Oxygen isotope composition of phloem sap in relation to leaf water in Ricinus communis

Cernusak, Lucas A., Chin Wong, S., and Farquhar, Graham D. (2003) Oxygen isotope composition of phloem sap in relation to leaf water in Ricinus communis. Functional Plant Biology, 30 (10). pp. 1059-1070.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1071/FP03137
 
84
1


Abstract

We measured the oxygen isotope composition of both the water and dry matter components of phloem sap exported from photosynthesising Ricinus communis L. leaves. The 18O / 16O composition of exported dry matter matched almost exactly that expected for equilibrium with average lamina leaf water (leaf water exclusive of water associated with primary veins) with an isotope effect of αo=1.027, where αo=Ro / Rw , and Ro and Rw are 18O / 16O of organic molecules and water, respectively. Average lamina leaf water was enriched by 14–22‰ compared with source water under our experimental conditions, and depleted by 4–7‰, compared with evaporative site water. This showed that it is the average lamina leaf water 18O / 16O signal that is exported from photosynthesising leaves rather than a signal more closely related to that of evaporative site water or source water. Additionally, we found that water exported in phloem sap from photosynthesising leaves was enriched compared with source water; the mean phloem water enrichment observed for leaf petioles was 4.0 ± 1.5‰ (mean ± 1 s.d., n = 27). Phloem water collected from stem bases was also enriched compared with source water. However, the enrichment was approximately 0.8 times that observed for leaf petioles, suggesting some mixing between enriched phloem water and unenriched xylem water occurred during translocation. Results validated the assumption that organic molecules exported from photosynthesising leaves are enriched by 27‰ compared with average lamina leaf water. Furthermore, results suggest that the potential influence of enriched phloem water should be considered when interpreting the 18O / 16O signatures of plant organic material and plant cellulose.

Item ID: 40214
Item Type: Article (Research - C1)
ISSN: 1445-4416
Keywords: isotopic signal, phloem sucrose, phloem water, translocation
Date Deposited: 09 Oct 2015 01:50
FoR Codes: 06 BIOLOGICAL SCIENCES > 0607 Plant Biology > 060705 Plant Physiology @ 100%
SEO Codes: 96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960806 Forest and Woodlands Flora, Fauna and Biodiversity @ 100%
Downloads: Total: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page