renewables account for relatively small shares of China‘s energy consumption mix. 
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Figure 6.2 China‘s energy consumption by fuel in 2000 and 2010 
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Figure 6.3 shows the China‘s energy consumption by sector in 2009 [8]. In 2009, the 

industrial sector—including manufacturing, utilities, and mining— is China‘s largest energy 

user, accounting for about 72% of total energy use. The residential sector is next with about 

11%, while transport, storage and post also contribute almost 8%. The agriculture, forestry, 

animal husbandry, fisheries, and water conservation sectors together consumed only account 

for about 2%, reflecting the low level of agricultural mechanization in China. 
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Figure 6.3 China‘s energy consumption by sector in 2009 

6.3 Drivers of building the hydrogen economy in China 

In a recent literature overview of hydrogen studies, four main drivers towards a hydrogen 

energy system were identified: (1) climate change, (2) energy security, (3) air pollution and 

(4) competitiveness [9].  
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6.3.1 Energy security  

China did not realize the urgency and importance of energy security until the 1990s due 

to the weak economic development and relatively lower demand for energy resources before 

1990s. For many years, China was able to meet its energy needs entirely from domestic 

resources. Therefore, energy security was not the China‘s priority as its dependence on 

global markets was minimal.  

However, that has changed dramatically in the last decade and China‘s concerns about 

energy security have grown in parallel. China‘s energy consumption has been soaring due to 

the rapid economic growth, expanding middle class population and the largest-scale of 

urbanization. China was forced to end its oil self-sufficiency energy policy and import oil 

from overseas in 1993. In 2009, China became the world‘s second largest consumer of oil 

behind the United States and the world‘s second largest net importer of oil [10].  In less 

than a generation, China has moved from being a minor and largely self-sufficient energy 

consumer to become the one of world‘s fastest-growing energy consumers and largest 

energy importers. In such context, there is no doubt that China now considers energy 

security as its first priority. 

China‘s energy security considerations today focus largely on guaranteeing a continuous 

and sufficient supply of oil from overseas. Currently, China depends on foreign imports for 

over 50% of the oil it consumes, and half of this imported oil is from the Middle East [11]. 

Figure 6.4 shows the China‘s crude oil imports by source in 2010 [10]. China has many 

reasons to worry about its oil supply: small oil reserves, high dependence on oil imports, 
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dramatic fluctuation of oil prices in international market, and political risk in oil-supplying 

countries.  

 

Figure 6.4 China‘s crude oil imports by source in 2010 [9] 

On the other hand, China has abundant and widely distributed renewable energy 

resources that have the potential to gradually displace fossil fuel in the nation‘s energy mix. 

It is more desirable for China to draw its energy to a large extent from local and indigenous 

renewable energy resources, with much less dependence on energy imports from overseas. 

The use of hydrogen can facilitate the exploitation the renewable energy resources. 

Hydrogen can be produced from diverse resources, both renewable (solar, wind, hydro, 

biomass) and non-renewable (coal, oil, natural gas) [12]. It is important to stress that, unlike 

coal, oil or natural gas, hydrogen is not a primary energy source. Its role more closely 

mirrors that of electricity as an ‗energy carrier‘, which is produced using energy from 

another source and then transported for future use, where its stored chemical energy can be 

utilised. It is this key element of the energy storage capacity of hydrogen that provides a 

solution to one of the major issues of renewable energy resources, namely the vexing 

problem of intermittency of supply.  For instance, many people have predicted the growth 
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of a solar/wind hydrogen economy in the future. Photovoltaic cells or wind turbines would 

convert sunlight or wind into electricity. This electricity would be used to split water 

(electrolysis) into hydrogen and oxygen, in order to store the energy as hydrogen fuel. Fuel 

cells consume the hydrogen to generate stable electrical power [13].  

 In sum, hydrogen opens up the possibility of (decentralised) production and utilization 

on the basis of a variety of energy sources, diversifying energy supply. This may greatly 

contribute to reduce the dependence on imported oil [14]. 

6.3.2 Climate change  

China plays a critical role in the battle against world climate change caused by the 

greenhouse gas emissions. In fact, China overtook the United States in 2007 as the world‘s 

largest annual emitter of energy-related CO2 [15]. Chinese CO2 emissions tripled between 

1990 and 2009, reaching almost 7 billion tons (Gt) of CO2 in 2009 (24% of global 

emissions). Under the Kyoto Protocol, the State Council promised in 2009 that China was 

going to reduce the intensity of carbon dioxide emissions per unit of GDP in 2020 by 40% - 

45% compared with the level of 2005.  

To achieve this goal, a perfect fuel that is cheap, clean and efficient is required. Hydrogen 

is an ideal candidate for this fuel. Compared with other conventional fuels, hydrogen has a 

variety of good properties in terms of reducing CO2 emission [16]: 

 can be produced from fossil fuels by conversion, with CO2 separation. This one can 

be considered as the cleanest way to continue using those fossil fuels 

 can be produced from other sources (renewable, nuclear) without CO2 emission; 
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 can be utilized in different applications (transportation, electricity production, etc.), 

without producing any pollutant but water steam. 

These characteristics give hydrogen special significance in China‘s CO2 emission 

reduction campaign. Actually, the development of technologies for distribution and 

utilization of hydrogen will be the basis for the introduction of those CO2-free production 

technologies [16]. 

6.3.3 Urban air pollution 

China is now facing serious urban air pollution problem. China is now home to 13 of the 

world‘s 20 most polluted cities [17]. The vehicle exhaust emissions have been blamed for 

the main contributor to the worsening air quality in big cities. Since 2009, China has been 

the largest automobile market in the world. Its annual vehicle production and sales reached 

18.26 million and 18.06 million in 2010. By the end of 2010, the vehicle population in 

China has totalled 190 million. It was reported by the Ministry of Environmental Protection 

that the total volume of vehicle exhaust emissions reached more than 52.26 million tons in 

2010, including 40.80 million tons of carbon monoxide (CO), 4.87 million tons of 

hydrocarbon (HC), 5.99 million tons of nitrogen oxide (NOx) and 598,000 tons of particulate 

matter (PM) [18]. 

Fuel cells are considered the most promising power source for future generation vehicles 

and the only technology with the potential of competing with internal combustion engines 

[16]. Fuel cell vehicles offer efficiencies two to three times higher than those of 

conventional vehicles, maintaining similar performances in terms of range, top speed and 

acceleration. Moreover, by skipping the combustion process that occurs in traditional 
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internal combustion engines, the generation of pollutants during the combustion process is 

avoided. With pure hydrogen, a fuel cell vehicle is a true ―zero emission‖ vehicle, producing 

only water as by-product. Even with other fuels, emissions from fuel cell vehicles will be 

very low with near-zero levels of NOx, SOx and particulates, therefore eliminates 20,000 kg 

of acid rain and smog-causing pollutants from the environment. In any case fuel cells 

generally provide the lowest emissions of any non-renewable power generation method, as 

shown in Table 6.1 [19].  

Table 6.1 Pollutant emission factors for the total portion of the fuel cycle [18] 

Source SOx (gSOx/kWh) NOx gNOx/kWh) C in CO2 (gC/kWh) C in CO (gC/kWh) Paritcles 
Coal 3.400 1.8 322.8 40.0 0.00020 
Oil 1.700 0.88 258.5 40.0 0.00015 
Natural Gas 0.001 0.9 178.0 20.0 0.00002 
Nuclear 0.030 0.003 7.8 7.8 0.00005 
Photovoltaic 0.020 0.007 5.3 1.3 0 
Fuel cells 0 0 1.3 0.3 0 
 

6.3.4 Competitiveness 

China‘s global competitiveness will be fostered if China companies are able to forge a 

lead in hydrogen and fuel cell technologies. This is especially true for China‘s automobile 

industry. China is currently the largest automobile market in the world. Although some 

indigenous automobile manufacturers are emerging, foreign companies still occupy the 

largest market share and take a leading position in many key technologies, especially the 

internal combustion engine [20]. As such, China‘s indigenous automobile manufacturers can 

hardly to compete with their foreign counterparts in the domestic market, let alone the global 

market. The emergence of fuel cell provides an opportunity for China to reverse the tide. 

Although fuel cell vehicle is still at a nascent stage, it shows great potential of competing 

with the internal combustion engine vehicle. China intends to develop fuel cell vehicles to 
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leapfrog internal combustion engine vehicles [21]. Using this strategy, China‘s indigenous 

manufacturers are able to stand on the same starting line with their foreign counterparts for 

the first time.  If China companies are able to commercialize fuel cell vehicles, they may 

create new market space and greatly enhance their competitiveness. 

6.4 Energy resources for hydrogen production in China 

China is the world‘s largest hydrogen consumer with 22% of global hydrogen 

consumption share [22]. China‘s maximum demand comes from ammonia producers. On the 

other hand, fossil fuels play a dominant role in China‘s hydrogen production, accounting for 

97% of total hydrogen production. Water electrolysis only contributes to 3% of total 

hydrogen production [23]. As such, China is eager to exploit its abundant renewable energy 

resources for hydrogen production in the future.  

6.4.1 Coal 

China held the third-largest coal reserves in the world behind the United States and 

Russia [10]. In 2003, the Ministry of Land and Resources of China, in accordance with 

international norms for coal resources reporting [24], stated that China‘s total coal reserves 

stood at 1021 Gt, comprising 334 Gt of ―basic reserves‖ and 687 Gt of ―prognostic reserves‖ 

[25]. ―Proven reserves‖ were reported to be 189 Gt, suggesting a reserve-to-production ratio 

of over 70 years. According to the norm [24], ―basic reserves‖ are defined as those resources 

that can be potentially exploited under current technoeconomic conditions. ―Prognostic 

reserves‖ include those amounts that are not economic to recover or for which economic 

significance is uncertain because data is insufficient. ―Proven reserves‖ are the economically 

recoverable fraction of basic reserves. 
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The distribution of coal resources shows imbalanced, as shown in Figure 6.5 [25]. Most 

resources are in the west and north. Shanxi, Shaanxi and Inner Mongolia together account 

for 65% of the nation‘s proven coal reserves, while just 13% lie in the southern part of the 

country, mainly in Guizhou and Yunnan. Over 90% of identified coal reserves are in 

less-developed, arid areas that are environmentally vulnerable. 

 

Figure 6.5 Location of major coal resources in China [20] 

China is the largest producer and consumer of coal in the world [10]. Coal production 

rose to almost 3.1 Gt in 2009, making China overtake the United States and become the 

world‘s largest coal producer. Also in 2009, China consumed an estimated 3.2 Gt of coal, 

representing over 46% of the world total. Coal consumption has been on the rise in China 
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over the last ten years due to due to the booming demand for electricity, which is almost 80% 

coal-based. 

Gasification is the primary method for converting coal into hydrogen [26]. It is also the 

core of current Integrated Gasification Combined Cycle (IGCC) technology for power 

generation. In a commonly used gasification process, coal is first ground to a fine powder 

and mixed with water before being gasified at high pressure using pure oxygen. The 

feedstock is heated to high temperature (about 1400°C), causing its decomposition and 

producing a mixture of hydrogen, carbon monoxide and some residues; the resultant 

synthesis gas stream is quenched and scrubbed. The syngas is then put through a CO shift 

reactor, and CO2 is removed using a physical solvent. The acid gases contained in this 

solvent are desorbed by pressure reduction. The hydrogen can be further purified to remove 

any remaining impurities. In China, around 50 million tons coal is used for gasification each 

year [23].  

6.4.2 Oil 

According to Oil & Gas Journal (OGJ), China had 20.4 billion barrels of proven oil 

reserves as of January 2011 [10]. Figure 6.6 delineates the location of some of the major 

Chinese oil basins [10]. As can be seen, China‘s major oil fields are located in the northern 

region of the country.  Particularly, the northwest‘s Xinjiang Province has received 

significant attention. Recently, China announced the plan to make Xinjiang into the 

country‘s largest oil production and storage base. It is also worth pointing out that about 15% 

of overall Chinese oil production is from offshore reserves, and most of China‘s oil 

production growth likely will come from offshore fields.  
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Figure 6.6 Location of major oil resources in China [9] 

China is the second largest consumer of oil and the second largest net importer of oil in 

the world [10]. In 2010, China produced an estimated 4.3 million barrels per day of oil and 

consumed an estimated 9.2 million barrels per day of oil, making the net oil imports reach 

about 4.8 million barrels per day [10].  

Oil, especially low quality fuels such as petroleum coke or residuals might be used as a 

fuel for gasification (as with coal) to supply hydrogen [26]. Combined with desulfurisation 

and sequestration, oil-produced hydrogen could be made with almost zero emissions. In 

addition, light fractions of petroleum can be converted to hydrogen in much the same way as 

natural gas. The limitations of this process are that it is less efficient overall, and less 
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hydrogen is produced due to the lower molar content of hydrogen in oil. In China, about 

0.766 million tons of hydrogen is produced from oil each year [23].  

6.4.3 Natural gas 

Estimates of natural gas reserves in China vary dramatically depending on the source [27]. 

At the end of 2008, China National Petroleum Corporation (CNPC) announced that China‘s 

total proven reserves amounted to 5.94 trillion cubic metres, including 3.09 trillion cubic 

metres of technically and economically producible reserves. However, other estimations are 

also available. In 2007, Cedigaz estimated that China‘s proven reserves amounted to 3.7 

trillion cubic metres, while the IEA estimated China‘s recoverable, proven and probable 

reserves from identified fields to amount to around 5.0 trillion cubic metres. As with coal 

resources, the distribution of natural gas is uneven. China‘s major gas fields are located 

inland, in the western and central parts of the country. Figure 6.7 illustrates the major natural 

gas field and infrastructure in China [27].  

The consumption of natural gas has been limited in China until recently. This was mainly 

due to the lack of infrastructure, particularly long-distance pipelines connecting inland gas 

fields to major consumer cities, mostly in the coastal areas in China. Since the 1990s, the 

government has promoted the construction of natural gas transport infrastructure and 

improved inter-regional connections between regional networks. The total length of natural 

gas pipeline across the country amounted to 36,000 km by the end of 2010. China is 

ambitious to triple its current record to 100,000 km by the end of 2015 to meet the rising 

demand [28].  
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Figure 6.7 Major natural gas field and infrastructure in China [22] 

Although natural gas use is increasing in China, the fuel only comprises a small 

proportion of the country‘s total energy consumption. In 2007, China‘s natural gas 

production amounted 69.2 billion cubic metres and consumption attained 69.5 billion cubic 

metres, making China a net natural gas importer for the first time in almost two decades [27]. 

Also in 2007, China became one of the world‘s top 10 countries in terms of natural gas 

consumption.  

Hydrogen can be produced from natural gas directly via various processes, including 

steam reforming, partial oxidation, auto-thermal reforming and thermal decomposition, as 

well as indirectly via electrolysis using electricity and/or heat from gas combined cycle 

processes [26]. Nearly 60% of global hydrogen production is generated from natural gas. 
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Hydrogen from natural gas for the ammonia and petroleum industries represents the largest 

portion of the current global production. In china, however, natural gas is mainly used as a 

raw material for chemicals production due to the high price [29].  About 1.18 million tons 

of hydrogen is produced from natural gas in China each year [23]. 

6.4.4 Renewable energy resources 

China boasts its fairly abundant renewable energy resources. These renewable energy 

resources offer the opportunity of zero fuel-cycle emissions for hydrogen production via 

electrolysis. According to the Medium and Long-Term Development Plan for Renewable 

Energy, China has a goal to generate at least 15% of total energy output by 2020 using 

renewable energy resources [30]. In recent years, China has strengthened its legislation to 

promote renewable energy, including the Atmospheric Pollution Prevention and Control 

Law 2000, the Renewable Energy Law 2005 and the Energy Conservation Law 2007. 

Meanwhile, China is the world's top investor in renewable energy projects, having invested 

around $120 billion to $160 billion between 2007 and 2010 [10].  

6.4.4.1 Hydropower 

Hydropower is the most important renewable energy resource in China. According to the 

results of the 2003 Nationwide Hydropower Resource Assessment, China‘s technically 

exploitable hydropower totals 542 GW, with an annual power generation potential of 2470 

TWh. China‘s economically feasible hydropower resource is estimated to be 400 GW, with 

an annual generation potential of 1750 TWh, of which small-scale hydropower accounts for 

125 GW, widely distributed throughout the provinces, especially in the southwest [31].  
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China was the world‘s largest producer of hydroelectric power in 2010, generating 721 

TWh of electricity from hydroelectric sources, representing around 17% of domestic 

electricity use [32]. China also had the highest installed hydropower capacity, with 213 GW 

at the end of 2010, accounting for one fifth of the world‘s total installed hydropower 

capacity.  

Small hydropower plays a key role in the electrification of China, especially in remote 

rural areas. Small hydropower generally refers to plants below 50 MW. About one-third of 

China‘s countries rely on small-scale hydropower as their main source of electricity. With 

supportive policies and incentives, China had more than 55 GW of small-scale hydropower 

projects by the end of 2010, with a generating output of about 160 TWh [33].  

6.4.4.2 Wind 

Wind is the second leading renewable source for power generation in China. China‘s 

exploitable onshore wind resources are 253 GW, ranking first in the world, with a further 

offshore potential of 750 GW [34]. Figure 6.8 shows China's annual average wind power. 

As can be seen, areas rich in wind resources are located mainly along the southeast coast and 

the northern region. In addition, the ocean-based wind resources are also abundant. With 

current technology, wind turbines can be installed in the ocean up to 10 km away from the 

coast and at ocean depths of up to 20 m. 

Wind power is the most cost-effective renewable energy today. Construction of wind 

power projects in China began in the 1980s. Since then, China‘s wind power projects have 

developed rapidly. In 2010, China installed 16 GW of new wind power capacity, bringing its 

accumulated installed capacity to 41.8 GW - thus making it the largest wind-installation 
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country in the world [35]. Despite the rapid growth, China‘s installed wind power capacity 

today is only a small part of the country‘s wind resource potential. One of main barriers to 

further development is the lack of transmission infrastructure. 

 

Figure 6.8 China's annual average winder power [29] 

6.4.4.3 Solar 

Solar resources are receiving increasing attention in China. It is estimated that the annual 

surface absorption of solar energy is equivalent to approximately 1300 billion tons of 

standard coal equivalent (tce) [36]. Figure 6.9 shows the distribution of China‘s solar 

resources. As can be seen, two-thirds of China‘s land area has abundant solar energy, 

particularly in the northwest, Tibet and Yunnan, with average annual radiation levels of over 

6000 MJ/m2.  
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Figure 6.9 Distribution of China‘s solar resources [31] 

The photovoltaic power generation is experiencing a rapid growth in China. In 2010, 

China‘s annual production of photovoltaic cell was 8.7GW, about half the world total. 

Meanwhile, China installed 500 MW of new photovoltaic capacity in 2010, bringing its 

accumulated installed capacity to 800 MW [37]. Previously, about half of installed capacity 

was used for supplying power to residents in remote rural areas and for special applications, 

such as communications and navigation [30].  Now, the grid-connected photovoltaic power 

plant is receiving the increasing attention. The biggest photovoltaic power plant in China, 20 

MW Xuzhou Xiexin Photovoltaic Power Plant, was successfully combined to the East China 

Power Grid at the end of 2009 [37]. 
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Solar water heaters are also widely used in China today. By the end of 2005, China‘s 

annual production of solar heaters was 15 million m2 [30]. The accumulated heat-collecting 

area of installed solar water heaters reached 80 million m2 in 2006, about half the world 

total.  

6.4.4.4 Biomass 

China‘s biomass energy resources include straw and other agricultural wastes such as rice 

husks, waste from forestry and forest product processing, animal manure, energy crops and 

plantations, organic effluents from industry, municipal wastewater and municipal solid 

waste (MSW). Of about 600 Mt of crop straw produced every year, nearly 300 Mt (around 

150 million tce) can be used as fuel. Around 900 Mt of waste from forestry and forest 

product processing is available each year, and nearly 300 Mt of this (about 200 million tce) 

can be used for energy production [31]. Presently, the nation‘s biomass resource that can 

potentially be converted into energy is about 500 million tce per year, less than 20% of 

current total primary energy consumption.  

Biomass is utilized mainly through direct combustion for heating or cooking in China. In 

addition, biomass is wildly used for biogas generation, which provide clean cooking energy 

for the vast rural areas. At the end of 2005, the total number of household biogas digesters 

reached 18 million, with an estimated total annual production of 7 billion cubic metres. 

About 1500 large-scale biogas plants for livestock waste and organic industrial effluent 

produced a further 1 billion cubic metres [30]. Biogas is now widely integrated with animal 

husbandry and has become an important means of waste treatment in the agricultural sector. 

On the contrast, only a small proportion of biomass is used for power generation. By the end 
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of 2005, the installed capacity of biomass power in China reached 2 GW. Bagasse (sugar 

cane residue) plants totalled 1.7 GW, while MSW incineration and land-fill gas power plants 

accounted for a further 200 MW; the remainder was agricultural or forestry waste 

gasification [30]. 

China has already begun to produce bio-ethanol for use as a transport fuel. In 2005, the 

production capacity for bio-ethanol using food grains as a feedstock was just over 1 Mtpa 

[30]. The technology for producing bio-ethanol from non-food-grain feedstock has reached 

the pre-commercial stage in China. 

6.5 Hydrogen and fuel cell research in China 

6.5.1 Policy and government supported program 

The most recent, and arguably the most ambitious, of China‘s national science plans, is 

the National Medium to Long-term Plan for the Development of Science and Technology 

[38]. Introduced in January 2006, the product of two years of meetings and consultations 

with well over 2000 members of the technical community, the plan serves as the China‘s 

guiding document on innovation policy and involves government investments and incentives 

for key science and technology.  Energy sector receives great attention with seven key 

energy technologies indentified in the plan. Hydrogen and fuel cell technology is one of 

them. 

Presently, the majority of hydrogen and fuel cell researches in China are financially 

supported by the Ministry of Science and Technology (MOST) through two main programs: 

the National High Technology Research and Development Program (863 Program) and the 
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National Basic Research Program (973 Program). In 2011, 973 Program has $11.1 million 

of fuel cell funding available split equally into two projects: the first for solid oxide fuel cell 

(SOFC) research and the second for platinum-free fuel cells. In addition, 863 Program has 

an additional $15.8 million available for hydrogen and fuel cell projects. Table 6.2 shows 

the hydrogen and fuel cell researches supported by 973 Program and 863 Program in recent 

years. 

Table 6.2 Hydrogen and fuel cell projects supported by 973 and 863 Program 

 

In addition to MOST, researchers can also obtain funding support from the National 

Natural Science Foundation of China (NSFC), which is a governmental organization directly 

affiliated with the State Council of China for the management of the National Natural 

Science Fund. As can been seen from Figure 6.10, the number of hydrogen and fuel cell 

related projects supported by NSFC has been increasing steadily since 2000. 

Program 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

973 Large-scale production, storage and 
transport of hydrogen and fuel cells 

      

973    Large-scale production of hydrogen using solar 
energy 

  

973      Highly efficient catalytic conversion of natural 
gas and syngas 

863  Post-fossil thematic program for 
hydrogen technology 

     

863  Post-fossil thematic  program  for 
high-temperature fuel cells 

     

863  Key program for electric vehicles     

863 
      Key program for 

energy-saving and new 
energy vehicles 

  

863 
       Key program for hydrogen 

production and high temperature  
polymer electrolyte fuel cells 

863       Annual thematic  program  
for hydrogen and fuel cells 

 

863        Annual thematic  program  
for hydrogen and fuel cells 
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Figure 6.10 Number of projects on hydrogen and fuel cell supported by NSFC 

6.5.2 Research and development 

Research on fuel cells in China started at Dalian Institute of Chemical Physics (DICP), 

Chinese Academy of Science (CAS) in the mid-1950s. Since then, DICP has been at the 

forefront of fuel cell research in China. Two types of alkaline fuel cell (AFC) were first 

developed over the period of the 1960s and the 1970s, respectively. An alkaline 

free-electrolyte flow H2-O2 fuel cell and a large capacity oxidation-deoxidation electrolyte 

flow energy storage fuel cell were successfully developed in the 1980s. Consequently, the 

research and development of PEMFC, MCFC, SOFC, and DMFC have been carrying out 

since the 1990. The series productions of PEMFC engines developed in DICP ranges from 

30kW to 100kW. In 2001, DICP established Dalian Sunrise Power Co. Ltd. to facilitate the 

commercialization of fuel cells. In addition to DICP, other universities or institutes have 

their own speciality: Shanghai Jiao Tong University sets up a 50 kW MCFC test system, 

while Shanghai Institute of Ceramics runs an 800W SOFC test system. Both projects are 

supported by 863 Program. 
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In terms of hydrogen production and storage, great progress has also been achieved [39]. 

A novel biological hydrogen production process from organic waste water via zymotechnics 

was developed with capacity of 368 Nm3/d. High-performance magnesium-based composite 

material was invented with hydrogen storage capacity of 3.36 wt% at 150°C. A pioneering 

manufacturing process of lanthanon alloy was designed with hydrogen storage capacity of 

48 kgH2/m3. 

The commercial companies in China also showed great interest in the research and 

commercialization of hydrogen and fuel cell technologies. Some of them have strong 

connection with institutes and universities. Shanghai Fuel Cell Vehicle Powertrain Co., Ltd 

has particularly strong links with Tongji University in developing ―Chaoyue‖ series of fuel 

cell cars. DICP also works closely with its spin-off company Sunrise Power Co., Ltd. In 

addition, patent application has attracted great attention. For instance, Sunrise Power Co., 

Ltd has one of the largest holdings with more than 200 patents. 

 Chinese institutes, universities and companies who are active in hydrogen and fuel cell 

research and development are summarized in Table 6.3 - 6.5, respectively. 
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Table 6.3 Summary of relevant Chinese institutes  

Institute Research Interests and Progress Selected 
Reference 

Dalian Institute of 
Chemical Physics (DICP) 

DICP has broad research interests in fuel cells, including AFC, 
MCFC, SOFC, PEMFC, DMFC and etc. 
 

[40-44] 

Changchun Institute of 
Applied Chemistry (CIAC) 

CIAC has special interest in PEMFC, DMFC and MCFC. CIAC 
has been studying PEMFC since 1990s with emphasis on 
methanol reformer, catalyst and electrode manufacturing.   
CIAC also made great progress in studying intermetallic 
compound used for the anode and LiAlO2 micro-powder used for 
the electrolyte of MCFC. 
 

[45-47] 

Guangzhou Institute of 
Energy Conversion (GIEC) 

GIEC‘s research interests include microbio fuel cell (MFC) and 
hydrogen production. 
 

[48-49] 

Shanghai Institute of 
Ceramics (SIC) 

SIC puts its emphasis on SOFC, specially the material used for 
electrode and electrolyte in SOFC. Excellent research has been 
done in processing ceramic and zirconia nano powder used for the 
electrolyte. 
 

[50-53] 

Shanghai Institute of 
Organic Chemistry (SIOC) 

SIOC focuses its research on key material and component in 
PEMFC, including proton exchange membrane, membrane 
electrode assembly and flow field plate. 
 

[54] 

General Research Institute 
for Nonferrous Metals 
(GRINM) 

GRINM‘s research interest focuses on hydrogen storage 
techniques. Great progress has been made in studying metal 
hydride for hydrogen storage. 

[55-58] 
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Table 6.4 Summary of relevant Chinese universities   

University Research Interests and Progress Selected 
Reference 

Tsinghua University Tsinghua University‘s research interests include fuel cell engine 
and fuel cell bus, production, storage and transport of hydrogen. 
 

[59-62] 

Tongji University Tongji University‘s research interests include fuel cell car and 
hydrogen infrastructure. Tongji University successfully 
developed ―Chaoyue‖ serious of fuel cell cars and established 
the first hydrogen fuelling station in Shanghai.  
 

[63-66] 

University of Science and 
Technology of China 
(USTC) 

USTC focuses its research on SOFC. Current research areas 
include mid-temperature SOFC, new material for electrode and 
electrolyte of SOFC. 
 

[67-70] 

Shanghai Jiao Tong 
University (SJTU) 

SJTU‘s research interests include PEMFC, SOFC, and MCFC.  
Excellent research has been done in modelling and control of 
fuel cell systems. 
 

[71-74] 

Beijing Institute of 
Technology (BIT) 

BIT‘s research interests include PEMFC, fuel cell vehicle, as 
well as hydrogen production and storage.   
 

[75-78] 

Tianjin University Tianjin University has wide research interest, including SOFC, 
PEMFC as well as hydrogen production and storage. 
 

[79-82] 

Huazhong University of 
Science and Technology 
(HUST) 

HUST‘s put its emphasis on SOFC. Current research areas 
include new material for electrode and electrolyte of SOFC, 
intermediate temperature SOFC. 
 

[83-86] 

South China University of 
Technology (SCUT) 

SCUT‘s research interests include PEMFC, DMFC, SOFC, 
microbio fuel cell as well as hydrogen production and storage. 
 

[87-92] 

Wuhan University of 
Technology (WUT) 
 

WUT puts its emphasis on PEMFC and fuel cell vehicle. [93-96] 

University of Science and 
Technology Beijing (USTB) 

USTB has wide research interests in PEMFC. [97-101] 
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Table 6.5 Summary of relevant Chinese companies   

Company Research Interests and Products 
Dalian Sunrise Power Co., 
Ltd  

Established by DICP in 2001. Full spectrum of research from catalysts to fuel 
cell systems. Offers technical support and owns 200-300 fuel cell patents. 
 

Shanghai Shen-Li High 
Tech Co., Ltd 

PEMFC development and transport fuel cell demonstration are main focuses. 
Also has 10 kW hydrogen fuelled stationary products and 100-300W portable 
systems. 
 

Shanghai Fuel Cell Vehicle 
Powertrain Co., Ltd 

Focuses on research and development of fuel cell vehicle. Has close 
cooperation with Tongji University and Shanghai Automotive Industry 
Corporation (SAIC). 
 

Shanghai Zhongke Tongli 
Chemical Material Co., Ltd. 

Established by SIOC in 2002. Focuses on research of key material and 
components of PEMFC. Has fluorine-containing polymer membrane 
products. 
 

Shanghai Everpower Power 
Technology Co., Ltd 

Develops small PEMFC systems up to 5 kW for backup power and small 
vehicles. Staffs have 15-20 years fuel cell experience gained at fuel cell 
companies such as Ballard. 
 

Pearl Hydrogen Technology 
Co., Ltd. 

Focuses on commercialization of PEMFC for telecoms backup and light 
vehicles targeting greater lifetime and lower cost. Manufacturing capacity: 2 
MW / year. 
 

Shanghai Sunwise New 
Energy Systems Co., Ltd 

Develops hydrogen refueling stations, including the permanent installation at 
Anting and a number of mobile units. Also develops on-board storage of 
hydrogen for FCEV. 
 

Beijing Fuyuan Century 
Fuel Cell Power Co., Ltd 

PEMFC development and commercialization. Has broad spectrum of 
products, ranging from fuel cells used in mobile phones to 40kW fuel cell for 
vehicles.  
 

Beijing Ln-Power Sources 
Co., Ltd 

Current research areas are hydrogen production and PMEFC. Full spectrum of 
products, include hydrogen refueling station and various PEMFC system. 

6.5.3 International networking 

In 1978, the Chinese government started to implement open policy. Based on reciprocity 

and mutual interest, China began international research cooperation through 

intergovernmental and non-governmental channels. Initially, the international research 

cooperation programs were mainly participated in by academia. Currently, however, the 

industry leaders also express great interest in the international cooperation of certain 

research fields. 
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Among all the partners, the European Union is the most active one who has been 

involved in outstanding research cooperation with China. Under the Sixth and Seventh 

Framework Programme (FP6 & FP7) proposed by the European Commission, China 

participated in 8 projects in the field of hydrogen and fuel cell research, as shown in Table 

6.6 [102]. 

Table 6.6 China‘s participants in FP6 and FP7‘s hydrogen and fuel cell projects [102]   

Title Acronym Chinese participants 
New Methods for Superior Integrated Hydrogen 
Generation System 

NEMESIS Nanjing Univ. of Tech 

Carbon Dioxide Capture and Hydrogen Production 
from Gaseous Fuels 

CACHET Dalian Inst. of Chem. Phy, CAS. 

International Partnership for a Hydrogen Economy for 
generation of New Ionomer membranes 

IPHE-GENIE Shanghai Jiaotong Univ. 

Demonstration of SOFC stack technology for operation 
at 600°C 

SOFC600 Dalian Inst. of Chem. Phy, CAS. 
and Shanghai Jiaotong Univ. 

Handbook for Approval of Hydrogen Refuelling 
Stations 

HYAPPROVAL Tech. Inst. of Phy and Chem, 
CAS 

Hydrogen for clean urban transport in Europe HYFLEET:CUTE China FCB Demonstration 
Project Management Office 

Fuel Cell Testing, Safety, Quality Assurance FCTESQA Dalian Inst. of Chem. Phy., CAS, 
Carbon dioxide capture and hydrogen production with 
membranes 

CACHET II Dalian Inst. of Chem. Phy., CAS, 
and Inst. of Metal res., CAS. 

 

One the other hand, Canada showed special interest in cooperation with China for the 

commercialization of fuel cells. Palcan Fuel Cell Co. Ltd. of Canada supplied fuel cell 

stacks to its Chinese partners for the assembly of several prototypes of fuel cell 

two-wheelers (bicycles, scooters). Recently, Palcan is involved in a joint program with 

Shanghai Mingliang Plastic Co. Ltd. to manufacture about 20,000 PEM fuel cell stacks each 

year. Ballard Power Systems Inc. of Canada, the fuel cell industry leader, also has its 

ambitious plan for Chinese market. With the help of Ballard, the Shanghai Fuel Cell Vehicle 

Powertrain Co., Ltd is planned to manufacture 10,000 fuel cell vehicles in Shanghai by 

2012.  
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6.5.4 Demonstration programs 

6.5.4.1 Tianjin IGCC power plant demonstration project 

Due to China‘s coal-based energy system, the clean utilization of coal has always been 

attached the highest priority. Motivated by this need, China launched its ‗‗Green Coal-Based 

Power Generation Plan‖. As the first part of the plan, Huaneng Group, the largest power 

company in China, started the construction of Tianjin Integrated Gasification Combined 

Cycle (IGCC) power plant in 2009. Strongly supported by 863 Program, the pioneer project 

has ambition to achieve near-zero emissions with the help of carbon capture and storage 

(CCS) technology. The first carbon storage site locates in Tianjin Dagang Oil Field. The 

first phase of the project has been completed by the end of 2011, including 2000 t/d coal 

gasifier and 250 MW coal-based poly-generation system.  

6.5.4.2 Fuel cell bus demonstration program 

The fuel cell bus demonstration project was launched by the Chinese government in 

March 2003 in collaboration with the Global Environmental Facility (GEF) and the United 

Nations Development Programme (UNDP). The first phase took place between June 2006 

and October 2007, with three Daimler-Chrysler fuel cell buses in operation for use by the 

Beijing public. These buses travelled a total distance of more than 92,116 km during their 

service with average hydrogen consumption rate 1kg/100km. The second phase took place 

in Shanghai and was launched in November 2007. The three fuel cell buses trialed in second 

phase were jointly developed by Shanghai Fuel Cell Vehicle Powertrain Co., Ltd and Tongji 

University, powered by Ballard stacks. 
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6.5.4.3 Bejing Olympics 2008 

A total of 20 Passat fuel cell cars were operated during the 2008 Beijing Olympic Games, 

with total operation mileage over 76,000 km. These cars were designed by Shanghai 

Volkswagen Passat and co-manufactured by Shanghai Fuel Cell Vehicle Powertrain Co., 

Ltd, Tongji University and Shanghai Automotive Industry Corporation. After the Olympics, 

sixteen of them were sent to California for fleet demonstrations at the California Fuel Cell 

Partnership (CAFCP). Here, the fleet covered an additional 37,000 km between February 

and June 2009. 

6.5.4.4 Shanghai World EXPO 2010 

During the 2010 World Expo, a total of 1,017 clean energy vehicles were in use 

transporting visitors, including 90 fuel cell cars, 6 fuel cell buses. The fuel cell vehicles were 

manufactured by SAIC, Shanghai Volkswagen Automotive Co., Ltd, FAW-Volkswagen 

Automotive Co., Ltd, Chang‘an Automobile Co. Ltd and Chery Automobile Co. Ltd. 

Hydrogen was brought to the Expo refuelling station and the Anting hydrogen station on 

tube trailers from a by-product hydrogen purification plant; two mobile hydrogen refuelling 

stations were also in use.  

6.6 Conclusion 

In this Chapter, several key issues concerning China‘s future hydrogen economy are 

reviewed, including drivers for transition towards the hydrogen economy, energy resources 

and their potential role in future hydrogen production, government‘s policy and support for 

the research of hydrogen and fuel cell technology.  
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Among the four drivers identified, energy security seems to be the most important one for 

China. Need for alternative fuel is especially urgent in the transport sector. The growing oil 

price in China, as well as the tightening financial belts caused by the economy crisis, has 

evoked widespread public's interests in renewable energy vehicles. In 2010, China 

government established the renewable energy vehicle union, which consisted of 16 

state-owned powerful companies. The objective of the union is to facilitate the research and 

commercialization of renewable energy vehicles. With strong government incentives, 

renewable energy vehicles are likely to expand their market share in near future. As a result, 

the dependence on oil import can be greatly alleviated by then. 

The brief analysis of energy supply shows that China currently faces a dilemma in terms 

of hydrogen production. China‘s coal-based energy system is both beneficial and 

detrimental to the transition towards hydrogen-based economy. In favour of hydrogen 

economy is the availability of so much potential hydrogen fuel, while the current reliance on 

coal, the low price of ―dirty‖ energy delivery and the established infrastructure of the coal 

power industry may make it difficult to increase industrial momentum towards the hydrogen 

economy. On the other hand, the oil and natural gas are not the ideal sources for hydrogen 

production due to their high price and limited reserve. In the long term, renewable energy 

resources are likely to play a more important role in hydrogen production due to their 

abundance in China. The major barrier to the commercialization of renewable energy is the 

high cost of infrastructures, which results in the expensive electricity tariff and the low 

market acceptance. Under such circumstances, government incentive is an effective way to 

encourage renewable energy production. 
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Chinese government has made ambitious policy and provides strong financial support for 

hydrogen and related technology development. All of China‘s top-tier institutes and 

universities are conducting hydrogen and fuel cell research. Of the various fuel cell types, 

the high temperature variants—SOFC and MCFC—are most suitable for hydrogen that is 

derived from hydrocarbon sources. Unlike low temperature cells such as the PEMFC, both 

the SOFC and MCFC can tolerate carbon oxides in the fuel and indeed are able to oxidise 

CO directly. Studies have shown that fuel produced from coal gasifiers can be used in the 

SOFC and MCFC. Considering China‘s coal-based energy system, this may be an important 

application in the future. 
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Chapter 7 Conclusion and Future Work 

7.1 Summary and conclusion 

The major contributions of the thesis are summarized corresponding to the chapters of the 

thesis, followed by the main conclusions for each chapter. 

The major contributions of chapter 2 include: (1) the empirical model of PEMFC is 

developed using support vector machine (SVM); (2) the hybrid modelling approach is 

proposed by combining the empirical submodel and mechanistic submodel.  

The main conclusions are:   

 SVM is a powerful tool for nonlinear system identification and modelling due to its 

excellent performance in function regression. Using SVM, the proposed empirical 

model shows some desirable properties, including good accuracy, fast response and 

low computational burden. These characteristics lay the solid foundation for the 

control study. 

 Using the hybrid modelling approach, the proposed combined model overcomes the 

disadvantages of both the empirical model and the mechanistic model. Compared with 

pure empirical model, the combined model can be built with less operational data due 

to the reduction of input dimensions. In addition, unlike pure empirical model, the 

combined model has generalization ability, which means the combined model is not 

limited to a specific application or a narrow corridor of operating conditions. On the 

other hand, unlike pure mechanistic model, the combine model has simple 

expressions and provides low computational burden. 
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The major contributions of chapter 3 include: (1) the model predictive control (MPC) 

strategy is developed using Model Predictive Control Toolbox of the MATLAB program; (2) 

the novel MPC strategy is designed by employing the particle swarm optimization (PSO) 

algorithm; (3) the constrained MPC strategy is designed and the standard PSO algorithm is 

modified to hand the constraints.   

The main conclusions are:   

 Using Model Predictive Control Toolbox, the MPC strategy proposed shows good 

performance with respect to maintaining the performance outputs at the nominal value 

during the transit operating conditions. More precisely, when step changes occur in 

the stack current as a result of uncontrollable load, the oxygen excess ratio and the 

stack voltage are able to be maintained at 2.33 and 250V, respectively. Besides, the 

proposed MPC strategy causes no overshoot. However, the proposed controller has 

some drawbacks in terms of response speed, resulting long settling time. 

 Due to its fast convergence speed and strong robustness, PSO is suitable to solve the 

real-time optimization problem formulated by MPC. Using PSO as optimizer, the 

novel MPC strategy achieves robust control of PEMFC voltage with good 

performance in tracking both constant and dynamic set points. In addition, due to the 

introduction of reference trajectory, the novel MPC avoids excessive movement of 

control inputs and achieves smooth tracking performance. 

 The constrained MPC strategy is proposed to prevent reactant starvation and 

excessive pressure difference across the membrane. The standard PSO algorithm is 

not able to solve the constrained optimization problem formulated by the constrained 
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MPC. Therefore, it is modified by introducing a constraint violation checking 

procedure to handle the constraints. In addition, the modified PSO is accelerated by 

improving the initialization process based on the optimal control sequence obtained 

by MPC receding strategy at the previous sampling period. The constrained MPC 

strategy with the modified PSO algorithm achieves robust control of stack voltage. 

Meanwhile, the constraints are not violated, which means the reactant starvation and 

excessive pressure difference across the membrane are effectively prevented. 

The major contributions of chapter 4 include: (1) the efficiency curves of PEMFC under 

different operating conditions are obtained and analyzed; (2) the maximum efficiency point 

tracking (MEPT) controller is designed based on the extremum seeking control (ESC) theory.  

The main conclusions are:   

 The steady-state analysis shows that the efficiency curves of PEMFC are unimodal 

with the peak determined by the combination of the stack current and the oxygen 

excess ratio. This implies that improved performance may be achieved by identifying 

the maximum efficiency point and regulating the system about this point. 

 MEPT problem is a so-called extremum seeking control or self-optimizing control 

problem. It means the control objective is the optimization of an objective function 

which may depend on unknown model parameters, or the selection of the desired 

inputs to keep a performance function at its extremum value. Particularly for MEPT 

problem, the maximum efficiency points depend on the changing stack current 

caused by the uncontrollable load. Therefore, when varriations in the stack current 

occur, the oxgyen excess ratio has to be adjusted to achieve the maximum efficiency. 
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 Based on extremum seeking control theory, the MEPT controller is designed. By 

searching for the optimal oxygen excess ratio in real-time, the proposed MPET 

controller shows good performance in tracking the maximum efficiency point under 

changing stack current conditions. Compared with traditional methods, the proposed 

controller has three advantages. First, the optimization problem is solved by feedback 

control law. Hence, it has a main advantage of strong robustness over other open-loop 

control methods. Second, it is a real-time control method. Therefore, it can be used for 

real-time optimization of time-varying systems. Third, it does not require prior 

knowledge of system model. In other words, it is a non-model based control method. 

Despite these desirable properties, it also comes with drawback. The periodic 

perturbation will bring oscillations into the system.  Thus, when the system reaches 

the extremum, the system oscillates about this value rather than converging to it 

exactly. 

The major contributions of chapter 5 include: (1) the control-oriented thermal model of 

PEMFC is developed; (2) the model-based thermal controller is designed.  

The main conclusions are:   

 The control-oriented thermal model that considers both PEMFC stack and coolant is 

developed based on the energy conservation principle. The model is nonlinear with 

disturbances and uncertainty. The main reasons are: (a) the stack current is modelled 

as disturbance, which corresponds to the uncontrollable load; (b) many physical 

parameters may vary to a large extent under different operating conditions. 
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 Since the model is formulated in nonlinear affine form with disturbance, the 

input/output linearization method is employed by introuducing a dynamic 

feedforward/static state feedback law. The temperature controller is then designed 

based on the linearized model. The proposed controller shows better performance than 

PID controller in terms of accuracy. 

The major contributions of chapter 6 include: (1) China‘s main drivers for the transition 

towards the hydrogen economy are indentified; (2) China‘s energy supply matrix is 

reviewed and the potential role of different energy resources in future hydrogen economy is 

analysed; (3) China‘s policy and government support programs for the R&D of hydrogen 

and fuel cell technologies are reviewed.  Research achievements are also summarized.  

The main conclusions are:   

 Four main drivers are indentified: (1) energy security; (2) climate change; (3) urban 

air pollution; (4) competitiveness. China considers the energy security as its first 

priority, with special concern for ensuring continuous and sufficient oil supply. 

Hydrogen can be produced from diverse resources, both renewable (solar, wind, 

hydro, biomass) and non-renewable (coal, oil, natural gas). Therefore, hydrogen can 

diversify the energy supply and reducing the dependence on oil imports. Meanwhile, 

China has huge greenhouse gas and other pollutant emissions due to its heavy 

industry background and large population of vehicles. Hydrogen serves as a potential 

solution to these problems as it is a clean and efficient fuel, causing low CO2 or other 

pollutant emissions. China‘s global competitiveness will also be fostered if China 

companies are able to forge a lead in hydrogen and fuel cell technologies 
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 Coal is the backbone of China‘s current energy system. China‘s coal-based energy 

system is both beneficial and detrimental to the transition towards hydrogen-based 

economy. In favor of hydrogen economy is the availability of so much potential 

hydrogen fuel, while the current reliance on coal, the low price of ―dirty‖ energy 

delivery and the established infrastructure of the coal power industry may make it 

difficult to increase industrial momentum towards the hydrogen economy. On the 

other hand, oil and natural gas are not ideal sources for hydrogen production due to 

their high price and limited reserve. In the long term, renewable energy resources are 

likely to play a more important role in hydrogen production due to their abundant 

reserves in China. The major barrier to the commercialization of renewable energy is 

the high cost of infrastructures, which results in the high electricity tariff and the low 

market acceptance. Under such circumstances, government incentive is an effective 

way to encourage renewable energy production. 

 China government has made ambitious plan and provides strong financial support for 

hydrogen and fuel cell technology development. All of China‘s top-tier institutes and 

universities are conducting hydrogen and fuel cell research. Of the various fuel cell 

types, the high temperature variants—SOFC and MCFC—are most suitable for 

hydrogen that is derived from hydrocarbon sources. Unlike low temperature cells 

such as the PEMFC, both the SOFC and MCFC can tolerate carbon oxides in the 

fuel and indeed are able to oxidise CO directly. Studies have shown that fuel 

produced from coal gasifiers can be used in the SOFC and MCFC. Considering 

China‘s coal-based energy system, this may be an important application in the future. 
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In sum, the thesis's main contributions to new knowledge are: 

 Modelling methods: (a) A new empirical model of PEMFC is developed using 

SVM. (b) A novel hybrid modelling approach is applied to PEMFC for the development 

of the combined empirical and mechanistic model. 

 Control methods: (a) A new MPC strategy is proposed by integrating PSO 

algorithm. (b) A new constrained MPC strategy of PEMFC is formulated and solved by 

the modified PSO algorithm. (c) The maximum efficiency point tracking problem of 

PEMFC is first analysed and solved based on extremum seeking control theory. (4) The 

input/output linearization method is applied to the nonlinear affine model of PEMFC 

thermal system to derive a new dynamic feedforward/static state feedback control law. 

7.2 Future work 

The major part of this work focuses on the modelling and control of PEMFC system. 

However, PEMFC has limitations on its dynamic response. This is because of the 

mechanical delays of the fuel delivery system such as valves and pumps and also the limited 

rate of heat release. Therefore, an additional energy source is needed to complement the 

slow dynamics of PEMFC when rapid load variations occur. This energy source could be an 

ultracapacitor or a battery pack.  

The modelling and control of the hybrid power system that consists of PEMFC and 

secondary energy source are critical issues for future research. The dynamic behaviour of 

each component must be carefully considered and modelled in order to ensure sufficient 

power flow. The power flow control strategy of the hybrid power system should be 

optimized to supply the required power with the highest efficiency. 
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